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Abstract 

EXACT MONTE CARLO FOR MOLECULES* 

William A. Lester, Jr.+ and Peter J. Reynolds 
Materials and Molecular Research Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

A brief summary of the fixed-node quantum Monte Carlo method is 

presented. Results obtained for binding energies, the classical barrier 

height for H + H2, and the singlet-triplet splitting in methylene are 

presented and discussed. 

*This work was supported by the Director, Office of Energy Researcn, 
Office of Basic Energy Sciences, Chemical Sciences Division of tne U. S. 
Department of Energy under Contract No. DE-AC03-76-SFUOU98. 

+Also, Department of Chemistry, University of CaliforrJia, Berkeley. 
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Introduction to Quantum Monte Carlo 

Monte Carlo approaches to solving problems with many degrees of 

freedom are a class of statistical methods having in common the genera­

tion of "random" numbers. In the past few years, Monte Carlo approaches 

have seen increased application in a number of diverse fields. In 

particular, quantum mechanical Monte Carlo (QMC) methodsl-13 have been 

successfully used for the treatment of molecular problems.3,5~8-12 

What we mean here by QMC is a Monte Carlo procedure which solves the 

Schroedinger equation. This is to oe distinguished from so-called 

variational Monte Carlo, in which one obtains expectation values for a 

given trial wavefunction. 

This ability to stochastically solve the Schroedinger equation· 

provides an alternative to conventional techniques of quantum chemistry. 

Early work8 has shown that highly accurate total energies and correla-

tion energies can he obtained by QMC. In fact, in a procedurally simple 

manner, accuracies exceeding those of the best ab initio configuration 

interaction calculations have been obtained. 

Much of chemistry takes place predominantly in the valence electrons 

of a system. Thus, the quantities of interest are usually small differ-

ences of large total energies. If QMC is to be useful in calculating 

binding energies: electron affinities, reaction barriers, etc., it must 

be able to calculate not only accurate total energies, but also these 

more relevant energy differences. This is a far more difficult task for 

Monte Carlo, since a statistical uncertainty of as little as 0.1% in the 

separate total energies can mask the sought-after energy difference. 
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Nevertheless, we have successfully calculated the reaction barrier. for 

the H + H2 exchange reaction, the singlet-triplet splitting in 

methylene, and the binding energy of N2• Furthermore, algorithmic 

developments, such as differential QMc 14a and direct calculation of QMC 

derivatives, 14b hold promise for reductions in variance, particularly 

for potential energy surface calculations. In the next section we 

briefly describe the method and discuss our previous work. We note that 

among the results discussed is the first calculation of an excited state 

energy by Monte Carlo. 

Quantum Monte Carlo Approach for Molecules 

Here we give an overview of the method; a complete description can be 

found in Ref. 8. The essence of the procedure is to simulate a quantum 

system by allowing it (and an ensemble of differently prepared systems) 

to evolve under the time-dependent Schroedinger equation in imaginary 

time. It is easy to show8 that the use of imaginary time causes the 

ensemble to approach a stationary state which is the lowest state of a 

given symmetry. Properties may then be "measured" as averages over the 

resulting equilibrium distribution. 

Until recently only ground-state properties have been obtained by 

this approach. However, we have now calculated the singlet-triplet 

splitting in methylene (CH 2) very accurately, and begun calculations on 
1 + H2(B Eu). Thus, excited-state calculations are a new realm for the 

application of molecular QMC, and hold much promise. 

·I~.-
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By writing the imaginary-time Schroedinger equation with a shift in 

the zero of energy as 

-a'l'(R,t) 
at = ( 1) 

we see that it may be interpreted as a generalized diffusion equation. 

The first term on the right-hand-side is the ordinary diffusion terms, 
I 

while the second term is a position-dependent rate (or branching) term. 

2 -For an electronic system, D = ~ /2m , R is the three-N dimensional e 

coordinate vector of theN electrons, and V(R) is the Coulomb potential. 

Since diffusion is the continuum limit of a random walk, one may simulate 

Eq. ( 1) with the function '¥(note not '¥2) as the density of 11 Wa 1 k s ... 

The walks undergo an exponential birth and death as given by the rate 

term. This connection between a quantum system and a random walk was 

first noted by Metropolis, who attributes it to Fermi. 15 

The steady-state solution to Eq. (1) is the time-independent 
- -Schroedinger equation. Thus, we have 'l'(R,t) ~ 0(R), where 0 is an energy 

eigenstate. The value of ET at which the population of walkers is 

asymptotically constant gives the energy eigenvalue. Early calculations 

employing Eq. (1) in the way were done by Anderson on a number of one- to 

four-electron systems. 3 

In order to treat systems larger than two electrons, the Fermi nature 

of the electrons must be taken into account. The antisymmetry of the 

eigenfunction implies that'¥ must change sign; however, a density (e.g., 

of walkers) cannot be negative. To handle this, Anderson made simplifying 

assumptions about the positions of the nodes. Another method whicn 
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imposes the antisymmetry, and at the same time provides more efficient 

sampling (thereby reducing the statistical "noise"), is importance 

sampling with an antisymmetric trial function ~T (see e.g., Ref. 8). 

The zeros (nodes) of ~T become absorbing boundaries for the diffusion 

process, which maintans the antisymmetry. The additional boundary condi­

tion that ~ vanish at the nodes of ~T is the fixed-node approximation. 

The magnitude of the error thus introduced depends on the accuracy of the 

nodes of ~T(R), and vanishes as ~T approaches the true eigenfunction. 

To the extend that ~T is a good approximation of the wavefunction, the 

true eigenfunction is almost certainly quite small near the nodes of 

~T" Thus, one expects the fixed-node error to be small for reasonable 

choices of ~T· Work on a number of systems has borne this out. 9,l0,12 

In addition, this error is variationally bounded. 

To implement importance sampling and the fixed-node approximation, 

Eq. (1) is multiplied on both sides by ~T• and rewritten in terms of 

- - -the new probability density f(R,t) = ~T(R)~(R,t). The resultant for 

-f(R,t) may be written 

( 2) 

- -The local energy EL(R), and the "quantum force" F0(R) are simple 

functions of ~T given by 

( 3a) 

... '~ 
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and 

(3b) 

Equation (2), like Eq. (1) is a generalized diffusion equation, though 

now with the addition of a drift term due to the presence of F
0

. 

In order to perform the random walk implied by Eq. (2) we use a short­

time approximation to the Green•s function which is used to evolve f(i,t) 

• f([•, t+T). This evolution process is iterated to large t. The Green•s 

function becomes exact in the limit of vanishing time-step size, T. 

Summary of Previous Results 

We have found8•11 that a. single determinant 'l'T with only a 

double-zeta basis set places the nodes extremely well as determined by 

the quality of the computed total energies. Increasing the basis set 

beyond double zeta appears to offer insignificant gain in either accuracy 

(i.e., the fixed-node error does not noticeably decrease) or precision 

(the statistical uncertainty, for equal computing time, remains essen­

tially unchanged). In practice we have included an electron-electron 

Jastrow factor in the functions 'l'T in order to reduce statistical 

fluctuations, and in some cases we have also included an electron-nuclear 

factor. Neither factor affects the positioning of the nodes, and hence 

the fixed-node energies. For a number of 2-14 electron molecules we have 

obtained total energies which are lower than those obtained by CI in 

every case. 

.. , 
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Recently, we have calculated the energy of the first excited state of 

methylene16 in order to obtain the (until recently) elusive singlet­

triplet splitting. This is the first QMC calculation of an excited 

state. Our results are in excellent agreement with the most recent 

experiments. For the best trial function used, the total energy is 

correct to better than 0.008 hartrees (5 kcal/mole) of experiment, or to 

1 part in 5000. The statistical uncertainty is roughly half this value 

(2-2.5 kcal/mole). The remaining error may be attributed to the fixed-

node and the short-time approximations. This translates to a Monte Carlo 

accuracy of 99.98% of the total energy and 96-98% of the correlation 

energy. 

In other work, we have calculated points along the reaction path of 

the H + H2 exchange reaction. Particular emphasis has been placed on 

the saddle point, for which Liu17 has performed the most extensive Cl 

calculation to date. Nevertheless, the bound for the barrier height 

which we obtained11c by QMC is 0.16 kcal/mole below Liu•s bound and 

probably lies within 0.1 kcal/mole of the exact answer. In addition, we 

were able to obtain these results with only single-determinant trial 

functions, and a basis set expansion at only the double-zeta level. The 

nodes, which are so important in determining the correct energy, have to 

this point proved to be quite insensitive to basis set beyond the 

double-zeta level. A single-zeta basis set gives a very poor nodal 

description (see Ref. llc). 

Accurate calculation of the binding energy of N2 has been a 

classically difficult problem using traditional ab initio quantum 
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chemical approaches. Since the quantity of interest, E is binding' 
desired to better than 5 kcal/mole out of a total energy of over 68,000 

kcal/mole, this is an example where QMC requires very high precision. In 

preliminary calculations we have determined the N2 binding energy to be ~ 

233 * 5 kcal/mole. To within the statistical uncertainty, this result 

agrees with experiment. 
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