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EPIGRAPH

I believe that the most striking feature of the economics of climate change is that its extreme
downside is nonnegligible. Deep structural uncertainty about the unknown unknowns
of what might go very wrong is coupled with essentially unlimited downside liability on
possible planetary damages.

Marty Weitzman

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1 Adaptation to Weather Shocks and Household Beliefs on Climate:
Evidence from California . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Energy demand and climate impacts . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Household appliance and energy data . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Temperature data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Construction of historical climate and temperature anomalies . . . . 12
1.3.4 Beliefs about climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 Baseline specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Heterogeneity and mechanism analysis . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.1 Baseline results of weather on air conditioning adoption . . . . . . . . . 22
1.5.2 Baseline results of weather on energy demand . . . . . . . . . . . . . . . . . . 24
1.5.3 Heterogeneity in climate change belief and education . . . . . . . . . . . . 25

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.1 Alternative mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6.2 Beliefs about the climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



Chapter 2 Inundated by Change: The Effects of Land Use on Flood Damages . . 35
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 National flood insurance claims and the universe of policies . . . . . . . 41
2.3.2 Precipitation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.3 Geographic data on land use and elevation . . . . . . . . . . . . . . . . . . . . . 43
2.3.4 Housing summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.1 Baseline specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.2 Asymmetry of land change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.3 Spillovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.1 Main empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.2 Implications for flood insurance premiums . . . . . . . . . . . . . . . . . . . . . 50

2.6 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 3 Risk Preference Adaptation to Climate Change . . . . . . . . . . . . . . . . . . . 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 The Hunter-Gatherer Model of Risk Preference Adaptation . . . . . . . . . . . . . 61

3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.2 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Risk aversion measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Climate experience variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Empirical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 Effects of climate experiences on measured risk aversion . . . . . . . . . 79
3.4.2 Additional controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.3 Correlations with risky behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Adaptation and Counterfactual Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5.1 General risk preference adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5.2 Climate risk preference adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.1 Alternative Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vii



Chapter 2 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.1 Detailed Results from Main Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2 Alternative Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.3 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.4 Note on NFIP Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Chapter 3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C.1 Alternative Baseline Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C.2 Raw Climate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
C.3 Construction of Risk Aversion Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
C.4 Distribution of Structural Risk Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.5 Geographic Distribution of Survey Samples in the Data . . . . . . . . . . . . . . . . 146
C.6 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.7 Correlates of Risk Aversion Measures in the Cross Section . . . . . . . . . . . . . 147
C.8 Numerically Calculating the Equally-Distributed Equivalent . . . . . . . . . . . . 149
C.9 Details of Additional Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.10 Sample Distribution for Risk Aversion Measures . . . . . . . . . . . . . . . . . . . . . . . 151

viii



LIST OF FIGURES

Figure 1.1. Heat wave anomaly for 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 1.2. Orthogonality of residual anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.3. Contemporaneous anomaly and historical climate variance . . . . . . . . . 16

Figure 2.1. Baseline results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 2.2. Asymmetry results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 2.3. Spillovers in flood risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.1. Timing of events in the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 3.2. Moment correlations for birth-province/state cohorts . . . . . . . . . . . . . 77

Figure 3.3. Correlations of changes in risky behaviors with predicted temperature
increase in risk aversion, Indonesia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 3.4. Correlations of changes in risky behaviors with predicted precipitation
increase in risk aversion, Indonesia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 3.5. Correlations of changes in risky behaviors with predicted temperature
increase in risk aversion, Mexico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 3.6. Correlations of changes in risky behaviors with predicted precipitation
increase in risk aversion, Mexico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 3.7. Climate and risk adaptation, Indonesia . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 3.8. Climate and non-climate adaptation, Indonesia . . . . . . . . . . . . . . . . . . 96

Figure 3.9. Climate and risk adaptation, Mexico . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 3.10. Climate and non-climate adaptation, Mexico . . . . . . . . . . . . . . . . . . . . 98

Figure A.1. Age by partisan climate change attitudes . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure A.2. Secondary market for portable air conditioners . . . . . . . . . . . . . . . . . . . 112

Figure A.3. 2006 CDD anomaly plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure B.1. Trends in policies in force by land change . . . . . . . . . . . . . . . . . . . . . . . 123

Figure B.2. Houston land use 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

ix



Figure B.3. County level payouts for Texas, 2010–2016 . . . . . . . . . . . . . . . . . . . . . . 125

Figure B.4. County level claims for Texas, 2010–2016 . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure B.5. Construction of tract neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure B.6. CRS schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure C.1. Province/state level time series of climate variables . . . . . . . . . . . . . . . 138

Figure C.2. Construction of risk aversion measure in IFLS2 and IFLS3 . . . . . . . . 139

Figure C.3. Construction of risk aversion measure in MxFLS-2 . . . . . . . . . . . . . . . . 140

Figure C.4. Construction of risk aversion measure in MxFLS3 . . . . . . . . . . . . . . . . . 141

Figure C.5. Structural risk parameters, IFLS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure C.6. Structural risk parameters, IFLS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure C.7. Structural risk parameters, MxFLS-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Figure C.8. Structural risk parameters, MxFLS-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Figure C.9. Distribution of the primary sample in Indonesia by province of birth 146

Figure C.10. Distribution of the primary sample in Mexico by province of birth . . 146

Figure C.11. Histogram of measured risk aversion buckets in IFLS4 and IFLS5 . . . 152

Figure C.12. Histogram of measured risk aversion buckets in MxFLS-2 and MxFLS-3 152

x



LIST OF TABLES

Table 1.1. Air conditioning saturation by utility from RASS . . . . . . . . . . . . . . . . . . 11

Table 1.2. Testing the orthogonality of the heat wave using simulated weather
shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 1.3. Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 1.4. Placebo tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 1.5. Differencing over belief in climate change . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 1.6. First stage for belief in climate change . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 1.7. Heterogeneity of effects by education . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 2.1. Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 3.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 3.2. Additional controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table A.1. Central and standalone unit specification . . . . . . . . . . . . . . . . . . . . . . . . 107

Table A.2. Clustering at the city level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Table A.3. Clustering at the county level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table A.4. Homeowner restricted specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table A.5. Varying Fixed Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table B.1. Baseline specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table B.2. Asymmetric effects of land change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table B.3. Spillover results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Table B.4. Main results, spell specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Table B.5. Main results, value of claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table B.6. Main results, non-coastal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Table B.7. Spillovers with 5 km radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xi



Table B.8. Spillovers with 15 km radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Table C.1. Restricting the sample by birthyear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Table C.2. Binarized measure of risk aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Table C.3. Ordered probit with two-way fixed effects . . . . . . . . . . . . . . . . . . . . . . . 130

Table C.4. Results for province/state of residence . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Table C.5. Alternative weather station specification . . . . . . . . . . . . . . . . . . . . . . . . 132

Table C.6. Restricted weather series specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Table C.7. Province/state-level clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Table C.8. Repeated cross-section specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table C.9. Structural specification, Indonesia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Table C.10. Structural specification, Mexico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Table C.11. Summary statistics for the sample mean . . . . . . . . . . . . . . . . . . . . . . . . . 147

Table C.12. Correlates of risk preference measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Table C.13. Description of controls included in Table 3.2 . . . . . . . . . . . . . . . . . . . . . . . 151

xii



ACKNOWLEDGEMENTS

Thank you first to my academic advisors Mark, Judd, Richard, Josh, and Jenn.

Thanks to my co-author Remy; to my office mates Becky, Dani, and Sam (cut off far

too abruptly); to all of my economics colleagues and the impromptu visits to Art of

Espresso and talks over lunch or otherwise; everyone at the environmental lunch and

various workshops (both online and off); my interdisciplinary colleagues at IFER; the bar

trivia teams; and the entering cohort of 2015.

I owe a huge thanks to all of my friends—the college friends that made academia

exciting; camping and hiking mates; and especially to Erica, Chris, Masha, Eric, Jasha,

Margaret, Robert, and Jan. Finally, to my family (including dog!) who kept me sane—I

couldn’t have made it where I am without your support.

Chapter 1 is currently being prepared for submission for publication. The disserta-

tion author is the sole author on this chapter.

Chapter 2 is currently being prepared for submission for publication. The disserta-

tion author is the sole author on this chapter.

Chapter 3 is co-authored with Remy Levin and is currently being prepared for

submission for publication. The dissertation author is a principle researcher on this

chapter.

All errors are my own.

xiii



VITA

2015 S.B. in Mathematics, The University of Chicago

2015 A.B. in Economics, The University of Chicago

2015 A.B. in Political Science, The University of Chicago

2017 M.A. in Economics, University of California San Diego

2021 Doctor of Philosophy, University of California San Diego

xiv



ABSTRACT OF THE DISSERTATION

Adaptation and Mitigation: Essays on Climate Economics

by

Wesley Howden

Doctor of Philosophy in Economics

University of California San Diego, 2021

Professor Mark Jacobsen, Chair

I study the impacts of climate and environmental change and subsequent conse-

quences for adaptation and mitigation. In Chapter 1, I use a difference in differences

design to show that California households exposed to a severe heat wave are differentially

more likely to adopt central air conditioning units than those less exposed, controlling for

historical climate. Using this induced adoption to predict take-up, I show that induced

adopters have a significant increase in their summer energy demand 3 years following the

heat wave, with insignificant effects on their winter electricity demand. In addition, I

present a theoretical framework where household belief-updating about the climate ratio-

nalizes heterogeneity in household learning about the climate that cannot be explained by

xv



myopia or alternative channels.

In Chapter 2, I measure the impact of land-use change on flood risk. This study

examines this by quantifying the effects of land-use change on flood damages in the state

of Texas. I link claims data from the National Flood Insurance Program to a series of

land-use changes to construct a tract-by-month panel, and use exogenous variation in

precipitation across tract-months to estimate the effect of changes in land use on the

frequency and magnitude of new flood insurance claims. I find that increases in impervious

surface development within a tract increase flood insurance claims, while increases in

wetland and water cover decrease these claims. In addition, using variation in tract-level

elevation, I show that land-use change in neighboring geographies affects own-tract flood

risk. Overall, these results suggest existence of spatial spillovers from land use and imply

returns to coordination in land-use policy.

In Chapter 3, co-authored with Remy Levin, we show that individuals in a panel

survey in Indonesia and Mexico exhibit changes in observed choices over a risky lottery

as a result of changes in experienced temperature and precipitation levels and volatility.

We use a counterfactual measure of risk under the assumption of no response to climate

variables to show that total social welfare is higher under the observed distribution of risk.

We interpret this as risk adaptation to climate.
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Introduction

This dissertation consists of three studies that collectively explore the impacts

and mechanisms of adaptation and mitigation to a changing climate. In Chapter 1, I

show that an episodic heat wave has a differential effect on individuals based on prior

climate change beliefs, wherein those who believe the climate is changing are more likely

to update their beliefs based on these heat-wave events. Subsequently, these individuals

are more likely to invest in air-conditioning than observably similar non-believers. I link

this contemporaneous shock to a follow-on increase in energy use during the cooling season

several years later, connecting short-run weather shocks to long run outcomes. This novel

result shows an important relationship between tail climate events and long-run patterns

of adaptation and elucidates the importance of studying higher moments of the climate

distribution. More generally, I point to the importance of studying these effects as episodic

weather events increase with climate change,

In Chapter 2 I find that flood insurance claims are affected by aggregate land

use changes within a development jurisdiction, as expected, but that aggregate changes

also affect claims in neighboring jurisdictions. This is particularly the case for land-use

changes in neighboring jurisdictions with higher average elevation, even controlling for

correlated land use changes across jurisdictions. It suggests that the current, largely

parochial, approach to land-management in the US is suboptimal for controlling flood risk.

These spillovers in the NFIP market add to existing frictions in this space.

Finally, Chapter 3 shows adaptation of individual risk preferences based on changes

in experienced climate means and volatility. We show changes in background risk, climate,
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affects individuals’ observed risk attitudes in Indonesia and Mexico. We link these changes

in observed fundamentals to downstream behaviors, and show suggestive evidence that

predicted increases in risk aversion from climate change correlates with decreases in risky

behaviors including internal rates of migration and smoking. Building on recent advances

in welfare economics, we develop a new method for estimating whether observed risk

preference changes are, in fact, adaptive. Using our method, we find that in our sample,

climate-change-induced risk preference changes are marginally welfare-improving.

In summary, in this dissertation, I present a collection of novel results that highlight

the impacts of climate and environmental change and analyze the resulting patterns

of adaptation and mitigation. Beyond presenting these impacts and mechanisms, this

suggests implications for public policy meant to mitigate adverse effects of climate change.
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Chapter 1

Adaptation to Weather Shocks and
Household Beliefs on Climate: Evi-
dence from California

1.1 Introduction

Household demand for energy responds to local climate and weather characteristics.

Longer-run decisions, such as location choice or portfolio of appliances (or other energy-

using durables), may reflect the state of the long-run climate for a location. Typically,

we think that short-run changes to energy demand respond to short-run variations in the

weather. For instance, on hotter days, households that own an air conditioner can increase

their energy demand at the intensive margin by cooling their home. Using a traditional

framework of household investment, extensive entry into air conditioning adoption seems

unlikely to respond to a short-run increase in the number of hot days.

In this paper, I show novel evidence that households adjust their medium- to

long-run capital holdings (in the form of air conditioner ownership) in response to a

short-run weather shock, particularly, a severe heat wave. During the summer of 2006, a

series of extreme heat waves affected regions across the Pacific and Southwest. According

to reports by the California Department of Public Health, emergency room visits and

hospitalizations related to heat increased significantly, and there were more than 140
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heat-related deaths (Knowlton et al., 2009).

Using this heat wave-induced adoption of central air conditioning, I link this to

longer-run impacts on household-level summer energy demand. Using plausibly exogenous

variation in exposure to this heat wave, I show that 100 extra cooling degree days (CDDs)

relative to the historical average increases the propensity for a household to own central

air conditioning by about 1 percentage point. Then, estimating the reduced form impact

of these weather shocks on monthly summer electricity demand 3 years following this heat

wave, I show that 100 extra CDDs is associated with an average increase in energy demand

by 6 kWh per household during the month of July.

This extensive entry into air conditioning adoption as a response to hot weather (as

opposed to average weather, or climate, at a geographic level) is consistent with previous

studies of similar phenomena. Auffhammer (2014) shows evidence for extensive entry into

air-conditioning adoption in China induced by preceding hot years. One novel contribution

of this paper is the link between short-run weather and long-run energy demand, as well

as a qualitative replication of these Chinese results using weather data with both higher

spatial and time resolution.

In addition to the link to longer-run energy demand, I explore the potential

mechanisms by which households are induced to adopt an air conditioning unit by contem-

poraneous hot weather (relative to an average year). I use county-level measures of belief

in climate change and precinct-level general elections returns to construct a proxy measure

of household belief in climate change. I use this measure and introduce a third difference

to the baseline specification. In this specification, I show that households that are more

likely to believe that the climate is changing are also more likely to exhibit heat-wave

induced adoption of air conditioning. This heterogeneity by belief in climate change is

consistent with other observed empirical patterns in belief in climate change, including

diverging beliefs in climate change for higher-educated Democrats (more likely to believe

in climate change than lower-educated Democrats) and Republicans (less likely to believe
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in climate change than lower-educated Republicans).

Consistent with these patterns of heterogeneity in induced air conditioning adoption,

I propose a simple framework that rationalizes these observations: households that do

not believe in climate change take short-run weather anomalies (a contemporaneous heat

wave) as a draw from a fixed climate distribution. Conversely, households that believe

that their local climate is changing take the same weather anomaly as being informative of

the future path of climate for their local ZIP code. Alternate mechanisms cannot explain

this heterogeneity. This does not rule out alternative channels, such consumer myopia or

contemporaneous disutility from heat, but it does suggest a role for households learning

about the path of local climate.

California is a unique case for studying these events within the United States, given

the high propensity of mild climates. Because of this, there is likely a large margin of

households that exist near a threshold for adoption that does not exist in other United

States settings. While the initial estimates may seem large, 100 extra CDDs could mean

10 nights of 80 degree Fahrenheit nights instead of 70 degree nights, contextualizing the

potential impact of a marginal heat wave. And as other developed European countries are

exposed to heat waves, it will become more policy relevant to think about how households

make investment decisions in energy-using durable goods.1 Further, as incomes grow in the

developed world and households broach the adoption margin, these dynamics may become

more relevant, with implications for the dynamic path of aggregate energy demand.

The rest of the paper proceeds as follows: Section 1.2 reviews past literature on

climate change and energy consumption and discusses why this particular study is novel.

Section 1.3 discusses the data and empirical strategy. Section 1.4 presents the models

used to estimate the effect of weather on AC adoption and energy demand. Section 1.5

contains the model estimates. In Section 1.6, I discuss these results and their implications

1See the 2019 European heat wave: https://www.nytimes.com/2019/07/25/world/europe/heatwave-
record-temperatures.html.

5

https://www.nytimes.com/2019/07/25/world/europe/heatwave-record-temperatures.html
https://www.nytimes.com/2019/07/25/world/europe/heatwave-record-temperatures.html


for household behavior. Finally, Section 1.7 concludes.

1.2 Literature

This paper explores the link between short-run weather shocks and longer-run

outcomes, specifically through induced adoption of air conditioning and the implications for

energy demand. In this section, I first summarize the literature that links energy demand to

local climate impacts, as well as the literature that specifically focuses on air conditioning

adoption. In addition, I discuss the literature on household and market-wide beliefs in

climate change. I contribute to a new but growing literature that finds heterogeneity in

household investment decisions based on beliefs about the climate.

1.2.1 Energy demand and climate impacts

The first major contribution of this paper is to explore the link between short-run

weather shocks on longer-run outcomes for energy demand. Auffhammer and Mansur

(2014) review the literature on energy consumption and climate trends and delineate

between two general methods of estimating this relationship. First, panel methods focus

largely on local weather variation and estimate energy demand response at the intensive

margin (Deschênes and Greenstone, 2011; Auffhammer and Aroonruengsawat, 2011). The

disadvantage of using this intensive-margin relationship to estimate long-run projections

of energy demand is the inability to account for adaptation over time. In the residential

setting, fixing a household’s portfolio of energy-using goods could lead to underestimates (if

they buy an air conditioner) or overestimates (if they install rooftop solar) as temperatures

increase.

Second, cross-sectional or time-series methods use wide spatial variation or long

differences in climate to estimate the impact of long-run changes in climate. The advantage

of these methods is that over large geographic or temporal dimensions, the extensive margin

effects can be captured (assuming that individuals have “re-optimized” to their long-run
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equilibrium preferences). Albouy et al. (2016) use cross-sectional variation in the climate

and estimate American’s willingness to pay for climate amenities. Aside from concerns

about omitted variables bias (OVB) in these methods, they have largely been unable to

address shorter run fluctuations in the weather. I contribute to the synthesis of these by

using short-run weather shocks to estimate adaptation at the extensive margin, and link

this to longer-run implications for energy demand.

Studies focused on the extensive margin of air conditioning adoption often highlight

the developing-country context, as non-linearities in the income-adoption curve imply

large changes in future energy demand as incomes grow (Wolfram, Shelef and Gertler,

2012). Auffhammer (2014) uses monthly variation in temperature over a panel of provinces

in China to measure the extensive effect of temperature on air conditioning adoption,

and shows strong evidence that years following a hot summer see larger increases in

adoption, but does not link this to realized energy demand. In a similar (but shorter)

setting, Asadoorian, Eckaus and Schlosser (2008) use monthly variation in temperature

over a panel of provinces in China to measure both intensive and extensive effects on

energy demand through air conditioning. While they find that air conditioning adoption

is highly sensitive to energy prices, they find no significant effects of monthly temperature

on air conditioning in both urban and rural settings. There are two potential explanations

for the different temperature/adoption relationship that I observe. First, the results

from the California setting may not be externally valid to the China or other developing

setting. Second, both of these studies focus on monthly variation. Instead, I focus on daily

events that capture more information about the tails of the temperature distribution. If

particularly severe events are more important to the adoption decision than mean changes,

then these monthly panels may not adequately reflect the underlying temperature/adoption

relationship.2

2This could also explain differences between Auffhammer (2014) and Asadoorian, Eckaus and Schlosser
(2008), the former of which uses a longer province panel (1995–2009, compared to 1995–2000)
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My findings suggest that in the California setting, severe shocks can increase

adoption, even when changes in longer-run measures (such as monthly means) are modest.

However, focusing on lower temporal frequencies is common in this space. Biddle (2008)

shows that differences in long-run measures of climate can explain most of the differences

in air conditioning penetration at the Metropolitan Statistical Area (MSA) level, with

most of the residual difference explained by household income. In an engineering paper,

McNeil and Letschert (2010) document correlations between climate and air conditioning

adoption to define a measure they call “saturation” for air conditioning, and suggest this

as a statistic in energy demand forecasts.3 However, I document that, even in the absence

of changing climate, a one-off shock can induce significant increases in medium- to long-run

energy demand through air conditioning adoption, highlighting the importance of tail

events.

1.2.2 Beliefs

What is the mechanism that links short-run weather shocks to long-run air condi-

tioning holdings and energy consumption? I provide suggestive evidence for a household

learning model. Using proxies for household belief in climate change, I show that households

that believe in climate change are significantly more likely to be induced into adopting

air conditioning following a 2006 heat wave. This is in line with a model of households

updating their beliefs about their local climate when a weather shock (heat wave) provides

them with new information about their local climate.

In some market settings, equilibria may be more likely to appear as fully incorpo-

rating information about the climate. For instance, Schlenker and Taylor (2019) show

that aggregate financial markets for weather futures in the United States reflect consensus

3Though non-causal, this points to an important feature of the adoption margin relative to the local
climate that is relevant for this paper: as adoption reaches saturation for a particular climate region,
extreme heat wave can mechanically induce smaller changes in the adoption margin for air conditioning.
This means that average effects from heat wave in empirical models presented below include the net effect
of areas further and closer to saturation, implying heterogeneity in the potential to react to a heat wave.
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climate change projections from the scientific community. In other instances, there are

significant frictions where we observe large deviations from the equilibrium outcomes we

might expect if individuals had perfect information about the climate.

Given significant household-level heterogeneity in climate change belief, there

is a growing literature that explores how this affects investment decisions. Bakkensen

and Barrage (2017) show that Rhode Island households that own coastal property are

systematically more likely to underestimate flood risk, leading to housing prices that

exceed their fundamentals. Barrage and Furst (2019) show further that new construction

starts are more likely to occur in climate-skeptic communities. I consider similar household-

level heterogeneity in belief, and use this to explain diverging adoption patterns in air

conditioning based on beliefs about climate change. While this heterogeneity is consistent

with a model of household learning about the climate, there are other potential channels

that could drive adoption in this setting.

First, salience about the risk and frequency of climate events affects how individuals

mitigate or insure against such risk. For example, households in flood-prone regions are

more likely to purchase flood insurance after a flood event (Gallagher, 2014; Bakkensen,

Ding and Ma, 2019). Additionally, information provision of both flood and wildfire risk

maps affects equilibrium housing prices, even if the fundamental risk is unchanged (Gibson

and Mullins, 2020; Garnache and Guilfoos, 2019). There are plausible salience mechanisms

that could explain a link between heat waves and air conditioning adoption: disutility of

heat, for example.

Second, behavioral channels could rationalize weather-induced adoption of air

conditioning. Busse et al. (2015) study household purchases of vehicles in the presence

of idiosyncratic weather phenomena. They find that the investment decision responds

to idiosyncratic weather, which is inconsistent with a fully-rational purchase decision.

Instead, they provide evidence of projection bias from current weather, where future utility

is a convex combination of utility based on the current idiosyncratic state and the realized
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state. To this extent, households may exhibit similar behavioral biases as a response to an

unexpected heat wave.

Finally, a simple rationalization of weather-induced adoption of air conditioning

would be highly convex costs of temperature imposed by a heat wave. Contemporaneous

costs imposed by a severe heat wave could rationalize contemporaneous adoption of air

conditioning regardless of the net present value of ownership in future periods. High

contemporaneous costs are consistent with results from Albouy et al. (2016), where

households are willing to pay significantly more to avoid extreme high temperatures than

to avoid similarly extreme low temperatures in a cross-sectional hedonic analysis. This

follows the same pattern as impacts on crop yields in Schlenker and Roberts (2009),

suggesting a similar physiological aversion to extreme temperatures.

However, in each of these alternative channels, unless the mechanism is system-

atically correlated with belief in climate change, it cannot fully explain the patterns

in air conditioning adoption in this setting. Additionally, the significance of the belief

channel suggests that it is not negligible relative to alternative mechanisms. I discuss the

contribution of alternative mechanisms further in Section 1.6.

1.3 Data

1.3.1 Household appliance and energy data

The primary data I use in the empirical analysis contain information on household

appliance ownership and one year of monthly energy use from the Residential Appliance

Saturation Survey (RASS), commissioned by the California Energy Commission in order

to project future energy demand. This cross-sectional survey includes 21,920 and 24,464

California households in 2003 and 2009, respectively. These households were randomly

drawn from the service areas of three primary independently-owned utilities (IOUs)—

Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas
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and Electric (SDG&E)—and the largest publicly-owned utility, Los Angeles Department of

Water and Power, which collectively serve 87 percent of California’s customers.4 Households

are identified geographically at the ZIP-code level.

The primary outcome of interest is household ownership of central or room air

conditioning units and monthly electricity demand. In addition, the RASS includes other

household characteristics including household size, home age, income, and education of the

head of household. In addition, I use household-reported installations of other appliances

including dishwashers, standalone freezers, and CFL lighting as a placebo test for the

baseline estimation strategy.

Table 1.1 breaks down the level of central and room air conditioning each year

by California utility. Percent of households owning central air conditioning increased

in each utility’s jurisdiction. In aggregate, central air ownership increased 8 percentage

points between 2003 and 2009. In all jurisdictions aside from SDG&E, ownership of room

air conditioning units (that is, window units or standalone units) decreased, suggesting

substitution towards central air conditioning.

Table 1.1. Air conditioning saturation by utility from RASS

Survey wave
2003 2009

Central Air Room Air N Central Air Room Air N
PG&E .39 .14 6,265 .44 .11 6,458
SDG&E .35 .09 5,445 .43 .13 5,970
SCE .48 .20 6,102 .58 .18 6,444
LADWP .29 .25 4,071 .41 .24 5,538

Note: summaries for proportion of installations of central or room-style air conditioning
by utility. RASS covers the three largest IOUs and the largest POU, LADWP to represent
greater than 80 percent of California households.

Installation of central air conditioning represents a sizable investment for a house-

hold. The 2019 national average cost of installation is reported to be typically between

$4,000 and $7,000, with potentially higher costs depending on idiosyncratic home char-

4As reported for 2010 by the State of California Energy Commission.
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acteristics.5 Conversely, portable room units can be purchased for only a few hundred

dollars, and because of relative portability, have an active secondary market.6 Central

units are tied to the structure, and represent a longer-term investment decision for the

house. Because of this, I focus the primary analysis on central air-conditioning units, but

report the robustness of the primary results using room air-conditioning units, and the

combination of all units in Section A.1.

1.3.2 Temperature data

I obtain local weather data at the ZIP-code level from the Parameter elevation

Regression on Independent Slopes Model (PRISM), which uses meteorological models

and weather station data to interpolate daily temperatures at a four kilometer resolution

(PRISM Climate Group, 2021). For each ZIP code, I take a simple mean of pixels that

are bounded within a ZIP code for a daily observation; or in the case that no pixel falls

within a ZIP code, I take the closest pixel observation. I winsorize the ZIP-code average

daily temperatures at the top and bottom one percent, and match these to the household

appliance and energy use data (identified geographically at the ZIP-code level).

1.3.3 Construction of historical climate and temperature
anomalies

In order to relate contemporaneous weather observations to the climate of a locality,

I construct a measure of local historical climate and define yearly anomalies relative to this

historical climate. For a ZIP code z, I count the number of cooling degree days (CDD) in

a year t, where a CDD occurs when the mean daily temperature is above 65◦ Fahrenheit,

as given by Equation 1.1. I define the historical climate for ZIP code z to be the mean

number of CDDs per year from 1981 to 2005 (Equation 1.2). I use 2005 as the upper

5See https://www.homeadvisor.com/cost/heating-and-cooling/install-an-ac-unit/.
6For example, Figure A.2 depicts results from an August 13, 2019 search for air conditioning on an

online resale website in San Diego.
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cutoff for this historical climate and focus on the plausibly exogenous temperature shock

during the summer of 2006—a particularly hot year for California.

CDDz,t =
∑

days ∈t

(mean temp− 65◦F )× 1(mean temp > 65◦F ) (1.1)

Climatez ≡ CDDz,t∈{1981,...,2005} (1.2)

Figure 1.1 depicts the distribution of relative anomalies by ZIP code, where the

large mass of this distribution lies to the right of zero. This can be interpreted as saying

that most California ZIP codes (covered by the RASS) experienced more CDDs during

2006 than during a typical year leading up to that point. I use this 2006 heat wave as an

event between the two RASS survey waves (2003 and 2009), and consider the ZIP-code

level heterogeneity in exposure to this heat wave as a source of identifying variation. I

define the CDD anomaly as the difference between the number of CDDs in 2006 and the

historical climate, enumerated by Equation 1.3.

CDDanomalyz ≡ CDDz,2006 − Climatez (1.3)

One alternative formulation would be to define the CDD anomaly as the number

of extra CDDs compared to an average for all years between the two survey waves, that is,

construct the CDD anomaly for 2004 through 2008. I report the results of this exercise

in Section A.1 and estimate qualitatively similar estimates for the baseline empirical

specification, but with less precision.

The immediate concern of using the CDD anomaly as the identifying variation is

whether this anomaly can be taken as plausibly exogenous. For example, one may think

that the historical climate of a ZIP code as measured by average CDDs could be correlated

with the 2006 anomaly. That is, if historically hot ZIP codes are more likely to experience
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Figure 1.1. Heat wave anomaly for 2006

Note: this histogram depicts the number of extra CDDs in 2006 by ZIP code relative to the historical
number of CDDs for the ZIP code.

larger anomalies, this would be a concern for the identifying assumption that this CDD

anomaly is orthogonal to the historical climate. Figure 1.2 shows that the residual climate

anomaly (after netting out city fixed effects) is not predicted by the historical number of

CDDs for a ZIP code.

Similarly, one may be concerned that ZIP codes that are more severely affected

by a heat wave in 2006 may typically experience more variance in year-to-year daily

temperatures. That is, if a household living in a particular ZIP code experiences severe

temperature anomalies in 2006, but they were also likely to be more exposed in previous

years, the 2006 anomaly from historical mean years would not capture this fact. However, I

find that the 2006 anomaly is not predictive of past daily temperature variance. Figure 1.3

plots the 2006 CDD anomaly against the historical CDD variance from 1981 to 2005
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after netting out city fixed effects, and shows that the extreme heat wave in 2006 is not

predictive of past variability in average number of CDDs.

Figure 1.2. Orthogonality of residual anomaly

Note: the plot shows the residual climate anomaly after netting out city fixed effects. This depicts the
fact that historical number of CDD is not predictive of the residual 2006 CDD anomaly.

1.3.4 Beliefs about climate

Finally, I match these household data identified at the ZIP-code level to two

different measures of beliefs in climate change. First, I use the 2018 Yale Climate Survey

that reports county-level measures of belief in climate change. The specific series I use

is any belief in climate change, regardless of belief in its severity or cause.7 Since this

is measured at the county level, using this as a measure for household-level beliefs will

introduce significant measurement error.

7The specific question is: “Do you think that global warming is happening?” Howe et al. (2015)
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Figure 1.3. Contemporaneous anomaly and historical climate variance

Note: the plot shows the residual CDD variance after netting out city fixed effects. The variance of CDD
for ZIP code z is defined as the variance of the yearly number of CDD for a ZIP code from 1981 to 2005.
The CDD anomaly in 2006, on the horizontal axis, is not predictive of past variability in the number of
CDD in a given year.

To supplement this county level measure, I also use precinct-level elections returns

data for the 2004 presidential election from the California Secretary of State. Partisanship

is highly predictive of belief in climate change and its severity (McCright and Dunlap,

2011). I spatially match households in a particular ZIP code with percent Democratic

share in the nearest election precinct, using both ZIP code and precinct centroids for

geographic distance. While I use both of these measures as a very imperfect proxy for

household level belief in climate change, I also use education and precinct Democratic

share to instrument for belief defined at the county level.

In addition, I use a fact documented by a 2015 Gallup poll about belief heterogeneity
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in climate change by level of education.8 For Democrats, belief in climate change is

increasing in education. However, for Republicans, belief is decreasing in education. I

exploit this empirical fact in my discussion of mechanisms for induced air conditioning

adoption.

1.4 Empirical Strategy

In this section, I discuss the identification strategy that I use in order to measure

the effect of short-run temperature anomalies on household ownership of air conditioning

and longer-run energy demand.

In an ideal laboratory experiment, I would randomly expose ZIP codes to an

extreme heat wave indicator and observe air conditioning penetration pre- and post-

treatment. Assuming households are geographically fixed, a regression of post-treatment

air conditioning penetration on the randomized heat wave and pre-treatment penetration

will identify the average take-up in air conditioning induced by the heat wave. Assuming

that penetration is diminishing in average temperature, it is important to note that ZIP

codes with penetration near saturation levels will minimize potential contribution through

this channel, and that the specific parameter identified will be the average effect over the

distribution of households.

In reality, heat waves are not binary, and heat wave severity will be correlated

with mean climate characteristics, so I use the CDD anomaly measure as defined in the

previous section by Equation 1.3 as the source of identifying variation. Above, I discussed

some of the potential threats to identification and why these would not be a problem for

the estimation. However, another concern would be if CDD anomaly were correlated with

observed or unobservable household characteristics. To this effect, I compare observables

for households located in the fourth quarter of the CDD anomaly to a random sample

of 100 ZIP codes covered by the RASS and report the summary statistics in Table 1.2.

8https://news.gallup.com/poll/182159/college-educated-republicans-skeptical-global-warming.aspx
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Households particularly affected by the CDD anomaly do not appear noticeably different

from randomly chosen households, which is reassuring for the estimation.

Table 1.2. Testing the orthogonality of the heat wave using simulated weather shocks

(1) (2)
Q4 anomaly Random sample

mean sd mean sd
Climate (avg yearly CDDs) 1001.64 410.90 901.98 41.84
Central air installation 0.42 0.49 0.44 0.03
Dem presidential vote share 2004 0.55 0.22 0.54 0.02
College educated 0.41 0.48 0.44 0.02
HH income ($1000s of 2009 USD) 52.53 40.55 60.21 2.19
Owner occupied 0.58 0.49 0.62 0.02
Number of bedrooms 2.52 1.14 2.61 0.06
Home age (years) 35.79 17.84 33.24 0.84
Observations 5713 100

Note: this reports a test of selecting a random sample of ZIP codes to the fourth

quartile of 100 ZIP codes as affected by the heat wave anomaly. Households are

sampled with equal probabilities from the ZIP codes covered by the four utilities in

the RASS.

1.4.1 Baseline specification

The baseline model is a difference in differences (DD) linear probability model in

air conditioning ownership, where I compare the probability that a household in a ZIP

code in 2009 owns an air conditioning unit compared to a household in the same ZIP code

in 2003. This is differenced by CDD anomaly for that specific ZIP code. City fixed effects

imply that the identifying variation is differential ZIP-code exposure to the CDD anomaly

within a city. I use the same estimation strategy for measuring household-level summer

electricity demand, and interpret this as the longer-run effect of the CDD anomaly on

monthly electricity demand in kilowatt hours (kWh).

Since the RASS reports two cross sections, I am unable to test for parallel trends

in ZIP-code level air conditioning penetration. However, due to the nature of the CDD

anomaly and its credible exogeneity (discussed above), this does not pose the same identi-
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fication problem that may exist in other DD designs.

The baseline estimating equation is:

yzit = β0 (CDDanomaly)z × 1{2009}t + β11{2009}t + ΘXi + γk + δt + εzit, (1.4)

where yzit is the outcome for a household i in ZIP code z in year t. Xi is a vector of

housing and homeowner characteristics including a dummy for college education for head

of household, household income, home age, and number of residents. γk and δt are spatial

and year fixed effects.

When household central air ownership is the dependent variable, β0 is interpreted as

the effect of one extra CDD in 2006 relative to the historical local climate on a household’s

propensity to own a central air conditioner. The identifying variation is differential

exposure to the 2006 temperature anomaly within a city. The standard errors are clustered

at the ZIP code, which is the level of the treatment (CDD anomaly in 2006).9 In different

specifications of the linear probability model, I use household ownership of other types of

appliances—dishwashers, standalone freezers, and CFLs—as a placebo test for the baseline

model. The implicit assumption is that ownership of these items is unlikely to covary with

the weather.

When July electricity demand is the dependent variable, β0 is interpreted as the

effect of one extra CDD in 2006 relative to the historical ZIP code climate on household

electricity demand in 2009. I interpret this reduced-form estimate as the combined effect of

induced air conditioning adoption and choosing to run the air conditioner during July 2009.

The analogous placebo test to the linear probability model above is electricity demand in

the winter (specifically, February).

9When clustering the standard errors at a higher geographic level, such as city or climate zone, the
point estimates are still measured precisely. See Section A.1
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1.4.2 Heterogeneity and mechanism analysis

In order to explore the mechanism through which households are induced into

acquiring air conditioners by temperature anomalies, I interact specific variables with the

DD in the baseline specification.

First, I consider a triple difference model, where I difference the baseline specification

against household-level belief in climate change. The estimating equation is:

ACi = β0 beliefk × (CDDanomaly)z × (2009)i +
∑
j

βj[two-way interactions]

+ ΘXi + γk + δt + εi, (1.5)

where the right-hand side variables are as defined above, and the two-way interactions are

all combinations of the three variables in the triple difference. When using belief as defined

at the county level, I drop the city fixed effects that would otherwise absorb county-level

belief in climate change.

Because the estimate of β0 will be attenuated by mis-measurement of household-

level belief in climate change, I also use precinct-level Democratic share in the 2004

presidential election as a proxy for household belief in climate change. In addition, I use a

measure of predicted belief in Equation 1.5, where the first stage regresses county belief on

household education and precinct Democratic share, as well as the interaction of the two.

In addition to measures of belief, I also consider a triple-differenced model with

education of head-of-household as follows:

ACi = β0Collegei × (CDDanomaly)z × (2009)i +
∑
j

βj[two-way interactions]

+ ΘXi + γk + δt + εi. (1.6)
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I also consider a fourth-differenced model, where we can difference across precinct Demo-

cratic share:

ACi = β0Collegei×Demsharep×(CDDanomaly)z×(2009)i+
∑
j

βj[two-way interactions]

+
∑
l

βl[three-way interactions] + ΘXi + γk + δt + εi. (1.7)

A recent Gallup poll of Americans indicates that belief in climate change is not

strictly increasing in education.10 Instead, belief differs by partisanship. Conditional on

identifying as a Democrat, belief in climate change is increasing in education. Conversely,

conditional on Republican identification, belief in climate change decreases with education.

Because of this, the ex ante expectation of the sign on the estimate of β0 in

Equation 1.6 is unclear. If one of the mechanisms for induced adoption is belief that the

climate is changing, higher levels of education could be associated with a higher or lower

propensity of belief depending on partisan identification. However, when differencing this

again by a proxy for partisanship, as in Equation 1.7, β0 is interpreted as the propensity

for college-educated households in a more Democratically-leaning ZIP code to have been

induced into adopting an air conditioning unit by the 2006 CDD anomaly.

In addition to informing these third- and fourth-differenced models, this non-

monotonic relationship between education and belief in climate change implies the impor-

tance of the interaction with education for the predicted household belief, which I use

for the preferred estimate for the model defined by Equation 1.5 when using a predicted

measure for household belief.

10See Section A.2. Source: Gallup poll available here.
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1.5 Results

In this section, I report the main results of the estimated models defined in the

previous section.

1.5.1 Baseline results of weather on air conditioning adoption

Table 1.3 reports the model estimates for the baseline models of temperature-

anomaly induced adoption of central air conditioning (columns 1 and 2) and long-run

household electricity demand in kWh. Column 1 is the preferred specification, and the

coefficient on “Anomaly × 2009” can be interpreted as follows: the mean effect of an

extra 100 CDDs in 2006 relative to the historical average from 1981–2005 increases the

propensity for a household to own central air conditioning by one percentage point. The

identifying variation is differential ZIP code exposure to the 2006 heat wave within a city.

Utility fixed effects and year fixed effects absorb variation induced by differential utility

structures and variables common to households within a year respectively.

In addition to the average effect across households, column 2 in Table 1.3 separates

this effect across quartiles of the historical climate distribution. That is, “Q1” refers to

ZIP codes where the historical climate lies in the first quartile of the California distribution

(defined by average number of CDDs in a year from 1981–2005). Similarly, “Q4” refers

to the quartile of ZIP codes where households historically experience the highest number

of CDDs within a given year (based on the daily temperature data from 1981–2005).

Households in the third quartile of this climate distribution have the largest and most

precise point estimate—for every 100 CDDs of anomaly, households are 2 percentage points

more likely to be induced into adopting central air conditioning. Column 2 also provides

suggestive evidence that households in the second quartile of California climate are more

likely to be induced into air conditioning adoption than either the top or bottom quartiles.

Table 1.4 reports the results of three separate placebo tests following Equation 1.4,
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Table 1.3. Baseline model

(1) (2) (3) (4)
Central air Central air Electricity Electricity winter

b/se b/se b/se b/se
Anomaly X 2009 0.0001*** 0.06023*** 0.00867

(0.00005) (0.010253) (0.006725)
Q1 interaction -0.0000

(0.00018)
Q2 interaction 0.0001

(0.00008)
Q3 interaction 0.0002***

(0.00006)
Q4 interaction -0.0000

(0.00006)
Controls X X X X
UtilityFE X X X X
CityFE X X X X
N 38581 38581 35734 33503

Note: standard errors clustered at the ZIP-code level. In column 3, electricity corresponds

to household electricity demand for the billing cycle covering mostly July in kWh. In

column 4, this corresponds to electric billing cycle covering most of February. “Most

coverage” is necessary because of the staggered billing cycles across households. *p< 0.1,

**p< 0.05, ***p< 0.01.
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Table 1.4. Placebo tests

(1) (2) (3)
Dishwasher Freezer CFLs

b/se b/se b/se
Anomaly × 2009 -0.0000 0.0001 -0.0000

(0.00004) (0.00004) (0.00004)
Controls X X X
Utility FE X X X
City FE X X X
N 38581 37209 36756

Note: standard errors clustered at the ZIP-code level. In col-

umn 2, freezer refers to household ownership of a standalone

freezer. CFLs refer to household ownership of compact flu-

orescent lamps, the energy efficient lightbulb at the time of

the RASS. N varies by specification due to different household

response rates to ownership of the various appliances. N falls

for the electricity demand models as billing data is not fully

populated in the RASS. *p< 0.1, **p< 0.05, ***p< 0.01.

where the outcome variable is household ownership of a dishwasher (column 1), a standalone

freezer (column 2), or installation of fluorescent light bulbs (column 3). These precisely

estimated zeroes for each of these specifications imply 95 percent confidence intervals

that do not include any response larger than one one-hundredth of a percent in order of

magnitude. Though this response is unsurprising, this lends credibility to the assumption

that the model only captures household investment decisions that should be directly

affected by temperature anomalies. One could imagine that a negative and significant

coefficient on any of these appliances could arise if households substitute purchases of one

appliance for another, but this does not seem to be the case.

1.5.2 Baseline results of weather on energy demand

Column 3 of Table 1.3 reports the baseline results of household-level electricity

demand for July following Equation 1.4. The point estimate is interpreted as the following:

for every 100 CDDs of anomaly, households on average increase their electricity demand
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by approximately 6 kWh.

Finally, column 4 of Table 1.3 shows the similar placebo results for household

energy demand during the month of February. The coefficient can be interpreted as a

precisely-estimated zero estimate. For every 100 CDDs of anomaly, I can rule out an

increase in household electricity demand by more than 2 kWh at the 95 percent confidence

interval.11 Of course, there is no ex ante reason to think that induced adoption of central air

conditioning does not affect winter energy demand. For instance, HVAC installation may

correlate with installation of heating units, insulation, or other homeowner investments.

1.5.3 Heterogeneity in climate change belief and education

Table 1.5 reports the estimation results following Equation 1.5, the linear model

differencing the baseline specification across different proxies for household-level belief in

climate change. Column 1 of Table 1.5 uses county level belief in climate change. Since

“belief” is the county share of adults that believe in climate change, there exists a large

amount of household level measurement error for belief in climate change. The lowest

proportion of county-level belief in California is 61 percent of adults, with the highest

proportion being 79 percent of adults believing in climate change. The estimate in column

1 implies that the induced adoption effect is stronger in counties where people are more

likely to believe in climate change.

Column 2 of Table 1.5 instead uses the Democratic share from the 2004 presidential

general election from the nearest precinct closest to a ZIP code to difference across the

baseline specification. Again, this will measure household-level belief in climate change

with a large degree of error, but the point estimate may still be interpreted as saying that

households that are more likely to be Democratic identifying (more likely to believe in

climate change) are more likely to have been induced into adopting air conditioning.

11Note that the differing number of household observations in each specification is due differential
response to the RASS.
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Table 1.5. Differencing over belief in climate change

(1) (2) (3)
Central Air Central Air Central Air

b/se b/se b/se
Belief × CDD anomaly × 2009 0.0001***

(0.00002)
Dem share × CDD anomaly × 2009 0.0004***

(0.00013)
ˆBelief × CDD anomaly × 2009 0.00064***

(0.000194)
Two-way interactions X X X
Controls X X X
Utility FE X X X
City FE X X
N 38674 38581 41491

Note: standard errors clustered at the ZIP-code level. Education is an indicator for college

education for head of household. Democratic share is precinct-level Democratic share in

the 2004 presidential election. *p< 0.1, **p< 0.05, ***p< 0.01.

In order to try to correct for this measurement error, I use head of household

education and closest precinct Democratic share to predict household-level belief in climate

change. Recalling the non-monotonicity of belief in education, discussed above, I also

include the interaction in the preferred specification. Table 1.6 reports the results of this

first stage, where both columns 1 and 2 have R-squared of about 0.3. College education,

Democratic precinct share in the 2004 presidential election, and being both college educated

and living in a more Democratic ZIP code are all positively correlated with belief in climate

change in this first stage.

When using this predicted measure for belief, column 3 of Table 1.5 reports my

preferred specification of the triple difference. Since county level of belief ranges from 61

to 79 percent belief, moving from households that are least likely to most likely to believe

in climate change increases the induced propensity by about one half of one percentage

point per 10 CDD anomaly.

Table 1.7 reports the estimation results following the models specified in Equation 1.6
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Table 1.6. First stage for belief in climate change

(1) (2)
Belief Belief
b/se b/se

Education 0.0089*** 0.0029***
(0.00027) (0.00077)

Democratic share 0.0879*** 0.0823***
(0.00068) (0.00095)

Education × democratic share 0.0114***
(0.00136)

Controls
Utility FE
City FE
N 42312 42312

Note: standard errors clustered at the ZIP-code level. Belief

is a county-level report of the percentage of adults that believe

that the climate is changing. Twoways refers to the two-way

interactions necessary for the triple difference model. *p< 0.1,

**p< 0.05, ***p< 0.01.

and Equation 1.7. Column 1 differences the main specification against an indicator for

college education for the head of household. Though not significant at the 5 percent level,

the coefficient provides some suggestive evidence that college educated households are

more likely to be induced into adopting air conditioning.

Column 2 of Table 1.7 indicates that college educated household in the most

Democratic ZIP codes are significantly more likely to be induced into air conditioning

adoption than college educated households in the least Democratic ZIP codes. The negative

(but insignificant) coefficient on the first row is in line with a small negative or zero effect

for households located in comparatively non-Democratic ZIP codes.

Because households may choose to endogenously relocate based on weather shocks,

I run all of these specifications restricted to homeowners that have lived in their homes

since prior to the 2006 heat wave, and I report these results in Section A.1. Here, I also

report the results of all models run using room air conditioning or any air conditioning as
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Table 1.7. Heterogeneity of effects by education

(1) (2)
Central Air Central Air

b/se b/se
College × CDD anomaly × 2009 0.0001 -0.0002

(0.00005) (0.00010)
College × Dem share × CDD anomaly × 2009 0.0005**

(0.00019)
Two-way interactions X X
Three-way interactions X
Controls X X
Utility FE X X
City FE X X
N 38581 38581

Note: standard errors clustered at the ZIP-code level. Twoways (threeways) refers to

the two-way (three-way) interactions necessary for the triple difference model. *p< 0.1,

**p< 0.05, ***p< 0.01.

the outcome variable, with qualitatively similar results.
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1.6 Discussion

In this section, I discuss the empirical results and some of the implied mechanisms

for induced air conditioning adoption. I first summarize the baseline results and their

implications, and move towards the suggestive evidence about the role of household beliefs

in climate change.

I provide strong causal evidence that households respond to a CDD anomaly in

2006 by increasing their propensity to own air conditioning units. Following the results

reported in Table 1.3, we can observe that the households most likely to be induced to

adopt air conditioning live in the third quarter of the climate distribution in California,

followed by the second quartile. This is unsurprising if ZIP codes in the top quartile of

the climate distribution are fully saturated with air conditioning, and if if households in

the first quartile never need air conditioning.

Using the preferred estimate from the baseline model, and using the median CDD

anomaly of about 200 CDDs, the model can explain about 2 percentage points of increase

in the propensity for these California households to own an air conditioner. From Table 1.1,

this means that response to this severe heat wave can explain about one quarter of the

overall increase in central air conditioning ownership from 2003 to 2009 (an increase of

about 8 percent). Using the same baseline model and median CDDs, this translates to

about a 12 kWh increase in monthly demand for all California households covered by the

survey.

The total increase in energy demand depends on the behavior of counterfactual

households in the absence of the 2006 heat wave. If these households were to eventually

adopt air conditioners, but waited for a particularly hot year, this might amount to energy

“pull-forward.” In this case, the net effect on energy demand depends on the timing of a

counterfactual shock—from earlier to the shock of interest to far in the future. However,

if the 2006 heat wave actually permanently changed the stock of installed air conditioners,
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the total effect on energy demand would be significantly larger.

1.6.1 Alternative mechanisms

Prior to discussing the climate-change belief channel for air conditioning adoption, I

discuss several other channels for this induced adoption. For context, consider an extremely

stylized model of a household making the decision about air conditioning ownership.

Formally, suppose an air conditioner lasts for T periods, weather in period t is given by

ωt from a climate distribution Ω, and household preferences over the AC decision are

given by u, then a household invests in air conditioning in year t if E
∑t+T

τ=t u(AC, ωτ ) > 0.

That is, they purchase an air conditioner if the expected utility over the lifetime of the air

conditioner is positive (net of all costs—fixed and flow costs, and any other associated

utility costs).

First, if the contemporaneous heat wave is bad enough to cause extreme household

disutility, it could be rational to install an air conditioner to assuage these high short-term

costs, even if the expected net benefit for the following periods were negative. In the

context of the simple model of household investment in air conditioning, this could be the

case if u(AC, ωt) > 0 even if the expected utility from ownership E
∑t+T

τ=t+1 u(AC, ωτ ) < 0.

However, qualitative reports of HVAC installation imply that the time horizon for central

air installation would make it difficult to believe that households are responding simply

because of contemporaneous disutility.

A second mechanism discussed above would simply be a shift in timing. If a weather

realization in t changed the timing decision for a household acquiring air conditioning based

on static expectations about the weather, this would amount to pull-forward in energy

demand for some number of periods. If this were the case, we may expect to see smaller

effects for induced adoption with increasing duration of home ownership. Section A.1

shows that effects are not decreasing when restricting to homeowners with substantial

tenure.
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Other alternative mechanisms for adoption could include behavioral channels. One

potential behavioral channel would be myopia or projection bias on the part of the

household. This would be the case if the future utility of air conditioning ownership is a

convex combination of ownership today and the actual realized utility of air conditioning

ownership. Busse et al. (2015) provide strong evidence for projection bias in the automobile

purchase decision, where consumers buy more convertibles on sunny days, the analogous

phenomenon in this setting would be buying more air conditioning units during hot years.

1.6.2 Beliefs about the climate

While I cannot rule out the contribution of alternative mechanisms for weather-

induced adoption of air conditioning, I propose a simple framework that rationalizes the

heterogeneity in the induced adoption observed in patterns of adoption by belief in climate

change, education, and partisanship.

Consider again a household that is posed with the choice to buy an air conditioner

if E
∑t+T

τ=t u(AC, ωτ ) > 0. While the above mechanisms focused on the expected utility

calculation given a series of weather draws ωt from a fixed climate distribution Ω, consider

instead two types of households: those that believe that the climate distribution Ω is fixed,

and those that believe that the climate distribution is actually changing—“updaters.” In

this setting, the updaters observe the weather today, take this as a signal of the future

path of weather, and update their beliefs of the climate based on the contemporaneous

weather. If nothing in the consumer’s choice changes except for expectations over the

climate, this can rationalize investment in central air conditioning.

This framework is consistent with the heterogeneity results discussed in Subsec-

tion 1.5.3. We can observe that when interacted with the baseline model, both county-level

survey data about belief in climate change and a proxy using precinct-level election returns

suggest that households that are more likely to believe in climate change (measured with

large error) are more likely to be induced adopters. And when using the predicted belief
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using the first stage reported in column 2 of Table 1.6, the coefficient of interest indicating

induced adoption is larger, since this mitigates attenuation caused by mismeasurement in

columns 1 and 2.

Further, the results in Table 1.7 qualitatively follow what would be predicted in

this framework. Since higher education contributes to divergent beliefs about climate

by partisanship, it is not immediately clear what the expected estimated coefficient of

the triple difference following Equation 1.6 would be. Rather, it should depend on the

relative partisan share of the population. For instance, if all households identified as

Republicans, I would expect the difference across education to be negative if households

are changing their investment behavior after updating their beliefs about climate. Again,

this follows the empirical facts about belief in climate change and partisanship discussed in

Subsection 1.3.4. However, when I introduce a fourth difference by Democratic share, the

coefficient of interest (differential induced adoption by educated Democratic households) is

positive and significant. This is consistent with the fact that college educated Democrats

are the most likely to believe in climate change and are induced into adoption differentially

by the 2006 heat wave.

Though most of these heterogeneity analyses are identified imprecisely with im-

perfect measures of household-level belief in climate change, I find the preponderance of

evidence consistent with this framework to be highly suggestive that there is some role for

a belief-updating channel with respect to the climate. That is, this induced adoption of

air conditioning cannot be fully rationalized by alternative channels. I take this as novel

evidence that households change their investment behavior as a response to updating

beliefs about the climate when it comes to household investment decisions. In this context,

this has implications for the dynamics of air conditioning ownership and the path of energy

demand over time. More expansively, it is likely similar mechanisms may affect a variety

of dynamic consumer problems that are related to a changing climate.
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1.7 Conclusion

In this paper, I provide causal evidence that households respond to short-run

weather shocks by making investment decisions with long-run implications. Particularly,

California households differentially exposed to a 2006 heat wave increased their propensity

to own a central air conditioning unit, and this event can explain nearly 2 percentage

points of the increase in central air conditioner ownership—or about one quarter of the

total increase—from 2003 to 2009. Through this induced adoption channel, households

also increased their July energy demand three years following the heat wave. Exploring

this link between short-run weather and long-run energy demand is immediately important

for forecasting exercises, but also exposes an important mechanism by which households

make investment decisions.

This has direct implications for forecasting air conditioning ownership and long-run

energy demand as households are exposed to extreme weather. Previous studies define

air conditioning penetration as a function of a fixed climate and other state variables

(Deschênes and Greenstone, 2011). However, here I provide evidence of the dynamic

adoption of air conditioning depending at least in part on tail events (heterogeneity in

exposure to a severe heat wave). The total effect on energy demand is still an open

question, as I cannot identify whether, on the low end, if this is simply a timing decision

where the effect on energy demand would be some amount of “pull-forward,” or, on the

high end, whether this short-run weather realization induces adoption for a household that

otherwise would never purchase air conditioning absent of the heat wave.

In addition to these baseline results, I also explore the heterogeneity in response

to the 2006 heat wave and provide suggestive evidence for a household belief-updating

framework. When differencing the baseline DD model by measures of household belief in

climate change, I show that households that are more likely to believe that the climate is

changing are also more likely to be induced into adopting air conditioning in response to the
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2006 heat wave. This effect is strong enough to be detected when using even very imperfect

measures of household-level belief in climate change. This behavior can be rationalized

by a belief-updating framework, where households that believe in climate change take

contemporaneous weather as a signal of the future path of their local climate, which

changes the household decision for purchasing air conditioning. Conversely, a household

that does not believe that the climate is changing may not update their expected upside

of adopting air conditioning.

Finally, I exploit the non-monotonicity of partisan belief in climate change with

respect to education to test this belief-updating framework. College-educated individuals

are not necessarily more likely to believe in climate change; but, conditional on partisanship,

college education increases belief for Democrats and decreases belief for Republicans. In

a triple- and fourth- difference specification, I show that the induced-adopter effect

differentially applies to college educated Democrats, who are most most likely to believe

in climate change.

This evidence that long-run household investment decisions responds to short-run

weather phenomena is important, since the prevailing literature links such decisions to

long-run dynamics. In this paper, I provide novel, suggestive evidence that households

take contemporaneous weather events and form beliefs over longer-run state variables in

the climate. This suggests implications for household decision-making both within the

environmental setting and more broadly.
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Chapter 2

Inundated by Change: The Effects
of Land Use on Flood Damages

2.1 Introduction

Climate change is expected to increase the frequency and severity of storms and

tail rainfall events (Cleetus, 2013; Donat et al., 2016). Proper urban planning around the

built environment can help mitigate against these increased risks, and mitigation can also

follow through management of wetlands and other terrestrial ecosystems (Woodruff, Irish

and Camargo, 2013). In the past decades, urban planning, growth, land management and

degradation have contributed to large changes in land use and land cover, with more than

eight percent of the United States’ land cover changing at least once between 1973 and

2000 (Sleeter et al., 2013). This encompasses changes in development, shifting agricultural

patterns, loss (and restoration) of forest cover, and large losses of coastal and inland

wetlands. Per a 2019 Intergovernmental Panel on Climate Change (IPCC) special report,

changes in the climate are expected to contribute to and accelerate these changes (Shukla

et al., 2019).

In this paper, I measure the effect of land-use change on flood risk through its

impact on flood insurance claims. I combine fine temporal and spatial variation in land use

in a Texas panel from 2010–2016 with monthly anomalous rainfall to estimate a difference

in differences (DD) model that identifies the impact of within-tract changes in land use on
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flood insurance claims. In the baseline specification, I find that increases in impervious

surface coverage and decreases in wetlands and water coverage increase the propensity of

flood claims, conditional on a rainfall shock. Additionally, I explore whether these effects

are symmetric for positive and negative changes in particular land cover. Importantly,

I find that both positive changes in wetlands coverage (restoration) decrease the the

numeracy of flood claims, and corresponding decreases in wetlands coverage increase flood

claims.

Second, I combine this DD design with variation in elevation to show the existence

of spillovers in land-use-based flood risk. Relative to a neighbor that is downhill, land-use

change for an uphill neighbor is more consequential for flood risk. I show that changes in

development, water, and wetland coverage cause significantly larger impacts for neighboring

regions when these land-use changes happen at a relatively higher elevation. Under the

assumption that neighboring land-use correlation is not systematically biased towards

higher or lower elevation neighboring geographies, this design should control for omitted

variables bias (OVB) due to spatial correlation in land use.

To my knowledge, these first two results are novel in their space and scope in

the economics literature. There exists a broad scientific and engineering literature on

the mechanism of how this changes risk. The physical mechanism of different land

covers matters for surface runoff—for example, retention ponds, wetlands, and developed

permeable surfaces have saturation points at which they behave like an impervious surface

during tail rainfall events (Konrad, 2003). The United States Geological Survey (USGS)

makes urban management recommendations that specifically try to account for these

mechanisms (Cappiella et al., 2012). I remain relatively agnostic on these underlying

mechanisms. Instead, I quantify this risk in the context of flood insurance claims, and

show how these impacts are realized in an imperfect market setting.

In this analysis, I use the universe of flood insurance claims from the National

Flood Insurance Program (NFIP) for the extent of the study. These claims data are widely
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used in the economics of floods literature, but I focus on a more novel scale. Many existing

studies are focused on high-signal flooding events, either temporally (e.g., a hurricane or

other superstorm) or spatially (e.g., geographies that are repeatedly subject to floods over

time). My analysis incorporates these while also accounting for diffuse spatial and temporal

flooding events, which have received less attention than the scope of their contribution

to claims would suggest. For the entire universe of NFIP claims, 31 percent of a total of

2.4 million claims reported a date of loss outside of the Atlantic hurricane season (June

1 through November 30). The payouts for these claims account for $15 billion of the

total $91 billion (2019 USD) in claims expenditures. This is a conservative account for

attribution of non-hurricane flood insurance payouts, suggesting that even at a minimum,

flood insurance claims during the non-hurricane season account for a significant portion

of all claims. In Texas alone from 2011–2016, claims representing non-hurricane season

losses represent 76 percent of total claims, and $1.3 billion of a total of $1.5 billion in

expenditures. Flood events resulting in NFIP claims occurred in 162 of 254 of Texas

counties, and 2376 of 5265 census tracts during this same period.

The findings and scope of this paper point to the importance of organized mitigation

strategies for a changing climate and contribute to the literature on the impacts of urban

planning and regulation in the face of natural disaster impacts. Coastal wetlands have

been identified to mitigate against property damage from hurricanes along the US Gulf

Coast (Sun and Carson, 2020). A large fraction of wetlands are non-coastal, and I account

for the importance of these during extreme events. For context, In 2016 Texas, the average

census tract in a coastal county has 4.1 percent wetlands cover, and the average census

tract in a non-coastal county has 2.4 percent wetlands cover. I show that changes in

wetland, developed, and water coverage at the census-tract level impact observable impacts

from floods.

I contribute to the literature on climate impacts and spillovers. Baylis and

Boomhower (2021) provide evidence that building codes to mitigate wildfire damage
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generate positive spillovers in protection for unregulated structures. Similarly, there

is current work that investigates spillovers in flood mitigation from historical building

codes.1 I show that differing patterns of land use also generate externalities in flood risk.

The monetary impact of these spillovers has implications for urban planning, and this

quantification could feasibly incorporate into the assessment of impact fees for the finance

of public mitigation infrastructure Brueckner (1997). More largely, these results serve as

suggestive of potential gains in flood mitigation to coordination in land management.2

The rest of the paper proceeds as follows: Section 2.2 provides background on the

NFIP and situates this study within the existing floods literature. Section 2.3 gives a

description of the data. Section 2.4 describes the empirical strategy. Section 2.5 discusses

the results and their implications. Section 2.6 presents the results of a series of robustness

checks on the empirical models, and Section 2.7 concludes.

2.2 Background

Flooding and flood insurance are active topics in the economics literature. I use

NFIP claims as a measure of flood risk in the presence of changing land use. The NFIP is a

federally-run program established in 1968 with the goal of setting actuarially fair residential

flood insurance policies (Federal Emergency Management Agency, 2002). Managed by

the Federal Emergency Management Agency (FEMA), the NFIP creates and issues flood

risk maps, sets premiums, and underwrites flood insurance policies for participating

communities. Residential coverage tops out at $250,000 of coverage for structures and

$100,000 in contents. While original intent was to provide actuarially fair insurance, most

policies in force are priced below the expected payout (Wagner, 2020).

The NFIP is an imperfect measure of flood impacts. If the NFIP were implemented

1This follows from discussions with Laura Bakkensen regarding unreleased work on flood mitigation
spillovers in Florida following hurricanes.

2In 2019, the Texas state government approved a new floodplain management program, which develops
flood planning regions based on river basins through the Texas Water Development Board TX (2020).
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in a competitive market without frictions, using NFIP claims in the analysis would lead to

a lower-bound estimate on impacts, since we do not observe damages that do not show up

in the claims data or occur to structures outside of the NFIP coverage. However, existing

papers demonstrate that flood insurance, and specifically the NFIP, is far from a perfect

insurance market. I summarize these and relate them to the context and findings of this

paper, and I discuss how these factor into the identification and interpretation of my

results.

One observation from the existing literature on the NFIP is that flood insurance

take-up varies widely with observable risk. Wagner (2020) shows that households might

substitute observable mitigation (raised homes) for flood insurance, leading to adverse

selection from low-lying houses in the insurance pool. Gallagher (2014) shows that flood

insurance take-up spikes after significant flooding events (with federal emergency declara-

tions), and slowly declines to baseline take-up in the years following. Bakkensen, Ding

and Ma (2019) replicate this salience event in Florida following hurricanes. Qualitatively,

my data validate this general trend, showing a secular decline in policies in force during

the main study, 2010–2016. The main sample was preceded by Hurricane Ike in 2008 and

followed by Hurricane Harvey in 2017, where we may expect to see another spike in NFIP

take-up.

Another observation is that flood insurance take-up responds to information pro-

vision about unobservable risk. Provision of both flood and wildfire risk maps affects

equilibrium housing prices, even if the fundamental underlying risk is unaffected (Gibson

and Mullins, 2020; Garnache and Guilfoos, 2019). Other risk signals may be difficult or

costly to observe. Keenan and Bradt (2020) show evidence of information asymmetries

in risk assessment for financial institutions, indicating that local lenders may have lower

frictions for obtaining risk assessment specifically for local properties. In the case of land

use, if aggregate changes in risk driven by land use are not easily observable, or information

frictions make it difficult to know the risk contribution of land use, then static premiums
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through the NFIP are further evidence of distortions in the flood insurance market. I show

that this is the case.

Though these variations in take-up could be attributed to optimizing agents (through

rational inattention, substitution towards other mitigation measures, etc.), this is unlikely

to be the case. If households are generally risk averse, take-up of actuarially fair policies

should increase expected utility, and even more so if premiums are below the actuarially

fair price. As a potential explanation, Wagner (2020) raises the issue of adverse selection

in flood insurance markets, and suggests welfare gains from insurance mandates. Other

interventions to address aggregate trends towards “under-insurance” have been explored

in the public finance literature (Kunreuther, 1996; Kriesel and Landry, 2004; Kunreuther

and Michel-Kerjan, 2009). An alternative explanation for this is heterogeneous sorting of

households. In a broad-based field survey, Bakkensen and Barrage (2017) show that Rhode

Island households that owned coastal properties were systematically likely to underestimate

flood risk. Barrage and Furst (2019) show further that new construction was more likely

to occur in flood-risk zones amongst more climate- and flood-skeptic communities. In the

context of this paper, these do not undermine necessary assumptions for identification,

but may have implications for the interpretation of the main results. I address this in

Section 2.5.

Finally, these results have potential implications for existing community-level mit-

igation programs within the context of NFIP. The Community Rating System (CRS)

provides community-level discounts on flood insurance offered through NFIP for partici-

pants whose floodplain management includes auxiliary flood mitigation measures. These

include community-level credits that fall into one of four categories including management

for flood damage reduction.3 Communities participating in the program are scored and

given discounts on premiums. Frimpong et al. (2020) study the impacts of this program,

3The general categories include: public information provision, mapping and regulation, flood damage
reduction, and flood preparedness.
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and find CRS participation increases uptake and reduce damage claims for communities

that score in the best (lowest) class.

To summarize, I uncover additional frictions in the market for flood insurance

attributable to unobservable risk impacts from changes in land use. My analysis provides

a structure to quantify this risk and suggests implications for optimal management policy.

2.3 Data

I construct a monthly panel of flood insurance claims and precipitation patterns,

and connect this to longer-run land use characteristics for each Texas census tract. I

match a subset of these with available data on flood insurance policies in force, housing

summaries from the American Community Survey (ACS). The baseline analysis is restricted

to 2010–2016. I also report the results of a broader analyses with more limited data from

2001–2016. The summary statistics for these data are reported in Table 2.1.

2.3.1 National flood insurance claims and the universe of
policies

The NFIP is a federal program established in 1968 with the goal of setting actuarially

fair flood insurance policies.4 I use the universe of national flood insurance claims for the

state of Texas from 2001–2016. Individual claims report the day of the flooding event

identified spatially at the census-tract level.5 I aggregate the number and value of claims

(in 2019 USD) to create a panel of month-by-census tract claims data.

I also use the FEMA NFIP universe of policy data, collected through a Freedom of

Information Act (FOIA) request. The set of unredacted reports are available from 2009 to

the present at the census-tract level.6 I define a policy as active during a particular month

if the policy was opened prior to the 15th day of the month, and ended (or remained open)

4See Federal Emergency Management Agency (2002)
5These are reported using the 2010 set of census tracts.
6See Section B.4 for FOIA information on previous policy datasets.
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Table 2.1. Summary statistics

Mean SD Min Max
∆ Land use 2011–2016 :
Water cover 0.001 0.007 -0.153 0.110
Impervious cover 0.007 0.013 -0.002 0.209
Wetland cover -0.001 0.005 -0.140 0.085
Rainfall days/month:
0–1 in. 7.13 4.14 0 24
1–2 in. 0.66 0.91 0 8
2–3 in. 0.17 0.42 0 5
3+ in. 0.12 0.36 0 3
NFIP Claims by tract per month:
Claims 0.09 2.25 0 436
$ 2019 USD 5069 255430 0 93 million
Observations 287793 287793 287793 287793

Note: summary statistics reported for the baseline specification. Days/month and

NFIP claims cover the universe of tract-months in Texas for 2010, 2011, 2012, 2015,

and 2016. Land use reported as percentage cover of census tract-coverage.

after that 15th day. I then aggregate the total number of active policies in force (and the

total cost of the premiums) at the tract level to merge with the claims data. I use the

2019 Consumer Price Index (CPI) to adjust individual premiums and claims to their real

value in 2019 USD.

2.3.2 Precipitation data

I use precipitation data reported by the Parameter elevation Regression on Inde-

pendent Slopes Model (PRISM) (PRISM Climate Group, 2021). PRISM reports a gridded

dataset of daily precipitation in the continental US at a 4 kilometer (km) resolution. I

collect PRISM daily precipitation from 2001 through 2016.

To merge this with flood insurance claims data, I match each census tract centroid

to the nearest PRISM pixel. The median distance of this match is 1.7 km when matching

Texas census tracts, with a maximum distance of 2.8 km.

Following Deschênes and Greenstone (2011), I construct bins for daily precipitation

42



data. Rimt is a vector of precipitation bins, where each element of Rimt represents the

number of days in month-year mt that fall in a particular bin in census tract i. In the

baseline specification, this includes one-inch bins from zero to over three inches of daily

rainfall.7 This definition of daily rainfall allows for a non-parametric precipitation-flood

relationship, with the implicit assumption that days of precipitation within a bin will the

same effect on flooding.This also assumes that the effect of a marginal day of precipitation

is the same regardless of when this occurs within a given year.

In addition to the baseline definition of this binned precipitation variable, I consider

alternative specifications of this tract-by-year variable by constructing a measure of

repeated daily rainfall events. In this case, Rimt measures the number of rain “spells” that

occur within a census tract-year. I define a “spell” as a threshold number of consecutive

days that a census tract experiences some minimum amount of precipitation within a day

(2 inches).

2.3.3 Geographic data on land use and elevation

The USGS National Land Cover Dataset (NLCD) classifies land and impervious

surface coverage for the continental United States at a resolution of 30 meters (Dewitz,

2019). These land cells are broadly classified into developed land, water, and various green

covers. Each of these categories is further refined to more specific covers.8 These coverage

data are reported for seven periods from 2001 to 2016. I match these data to census tracts

by taking the mean coverage of each class of pixels that falls within a tract for each survey

year. I focus specifically on impervious developed coverage, water coverage, and wetlands

coverage. I use the NLCD measure of urban imperviousness to calculate the average level

of impervious surface coverage at the tract level, and omit permeable surface development

7That is, (0,1] inches, (1,2] inches, (2,3] inches, and 3+ inches. 0 inches is the omitted bin.
8These include open water, perennial ice/snow, developed open space, developed low intensity,

developed medium intensity, developed high intensity, barren land (rock/sand/clay), deciduous forest,
evergreen forest, mixed forest, shrubland, herbaceous land, planted and cultivated land, woody wetlands,
and emergent herbaceous wetlands.
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from the baseline model. Impervious surface coverage refers to urban development that

restricts water from penetrating the ground.9

Finally, I calculate mean elevation for each census tract using the USGS National

Elevation Dataset (NED) by taking the mean elevation of pixels that fall within a particular

census tract. I use this tract-level elevation variation to estimate spillovers from changes

in land use (USGS EROS, 1999).

2.3.4 Housing summaries

I use the decennial census and ACS 5-year estimates to construct housing variables

at the census-tract level. These include full counts of housing units at the tract level for

each decennial census (2000 and 2010) and estimates for each year reported by the ACS

(2009–2016). In addition, I use the median home value at the tract-year level and use the

2019 CPI to adjust these values to real 2019 USD. Housing variables through the ACS are

reported for a large majority of tracts.10

2.4 Empirical Strategy

In order to estimate the impact of local land use change on flood insurance claims,

I exploit several sources of variation. First, I consider exogenous variation in tract-level

precipitation in the cross-section and time series.

Changes in land use vary over time and space, but may be endogenous to claims

through the NFIP. For instance, if local amenities change, this may also affect the selection

into a neighborhood, changing the composition of individuals that live in a particular

area. This may also affect equilibrium home prices and the choice for insurance uptake.

In order to mitigate this potential OVB, I saturate the model with tract-by-year housing

9This is reported for a subset of these periods: land coverage data are available for 2001, 2003, 2006,
2008, 2011, 2013, and 2016. Impervious surface coverage is available for 2001, 2006, 2011, and 2016.

10164 of 5265 tracts have median home values reported in the ACS. 1790 tracts do not have home
values reported in the 2000 decennial census for purposes of anonymity.
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characteristics as well as changes in the number and value of premiums associated with

flood insurance policies in force. I show that the main estimates of interest are economically

robust to these inclusions. Finally, in this baseline specification, I show that trends in flood

insurance take-up rates are similar across three large categorizations of land use: positive

changes in a variable of interest, negative changes, and no change. I report these trends in

Figure B.1. If we observed differential trends in policy take-up based on land change, we

might be concerned about differential rates of overall realized claims. Fortunately, this is

not the case, and the estimates of interest are economically invariant to including these

tract-level data on policies in force.

Next, I consider whether effects of land change are symmetric. That is, are increases

in a particular type of coverage economically similar to decreases in that coverage? I

provide suggestive evidence that effects of increases or decreases in developed, wetland,

or water coverage may not be symmetric in this setting. One caveat to this is that the

share of tracts with decreasing shares of impervious development or increases in wetland

coverage are small, so these effects are identified off of a very small subset of census tracts.

Finally, I present a specification that considers land-use change from neighboring

census tracts. I use variation in neighboring tract elevation, assuming that this is uncorre-

lated with omitted variables that may affect flood insurance claims in a dynamic setting.

In this specification, I am able to show evidence of larger spillovers in flood claims from

changes in land use in neighboring higher-elevation tracts.

2.4.1 Baseline specification

In the baseline specification, the identifying variation is within-tract land changes

and exogenous tract-level anomalous rainfall. The empirical specification is as follows:

Yimt = αi + γt + Rimt β1 + Litβ2 + Rimt × Lit β3 +Xit β4 + εimt, (2.1)
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where Yimt represents monthly flood insurance claims per policy for census tract i in

month-year mt. αi is a census tract-level fixed effect, which absorbs variation across

tract-level characteristics that are constant over time (such invariant tract elevation). γt is

a year fixed effect. Robust standard errors are calculated at the county-by-year level in

order to account for correlation within a county in a specific year. β3 is the main coefficient

of interest, and can be interpreted as the reduced form effect of within-tract land-use

change on flood damages, conditional on receiving an exogenous rainfall shock.

Equation 2.1 follows a standard DD specification, which includes additive controls

for land use Lit. Two-way fixed effects in census tract and year allow us to identify changes

in flood insurance claims based on within-tract changes in land use. The inclusion of

tract fixed effects mean that we can interpret monthly rainfall as random deviations from

average rainfall. Under the assumption that this anomalous tract-by-month rainfall is

random, we may choose to relax this specification: in an alternative specification, I impose

the structural assumption that land use, absent of rainfall, does not affect flood risk—I

identically impose that β2 = 0 in Equation 2.1.11 The results of this specification are

reported in Figure 2.1, with detailed results reported in Table B.1.

2.4.2 Asymmetry of land change

Second, I consider the possibility of asymmetric effects of changes in land use.

Specifically, what is the effect of a positive change in a particular type of coverage relative

to a negative change? To do this, I construct two new variables for each component of L.

Following Allison (2019), for each element Lit in Lit, first I define:

z+it = Lit − Lit−1 if (Lit − Lit−1) > 0, else L+
it = 0,

z−it = −(Lit − Lit−1) if (Lit − Lit−1) < 0, else L−it = 0.

11While this seems reasonable, land use could be correlated with non-rainfall related floods. For
example, river basin flooding caused by upstream rain or snow melt may be correlated with historical
development, in which case this structural assumption would be overly restrictive.
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This is a measure of year-over-year changes in land use. Since we are specifically interested

in changes in the baseline specification, and tract fixed effects absorb mean levels of cover

at the tract level, both z+it and z−it are set to zero for the first period. Then, I define:

L+
it =

t∑
s=1

z+it , and

L−it =
t∑

s=1

z−it .

Here, L+
it is interpreted as all positive changes in a particular land cover up to period t,

and L−it is interpreted as all negative changes in a particular land cover up to period t. L+
it

and L−it are defined as the vectors of cumulative positive changes and cumulative negative

changes, respectively. This allows me to estimate a model similar to Equation 2.1 that

allows for the estimation of asymmetric effects of positive and negative changes in land

cover:

Yimt = αi + γt + Rimt β1 + L+
itβ

+
2 + L−it β

−
2 + Rimt × L+

it β
+
3 + Rimt × L−it β

−
3

+Xit β4 + εimt. (2.2)

In the case that effects of positive changes are symmetric to negative changes, or β+
3 = −β−3 ,

then the model specified by Equation 2.2 is econometrically equivalent to the model specified

by Equation 2.1 (Allison, 2019). The results of this specification are reported in Figure 2.2,

with detailed results reported in Table B.2.

2.4.3 Spillovers

From the baseline model, I introduce information on land use for neighboring census

tracts in order to explore the existence of spillovers in flood risk. Spatial correlation in

land-use patterns and factors affecting flood insurance premiums would imply that simply

including information on neighboring land use patterns in the baseline specification may
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lead to bias in estimates of the importance of neighboring land-use change. In order to

address this, I introduce variation in census-tract level elevation to solve two problems.

First, under the ex ante assumption that spillovers exist, we might expect neighboring land

change to matter more for higher elevation than for lower elevation neighbors, conditional

on the assumption that rainfall runoff largely runs from higher- to lower-mean elevations.

I separate changes in neighboring land use into uphill tracts (neighboring tracts that are

on average higher in elevation) and downhill tracts (neighboring tracts that are on average

lower in elevation).

Second, variables omitted that are correlated with both changes in land use and

flood insurance claims may introduce bias in the estimates of interest. In the baseline

specification, I include policies in force, home values and numeracy, and demographic

information to minimize OVB. For example, changes in developed or wetland cover may

change home values through local amenity changes, which may co-vary with factors that

change flood insurance adoption rates. If elevation is not systematically correlated with

these factors that introduce OVB in the empirical specification, then this specification

with differences in spillovers across tract-level elevation will minimize these potential OVB

biases.

For each census tract i, I identify the set of all neighboring tracts whose centroid

falls within some radius r of the tract centroid (in the baseline specification, r = 2.5km).

Then, I separate this set of neighboring census tracts into the set of uphill (U) and downhill

(D) tracts, where the elevation for each tract is defined as the mean elevation. I construct

the land use characteristics for these uphill and downhill neighboring tracts by taking the

size-weighted vector of land characteristics, LU
it and LD

it respectively.
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In order to test this spillover hypothesis, the specification is as follows:

Yimt = αi + γt + Rimt β1 + Litβ2 + Rimt × Lit β3 + LU
it β4 + LD

it β5

+ Rimt × LU
it β6 + Rimt × LD

it β7 +Xit β8 + εimt. (2.3)

Here, β6 is interpreted as the effect of mean changes in land use for uphill neighbors on own

flood damages controlling for own tract changes, conditional on receiving an exogenous

rainfall shock. β7 is interpreted similarly but for land-use changes in downhill neighboring

tracts. The results of this specification are reported in Figure 2.3, with detailed results

reported in Table B.3.

2.5 Results and Discussion

In this section, I discuss the results of each of the main specifications in Section 2.4.

In each of these specifications, the estimated coefficients from land use interacted with

anomalous rainfall have a narrow interpretation: each should be interpreted as the reduced-

form effect of all contributions of land change on changes in flood insurance claims.

Particularly, this should be interpreted as the mean effect of land change on flood claims.

That is, these specifications take the mean impact of land changes in census tracts that,

on one end, may combine with mitigation that is unobservable through aggregate land

change, and, at the other end, tracts that drastically change the fundamentals of flood risk

with observable land change. Additionally, I estimate each of the land-coverage effects

additively. While I capture the overall effects of observed changes in land use, this cannot

account for interaction effects between different categories of land cover.

2.5.1 Main empirical results

Figure 2.1 shows the results of the baseline specification. Subfigure (a) shows that

observed increases in impervious surface coverage increase the numeracy of flood claims
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for large rain events. Specifically, when a census tract experiences positive changes in

impervious development, an extra day with greater than 2 inches of rain increases the

expected number of flood insurance claims through the NFIP. Similarly, subfigure (b)

shows that an increase in wetlands coverage, when interacted with an extra day of 2–3

inches of rainfall, is associated with a decrease in flood insurance claims. On the far

right tail, with an increase in wetlands cover over time, an extra day with 3+ inches of

rain appears also to decrease the propensity of flood insurance claims. However, this

is estimated imprecisely, and may be evidence of saturation that diminishes mitigation

effects. Subfigure (c) demonstrates similar trends in water coverage.

Figure 2.2 shows the results of the baseline specification, allowing for asymmetric

effects of land change on flood risk. In line with the trends from the baseline specification,

we can observe that, conditional on a large rainfall shock, positive (negative) changes in

impervious developed coverage are associated with higher rates of flood insurance claims,

and positive (negative) changes in wetlands and water coverage are associated with lower

rates of flood insurance claims. Importantly, subfigure (b) implies that there are mitigation

benefits to both protecting and restoring existing wetlands.

Finally, Figure 2.3 shows the results of the spillover specification. In each subfigure,

we can observe that both the magnitude and significance of higher-elevation neighboring

census tracts are larger than the corresponding estimates for lower-elevation neighboring

census tracts. I take this as strong evidence that spillovers from land change exist.12

2.5.2 Implications for flood insurance premiums

In light of the evidence that changes in land use change the fundamentals of flood

risk, it is important to note that a vast majority of flood insurance premiums (> 70

12Note that any marginal statistical significance and sign for downhill neighbors does not contradict
the main hypothesis that spillovers come largely from uphill census tracts. It is feasible (and likely, for
many neighbor pairs) for mean elevation to have one ordinal relationship, while particular locations across
census tracts to have the opposite ordinal relationship.
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Figure 2.1. Baseline results

Note: this shows the results of the main coefficients of interest from the preferred baseline model
presented in Equation 2.1. “Positive” refers to positive changes in the land cover variable of interest, and
“negative” refers to negative changes, respectively. This includes all Texas census tracts-by-month from
2010, 2011, 2012, 2015, and 2016.

percent) were static during the course of the baseline study, 2010–2016. That is, under

changing fundamentals, premiums did not change to reflect either increases or decreases

in flood risk fundamentals. This is especially important given the evidence of spillovers in

observed flood claims.
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Figure 2.2. Asymmetry results

Note: this shows the results of the main coefficients of interest from the preferred asymmetry model
presented in Equation 2.2. This includes all Texas census tracts-by-month from 2010, 2011, 2012, 2015,
and 2016.
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Figure 2.3. Spillovers in flood risk

Note: this shows the results of the main coefficients of interest from the preferred spillover model
presented in Equation 2.3. This includes all Texas census tracts-by-month from 2010, 2011, 2012, 2015,
and 2016.
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2.6 Robustness

In this section, I discuss the robustness of the main results to different methodolog-

ical choices, and report the results in Section B.2.

First, I report the results from the baseline specification using the spell specification

for the rainfall interaction. That is, Rimt is the number of consecutive days within a

tract-month with recorded precipitation of two or more inches of rain. The results of this

specification are statistically and economically similar to the baseline specification, and

are reported in Table B.4. Table B.5 shows the results of the baseline specification, but

uses total value of claims paid out at the census-tract-month level. The qualitative results

are similar to the baseline specification.

In Table B.6, I report the results of the baseline specification when restricting to

non-coastal counties in the state of Texas. Both of these specifications suggest similar

impacts of developed, water, and wetland coverage. Importantly, restoration of inland

wetland coverage seems to mitigate flood insurance claims in the event of a rainfall shock,

and decreases in inland wetland coverage are associated with increases in flood insurance

claims.

In Table B.7, I report the results of the spillover specification from Equation 2.3

when changing the neighbor radius from 2.5 km to 5 km. The results are qualitatively

and economically similar to the preferred spillover specification. In Table B.8, I increase

the size of this radius to 15 km. As expected, estimates are attenuated in magnitude

and significance. This tracks with the assumption that as more distant census tracts are

included in the spillover specification, we should expect less relationship with “neighboring”

land use and own-flood risk.
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2.7 Conclusion

I show that aggregate changes in land use can explain significant outlays in claims

and public expenditures on national flood insurance, even in inland, non-coastal counties

in Texas. This elucidates the importance of aggregation of small land-use changes in

urban areas in often under-looked settings. These effects of land change on flood risk

fundamentals not only affect very local measures of impacts, but exhibit spillovers on

neighboring geographies.

Land management is important for local jurisdictions, but lack of coordination

implies large externalities to neighboring geographies. The results of this empirical analysis

imply the returns to coordination in land management and present avenues for future

research about specific mechanisms and optimal planning.
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Chapter 3

Risk Preference Adaptation to Cli-
mate Change

3.1 Introduction

Anthropogenic climate change is one of the most serious threats to the collective well-

being of humanity in the 21st century. The extent of economic damage it is likely to inflict

depends crucially on individuals’ ability to adapt to a rapidly changing physical environment.

Studies of climate adaptation have documented specific behavioral adjustments in response

to climate change, such as the adoption of air conditioning (Barreca, Deschênes and Guldi,

2015; Barreca et al., 2016; Howden, 2021), shifts in time allocation to labor (Graff Zivin

and Neidell, 2014), migration (Hauer et al., 2020), and changes to agricultural decision-

making (Burke and Emerick, 2016; Kala, 2017). In this paper we study a novel margin

of climate adaptation that is domain-general and psychological. Our core hypothesis,

which we support theoretically and empirically, is that individual risk preferences may

change in response to long-run experiences of climate change, and that such changes can

be welfare-improving, and therefore adaptive.

We begin by building a model of risk preference adaptation to climate change

(Section 3.2). In our model, an expected utility maximizer is faced each period with a

choice from a fixed menu of objective income lotteries known as the foreground risk. The

agent makes this choice in the presence of an exogenous, unavoidable, and statistically-
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independent background income risk. We assume that the agent’s direct utility function,

which is defined over the sum of both risks, is risk-vulnerable (Gollier and Pratt, 1996).

This means that the two sources of risk are substitutes for the agent—the more risk she

believes exists in the environment, the less risk she is willing to take in her individual

choices.

We enrich this static background risk framework with a dynamic model of high-

dimensional learning over the background risk. We assume the agent is Bayesian, and

that she perceives the background risk to be a stationary Gaussian random variable. To

capture the deep structural uncertainty inherent to climate change (Weitzman, 2009), we

further assume that both the mean and the variance of the background risk are unknown

to the agent, and are therefore objects of learning. Our agent observes realizations of the

background risk over time and updates her beliefs about its moments. As her beliefs about

the background risk evolve her risk preferences, captured by the curvature of the indirect

utility function over the foreground risk, adapt in turn.

Our model delivers sharp predictions about the effects of new realizations of the

background risk on the agent’s foreground risk preferences given her existing body of

experiences. Our main result is that the effects of the two moments are additive, with

the agent’s risk aversion decreasing in her posterior mean and increasing in her posterior

variance. Intuitively, this means that, unlike in models where risk aversion is monotonic in

the shock (Dillenberger and Rozen, 2015), in our model shocks differ in their effects not

only by whether they are positive or negative, but also by whether they are large or small.

We further show that our model is equivalent to one where an agent is learning

about the mean of a fat-tailed background risk. This extends our results to a class of

random processes that have recently gained renewed prominence in the literature on

aggregate shocks (Acemoglu, Ozdaglar and Tahbaz-Salehi, 2017; Pomatto, Strack and

Tamuz, 2020). Finally, we prove that under constant relative risk aversion (CRRA) utility

and complete information, the coefficient governing the relative effects of the mean and
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variance of background risk on the agent’s absolute risk aversion is exactly the agent’s prior

coefficient of absolute prudence. This provides a link between the agent’s higher-order,

static risk preferences and her lower-order, dynamic risk preferences.

We next turn our attention to testing the predictions of our model empirically. To

do so, we use data from two large longitudinal surveys, one from Indonesia and one from

Mexico, each containing two elicited measures of risk aversion for the same individuals

years apart. These elicited measures are estimated from choices over objective lotteries,

which helps us to sidestep identification challenges that exist in our setting with other

kinds of choice data, most notably the potential confounding of estimated preference

changes with foreground belief changes. In our main analysis we regress within-person

changes in measured risk aversion on changes in the mean and variance of heat and

precipitation in subjects’ state of birth, from birth to measurement. Our empirical

approach allows us to exploit the significant variation that exists within each country in

climatic conditions, while providing us with a degree of external validity for the results,

given the significant differences between the two countries in most physical, cultural, and

socioeconomic dimensions.

In line with the model’s predictions, we find (Subsection 3.4.1) that in both countries

increases in the experienced lifetime mean of both heat and precipitation induce significant

decreases in measured risk aversion. We also find that increases in the experienced

variance of heat in Indonesia and the variance of precipitation in Mexico lead to significant

increases in measured risk aversion. The estimated magnitudes of the variance effects are

approximately 1.6 (Indonesia) and 0.7 (Mexico) times the magnitude of the mean effects,

indicating that experienced climatic variance is first-order in its effects on risk aversion in

both settings.

In Subsection 3.4.2, we show that these results are robust to controlling for changes in

household demographics and economic constraints, suggesting that the observed estimates

are not driven by income effects. We also show that our results are robust to the inclusion
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of other categories of lifetime experiences that have been shown in the literature to affect

risk preferences, such as experiences of violence (Callen et al., 2014; Jakiela and Ozier,

2019; Brown et al., 2019), natural disasters (Cameron and Shah, 2015; Brown et al., 2018;

Hanaoka, Shigeoka and Watanabe, 2018), and macroeconomic conditions (Malmendier

and Nagel, 2011; Levin and Vidart, 2020).

To examine whether the observed effects represent domain-general shifts in risk

attitudes, in Subsection 3.4.3 we estimate correlations between predicted changes in

measured risk aversion and observed changes in risk-taking behavior in four domains:

migration, smoking, self-employment status, and (in Indonesia) the planting of cash

crops. Our results provide suggestive evidence for domain-generalizability. We find strong

correlations between increases in predicted risk aversion and decreases in migration and

smoking behavior in Indonesia; weak correlations between these variables in Mexico; and

no discernible statistical relationship between predicted risk aversion and self-employment

or the planting of cash crops in either country. We conclude the main empirical analysis in

Subsection 3.4.4 by examining the robustness of our main results to a variety of alternative

empirical specifications.

In the final part of the paper we explore whether the climate-change-induced risk

preference changes we estimate are, in fact, adaptive. As a rule, the climate adaptation

literature generally regards behavioral changes which are causally driven by climate change

to be adaptations, under the assumption that they represent re-optimization behavior,

and are therefore welfare increasing. A stronger test for climate adaptation would, in

theory, estimate the effects of behavioral changes on welfare directly. Welfare analyses are,

however, particularly difficult when preferences are not fixed, or the model of choice departs

from the neoclassical benchmark (Bernheim and Taubinsky, 2018). Even under expected

utility with stable preferences, welfare analyses have generally required an assumption of

preference homogeneity, which is unworkable in our setting.

However, in a recent paper Eden (2020) shows that a single welfare measure
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can be generated for a population with heterogeneous risk preferences under expected

utility. Conceptually, this is accomplished by presenting each agent with the population

distribution of income and calculating their certainty equivalent. The distribution of

certainty equivalents is then presented to each agent to yield another certainty equivalent.

Eden (2020) proves that this iterative process converges to a single fixed point, the

Equally Distributed Equivalent (EDE), which represents the collective value of an income

distribution for a population with heterogeneous risk preferences.

Building on this result, we conduct two empirical welfare exercises. First, we

calculate the EDE for the second period consumption distribution under both the first

period and second period estimated risk preference distribution in both countries.1 Here,

the difference in the EDE can be thought of as a measure of the sum total of adaptation

due to risk preference changes. Second, we calculate the EDE for the second period

consumption distribution under the empirical risk preference distribution predicted by our

main temperature regression in Indonesia and precipitation regression in Mexico, as well

as under the risk preference distribution predicted from these regressions when excluding

the climate variables. A comparison of the EDE in both these cases yields a measure the

welfare effects of climate-change-induced preference changes, relative to the theoretical

counterfactual where climate change had never occurred.

The results of these analyses are presented in Section 3.5. For the first exercise, we

find that in Indonesia total risk preference changes result in a 6% increase in welfare, while

in Mexico total risk preference changes result in an 8% decrease in estimated welfare. We

interpret these findings to indicate that risk preference changes attributable to all causes

are adaptive in Indonesia and maladaptive in Mexico. For the second exercise, we estimate

that climate-change-induced preferences changes account for a 1% increase in welfare

in Indonesia, and a 0.8% increase in welfare in Mexico. Therefore, even though overall

1In both exercises we structurally estimate individual risk preferences under the assumption of EU
with CRRA utility.
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preference changes vary in their effects on welfare across settings, preference changes in

response to climate represent (group-level) climate adaptation in both countries.

3.2 The Hunter-Gatherer Model of Risk Preference

Adaptation

The core hypothesis of this paper is that individuals’ risk preferences adapt to

physical changes in risk in their environment. How should we model such a process

of preference adaptation? A key challenge in answering this question is that a model

of this kind entails some departure from dominant paradigms in economic theory. In

contrast to the neoclassical paradigm, we are interested in what drives changes in economic

preferences, an area of inquiry seldom explored since Becker and Stigler (1977) effectively

banished it from standard economic analysis. In contrast to the behavioral paradigm,

we are interested in modeling a psychological phenomenon that moves agents closer to

optimal decision-making, rather than a bias or heuristic that drives them further away.

Our basic insight is that preference adaptation occurs where physical adaptation

ends. If one can adapt to the environment by adopting different physical tools, surely

there is no need to undergo fundamental psychological change, which can be relatively

difficult and costly to implement.2 It is only when such physical strategies are absent or

prohibitively costly that the agent falls back on adapting their own mental machinery.

Necessity is the mother of self-invention.

Thought of through this lens, preference adaptation is a process intrinsically driven

by technological constraints. It is instructive, therefore, to consider how such a process

might unfold in an environment where technological solutions to problems simply do not

exist. Such desperate circumstances have happily become increasingly rare since the advent

of the industrial revolution, and in their purest form currently afflict only the poorest of

2One need only think of the exorbitant rates that good therapists can command to see evidence of
this fact.
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the global poor. Conditions of this kind, however, were surely a fact of life for many during

the preceding Malthusian epoch, and for most before the advent of agriculture. In building

our model we therefore ask what the dynamics of risky choice might have looked like for

hunter-gatherers. We seek to answer this question not literally, but figuratively. In the

same way that we might learn about the functioning of an exchange economy by thinking

about life on Robinson Crusoe’s island, we posit that we can learn about the long-run

dynamics of risk preferences by thinking about life before the Neolithic revolution.

Consider the following thought experiment. Imagine you are a hunter-gatherer,

living somewhere in the world more than 13,000 years ago. What would the landscape

of risky choice look like over your lifetime? First, abstracting from seasonality, it stands

to reason that the menu of choices facing you would be quite constant from year to year.

Since finding sustenance would be your first-order concern, we might profitably simplify

your choice environment to a periodic decision between high-risk, high-reward hunting and

low-risk, low-reward gathering. Second, you are likely to face significant shocks to your

income process due to vagaries of nature that are unavoidable and outside of your control.

Without access to a robust savings technology it would be difficult for you to shift income

across time, and your consumption would be hand-to-mouth. Because the society in which

you live would be relatively small and lacking in insurance mechanisms, constraints on

risk sharing would be strongly binding. The existence of uninsurable aggregate shocks

would exert a strong selection pressure over time, meaning that systematic departures

from optimal risk-taking behavior are unlikely to persist. The existence of such shocks

would also imply that you would have a strong incentive to pay attention to and learn

about tail draws in your background income process, subject to information and cognitive

constraints. Finally, outside sources of news would not be readily available, meaning that

the primary source of information you would use to learn about your environment would

be your own personal experiences of it.

We capture these features by building a dynamic model of risky choice in which
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an agent’s risk preference adapts to her evolving beliefs about risk in the environment.

The foundation of our model is a classical background risk framework. An expected utility

maximizer faces a choice each period from a fixed menu containing a risky asset and a

safe asset—the foreground risk. She makes this choice in the presence of an exogenous,

unavoidable, and statistically independent background risk. We assume that the agent’s

utility is risk vulnerable, a higher-order analog of risk aversion. Given this assumption,

the foreground and background risks are substitutes for the agent: the more risk exists in

the environment, the less risk she wants to take in her own individual choices.

We combine this framework with a model of high-dimensional learning over the

background risk. We assume that our agent is Bayesian, and that she learns like an

econometrician, by observing realizations of the background risk over time and using this

data to update her beliefs about its data generating process. We further assume that the

agent is boundedly rational, in that she does not know the true data generating process,

but perceives it to be a lower dimensional approximation, in our case a stationary Gaussian

random variable. To capture the first-order role of tail draws in our setting we assume that

the agent knows neither the mean nor the variance of background risk. As she observes

realizations of the background risk she updates her beliefs about its moments, which in

turn affects her choice over the foreground risk.

Our model makes sharp predictions about the way that the agent’s risk preference

over the foreground risk changes in response to realizations of the background risk, given

the agent’s body of experiences. Most importantly, our model predicts that realizations

that increase the perceived mean will make the agent less risk averse, while those that

increase the perceived variance will make the agent more risk averse. The overall effect

of a given realization on the agent’s risk preference will be the sum of these two moment

effects.
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3.2.1 Model

The choice environment

Consider an agent born at time 0. In each period, indexed by t ∈ {1, 2, ..., T}, the

agent receives a fixed wealth endowment w and is exposed to two sources of risk. First,

the agent must choose an income lottery x̃ from a menu of lotteries X . We call x̃ the

endogenous or foreground risk, and denote its cumulative distribution function (CDF)

Fx̃(x) and its probability density function (PDF) fx̃(x). The menu X is identical in each

period, and consists of a safe lottery xs, and a risky lottery xr, such that E[xs] < E[xr] and

V ar[xs] < V ar[xr]. To fix ideas, we think of the lotteries in X as objective gambles for

which the agent knows the odds, though X could also, without loss of generality, consist

of several insurance or investment options over which the agent has subjective beliefs, so

long as those beliefs do not change over time.

In addition to the endogenous lottery x̃ the agent is exposed in each period to

an exogenous background income risk ỹ, which is a random variable with stationary

CDF Fỹ(y). Background risk ỹ is statistically independent of all x̃ ∈ X in all t, and is

unavoidable by the agent. The agent does not know the parameters of Fỹ(y) but rather

has beliefs over them, which she updates each period as she experiences a new realization

of ỹ. Denote with Bt(y) and bt(y) the CDF and the PDF, respectively, of the agent’s

beliefs distribution about the outcomes of ỹ at time t.

Timing

The timing of events in the model is shown in Figure 3.1. The agent enters period

t with income endowment w and prior beliefs bt−1 about the background risk ỹ. She then

chooses x̃ before ỹ is realized, given her beliefs. We assume that the agent does not have

access to a savings technology, so once x̃ and ỹ realize the agent consumes their period

endowment and the combined realization w + x+ y. At the end of the period the agent

updates her prior bt−1 to posterior bt, which forms their prior in the next period.
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periodst = 1 t = 2

Agent enters
with prior b0

over ỹ, receives w

Agent
chooses x̃
from X

x̃ and ỹ
realize

Agent
consumes w + x+ y

Agent updates
b0 to b1

Agent enters
with prior b1

over ỹ, receives w...

Figure 3.1. Timing of events in the model

Utility and risk

We assume that the agent is a subjective expected utility maximizer and has a four-

times-differentiable utility function u, for which u′ > 0 and u′′ < 0. u, the agent’s direct

utility function, has as its argument the sum of the wealth endowment, the foreground

risk, and the background risk. The agent’s objective is therefore to maximize:

Eu(w + x̃+ ỹ) =

∫ ∫
u(w + x+ y)fx̃(x)bt(y)dxdy

=

∫ [ ∫
u(w + x+ y)bt(y)dy

]
fx̃(x)dx

= Eu(w + x̃|ỹ)

= Eu(w + x̃|Bt(y)),

where the second equality follows from the law of iterated expectations. To simplify

notation we will use ỹt = ỹ|Bt(y) to refer to the background risk that the agent believes

they face at time t.

Our measure of risk preference is the Arrow-Pratt coefficient of absolute risk aversion

over the foreground risk rt(w) (Arrow, 1965; Pratt, 1978), here written to depend on the

agent’s beliefs about ỹ, which vary over time:
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rt(w) = r(w|Bt(y)) ≡ −Etu′′(w|Bt(y))

Etu′(w|Bt(y))
.

The coefficient rt(w) has a well-known behavioral interpretation as the agent’s risk premium,

or local price for trading off the mean and variance of a risky prospect. Given a choice

between a safe and a risky investment option, as in the choice of x̃, an agent with higher

rt(w) will invest a lower amount in (or be less probable to choose, in the discrete case) the

risky option.

It is also useful to define two higher-order analogues of rt(w), the coefficient of

absolute prudence pt(w) = −Etu′′′(w|Bt(y))/Etu′′(w|Bt(y)) and the coefficient of absolute

temperance qt(w) = −Etu′′′′(w|Bt(y))/Etu′′′(w|Bt(y)). These allow us to define conditions

on the third and fourth moments of u that are collectively termed risk vulnerability.3

Definition 3.2.1. (Risk-vulnerable utility) An expected utility maximizer with u′ > 0

and u′′ < 0 is risk-vulnerable at time t if pt(w) ≥ rt(w) and qt(w) ≥ rt(w).

Risk vulnerability is the feature of the utility function that ensures that background

and foreground risks are substitutes for the agent. Intuitively it corresponds to higher-order

concavity in the agent’s utility function. Note that all HARA utility functions exhibit risk

vulnerability.4 We assume below that the agent is risk vulnerable at all t.

Learning

The agent in our model is a Bayesian who uses personally observed realizations of

the background risk to update their belief distribution Bt(y). We make two structural

3Risk vulnerability was first defined by Gollier and Pratt (1996) as the condition that any unfair
background risk (Eỹ ≤ 0) makes risk-averse agents behave in a more risk-averse way. Gollier and Pratt
then derive the conditions on u we describe as consequences of their definition. Our definition of risk
vulnerability differs from theirs in taking these conditions on u as a starting point. This is important
because strong monotonicity of risk aversion in Eỹ does not hold if V arỹ can change as well, which is the
setting with which we are concerned here.

4Hyperbolic Absolute Risk Aversion utility functions are defined as the class of functions for which
the reciprocal of the coefficient of absolute risk aversion is linear in wealth. Many utility functions used in
applications, including the linear, exponential, power, and logarithmic fall into this class (Merton, 1971).
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assumptions about the agent’s updating process. First, we assume that the agent believes

that the realizations, or signals, are drawn from a stationary Gaussian random variable

with unknown mean and unknown variance. Second, we assume that the agent’s prior over

the mean and variance takes the form of a normal-inverse-chi-squared distribution. We

call this learning process Mean-Variance learning, and define it formally in the following

definition:

Definition 3.2.2. (Mean-Variance Learning) We say that a Bayesian agent is a mean-

variance learner if:

1. The agent’s perceived likelihood function over a random variable, here the background

risk, is a stationary Gaussian random variable:

ỹ ∼ N (M,Σ2) ∀t,

where M and Σ2 are both scalars that are unknown to the agent.

2. The agent’s prior over the mean and variance p(M,Σ2) is a NIχ−2 distribution, that

is,

p(M,Σ2) = NIχ−2(µ0, κ0, σ
2
0, ν0)

= N (M |µ0,Σ
2/κ0)× χ−2(Σ2|ν0, σ2

0),

where µ0 and σ2
0 are the agent’s point priors over the mean and variance of ỹ, and

κ0 > 0 and ν0 > 2 are parameters capturing the agent’s confidence or precision over

the prior mean and variance, respectively.

Given the above prior, it is straightforward to show that the agent’s expected values
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for M and Σ2 at time 0 are:

E0[M ] = µ0 (3.1)

E0[Σ
2] =

ν0
ν0 − 2

σ2
0. (3.2)

The NIχ−2 distribution is the unique conjugate prior of the Gaussian with unknown mean

and unknown variance likelihood. This means that the Bayesian agent’s posterior distribu-

tion upon receiving signals will also be in the NIχ−2 family, with updated parameters.

Consequently, the agent’s posterior mean and variance have closed form expressions. Let

Dt = {y1, ..., yt} be a set of t iid draws from ỹ. Then these posteriors will be:5

Et[M |Dt] = µt = µ0 +
t

κ0 + t
(ȳt − µ0) (3.3)

Et[Σ2|Dt] =
νt

νt − 2
σ2
t =

1

ν0 + t− 2

[
ν0σ

2
0 +

t∑
i=1

(yi − ȳt)2 +
tκ0
κ0 + t

(ȳt − µ0)
2
]
, (3.4)

where ȳt = 1/t
∑t

i=1 yi is the sample mean of Dt. It will also be useful to refer to the

sample variance of Dt, s2t = 1/t
∑t

i=1(yi − ȳt)2.

We will denote the total change in the agent’s beliefs about the mean at time t,

relative to their prior, as ∆tM = Et[M |Dt] − E0[M ], and about the variance ∆tΣ
2 =

Et[Σ2|Dt]− E0[Σ
2]. These will be distinct quantities in our model from the comparisons

that the agent makes between the mean of the data and their prior mean, which we label

δmt = ȳt − µ0, and the difference between the sample variance and their prior variance,

which we label δvt = s2t − ν0
ν0−2σ

2
0.

5Degroot (1970) [pg.169] proves this for the parameterization of the normal in terms of mean and
precision. Here we use the alternative parameterization for the normal in terms of the mean and variance.
This form of the posterior variance follows trivially from replacing the Gamma prior marginal distribution
of the precision in Degroot (1970) with an inverse chi squared prior marginal distribution for the variance
(Murphy, 2007).
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3.2.2 Theoretical results

Proposition 1. (Effect of changes in background risk on absolute risk aversion) Suppose

the agent observes an arbitrary dataset Dt of draws from the background risk. Then the

change in their absolute risk aversion at time t is:

∆rt(w)
∣∣∣
Dt
≈ −

tr0(w)
(
p0(w)− r0(w)

)
κ0 + t

δmt +
tκ0r0(w)p0(w)

(
q0(w)− r0(w)

)
2(ν0 + t− 2)(κ0 + t)

(δmt )2

+
tr0(w)p0(w)

(
q0(w)− r0(w)

)
2(ν0 + t− 2)

δvt

Corollary 3.2.1. Proposition 1 holds if the background risk is distributed as a

tνt(M |µt, σ2
t /κt), and the agent’s objective is to learn only about the mean M .

Corollary 3.2.2. Suppose the agent has a CRRA utility function. Then under the complete

information case

lim
t→∞

(
∆rt(w)

)∣∣∣
Dt

= − η

w2
δmt +

η(η + 1)

w3
δvt (3.5)

3.3 Data and Methodology

We perform our empirical analyses using data from Indonesia and Mexico. These

two countries have two advantageous settings for our purposes: first, both countries share a

recent history of rapid and volatile economic change. Since both are low- to middle-income,

they exhibit significant missing markets in insurance, credit, and risk-sharing. This means

that the average individual in both countries is likely to have experienced substantial and

unavoidable changes in background risk over their lifetime, which in turn means that we

are more likely to detect effects in line with our theoretical predictions in these settings.
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Although they have important similarities, the second advantage afforded by study-

ing these two countries is their differences. Indonesia and Mexico offer a distinct contrast

along many plausibly important dimensions, including geography, level of development,

language, culture, religion, institutions, and other aspects of their history.6 This aids in

establishing both the internal validity and external validity of our results. If we detect

common effects in both countries we can be more confident that they are not driven by

idiosyncratic characteristics of either setting, and more comfortable in predicting that they

will generalize to other settings.

For the Indonesian analysis our source of micro data is the Indonesian Family Life

Survey (IFLS) (Strauss et al., 2009; Strauss, Witoelar and Bondan, 2016). The IFLS is a

longitudinal study administered by the RAND corporation in 13 provinces in Indonesia

in five waves, starting in 1993. For the Mexican analysis our source of micro data is the

Mexican Family Life Survey (MxFLS), a longitudinal study administered in 16 states in

three waves starting in 2002. The MxFLS was piloted by the RAND corporation, and

is now managed by the Iberoamerican University (UIA) and the Center for Economic

Research and Teaching (CIDE). Both surveys exhibit high recontact rates (>90%), and

contain a wealth of economic and demographic covariates, allowing for a near-complete

accounting of the balance sheet for subjects, including household consumption, income,

assets, savings and borrowing. Both also contain residence and migration histories, allowing

us to link place-based variables like climate experiences, local inflation, and GDP growth

to subjects. Crucially for our purposes, the two most recent waves of both the IFLS and

the MxFLS (IFLS4: 2007–2008; IFLS5: 2014; MxFLS-2: 2005–2006; and MxFLS-23: 2009–

2012) include modules for measuring subject financial risk aversion using hypothetical,

high-stakes monetary gambles. We use measures from these modules to construct our

6To make a few of these differences concrete: (1) Indonesia straddles the world’s largest archipelago,
spread out in equatorial waters in south-east Asia, while Mexico comprises a solid landmass in the North
American continent; (2) Mexico is about 55% richer in per-capita GDP (PPP) terms than Indonesia as of
2018 ($20,602 vs. $13,230); (3) Indonesia is the world’s largest Muslim country in the world, while Mexico
is overwhelmingly Christian, primarily Roman-Catholic.
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primary dependent variables, which we describe in detail in Subsection 3.3.1.

For the climate change variables in Indonesia we use two reanalyzed gridded tem-

perature and precipitation datasets (Schneider et al., 2011; Willmott and Matsuura, 2001)

in addition to the universe of available ground station temperature data, reported by the

National Climate Data Center (NOAA-CDO, 2020). In Mexico we use the gridded weather

data for North America compiled by Livneh et al. (2015), which contains information on

temperature and precipitation. In Subsection 3.3.2 we describe the construction of our

climate change experience variables using these data.

The sample for our main analysis is subjects who completed the risk aversion

module in both waves of each survey. Focusing on subjects who appear in both waves of

each survey allows us to estimate a model with individual fixed effects, which eliminates

substantial amounts of noise due to idiosyncratic variation. This results in a primary

sample of 16,267 subjects for Indonesia and 8,126 subjects for Mexico, each appearing

twice in our data. In some analyses we do not include individual fixed effects, which allows

us to expand the sample to all subjects who responded to the risk module in either wave

of each survey, for a total of 51,876 subject-year observations in Indonesia and 20,851

subject-year observations in Mexico. Summary statistics for the complete survey samples

and the primary samples are available in Section C.6. The geographic distributions of our

samples in Indonesia and Mexico are available in Section C.5.

3.3.1 Risk aversion measures

Both surveys include modules for measuring financial risk aversion, from which our

main dependent variables are constructed. These modules employ “staircase” instruments,

similar to those used in Falk et al. (2018). Staircase instruments have been shown to

generate high-quality measures of risk aversion with low subject response burden, which

makes them ideal for field applications. In a staircase risk aversion instrument subjects

are given a series of hypothetical high-stakes choices between a safe lottery (often a sure
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amount of money) and a riskier lottery (which generally has a higher mean and a higher

variance than the safe option). Lotteries are commonly in the form of fair coin flips. Based

on the subject’s choice in the first question they are sorted into one of two other questions

with different amounts of money for the lotteries. If the subject previously chose the safe

(risky) option, risk in the coin flip is reduced (increased) in their subsequent question.

This process can then be repeated as many times as necessary to yield as fine a measure of

risk aversion as desired. The result is an ordinal binned measure of absolute risk aversion

for each subject. Our process for constructing the risk aversion measures from the IFLS

and MxFLS data is displayed in Section C.3.

In IFLS4 and IFLS5 subjects answered between two and three questions each,

which resulted in measure with five bins. Each question offered the same fixed safe amount

of money, while the amounts of the risky lottery varied between questions. The same

module with the exact same amounts per question was used in both waves of the survey.

We code the resulting measure with higher numbers (1–5) indicating more risk aversion.

One complicating factor with the IFLS risk aversion module is that the first question

offered subjects a choice between a sure amount and a coin flip over two higher amounts.

Between 28% and 40% of the sample chose the dominated, certain option, even after being

prompted to reconsider a second time (see Section C.10 for the sample distribution of the

risk aversion measure). It is unclear whether these “gamble averse” subjects are extremely

risk averse (or certainty seeking), or whether another factor, like subject misunderstanding

or aversion to gambling generally is driving these choices. In our main analysis we include

these subjects and code them as having the highest rate of risk aversion.

In MxFLS-2 subjects answered between two and five questions each, which resulted

in a measure with five bins. Questions offered subjects a choice between a safe coin flip

and a riskier coin flip, with the amounts of the riskier coin flips generally changing between

questions. We code the resulting measure with higher numbers (1–5) indicating more

risk aversion. The staircase instrument was changed for MxFLS-3 to align more closely
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with the instrument in the IFLS. In MxFLS-3 subjects answered between two and five

questions each, resulting in a measure with six bins. Each question offered the same fixed

safe amount of money, while the amounts of the risky lottery varied between questions. A

“gamble averse” option was offered in this instrument. Since gamble aversion only appears

in one wave of the MxFLS we drop subjects who chose this option in MxFLS-3 from our

sample. We code the resulting measure (1–5) in the same way as the other measures.

A pervasive concern with all elicited measures of financial risk aversion is the

high degree of noise that they exhibit, which often means their predictive power for

real-world risky behavior is quite low (Yariv, Gillen and Snowberg, 2019). This raises

the possibility that any detected effects on measured risk aversion will be due to noise,

and will not translate to real changes in risk-taking behavior by the subjects. We address

this in Subsection 3.4.3, where we show suggestive evidence that subjects who became

more risk averse by our measures also became less risk-taking in their economic behavior.

We can also examine the predictive capacity of our measures in the cross-section. In

Section C.7 we present the results of regressing our measures of risk aversion on a host

of demographic covariates and economic variables capturing risk-taking behavior in our

samples, without including individual fixed effects in the regression. For subjects for whom

we have complete data for all covariates, our IFLS risk aversion measure, unlike many in the

literature, exhibits significant correlations with risk-taking behavior like self-employment

and migration, and demographic measures like age and gender in expected ways, both in

primary (panel) sample and in the broader sample. Our measure of risk aversion from

the MxFLS is noisier than that in the IFLS, and consequently only exhibits significant

correlations with smoking and age.

3.3.2 Climate experience variables

To construct our main independent variables for the analysis, we begin by construct-

ing province/state-month time series for both temperature and precipitation in Indonesia
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and Mexico. In Indonesia, we use the Global Historical Climatology Network Climate

Anomaly Monitoring System (GHCN CAMS) gridded temperature dataset and gridded

rainfall data from the Global Precipitation Climatology Centre (Schneider et al., 2011;

Willmott and Matsuura, 2001).7 These are each gridded historical reanalyses and report

average monthly temperature in degrees Celsius (C) and precipitation in centimeters (cm)

on a 0.5 degree grid. In our main specification, we use the entire catalogue of monthly

data from 1901 to 2014. To construct the province-month series of temperature and

precipitation, we take the average of all pixels that fall within a province boundary (ESRI,

2018).

In an alternative specification, we use the universe of available ground station data,

reported by the National Oceanic and Atmospheric Administration (NOAA-CDO, 2020).

In this station-based analysis, we construct monthly temperature series for 1976 onwards.

Following concerns about entry and exit of weather stations (Dell, Jones and Olken, 2014),

we use 1976 as a cutoff and restrict to 61 stations that do not exit during the extent of our

panel, from 1976 to 2014. These stations report daily mean temperatures in degrees C.8 To

reduce the incidence of measurement noise, we winsorize this station-day at the 1–99 level

over the universe of station-day observations. We then take the median of these station-day

means over all stations in a province-month to produce this station-based series. Some

measurement error exists in earlier years due to stations going offline. Reassuringly, for

earlier years in the data, less than 1% of province-month observations are missing. Since

the data generating process illuminates potential error in the gridded data we use in the

main specification, we also consider using a subset of the gridded data where we restrict

the series to 1976 to 2014. We demonstrate robustness to alternate specifications of the

Indonesia temperature data in Section C.1.

In Mexico, we use data from the gridded weather product for the Continental US

7UDel AirT Precip and Temp data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado,
USA, from their website: http://climate.geog.udel.edu/∼climate/html pages/download.html.

8Following convention, this daily mean is the mean of the daily maximum and minimum readings.
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and North America created by Livneh et al. (2015). These data contain temperature

(degrees C) and precipitation (cm) at a 6 kilometer-pixel resolution at the daily frequency

from 1950 to 2013. We use daily mean temperature and total rainfall, and construct

pixel-month time series by averaging daily pixel means within each month (or summing,

in the case of precipitation). We match pixels to Mexican states using the GIS layer

of Mexican administrative state boundaries from the Department of the Interior (DOI,

2020) (in Subsection 3.4.4 we show robustness to a different state matching procedure

using inverse distance weighting of pixels from the state centroid). With these matched

pixels we construct state-month level time series by averaging the pixel-month values of

temperature and precipitation for each pixel that falls within a state’s administrative

boundary, following a similar procedure to Auffhammer and Rubin (2018).

Once we obtain province/state-month time series for climatic variables, we match

them to subjects in our data by their state and year of birth. Subjects born in a given

year are matched with a time series for their province/state of birth starting in January

of the next year. Once the time series are assigned we calculate for each individual the

mean (Ait) and the standard deviation (Vit) of their climatic time series from birth to year

of measurement in the corresponding survey. Thus, an individual born in East Java in

1981, for instance, will be assigned the statistics for the East Java temperature time series

from January 1982 to 2007 (the year of IFLS4) and from 1982 to 2014 (the year of IFLS5).

In Mexico, since MxFLS-2 was administered between 2005 and 2007, and MxFLS-3 was

administered between 2009 and 2013, subjects are assigned time series that extend from

birth to their exact measurement year. Let cis be the climatic variable assigned to person

i in year s (with c ∈ {temperature, precipitation}). Then for month of measurement t

(with t = 1 for January of the subject’s birth) these statistics are:
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Ait =
1

t− bi

t∑
s=bi+1

cis (3.6)

Vit =

√√√√ 1

t− bi − 1

t∑
s=bi+1

(cis − Ait)2 (3.7)

where

bi =


BirthYeari if BirthYeari > B

B if BirthYeari ≤ B,

and

B =


1901 if Countryi = Indonesia & main spec

1976 if Countryi = Indonesia & restricted spec

1950 if Countryi = Mexico.

Significant variation exists in these experienced climate variables, as can be seen from

Figure 3.2 and Figure C.1.

3.3.3 Empirical specification

Our baseline empirical specification is a two-way fixed effects model where we

regress the individual risk aversion measure Rit on Ait, Vit, a constant αFE, and individual

and time fixed effects:

Rit = αFE + αi + αt + β1Ait + β2Vit + γ1PriceLevelp + γ2Xit + εit, (3.8)
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Figure 3.2. Moment correlations for birth-province/state cohorts

Note: this figure displays the raw distributions of our main explanatory variables ∆Ait and ∆Vit
graphed against each other in each country for each independent variable. These scatterplots demonstrate
that substantial variation exists not only in climate conditions across provinces/states, but also in the
dynamics of climate experiences at the individual level. Cohorts are plotted by color, with oldest cohorts
in blue and youngest cohorts in red. The plots for Indonesia report the baseline specification.
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where Ait is either individual experiences of average monthly temperature or total pre-

cipitation, and Vit is corresponding individual experience of the respective volatility. The

individual fixed effect αi absorbs variation due to time-invariant idiosyncratic heterogeneity,

whereas the time fixed effect αt nets out the effect of aggregate time trends. Xit is a vector

of extra individual controls (we discuss these specifically in Subsection 3.4.2).

Since we have two periods in our analysis (the first and second waves of each survey),

our two-way fixed effects specification is econometrically equivalent to a first-difference

specification:

∆Rit = αFD + β1∆Ait + β2∆Vit + γ1Inflationp + γ2∆Xit + εit. (3.9)

For exposition, we present the results below for the first-difference specification.

3.4 Results

This section contains the findings from our three primary empirical analyses. In

Subsection 3.4.1, we present the results from regressing within-subject changes in measured

risk aversion on subjects’ experienced mean temperature change and temperature volatility

change in Indonesia and Mexico, as well as the corresponding analysis for precipitation

in each country. These regressions, which include no controls aside from subnational

inflation, are the most direct tests of the predictions of our model. In Subsection 3.4.2, we

demonstrate the robustness of our main findings to the inclusion of controls for changes

in subjects’ economic constraints and experiences of violence, natural disasters, and

macroeconomic growth. In Subsection 3.4.3, we present correlations between changes in

several kinds of risky behaviors and predicted change in risk-taking across the distribution

of predicted risk preference changes.
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3.4.1 Effects of climate experiences on measured risk aversion

Our main empirical findings are presented in Table 3.1. Column 1 displays the result

of regressing changes in measured risk aversion on mean changes in experienced lifetime

heat and precipitation (separately) in Indonesia. In line with the model’s predictions,

increases in the mean of each climate variable result in significant decreases in measured

risk aversion in Indonesia. In column 2, changes in risk aversion are regressed on changes

in the standard deviation of the climate variables, but results are not significant for either

variable. Column 3 presents the results of regressing measured risk aversion on both the

mean and the standard deviation of the climate variables in Indonesia. The mean effects

here remain highly significant, while the variance effect of heat now becomes significant

and positive, in line with our theoretical predictions.

Columns 4–6 present the results of the parallel analysis in Mexico. In column 4,

changes in measured risk aversion are regressed (separately) on changes in the experienced

lifetime mean of heat and precipitation. We find that the effect of mean temperature is

significant and negative, while that of mean precipitation is negative but not significant.

In column 5, changes in measured risk aversion are regressed on changes in the standard

deviation of the climate variables. Here, the effect of the standard deviation of precipitation

is significant and positive, while the effect of temperature standard deviation of temperature

are not significant. Finally, in column 6, measured risk aversion is regressed on both

the mean and the standard deviation of the climate variables. In line with the model’s

predictions, both mean variables have negative and highly significant effects, while the

standard deviation of precipitation has a positive and highly significant effect.

Overall, the results are strongly consistent with the predictions of the model on

the direction of the effects of changes in the mean and variance of experienced climate on

measured risk aversion. Two additional observations are worth noting at this juncture.

First, even though the effects of mean climatic variables are highly consistent in both
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settings, only the variance of heat in Indonesia and precipitation in Mexico have significant

effects in our analysis. Why the effects of climate volatility differ between the two settings is

unclear, though it might be attributable to differences in the correlation structure between

the moments of climate variable and the dominant income process in each setting.9 Second,

it is notable that in the specifications in which the variance effect is significant, their

magnitudes are approximately 1.6 (Indonesia temperature) and 0.7 (Mexico precipitation)

times the magnitudes of the respective mean climate effects. This suggests that the effects

of experienced climate variance are first order on risk preferences.

Table 3.1. Main results

Dep. Var: ∆ Risk Aversion (1) (2) (3) (4) (5) (6)

Indonesia Mexico

∆ Mean Temp -3.75†† -4.23†† -1.16† -1.19††

(.49) (.57) (.22) (.22)

∆ Std. Dev. Temp 1.54 6.82∗∗ -0.10 -0.35
(2.32) (2.37) (.48) (.49)

∆ Mean Precip -0.25∗∗ -0.21∗ -1.14 -3.99∗∗

(.09) (.10) (.93) (1.15)

∆ Std. Dev. Precip -0.44 -0.27 1.17∗ 2.58∗∗∗

(.25) (.28) (.55) (.69)

Observations 16267 16267 16267 8126 8126 8126

Note: measured risk aversion reported from 1–5, 5 being highest measured risk aversion.
Dependent variables: within-subject changes in measured risk aversion in IFLS (2007–2014)
and MxFLS (2006–2012). Temperature (◦C) and precipitation (cm) moments calculated
from monthly measurements in subjects’ state of birth, from birth to year of survey.
Independent variables: changes in lifetime moments between waves of respective survey.
Province (Indonesia) or regional (Mexico) inflation included in all regressions. Standard
errors clustered at the cohort by province/state of birth level in parentheses. * p < .05, **
p < .005, *** p < .0005, † p < 5× 10−7, †† p < 5× 10−13.

9For instance, heat waves may be especially damaging to agricultural yields in the Indonesian context,
and floods may be especially damaging to such yields in Mexico.

80



3.4.2 Additional controls

Our main results are estimated without the inclusion of any additional controls aside

from subnational inflation, though there are well-founded reasons to include additional

covariates. Theoretically, changes in subjects’ income, wealth, buffer stocks of savings,

consumption, or other economic circumstances might be expected to influence their

measured risk aversion. Empirically, previous studies have shown that exposure to

traumatic experiences like natural disasters and violence can change measured risk aversion.

In a similar context, Levin and Vidart (2020) show that macroeconomic experiences

significantly change measured risk aversion.

In the main specification, we choose to omit these controls because they are

endogenous to risk aversion itself. This means that their inclusion could threaten the

causal interpretation of our results. Nevertheless, we interpret the changes we observe in

measured risk aversion as representing changes in underlying risk attitudes, or merely as

driven by changes in personal economic circumstances. Further, it is useful to directly test

whether experiences of climate change are in fact driving the observed changes or whether

other kinds of experiences whose incidence may be correlated with climate dynamics are

in fact playing a central role.

We provide some evidence on these points in Table 3.2, where we progressively add

in additional controls to the specification for the last column in Table 3.1. These include

time-varying demographics, like marital status, educational attainment, and household size;

changes in income, assets, savings, and consumption; self-reported exposure to violence and

natural disasters; and measured GDP growth experiences from Levin and Vidart (2020)

(full details on the controls are available in Section C.9). In both countries our results are

highly robust to the inclusion of this rich set of covariates. Overall, this is suggestive that

the changes we estimate in measured risk aversion are driven by lifetime experiences of

climate. The only covariates that substantially attenuate or increase the magnitude of
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the measured effect are the inclusion of macroeconomic experience variables, suggesting

correlation between changes in the climate and growth and perception on underlying risk.

Table 3.2. Additional controls

Dep. Var: ∆ Risk Aversion (1) (2) (3) (4) (5) (6) (7) (8) (9)

Indonesia

∆ Mean Temp -4.23†† -4.39†† -4.39†† -4.37†† -4.37†† -4.43†† -4.41†† -4.38†† -3.61†

(.57) (.56) (.56) (.56) (.56) (.58) (.58) (.59) (.55)

∆ Std. Dev. Temp 6.82∗∗ 6.93∗∗ 6.88∗∗ 6.90∗∗ 6.90∗∗ 6.90∗∗ 6.86∗∗ 6.63∗ 12.56†

(2.37) (2.36) (2.36) (2.36) (2.36) (2.43) (2.44) (2.44) (2.32)

∆ Mean Precip -0.21∗ -0.20 -0.20 -0.20 -0.20 -0.22∗ -0.22∗ -0.21∗ -0.19
(.10) (.10) (.10) (.10) (.10) (.11) (.11) (.11) (.12)

∆ Std. Dev. Precip -0.27 -0.27 -0.27 -0.27 -.28 -.24 -0.24 -0.31 -0.51
(.28) (.28) (.28) (.28) (.28) (.28) (.28) (.28) (.27)

Observations 16267 16267 16263 16263 16263 14974 14974 14974 14974

Mexico

∆ Mean Temp -1.19† -1.18† -1.18† -1.18† -1.17† -1.17† -1.17∗∗∗ -1.15† -0.95∗∗∗

(.22) (.22) (.22) (.22) (.22) (.22) (.22) (.22) (.23)

∆ Std. Dev. Temp -0.35 -0.38 -0.39 -0.39 -0.38 -0.36 -0.36 -0.39 -1.12∗

(.49) (.49) (.49) (.49) (.49) (.49) (.49) (.49) (.50)

∆ Mean Precip -3.99∗∗∗ -4.10∗∗∗ -4.14∗∗∗ -4.13∗∗∗ -4.11∗∗∗ -4.10∗∗∗ -4.10∗∗∗ -4.46∗∗∗ -7.95†

(1.15) (1.14) (1.14) (1.14) (1.15) (1.15) (1.15) (1.14) (1.20)

∆ Std. Dev. Precip 2.58∗∗∗ 2.59∗∗∗ 2.59∗∗∗ 2.59∗∗∗ 2.58∗∗∗ 2.59∗∗∗ 2.58∗∗∗ 2.70∗∗∗ 4.63†

(.69) (.69) (.69) (.69) (.69) (.69) (.69) (.68) (.73)

Observations 8126 8126 8126 8126 8126 8126 8126 8126 8126

Inflation X X X X X X X X X
∆ Demographics X X X X X X X X
∆ Income X X X X X X X
∆ Assets X X X X X X
∆ Savings X X X X X
∆ Consumption X X X X
∆ Violence X X X
∆ Natural Disasters X X
∆ Growth experiences X

Note: measured risk aversion reported from 1–5, 5 being highest. Province (Indonesia) or regional (Mexico) inflation included in all
regressions. Demographics include marital status, household size, and household size squared. Violence and natural disasters variables
from self-reported exposure. Growth experiences include the mean, mean squared, and standard deviation of province/state level real
GDP growth in subjects’ province/state of birth. Standard errors clustered at the cohort by province of birth level in parenthesis. * p
< .05, ** p < .005, *** p < .0005, † p < 5× 10−7, †† p < 5× 10−13.

3.4.3 Correlations with risky behavior

Another issue of interpretation of our results is the question of whether changes in

measured risk aversion capture changes in actual risk-taking behavior for subjects. We
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study this question by constructing a variable measuring predicted change in risk aversion

(∆̂Rit) using our preferred specifications (columns 3 and 6 of Table 3.1) and examining

its correlation with changes in downstream risky behaviors in our data. We focus on

behaviors commonly examined in relation to risk-taking in the literature for which we

have data: smoking, having ever migrated across province or state line, self-employment

status, and, in Indonesia, whether subjects report that their land is planted with at least

one cash crop.10 We do this exercise for both temperature and precipitation in Indonesia

and Mexico.

Results of this analysis for temperature and precipitation in Indonesia are presented

in Figure 3.3 and Figure 3.4; and results for temperature and precipitation in Mexico

are presented in Figure 3.5 and Figure 3.6. These figures display the average value of

each downstream variable for each quartile of the ∆̂Rit distribution. Here, lighter blue

bars represent individuals who are predicted to become measurably less risk averse by our

empirical model, while dark blue bars represent subjects who are predicted to become

measurably more risk averse. We report 95% confidence intervals for each quartile, and we

use the first to fourth interquartile range as an empirical benchmark to run a two-sided

t-test to check the statistical significance of the difference between the average values of

the outcome. Importantly, we acknowledge that this is not a causal exercise, as we only

claim to capture the part of change in measured risk aversion due to changes in our climate

variables.

Our results provide some suggestive evidence that increases in measured risk

aversion predicted by climate change experiences are correlated with overall decreases

in risk-taking behavior in Indonesia, and less but some suggestive evidence that this

relationship exists in the Mexican case.

In the case of Indonesia, we observe several cases where increases in risk aversion

10Cash crops included in the IFLS include coconut, coffee, cloves, rubber, and other hard-stemmed
plants.
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are correlated with decreases in risk-taking behavior. Four of the eight first-to-fourth

quartile declines are significant at conventional levels: ever migrated across province lines

by temperature (1.3 percentage point increase to 0.5 percentage point increase; p=0.001);

ever migrated across province lines by precipitation (1.3 pp increase to 0.3 pp increase;

p=0.0001); rate of smoking by temperature (2.1 pp increase to 1.0 pp increase; p=0.046);

rate of smoking by precipitation (3.8 pp increase to 0.1 pp increase; p=0.0001). However,

these relationships are not all monotonic over the intermediate quartiles. Additionally, for

self-employment, we observe no statistically or economically significant relationship. And,

for the case of cash crops by precipitation, we observe an upward trend and marginally

significant first-to-fourth quartile difference (0.7pp increase to 2.0 pp increase; p=0.63).

Overall, we take this to be suggestive evidence that climate-predicted increases in measured

risk aversion to be correlated with decreases in observed risk-taking behavior in Indonesia.

In the case of Mexico, we observe little evidence of overall statistical change in

risky behavior attributable due to changes in experienced temperature or precipitation.

For the temperature analysis, we find no significant differences across the distribution of

these quartiles of predicted risk increase. However, there exists a positive trend between

decreases in risk aversion and increases in migration. For the precipitation analysis, again

we find some baseline relationship between predicted rates of decreases in risk aversion and

increases in migration, but we find no statistical differences for changes in these internal

rates of migration or smoking, and even find a weakly increasing relationship for changes

in self-employment with predicted changes in risk aversion. One potential explanation for

what we observe is that there are other significant contributions to observed changes in risk

attitudes during the time of the study. For example, Brown et al. (2019) find significant

impacts of violent crime during this period on measures of risk aversion.
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Figure 3.3. Correlations of changes in risky behaviors with predicted temperature
increase in risk aversion, Indonesia

Note: bars represent quartiles of the predicted change in risk aversion distribution. Light blue is the
bottom quartile of this distribution, representing the agents who are predicted to experience a decrease
(or smaller increase) in risk aversion.
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Figure 3.4. Correlations of changes in risky behaviors with predicted precipitation
increase in risk aversion, Indonesia

Note: bars represent quartiles of the predicted change in risk aversion distribution. Light blue is the
bottom quartile of this distribution, representing the agents who are predicted to experience a decrease
(or smaller increase) in risk aversion.
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Figure 3.5. Correlations of changes in risky behaviors with predicted temperature
increase in risk aversion, Mexico

Note: bars represent quartiles of the predicted change in risk aversion distribution. Light blue is the
bottom quartile of this distribution, representing the agents who are predicted to experience a decrease
(or smaller increase) in risk aversion.
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Figure 3.6. Correlations of changes in risky behaviors with predicted precipitation
increase in risk aversion, Mexico

Note: bars represent quartiles of the predicted change in risk aversion distribution. Light blue is the
bottom quartile of this distribution, representing the agents who are predicted to experience a decrease
(or smaller increase) in risk aversion.
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3.4.4 Robustness

We test the robustness of our main results to varying methodological choices in our

analysis in Appendix C.1.

First, in Table C.1 we present the results of running our main analysis with alternate

sample compositions. In particular, we limit the analysis to individuals born after 1976

in Indonesia and 1950 in Mexico (for whom we have full lifetime climate histories). The

results are qualitatively very similar for each of these samples, though the linear mean term

in the Mexico precipitation regression becomes marginally significant when the sample is

restricted to those born after 1950.

In Table C.2 and Table C.3, we present the results of our main analysis for alternate

specifications of measured risk aversion. For both Indonesia and Mexico, we repeat the

analysis with (1) a binarized measure of risk aversion (instead of using the 5 buckets of

measured risk aversion, we set buckets 1 and 2 to be 0, and buckets 3, 4 and 5 to be 1);

and (2) using an ordered probit specification. The latter specification accounts explicitly

for the ordinal nature of our risk aversion measure, though its results should be interpreted

with care as the ordered probit with two-way fixed effects estimator is known to be biased.

For both specifications results are qualitatively quite similar to the baseline.

In Table C.4 we present the results of our main analysis using data on climate

conditions in subjects’ province or state of residence at the time of the first survey, rather

than their province or state of birth. These data more closely match the intuitive notion of

climate change experiences, but, as discussed above, suffer from a potential identification

problem due to endogenous migration. Results are again qualitatively similar to the main

analysis.

In Table C.5 we present the results for the station-based specification for Indonesia

temperature variables. The construction of the Indonesian ground station data is discussed

in Subsection 3.3.2. Because of concerns of bias due to endogenous station placement,
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we use this robustness check to benchmark the reliability of the gridded data we use

in the baseline. In Table C.6, we restrict the weather series to start at 1976 (assigning

individuals born within a province prior to 1976 the same climate variables). Since the

data generating process for the gridded data is based on station data plus interpolation

from climate models, we take the similar qualitative results across these specifications to

be suggestive that our analysis is not primarily driven by bias or noise from the gridded

baseline specification.

In Table C.7 we present the results of our main analysis with standard errors

clustered at the province/state of birth level, using the wild bootstrap method of Cameron,

Gelbach and Miller (2008). Estimates of our coefficients are mostly not significant at

conventional levels under this scheme, though the coefficient of the mean coefficient in

Mexico and the volatility coefficient in Indonesia are significant in some specifications.

In Table C.8 we conduct our main analysis using a repeated cross-section specifica-

tion that drops the individual fixed effects from the regression. We perform this analysis

restricting to our primary sample. The magnitude of the estimated coefficients drops

considerably in both settings under this specification. In Indonesia the mean temperature

coefficients remain the same sign and highly significant. In Mexico, the signs on estimated

coefficients are conserved for those that were originally significant.

In Table C.9 and Table C.10, we report the results of the main specification, but

instead we use changes in the baseline structural CRRA parameters that we computed

in Subsection 3.5.1 as the outcome variable. The sign and significance when using our

structurally computed risk parameters our similar to our main analysis. Note that the

mapping from risk buckets to CRRA risk parameters is nonlinear and over a different

range.
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3.5 Adaptation and Counterfactual Exercise

In this section, we establish two main contributions. First, following Eden (2020),

we use the concept of an equally-distributed equivalent (EDE) to measure societal-level

preferences over ex-post outcomes (here, consumption) when individuals have heterogeneous

risk preferences. We apply this to our two-period setting, where we observe individual

preferences over a risky lottery change over time, to estimate how welfare changes along

this dimension relative to fixing preferences over these gambles. We call this risk preference

adaptation.11

Then, we decompose this risk preference adaptation into the portion that is ex-

plained by changes in the climate distribution. We use our baseline linear model to predict

counterfactual risk distributions with individual risk preferences that adapt to changes

in background risk with and without climate effects. In Indonesia, we find that overall

risk adaptation is welfare improving. Compared to a baseline distribution with fixed

preferences, we show that about one sixth of the six percentage point increase in welfare is

attributable to this climate risk preference adaptation channel. In the Mexican setting, we

find that overall risk adaptation is welfare decreasing, but that the climate risk preference

adaptation offsets about one sixteenth of the overall eight percentage point decrease in

welfare.

3.5.1 General risk preference adaptation

In Subsection 3.4.1, we showed that individual risk preferences respond to changes

in individual-experienced climate. Here, we present the results of a structural exercise to

11While we use the adaptation terminology, we acknowledge an important difference from its regular
use within economics. When risk preferences are fixed, we often refer to adaptation as the re-optimization
effect, which in this neoclassical setting should only lead to increases in welfare. In this scenario, we
relax the static risk preference assumption (conditional on the background risk). A priori, the theoretical
motivation gives us no reason to think that observable changes in risk preferences should be “adaptive”
(increasing welfare) or “maladaptive” (decreasing welfare). Under this scenario, even with re-optimization,
the net effect on welfare is ambiguous.
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determine how this observed change in individual risk preferences is associated with social

welfare.

The measure of welfare we use is the EDE of the observed consumption distribution

in 2014 Indonesia and 2012 Mexico, respectively. Following Eden (2020), this gives us a

measure that can be interpreted similarly to an individual certainty equivalent for a given

distribution of consumption outcomes. Like a certainty equivalent, higher risk aversion

measures are associated with a lower EDE. Unlike an individual certainty equivalent,

the EDE allows us to calculate a single measure of social welfare when individuals have

heterogeneous risk preferences, and can be interpreted as a measure of how much society

collectively would be willing to pay to avoid uncertainty in the distribution of consumption.

We then calculate the EDE for different distributions of risk preferences: the preferences

in the first wave of the IFLS and MxFLS; the preferences in the second wave; and finally

a counterfactual distribution in the second wave, for which we construct a distribution

where we net-off predicted changes attributed to the climate.

To do this, We assume that individuals have isoelastic utility, as defined in Equa-

tion 3.10, and allow the CRRA parameter θj to be individual-specific.

uj(s) =


s1−θj−1
1−θj , θj 6= 1

log(s), θj = 1
(3.10)

In order to create a mapping from the risk bins in the IFLS and the MxFLS to individual

structural parameters, we consider a variety of specifications with different structural

assumptions. First, we consider how individuals bracket the trade-off between each risky

gamble and the sure payoff. In Equation 3.10, let s = x+ p, where p is the payoff of the

lottery. For these lotteries, it is unclear whether subjects are weighing-off only the specific

prize of the lottery (narrow bracketing, x = 0), or if they integrate that with consumption

(broad bracketing, x =consumption). Second, we calculate the upper- and lower-bounds

on each θj assuming that individuals are maximizing their expected utility. We assign the
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average of these bounds to each θj. For individuals that select into the most and least

risk averse bins, we cannot observe a finite upper-bound or lower-bound respectively.12

To bound these, we make either a tight or broad assumption on these bounds.13 Finally,

for the IFLS, we consider different choices of θj construction for individuals that exhibit

gamble aversion. We either exclude them, treat them identically to the most risk averse

(but non-gamble averse), or assume they are more risk averse than this previous group.14

We consider both per capita and household real consumption as the relevant

distribution of outcomes for calculating the EDE. We report the EDE ratio as the ratio of

the EDE to the mean level of consumption, which can be interpreted as the fraction of

total consumption that society would be willing to accept for eliminating uncertainty in

the consumption distribution. The numerical procedure is described in Appendix C.8.

3.5.2 Climate risk preference adaptation

We use our constructed measure of risk preference adaptation and combine this

with our empirical model to decompose the portion of this adaptation that is attributable

to individual response to changes in the experienced climate. To do this, we estimate the

baseline linear model in Equation 3.9 using individual-specific changes in the structural

CRRA risk parameter θ as the outcome variable. Results of this specification are economi-

cally and statistically consistent with our main results and are reported in Table C.9 and

Table C.10.

Using the distribution of initial θ’s, we consider two counterfactual distributions in

the later survey wave. First, we use predicted individual-specific changes in θ to construct

12That is, for the least risk averse bin, we cannot rule out that individuals are infinitely risk loving, so
that θ = −∞, or that individuals in the most risk averse bin are infinitely risk averse, so that θ =∞.

13We calculate the mean interval between the upper- and lower-bounds for individuals that select into
the interior bins (2 and 3 in the IFLS, and 2, 3, and 4 in the MxFLS). Under the tight assumption, we
create a lower (upper) bound for the least (most) risk averse of one interval from the known upper (lower)
bound. Under the broad assumption, we extend this to two full intervals.

14Using the same intervals used to calculate the bounds for the least and most risk averse bins, we
add one extra interval length to the upper bound relative to the most risk averse, but non-gamble averse
individuals.
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a distribution that reflects full risk preference adaptation. Second, we use the predicted

changes net of climate effects. This second counterfactual distribution allows for changes in

our observed measure of risk that are not attributable to changes in individual-experienced

climate.

With the initial distribution of θ’s and the two counterfactual distributions, we

calculate three measures of the EDE ratio over the observed distribution of consumption in

the later survey wave. In the main Indonesia specification, the fixed preference EDE ratio

is 0.367. The EDE ratio under full adaptation is 0.428, or an overall increase in welfare

over the consumption distribution. The EDE ratio under adaptation net of climate effects

is 0.418. That is, when we allow individuals to adapt to changes in experienced climate,

we find an overall increase in our measure of welfare. The magnitude and interpretation of

this exercise are similar across a majority of our specifications. The results of alternative

specifications are reported in Figure 3.7 and Figure 3.8.

In the main Mexico specification, the fixed preference EDE ratio is 0.379. The EDE

ratio under full adaptation is 0.297, which we interpret as an overall decrease in welfare

over the consumption distribution. The EDE ratio under adaptation net of climate effects

is 0.291. Again, we interpret this as evidence of increases in overall welfare through the

climate adaptation channel. While the calculation of the EDE ratio under full adaptation

varies across alternative specifications, our decomposition of the climate adaptation channel

is consistent across specifications. The results of the alternative specifications for this

exercise are reported in Figure 3.9 and Figure 3.10.
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Figure 3.7. Climate and risk adaptation, Indonesia

Note: EDE ratio is defined as the counterfactual EDE divided by the mean level of consumption. Static
preferences refer to the distribution of preferences implied by the 2007 IFLS4.
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Figure 3.8. Climate and non-climate adaptation, Indonesia

Note: EDE ratio is defined as the counterfactual EDE divided by the mean level of consumption. Static
preferences refer to the distribution of preferences implied by the 2007 IFLS4.
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Figure 3.9. Climate and risk adaptation, Mexico

Note: EDE ratio is defined as the counterfactual EDE divided by the mean level of consumption. Static
preferences refer to the distribution of preferences implied by the 2005 MxFLS-3-2.
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Figure 3.10. Climate and non-climate adaptation, Mexico

Note: EDE ratio is defined as the counterfactual EDE divided by the mean level of consumption. Static
preferences refer to the distribution of preferences implied by the 2005 MxFLS-2.
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3.6 Conclusion

Our analysis provides significant evidence that lifetime experiences of climate change

shape risk-taking for individuals in Indonesia and Mexico. Using micro data containing

elicited risk aversion for the same subjects years apart, linked to subnational climate

statistics capturing subjects’ climate experiences, we find strong support for the hypotheses

of our model about the adaptation of risk-taking to changes in the mean and variance

of background risk. These findings are robust to the inclusion of a rich set of controls

for changes in economic circumstances and other categories of experiences. Changes in

measured risk aversion correlate with substantial changes risk-taking in the domains of

migration, health, and investment behavior.
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Chapter 1 Appendix

A.1 Alternative Specifications

Table A.1. Central and standalone unit specification

(1) (2) (3) (4)
All units All units Electricity Electricity winter

b/se b/se b/se b/se
Anomaly × 2009 0.0001* 0.0404** 0.0152

(0.00006) (0.02017) (0.01256)
Q1 interaction -0.0000

(0.00017)
Q2 interaction 0.0000

(0.00006)
Q3 interaction 0.0001*

(0.00004)
Q4 interaction 0.0001

(0.00007)
Controls X X X X
Utility FE X X X X
City FE X X X X
N 38581 38581 35734 33503

Note: standard errors clustered at the ZIP-code level. In column 3, electricity

corresponds to household electricity demand for the billing cycle covering mostly

July in kWh. In column 4, this corresponds to electric billing cycle covering most of

February. “Most coverage” is necessary because of the staggered billing cycles across

households. *p< 0.1, **p< 0.05, ***p< 0.01.
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Table A.2. Clustering at the city level

(1) (2) (3) (4)
Central air Central air Electricity Electricity winter

b/se b/se b/se b/se
Anomaly × 2009 0.0001*** 0.0602** 0.0214

(0.00007) (0.03059) (0.01999)
Q1 interaction -0.0000

(0.00036)
Q2 interaction 0.0001

(0.00001)
Q3 interaction 0.0002**

(0.00009)
Q4 interaction -0.0000

(0.00019)
Controls X X X X
UtilityFE X X X X
CityFE X X X X
N 38581 38581 35734 33503

Note: standard errors clustered at the municipal level. In column 3, electricity corre-

sponds to household electricity demand for the billing cycle covering mostly July in kWh.

In column 4, this corresponds to electric billing cycle covering most of February. “Most

coverage” is necessary because of the staggered billing cycles across households. *p< 0.1,

**p< 0.05, ***p< 0.01.

108



Table A.3. Clustering at the county level

(1) (2) (3) (4)
Central air Central air Electricity Electricity winter

b/se b/se b/se b/se
Anomaly × 2009 0.0001** 0.0602* 0.0214

(0.00002) (0.0356) (0.02867)
Q1 interaction -0.0000

(0.00022)
Q2 interaction 0.0001

(0.00011)
Q3 interaction 0.0002*

(0.0001)
Q4 interaction -0.0000

(0.00021)
Controls X X X X
UtilityFE X X X X
CityFE X X X X
N 38581 38581 35734 33503

Note: standard errors clustered at the county level. In column 3, electricity corresponds

to household electricity demand for the billing cycle covering mostly July in kWh. In

column 4, this corresponds to electric billing cycle covering most of February. “Most

coverage” is necessary because of the staggered billing cycles across households. *p< 0.1,

**p< 0.05, ***p< 0.01.
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Table A.4. Homeowner restricted specification

(1) (2) (3) (4)
Central air Central air Electricity Electricity winter

b/se b/se b/se b/se
Anomaly × 2009 0.0001* 0.0612*** 0.0214*

(0.00006) (0.00952) (0.01281)
Q1 interaction -0.0001

(0.00026)
Q2 interaction 0.0002

(0.00014)
Q3 interaction 0.0002*

(0.00011)
Q4 interaction 0.0001

(0.00007)
Controls X X X X
Utility FE X X X X
City FE X X X X
N 30118 30118 28444 26826

Note: standard errors clustered at the ZIP-code level. In column 3, electricity corresponds

to household electricity demand for the billing cycle covering mostly July in kWh. In

column 4, this corresponds to electric billing cycle covering most of February. “Most

coverage” is necessary because of the staggered billing cycles across households. *p< 0.1,

**p< 0.05, ***p< 0.01.

Table A.5. Varying Fixed Effects

(1) (2) (3)
Central air Central air Central air

b/se b/se b/se
Anomaly × 2009 5.2e-5 0.0001*** 6.5e-5*

(0.0003) (3.4e-5)
Controls X X X
UtilityFE X X X
CityFE X
CountyFE X
N 38581 38581 38581

Note: standard errors clustered at the ZIP-code level. *p< 0.1,

**p< 0.05, ***p< 0.01.
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A.2 Supplementary Figures

Figure A.1. Age by partisan climate change attitudes

Note: retrieved from:
https://news.gallup.com/poll/182159/college-educated-republicans-skeptical-global-warming.aspx on
August 23, 2019.
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Figure A.2. Secondary market for portable air conditioners

Note: an example of the secondary market for portable air conditioners on an online resale website in San
Diego. This displays a screenshot of a popular American classifieds website accessed on August 13, 2019.
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Figure A.3. 2006 CDD anomaly plot

Note: this shows the the CDD anomaly for each ZIP code in 2006. Reported ZIP codes are from
SDG&E, PG&E, SCE, and LADWP.
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Chapter 2 Appendix

B.1 Detailed Results from Main Specifications
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Table B.1. Baseline specification

Dep. Var: Claims/policy (1) (2)

Land×rainfall

Impermeable development

0–1 inch -.00009 -.00008
(.00009) (.00009)

1–2 inch .00121* .00121*
(.0007) (.0007)

2–3 inch .00440*** .00442***
(.00094) (.00089)

3+ inch .01273*** .01262***
(.00302) (.00415)

Wetlands

0–1 inch -.00042 -.00073
(.00130) (.00215)

1–2 inch -.00209 -.00245
(.00166) (.00179)

2–3 inch -.00272*** -.00272***
(.00071) (.00069)

3+ inch -.00400 -.00401
(.00524) (.00526)

Water

0–1 inch -.00017 -.00016
(.00013) (.00014)

1–2 inch .00079 .00079
(.00097) (.00095)

2–3 inch -.00258* -.00288**
(.00145) (.00145)

3+ inch -.00933 -.00846
(.00595) (.00694)

Observations 313608 313608

Rain FE X X
Year FE X X
Land characteristics X

Note: standard errors clustered at the county-by-year level.
* p < 0.1, ** p< 0.05, *** p< 0.01. 0 inches of rainfall is the
omitted rainfall bin. Land×rainfall refers to each category
of land cover (impermeable development, wetlands, water)
interacted with each rainfall bin.
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Table B.2. Asymmetric effects of land change

Dep. Var: Claims/policy (1) (2)

Land×rainfall

Impermeable development + changes - changes + changes - changes

0–1 inch .00012 -.03727*** .00012 -.03184**
(.00034) (.01469) (.00040) (.01500)

1–2 inch -.00171 .15754 -.00182 .14879
(.00134) (.10177) (.00152) (.10674)

2–3 inch .00497** -.19949 .00497** -.17853
(.00214) (.13879) (.00213) (.13802)

3+ inch .00354 -.27987 .00346 -.28579
(.01054 ) (.61967) (.01286) (.59893)

Wetlands

0–1 inch .00154 .00044 .00153 .00044
(.00297) (.00163) (.00296) (.00163)

1–2 inch .01756 .00356 .01748 .00360
(.02481) (.01135) (.02579) (.01151)

2–3 inch -.09221* .01047 -0.09213* .01185
(.05234) (.02890) (.05158) (.02900)

3+ inch -.36543*** .07414* -.35988*** .07513*
(.09779) (.04017) (.09794) (.03942)

Water

0–1 inch .00236 -.06130 .00236 -.06131
(.00230) (.06347) (.00230) (.06348)

1–2 inch .01367 .16527 .01400 .17859
(.02101) (.15113) (.02099) (.15254)

2–3 inch -.13358 .99401*** -.13358 .98048***
(.04446) (.24078) (.04582) (.24975)

3+ inch .02262 2.44088 .02262 2.18233
(.09327) (2.3322) (.08959) (2.4598)

Observations 313608 313608

Rain FE X X
Year FE X X
Land characteristics X

Note: standard errors clustered at the county-by-year level. * p < 0.1, ** p< 0.05, ***
p< 0.01. 0 inches of rainfall is the omitted rainfall bin. Positive changes are cumulative
positive changes in a census tract from 2010 forward, and negative changes are cumulative
negative changes from 2010 forward. Land×rainfall refers to each category of land cover
(impermeable development, wetlands, water) interacted with each rainfall bin.
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Table B.3. Spillover results

Dep. Var: Claims/policy (1) (2)

Land×rainfall

Impermeable development Uphill Downhill Uphill Downhill

0–1 inch .00011 .00016 .00012 .00016
(.00012) (.00014) (.00013) (.00014)

1–2 inch .00043 -.00091 .00042 -.00092
(.00042) (.00068) (.00042) (.00069)

2–3 inch .00661* -.00079 .00599* -.00081
(.00361) (.00128) (.00345) (.00139)

3+ inch .00651*** .00158 .00614** .00159
(.002293) (.00288) (.00314) (.00260)

Wetlands

0–1 inch .00006 .00001 .00006 .00001
(.00032) (.00023) (.00031) (.00023)

1–2 inch -.00113 -.00236** -.00121 -.00237**
(.00193) (.00107) (.00192) (.00111)

2–3 inch -.00922** -.00031 -.00913** -.00029
(.00363) (.00302) (.00374) (.00319)

3+ inch .00018 .00301 .00019 .00301
(.00822) (.00750) (.00813) (.00691)

Water

0–1 inch .00029 -.00044 .00030 .00001
(.00081) (.00034) (.00083) (.00031)

1–2 inch -.00172 .00012 -.00169 .00009
(.00349) (.00094) (.00350) (.00089)

2–3 inch -.02032 -.00415 -.02357 -.00390
(.01467) (.00316) (.00398) (.00318)

3+ inch -.02971* -.00318 -.03010* -.00320
(.01591) (.00457) (.01698) (.00419)

Observations 130884 130884

Rain FE X X
Year FE X X
Land characteristics X

Note: standard errors clustered at the county-by-year level. * p < 0.1, ** p< 0.05,
*** p< 0.01. 0 inches of rainfall is the omitted rainfall bin. Uphill refers to neighboring
census tracts within a 2.5 km radius that have a higher mean elevation than the tract
of interest. Downhill refers to neighboring census tracts in the same radius that have
lower mean elevation than the tract of interest. Land×rainfall refers to each category
of land cover (impermeable development, wetlands, water) interacted with each rainfall
bin.
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B.2 Alternative Specifications

Table B.4. Main results, spell specification

Dependent Variable: Claims/policy (1)

Land×rainfall

Impermeable development

1 day .00003
(.00005)

2 days+ .00215**
(.00111)

Wetlands

1 day -.00071
(.00068)

2 days+ -.00314**
(.00143)

Water

1 day -.00054
(.00043)

2 days+ -.00215*
(.00132)

Observations 313608

Rain FE X
Year FE X
Land characteristics X

Note: standard errors clustered at the county-by-year
level. * p < 0.1, ** p< 0.05, *** p< 0.01. 0 inches
of rainfall is the omitted rainfall bin. Land×rainfall
refers to each category of land cover (impermeable
development, wetlands, water) interacted with each
rainfall spell bin.
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Table B.5. Main results, value of claims

Dependent Variable: Value of claims/1000 of 2019 USD (1)

Land×rainfall

Impermeable development

0–1 inch .10
(.08)

1–2 inch .11**
(.05)

2–3 inch .17**
(.08)

3+ inch .19***
(.05)

Wetlands

0–1 inch -.01
(.08)

1–2 inch -.11
(.07)

2–3 inch -.27**
(.10)

3+ inch -.19
(.13)

Water

0–1 inch -.03
(.06)

1–2 inch .05
(.06)

2–3 inch -.21**
(.11)

3+ inch -.08
(.08)

Observations 313608

Rain FE X
Year FE X
Land characteristics X
Policies X

Note: standard errors clustered at the county-by-year level. * p < 0.1,
** p< 0.05, *** p< 0.01. 0 inches of rainfall is the omitted rainfall bin.
Land×rainfall refers to each category of land cover (impermeable develop-
ment, wetlands, water) interacted with each rainfall bin. Claims are reported
at the monthly level.
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Table B.6. Main results, non-coastal

Dependent Variable: Claims/policy (1)

Land×rainfall

Impermeable development

0–1 inch .00001
(.00003)

1–2 inch .00143**
(.00070)

2–3 inch .00415**
(.00202)

3+ inch .01106***
(.00510)

Wetlands

0–1 inch .00014
(.00022)

1–2 inch -.00028
(.00019)

2–3 inch -.00215***
(.00071)

3+ inch -.00414
(.00498)

Water

0–1 inch .00001
(.00015)

1–2 inch .00062
(.00088)

2–3 inch -.00310**
(.00139)

3+ inch -.00837
(.00713)

Observations 241860

Rain FE X
Year FE X
Land characteristics X
Policies X

Note: standard errors clustered at the county-by-year
level. * p < 0.1, ** p< 0.05, *** p< 0.01. 0 inches of
rainfall is the omitted rainfall bin. Land×rainfall refers
to each category of land cover (impermeable development,
wetlands, water) interacted with each rainfall bin.
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Table B.7. Spillovers with 5 km radius

Dependent Variable: Claims/policy (1)

Land×rainfall

Impermeable development Uphill Downhill

0–1 inch .00009 .00013
(.00013) (.00018)

1–2 inch .00031 -.00010
(.00039) (.00072)

2–3 inch .00515* -.00057
(.00311) (.00134)

3+ inch .00573** .00231
(.00291) (.00234)

Wetlands

0–1 inch .00006 .00002
(.00036) (.00031)

1–2 inch -.00099 -.00198*
(.00134) (.00118)

2–3 inch -.00777* -.00333
(.00469) (.00484)

3+ inch .00019 .00017
(.00921) (.00580)

Water

0–1 inch .00018 -.00032
(.00089) (.00044)

1–2 inch -.00098 .00010
(.00345) (.00089)

2–3 inch -.01978 -.001231
(.01849) (.00312)

3+ inch -.03010* -.00266
(.01603) (.00548)

Observations 231060

Rain FE X
Year FE X
Land characteristics X
Policies X

Note: standard errors clustered at the county-by-year level. * p
< 0.1, ** p< 0.05, *** p< 0.01. 0 inches of rainfall is the omitted
rainfall bin. Land×rainfall refers to each category of land cover
(impermeable development, wetlands, water) interacted with each
rainfall bin.
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Table B.8. Spillovers with 15 km radius

Dependent Variable: Claims/policy (1)

Land×rainfall

Impermeable development Uphill Downhill

0–1 inch .00006 .00003
(.00045) (.00034)

1–2 inch .00021 -.00005
(.00389) (.00693)

2–3 inch .00384 .00012
(.00413) (.00185)

3+ inch .00414* .00238
(.00222) (.00308)

Wetlands

0–1 inch .00000 .00001
(.001235) (.00683)

1–2 inch -.00023 -.00099
(.00264) (.00193)

2–3 inch -.00458 -.00224
(.00316) (.00475)

3+ inch .00012 .00018
(.01143) (.00876)

Water

0–1 inch .00019 -.00012
(.00092) (.00076)

1–2 inch -.00042 -.00009
(.00462) (.00098)

2–3 inch -.01482 -.00095
(.02154) (.00852)

3+ inch -.02875* -.00194
(.01578) (.01296)

Observations 282060

Rain FE X
Year FE X
Land characteristics X
Policies X

Note: standard errors clustered at the county-by-year level. * p
< 0.1, ** p< 0.05, *** p< 0.01. 0 inches of rainfall is the omitted
rainfall bin. Land×rainfall refers to each category of land cover
(impermeable development, wetlands, water) interacted with each
rainfall bin.
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B.3 Supplementary Figures
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Figure B.1. Trends in policies in force by land change

Note: evolution of policies by splitting Census tracts into positive, negative, and no change. The
downward trend is consistent with drop-off in salience of flood risk as homeowners let policies lapse when
not exposed to a storm event (e.g. hurricane).
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Figure B.2. Houston land use 2011

Note: this shows the grid of land use pixels for Houston county in 2011. Land use pixels are reported by
the National Land Cover Dataset. Black lines show census tract boundaries.
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Figure B.3. County level payouts for Texas, 2010–2016

Note: this shows the natural log of county level flood insurance payouts in the state of Texas from
2010–2016.
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Figure B.4. County level claims for Texas, 2010–2016

Note: this shows the natural log of county level flood insurance claims in the state of Texas from
2010–2016.
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Uphill
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Downhill

Figure B.5. Construction of tract neighbors

Note: example of neighbor construction. This shows a census tract in Bexar County, Texas. Neighbors
are defined as uphill if they fall within a certain radius of the target census tract and have a mean
elevation than the target tract and defined as downhill if they have a mean elevation lower than the
target tract.

Figure B.6. CRS schedule

Note: this shows the schedule of NFIP discounts based on CRS participation.
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B.4 Note on NFIP Data Retrieval

Information for policies in force also exist at the ZIP-code level in an unredacted

form, and were retrieved through FEMA FOIA Case Number 2020-FEFO-00734. These

data have not been used because of a reporting issue with the dataset.
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Chapter 3 Appendix

C.1 Alternative Baseline Specifications

Table C.1. Restricting the sample by birthyear

Dep. Var: ∆ Risk Aversion (1) (2) (3) (4) (5) (6)

Indonesia Mexico

∆ Mean Temp -3.74† -3.90†† -1.22†† -1.25††

(.63) (.66) (.23) (.23)

∆ Std. Dev. Temp 7.02∗ 8.59∗ -0.31 -0.56
(3.29) (3.24) (.52) (.54)

∆ Mean Precip -0.34∗ -0.28∗ -0.57 -3.59∗∗

(.13) (.14) (.99) (1.18)

∆ Std. Dev. Precip -0.47 -0.27 1.66∗∗ 2.89∗∗

(.13) (.32) (.57) (.71)

Observations 6987 6987 6987 6723 6723 6723

Note: measured risk aversion reported from 1–5, 5 being highest measured risk aversion.
Dependent variables: within-subject changes in measured risk aversion in IFLS (2007–2014)
and MxFLS (2006–2012). Temperature (◦C) and precipitation (cm) moments calculated from
monthly measurements in subjects’ state of birth, from birth to year of survey. Independent
variables: changes in lifetime moments between waves of respective survey. Province
(Indonesia) or regional (Mexico) inflation included in all regressions. Standard errors
clustered at the cohort by province/state of birth level in parentheses. * p < .05, ** p < .005,
*** p < .0005, † p < 5× 10−7, †† p < 5× 10−13.
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Table C.2. Binarized measure of risk aversion

Dep. Var: ∆ Risk Aversion (1) (2) (3) (4) (5) (6)

Indonesia Mexico

∆ Mean Temp -1.09†† 1.14† -0.29∗∗∗ -0.30∗∗∗

(.15) (.79) (.07) (.07)

∆ Std. Dev. Temp -0.64 0.79 -0.02 -0.08
(.70) (.69) (.15) (.15)

∆ Mean Precip -0.04 -0.02 -0.50 -1.34∗∗∗

(.03) (.03) (.28) (.35)

∆ Std. Dev. Precip -0.14 -0.12 0.28 0.76∗∗∗

(.07) (.08) (.17) (.21)

Observations 16267 16267 16267 8126 8126 8126

Note: risk aversion: 1 or 0, 1 being highest measured risk aversion. Dependent variables:
within-subject changes in measured risk aversion in IFLS (2007–2014) and MxFLS (2006–2012).
Temperature (◦C) and precipitation (cm) moments calculated from monthly measurements
in subjects’ state of birth, from birth to year of survey. Independent variables: changes
in lifetime moments between waves of respective survey. Province (Indonesia) or regional
(Mexico) inflation included in all regressions. Standard errors clustered at the cohort by
province/state of birth level in parentheses. * p < .05, ** p < .005, *** p < .0005, † p
< 5× 10−7, †† p < 5× 10−13.
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Table C.3. Ordered probit with two-way fixed effects

Dep. Var: ∆ Risk Aversion (1) (2) (3) (4) (5) (6)

Indonesia Mexico

∆ Mean Temp -1.81†† -2.06†† -0.54∗∗∗ -0.55∗∗∗

(.24) (.28) (.12) (.12)

∆ Std. Dev. Temp 0.94 3.49† -0.19 -0.31
(1.15) (1.19) (.24) (.25)

∆ Mean Precip -0.13∗∗ -0.11∗ -0.52 -1.99∗∗∗

(.04) (.05) (.46) (.57)

∆ Std. Dev. Precip -0.22 -0.13 0.62∗ 1.32∗∗∗

(.13) (.14) (.27) (.34)

Observations 16267 16267 16267 8126 8126 8126

Note: measured risk aversion reported from 1–5, 5 being highest measured risk aversion.
Dependent variables: within-subject changes in measured risk aversion in IFLS (2007–2014)
and MxFLS (2006–2012). Temperature (◦C) and precipitation (cm) moments calculated from
monthly measurements in subjects’ state of birth, from birth to year of survey. Independent
variables: changes in lifetime moments between waves of respective survey. Province (Indonesia)
or regional (Mexico) inflation included in all regressions. Standard errors clustered at the
cohort by province/state of birth level in parentheses. * p < .05, ** p < .005, *** p < .0005, †

p < 5× 10−7, †† p < 5× 10−13.
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Table C.4. Results for province/state of residence

Dep. Var: ∆ Risk Aversion (1) (2) (3) (4) (5) (6)

Indonesia Mexico

∆ Mean Temp -4.85∗ -5.30∗ -0.12 -0.12
(1.69) (2.15) (.07) (.08)

∆ Std. Dev. Temp -2.55 5.21 0.09 -0.02
(7.99) (7.99) (.17) (.19)

∆ Mean Precip -0.20 -0.15 -0.23 -3.45∗∗∗

(.20) (.23) (.21) (.77)

∆ Std. Dev. Precip -0.40 -0.29 0.16 2.59∗∗∗

(.99) (1.06) (.18) (.60)

Observations 14223 14223 14223 8268 8268 8268

Note: measured risk aversion reported from 1–5, 5 being highest measured risk aversion.
Dependent variables: within-subject changes in measured risk aversion in IFLS (2007–
2014) and MxFLS (2006–2012). Temperature (◦C) and precipitation (cm) moments
calculated from monthly measurements in subjects’ state of birth, from birth to year of
survey. Independent variables: changes in lifetime moments between waves of respective
survey. Province (Indonesia) or regional (Mexico) inflation included in all regressions.
Standard errors clustered at the cohort by province/state of birth level in parentheses. *
p < .05, ** p < .005, *** p < .0005, † p < 5× 10−7, †† p < 5× 10−13.
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Table C.5. Alternative weather station specification

Dep. Var: ∆ Risk Aversion (1) (2) (3)

Indonesia

∆ Mean Temp -1.22∗∗ -1.79∗∗∗

(.40) (.40)

∆ Std. Dev. Temp 7.48† 8.30†

(1.16) (1.28)

Observations 16267 16267 16267

Note: measured risk aversion reported from 1–5, 5 being high-
est measured risk aversion. Dependent variables: within-subject
changes in measured risk aversion in IFLS (2007–2014). Tem-
perature (◦C) moments calculated from monthly measurements
in subjects’ state of birth, from birth to year of survey. Inde-
pendent variables: changes in lifetime moments between waves
of respective survey. Province (Indonesia) inflation included
in all regressions. Standard errors clustered at the cohort by
province of birth level in parentheses. * p < .05, ** p < .005,
*** p < .0005, † p < 5× 10−7, †† p < 5× 10−13.
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Table C.6. Restricted weather series specification

Dep. Var: ∆ Risk Aversion (1) (2) (3)

Indonesia

∆ Mean Temp -3.58†† -4.22††

(.45) (.53)

∆ Std. Dev. Temp 3.16 8.98∗∗∗

(2.16) (2.27)

∆ Mean Precip -0.26∗ -0.21∗

(.09) (.10)

∆ Std. Dev. Precip -0.42 -0.27
(.23) (.24)

Observations 16267 16267 16267

Note: measured risk aversion reported from 1–5, 5 being
highest measured risk aversion. Dependent variables: within-
subject changes in measured risk aversion in IFLS (2007–2014).
Temperature (◦C) and precipitation (cm) moments calculated
from monthly measurements in subjects’ state of birth, from
birth to year of survey. Independent variables: changes in
lifetime moments between waves of respective survey. Province
(Indonesia) inflation included in all regressions. Standard errors
clustered at the cohort by province of birth level in parentheses.
* p < .05, ** p < .005, *** p < .0005, † p < 5 × 10−7, †† p
< 5× 10−13.
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Table C.7. Province/state-level clustering

Dep. Var: ∆ Risk Aversion (1) (2) (3) (4) (5) (6)

Indonesia Mexico

∆ Mean Temp -2.75∗ -4.23∗ -1.16∗ -1.19∗

(1.42) (1.82) (.43) (.41)

∆ Std. Dev. Temp 1.55 6.82 -0.10 -0.35
(7.23) (6.98) (1.46) (1.57)

∆ Mean Precip -0.25 -0.21 -1.14 -3.99
(.17) (.22) (1.46) (2.20)

∆ Std. Dev. Precip -0.44 -0.27 1.17 2.58
(.99) (1.07) (1.58) (1.96)

Observations 16269 16269 16269 8126 8126 8126

Note: measured risk aversion reported from 1–5, 5 being highest measured risk aversion.
Dependent variables: within-subject changes in measured risk aversion in IFLS (2007–2014)
and MxFLS (2006–2012). Temperature (◦C) and precipitation (cm) moments calculated
from monthly measurements in subjects’ state of birth, from birth to year of survey.
Independent variables: changes in lifetime moments between waves of respective survey.
Province (Indonesia) or regional (Mexico) inflation included in all regressions. Standard
errors clustered at the cohort by province/state of birth level in parentheses. * p < .05, **
p < .005, *** p < .0005, † p < 5× 10−7, †† p < 5× 10−13.
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Table C.8. Repeated cross-section specification

Dep. Var: ∆ Risk Aversion (1) (2) (3) (4) (5) (6)

Indonesia Mexico

∆ Mean Temp -2.59†† -2.41† -0.12∗∗ -0.11∗

(.32) (.30) (.04) (.04)

∆ Std. Dev. Temp 4.45∗∗∗ 3.27∗ 0.19 0.10
(1.27) (1.18) (.13) (.13)

∆ Mean Precip 0.08 0.12∗ -0.01 -0.57∗

(.04) (.05) (.11) (.22)

∆ Std. Dev. Precip -0.06 -0.16 0.07 0.37∗

(.10) (.11) (.06) (.13)

Observations 51876 51876 51876 20851 20851 20851

Note: measured risk aversion reported from 1–5, 5 being highest measured risk aversion.
Dependent variables: within-subject changes in measured risk aversion in IFLS (2007–2014)
and MxFLS (2006–2012). Temperature (◦C) and precipitation (cm) moments calculated from
monthly measurements in subjects’ state of birth, from birth to year of survey. Independent
variables: changes in lifetime moments between waves of respective survey. Province
(Indonesia) or regional (Mexico) inflation included in all regressions. Standard errors
clustered at the cohort by province/state of birth level in parentheses. * p < .05, ** p < .005,
*** p < .0005, † p < 5× 10−7, †† p < 5× 10−13.

135



Table C.9. Structural specification, Indonesia

Dep. Var: ∆ θ (1) (2) (3)

Indonesia

∆ Mean Temp -2.73∗ -2.35∗

(.80) (.82)

∆ Std. Dev. Temp 9.06∗ 6.53∗

(3.26) (3.28)

Observations 16267 16267 16267

Note: risk aversion is the structurally calculated
θ, where θ is the CRRA risk parameter. Dependent
variables: within-subject changes in measured risk
aversion in IFLS (2007–2014). Temperature (◦C)
moments calculated from monthly measurements in
subjects’ state of birth, from birth to year of survey.
Independent variables: changes in lifetime moments
between waves of respective survey. Province (In-
donesia) inflation included in all regressions. This
shows the main specification, where we use narrow
bracketing over per capita consumption with tight
bound assumptions. Gamble averse individuals are
included. Standard errors clustered at the cohort
by province of birth level in parentheses. * p < .05,
** p < .005, *** p < .0005, † p < 5 × 10−7, †† p
< 5× 10−13.
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Table C.10. Structural specification, Mexico

Dep. Var: ∆ θ (1) (2) (3)

Mexico

∆ Mean Precip -1.63 -5.55∗∗

(1.27) (1.51)

∆ Std. Dev. Precip 1.58∗ 3.54∗∗

(.75) (.91)

Observations 8126 8126 8126

Note: risk aversion is the structurally calculated
θ, where θ is the CRRA risk parameter. Dependent
variables: within-subject changes in measured risk
aversion in MXLS (2006–2012). Temperature (◦C)
moments calculated from monthly measurements in
subjects’ state of birth, from birth to year of survey.
Independent variables: changes in lifetime moments
between waves of respective survey. Province (In-
donesia) inflation included in all regressions. This
shows the main specification, where we use narrow
bracketing over per capita consumption with tight
bound assumptions. Standard errors clustered at
the cohort by province of birth level in parentheses.
* p < .05, ** p < .005, *** p < .0005, † p < 5×10−7,
†† p < 5× 10−13.
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C.2 Raw Climate Data
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Figure C.1. Province/state level time series of climate variables

Note: this figure displays the monthly temperature and precipitation time series for all 25 Indonesian
provinces (1993 definitions) and 32 Mexican states in our data. As can be seen these time series exhibit
substantial variation both in the cross section and over time.

C.3 Construction of Risk Aversion Measures
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Figure C.2. Construction of risk aversion measure in IFLS2 and IFLS3

Note: higher numbers for “Risk” indicate a higher rate of measured risk aversion. Values are in
Indonesian Rupiah.
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Figure C.3. Construction of risk aversion measure in MxFLS-2

Note: higher numbers for “Risk” indicate a higher rate of measured risk aversion. Values are in Mexican
Pesos.
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Figure C.4. Construction of risk aversion measure in MxFLS3

Note: higher numbers for “Risk” indicate a higher rate of measured risk aversion. Values are in Mexican
Pesos.
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C.4 Distribution of Structural Risk Parameters

Figure C.5. Structural risk parameters, IFLS4

Note: distribution of the structurally-recovered risk parameters for the welfare exercise. Each row
represents narrow, broad-bracketing over per capita consumption, and broad-bracketing over household
consumption respectively. Each column corresponds to 1 of 4 bounding assumptions.
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Figure C.6. Structural risk parameters, IFLS4

Note: distribution of the structurally-recovered risk parameters for the welfare exercise. Each row
represents narrow, broad-bracketing over per capita consumption, and broad-bracketing over household
consumption respectively. Each column corresponds to 1 of 4 bounding assumptions.
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Figure C.7. Structural risk parameters, MxFLS-2

Note: distribution of the structurally-recovered risk parameters for the welfare exercise. Each row
represents narrow, broad-bracketing over per capita consumption, and broad-bracketing over household
consumption respectively. Each column corresponds to 1 of 2 bounding assumptions.
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Figure C.8. Structural risk parameters, MxFLS-3

Note: distribution of the structurally-recovered risk parameters for the welfare exercise. Each row
represents narrow, broad-bracketing over per capita consumption, and broad-bracketing over household
consumption respectively. Each column corresponds to 1 of 2 bounding assumptions.
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C.5 Geographic Distribution of Survey Samples in

the Data
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Figure C.9. Distribution of the primary sample in Indonesia by province of birth

Note: provinces in blue are ones in which the IFLS has been deployed. Provinces in green are non-IFLS
provinces in which some subjects in our primary sample were born.
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Figure C.10. Distribution of the primary sample in Mexico by province of birth

Note: states in blue are ones in which the MxFLS has been deployed. States in green are non-MxFLS
states in which some subjects in our primary sample were born.
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C.6 Summary Statistics

The summary statistics for both the IFLS and the MxFLS are reported in Ta-

ble C.11.

Table C.11. Summary statistics for the sample mean

Indonesia Mexico
Sample: Primary sample Full sample Primary sample Full sample

Measured Risk aversion 3.55 3.52 2.67 2.41
Woman 0.55 0.53 0.58 0.59
Age 40.35 37.32 42.44 42.02
Married 0.89 0.81 0.67 0.65
Household Size 5.23 5.21 5.62 5.65
Comp. Elementary 0.42 0.35 0.51 0.50
Comp. Junior High 0.19 0.20 0.25 0.25
Comp. High School 0.27 0.32 0.13 0.13
Above High School 0.12 0.14 0.11 0.11
Self-employed 0.42 0.39 0.23 0.22
Currently smoke 0.32 0.32 0.08 0.08
Ever migrated 0.13 0.17 0.15 0.15
Income/month 10.60 8.868 4,922 4,816
Consumption/month 3.02 2.45 3,746 3,636
Savings 8.10 8.76 10,248 9,522
Borrowing 3.47 2.68 13,058 12,620

Observations 32534 55820 16252 25005

C.7 Correlates of Risk Aversion Measures in the

Cross Section
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Table C.12. Correlates of risk preference measures

Indonesia Mexico
Dep. Var: Measured Risk Aversion Measured Risk Aversion
Sample: X-Sec Panel X-Sec Panel

-0.11*** -0.10*** 0.01 0.03
Self-employed

(0.018) (0.021) (0.03) (0.04)
-0.10*** -0.08** 0.02 0.03

Migrated
(0.023) (0.033) (0.034) (0.039)

1.52e-06*** 1.75e-06*** 0.07 0.08*
Income

(3.39e-07) (3.86e-07) (0.05) (0.04)
-0.015*** -0.018*** -0.16 -0.05

Consumption
(0.004) (0.005) (0.24) (0.26)

-3.47e-05 -3.39e-05 0.009 0.01
Total assets

(3.04e-05) (3.82e-05) (0.01) (0.01)
-0.001** -0.001** -0.07 -0.1

Borrowing
(0.0004) (0.0005) (0.21) (0.23)
-0.0003 -0.0002 0.06 0.18

Savings
(0.0002) (0.0003) (0.32) (0.33)
0.09*** 0.07* -0.17*** -0.15***

Smoker
(0.0 30) (0.038) (0.05) (0.06)
-0.06*** -0.04** 0.001 0.001

Cigs/day
(0.02) (0.02) (0.0007) (0.0008)

0.28*** 0.26*** 0.04 0.02
Woman

(0.023) (0.028) (0.03) (0.03)
-0.015*** -0.014*** -0.012** -0.012**

Age
(0.004) (0.005) (0.005) (0.006)

0.002*** 0.002*** 0.0001** 0.0001**
Age2

(4.25e-05) (5.64e-05) (5.55e-05) (6.22e-05)

Observations 35848 23995 11740 9335
R-squared 0.052 0.055 0.18 0.168

Note: coefficients from regressions of dependent variables on all covariates.
Monthly income and consumption. Income, consumption, assets, borrowing,
and savings at household level. Standard errors clustered at the cohort by
province of birth in parenthesis. Observations are at the individual by year level.
Controls: Time FE, Province FE, HH size, marital status education dummies,
and religiosity dummies (religiosity dummies only for Indonesia). Monetary
variables in millions of rupiah and pesos. *** p<0.01, ** p<0.05, * p<0.1.
“X-SEC” refers to subjects appearing in at least one wave; “Panel” refers to
those who appear in both. Note that the sample size for this analysis is smaller
than in the baseline results, due to missing data in variables of interest for some
subjects.
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C.8 Numerically Calculating the Equally-Distributed

Equivalent

For an individual j ∈ J , let sj ∈ S be an individual realization of the outcome

variable of interest. Given an individual CRRA parameter θj , we want to find the certainty

equivalent for individual j over the distribution of S in society. Let individuals be indexed

by i. Then individual j ∈ J has a certainty equivalent given by the following:

CEj =

(
1

N

∑
i∈I

s
1−θj
i

) 1
1−θj

. (11)

Repeat this calculation for each individual in J . Using the resulting distribution of

certainty equivalents, replace the distribution of S with these certainty equivalents. We

iterate on the process until converging to an equally-distributed equivalent. The numerical

procedure is as follows:

1. For the initial distribution of outcomes and specifications, define SN×NS , where N is

the number of individuals and NS is the number of specifications. CE ′ is undefined.

2. Define S ≡ CE ′ if CE ′ has been defined.

3. Define CEN×NS as the certainty-equivalent matrix over S, where individual values

of θj are calculated as defined in Equation 11.

4. Define the new matrix S ′ ≡ CE.

5. Calculate the new certainty equivalent CE ′ over the distribution of outcomes in S ′.

6. While the difference between the max and min cells of CE ′ for a particular specifica-

tion exceeds a given tolerance, iterate over steps 2–5.

7. Each specification converges to a uniform column of certainty equivalents (Eden,

2020). We interpret this as the equally-distributed equivalent for the distribution of
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per capita or household income.

This procedure gives us a single statistic for each specification. The interpretation

of each statistic is an aggregate measure of how much society is willing to trade ex ante

uncertain consumption for guaranteed consumption.

C.9 Details of Additional Controls
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Table C.13. Description of controls included in Table 3.2

Category Variables Included

Married
Demographics Household Size

(Indonesia and Mexico) Household Size Squared

Total household income
Income, Assets, Savings, Consumption Total value of household assets

(Indonesia and Mexico) Net Households Savings (Savings-Borrowing)
Total household consumption (yearly)

Perceived safety level of village
Perceived safety of walking in village alone at night

Violence Civil strife in HH region, last 5 years
(Indonesia) Civil strife severe enough to cause death, major injury,

direct financial loss, or relocation of any member of HH

Perceived safety level of village
Feels safe at home

Violence Fear of assault during the day
(Mexico) Fear of assault at night

No. of times robbed, assaulted, kidnapped
Family/friend robbed, assaulted, kidnapped in last 12 month

Natural Disasters Natural disaster in HH region, last 5 years
(Indonesia) Natural disaster severe enough to cause death, major injury,

direct financial loss, or relocation of any member of HH

Natural Disasters Household/business lost due to natural disaster
(Mexico)

Growth Experiences Province/state-level GDP growth
(Indonesia and Mexico)

C.10 Sample Distribution for Risk Aversion Mea-

sures
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Figure C.11. Histogram of measured risk aversion buckets in IFLS4 and IFLS5

Note: measured risk aversion reported from 1–5, 5 being the highest measured risk aversion.
Distributions for individuals in main regressions: present in both 2007 and 2014 surveys.
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Figure C.12. Histogram of measured risk aversion buckets in MxFLS-2 and MxFLS-3

Note: measured risk aversion reported from 1–6, 6 being highest measured risk aversion. Distributions
for individuals in main regressions: present in both 2005 and 2009 surveys. Individuals in bucket 6 in
Mexico are not included due to inconsistencies in survey design across waves.
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