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ABSTRACT OF THE DISSERTATION

Frameworks for Improving Multi-Index Drought Monitoring Using Remote Sensing
Observations

By

Alireza Farahmand

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Irvine, 2016

Professor Amir AghaKouchak, Chair

Droughts are among the most common and devastating natural disasters. Reducing damages

associated with droughts relies on monitoring and prediction information as well as plans

to cope with droughts. The overarching goal of this dissertation is to improve current ca-

pabilities in drought monitoring using space-based observations, with a focus on integrating

remotely sensed data products that are not commonly being used for drought monitoring.

The first chapter of this dissertation, surveys current and emerging drought monitoring

approaches using remotely-sensed observations from climatological and ecosystem perspec-

tives. Current and future satellite missions offer opportunities to develop composite and

multi-sensor (or multi-index) drought assessment models. While there are immense op-

portunities, there are major challenges including data continuity, unquantified uncertainty,

sensor changes, and community acceptability. One of the major limitations of many of the

currently available satellite observations is their short length of record. A number of rel-

evant satellite missions and sensors (e.g., Atmospheric Infrared Sounder (AIRS), Gravity

Recovery and Climate Experiment) provide only slightly over a decade of data, which may

not be sufficient to study droughts from a climatological perspective. However, they still

provide valuable information about relevant hydrologic and ecological processes linked to

this natural hazard. Therefore, there is a need for models and algorithms that combine mul-
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tiple data sets and/or assimilate satellite observations into model simulations to generate

long-term climate data records. To address this gap, Chapter 2 introduces Standardized

Drought Analysis Toolbox (SDAT), which includes a generalized framework for deriving

nonparametric univariate and multivariate standardized drought indices. Current indicators

suffer from deficiencies including some prior distributional assumption, temporal inconsis-

tency, and statistical incomparability. Different indicators have varying scales and ranges

and their values cannot be compared with each other directly. Most drought indicators rely

on a representative parametric probability distribution function that fits the data. However,

a parametric distribution function may not fit the data, especially in continental/global scale

studies. Particularly, when the sample size is relatively small as in the case of many satellite

precipitation products. SDAT is based on a nonparametric framework that can be applied

to different climatic variables including precipitation, soil moisture and relative humidity,

without having to assume representative parametric distributions. The most attractive fea-

ture of the framework is that it leads to statistically consistent drought indicators based

on different variables. We show that using SDAT with satellite observation leads to more

reliable drought information, compared to the commonly used parametric methods.

We argue that satellite observations not currently used for operational drought monitor-

ing, such as near-surface air relative humidity data from the Atmospheric Infrared Sounder

(AIRS) mission, provide opportunities to improve early drought warning. In the third chap-

ter of this dissertation, we outline a new drought monitoring framework for early drought

onset detection using AIRS relative humidity data. The early warning and onset detection of

drought is of particular importance for effective agriculture and water resource management.

Previous studies show that the Standard Precipitation Index (SPI), a measure of precipi-

tation deficit, detects drought onset earlier than other indicators. Here satellite-based near

surface air relative humidity data can further improve drought onset detection and early

warning. This chapter introduces the Standardized Relative Humidity Index (SRHI) based

on the NASA’s AIRS observations. SRHI relies on SDAT’s nonparametric framework, intro-

xix



duced in Chapter 2. The results indicate that the SRHI typically detects the drought onset

earlier than SPI. While the AIRS mission was not originally designed for drought monitor-

ing, its relative humidity data offers a new and unique avenue for drought monitoring and

early warning. Early warning aspects of SRHI may have merit for integration into current

drought monitoring systems.

One of the research opportunities identified in Chapter 1 is using current (and future) satel-

lite missions to develop composite and multi-indicator drought models. In Chapter 4, we

outline a framework for assessing impacts of droughts on forest health using a multi-sensor

approach. This framework relies on the relationship between climate conditions (e.g., tem-

perature, precipitation, relative humidity, Vapor Pressure Deficit) and forest health based

on greenness of vegetation. Wildfires, tree mortality and forest productivity increase during

drought periods. Using the proposed multi-index approach, Chapter 4 aims to investigate

the effects of recent summer, dry-season and winter droughts on the forest health in western

United States. We use Vapor Pressure Deficit (VPD) as an indicator that combines temper-

ature and relative humidity for forest stress assessment. Normalized Difference Vegetation

Index (NDVI) is commonly used for assessing vegetation health. During summer and growing

season, VPD values are generally high. The results show that the VPD and NDVI provide

consistent information on forest health. In addition to VPD, we use conditional probability

of NDVI in high temperature and low relative humidity percentiles over the summer and

the growing season. We show that combining temperature and relative humidity using a

conditional probability approach offers multi-sensor information on forest condition. During

winter, on the other hand, VPD and temperature is relatively lower. NDVI distributions in

winter were found to be more associated with precipitation as opposed to relative humid-

ity and temperature. We believe the a joint indicator based on temperature and relative

humidity can be considered as a link between climate condition and actual impact on the

ecosystem.
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Chapter 1

Remote Sensing of Drought: Progress,

Challenges and Opportunities

This Chapter has been published in Reviews of Geophysics. Citation: AghaKouchak A.,

Farahmand A., Teixeira J., Wardlow B.D., Melton F.S., Anderson M.C., Hain C.R. (2015),

Remote Sensing of Drought: Progress, Challenges and Opportunities, Reviews of Geophysics

, 49 (2), 452-480, doi: 10.1002/2014RG000456.
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1.1 Introduction

Drought and water scarcity pose significant water and food security concerns, and may lead

to economic risks and financial challenges, especially for developing economies [329, 95]. The

phenomenon of meteorological drought is a consequence of regional variability in the global

water cycle, a process tightly associated with climatic circulation patterns [233, 119, 243, 152,

98]. For this reason, a global perspective of drought conditions is often necessary to study

the cause of specific regional droughts. For example, a recent study links global droughts

during the late 1990s and early 2000s to warm and cold sea surface temperatures in the

western and eastern tropical Pacific, respectively [122]. Conversely, a regional or continental

drought could also lead to global impacts. For example, the 2010 Russian drought and heat

wave led to an increase in global food prices [321], resulting in indirect impacts far beyond

the drought-affected region. These issues highlight the importance of global, rather than

regional, drought monitoring to understanding the biophysical processes involved, as well as

improving drought prediction and early warning [100].

Historically, droughts have been monitored and investigated using ground-based observa-

tions [116, 272, 259], primarily from meteorological [223] and agricultural perspectives [87].

Globally, however, many areas used for agricultural production are not well instrumented to

provide ground-based observations of precipitation, near-surface air temperature, water va-

por, and atmospheric evaporative demand that are consistent over the long-term. In many

other regions the available observations are not sufficient to capture the spatio-temporal

variability of drought-related variables such as precipitation [69]. Furthermore, observations

from different meteorological stations often have different record lengths and variable data

quality [69], which makes consistent global drought analysis using ground-based observations

challenging [13].

Satellite remote sensing of the Earth’s weather began in earnest with the Television and

2



Infrared Observation Satellite (TIROS-1) mission in 1960 [211]. The success of this mission

led to a series of additional weather- and climate-oriented satellite remote sensing missions.

Remote sensing satellites can be broadly categorized into two types: Geostationary (GEO)

and Low Earth Orbit (LEO) satellites [154]. GEOs orbit at around 36,000 km above the

surface of the Earth and their orbits are synchronized with Earth’s rotation, allowing them

to provide information for a fixed field of view over a portion the Earth’s surface. LEOs orbit

at 200-1200 km altitudes [212], and are typically placed in sun-synchronous orbits to obtain

more than one observation per day over a given location. Current GEOs carry multispectral

radiometers that typically collect information in the visible and infrared (VIS/IR) portion of

the electromagnetic spectrum, while LEOs carry a diverse range of sensors, including mul-

tispectral and hyperspectral sensors, laser altimeters, microwave (MW) sensors and others.

Both GEO and LEO satellite observations have been used extensively for drought monitoring

and impact assessment [23, 149, 81, 317, 190].

Remote sensing observations have been used to monitor drought-related variables from a

climatological viewpoint and also to assess and quantify drought impacts from an ecosystem

perspective. In the former, satellite multispectral, thermal infrared or microwave data are

used to retrieve a drought-related variable including precipitation [280], soil moisture [73, 48]

or evapotranspiration [258, 17, 27, 236]. The drought variable is then converted into a

drought indicator by calculating the extent of an anomaly or departure from the longer-term

environmental baseline. Those data are used to quantitatively assess and categorize drought

severity.

Satellite observations have also been used to assess drought ecosystem impacts – including

vegetation health and growth – by assessing the photosynthetic capacity of plants [297].

Precipitation deficits can lead to reduced photosynthetic capacity and changes in absorption

of solar radiation in photosynthetically active wavelengths by plants [34]. Combinations

of satellite visible (VIS) and infrared (IR) images have been widely used to monitor plant
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changes and water stress [35, 114, 297, 320].

In the past decade, the science community has been able to access unprecedented new remote

sensing data sets of precipitation, snow, soil moisture, land-surface temperature, evapora-

tion, total water storage, vegetation and land cover [213, 320]. These satellite observations

have opened new avenues in global drought monitoring from different perspectives (e.g.,

meteorological, agricultural, hydrological, and ecological). The advantages of satellite-based

sensors relative to traditional ground-based observations include global, near real-time ob-

servations, consistent data records, and improved spatial resolution [118, 38, 39, 204]. The

increasing volume of satellite observations and data products has led the science commu-

nity into the era of big data [263], and provided unique opportunities to develop advanced

drought monitoring capabilities based on multiple sources of data. However, the abundance

of data also presents major scientific challenges, including uncertainty assessment, managing

data volumes, merging or fusion of multiple data sources, and ensuring consistency between

different observations and data sets.

This chapter first reviews the progress in remote sensing of drought from climatological and

ecosystem perspectives, including satellite-based drought indicators. Then, major research

gaps and challenges in advancing remote sensing of drought are discussed. Finally, a path

for future research that could lead to a major advance in drought monitoring and impact

assessment using space-based observations is outlined. This chapter focuses only on satellite

remote sensing, and not aircraft and airborne remote sensing platforms, since the latter

typically have limited geographical or temporal coverage.
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1.2 Progress in Remote Sensing of Drought from a Cli-

matological Perspective

Droughts are broadly classified into four groups including meteorological (deficit in precipi-

tation), agricultural (deficit in soil moisture), hydrological (deficit in runoff, groundwater, or

total water storage), and socio-economic (considering water supply, demand and social re-

sponse) droughts [329]. All types of droughts can be associated with sustained precipitation

deficit. However, different elements of the hydrologic cycle respond to droughts differently.

In this section, progress in remote sensing of drought-related variables and development of

satellite-based drought severity indicators are reviewed.

1.2.1 Precipitation

A commonly used precipitation-based drought index is the Standardized Precipitation Index

(SPI) [187], which was recommended by the World Meteorological Organization (WMO) as

a global measure of meteorological drought [333, 115]. Deriving SPI involves describing the

frequency distribution of precipitation using either a parametric distribution function [187]

or a non-parametric approach [111] for different precipitation accumulation periods (e.g., 1-,

3-, or 6-month periods). The SPI is computed by transforming the cumulative probability

of precipitation into the standard normal distribution. A sequence of negative SPI indicates

a dry period, while a sequence of positive values represent a wet spell. In addition to SPI,

precipitation percentiles and the Percent of Normal Precipitation (PNP) [323] are also used

as measures of departure from the climatology and thus, wet/dry conditions.

Several techniques have been developed for routine retrieval of rainfall using satellite data

collected in multiple wavebands. Satellite IR and VIS images of cloud-top temperature can

be converted into a precipitation rate using empirical statistical relationships [33, 143, 299].
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Passive microwave (MW) sensors offer a more physically-based approach to instantaneous

precipitation estimation [166, 165]. While MW sensors provide more accurate precipitation

information, they are limited by their infrequent overpasses (≈ 2 observations per day for any

location). GEO IR/VIS data, on the other hand, provide more frequent precipitation infor-

mation (≈ 15-30 min) although with higher uncertainty [280]. Studies suggest that combining

both satellite MW and IR information leads to better precipitation estimates, especially of

diurnal patterns, by combining the strengths of both types of sensors [144]. Currently, sev-

eral satellite precipitation data sets are available to the public including the CPC Morphing

Technique (CMORPH) [144], Tropical Rainfall Measuring Mission (TRMM) Multi-satellite

Precipitation Analysis (TMPA) [132], Precipitation Estimation from Remotely Sensed In-

formation using Artificial Neural Networks (PERSIANN) [128, 281, 125], and the Global

Precipitation Climatology Project (GPCP) [4] – for a comprehensive review of precipita-

tion algorithms see, [170, 153]. These data sets have been extensively intercompared and

validated against ground-based observations [12, 293, 70, 49].

Satellite precipitation data sets have been widely used for both model-based and data-driven

drought monitoring [21, 226, 58]. The experimental African Drought Monitor integrates

satellite observations of precipitation for assessing hydrologic conditions [268]. One limita-

tion of current near real-time satellite precipitation products is their short length of record.

There are a number of products that provide low resolution long-term records (e.g., GPCP);

however, they do not provide real-time observations necessary for operational drought mon-

itoring systems. In a recent study, a near real-time satellite-based precipitation data set

was proposed for operational drought monitoring that combines the near real-time satellite

data with the long-term GPCP observations using a Bayesian data merging model [13]. The

data set includes SPI based on PERSIANN and TMPA with climatology obtained from

GPCP observations. The Bayesian data merging component makes the data from different

sensors/algorithms climatologically consistent for drought monitoring. A sample merged

product of GPCP (1979-2009) and PERSIANN (2010-present) is presented for July 2010 in
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Figure 1.1. The figure shows that the merged product captures the 2010 Russian drought

[321], as well as the 2010 Amazon drought [171, 185]. Furthermore, the figure highlights

the precipitation deficit in East Africa, which led to a major drought during 2010-2011 [84].

The main advantage of this data set is that near real-time satellite data are available to

the public within hours to days from the original observations, allowing for near real-time

drought monitoring.

Figure 1.1: Combining different remote sensing data sets (here, GPCP and PERSIANN) for global near
real-time drought monitoring using Standardized Precipitation Index (SPI) - July 2010.

1.2.2 Soil Moisture

Soil moisture is a fundamental component of the water cycle and plays a key role in drought

monitoring and prediction, especially in water-limited ecosystems [62]. Soil moisture is of-

ten used as a measure of agricultural drought since it affects plant growth and productivity

[42, 329]. A number of soil moisture-based indices have been developed and used for drought

monitoring, including the Standardized Soil Moisture Index (SSI) [110] and the soil mois-

ture percentile [267, 313]. Soil moisture is a particularly important variable for monitoring

drought persistence and development [5]. The input soil moisture to these drought indicators

can be obtained from land surface model simulations or from satellite estimates.
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Most satellite soil moisture algorithms are based on passive MW [218, 138, 217], active MW

[311, 289], or a blend of data from both types of sensors [331, 103, 74, 175]. The principal

of MW-based soil moisture retrieval relies on the relationship between soil permittivity and

liquid water content. There are empirical relationships that link passive MW brightness

temperature and active MW backscattering to volumetric water content of soil. MW soil

moisture observations typically represent the top 2-5 cm of soil depth [74, 218, 318]. For

root-zone soil surface moisture estimates, MW soil moisture observations can be coupled to

an appropriate land-surface model. For a comprehensive review of optical, thermal, passive

MW, and active MW soil moisture monitoring approaches, see [318].

The long-term satellite-based soil moisture time series obtained from the Water Cycle Multi-

Mission Observation Strategy (WACMOS) have been used for drought detection and mon-

itoring in the Horn of Africa region [19]. The United States Department of Agriculture

(USDA) International Production Assessment Division (IPAD) estimates surface and root-

zone soil moisture with a two-layer modified Palmer soil moisture model forced by global

precipitation and near-surface air temperature measurements [225]. In this approach, the

near-surface air temperature is used to approximate potential evapotranspiration, although

this approach has limitations in energy-limited evapotranspiration estimation [193, 65]. Soil

moisture data retrieved from the Advanced Microwave Scanning Radiometer on Earth Ob-

serving System (AMSR-E) [137] have been integrated into the real-time USDA IPAD soil

model to improve drought monitoring and prediction [43].

Recently, the Climate Change Initiative (CCI) for Soil Moisture offers global satellite-based

soil moisture data derived from multiple sensors [310, 175]. As the CCI Soil Moisture dataset

provides over 30 years of data, it can be used for monitoring agricultural drought, and

monthly or seasonal changes in soil moisture patterns within a much longer historical con-

text than most remote sensing-based data products derived from a single sensor or satellite

mission (see Figure 1.2). The CCI soil moisture data have gaps, mainly over densely vege-
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tated land areas, even at monthly scales (see the Amazon and central Africa in Figure 1.2).

However, there are opportunities to assimilate data sets like CCI into land surface models,

or to apply satellite-derived datasets for calibration of land surface model parameters to

generate long-term, consistent soil moisture fields [246]. It is also noted that the spatial

patterns in the CCI soil moisture and satellite precipitation data are generally consistent,

even though they are sampling different components of the hydrologic budget (e.g., compare

Australia and Russia in Figures 1.1 and 1.2). The CCI soil moisture data have not been

fully explored for global drought monitoring and assessment yet, and it is anticipated that

future studies on global trends and patterns of droughts will use this data set.

Figure 1.2: Standardized Soil Moisture (SSI) based on CCI satellite soil moisture observations - July 2010.

1.2.3 Groundwater and Terrestrial Water Storage

Estimates of drought impacts on terrestrial water storage and groundwater conditions at

regional to global scales can be obtained using the Gravity Recovery and Climate Experiment

(GRACE) mission. GRACE responds to all factors that change the gravity-field of an area,

including the terrestrial water storage (TWS). Launched in 2002, the GRACE mission tracks

global variations in gravity fields that can be converted into estimates of TWS [252]. The

principle of gravimetry and TWS estimation relies on the fact that bulk surface and sub-
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surface water mass has a gravitational potential that can alter the Earth’s gravity field,

allowing changes in the Earth’s gravitational field to be used as an indicator of changes in

the total amount of water stored in the vertical hydrologic continuum. GRACE consists of

two identical satellites that orbit the Earth at an altitude of approximately 500 kilometers,

and separated from one another by a distance of about 220 kilometers. Changes in the Earth’s

gravity fields alter the distance between the two spacecraft. Having accurate measures of

the distance between the two spacecraft, one can quantify temporal TWS anomalies, which

include the sum of surface water, groundwater, soil moisture, snow/ice, and moisture stored

in vegetation [250].

Having TWS, changes to groundwater ∆G can be approximated as ∆G = ∆TWS−∆SM−

∆SWE, where SM and SWE represent soil moisture and snow water equivalent, respec-

tively [251]. GRACE-based TWS data have been widely used for drought monitoring and

water storage assessment over different areas including the Canadian Prairie [339], Australia

[169, 303, 304], the Amazon River basin [51], and western and central Europe [172]. During

the 2011 Texas drought, the TWS data set was found to be a valuable tool for monitoring

statewide water storage depletion, and for linking meteorological and hydrological drought

conditions [181].

Currently, GRACE provides twelve years of data, which may not be sufficient for climato-

logical drought assessment. An additional limitation of GRACE data for regional drought

assessments has been the spatial resolution of ¿150,000 km2 per pixel for GRACE TWS data

[127]. Recently, GRACE data have been downscaled to higher resolutions via assimilation

into land surface models [341]. This approach offers potential for improved drought monitor-

ing and assessment of associated reductions in groundwater supplies at finer spatial scales.

Using the GRACE Data Assimilation System (GRACE-DAS) [341] and the Catchment Land

Surface Model (CLSM) [164], a GRACE-based drought indicator has been developed and

integrated into the United States and North America Drought Monitor [127]. In addition
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to drought monitoring, GRACE data can potentially be used for assessing drought recovery

and termination. Given that GRACE offers information on the total water storage deficit

[291], it can be used to estimate the amount of water (precipitation) needed to recover from

drought events.

1.2.4 Evapotranspiration

Evapotranspiration (ET) is an important component of the water and energy cycle, reflect-

ing mass and energy exchange between the atmosphere and ecosystem [265, 316]. Several

recent studies highlight the importance of temperature and atmospheric evaporative de-

mand in drought assessment and characterization [65, 121, 193, 270, 7]. While ground-based

measurement of ET at large spatial extents is challenging, remote sensing data sets offer

a unique opportunity to provide large-scale estimates of ET. A unique feature of ET for

drought monitoring is that it describes both water/moisture availability and the rate at

which it is consumed [22]. Broadly, remote sensing based ET estimation methods can be

categorized into the following groups based on (a) principles of water balance [16, 264], (b)

principles of surface energy balance [17, 23, 266, 283], (c) vegetation indices [94, 338], and

(d) hybrid approaches based on vegetation indices and surface temperature information [47].

Water balance models track changes in moisture in the soil for ET estimation, whereas en-

ergy balance models use Land Surface Temperature (LST) as proxy information for surface

heat (i.e., sensible heat flux) and moisture/water fluxes [147, 219, 205, 93].

Several drought indicators have been developed that integrate ET as an input variable such

as the Crop Water Stress Index (CWSI) [134, 136], Water Deficit Index (WDI) [203], Evapo-

rative Stress Index (ESI) [27, 24], Evaporative Drought Index (EDI) [336], Drought Severity

Index (DSI) [208], and Reconnaissance Drought Index (RDI) [295, 294].

The CWSI is based on the ratio of the actual ET (AET) to potential ET (PET), and is

11



expressed as: CWSI = 1 − AET/PET . The WDI, follows the same concept, but is based

on the AET rate (λAET ) and PET rate (λPET ): WDI = 1−λAET/λPET . The ESI is defined

as the standardized anomalies in the ratio of AET to PET [27]. In this approach, the ET

estimation is based on thermal infrared remote sensing data and the Atmosphere-Land Ex-

change Inverse (ALEXI) model [25, 194, 28]. Figure 1.3 shows the ALEXI-based Evaporative

Stress Index (ESI) for July 2010, derived using MODIS day-night land surface temperature

differences. ESI clearly shows deficits in actual evapotranspiration associated with drought

conditions particularly over Russia and central Asia, Brazil, South Africa and southwestern

Australia. Evaluation studies indicate that ESI is a promising drought indicator for charac-

terizing streamflow and soil moisture anomalies [53], and provides valuable information for

early warning of rapidly developing drought conditions, often referred to as ”flash” droughts

[26, 220]. Similar to ESI, EDI is based on AET and PET (EDI = 1−AET/PET ), and has

been used to monitor drought at continental and global scales [337].

The DSI is defined as the summation of the normalized ratio of AET/PET and the Normal-

ized Difference Vegetation Index (NDVI) [208]. In this approach, the ratio of AET/PET is

derived using shortwave satellite observations from the Moderate-resolution Imaging Spec-

troradiometer (MODIS) within a Penman-Monteith ET formulation [206, 207, 209]. Results

indicate that the DSI is consistent with not only precipitation-based drought indices, but

also with satellite-based vegetation net primary production (NPP) [257] records. Unlike

most drought indices, DSI is not a standardized measure of drought severity, but rather a

dimensional index ranging from [−∞,∞], where a lower index value indicates a more severe

drought condition.

The RDI is defined as the ratio of the aggregated precipitation (P) and PET, and has been

widely used in the literature for drought monitoring (e.g., [295, 294]). The P/PET ratio is

also termed as the Aridity Index [301], and can be standardized for cross-comparison with

other drought indicators. The RDI is different from the other indices in the sense that it does

12



not use AET. The RDI has been used with PET estimates derived from satellite-retrieved

air temperature data [57]. However, this is a simplistic assumption and many other key

meteorological variables affect PET [193, 65].

Figure 1.3: Evaporative Stress Index (ESI) for July 2010, expressed as standardized anomalies. Red indicates
lower than normal AET/PET, or depressed rates of relative water use. Regions where ET is persistently
low and standardized anomalies cannot be reliably determined are shown in brown.

1.2.5 Snow

Snow is considered a natural reservoir of water resources, and in some regions snow melt

constitutes a substantial fraction of the annual runoff [163]. A winter snow deficit could

potentially lead to a summer hydrological drought (e.g., reduced stream flows or ground-

water levels) or agricultural drought (e.g., depleted soil moisture reserves to support plant

functions) and hence, monitoring snow is fundamental to drought assessment in many re-

gions. From a hydrological viewpoint, the drought-relevant snow parameters include: Snow

Water Equivalent (SWE), Snow Covered Area (SCA), Snow Depth (SD), and Snow Albedo

(SA) [163, 222]. Remotely sensed snow estimation methods can be broadly categorized into

three groups: (a) optical; (b) MW; and (c) composite optical and MW. Optical-based prod-
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ucts provide estimates of only SCA, whereas MW-based and composite products provide

information on SCA, SD and SWE.

The basis of optical snow monitoring relies on the fact that snow exhibits a strong spec-

tral gradient in reflectance, from high albedo in visible wavelengths to low reflectance

in middle IR wavelengths [67, 163, 332]. Thus, snow can be monitored using the ratio

of the visible reflectance (RV IS) and the middle IR reflectance (RmIR) [254]. Alterna-

tively, snow can be detected using the Normalized Difference Snow Index (NDSI) defined

as (RV IS − RmIR)/(RV IS + RmIR) [109]. A suite of optical-based snow products are avail-

able from MODIS with a wide range of temporal and spatial resolutions [109]. A number

of snow algorithms have also been developed based on the Advanced Very High Resolution

Radiometer (AVHRR) satellite data record [277]. However, the accuracy of optical-based

snow estimates can be compromised by clouds that exhibit similar spectral features [163, 44].

Furthermore, persistent cloud cover can hinder temporally continuous snow monitoring.

Microwave radiation, on the other hand, penetrates through clouds and provides a unique

opportunity for temporally continuous snow monitoring [163, 260]. More importantly, mi-

crowaves can penetrate into snow, allowing estimation of SWE and SD that cannot be

obtained from optical-based methods. A number of algorithms have been developed for es-

timation of SCA using microwave data sets [102]. Microwave-based estimates of SWE and

SD are mainly based on an empirical regression between variations in observed SWE and

SD and the difference in brightness temperature in two low frequency channels [162]. There

are static empirical algorithms in which one set of regression parameters are used [167, 99],

as well as dynamic empirical algorithms in which different regression coefficients are used in

various regions and for different seasons [83, 150].

Currently, microwave sensors are only available onboard polar orbiting satellites that have

longer revisit times relative to optical sensors onboard geostationary satellites. For this

reason, the temporal frequency of microwave-based snow estimates is typically lower than
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those of the optical-based products. Recently, snow retrieval algorithms have been developed

based on merged optical and microwave data sets to address limitations of individual sensors

[82, 173].

Remotely sensed and in situ snow information has been used in a number of drought studies

[326, 163, 222, 106, 201]. Most studies focus on assimilating satellite snow information into

land surface or hydrological models to improve streamflow simulation and hence, hydrological

drought prediction [63, 31]. Unlike other drought-related variables, snow-based indicators of

drought are still in their infancy, primarily because there is a lag between snow occurrence

and change in surface water and soil moisture availability that varies in space and time.

Snowmelt runoff could affect water availability in a few weeks (e.g., low elevation snow

and in lower latitudes) or a few months (e.g., high elevation snow and in higher latitudes).

This lag time is a significant strength and could lead to early drought warning. However,

even over one particular location, depending on seasonal temperatures and the timing of

snow accumulation, the lag time from snowfall, snowmelt, and runoff varies substantially.

This highly-variable lag is the main challenge in deriving snow-based indicators for drought

monitoring.

1.3 Progress in Remote Sensing of Drought from an

Ecological Perspective

Drought can be assessed based on observed changes in vegetation health and land cover from

remotely sensed data [297, 276, 214]. The launch of the first AVHRR instrument in 1979

transformed remote sensing of drought by providing high temporal resolution information

for systematic monitoring of vegetation patterns and conditions. Quantitative assessment

of vegetation condition is generally based on the spectral signature of vegetation greenness
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expressed in the red (R) and near-infrared (NIR) portions of the electromagnetic spectrum

[42].

The Normalized Difference Vegetation Index (NDVI) [256] is the most frequently used veg-

etation index [296, 149, 85] and the first remote sensing-based measure used to monitor

agricultural drought. The NDVI is the difference between reflected R and NIR radiation

divided by the their sum [256]: (NDV I = (ρNIR − ρR)/(ρNIR + ρR)). Since the soil spec-

trum and non-vegetated surfaces do not exhibit distinct differences in spectral absorption

between the R and NIR bands, the NDVI can be used to separate vegetation from the soil

background [149] and provide a measure of general vegetation health. Time series decom-

position [64, 182] provides the means to assess rare or recurrent vegetable conditions, which

may be related to deep-root or shallow-rooted vegetable types in carbon ecosystems.

Figure 1.4: Vegetation Condition Index (VCI) for the last week of July 2010 (Source: NOAA/NIDIS Global
Vegetation Health data).

A significant relationship has been reported between NDVI and precipitation and soil mois-

ture [61, 80, 3, 120, 248, 315], and thus the NDVI (or its derivatives) has been widely used

for drought assessment and vegetation health monitoring [297, 237, 215, 141, 190]. The

general vegetation health can be temporally decomposed to monitor changes in recurrent

(shallow-rooted) and persistent (deeper-rooted) vegetation for many landscapes across the

globe [64, 182, 253]. This is particularly important when monitoring drought in savannahs
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or areas with mixed trees and ecosystems across semi-arid regions [64].

Building on the original definition of NDVI, a number of other indicators have been devel-

oped such as the Transformed Vegetation Index (TVI) [60, 296], Perpendicular Vegetation

Index (PVI) [325], Corrected Transformed Vegetation Index (CTVI) [231], and Thiam’s

Transformed Vegetation Index (TTVI) [290] - see [276, 230] for a comprehensive list. These

indices describe the vegetation condition by combining spectral information from different

parts of the electromagnetic spectrum that are sensitive to biophysical characteristics of

vegetation, such as chlorophyll content, water content, and internal leaf structure.

Figure 1.5: Temperature Condition Index (TCI) for the last week of July 2010 (Source: NOAA/NIDIS
Global Vegetation Health data).

The Vegetation Condition Index (V CI = (NDV I −NDV Imin)/(NDV Imax + NDV Imin)),

for example, scales NDVI values between its minimum and maximum values to separate

the short-term weather signal from the long-term ecological signal for drought monitor-

ing [158], and it has been used for monitoring drought and phonological change in several

studies [160, 174, 241, 278, 190] - Figure 1.4. Use of the monthly VCI is more appropri-

ate in areas with a large land management signal (e.g., cropping), and hence is suitable

for monitoring agricultural drought [190]. A standardized form of NDVI, known as the

Standardized Vegetation Index (SVI), is based on the z-score of NDVI values [232, 227]:

SV I = (NDV Iijk − NDV I ij)/σij. The SVI is computed for each pixel (i), week (j) and
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year (k). The terms NDV I ij and σij denote the mean and standard deviation of the pixel

(i) over k = 1, . . . , n years.

There are other indices based on R and NIR bands such as the Normalized Ratio Vegetation

Index (NRVI) [37], Soil-Adjusted Vegetation Index (SAVI) [131], Perpendicular Drought In-

dex (PDI) [92], Modified Perpendicular Drought Index (MPDI) [91], Distance Drought Index

(DDI) [238], and Enhanced Vegetation Index (EVI) [129]. The latter, for example, improves

sensitivity over high biomass regions, and reduces the soil background effects and atmospheric

influence [145, 276, 130]. A recent study shows that the vegetation water indices outperform

the vegetation greenness indices, including the EVI, in high biomass ecosystems [46]. More

specifically, the Normalized Difference Infrared Index using MODIS band 6 (NDIIb6), and

band 7 (NDIIb7) [133], and the D1640 [306] (Depth of MODIS band 6 (1640 nm) relative

to the response between MODIS band 7 (2130 nm) and band 5 (1240 nm)) provide better

agreement with precipitation, indicating that in high biomass environments variations in

vegetation water content are more dynamic than changes in vegetation greenness properties

[306, 46].

Figure 1.6: Vegetation Health Index (VHI) for the last week of July 2010 (Source: NOAA/NIDIS Global
Vegetation Health data).

Drought stress can also be quantified using remotely sensed surface brightness temperature

derived from thermal channels from multiple satellite instruments (e.g., AVHRR, MODIS,
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VIIRS, TM, ETM+, TIRS). The land surface temperature (LST) computed from thermal

infrared (TIR) bands has been found to provide valuable information on surface moisture

conditions [107]. The Temperature Condition Index (TCI) is based on TIR observations to

determine temperature-related vegetation stress. The TCI is defined as TCI = 100(Bmax −

B)/(Bmax−Bmin), where B, Bmax and Bmin denote the smoothed weekly temperature, and

its multi-year maximum and minimum, respectively [156]. Using data from instruments such

as AVHRR and MODIS, TCI may be computed at weekly time scales. An example of TCI

for the last week of July 2010 is presented in Figure 1.5, which is consistent with drought

information based on precipitation and soil moisture (Figures 1.1 and 1.2). One limitation

of TCI is that it does not account for day-of-year or time-of-day, since it only relies on

smoothed weekly temperatures and their multi-year maxima and minima. This issue has

been addressed in the development of the Normalized Difference Temperature Index (NDTI)

[191, 192] that can be considered as a time-of-day version of the CWSI [192].

Studies show that TCI coupled with VCI provides a powerful tool for monitoring vegeta-

tion stress and drought condition [278], and the two indices have been widely used over

different regions [302, 140]. The reflective-based and thermal-based information have been

combined for effective and integrated (vegetation-temperature) drought information using

a combination of the reflective and thermal channels (e.g., combination of NDVI and LST

- [190, 149, 40]). The Vegetation Temperature Condition Index (VTCI) [312] integrates

NDVI, LST and thermal properties, and provides one index that reflects drought informa-

tion based on both temperature and vegetation [229]. The Vegetation Health Index (VHI)

is among the commonly used reflective-thermal indicators that integrates the VCI and TCI

[156]: V HI = αV CI+(1−α)TCI, where α refers to the relative contribution of the VCI and

TCI. Similar to the VCI and TCI, the VHI is typically computed on a weekly time scale, and

has been used for both drought detection and early warning in different regions [262, 161].

An example of VHI is provided in Figure 1.6, which essentially combines information from

Figures 1.4 and 1.5.
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In recent years, various ways of combining NDVI and LST information have been explored

for drought monitoring and impact assessment [287, 279]. Such methods rely on the rela-

tionship (typically, negative correlation) between LST and NDVI [168, 189, 190, 149]. The

relationship between the LST and NDVI depends on the season-of-year and time-of-day

[284, 191, 192]. Furthermore, the LST-NDVI relationship is associated with moisture condi-

tion and climatic/radiation regimes [149]. A comprehensive study of LST-NDVI relationship

over the North American continent and during the summer growing season (April-September)

showed that the LST-NDVI correlation is negative when water is the limiting factor for veg-

etation growth, while the correlation is positive when solar radiation is the limiting factor for

vegetation growth [149]. It is recommended to restrict the use of empirical LST-NDVI re-

lationships for drought monitoring to regions and periods with negative correlation between

LST and NDVI (i.e., where water is the primary limiting factor [149]).

A number of vegetation stress and drought indicators have been developed using Short Wave

Infrared (SWIR) data such as the Normalized Difference Water Index (NDWI) [88, 105, 104].

The NDWI is defined as the difference between two SWIR bands (typically, 0.86 nm and

1.24 nm) divided by their sum (NDWI = (ρ0.86µm − ρ1.24µm)/(ρ0.86µm + ρ1.24µm)). These

two channels sense similar depth through the vegetation canopy and are less sensitive to

atmospheric scattering effects than NDVI. Other SWIR bands (e.g., 1.55 µm, 1750 µm, 0.64

µm, 2.13 µm) have been also employed for deriving NDWI using data from the Landsat

Thematic Mapper (TM) onboard Landsat 5, and the Enhanced Thematic Mapper (ETM)

onboard Landsat 7 [139, 50, 318].

Sensitivity of NDWI and NDVI to drought conditions has been explored and different re-

sults have been reported [104, 105]. To combine information from NDVI and NDWI, the

Normalized Difference Drought Index (NDDI) has been proposed as: NDDI = (NDV I −

NDWI)/(NDV I + NDWI) [104]. It is should be noted that SWIR bands respond to

soil moisture and leaf water content differently and, thus, combining multiple SWIR bands
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(rather than one SWIR band) with a NIR band may improve sensitivity for drought moni-

toring [319]. To address this issue, the Normalized Multi-band Drought Index (NMDI) has

been proposed for monitoring soil and vegetation moisture condition using Moderate Res-

olution Imaging Spectroradiometer (MODIS) data [317]: NMDI = (ρ0.86µm − (ρ1.64µm −

ρ2.13µm))/(ρ0.86µm + (ρ1.64µm − ρ2.13µm)). In NMDI, the 0.86 µm band is NIR whereas the

1.64 µm and 2.13 µm are SWIR bands. By combining information from different channels,

the NMDI enhances the sensitivity to drought severity [317]. Similar efforts have focused on

combining Visible data with SWIR information which led to the development of the Visible

and Shortwave infrared Drought Index (VSDI) [343]. This indicator combines MODIS Blue

(band 3), Red (band 1), and SWIR (band 6) information.

1.4 Composite and Multi-Index Drought Models

Several studies argue that drought monitoring efforts should be based on multiple vari-

ables/indicators [110, 152, 148] to provide a more robust and integrated measure of drought

that captures the diverse range of vegetation response to drought across different ecosys-

tems. The Vegetation Drought Response Index (VegDRI) [288, 45] integrates climate-based

drought indices, satellite-based observations of vegetation conditions, and other biophysi-

cal information (e.g., land cover type, soil characteristics, elevation) to describe the levels

of vegetation drought stress. The model concept of VegDRI builds upon the NDVI [256].

While NDVI is proven to provide valuable information on vegetation health, one may not

be able to identify the root causes of vegetation stress solely from NDVI [117]. The main

reason is that many factors such as fire, land cover change, plant disease, pest infestation,

biomass harvesting, and flooding can cause anomalies in the NDVI similar to those caused

by drought. To address this limitation, VegDRI incorporates climate-based data from SPI

and the Palmer Drought Severity Index (PDSI) [224] as additional indicators of dryness, and
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analyzes them in combination with satellite-based NDVI information [45].

In a recent study, a triple collocation analysis (TCA) of different soil moisture products

(i.e., microwave AMSR-E, thermal remote sensing using ALEXI, and physically-based model

simulations) has been suggested for composite drought monitoring [29]. The final composite

soil moisture product takes advantage of the strength of each approach. The approach was

validated for the 2010-2011 Horn of Africa drought, and has shown promising results for

drought monitoring [29].

An alternative composite model is the Microwave Integrated Drought Index (MIDI) [342],

designed for monitoring short-term drought, especially meteorological drought over semi-arid

regions. The MIDI integrates satellite-based precipitation data from the Tropical Rainfall

Measuring Mission (TRMM), and soil moisture and land surface temperature data from

the Advanced Microwave Scanning Radiometer for EOS (AMSR-E): MIDI = αPCI +

βSMCI + (1 − α − β)TCI where PCI is the precipitation condition index, SMCI is the

soil moisture condition index, and TCI is the temperature condition index. Based on the

same concept, additional indices can be obtained based on two variables (e.g., αPCI +

(1 − α)SMCI). A similar concept is used in the Scaled Drought Condition Index (SDCI)

[247] which is a multi-sensor indicator designed for agricultural drought monitoring in both

arid/semi-arid and humid regions. The SDCI combines TRMM-based precipitation data,

with LST and NDVI information (all three scaled from 0 to 1) for composite drought assess-

ment: SDCI = αLST +βTRMM +γNDV I, where α+β+γ = 1. Evaluation of SDCI has

shown that the SDCI outperformed the VHI and NDVI over both arid (Arizona and New

Mexico) and humid/sub-humid (North Carolina and South Carolina) regions [247].

There are also composite approaches that combine physically-based model simulations and

satellite observations for drought monitoring. For example, the United States Drought Mon-

itor (USDM) [286] provides weekly drought monitoring information based on a composite of

indicators from satellite observations (e.g., VegDRI, VHI, ESI, and GRACE TWS), in situ
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measurements, and guidance from experts on the ground. The final product collectively an-

alyzes all of this information, which is fused into a single USDM map of drought conditions

relying on expertise from climatologists from across the United States.

Finally, the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) [112]

provides composite drought information based on the Multivariate Standardized Drought

Index (MSDI) [111]. The MSDI has been developed for multi-index drought assessment

using precipitation and soil moisture, and has been used in a number of drought studies

[6, 110]. A unique feature of MSDI is that it combines meteorological and agricultural

drought information into a composite assessment. Different data sets, including satellite

observations and model simulations, can be used as inputs to obtain a composite drought

map (see an example in Figure 1.7 based on global precipitation and soil moisture data).

This model is standardized, and thus provides drought information comparable with other

standardized indices such as SPI and SSI. Results indicate that MSDI provides objective

drought information consistent with the USDM observations over the United States [111].

Figure 1.7: Multivariate Standardized Drought Index (MSDI) for July 2010, derived from the NASA’s
Modern-Era Retrospective Analysis for Research and Applications (MERRA-Land) precipitation and soil
moisture data.
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1.5 Research Gaps, Challenges and Opportunities

1.5.1 Microwave-Based Vegetation Indices

Vegetation indicators, such as NDVI obtained from optical satellite sensors, have been widely

used to evaluate the impacts of droughts on ecosystems [296]. Optical-based vegetation indi-

cators provide valuable information on vegetation response to climate variability. However,

they are sensitive to cloud cover, atmospheric effects, aerosols, water vapor, and land cover

condition [20, 273, 176]. One limitation of the optical-based indicators is that they pri-

marily provide information on conditions at the top of the canopy, especially in densely

vegetated regions [273]. A rapidly growing and influential area in remote sensing of drought

is microwave-based vegetation monitoring [54, 20, 177, 142] that provides information on

live aboveground biomass and canopy density. Unlike optical sensors, microwave sensors are

less affected by atmospheric conditions, and can penetrate into dense canopy. Furthermore,

microwave sensors can collect information on vegetation conditions during both day and

night [273].

High spatial resolution, microwave-based vegetation monitoring is one key to improving our

understanding of drought impacts on ecosystem conditions, especially for monitoring vegeta-

tion response and carbon cycling specifically during drought events. The vegetation optical

depth (VOD; [195, 221, 142, 179]), for example, offers a unique approach for monitoring

global phenology since it is sensitive to vegetation water content and canopy biomass. VOD

has been extensively used to assess vegetation dynamics in drylands [20], overgrazing [178],

and start-of-season analysis [142]. VOD and optical-based methods such as NDVI provide

complementary information on the above-ground biomass and canopy top greenness, re-

spectively [20]. Combining the two approaches provide insights on the ecosystem response

that cannot be achieved from each individual model [20]. Collectively, microwave sensors

offer a relatively long-term record for investigating the impact and relative importance of
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droughts on global vegetation and biomass change. Future research in this direction can

significantly improve our understanding of ecosystem responses to drought. The upcoming

Global Ecosystem Dynamics Investigation (GEDI) lidar, which is a laser-based instrument

designed for 3-D analysis of Earth’s forests, will also offer a unique avenue to monitor forest

degradation, carbon cycles and biomass.

Figure 1.8: Current and future satellite missions relevant to drought monitoring and assessment
(TRMM: Tropical Rainfall Measuring Mission; GRACE: Gravity Recovery and Climate Exper-
iment; FO: FOllow-On; ICEsat: Ice, Clouds, and Land Elevation Satellite; CALIPSO: Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations; EOS-Aqua: Earth Observing System
Aqua; EOS-Terra: Earth Observing System Terra; EOS-Aura: Earth Observing System Aura;
AIRS: Atmospheric Infrared Sounder; EO-1: Earth Observing-1; GOES: Geostationary Opera-
tional Environmental Satellite; NOAA-N: NOAA Polar Operational Environmental Satellites N
Series; SMOS: Soil Moisture and Ocean Salinity satellite; ICESat-2: Ice, Clouds, and Land Eleva-
tion Satellite; GPM: Global Precipitation Measurement; LDCM: Landsat Data Continuity Mission;
SWOT: Surface Water and Ocean Topography; SMAP: Soil Moisture Active-Passive; ALOS 2:
Advanced Land Observing Satellite; NPOESS: National Polar-orbiting Operational Environmental
Satellite System) – the list in not comprehensive.
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1.5.2 Data continuity, consistency and management

Since the early 2000s, the number of satellite sensors and types of remote sensing observations

have increased substantially, and many more are in the design and planning stages (see

Figure 1.8 for a non-comprehensive list of missions). Some of the most important recent or

upcoming missions relevant to drought monitoring include the Global Precipitation Mission

(GPM), Geostationary Operational Environmental Satellites R series (GOES-R), GRACE

Follow-On, SMAP, and SWOT missions (Figure 1.8). While these satellite missions provide

opportunities to study droughts from different viewpoints, there are major challenges ahead

such as data continuity, unquantified uncertainty, sensor changes, community acceptability,

and data maintenance.

Data continuity is fundamental to reliable satellite data record development for drought

applications. Most satellites are designed for less than a decade of operation, though many

operate beyond their design life. Ideally, data sets should extend by planning for follow-up

missions. However, planning, approval, and design processes of satellite missions can take

decades and require substantial investments. The GPM, GOES-R, and GRACE Follow-On

are examples of missions planned to avoid gaps in the current satellite-based precipitation

and total water storage records. Another example is the Visible Infrared Imager Radiometer

Suite (VIIRS; [146, 322, 307]), which is designed as the operational successor to MODIS and

AVHRR. Long-term continuation of these and other satellite missions will remain an issue

in the future as these systems age. The capability of extending multi-decadal observations

to develop robust drought climatologies remains uncertain.

Another major challenge is to ensure that the data volumes are well managed and that the

data records are easily available to the science community and the public. This requires

major hardware infrastructure to serve the data, and data professionals to process, curate

and disseminate the data. Securing funding for the required hardware and attracting long-
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term support for maintaining staff for data management are very challenging.

1.5.3 Multi-Index Composite Drought Monitoring

Recent studies show that combining multiple data sets improves drought detection [112] and

monitoring [208]. Several multi-index (multi-sensor) drought monitoring indicators/frameworks

have been developed to improve description of drought onset, development and termination

[152, 148, 288, 110, 286, 242]. Availability of multiple satellite data sets offers a unique

avenue to explore multi-index or multivariate drought indicators.

Integration of snow into drought monitoring models is one of the least investigated areas

and merits further exploration. The Snow and Cold Land Processes (SCLP) mission will

provide microwave-based snow and snow water equivalent information [255]. Integration of

snow information into seasonal precipitation or runoff forecasts could lead to a quantum

improvement in drought monitoring and seasonal prediction in areas that rely on snowmelt

such as the western U.S. Multiple data sets describing different but inter-linked environmental

parameters provides the opportunity to develop more composite and multivariate (or multi-

indicator) drought models similar to the ones discussed in Section 1.4.

Ground-based observations of many drought related variables (e.g., snow, soil moisture, water

vapor, total water storage) are very limited or unevenly distributed across the world. This

may limit development of multi-index indicators in data sparse regions. Given the variety

of satellite observations (Figure 1.8), remote sensing allows moving toward an integrated

multi-index composite drought assessment framework conceptually illustrated in Figure 1.9.

However, multi-index and composite drought models are in their infancy. More research is

needed to develop robust statistical and mathematical frameworks for generating multi-index

drought information.
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1.5.4 Improving early drought detection using satellite observa-

tions

Early drought detection is fundamental to pro-active decision-making and disaster prepared-

ness. Previous studies indicate that precipitation-based indicators (e.g., SPI) are better for

drought detection compared to other indicators (e.g., SSI) - [200, 110]. Different satellite

data sets provide an opportunity to monitor droughts from multiple viewpoints and poten-

tially improve drought detection. For example, a number of satellite missions and sensors

(e.g., AIRS) provide near-surface air relative humidity information that is not currently be-

ing used for drought monitoring. Since near-surface air relative humidity directly influences

evaporation, and as such is connected to precipitation (integrated a period of time), it is

reasonable to expect that it could provide valuable drought information.

Figure 1.10 displays the SPI and Standardized Relative Humidity Index (SRHI [79]) derived

by standardizing AIRS near-surface air relative humidity data using an empirical approach.

Here, a generalized empirical standardization approach is used that can be applied to dif-

ferent variables for deriving consistent drought indicators [78]. The left and right panels

in Figure 1.10 show drought conditions based on SPI and SRHI in May and July 2010,

respectively. The 2010 Russian drought signal can be observed in relative humidity data as

well. Furthermore, in May 2010 and two months prior to the peak of the event, SRHI shows

a stronger and more severe drought signal. All these indicators suggest that satellite-based

relative humidity can provide an opportunity for early drought detection. This, however,

requires more in-depth research on consistency and reliability of relative humidity data for

drought monitoring. In addition to relative humidity, there are many other satellite data sets

that have not been fully explored for drought assessment, including water vapor, cloud cover,

microwave emissivity, microwave-based vegetation optical depth, and solar radiation. More

research on such data sets could improve early drought detection or contribute to better

monitoring of drought development.
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Figure 1.9: Multi-sensor (multi-index) composite drought monitoring using remote sensing observations: a
schematic overview.

1.5.5 Developing climate data records

One of the major limitations of many of the currently available satellite datasets is their short

length of record relative to meteorological stations, with Landsat and AVHRR-MODIS-

VIIRS as notable exceptions. Some of the relevant satellite missions and sensors (e.g.,

GRACE) provide only slightly over a decade of data, which may not be sufficient to study

droughts from a climatological perspective, though they provide valuable anomalies for

drought impact assessment (e.g., [77]). Also, a number of satellite sensors are research

instruments and there is no guarantee that the same (or sufficiently similar) instruments

will be launched again to replace aging or failed instruments. Data continuity in the future

largely relies on support for long-term investments in satellite Earth observations.

Lack of guaranteed support and commitment to invest in this field is a major roadblock

for establishing consistent, long-term remote sensing data records necessary for accurate

anomaly detection against a historical baseline. However, sensors that provide short-term

records still provide valuable drought monitoring information, especially for drought impact

assessment [250, 77]. There has been some work to create longer inter-sensor data records
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for key remote sensing variables, such as the NDVI, by merging data from multiple satellite

sensors such as AVHRR and MODIS [298]. Effective models and algorithms need to com-

bine multiple data sets [13] from different sources and/or assimilate satellite observations

into model simulations [127, 31, 341] to generate long-term environmental and climate data

records.

Figure 1.10: (top row) Standardized Precipitation Index (SPI) and (bottom row) Standardized Relative
Humidity Index (SRHI) for May 2010 (left panels) and August 2010 (right panels).

1.5.6 Uncertainty

Satellite data sets are subject to retrieval and sensor uncertainties that are often unquantified

[66, 196, 234]. For this reason, several models and indicators have been developed for un-

certainty assessment of satellite observations [89, 75, 11, 126]. However, most satellite-based

data products still do not provide uncertainty estimates or bounds. Land-surface and hy-

drologic models that use remote sensing data (as input or for data assimilation) are subject

to other sources of error, including model structural and parameters uncertainties. Under-

standing input data uncertainty is fundamental to evaluating uncertainty of model-based

simulations that use remote sensing information as input. Lack of uncertainty information
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may prevent integration of satellite data into decision-making and operational applications.

More emphasis should be given to adequately characterizing the strengths and limitations

of specific remote sensing tools and products, the results of which should be communicated

to the general decision-making population in a non-technical manner. Further research in

uncertainty assessment is required to develop uncertainty products (bounds) for current

and future satellite data sets. This will significantly improve usability and acceptability of

satellite observations within the drought community because these established bounds can

provide guidance on the most appropriate times and locations to use data for a targeted

decision making process.

1.5.7 Community acceptability

Product development as well as translating remote sensing observations and scientific data

outputs in forms tailored for drought applications are critical for effective and sustained

use of monitoring systems. This part of applied remote sensing is often overlooked, but is

essential in communicating valuable new information from new and emerging satellite-based

systems and tools. Clearly defining basic elements, such as cartographic color schemes,

summarization of retrieved information (e.g., estimated soil moisture versus soil moisture

anomaly), and data formats, is one of the most important parts of the data-to-information

process of remote sensing tools developed for the drought community. Engaging drought

experts and key decision makers in this process is key to developing useful and applicable

information from remote sensing that will be more widely accepted and integrated into

operational drought monitoring and early warning systems. Finally, providing quantitative

measures of uncertainty of remote sensing information will improve community acceptability

of the data.
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1.5.8 Research gaps and objectives

In this dissertation, we propose three methodologies for improving the remote sensing of

drought:

1. Drought indicators such as SPI are generally derived using parametric approaches

in which climate data (i.e. precipitation) are fitted using a parametric distribution

function. A single parametric distribution function, however, may not fit the entire

data properly. On the other hand, using multiple parametric distribution functions

lead to inconsistencies is the distribution of climate extremes. In chapter 2, we propose

Standardize Drought Analysis Toolbox (SDAT) which offers non-parametric univariate

and multivariate techniques for deriving drought indicators. SDAT techniques do not

require parameter estimation and are statistically consistent.

2. Drought early detection has significant advantage for water resource and agriculture

sectors. Precipitation and hence SPI are commonly used for drought early detection.

Relative humidity which is defined as the ratio of actual water vapor to saturated water

vapor is related to propitiation in the sense that precipitation is not expected in low

humidity values. Chapter 3 introduces a new drought monitoring tool, Standardized

Relative Humidity Index (SRHI). SRHI used AIRS relative humidity data to monitor

droughts. We show that relative humidity which is not a common drought indicator,

could detect drought onset earlier than precipitation.

3. Droughts and high temperatures typically result in high atmospheric evaporative de-

mand and therefore high evapotranspiration rates. These lead to an increase in tree

mortality and wildfire rates. In chapter 4, a multi-sensor multi index drought indi-

cator is proposed to assess the impacts of recent western United States droughts on

forest health. Combining multiple climate variables improve drought monitoring. We

show that relative humidity, which has the potential for detecting drought onset earlier
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than precipitation, along with temperature, can be used for assessing drought impacts

during the summer and growing season. Precipitation, on the other hand, is a better

variable for investigating the drought effects during winter period.
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Chapter 2

A Generalized Framework for

Deriving Nonparametric Standardized

Drought Indicators

This Chapter has been published in Advances in Water Resources, Citation: Farahmand A.,

AghaKouchak A., (2015),A Generalized Framework for Deriving Nonparametric Standard-

ized Drought Indicators, Advances in Water Resources, , 76 (140-145).
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2.1 Introduction

Drought is an inevitable and recurring feature of the global water cycle that often leads to

significant societal, economic, and ecologic impacts [329, 185, 10, 320, 124]. An essential step

in analyzing a drought event is to define it based on relevant climatic variables/conditions

[68]. Drought affects all elements of the hydrologic cycle, and hence can be defined with

respect to different components of the water cycle. Numerous drought and dryness indices

have been developed to describe the different types of droughts, including meteorological,

agricultural, hydrological and socioeconomic [328].

One of the most common indices is the Standardized Precipitation Index (SPI; [187]), which

describes precipitation condition relative to long-term climatology, and is known as an index

of meteorological drought [116]. Many other drought indices have been developed based on

one or more climate variables, including the Palmer drought severity index (PDSI, [223, 56]);

Standardized Precipitation Evapotranspiration Index (SPEI; [309]); Standardized Soil Mois-

ture Index (SSI, [110, 5]); Vegetation Drought Response Index (VegDRI, [288, 45]); Stan-

dardized Runoff Index (SRI, [275]); soil moisture percentile [267, 313]; Percent of Normal

Precipitation (PNP, [323]), Multivariate Standardized Drought Index (MSDI, [111]), Crop

Moisture Index (CMI, [224]); Remotely Sensed Drought Severity Index ([208]); and Evap-

orative Stress Index (ESI, [28]). Comprehensive reviews of drought indices are provided in

(author?) [198] and (author?) [208].

Among the drought indices, SPI is one of the most commonly used indices that has been

applied to local, regional and global scale studies (e.g., [199, 13, 314, 274, 30, 58]). The SPI

is widely used, primarily for its simplicity, standardized nature, and flexibility of use across

different time scales (e.g, 1-, 6-, 12-month) [116]. On the other hand, SPI has a potential lim-

itation as it assumes that there exists a suitable parametric probability distribution function

representative for modeling precipitation data [32].
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SPI is typically derived by fitting a gamma probability distribution function to precipitation

data. The accumulated Gamma probability is then transformed to the Cumulative Distri-

bution Function (CDF) of the standard normal distribution. Though frequently used, the

two-parameter gamma distribution may not be the best choice of distribution [240, 108]. An-

alyzing Texas droughts, (author?) [240] concluded that the SPI values are quite sensitive to

the choice of parametric distribution function, especially in the tail of the distribution - see

also (author?) [210]. Many parametric distribution functions-such as the three-parameter

Pearson type III, normal, lognormal, Wakeby, Gamma, and kappa distributions-and different

recommendations on the best choice of parametric distribution for modeling precipitation

are reported (e.g., [108, 240, 32]).

On the other hand, (author?) [282] argued that the currently available indicators suffer

from deficiencies including temporal inconsistency and statistical incomparability. Differ-

ent indicators have varying scales and ranges and their values cannot be compared with

each other directly. For example, SPI and PDSI cannot be directly compared as they have

different scales [282]. A holistic approach to drought monitoring requires an investigation

of multiple indicators (precipitation, soil moisture, runoff, evapotranspiration, etc.). The

attractive feature of standardized indices is that they offer the opportunity to create sta-

tistically consistent indices based on precipitation (SPI), soil moisture (SSI), runoff (SRI),

relative humidity (SRHI), etc. However, a generalized framework for generating spatially

and temporally consistent drought indicators is essential in order to assess droughts based

on multiple climate variables that often have different distribution functions.

This chapter introduces the Standardized Drought Analysis Toolbox (SDAT) that offers a

generalized framework for deriving nonparametric univariate and multivariate standardized

indices. The methodology can be applied to different climate and land-surface variables

(precipitation, soil moisture, relative humidity, evapotranspiration, etc.) without having to

assume the existence of representative parametric distributions. This is particularly useful
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for drought information systems that offer data based on multiple drought indicators (e.g.,

[112, 202, 216, 271]). The same nonparametric framework can be used for deriving nonpara-

metric standardized multivariate (joint) drought indices that can describe droughts based on

the states of multiple variables. A multivariate drought model links individual indicators into

a composite model as an overall assessment of drought. This chapter explains the mathe-

matical concept behind SDAT, and provides example applications to different data sets. The

paper is organized as follows. After this introduction, the nonparametric methodology and

its differences with the original parametric model are described in Section 2. Example ap-

plications and results are presented in Section 3. The last section summarizes the findings

and makes concluding remarks.

2.2 Methodology

In the original SPI, the frequency distribution of precipitation is described using a two-

parameter gamma probability density function:

g(x) =
1

βαΓ(α)
xα−1e

−x
β (2.1)

where Γ(α) is the Gamma function, and x denotes precipitation accumulation. α and β are

the shape and scale parameters of the gamma distribution that can be estimated using the

maximum likelihood approach [71]. The cumulative probability G(x) can be simplified to
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the so-called incomplete cumulative gamma distribution function assuming t = x
β

[71]:

G(x) =
1

Γ(α)

∫ x

0

tα−1e−tdt (2.2)

Since Equation 2.2 is not valid for zero precipitation (x = 0), the complete cumulative

probability distribution, including zeros, can be expressed as: H(x) = q+(1−q)G(x), where

q, and 1− q are the probabilities of zero (x = 0), and non-zero (x 6= 0) precipitations. The

SPI is then computed by transforming H(x) to the standard normal distribution with a

mean of zero and variance of one [187]. A sequence of positive SPI indicates a wet period,

and a sequence of negative values represents a dry period.

Instead of the Gamma (or any other parametric) distribution function, the empirical prob-

ability can be used to derive a nonparametric standardized index. We propose to derive the

marginal probability of precipitation (and other variables) using the empirical Gringorten

plotting position [101]:

p(xi) =
i− 0.44

n+ 0.12
(2.3)

where, n is the sample size, i denotes the rank of non-zero precipitation data from the

smallest, and p(xi) is the corresponding empirical probability. Using this empirical approach,

one does not need Equations 2.1 to 2.2 to derive the parametric probabilities. The outputs
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of Equation 2.3 can be transformed into an Standardized Index (SI) as:

SI = φ−1(p) (2.4)

where φ is the standard normal distribution function, and p is probability derived from

Equation 2.3. One can also standardize the percentiles using the following commonly-used

approximation of Equation 2.4 [1, 210, 72]:

SI =


−
(
t− C0+C1t+C2t2

1+d1t+d2t2+d3t3

)
if 0 < p ≤ 0.5

+
(
t− C0+C1t+C2t2

1+d1t+d2t2+d3t3

)
if 0.5 < p ≤ 1

(2.5)

where c0 = 2.515517; c1 = 0.802583; c2 = 0.010328; d1 = 1.432788; d2 = 0.189269; d3 =

0.001308; and

t =



√
ln 1

p2

√
ln 1

(1−p)2

(2.6)

Several studies argue that a single drought index may not be sufficient to describe all aspects

of drought onset, persistence and termination [110, 68, 6, 148]. For example, (author?) [110]

illustrated that precipitation detects the drought onset earlier, while soil moisture describes

the drought persistence more reliably (see also, [117, 76]). The suggested nonparametric
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approach can be extended to higher dimensions to derive multivariate drought indicators.

Having two drought-related variables (e.g., X = precipitation and Y = soil moisture), the

bivariate distribution is defined by (author?) [111] as: pj = Pr(X ≤ x, Y ≤ y), where pj is

the joint probability of X and Y (e.g., precipitation and soil moisture).

Having the joint probability of two (or more) drought-related variables, the empirical proba-

bility can be derived using the multivariate model of the Gringorten plotting position intro-

duced by [340] pj(xk, yk) = mk−0.44
n+0.12

, where mk is the number of occurrences of the pair (xi, yi)

for xi ≤ xk and yi ≤ yk, and n is the sample size [111]. Similar to univariate drought indices,

the joint probability of X and Y can be standardized using Equation 2.4 or Equation 3.3

to derive a Multivariate Standardized Drought Index (MSDI = φ−1(pj)). This concept has

been tested and validated for precipitation and soil moisture for monitoring the 2012 United

States Drought [111].

The above univariate and multivariate nonparametric standardized approach can be used

with different variables, such as precipitation, soil moisture, and relative humidity. It should

be noted that there are other univariate and multivariate nonparametric methods that can be

used to derive nonparametric indicators (e.g., Weibull). For long-term data sets, necessary

for drought assessment, typically different empirical methods lead to similar results [300].

There are also alternative methods for deriving joint empirical probabilities such as the

Kendall τ [155, 90, 300] that can be used for deriving nonparametric multivariate indicators

based on multiple variables (e.g., MSDI).

2.3 Results

Since the probability distribution of precipitation is different at various climate conditions,

a parametric approach to SPI may lead to inconsistent results, particularly at large scales
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(continental to global). The reason is that in certain areas, a distribution function (e.g.,

gamma) may fit the data, while in another region, the choice of the distribution function

may not fit. As an example, Figure 2.1 displays the fit of the Gamma (left) and lognormal

(right) distributions to the Global Precipitation Climatology Project (GPCP; [4]) data from

1979-2012. The dark pixels refer to locations where the Kolmogorov-Smirnov test rejects the

null-hypothesis that the Gamma (left) or lognormal (right) distribution fits the precipitation

data.

An alternative option would be using multiple distributions and selecting one that passes

a goodness of fit test such as the Kolmogorov-Smirnov (KS). However, even in a multi-

distribution approach, the distribution tails [8] of SPI values would change across space,

as the best fitted distribution might be different from grid to grid. Sensitivity of the SPI

tails to distribution parameters [210], and hence differences at the tails of SPI across space,

may lead to inconsistent or biased interpretation of extreme droughts in different regions.

In a multi-distribution approach where the best choice of distribution changes across space,

the characteristics of extremes change as well. For example, in two locations with different

precipitation distribution functions, a SPI value may correspond to different occurrence

probabilities.
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Figure 2.1: Representativeness of the Gamma (left) and lognormal (right) distributions for describing
monthly precipitation accumulations. The dark pixels refer to locations where the Kolmogorov-Smirnov
test rejects the null-hypothesis that the Gamma (left) or lognormal (right) distribution fits the precipitation
data.
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Figure 2.2: Example Empirical (solid blue line) and parametric (dashed red line) 1-month (top panel),
6-month (middle panel), and 12-month (bottom panel) Standardized Precipitation Index (SPI).

To address the above limitation, and to provide statistically consistent and comparable

drought indices, the Standardized Drought Analysis Toolbox (SDAT) provides tools for

computing generalized univariate and multivariate standardized drought indices. Figure 2.2

shows example Empirical (solid blue line) and parametric (dashed red line) 1-month (top

panel), 6-month (middle panel), and 12-month (bottom panel) Standardized Precipitation

Index (SPI) based on the GPCP [4] data (location Lat 17.5N, Lon 110W). The time series

are primarily consistent, meaning the nonparametric approach can describe wet and dry

conditions reliably. However, there are differences in the tails (high and low values) where a
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parametric distribution may not be a good fit. It should be noted that similar to paramet-

ric indices, the nonparametric standardized drought indicators can also be converted to the

D-scale drought categories [286]. The D-scale offers 5 drought categories ranging from D0

(abnormally dry) to D4 (exceptional drought). Each category corresponds to a certain prob-

ability in the standard normal distribution and hence, the transformation is straightforward

(e.g., D4 corresponds to an event with approximately 2% occurrence probability).

We argue that the suggested nonparametric approach can be used to generate spatially

and temporally consistent drought maps based on multiple drought-related variables. For

example, in addition to the commonly used SPI and SSI, one can obtain Standardized

Relative Humidity Index (SRHI) to provide additional information on wet and dry conditions.

For September 2011, Figures 2.3(a) to 2.3(f) display nonparametric 3-month and 6-month

SPI, SSI, and SRHI. In Figure 2.3, the SPI and SSI are generated using the precipitation and

soil moisture from the Modern Era Retrospective-Analysis for Research and Applications-

Land (MERRA-Land; [245]), whereas the SRHI is derived based on the NASA Atmospheric

Infrared Sounder (AIRS; [36]) Version 6 relative humidity observations.

In 2011, the Texas-Mexico Drought ([123]) was a major event that let to significant economic

losses. As shown, the SPI, SSI and SRHI capture the event at both 3-month and 6-month

scales. The SPI and SRHI provide a meteorological perspective, while SSI offers an agricul-

tural perspective. Depending on the application in hand, drought is described using different

indicator variables such as soil moisture or precipitation [68]. The nonparametric nature of

the suggested framework allows it to derive drought information from different variables

(precipitation, soil moisture, relative humidity, etc.) in a consistent and comparable scale.

It is worth pointing out that different drought indicators communicate different information

about droughts. For instance, a meteorological drought resulting from precipitation deficit

may develop rapidly, while a deficit in soil moisture (agricultural drought) in response to

precipitation deficit may occur with some time lag. For this reason, the SPI often detects the
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drought onset earlier, while SSI describes the drought persistence more reliably [110]. The

SDAT allows standardizing various climatic and land-surface variables to assess droughts

based on different perspectives.

In Figure 2.3, SPI and SSI are obtained using 33 years (1980-2012) of climatology, while

SRHI is generated using only 10 years (2002-2012) of data. Ideally, drought assessment

should be based on long-term data (30 years or more). The purpose of showing SRHI is to

demonstrate that while relative humidity is not often used for drought analysis, the SDAT

can be used to generate SRHI which provides valuable drought information. Also, this

example shows that SDAT allows comparing multiple drought indicators based on different

variables that may have different distributions.

As mentioned earlier, this framework allows combining multiple data sets for joint (mul-

tivariate) analysis of drought based on multiple input variables. The SDAT includes the

Multivariate Standardized Drought Index (MSDI) concept that can be used with different

drought related variables. The concept of MSDI has been quantitatively validated against

other drought indicators and reference data for the 2007 and 2012 United States Droughts

in (author?) [111]. For this reason, in this paper, only example outputs of the SDAT are

presented. Figures 2.3(g) and 2.3(h) show nonparametric 3-month and 6-month MSDI

for September 2011, derived from MERRA-Land precipitation and soil moisture data. The

MSDI basically combines information from the first two rows in Figure 2.3, and provides

composite maps of overall drought conditions based on precipitation and soil moisture (com-

posite information on meteorological and agricultural drought).
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Figure 2.3: Nonparametric 3-month and 6-month Standardized Precipitation Index (SPI), Standardized Soil
Moisture Index (SSI), and Standardized Relative Humidity Index (SRHI) for September 2011.

The most attractive feature of the SDAT is providing standardized indices that are statisti-

cally, spatially and temporally consistent. It is worth noting that standardized indices can

be computed for different time scales (1-, 3-, 6-, 12-month). Empirical distributions are built

based on the ranks of data points instead of their actual values. Given that drought anal-

ysis is typically based on relative departures from the climatology, empirical distributions

are appropriate. However, the sample size should be relatively large, to avoid misleading

probabilities. As shown in Figure 2.2, for a 33-year monthly record (33 × 12 values), the
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empirical and parametric estimates are consistent for different variables. For very short data

records (e.g., less than 10 variables), which is not common in drought assessment, using an

empirical distribution can lead to misleading probabilities.

2.4 Conclusion

In this chapter, Standardized Drought Analysis Toolbox (SDAT) was introduced. Drought

mitigation and response plans often rely on information based on different indicator vari-

ables and drought triggers. However, many drought indicators are not directly statistically

comparable [282]. The presented nonparametric framework of the Standardized Drought

Analysis Toolbox (SDAT) offers a generalized approach to develop standardized and statis-

tically consistent drought indicators. The results show that a single distribution function

may not fit the global precipitation data and hence, the original parametric SPI may not

be applicable. On the other hand, using different distribution functions lead to different tail

behavior and thus inconsistencies in characteristics of extremes across space. The SDAT

methodology standardizes the marginal probability of drought-related variables (e.g., pre-

cipitation, soil moisture, relative humidity) using the empirical distribution function of the

data. The approach does not require an assumption on representativeness of a parametric

distribution function for describing drought-related variables. It is also worth pointing out

that unlike parametric indices, the suggested nonparametric framework does not require pa-

rameter estimation and goodness-of-fit evaluation. This means that the SDAT framework is

computationally much more efficient than parametric indicator (e.g., original SPI), especially

in large scale (continental/global) studies where parameter estimation and goodness-of-fit

evaluation needs to be performed at pixel scale. Defining drought is fundamental to both

drought monitoring and prediction. Drought is a complex phenomenon that can be defined

based on different climatic or land-surface variables. The suggested framework can be applied
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to different drought-related variables to study droughts from multiple viewpoints. We show,

for example, that by standardizing relative humidity, which is not a common drought indi-

cator, one can obtain drought information consistent with common drought indicators (e.g.,

SPI). Multiple viewpoints on droughts are essential for planning and management, as some

indicators (e.g., SPI) detect droughts earlier while others describe drought persistence (e.g.,

SSI) more reliably [110]. The SDAT allows standardizing different drought-related variables

for a more comprehensive assessment of droughts. There are several drought monitoring

systems (e.g., [112, 86, 269, 235, 308, 216]) that provides data based on one or more climatic

variables. In such systems, SDAT can offer drought information based on multiple data

sets in a consistent way. The SDAT provides tools for not only univariate drought analysis,

but also multivariate drought assessment. Multivariate indicators can be used to provide

composite drought maps (e.g., composite meteorological-agricultural-hydrological drought

conditions). Similar to the commonly used SPI, univariate and multivariate standardized

indices can be obtained for different temporal scales (e.g., 1-, 3-, 6-, 12-month). This would

allow assessing trends and patterns of droughts at different temporal and spatial scales.

In addition to the nonparametric indices, the SDAT includes the traditional parametric ones

for evaluation and cross-comparison. The source code of this MATLAB toolbox is freely

available to the public, and interested readers can request a copy of the software from the

authors.
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Chapter 3

Improving Drought Onset Detection

Using Satellite Relative Humidity

Information

This Chapter has been published in Advances in Water Resources, Citation: Farahmand A.,

AghaKouchak A., Teixeira J., (2015), A Vantage from Space Can Detect Earlier Drought On-

set: An Approach Using Relative Humidity, Scientific Reports , 5, 8553; doi: 10.1038/srep08553.
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3.1 Introduction

Droughts can be described and assessed using different climatic variables such as precipita-

tion, runoff and soil moisture [68]. For example, a meteorological drought is often described

as a deficit in precipitation, an agricultural drought is expressed as a deficit in soil moisture,

whereas a hydrological drought typically refers to below average surface or sub-surface water

[327]. Given that droughts can be described relative to different variables, numerous drought

indices have been developed based on one or more climatic variables [208, 329]. For example,

the Standardized Precipitation Index (SPI [187, 115]) is widely used as an indicator of mete-

orological drought, while the Standardized Soil Moisture Index (SSI [111]) and soil moisture

percentiles have been used for agricultural drought monitoring. A number of multivariate

or multi-index indicators have also been developed such as the Joint Deficit Index [148] and

the Multivariate Standardized Drought Index [110].

Drought monitoring indices show substantial variation in their ability to detect drought onset

and termination [151, 240]. Generally, precipitation measures detect drought onset earlier

than other variables such as soil moisture and runoff [200, 110] because those variables have

a delayed response to precipitation deficits. Consequently, the SPI detects the drought onset

earlier than the SSI and soil moisture percentiles, and is thus more suitable for drought onset

detection [200]. This chapter explores whether even earlier drought onset detection can be

accomplished by factoring in the meteorological variables that influence precipitation. It is

hypothesized that near surface air relative humidity (hereafter, relative humidity) can detect

drought onset earlier than indications provided by precipitation signals. Relative humidity

is an important climate variable defined as the ratio of air vapor pressure to the saturated

vapor pressure. Precipitation and relative humidity are related to each other in the sense

that precipitation is not expected at low relative humidity [184].

Limitations in ground-based observations [69] make satellite observations important for mon-

50



itoring drought-related variables [27, 13, 73, 214]. These limitations include uneven distri-

bution of ground-based observations, temporal inconsistencies and spatial inhomogeneity in

the records, and lack of observations in remote regions [69]. The Evaporative Stress Index

[27], the Global Terrestrial Drought Severity Index [208], and the Global Integrated Drought

Monitoring and Prediction System (GIDMaPS [112]) all highlight the value of remote sensing

observations for monitoring drought.

Drought onset can be detected by standardizing relative humidity data via the relative hu-

midity from the Atmospheric Infrared Sounder (AIRS [36]) satellite mission. Importantly,

this detection can be earlier than that indicated by measures of precipitation and soil mois-

ture. The mission’s Version 6 data sets are obtained from two instruments: The Atmospheric

Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). AIRS is an

infrared spectrometer and radiometer with 2378 spectral channels ranging 3.7-15 µm. AMSU

is a 15-channel microwave radiometer covering 23 to 89 GHz [36, 96]. AIRS’s monthly surface

relative humidity (over equilibrium phase) is utilized for drought onset detection (Version 6,

Level 3 data). The relative humidity data are available globally at a 1 ◦ spatial resolution

(2002-present). AIRS products are available from ascending and descending tracks, which

refer to the direction of movement of the sub-satellite point in the satellite track. We used the

descending AIRS data, in which the direction of the movement is from Northern Hemisphere

to Southern Hemisphere, with an equatorial crossing time of 1:30 AM local time [292]. To

evaluate drought detection using relative humidity, the SPI and SSI data from GIDMaPS

[112] are used as additional indicators.

3.2 methods

Standardized drought indices are often derived by normalization after fitting a parametric

distribution function to the data [187]. However, a single parametric distribution may not fit
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data from different climatic regions [239]. In this study, the Standardized Relative Humidity

Index (SRHI) is proposed using a non-parametric standardization approach.

First, the empirical probabilities of the AIRS relative humidity data are computed for each

grid, using the empirical Gringorten plotting position [101]:

p(RHi) =
i− 0.44

n+ 0.12
(3.1)

Where i is the rank of relative humidity (RH) data from the smallest, and n is the sample

size. In this study, an empirical approach is used to avoid any assumption on the underlying

distribution function of relative humidity data across space [111]. The empirical probabilities

of relative humidity (p(RHi)) is then standardized as:

SRHI = Φ−1(p(RHi)) (3.2)

Where Φ−1 is the inverse standard normal distribution function with the mean of zero and

standard deviation of one. Here, the standardization is based on the following approximation

[72, 210]:

SRHI =


−
(
t− C0+C1t+C2t2

1+d1t+d2t2+d3t3

)
if 0 < p(RHi) ≤ 0.5

+
(
t− C0+C1t+C2t2

1+d1t+d2t2+d3t3

)
if 0.5 < p(RHi) ≤ 1

(3.3)
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where c0 = 2.515517; c1 = 0.802583; c2 = 0.010328; d1 = 1.432788; d2 = 0.189269; d3 =

0.001308; and

t =



√
ln 1

p(RHi)2
if 0 < p(RHi) ≤ 0.5

√
ln 1

(1−p(RHi))2 if 0.5 < p(RHi) ≤ 1

(3.4)

A negative SRHI is an indication of below average (climatology) relative humidity, and is

proposed as a measure of dryness. One attractive feature of SRHI is that, similar to SPI,

it can be derived for different time-scales (e.g., 1-, 3-, 6-month SRHI). For consistency and

cross-comparison, the three indicators (SRHI, SPI and SSI) are computed using the same

non-parametric approach and for a 3-month time scale.

Typically, drought onset assessment is based on a certain drought threshold. In this study,

the D0-Drought (Abnormally Dry[286]) condition is used as the drought onset threshold,

which corresponds to a drought event with an approximately 30% probability of occurrence.

As an example, the global SPI, SSI and SRHI maps for August 2010 are presented in Figure

3.1a, Figure 3.1b, and Figure 3.1c respectively. As shown, all three indices captured the

Russian drought. This event and its accompanying heat waves resulted in thousands of

casualties and significant economic losses in Russia and eastern Europe [186]. The Amazon

drought was another major event in 2010, which led to substantial water level decreases in

major Amazon tributaries [185]. At the other extreme, August 2010 was abnormally wet in

eastern Australia. These patterns of wet and dry conditions are reflected on all three indices.

Overall, Figure 3.1 illustrates that SRHI is consistent with SPI at wet and dry conditions,

though there are discrepancies primarily around neutral condition (SPI and SRHI around

0).
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Figure 3.1: Global Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI), and
Standardized Relative Humidity Index (SRHI) for August 2010. This map was generated using MATLAB.
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To analyze drought early detection, we investigated time series of the SPI, SSI and SRHI

over three major drought events: the 2010 Russian drought (Figure 3.2a), the 2010-2011

Texas-Mexico drought (Figure 3.2b), and the 2012 United States drought (Figure 3.2c).

As we show, in the 2010 Russian drought, the SRHI indicates the onset nearly two months

before both the SPI (Figure 3.2a - compare indices relative to the D0 threshold identified

by the green horizontal line). Note that for a more severe drought condition (e.g., a lower

threshold of -1), the SRHI detects the drought’s onset even earlier.

The same drought indicators over one location in the Texas-Mexico Drought are displayed

in Figure 3.2b. This series confirms that the SRHI identifies drought onset earlier than the

other indicators. Finally, Figure 3.2c shows the SRHI, SPI and SSI over a specific location

in an area affected by the 2012 United States drought. The 2012 drought was one of the

most devastating events in the modern times and led to billions of U.S. dollars in economic

damage. This event in particular affected crop development and early detection could have

reduced agricultural losses [55]. As shown in Figure 3.2c, the SRHI detects the drought onset

3 to 4 months earlier than SPI. Such early detection in the growing season could potentially

reduce the effects of droughts on agriculture and society [55].

In the top three panels in Figure 3.2, the SRHI is the earliest drought detector, followed by

SPI and SSI. The results are consistent with previous studies indicating that SPI detects the

drought onset earlier than SSI. However, the results also show that remotely sensed relative

humidity can be used for even earlier drought detection. While the SRHI does show the

potential to advance drought early detection, in some cases it may not detect the drought

onset earlier than the SPI (e.g., see Figure 3.2d where the SRHI detects the drought onset

later than the SPI). Nonetheless, in all cases, the SRHI is consistent with the SPI and SSI

on showing the drought signal.

To assess the potential capability of AIRS relative humidity data in drought detection, we

statistically evaluated the global SRHI values against SPI during 2002 - 2013 period. Figure
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Figure 3.2: Time series of 3-month SPI, SSI and SRHI for several locations in areas affected by the 2010
Russian drought, 2010-2011 Texas-Mexico drought, and 2012 United States drought. This map was generated
using MATLAB.
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3.3a presents the probability of drought detection. Figure 3.3b and Figure 3.3c shows the

false drought ratio and missed drought ratio respectively. Figure 3.3a shows the fraction of

the reference data (i.e., negative SPI) identified correctly by the SRHI (perfect score =1),

whereas figure 3.3b describes the fraction of drought events identified by SRHI, but not

confirmed with the SPI (perfect score =0) [11]. Figure 3.3c displays the fraction of drought

events identified by SPI, but missed in SRHI (perfect score =0). Given that there are limited

number of droughts in each pixel during 2002-2013, the global statistics is derived for each

10×10 pixels to ensure the statistics is reliable.

An important question is in cases where a drought was detected by both SRHI and SPI,

what fraction of events is detected earlier by SRHI. To answer this question, the drought

onset based on SRHI (DOSRHI) is evaluated against that of SPI (DOSPI). To avoid unreli-

able statistics, only drought events longer than three months have been considered. Figure

3.4a shows the probability of drought detection (i.e., fraction of detected drought) when

DOSRHI ≤ DOSPI . As shown, in most parts of the globe this fraction ranges between 0.5

to 0.8, with the global average being approximately 0.6 (i.e., 60% of all events). Figure

3.4b displays the mean lead time for each pixel based on SRHI relative to SPI. The figure

indicates that the mean lead time ranges between 1 to 3 months with the global average

being approximately 1.9 months. The results presented in Figures 3.3 and 3.4 do not show

a strong regional/geographical pattern. This indicates that in most parts of the world the

SRHI, combined with other indicators, can potentially improve early drought detection.

3.3 Conclusion

This chapter introduced a new drought monitoring index , Standardized Relative Humidity

Index (SRHI) was introduced. SRHI detects drought onset with the average of around 2

months earlier than SPI. SRHI’s main limitation is the relatively short length of record
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Figure 3.3: Probability of drought detection (a), false drought ratio (b), and missed drought ratio (v) for
the SRHI relative to SPI. This map was generated using MATLAB.

58



Figure 3.4: Probability of drought detection (i.e., fraction of detected drought) when Drought Onset (DO)
based on SRHI is less or equal to that of SPI (DOSRHI ≤ DOSPI) (a), mean lead time based on SRHI
relative to SPI (months) (b). This map was generated using MATLAB.
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(2002-present). However, there are other data sets with similar length of record that provide

valuable drought information (e.g., GRACE observations, and Evaporative Stress Index

data). SRHI can provide valuable information on current conditions but it cannot be used

to put an extreme event in historical perspective. In a recent study, a Bayesian algorithm

is proposed for combining multiple precipitation data to create a long-term climate data

record [13]. Similar algorithms could be used to extend AIRS relative humidity data by

combining it with reanalysis data sets (e.g., Modern-Era Retrospective Analysis for Research

and Applications [249]). Efforts are underway to create a long-term and real-time relative

humidity data set for drought monitoring and assessment. On the other hand, the current

resolution (1o) of the relative humidity data only allows regional to continental scale drought

assessment.

Drought monitoring should be based on multiple sources of information. The proposed SRHI

is not meant to replace the currently available indicators. Rather, it should be used alongside

other drought indicators. This paper does not claim that SRHI alone is always sufficient

for early drought detection. In fact, previous studies highlight the limitations of individual

drought indicators [240, 282]. Having an additional source of information based on relative

humidity can improve our understanding of the drought onset and development. Further-

more, several studies argue that statistical seasonal drought prediction is very sensitive to

the initial meteorological and land-surface conditions [5, 6, 183]. Early drought detection

can potentially lead to improvements in statistical seasonal drought prediction by providing

additional information on the initial meteorological conditions. This issue, however, requires

more in-depth research in the future.

Drought early onset detection is fundamental to local and regional mitigation plans, espe-

cially in the agriculture and water resources sectors. A water manager may need drought

information months in advance for water resource planning, while for a farmer even few

weeks of lead time is very important. Early detection, even by few weeks/months, allows
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farmers and local agencies to take adaptive measures that include purchasing less fertilizer

and increasing insurance coverage, especially before or early in the growing season. The

results highlight that the AIRS near surface air relative humidity data can potentially be

used for drought early warning if integrated into currently available systems such as the U.S.

Drought Monitor [286] or GIDMaPS [112].
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Chapter 4

Improving Multi-Index Drought

Monitoring Using Satellite

Observations

4.1 Introduction

Droughts are considered as one of the main environmental catastrophes worldwide, which

have economical, societal, agricultural impacts [320] [329] [197] [228] . Droughts are generally

categorized into meteorological, agricultural and hydrologic [68]. A metrological drought is

defined as a deficit in precipitation, and agricultural drought is defined as deficit in soil mois-

ture and hydrological drought is defined as below average surface or sub-surface flow [327]. In-

dices have been designed to investigate various kinds of drought. For example, Standardized

Precipitation Index (SPI) is one of the mostly common used indices for monitoring meteoro-

logical drought [188]. SPI is derived using a parametric [188] or a non-parametric approach

[111]. Standardized Relative Humidity Index (SRHI) monitors meteorological drought using
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relative humidity values [79]. Precipitation is often used to detect early signals of drought

as precipitation can detect drought signals earlier than other indicators such as soil mois-

ture [200]. [79], however, argues that relative humidity can detect drought signals earlier

than precipitation as precipitation is not expected in low relative humidity while high pre-

cipitation values do not necessarily lead to precipitation. Standardized Soil Moisture index

[111], is used to measure agricultural drought while Multivariate Standardized Drought Index

(MSDI) [110], measures agro-meteorological drought using precipitation and soil moisture.

Various global and regional drought monitoring systems have been developed. For example,

Global Integrated Drought Monitoring and Prediction System (GIDMaPS) [112] provides

drought information based multiple data sets and indicators (i.e., meteorological drought,

agricultural drought, and composite agro-meteorological information). University of Wash-

ington (UW) Experimental Surface Water Monitor for the Continental US uses updates of

soil moisture, runoff, and snow water equivalent to show drought severity maps [334]. UW

Drought Monitoring System for Washington State uses near real time hydrologic conditions

on Washington State to monitor current drought conditions [274]. US Drought Monitor

(USDM) incorporates climate and water expert inputs for drought monitoring [285]. Prince-

ton University produces a drought monitoring and forecasting system that integrates at-

mospheric and hydrologic processor (VIC) to monitor and forecast droughts [335]. Also

Princeton University has developed a flood and drought monitoring system for Africa.

Drought, especially combined with high temperatures, increases the atmospheric evaporative

demand, typically resulting in higher Evapotranspiration (ET) rates. ET can be derived

using a satellite-based image processing techniques called Mapping evapotranspiration at

high resolution with internalized calibration (METRIC) [18]. Several drought indicators have

been developed taking into account evapotranspiration (ET). Standardized Precipitation

Evapotranspiration Index (SPEI) provides drought information using both precipitation and

potential evapotranspiration (PET) [309]. The methodology is similar to SPI, but it relies
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on the difference between precipitation and potential evapotranspiration. Crop Water Stress

Index (CWSI) is the ratio of actual ET (AET) to potential ET (PET) [135]. Water Deficit

Index (WDI) is the ratio of AET rate to PET rate. Evaporative Stress index (ESI) uses

the Atmosphere-Land Exchange Inverse (ALEXI) model to quantify anomalies in actual to

potential evapotranspiration [27].

Droughts and high evapotranspiration rates (e.g., caused by high temperatures) can be

devastating for forest health and also agricultural [15] [180] [59]. High ET values increase

tree mortality rates. For example, recent droughts and heat-induced tree mortality posed

increasing risk for forest health [15]. Hot droughts (droughts and high temperatures) have

increased vulnerability of forests to tree mortality [14] [2]. End of the dry season, land surface

temperature has been identified as an indicator of forest cover change in tropical regions [305].

Tree productivity and tree survival have declined under increases in frequency, duration and

severity of drought and heatwaves associated with climate change and variability [15].

As shown in Chapter 3, relative humidity can be a good indicator for early drought detection

along with precipitation. In this Chapter, we will explore integrating both temperature and

relative humidity for forest stress analysis since both are closely related to evapotranspiration.

Vapor Pressure Deficit (VPD) combines temperature and humidity and can potentially be

use for drought monitoring [41]. Evapotranspiration has a direct relationship with VPD in

the sense that large VPD values are associated with large evapotranspiration rates. High

VPD is identified as an important driver of the rapid development and evolution of the 2011

Texas and the 2012 Great Plains [41]. Historical forest drought-stress index (FDSI) indicates

that tree mortality is closely associated with summer VPD and winter precipitation [330].

If VPD continues to increase, the mean FDSI values will exceed the most severe droughts in

the past 1000 years [330].

High ET (and atmospheric evaporative demand) rates have also significant impacts on wild-

fires. Western United States wildfire has increased over the past decades [324]. Report show
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that fires in savannas and evergreen forests increased during drought events in 2005, 2007

and 2010 [52]. Most wildfire increases have been occurred in mid-elevation where fire risks

are affected by spring and summer high temperatures. High VPD values and wildfire data

show strong correlation in boreal forest ecosystems [261]. Both wildfire and forest health

are related to temperature and evaporative demand. For this reason, VPD appears to be a

good composite indicator to link meteorological conditions (e.g., temperature and humidity,

evaporation) to ecosystem response (i.e., forest health).

Various studies have developed indicators to monitor vegetation health under drought condi-

tions [297]. The first Advanced Very High Resolution Radiometer (AVHRR) instrument was

launched in 1979 which revolutionized vegetation and land cover assessment by observing

spectral reflectance. Various vegetation indices have been developed to assess vegetation

health. The normalized difference vegetation index is the first and most commonly used

one developed by [256]. NDVI measures the level of vegetation greenness using red (R) and

near-infrared (NIR) portions of electromagnetic spectrum [256]. Other vegetation indices

have been developed: Vegetation Condition Index (VCI) [159] which takes into account min-

imum and maximum amounts of NDVI for scaling NDVI. This enables identifying short

term, localized droughts from widespread long term droughts [156]. Temperature Condi-

tion Index (TCI) represents drought as an indicator of temperature. It is derived from

measurements of remotely sensed surface brightness temperature [157]. The combination

of VCI and TCI provides valuable results for detecting agricultural droughts. One of the

mostly used indices is Vegetation Health Index (VHI) which combines VCI and TCI [157].

Global Agricultural Drought Monitoring and Forecasting System provides drought informa-

tion (GADMFS) (http://gis.csiss.gmu.edu/GADMFS/) , along with NDVI and VCI shows

drought conditions. It is a prototype of the Global Earth Observation System of Systems

(GEOSS) with agricultural drought monitoring skills. Vegetation Drought Response Index

(VegDRI) integrates vegetation and climatic data to produce vegetation drought response

maps [45].
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Western United States has been hit by consecutive droughts since 2010 [9]. Linking cli-

mate condition to ecosystem response is important. To address this challenge we need more

advance multi-sensor multi-index methods to link climate information to vegetation/forest

response. One of our goals is to develop a framework for combining multiple different indi-

cators to advance the field in this area. We have explored three different approaches to link

climate anomalies with NDVI response (i.e., investigating the impacts of droughts on forest

health):

• Conditional probability of NDVI on high VPD percentiles;

• Conditional probability of NDVI on high temperature and low relative humidity per-

centiles;

• Conditional probability of NDVI on low precipitation percentiles.

4.2 Data

NDVI data were derived from National Oceanic and Atmospheric Administration Center for

Satellite and Research (NOAA-STAR). NOAA STAR provides three AVHRR derived vege-

tation health indices: raw NDVI, noise reduced NDVI and VHI (vegetation health index).

In this study, noise reduced (smoothed) NDVI were used. This data is available globally and

with the spatial resolution of 16 km and temporal resolution of 7 days since 1981. Forest

map of the United States was derived from Forest Inventory and Analysis National Pro-

gram. Monthly Temperature and relative humidity were derived from Atmospheric Infrared

Sounder (AIRS [36]) Version 6 Level 3 satellite mission. The data are available at 1 ◦ spatial

resolution and are available since the launch of the AIRS satellite in September 2002. AIRS

data sets are derived from two instruments: The Atmospheric Infrared Sounder (AIRS) and

the Advanced Microwave Sounding Unit (AMSU). AIRS is an infrared spectrometer and ra-
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diometer with 2378 spectral channels ranging 3.7-15 µm. AMSU is a 15 channel microwave

radiometer covering 23 to 89 GHz. AIRS products are available from ascending and descend-

ing tracks, which refer to the direction of movement of the sub-satellite point in the satellite

track. In this study, the descending AIRS data, in which the direction of the movement

is from Northern Hemisphere to Southern Hemisphere, with an equatorial crossing time of

1:30 AM local time [97] was used. Precipitation data were derived from Modern-Era Ret-

rospective analysis for Research and Applications (MERRA-Land) [113] [244] . Monthly

MERRA-Land data are available in 2/3 ◦ longitude, 1/2 ◦ latitude and are available since

1980.

4.3 Methodology

As data sets were in different spatial and temporal scales, all datasets had to be converted to

a consistent spatial and temporal resolution. The spatial resolution of MERRA-Land (2/3 ◦

longitude, 1/2 ◦ latitude) was used as reference. NDVI 7-day data were converted to monthly

in order to be consistent with other datasets. AIRS temperature and relative humidity have

relatively short length of record (only from late 2002). For this reason, we have focused on

2003 to 2014. As the aim of this study was to investigate the effects of droughts in western

United States forests, all datasets were masked into forest areas (-115 to -120 longitudes and

30 to 50 latitudes). Temperature and relative humidity were combined into VPD using the

following formula:

V PD = c1× exp

(
c2× Tmean
c3 + Tmean

)
+ c1× exp(

c2× Tdmean
c3 + Tdmean

) (4.1)

where c1=0.611 kPa, c2=17.5, c3=240.978 ◦ C, Tmean surface air tempreture ◦ C, Tdmean
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dew point tempreture ◦ C, and VPD in kPa. Low VPD values indicate favorable conditions

while high VPD indicate stressful conditions for plants.

After creating consistent datasets, a nonparametric method was used to determine the em-

pirical ranks of the NDVI time series for each grid:

pr(xi) =
i

n
(4.2)

Where i is the rank of NDVI from the smallest and n is the length of the sample. In

this study, an empirical approach was used to avoid any assumption on the underlying

distribution function of NDVI data across space [244]. Lower values of probability indicate

stressful conditions and higher values indicate non stressful conditions for vegetation health

respectively. The distribution of Pr(NDVI) for all forest locations were calculated in three

scenarios:

1. (Top 15 percentile VPD) and (Top 15 percentile T and bottom 15 percentile RH) for

summer months (June, July and August)

2. (Top 15 percentile VPD) and (Top 15 percentile T and bottom 15 percentile RH) for

growing season (April to September)

3. Bottom 15 percentile Precipitation for winter (January, February, March)

For the purpose of investigating the effects of recent droughts on vegetation health, two time

periods were selected. First time period was from 2003 till 2010 and the second one was

from 2003 till 2014 which includes 2011-2014 recent drought period. For all three scenarios,

Pr(NDVI) distribution of first and second time period were compared with each other. The

methodology is illustrated in Figure 4.1
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Figure 4.1: A schematic view of the methodology for assessing the effects of droughts on forest health

4.4 Results

Figure 4.2 shows the Pr(NDVI) , Pr(VPD), Pr(T) and Pr(RH) for a wet summer (Au-

gust 2006) and a warm summer (August 2013) month. High Pr(VPD) and Pr(T) indicate

unfavorable conditions, while low Pr(RH) and Pr(NDVI) are indicators of unfavorable con-

ditions. For each cell, all probabilities have been derived using Equation 4.2. As indicated,

in August 2006, Pr(VPD), Pr(T) and Pr(NDVI) are in non-stressed zone (blue zone) in most

of the locations. On the other hand, in August 2013, Pr(VPD), P(T) and Pr(NDVI) are in

red zone (drought zone) in most locations and in agreement with each other. In addition,

Figure 4.2 indicates that VPD is largely influenced by temperature. 4.3 shows Pr(P) and

Pr(NDVI) for a wet winter (March 2006) and a warm winter (March 2013) month. In this

case, empirical precipitation ranking is in agreement with empirical NDVI ranking for most

of places. Pr(P) and Pr(NDVI) are high (wet) in March 2013 while Pr(P) and Pr(NDVI)

are low (dry) in March 2006.
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Figure 4.2: Pr(VPD), Pr(T), Pr(RH) and Pr(NDVI) for a wet (August 2006) and a warm month (August
2013)

Figure 4.4 shows the results of the first approach. In the top panel, the blue and the red

time series show the distribution of all summer NDVI probabilities in top 15 percentile VPD

for period 1 (2003-2010) and period 2 (2003-2014) respectively. The horizontal axis indicates

the probability of NDVI and the vertical axis indicates percentage of data in corresponding

NDVI probability. The hatched yellow area show the change in the area under the graph

from period 1 to period 2 between 0.2 and 0.4 NDVI probability. As shown in Figure 4.4

, the area under the red graph has increased substantially compared to the blue graph in

the stressed forest conditions. The bottom panel shows the distribution of summer NDVI

probabilities in top 15 percentile temperature and bottom 15 percentile relative humidity.

As shown, the bottom panel looks similar to the top panel. Similar to the top panel, the

area under the curve has increased from period 1 to period 2 between 0.2 and 0.4 NDVI

probabilities. Overall, this figure indicates that the effects of recent droughts on forest health
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Figure 4.3: Pr(P) and Pr(NDVI) for a wet (March 2006) and a warm (March 2013) month

can be detected through the changes in VPD, temperature and relative humidity during the

summer period. Also, evaluating the NDVI probabilities conditioned on VPD alone or the

combination of temperature and relative humidity lead to almost similar results.

Figure 4.5 shows the results of the second scenario. The top panel shows the distribution

of all growing season NDVI probabilities in top 15 percentile VPD for period 1 (2003-2010)

and period 2 (2003-2014) respectively. The bottom panel indicates the distribution of all

growing season NDVI probabilities in top 15 percentile temperature and bottom 15 percentile
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relative humidity for period 1 and period 2 respectively. As shown, both top and bottom

panels show similar time series to each other. The hatched yellow area show the change in

the area under the graph from period 1 to period 2 between 0.1 and 0.4 NDVI probability.

As shown in Figure 4.5 , the area under the red graph has increased substantially compared

to the blue graph in the stressed forest conditions for both top and bottom panels . This

shows that temperature, humidity and VPD can be used as an indicator for assessing the

effects of droughts on forests during the growing season in addition to summer period. Also,

similar to Figure 4.4, assessing the NDVI probabilities conditioned on VPD alone or the

combination of temperature and relative humidity lead to similar outputs.

Figure 4.6 shows the results of the third scenario. The blue and the red time series show

the distribution of all winter NDVI probabilities in bottom 15 percentile precipitation for

period 1 (2003-2010) and period 2 (2003-2014) respectively. Similar to Figure 4.4 ,the

hatched yellow area show the change in the area under the graph from period 1 to period 2

between 0.1 and 0.4 NDVI probability. As shown in Figure 4.6, the area under the red graph

has increased substantially compared to the blue graph in the stressed forest conditions .

Unlike the first scenario that VPD was a good indicator for assessing the effects of droughts

on forests in summer, empirical precipitation ranking can be used to detect the effects of

droughts on forest health during the winter period.

4.5 Conclusion

This chapter proposes multi-index frameworks for assessing drought impacts on forest health

by linking climate information to vegetation response. Studies show that droughts have

increased the tree mortality and productivity rates as well as wildfire. Normalized Difference

Vegetation Index (NDVI), which is a a measure of greenness or photosynthesis activity of

plant, has been widely used for ecosystem response assessment. However, by the time NDVI
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shows drought, the system has been under stress for some time. NDVI depends on different

climate variables over different periods of time. Here, we use a multi-index approach to

link temperature and relative humidity that play a key role in warm seasons, by affecting

vegetation health as they influence the evapotranspiration (ET) rate. The combined effect

of temperature and relative humidity can be considered by using the vapor pressure deficit

(VDP). During summer months and growing season, specifically, high temperatures and low

relative humidity values can have devastating impacts on vegetation. High temperatures pose

high levels of stress on photosynthetic activities of plants. Low levels of relative humidity

increase plant transpiration rate causing water deficits in the plant. During the winter period,

on the other hand, low precipitation impacts the vegetation greenness.

For this analysis, a nonparametric method was developed to determine the empirical ranks of

the NDVI time series for different climatic conditions. The distribution of NDVI probability

values in high summer (and growing season) VPD and low winter precipitation percentiles

were calculated. The results show that probabilities of NDVI conditioned on top 15 percentile

VPD in summer (and growing season) and bottom 15 percentile precipitation in winter

have increased in stressful vegetation health conditions. However, they have not changed

significantly in non-stressful vegetation conditions. For the summer and growing season,

same analysis was performed conditioned on top 15 percentile temperature and bottom 15

percentile relative humidity instead of VPD. The results show almost identical outputs with

the VPD condition. This indicates that during summer period and growing season in which

precipitation is low, temperature and relative humidity conditions play a significant role in

vegetation greenness and health. However, in winter that temperature and VPD values are

low, precipitation plays the key role in vegetation greenness. One of the main limitations

of this work is the short length of AIRS temperature and relative humidity record. AIRS

provides real-time relative humidity data but with short length of record. Other temperature

and humidity datasets such as MERRA provide longer datasets but with a couple of months

of delay. Future work includes assessing the effects of droughts on various vegetation covers
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including various types of forest trees. As shown in Chapter 3, relative humidity can detect

drought onset earlier than other climatic variables. With the advantage of AIRS in providing

real time humidity data, earlier signals of drought could be helpful in providing earlier signals

of vegetation stress.
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Figure 4.4: Top: Distribution of summer NDVI probabilities in top 15 percentile VPD. Bottom: Distribution
of summer NDVI probabilities in top 15 percentile Temperature and bottom 15 percentile Relative Humidity
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Figure 4.5: Top: Distribution of growing season NDVI probabilities in top 15 percentile VPD. Bottom:
Distribution of growing season NDVI probabilities in top 15 percentile Temperature and bottom 15 percentile
Relative Humidity
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Figure 4.6: Top: Distribution of winter NDVI probabilities in lower 15 percentile precipitation
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Chapter 5

Summary and Conclusions

The overarching goal of this dissertation was to improve remote sensing of drought through

(a) developing a generalized framework for creating drought information from satellite obser-

vations; (b) integrating satellite remote sensing products that are not currently being used

for drought monitoring; and (c) developing multi-sensor, multi-index approaches based on

multiple satellite observations. These research gaps were identified after a detailed survey of

the literature presented in Chapter 1. To address these research gaps, Chapter 2 introduces

Standardized Drought Analysis Toolbox (SDAT), which includes a generalized framework for

deriving nonparametric univariate and multivariate standardized drought indices. Chapter

3 presents a framework for integrating near-surface air relative humidity data (not currently

used for drought monitoring) from the Atmospheric Infrared Sounder (AIRS) mission for

early drought onset detection. Finally, Chapter 4 outlines a framework for assessing impacts

of droughts on forest health using multi-sensor approach. In the following, the conclusions

for each chapter are summarized:
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5.1 Chapters 2: A Generalized Framework for Deriv-

ing Nonparametric Standardized Drought Indica-

tors

Droughts are complex phenomena and require multiple sources of information for input.

SDAT introduces a non-parametric framework for deriving drought indicators based on vari-

ous inputs. A single parametric distribution function may not fit the global data properly and

multiple distribution functions may lead to inconsistencies in the behavior of the extremes.

SDAT, therefore, provides a statistically consistent method for drought monitoring. Non-

parametric methodology uses empirical distribution function to standardize the marginal

probability of a climate variable. Thus, this method does not require parameter estimation

and goodness of fit testing. The methodology can be applied to precipitation, soil moisture

and relative humidity. SDAT also provides multivariate framework for drought analysis.

Combining climate variables can potentially improve drought monitoring skills. For exam-

ple, precipitation shows better performance for drought onset detection and soil moisture in

drought consistency. The multivariate approach can be applied to the joint distribution of

precipitation and soil moisture to derive a drought indicator based on precipitation and soil

moisture.

5.2 Chapters 3: Improving Drought Onset Detection

Using Satellite Relative Humidity Information

Precipitation is often used as an indicator for drought onset detection. Relative humidity

is an important climate variables affecting precipitation. Relative humidity and precipita-

tion are related to each other in the sense that precipitation is not expected at low relative
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humidity values. Thus, relative humidity could detect drought signals earlier than precipi-

tation. SRHI is a standardized drought monitoring index based on AIRS relative humidity

data. SRHI uses the same non-parametric methodology used for deriving SPI. SRHI shows

consistent patterns with other drought indicators such as SPI and SSI and it detects drought

onset earlier than SPI with the average of 2 months. SRHI has not been developed to replace

SPI. However, it provides valuable information about drought monitoring. Drought early

detection is fundamental for agriculture, forest and water resources sectors. The main limi-

tation of SRHI is its relatively short length of record (2002-present). Statistical algorithms,

such as Bayesian, could be used to extend AIRS relative humidity data by combining it with

reanalysis data sets.

5.3 Chapters 4: Improving Multi-Index Drought Mon-

itoring Using Satellite Observations

A Multi-index method was used to derive a framework for assessing the impacts of recent

western United States droughts on forest health. Droughts increase tree mortality rates

and wildfire activities. One of the most commonly used indices for assessing vegetation

health is Normalized Difference Vegetation Index (NDVI). NDVI indicates the level of plant

greenness. During the summer and growing season period, evapotranspiration rates are

generally high. Temperature and relative humidity affect the vegetation greenness. High

temperatures pose high levels of stress on photosynthetic activities of plants. Low levels

of relative humidity increase plant transpiration rate causing water deficits in the plant.

Temperature and humidity could combine into Vapor Pressure Deficit (VPD). During the

winter period, precipitation affects the forest greenness. The distribution of NDVI in top

15 percentile VPD over summer and growing season shows an increase in the tail of the

distribution (stressed NDVI zone) from period 2003-2014 to 2003-2010. The distribution
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of NDVI conditioned on top 15 percentile temperature and bottom 15 percentile humidity

during summer and growing season lead to similar results to VPD. Similarly, the distribution

of NDVI in bottom 15 percentile precipitation over winter season shows an increase in stressed

NDVI zone from period 2003-2014 to 2003-2010.
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