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Abstract

Learning to predict rewards based on environmental cues is essential for survival. It is believed 

that animals learn to predict rewards by updating predictions whenever the outcome deviates 

from expectations, and that such reward prediction errors (RPEs) are signaled by the mesolimbic 

dopamine system—a key controller of learning. However, instead of learning prospective 

predictions from RPEs, animals can infer predictions by learning the retrospective cause of 

rewards. Hence, whether mesolimbic dopamine instead conveys a causal associative signal that 

sometimes resembles RPE remains unknown. We developed an algorithm for retrospective causal 

learning and found that mesolimbic dopamine release conveys causal associations but not RPE, 

thereby challenging the dominant theory of reward learning. Our results reshape the conceptual 

and biological framework for associative learning.

How do animals learn to associate environmental cues with delayed outcomes such as 

rewards? It is widely believed that they learn a prospective prediction of how often reward 

follows a given cue. A simple way to learn such prospective predictions is to update one’s 

prediction every time the outcome following a cue deviates from the prediction (Fig 1A, 

B). Such violations of reward predictions are commonly called reward prediction errors 

(RPEs). The simplest model in this family is the Rescorla-Wagner model (1). Temporal 
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difference reinforcement learning (TDRL) models extend the Rescorla-Wagner model to 

account for cue-outcome delays and is the most widely accepted model of reward learning 

(2, 3). To account for delays, these models typically propose that a sequential pattern of 

neural activities (“states”) tiles temporal delays and propagates predictions from the cue to 

the reward (Fig 1B). TDRL RPE has been successful at explaining the activity dynamics of 

dopaminergic cell bodies and release in the nucleus accumbens (4-13). Hence, TDRL RPE 

has become the dominant theory of dopamine’s role as the critical regulator of behavioral 

learning (14-17).

An alternative approach to learn cue-reward associations is to infer the cause of meaningful 

outcomes such as rewards (18-20) (Fig 1A, C). Because causes must precede outcomes, a 

viable approach to infer whether a cue causes reward is to learn whether the cue consistently 

precedes reward. Predicting the future is highly demanding in a cue-rich environment but 

inferring the cause of a rarer meaningful outcome simply requires a memory of previous 

experience. If an animal knows that a stimulus it just received is meaningful (e.g., a reward), 

it can look back in memory to infer its cause. Given the central role of dopamine in 

learning, we hypothesized that dopamine may guide retrospective causal learning instead 

of conveying RPEs. Though the differences between prospective and retrospective learning 

may not be apparent at first glance, we show that these models make highly divergent 

predictions about mesolimbic dopamine dynamics. Here, we directly test between these 

models of the role of dopamine in associative learning.

A retrospective causal learning algorithm:

While some stimuli are innately meaningful, others acquire meaning after learning that they 

cause other meaningful stimuli (e.g., a cue that predicts reward becomes meaningful). We 

denote stimuli whose cause should be learned by the animal as “meaningful causal targets” 

and propose that mesolimbic dopamine signals whether a current event is a meaningful 

causal target (Figs 1C, S1, S2). We propose a causal inference algorithm that infers whether 

a cue is a cause of reward by measuring whether it precedes the reward more than that 

expected by chance (Figs 1C, S2), then converting this to a prospective prediction signal 

using Bayes’ rule (Fig S3) (Supplementary Note 1), and finally using the net contingency 

between a cue and reward to build a cognitive map of causal associations (20) (Figs 1C, S4).

We developed this algorithm to address problematic temporal assumptions that are 

foundational to common conceptions of TDRL, which result in a non-scalable representation 

of time (21). We tested whether this new algorithm learns causal relationships without 

loss of generality across timescales. Consistent with this and unlike TDRL, our algorithm 

learns the underlying causal structure of a variety of complex environments across two 

orders of magnitude of timescales and explains well-established behavioral observations of 

the timescale invariance of learning (Figs S5, S6). The algorithm proposes that meaningful 

causal targets are signaled by an adjusted net contingency for causal relations (ANCCR, read 

“anchor”) (Fig S4). The ANCCR-based causal learning model is consistent with simulations 

of classical results supporting the RPE coding hypothesis including dopaminergic responses 

to reward magnitude and probability, blocking, unblocking, overexpectation, conditioned 

inhibition, and trial-by-trial update of action probabilities (Fig 2). It is also consistent with 
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the observation that apparent negative RPEs in dopamine response are not as strong as 

positive RPEs of the same magnitude, even without assuming a floor effect in dopamine 

responses. Therefore, we reasoned that mesolimbic dopamine release has been tested only 

under conditions in which the ANCCR and RPE hypotheses make similar predictions, and 

that dopamine release may convey ANCCR instead of RPE.

In most behavioral tasks, prospective and retrospective associations are highly correlated and 

difficult to separate. To distinguish between the two hypotheses (RPE or ANCCR signaling 

by mesolimbic dopamine release), we performed eleven experimental tests. To maximize our 

ability to distinguish the models for strong inference (22), we designed the experiments such 

that the predictions of the two hypotheses are qualitatively different and often opposing. 

Because it has been proposed that distinct dopaminergic systems exist in the midbrain 

and that only some faithfully signal RPE (23-30), we tested these predictions by optically 

measuring sub-second mesolimbic dopamine release in the nucleus accumbens core (NAcc), 

a projection widely believed to encode RPE and shown to mediate Pavlovian learning (8-12, 

31-33) (though see (34)) (Figs 3A, S7). We did so in mice using fiber photometry of the 

dopamine sensor dLight 1.3b expressed in NAcc (7, 35).

Tests 1 and 2 (unpredicted rewards):

We first tested between the two hypotheses in a simple experiment with divergent 

predictions. We presented naïve head-fixed mice with no experience in any laboratory 

behavior task with random unpredicted drops of a 15% sucrose solution delivered with 

an exponential inter-reward interval (IRI) distribution (mean = 12 s), while recording 

mesolimbic dopamine release in NAcc. In this task, the timing of individual sucrose 

deliveries cannot be anticipated based on the previous delivery, but the average rate of 

sucrose delivery is fixed (once every 12 s on average). Because the animal is experimentally 

naïve with no history of receiving sucrose prior to the onset of the experiment, the RPE 

hypothesis predicts high dopamine response to sucrose during the early exposures. This is 

because the sucrose is highly unpredicted initially. With repeated exposure to the context, 

the RPE is predicted to decrease slightly as the context becomes a predictor of the rewards. 

More formally, the internal IRI “states” in TDRL acquire positive value with experience (see 

Supplementary Note 2 for a consideration of a semi-Markov state space in TDRL (36)). 

Since RPE is the difference between the value of sucrose and the value of the IRI state that 

preceded sucrose delivery, RPE will reduce at sucrose delivery with repeated experience (Fig 

3B, C).

On the other hand, the ANCCR hypothesis predicts that the response to sucrose will increase 

with repeated experience. This is because the predicted sucrose response is proportional 

to the difference between the average rate of previous sucrose deliveries calculated at 

sucrose delivery (including the current sucrose delivery) and the baseline average rate of 

previous sucrose deliveries (Fig 3B). Because both of these quantities are initially low 

in naïve animals that have no experience with sucrose, ANCCR of sucrose is low early 

in this task. ANCCR eventually reaches an asymptote of ~1 times the incentive value of 

sucrose (Methods) because the rate of sucrose calculated just prior to a sucrose delivery (i.e., 

excluding the current sucrose) is equal to the baseline average rate of sucrose. Thus, the 
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RPE hypothesis predicts that the dopamine response to sucrose will decrease over repeated 

experiences, while the ANCCR hypothesis predicts that the response will increase. Testing 

these differential predictions formed Test 1 (Fig 3B, C).

Observed mesolimbic dopamine release was consistent with ANCCR but not RPE (Fig 

3D, E). Every animal showed an increasing sucrose response that reached a high positive 

asymptote. This is entirely inconsistent with RPE: because RPE is the difference between 

received and predicted reward, it cannot be higher than that for an unpredicted reward. These 

results also cannot be explained by RPE based on a slower learning of the incentive value 

of sucrose; animals actively licked to consume sucrose at high rates starting from the first 

delivery, demonstrating that sucrose had high value (Fig 3D, Fig S8). Such high motivation 

for sucrose from the onset of the experiment is consistent with well-known results that sugar 

is innately rewarding to mice (37). We also ruled out alternative hypotheses such as stress 

(Supplementary Note 3, Fig S8) or a non-specific increase in responses to the consummatory 

action (lick bout onset) (Fig S8).

We next tested a “trial-by-trial” prediction in this experiment by measuring the correlation 

between the dopamine response to a sucrose delivery and the previous IRI. Getting the 

next reward sooner than predicted would produce a larger RPE than getting the next reward 

later. Hence, the RPE hypothesis predicts a negative correlation between the dopamine 

response to a sucrose delivery and the previous IRI (36) (Fig 3B, F) (Supplementary Note 

4). However, ANCCR predicts a positive correlation because the ANCCR of reward involves 

the subtraction of the baseline reward rate. Because the baseline reward rate declines with 

longer IRI, ANCCR should increase with longer IRI (Fig 3B, F). This was Test 2.

The experimentally observed correlation between dopamine response to sucrose and the 

previous IRI was positive, thereby being consistent with ANCCR but not RPE. We also 

ruled out the hypothesis that this positive correlation is simply due to an inability of animals 

to learn the mean IRI. This is because 1) the correlation was consistently positive for more 

than 800 experiences of sucrose (8 sessions) (Fig S8), 2) mice learn the average IRI within 

at most two sessions (Fig S8), 3) rodents can be as fast as Bayesian ideal observers in 

detecting changes in the rate of exponentially scheduled rewards (38), and 4) even the 

original experiments that inspired the Rescorla-Wagner model showed that animals learn the 

mean inter-reinforcer interval despite unpredictable timing (39, 40) (see (41) for a detailed 

discussion).

Tests 3-7 (Cue-reward learning):

Next, we studied dopamine response dynamics during cue-reward learning. We measured 

behavioral learning using anticipatory licking prior to the delivery of sucrose 3 s following 

onset of an auditory cue. Anticipatory licking reflects the prediction of upcoming reward 

across species, and this paradigm has provided some of the strongest support for TDRL 

RPE coding (4, 5, 42-45). During cue-reward learning, both RPE and ANCCR predict that 

dopamine responses to the cue will be low early in learning and high late in learning. 

Thus, the increase in dopamine response to cue can be used as a measure of dopaminergic 

learning (defined as dopaminergic signaling related to the external cue-reward association). 
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The RPE hypothesis predicts a tight relationship between the dynamics of behavioral and 

dopaminergic learning (Fig 4A). This is because TDRL RPE updates the value signal used 

for behavioral learning, and dopaminergic signaling in NAcc is necessary for the learning 

of anticipatory licking in head-fixed mice (32). On the other hand, the ANCCR of the cue 

is a continuously evolving estimate of whether the cue is itself a meaningful causal target 

due to its association with reward, and hence, is not predicted to evolve in lockstep with 

the behavior. Indeed, in the ANCCR hypothesis, associations are learned first, and then 

timing is learned: behavioral learning requires the threshold crossing of ANCCR to learn 

a causal model of the world (“cue causes reward”), followed by the separate learning of 

the temporal delay between cue and reward (“cue causes reward at a 3 s delay”). Only 

then does a timed decision signal for behavior become available (Fig 4B, S2). Thus, the 

ANCCR hypothesis predicts that the gradual dopaminergic learning of the cue response 

will significantly precede behavioral learning, and that behavioral learning will be much 

more abrupt than dopaminergic learning since it requires an internal threshold crossing 

of the net contingency between cue and reward (Test 3) (Supplementary Note 5). The 

observed dopaminergic dynamics during learning were consistent with ANCCR but not 

RPE: dopamine response to CS+ was evident long before animals showed anticipatory 

licking (Figs 4B-F, S9). In fact, dopamine cue responses were at their peak by the time of 

behavioral acquisition (Fig S10).

Further, when a learned delay between cue onset and reward (3 s) is extended permanently 

to a new, longer delay (9 s), RPE predicts that as animals learn the longer delay and suppress 

anticipatory licking at the previous short delay, there will be a concomitant reduction in 

the dopamine cue response due to temporal discounting (46). On the other hand, ANCCR 

predicts little to no change in the dopamine cue response as the structure of the task is 

largely unchanged (Test 4, Figs 4 G, S9, S10; intuitively, relative to the long intertrial 

interval, the cue-reward delay is still short). Experimentally, we observed that while the 

animals learned the new delay rapidly, dopaminergic cue response showed no significant 

change (Fig 4 G-I). After the extension of the cue-reward delay, RPE predicts a suppression 

of dopamine after the old delay expires without reward. Because the increase in cue-reward 

delay is permanent (unlike in prior experiments (45)), ANCCR predicts that the delay 

representation in the internal causal model of the animal would be updated to reflect the new 

delay. This predicts no reward omission response at the old delay (3 s) after the increase 

in the delay to 9 s. Thus, ANCCR predicts no negative omission response after the old 

delay expires without reward. (Test 5). Experimentally, we observed no suppression of 

dopamine response at 3 seconds in this experiment but did observe suppression in a separate 

experiment when the reward was indeed omitted (Figs 4J, S10).

Next, we tested extinction of a learned cue-reward association. Extinction of a learned 

association does not cause unlearning of the original association (47). Yet, TDRL learns a 

zero cue value following extinction, thereby predicting that the dopaminergic cue response 

will reduce to zero concomitant with behavioral learning. However, ANCCR includes the 

measurement of a retrospective association between the cue and reward. This association 

does not update without rewards and hence, does not degrade due to extinction. This 

“long-term memory” was observed previously in orbitofrontal neurons projecting to the 
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ventral tegmental area, the region where the somata of the mesolimbic dopamine neurons 

reside (19). Hence, the ANCCR hypothesis predicts that dopamine response will remain 

significantly positive long after animals learn to suppress anticipatory licking. This is 

because the cue remains a meaningful causal target despite extinction, even though the 

animals can learn extinction by noting that the base rate of rewards in the context 

becomes zero. Thus, Test 6 was whether dopamine cue response remained positive long 

after extinction was behaviorally learned (Fig 4J-L). As predicted by ANCCR but not 

RPE, dopamine cue response remained significantly positive well after animals cease to 

behaviorally respond to the cues (Fig 4J-L), consistent with prior studies (48, 49).

To test whether the significant positive dopamine responses following extinction reflect 

a retrospective association between the cue and reward, we selectively reduced the 

retrospective association without reducing the prospective association. We maintained the 

fixed reward following the cue but added unpredictable rewards during the intertrial interval. 

In this experiment, not all rewards are preceded by the cue (i.e., retrospective association is 

weak), but all cues are followed by reward (i.e., prospective association is high). ANCCR 

predicts a rapid drop in dopamine cue response, but RPE predicts no change in cue response 

if TDRL only considers the cue-reward “trial period” (Test 7, Fig S10). The dopamine 

cue response remained significantly positive but decayed across trials faster than during 

extinction (Fig 4M-P).

Test 8 (“trial-less” cue-reward learning):

We performed another test related to the temporal scalability of TDRL versus retrospective 

causal inference (Test 8, Fig 5). A key motivation for developing our model was that 

current TDRL models do not have a scalable representation of time, and hence fail to 

learn the correct structure of even simple environments in which a cue predicts a reward 

at a fixed delay with 100% probability (Fig S6). We devised an experiment in which 

a single cue predicted the reward at a fixed delay with 100% probability, but the cue 

occurred unpredictably with an exponentially distributed inter-cue interval between 0-99 

s. We reduced the cue duration to 250 ms to allow nearby occurrences of the cue to be 

separated in time and had a long trace interval (3 s) following cue offset until reward 

delivery. Animals learned the cue-reward association quickly in this modified “trial-less” 

task (Fig S11).

In this task, a cue will occasionally be presented during the wait from the previous cue to 

its associated reward (Fig 5A). If the “trial period” for cue-reward tasks is considered to be 

the interval between the cue and reward, the next “trial” can occasionally start before the 

previous trial is completed. During these “intermediate” cues, TDRL resets its prediction 

because it assumes a new trial has started without reward in the previous trial, thereby 

resulting in a negative RPE (i.e., the intermediate cue signals that the reward will now 

be further delayed; intuitively, the intermediate cue implies omission of reward after the 

previous cue). This results from the inability of TDRL to learn the correct structure of the 

task, which is that every cue occurrence causes a reward at a fixed delay (Supplementary 

Note 6).
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On the other hand, ANCCR will learn that the intermediate cue is qualitatively similar to the 

previous cue because both predict reward, but due to a local increase in cue rate, ANCCR 

predicts a lower but positive response to the intermediate cue (Fig 5A, B). We did not 

observe any negative dopamine response to the intermediate cue regardless of how baseline 

was measured, and instead observed a positive but weaker response, consistent with ANCCR 

but not RPE (Figs 5C, D, S11).

Tests 9-11 (backpropagation within a trial):

A critical postulate of the TDRL RPE account is that dopamine responses drive value 

learning of the immediately preceding state. We tested three predictions of this central 

postulate that are each inconsistent with ANCCR. The first is that during the acquisition 

of trace conditioning, dopamine response systematically backpropagates from the moment 

immediately prior to reward to the cue onset (50) (Test 9, Fig 6A). Unlike TDRL RPE, 

ANCCR does not make such a prediction since delay periods are not broken into states 

in ANCCR. The second is that during sequential conditioning (cue1 predicts cue2 predicts 

reward), dopamine response first increases to cue2 and then increases to cue1 (Test 10, 

Fig 6C). ANCCR instead predicts that dopamine responses to both cues will increase 

together and later diverge when cue2 is learned to be caused by cue1. The third is that 

artificially suppressing dopamine release from cue2 to reward during sequential conditioning 

will prevent learning of cue1 responses (Test 11, Fig 6E-H). In contrast, suppressing cue2 

response in ANCCR only prevents the learning of the cue1→cue2 association and does not 

prevent the learning of cue1 response.

We tested the first prediction using the animals that underwent the previous cue-reward 

learning. Our observations were not consistent with a backpropagating bump of activity and 

were instead consistent with an increase in cue response over trials of learning (Fig 6B) (see 

Supplementary Note 9 for potential reasons for discrepancy with a recent study). To test the 

second and third predictions, we performed sequential conditioning with an experimental 

group receiving inhibition of dopaminergic cell bodies from cue2 to reward, and a no-opsin 

control group that received the same laser but no inhibition of dopamine neurons. We 

measured NAcc dopamine release in both groups. The control group allowed us to test the 

dynamics of dopamine responses during sequential conditioning in the absence of dopamine 

neuron inhibition (i.e., the second prediction). Consistent with ANCCR, we experimentally 

found that cue2 and cue1 responses increased together early in learning prior to separating 

later in learning (Fig 6D). To test the third prediction, we first verified robust inhibition 

of mesolimbic dopamine release during the cue2→reward delay in the experimental group 

(~0.6 times the reward response on day 1 of conditioning) (Supplementary Note 10). With 

such strong inhibition, TDRL RPE predicted no behavioral learning in this experiment, 

and a strong negative cue1 dopamine response (Figs 6H, S12). In contrast, ANCCR 

predicted largely intact learning of cue1, but with slower behavioral learning and reduced 

cue1 response (see Supplementary Note 10 for explanation). Consistent with ANCCR, we 

observed that every experimental animal learned the task and that mesolimbic dopamine 

acquired positive responses to cue1 in all experimental animals (Fig 6I).

Jeong et al. Page 7

Science. Author manuscript; available in PMC 2023 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion:

The dynamics of mesolimbic dopamine release in NAcc were inconsistent with TDRL 

RPE across a multitude of experiments but remain consistent with a causal learning 

algorithm. The algorithm proposed here operates by testing whether a stimulus precedes 

reward beyond that expected by chance and by converting this association to a prospective 

prediction (Supplementary Note 7). Using this prediction, the algorithm learns a causal 

map of associations, and signals whether a stimulus has become a meaningful causal target 

following such learning. Though our data are inconsistent with encoding of TDRL RPE 

by mesolimbic dopamine release, our framework is not inconsistent with prediction errors 

in general. Indeed, “prediction errors” related to event rates are a part of our framework 

(Supplementary Note 4).

The algorithm and results presented here provide a unified account of numerous published 

observations. Evidence across multiple species and brain regions shows that in addition to 

prospective associations, the brain stores memories of retrospective associations (19, 51, 

52). Behavioral learning is also guided by retrospective associations (18, 53). Dopamine 

responses remain significantly positive even to fully predicted, delayed rewards (4, 46, 

54-56). This is usually explained by appealing to an internal uncertainty about the delay 

(46) but occurs without any accounting of temporal uncertainty in our theory (Fig 2A). 

Consistent with our theory, a previous study observed no correlation between temporal 

uncertainty of an animal and the dopaminergic response to a fully predicted, delayed reward 

(57). Under some settings, dopamine reward responses during cue-reward conditioning 

have been observed to increase during initial learning, before decreasing back (54). While 

this observation is not consistent with RPE, it naturally results from our algorithm if the 

animal had no exposure to the reward in the experimental context prior to conditioning, 

as was the case (Fig S13). This might also explain why NAcc dopamine response to a 

predicted punishment might increase in some scenarios, while the responses to repeated 

punishments at fixed intervals decrease (34) (punishments are also meaningful causal 

targets; see Supplementary Note 8). ANCCR also explains recent observations of dopamine 

ramps used in favor of the RPE hypothesis (58) (Fig S13). Our explanation is also consistent 

with dopamine ramps in the striatum reflecting a causal association between an action and 

reward (59). Finally, dopamine responses guide learning in a way that sometimes violates 

the predictions of model-free TDRL (17, 60-63). Our proposal that the dopaminergic system 

conveys whether cues are meaningful causal targets, thereby promoting the learning of their 

causes, explains these results (Fig S13).

Our work raises several questions for which reports in the literature suggests answers. 

First, how is retrospective cue-reward information conveyed to the dopaminergic system? 

Prior work suggests that the orbitofrontal cortex is a source of this information (19) (Fig 

S14). Second, how do animals infer the appropriate timescales in the world? Currently, 

we simply assume that animals set the appropriate timescale of an environment based on 

knowledge of the inter-reward interval. As a more principled solution, recent work has 

suggested that multiple parallel systems with different time constants exist in the brain 

and can learn a timescale invariant representation of past time (64-67). Third, are there 

as-yet unknown state space assumptions that make TDRL RPE fit our data? We cannot rule 
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out all possible assumptions of TDRL state spaces because there is unlimited flexibility 

in assuming the state space used by animals, thereby making them currently unfalsifiable 

(though see Fig S15). In the absence of such falsifiable assumptions, our work demonstrates 

that the TDRL algorithm with conventional state space assumptions does not explain the 

dynamics of dopamine release in NAcc. Fourth, does dopamine release in regions other 

than NAcc signal RPE? As mentioned in the introduction, we studied dopamine release in 

NAcc precisely because it is the region with the strongest support for the RPE hypothesis. 

Considering the theoretical advantages of ANCCR compared to TDRL RPE in learning 

associations between rates of events (Fig S6, S15B), we believe that dopamine release in 

other regions might also be inconsistent with TDRL RPE; though, this remains to be tested. 

Finally, since it has been demonstrated that animal behavior and neural activity for even 

simple Pavlovian associations may be explained by the learning of causal cognitive maps 

(68-71), is all associative learning, including for action-conditional cognitive maps (56, 59, 

72-76), the product of causal inference? This remains to be addressed. Collectively, our 

data demonstrate that mesolimbic dopaminergic signaling in NAcc is inconsistent with the 

dominant theory of TDRL RPE signaling and instead guides a causal learning algorithm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. An algorithm for uncovering causal associations in an environment.
A. Animals can learn cue-reward associations either prospectively (“does reward follow 

cue?”) or retrospectively (“does cue precede reward?”). B. The dominant model for cue-

reward learning is temporal difference reinforcement learning, which learns the prospective 

association between a cue and reward, i.e., a measure of how often the reward follows the 

cue (cue value). To this end, the algorithm looks forward from a cue to predict upcoming 

rewards. When this prediction is incorrect, the original prediction is updated using a reward 

prediction error (RPE). The simplest of this family of models is the Rescorla-Wagner 

model which does not consider the delay between cue and reward. Temporal difference 

reinforcement learning (TDRL) algorithms extend this simple model to account for the 

cue-reward delay by modeling it as a series of states that measure time elapsed since 

stimulus onset. Two such examples are shown. C. Here, we propose an algorithm which 

retrospectively learns the causes of meaningful stimuli such as rewards (Fig S1-4). Because 

causes precede outcomes, causal learning only requires a memory trace of the past. In our 

mechanistic model, a memory trace of prior stimuli is maintained using an exponentially-

decaying eligibility trace for a stimulus (78), which allows the online calculation of the 

experienced rate of this stimulus (79). We hypothesized that mesolimbic dopamine activity 

signals ANCCR, a quantity that allows measuring whether an experienced stimulus is a 

meaningful causal target.
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Fig. 2. The retrospective causal algorithm produces a signal similar to temporal difference 
reward prediction error (RPE) in simulations of previous experiments.
A. During simple conditioning of a cue-reward association, ANCCR appears qualitatively 

similar to an RPE signal, being low before and high after learning for the cue, whereas 

being high before and low after learning for the reward, and negative after omission of an 

expected reward. All error bars are standard error of the mean throughout the manuscript. 

B. For probabilistic rewards, ANCCR produces qualitatively similar responses as RPE for 

cue, reward, and omission. Note that in B, animals were never trained on a fully predicted 

reward. Slight differences in omission responses from A to B result from this difference. 

C. For trial-by-trial changes in reward magnitude, ANCCR produces reward responses 

similar to positive and negative RPEs (similar to (80)). D-F. Simulations of ANCCR 

learning produces behavior consistent with conditioned inhibition (D), blocking (E), and 

overexpectation (F). G. Simulated inhibition of dopamine at reward time in cue-reward 

conditioning produces extinction of learned behavior (similar to (55)). H. Simulation of 

dopamine inhibition at reward time produces trial-by-trial changes in behavior (similar to 

(81)). I. Simulation of unblocking due to dopamine activation at reward during blocking 

(similar to (14)).

Jeong et al. Page 16

Science. Author manuscript; available in PMC 2023 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. The dynamics of dopamine responses to unpredicted rewards are consistent with ANCCR, 
but not TDRL RPE.
A. For the first two tests, we gave experimentally naïve mice random unpredictable sucrose 

rewards immediately following head-fixation while recording sub-second dopamine release 

in NAcc using the optical dopamine sensor, dLight 1.3b (Methods). Animals underwent 

multiple sessions with 100 rewards each (n=8 mice). B. Theoretical predictions for both 

models. Test 1: As a naïve animal receives unpredicted rewards, the RPE model predicts 

high responses since the rewards are unpredicted. Nevertheless, since the inter-reward 

interval (IRI) states acquire value over repeated experience, the RPE at reward will reduce 

with repeated experience. On the other hand, ANCCR predicts low reward responses early 

since an experimentally naïve animal will have no prior expectation/eligibility trace of 

sucrose early in the task but will subsequently approach a signal that is ~1 times the 

incentive value of sucrose. Test 2: The reward response following a short IRI will be 

larger in the RPE model because the reward was received earlier than expected, thereby 

resulting in a negative correlation between dopamine reward response and the previous IRI. 

However, since ANCCR has a subtractive term proportional to the baseline reward rate 

(Mr←- in the figure), and baseline reward rate reduces with longer IRI, ANCCR predicts a 

positive correlation between dopamine reward response and the previous IRI. C. Simulations 
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confirming the intuitive reasoning from B for Test 1. CSC and MS stand for complete 

serial compound and microstimulus, respectively. (one sample t-test against a null of zero; 

t(99) = RPE (CSC), −65.74; RPE (MS), −27.57; ANCCR, 18.60; Two-tailed p values = 

RPE (CSC), 1.7×10−83, RPE (MS), 3.0×10−48, ANCCR, 4.5×10−34; n=100 simulations). D. 
Licking and dopamine response from two example mice (rewards with less than 3 s previous 

IRI were excluded to avoid confounding by ongoing licking responses). Though not our 

initial prediction, ANCCR can even account for the negative unpredicted sucrose response 

from Animal 2 (Fig S8). E. Quantification of correlation between dopamine response and 

number of rewards. Left panel shows the data from an example animal and the right panel 

shows the population summary across all animals (one sample t-test against a null of zero; 

t(7) = 4.40, two-tailed p = 0.0031; n=8 animals). Reward response was defined as the 

difference of area under curve (AUC) of fluorescence trace between reward and baseline 

period (Methods). F. Simulations confirming the intuitive reasoning from B for Test 2 (one 

sample t test against a null of zero; t(99) = RPE (CSC), −1.7×103, RPE (MS), −151.28, 

ANCCR, 335.03; Two-tailed p values = RPE (CSC), 5.0×10−223, RPE (MS), 6.3×10−119, 

ANCCR, 4.8×10−153, n=100 iterations). G. Quantification of correlation between dopamine 

response and the previous IRI for an example session (left) and the population of all animals 

(one sample t-test against a null of zero; t(7) = 5.95, two-tailed p = 5.7×10−4, n=8 animals). 

The average correlation across all sessions for each animal is plotted in the bar graph.
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Fig. 4. The dynamics of dopamine responses during cue-reward learning are consistent with 
ANCCR, but not TDRL RPE.
A. TDRL predicts that dopaminergic and behavioral learning will be tightly linked 

during learning. However, the causal learning model proposes that there is no one-to-one 

relationship between behavioral and dopaminergic learning. B. Schematic of a cue-reward 

learning task in which one auditory tone predicted reward (labeled CS+) and another had no 

predicted outcome (labeled CS−). C. Licking and dopamine measurements from an example 

animal showing that the dopamine response to CS+ significantly precedes the emergence 

of anticipatory licking (Days 4 vs 12 respectively, shown by the arrows). D. Schematic 

to show a cumulative sum (cumsum) plot of artificial time-series data. A time-series that 

increases over trials appears below the diagonal in the cumsum plot with an increasing 
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slope over trials, and one that decreases over trials appears above the diagonal. Further, a 

sudden change in timeseries appears as a sudden change in slope in the cumsum plot. E, 
F. Dopamine cue response considerably leads behavior across animals. Each line is one 

animal, with the blue line corresponding to the example from C. Behavioral learning is 

much more abrupt than dopaminergic learning (paired t test for abruptness of change; t(6) 

= 9.06; two-tailed p = 1.0×10−4; paired t test for change trial; t(6) = −2.93; two-tailed p = 

0.0263; n=7 animals). G. Anticipatory licking and dopamine release in an example animal 

after increasing the cue duration from 2 s to 8 s while maintaining a 1 s trace interval 

and a long ITI (~33 s). Trials are shown in chronological order from bottom to top. The 

three vertical dashed lines indicate cue onset, cue offset, and reward delivery (also in J and 

O). H-I. Behavior is learned abruptly by all animals, but the dopaminergic cue response 

shows little to no change. The dashed vertical line is the trial at which the experimental 

condition transitions (in H, K, and P). We tested for the lack of change by showing that 

the Akaike Information Criterion (AIC) is similar between a model assuming change and a 

model assuming no change. Paired t test for abruptness of change; t(6) = 22.92; two-tailed 

p = 4.52×10−7; one-sample t test for ΔAIC against a null of zero; t(6) = 7.49 for lick, 

−0.86 for dopamine; two-tailed p = 2.9×10−4 for lick, 0.4244 for dopamine (n=7 animals). 

J. The dopaminergic cue response of an example animal remains positive well after it 

learns extinction of the cue-reward association. K-L. Across all animals, the dopaminergic 

cue response remains significantly positive despite abrupt behavioral learning of extinction 

(paired t test for abruptness of change; t(6) = 5.67; two-tailed p = 0.0013; paired t test for 

change trial; t(6) = −2.40; two-tailed p = 0.0531; n=7 animals). M. Experiment to reduce 

retrospective association while maintaining prospective association. N. Two experiments 

that show specific reduction in either prospective or retrospective association. O. Licking 

and dopamine release from an example animal. P. Dopamine cue response reduces more 

rapidly during the background reward experiment in which the cue is followed consistently 

by a reward than during extinction in which there is no reward (paired t test; t(6) = −3.51; 

two-tailed p = 0.0126; n=7 animals).
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Fig. 5. Dopamine responses in a “trial-less” cue-reward task reflect causal structure like 
ANCCR, but unlike TDRL RPE.
A. A “trial-less” cue-reward learning task. Here, a cue (250 ms duration) is consistently 

followed by a reward at a fixed delay (3 s trace interval). However, the cues themselves 

occur with an exponential inter-cue interval with a 33 s mean. B. Confirmation of these 

intuitions based on simulations (Methods) (One sample t test against a null of zero; t(99) 

= RPE (CSC), −114.74; RPE (MS), −181.32; ANCCR, 322.53; Two-tailed p values = RPE 

(CSC), 4.1×10−107; RPE (MS), 1.1×10−126; ANCCR, 2.1×10−151; n=100 iterations). Reward 

responses are predicted to be positive by both models (One sample t test against a null of 

one; t(99) = RPE (CSC), 87.67; RPE (MS), 62.86; ANCCR, 16.78; Two-tailed p values = 

RPE (CSC), 1.2×10−95; RPE (MS), 1.3×10−81; ANCCR, 1.1×10−30; n=100 iterations). C. 
Example traces from one animal showing that the dopamine response to the intermediate cue 

is positive. D. Quantification of the experimentally observed ratio between the intermediate 

cue response and the previous cue response (One sample t test against a null of zero; t(6) = 

6.64, two-tailed p value = 5.6×10−4; n=7 animals), and reward response (One sample t test 

against a null of one; t(6) = 2.95; two-tailed p value = 0.0256; n=7 animals).
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Fig. 6. No backpropagation of dopamine signals during learning.
A. Schematic of learning dynamics for pre-reward dopamine dynamics based on RPE or 

ANCCR signaling. Schematic was inspired from (50). If there is a temporal shift, the 

difference in dopamine response between early and late phases of a trial will be negative in 

the initial trials. B. Dynamics of dopamine response during early and late periods within a 

trial over training (left), and their difference during first 100 trials. C. Simulated dynamics 

for dopamine responses to cues (CS1 and CS2) during sequential conditioning (left), and 

averaged CS2 response during last 50 trials (right). D. Experimental data showing dynamics 

of dopamine responses to cues (left). Response difference between two cues during early 

phase of learning (middle; similar to Fig6B right) and CS2 response during late phase of 

learning (right, similar to Fig6C right). E. Schematic of optogenetic inhibition experiment 

during sequential conditioning for both experimental DAT-Cre animals receiving inhibition 

and control wild type animals receiving light but no inhibition. Animals received laser from 

CS2 until reward throughout conditioning. F. Measured licking and dopamine responses 

on the first session of conditioning from an example experimental animal, showing robust 

inhibition. G. Quantification of magnitude of inhibition during CS2 presentation prior to 

reward, and reward response. Both responses are measured relative to pre-CS1 baseline. 

H. Predicted dopamine responses using simulations of RPE or ANCCR. I. Experimental 

data showing CS1 response (left) and anticipatory licking (right) across sessions. Here, n 

represents the last session.
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