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Abstract

Background: The development of noninvasive tests for the early detection of aggressive prostate tumors is a major unmet
clinical need. miRNAs are promising noninvasive biomarkers: they play essential roles in tumorigenesis, are stable under
diverse analytical conditions, and can be detected in body fluids.
Methods: We measured the longitudinal stability of 673 miRNAs by collecting serial urine samples from 10 patients with
localized prostate cancer. We then measured temporally stable miRNAs in an independent training cohort (n¼99) and
created a biomarker predictive of Gleason grade using machine-learning techniques. Finally, we validated this biomarker in
an independent validation cohort (n¼40).
Results: We found that each individual has a specific urine miRNA fingerprint. These fingerprints are temporally stable and
associated with specific biological functions. We identified seven miRNAs that were stable over time within individual
patients and integrated them with machine-learning techniques to create a novel biomarker for prostate cancer that over-
comes interindividual variability. Our urine biomarker robustly identified high-risk patients and achieved similar accuracy as
tissue-based prognostic markers (area under the receiver operating characteristic ¼ 0.72, 95% confidence interval ¼ 0.69 to
0.76 in the training cohort, and area under the receiver operating characteristic curve ¼ 0.74, 95% confidence interval ¼ 0.55 to
0.92 in the validation cohort).
Conclusions: These data highlight the importance of quantifying intra- and intertumoral heterogeneity in biomarker
development. This noninvasive biomarker may usefully supplement invasive or expensive radiologic- and tissue-based assays.

Prostate cancer is the most common nonskin male malignancy
and the second-leading cause of oncological mortality for men
in developed countries (1). Many prostate cancers are indolent
at diagnosis (2). Clinical estimation of prostate cancer aggressiv-
ity uses serum prostate-specific antigen (PSA) measurement,
digital rectal examination (DRE), and multiple prostate biopsies

to assess tumor grade (Gleason Score [GS]) (3). The low specific-
ity of the PSA test, low sensitivity of DREs, and complications of
biopsies create an urgent clinical need for improved risk stratifi-
cation (4). Further, the spatial-temporal genomic heterogeneity
of prostate cancer (5,6) can confound tissue-based prognostic
assays.

A
R

T
IC

LE

Received: April 5, 2018; Revised: March 1, 2019; Accepted: May 30, 2019

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

247

JNCI J Natl Cancer Inst (2020) 112(3): djz112

doi: 10.1093/jnci/djz112
First published online June 4, 2019
Article

mailto:Stanley.Liu@sunnybrook.ca
mailto:pbou�tros@mednet.ucla.edu
mailto:pbou�tros@mednet.ucla.edu
Deleted Text: -
Deleted Text: tumour
Deleted Text: ,
https://academic.oup.com/


As a result, several noninvasive molecular tests for aggres-
sive prostate cancer have been developed. Both increased cell-
free DNA in plasma (7) and increased circulating tumor cells are
associated with worse survival (8). Although these tests provide
information on cancer detection and progression, their accurate
and routine isolation and quantification remain technically
challenging, particularly in curable prostate cancer that has not
metastasized. Similarly, urine proteins are promising candidate
biomarkers (9), but paths to clinical translation of mass-
spectrometry assays remain unclear.

We therefore considered an alternate approach: urinary
microRNAs (miRNAs). These small RNAs are involved in pros-
tate cancer development and progression (10), influence treat-
ment response (11), are stable under harsh conditions (eg, low
and high pH) (12), and are detectable in urine (13). Urinary
miRNAs therefore make good candidates as noninvasive bio-
markers for prostate cancer, and their potential diagnostic and
prognostic applications have been proposed (14,15). However,
results from previous studies are limited by the small number
of assayed miRNAs and the lack of sequential validations.
Furthermore, inter- and intraindividual variations in miRNA
transcriptome remain unclear because of the absence of re-
peated measurements of miRNA abundances for the same
individual.

Here, we created the first cohorts of urine miRNA transcrip-
tome profile linked to rich clinical data, quantified the longitu-
dinal stability of miRNA profiles over multiple years, and
showed that urinary miRNAs reflect primary tumor miRNA
abundances. These data were used to create and validate an ac-
curate urine biomarker of aggressive prostate cancer.

Methods

Urinary miRNA Extraction and Profiling

To quantify the intraindividual stability of urine miRNA tran-
scriptome and examine its effect on cancer aggressivity, urine
miRNA profiles of prostate cancer patients (n¼ 149) were gener-
ated. Small RNA molecules (200 nucleotides or less, including
miRNAs) were isolated from urinary cell sediments using the
Urine miRNA Purification kit (Norgen Biotek Corp., Thorold,
Ontario, Canada, catalogue No. 29000) according to the manu-
facturer’s protocol. Following isolation, RNA was purified using
ammonium acetate-ethanol precipitation. Then, 25 lL of 7.5 mM
ammonium acetate and 125 lL of cold 100% ethanol were added
to isolated RNA samples (50 lL) and left at �80�C overnight.
Next, 1 mL of cold 80% ethanol was added, and samples were
centrifuged at 18 000� g for 30 minutes at 4�C. RNA pellet was
washed twice with 0.5 mL of cold 80% ethanol and centrifuged
at 18 000� g for 10 minutes at 4�C. Ethanol was removed, and
pellets were allowed to dry at room temperature. Dried pellets
were resuspended in 22 lL of nuclease-free water. The quality
and quantity of RNA samples were evaluated using a NanoDrop
8000 Spectrophotometer (Thermo Scientific, Wilmington, DE).
miRNA profiling was performed using nCounter Human v.2
miRNA Expression Assay (NanoString Technologies, Seattle,
WA).

Urine miRNA profiles of 149 patients were generated from
three patient cohorts. The discovery cohort was composed of 10
patients and used to measure intra- and interindividual vari-
ability of individual miRNA abundance and select intrastable
miRNAs. The training cohort (n¼ 99) was composed of 50 high-
risk (GS > 7) and 49 low-risk patients (GS ¼ 6). It was used to

build a predictive model to identify aggressive prostate cancer.
Intrastable miRNAs were used as features to build the model.
The validation cohort, which was composed of 11 high-risk and
29 low-risk patients, was used for further evaluation of predic-
tion performance of the model. miRNA abundances of three
cohorts were separately quantified using NanoString nCounter
technology and normalized using NanoStringNorm (16) (v1.1.20;
Supplementary Methods, available online). Raw data are depos-
ited into the Gene Expression Omnibus (GSE86474, http://www.
ncbi.nlm.nih.gov/geo/).

Quantify Intra- and Interindividual Variance of miRNA
Abundance

The relative effects of intra- and interindividual miRNA vari-
ance were assessed via linear mixed-effects regression using
the lme4 package (v1.1–10) in R statistical environment (17). In
the model, subjects were specified as a random factor to control
for their associated intraclass correlation,

Yij ¼ lþAj þ e; [1]

where Y is normalized abundance for the ith replicate (sample)
in the jth individual (patient); l is mean abundance for any
miRNA (fixed effect). The individual (A) effect is assumed to be
random with variance (random effect), and e is an unknown
vector of random errors. To measure the intra- and
interindividual variances, we calculated the intraclass correla-
tion coefficient (ICC):

ICC ¼ r2
A

r2
A þ r2

e
: [2]

The ICC represents the proportion of interindividual vari-
ance relative to total intra- and interindividual variance
explained by a model. A high ICC indicates a high level of
interindividual variability relative to intraindividual variability.
To measure ICCs of miRNAs, the discovery cohort was used
(Supplementary Methods, available online).

Statistical Analysis

All analyses were carried out in the programming language R
(v3.4.0) with the aforementioned packages. In general, unpaired
two-sided Student t tests with Welch’s adjustment for hetero-
scedasticity and the two-sided Wilcoxon test were used to ex-
amine statistical significance for two-group comparisons.
To examine whether correlation between urine and tumor
miRNA abundance was increased with intraindividual stability
(Q100>Q75>Q50> Q25), a one-tailed asymptotic general inde-
pendence test was used. A P value of less than .05 was considered
statistically significant. To evaluate the enriched chromo-somal
position of intrastable and intravariable miRNAs, a bootstrap test
with 10 000 iterations was used. To examine functional enrich-
ment of intravariable and intrastable miRNAs, Benjamini-
Hochberg–adjusted P values were used to account for multiple
testing. Hierarchical clustering analysis was performed with the
ConsensusClusterPlus package (v1.40.0) (18). Intrastable miRNAs
(fourth quartile of ICCs; Q100) from the discovery cohort were
used as a set of features. These miRNAs were selected from the
training cohort to build a predictive model, with feature selection
and predictor generation done using a random forest. Finally, the
generated predictive model was applied to the independent vali-
dation cohort to evaluate the reliability of prediction
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performance, with the area under the receiver operating charac-
teristic curve (or AUC) used as a metric of accuracy
(Supplementary Methods, available online).

Results

miRNA Landscape of Prostate Cancer Urine

To generate robust biomarkers, it is critical that analyte profiles
remain stable over time and distinctive between individuals. We
employed NanoString nCounter technology to profile the abun-
dances of 673 human miRNAs in 22 serial DRE-urine samples
from 10 patients with localized prostate cancer (discovery cohort,
two to three urine samples were collected from each patient;
Figure 1A). These patients were monitored for disease progression
without therapeutic intervention (ie, active surveillance) and were
clinically homogeneous, with the same tumor grade (Gleason
grade ¼ 3þ 3, GS ¼ 6) and disease extent (T1c; Supplementary
Table 1, available online). The median time between urine collec-
tions was 245 days. We systematically assessed a panel of 252
preprocessing strategies (Figure 1B; Supplementary Methods,
available online). The optimal strategy maximized control sample
similarity (Spearman q ¼ 0.73) and minimized the number of
misinterpreted samples (Supplementary Figure 1A, available on-
line), yielding similar distributions of miRNA abundances across
all samples (Supplementary Figure 1B, available online).

Intra- and Interindividual Urinary miRNA Variability

A majority of assayed miRNAs were detected in urine: 71.5% (481
of 673) were present in at least one sample, 26.2% (176 of 673) in
half, and 3.7% (25 of 673) in all 22 samples (Supplementary Figure
1C, available online). miRNAs detected in urine overlapped
strongly with those expressed in prostate tumors (19): 80% of
miRNAs detected in at least one urine sample were also detected
in the low-risk samples (GS ¼ 6) of the Cancer Genome Atlas pri-
mary tumors (Supplementary Figure 2, A and B, available online).
Urinary miRNA abundance was directly correlated to tumor
miRNA abundance (Spearman q ¼ 0.22, P< .001; Supplementary
Figure 2C, available online). There were 140 miRNAs observed in
prostate tumors but not in urine (tissue-specific miRNAs;
Supplementary Figure 2B, available online), which is approxi-
mately 5% more than expected by chance alone (P< .001, hyper-
geometric test), suggesting a bias in which miRNAs are shed into
urine. Tissue-specific miRNAs had fewer targets (median: 2
genes) than miRNAs detected in urine (median: 6 genes, P¼ .004,
two-sided Wilcoxon test; Supplementary Figure 2D, available on-
line). It suggests that tissue-specific miRNAs would have less
functional impact on downstream biological behaviors and there-
fore may be less relevant for biomarker discovery.

We focused analyses of longitudinal stability of urine miRNA
profiles on the 298 miRNAs detected in at least five samples
from the discovery cohort (Figure 1C; Supplementary Table 2,
available online). Urinary miRNA abundance profiles were more
similar within individuals (qintra ¼ 0.67 6 0.10) than between
individuals (qinter ¼ 0.40 6 0.15, P< .001, two-sided Wilcoxon test;
Figure 2A). Further, the primary difference within individuals is
the numbers of miRNAs detected, rather than abundance
changes within or between the set detected (Supplementary
Figure 3, A and B, available online), suggesting differences in ex-
perimental sensitivity, not biology. Unsupervised k-means clus-
tering confirmed that samples from the same individual group
together (Supplementary Figure 4, A and B, available online).

To understand which miRNAs are most and least variable
within individuals, we examined the intra- and interindividual
coefficient of variation (Supplementary Figure 5, available on-
line). Overall, 89.9% of miRNA species showed more variability
between individuals than within individuals (Figure 2B). Next, to
quantify the relative importance of intra- and interindividual
variability for each miRNA, we performed linear mixed-effects
modeling and measured the ICCs. The higher a miRNA’s ICC, the
more it varies across individuals. Overall, 40.8 (27.7%) of total
variance occurs between individuals (Figure 2C), suggesting that
a set of miRNAs show high variability within individuals. Thus,
we identified urinary miRNAs that potentially could be excluded
from biomarker-discovery studies, although this will need addi-
tional validation in additional cohorts (Supplementary Table 3,
available online).

The Biological Consequences of miRNA Variability

It has been shown that human miRNAs cluster together along
the genome and form stable secondary structures (20,21), and
each miRNA cluster controls distinct cellular processes (22). To
investigate the spatial variability of miRNAs, we created four
quartiles of miRNAs based on their ICCs (Supplementary Figure
6A, available online). Those miRNAs most variable within indi-
viduals are in the first quartile (Q25, intravariable), whereas
those least variable within individuals are in the fourth quartile
(Q100, intrastable). Each quartile group is biased toward specific
chromosomal locations (Figure 3A; Supplementary Figure 6B,
available online). For example, intrastable miRNAs (Q100) are
enriched on chromosomes 6 and 17 (both q¼ 0.02, bootstrap
test). Overall, 60.0% of miRNAs on chromosome 6 and 47.1% of
those on chromosome 17 are intrastable. Supporting the clinical
relevance of intraindividual stability in profiles, intrastable
miRNAs (Q100) were preferentially localized to regions shown
to be copy-number neutral in a large cohort of primary prostate
cancer (23) (Supplementary Figure 6C, available online).

These associations of variation and chromosomal location
suggested that miRNAs that are intraindividually variable
may play distinct biological roles by targeting a different set of
genes. Using experimentally validated miRNA target genes
(Supplementary Table 4, available online), we found that intra-
stable miRNAs (Q100) targeted more genes (median: 14 genes)
than intravariable miRNAs (Q25, median: 4 genes, P¼ .04, two-
sided Wilcoxon test; Figure 3B). Also, 67.9% of target genes (1133
of 1669 target genes, 122þ 185þ 307þ 519) were regulated by
specific variable groups (Figure 3C). Indeed, miRNA variability
was associated with the biological functions played by their tar-
get genes (Figure 3D; Supplementary Table 5, available online).
For example, targets of intravariable miRNAs (Q25) are involved
in the initiation or perpetuation of immune responses, whereas
intrastable miRNAs (Q100) preferentially targeted genes located
on the plasma membrane and involved in the organization of
extracellular structure (q< 0.05).

Finally, we evaluated the association between urine and tumor
tissue miRNA abundances using 480 tumors from the Cancer
Genome Atlas. Intrastable miRNAs (Q100) showed the strongest
correlation between urine and tumor miRNA abundance
(Spearman q ¼ 0.45, P< .001; Supplementary Figure 7A, available
online), and the correlation increased with intraindividual stabil-
ity (Q100>Q75>Q50>Q25, asymptotic general independence
test, one-tailed, P¼ .04; Supplementary Figure 7B, available on-
line). Thus, intrastable urinary miRNAs appear to serve as partial
surrogates for tumor miRNA abundances.
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Urinary miRNAs Associated With Aggressive Prostate
Cancer

Given that intrastable urinary miRNAs regulate distinct func-
tional processes and reflect tumor miRNA abundances, we

hypothesized that intrastable miRNAs could serve as
noninvasive biomarkers for patient stratification into high- and
low-risk groups. High-risk tumors are the most aggressive, and
low-risk prostate tumors are unlikely to grow or spread for years

Figure 1. Digital rectal examination (DRE)-urine microRNA (miRNA) transcriptome profile. A) Overview of analysis of urine miRNA abundance variance in 10 prostate

cancer patients. B) Parameter selection to optimize miRNA abundance. NanoString nCounter technology was used for miRNA abundance profiling. Similarity (q) repre-

sents miRNA profile similarity between two control samples. Misinterpreted samples indicate the fraction of samples with failed normalization. The similarity be-

tween control samples is likely to be increased when there are more misinterpreted samples. Because samples are misinterpreted when less than 10% of assayed

miRNAs are detected after normalization, this correlation could be an inevitable effect of small size of detected miRNAs to calculate a similarity. To mitigate this effect,

we only considered parameters that show high similarity between controls and zero misinterpreted samples (arrow). C) Normalized miRNA transcriptome profile. Bars

(top) represent the number of detected miRNAs in patient urine and control samples, respectively. Bars (right) represent the number of samples a given miRNA is

detected in (normalized transcript count > 0).
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(24). We examined the abundances of urinary miRNAs in an
independent training cohort of 50 high-risk (GS > 7) and 49 low-
risk (GS ¼ 6) prostate tumors (Supplementary Figure 8A, avail-
able online). We identified six miRNAs differentially abundant
between high- and low-risk prostate tumors (local false discov-
ery rate < 0.2; Supplementary Figure 8B, available online). Five
of these were in the third and fourth quartiles (Q75 and Q100).
Indeed, miRNAs that are better at discriminating between risk
groups are more likely to be stable within individuals
(Supplementary Figure 8C, available online). These trends were

also confirmed in primary tumor tissue (Supplementary Figure
8, D and E, available online).

Generation of a Urine miRNA Signature of Tumor Grade

Finally, we evaluated the ability of urinary miRNAs to distinguish
aggressive disease progression (high-risk patients) from less-
aggressive disease progression (low-risk patients). We used a
standard biomarker generation strategy to create a multi-miRNA
risk model: selecting intrastable miRNAs from the 10-patient dis-
covery cohort, training a model in the 99-patient training cohort,
and validating it in a third, independent 40-patient validation
cohort (Figure 4A; Supplementary Table 6, available online). For
feature selection, we performed fivefold cross-validation 10 times
in the training cohort and measured miRNA importance. The
top-ranked miRNAs were used to build a random forest model,
with hyperparameter optimization in the training cohort
(Supplementary Figure 9A and Supplementary Methods, avail-
able online). The final model comprised seven intrastable
miRNAs (miR-3195, let-7b-5p, miR-144-3p, miR-451a, miR-148a-
3p, miR-512-5p, and miR-431-5p; Supplementary Figure 9B, avail-
able online) and had a mean AUC of 0.72 in the training cohort
(95% confidence interval ¼ 0.69 to 0.76; Figure 4B). In the fully in-
dependent validation cohort (Supplementary Figure 10, available
online), it distinguished risk groups with similar efficacy (AUC ¼
0.74, 95% confidence interval ¼ 0.55 to 0.92; Figure 4C).

To quantify the importance of intraindividual temporal sta-
bility for biomarkers, we generated a signature from intravari-
able miRNAs (Q25), using the strategy outlined above. Not
exploiting intrastable miRNA reduced prediction accuracy from
an AUC of 0.74 to only 0.55 (Figure 4C). To evaluate the null dis-
tribution of urine miRNA biomarkers (25), we generated 10 000
random seven-miRNA sets and built a model from each. These
random models had AUCs of 0.55 (0.07) (Figure 4C), statistically
significantly lower than our seven-miRNA model (bootstrap
P¼ .003, Figure 4D). Indeed, the point-estimate for the seven-
miRNA model statistically significantly exceeded the accuracy
of the majority of random models.

Finally, to verify whether these urine miRNAs accurately re-
flect miRNA abundances in tumor tissue, we profiled tumor tis-
sue miRNAs from nine patients with matched urine samples
(two high-risk and seven low-risk patients). The global abun-
dance profiles across all 673 assayed miRNAs were positively cor-
related between matched urine and tumor (Spearman q ¼ 0.55,
P< .001; Supplementary Figure 11A, available online). To confirm
the potential tumor origins of our biomarker, we examined
the abundances of its seven component miRNAs. They were
very strongly positively correlated (Spearman q ¼ 0.96, P¼ .003;
Supplementary Figure 11B, available online). Furthermore, urine
miRNA abundances were positively correlated across discovery,
training, and validation cohorts (Supplementary Figure 12, avail-
able online). These data indicate that intraindividual stability
measured from the discovery cohort may represent general lon-
gitudinal stability and may support the ability of urine miRNA
profiles to serve as surrogates for prostate tumor molecular and
risk features, potentially by serving as a fluid sampling of it.

Discussion

Alterations in miRNA abundances are associated with pros-
tate cancer progression (10), and these molecules can be
detected in patient urine. miRNA abundances in urine are
correlated to those of matched tumor tissues, implying that

Figure 2. Intra- and interindividual variance of miRNA abundance. A) Global

similarity of miRNA transcriptome. Distribution of correlation coefficient (q) of

intra- and interindividual patients were compared using two-sided Wilcoxon

test. B) Coefficient of variations (CVs) of 298 microRNAs (miRNAs) (left) and their

differences between intra- and interindividual (right). C) The distribution of esti-

mated variability of 298 miRNA abundances. Intra- and intervariability are esti-

mated using intraclass correlation coefficient (ICC). Bar graph (right) shows the

average proportion of intraindividual variability and interindividual variability

of miRNA abundance.

A
R

T
IC

LE

J. Jeon et al. | 251

Deleted Text: tumour
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text: tumour
Deleted Text: , lfdr
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text: tumour
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text: u
Deleted Text: s
Deleted Text: t
Deleted Text: T
Deleted Text: umour
Deleted Text: g
Deleted Text: -
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text: -
Deleted Text: -
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text: -
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text: :
Deleted Text: &ndash;
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text: -
Deleted Text: :
Deleted Text: &ndash;
Deleted Text: intra-individual
Deleted Text: -
Deleted Text: -
Deleted Text: , 
Deleted Text:  
Deleted Text: ,
Deleted Text: &thinsp;&plusmn;&thinsp;
Deleted Text: <italic>p</italic>
Deleted Text: tumour
Deleted Text: tumour
Deleted Text: 2 
Deleted Text: 7
Deleted Text: tumour
Deleted Text: 's
Deleted Text: <italic>p</italic>
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text: tumour
Deleted Text: -
Deleted Text: 's
Deleted Text: <italic>p</italic>
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text: intra-individual
Deleted Text: ,
Deleted Text: tumour
Deleted Text: tumour


urine miRNA abundances may serve as a surrogate “liquid
biopsy” of tumor miRNA abundances. Because the urine
miRNA profile of an individual remains stable over longitudi-
nal sampling taken more than a year apart, this suggests a
biomarker-development strategy where individual miRNAs
are evaluated based on both their temporal intraindividual
stability and their degree of surrogacy. These stable and
tumor-representative features would then be strong candi-
date features for biomarker development.

Nevertheless, intraindividual variability is observed and likely
results at least in part from differences in the number of miRNAs

detected, diet, polypharmacy and comorbid states, and other epi-
demiological factors. Recent studies of the placental mRNA tran-
scriptome have shown similar intraindividual variance (26), as
have tissue studies of mRNA and methylation (27, 28).

There are a few urine-based tests available for prostate can-
cer. Transcript levels of TDRD1, DLX1, and HOXC6 in DRE-urine
(29) and those of ERG and PCA3 in urinary exosomes (30) have
been used to identify high-grade prostate cancer (GS � 7).
Combined use of serum PSA level and transcript abundances of
PCA3 and TMPRSS2-ERG in DRE-urine has shown diagnostic and
prognostic value in the prediction of prostate cancer outcome

Figure 3. Biological properties of microRNAs (miRNAs) and their target genes. A) Chromosomal positions of assayed miRNAs. miRNAs are divided into four variable

groups depending on intraclass correlation coefficient (ICC) (Q25, Q50, Q75, and Q100). Dashed red boxes indicate enriched chromosomes in a given variable group

(q<0.1). Q25 and Q100 represent miRNAs that are most and least variable within individuals, respectively. B) Number of target genes in variable groups. The number in

parentheses under each variable group represents the total number of miRNAs that have known target genes. Two-sided Wilcoxon test was used to measure the statis-

tically significant difference of the number of target genes of intrastable (Q100) and intravariable (Q25) miRNAs. C) Overlapped target genes among variable groups. D)

Enriched biological functions of target genes in variable groups. In total, 1215 gene ontology (GO) terms showing q<0.25 in at least one variable group are colored.

Common indicates targets that are regulated by all four variable groups. Full GO terms and their enriched scores are in Supplementary Table 5 (available online). FDR ¼
false discovery rate.
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(31). However, these tests fail to correctly predict negative and
low-grade prostate biopsies (30, 32), and discrepancies between
the results of predictive models have been observed (33–36).
Other studies using miRNAs have reported that miRNA levels in
urine aid in the diagnosis (14, 37) and recurrence assessment of
prostate cancer (15), yet these studies were not validated in in-
dependent patient cohorts.

We have provided a new strategy to generate a robust
noninvasive miRNA biomarker using sequential validation of
urinary miRNAs. Discovery cohort was generated from re-
peated urine samplings, allowing us to quantify abundance
variances of miRNAs within an individual patient and iden-
tify intrastable miRNAs. Using an independent patient co-
hort, intrastable miRNAs were trained to develop a risk
model that can predict the aggressivity of prostate cancer.
Our model was further tested on a third validation cohort,
achieving an AUC of 0.74, which is comparable to most
tissue-based prognostic assays (38). This strategy improves
both accuracy and generalizability of our risk model, and
these benefits were realized from analysis of only 10
patients. Use of additional patients may refine the assess-
ment of temporal stability for individual molecules and fur-
ther improve biomarker discovery. To our knowledge, this is
the first example of using intrastable urinary miRNAs as a
biomarker of grade (which is itself a strong predictor for clini-
cal outcome) in prostate cancer.

Encouragingly, the seven intrastable miRNAs used by our
risk model are functionally associated with cancer aggressivity.

For example, miR-451a and miR-148a have been implicated in
the functional regulation of cell proliferation, migration, and in-
vasion in prostate cancer (39, 40). Also, it has been shown that
the deregulation of let-7b is associated with biochemical relapse
in high-risk prostate cancer patients (41). miR-144-3p has been
reported as a potential biomarker in colorectal cancer (42), and
altered expressions of miR-3195 and miR-512-5p are associated
with angiogenesis (43) and cell cycle (44) responses in cancer
cell lines. Furthermore, we found that target genes of our
miRNA biomarkers are enriched in cancer-related pathways
such as PI3K-Akt (45), Jak-STAT (46), mTOR (47), and TGF-beta
(48) signaling pathways as well as cell cycle (Supplementary
Table 7, available online). Taken together, our seven-miRNA
biomarker, comprised of molecules with temporally stable
abundances, may help predict cancer aggressivity. The critical
next step will be validation in larger patient cohorts.

There remains an urgent clinical need for accurate
noninvasive tests of prostate cancer aggressiveness in both pre-
and posttreatment settings. Prior to treatment, there is a need to
avoid the discomfort, expenses, and complications of biopsies,
which can include infection and sepsis (49). After treatment,
rapid and accurate monitoring of disease relapse is needed,
allowing for rapid adaptive treatment plans. Clinicopathological
features such as PSA doubling time (50, 51) and percent of biopsy
cores positive for cancer (52, 53) can stratify cancer patients with
differential clinical outcomes. Similarly, age is correlated to
prostate cancer-specific mortality for intermediate-risk patients
(54). Urine miRNAs appear to serve as partial surrogates for

- -

- -

Figure 4. A predictive model distinguishes prostate cancer risk groups. A) Design of the machine-learning–based predictive model to classify two risk groups (high- and

low-risk). B) The performance of predictive model in a training cohort (n¼99). Bold line indicates mean AUC of 10 times repeated fivefold cross-validation. Shadow

indicates all cross-validated AUCs. C) The performance of predictive model in a validation cohort (n¼40). Receiver operating characteristic (ROC) curves of intrastable,

intravariable, and randomly selected microRNA (miRNA) signatures are compared. D) AUC distribution of random models. In total, 10 000 random models were gener-

ated and their AUCs calculated. Dashed vertical lines represent AUCs of intrastable, intravariable, and randomly selected miRNA signatures (median AUC of random

models). The intrastable signature has performance exceeding most randomly generated models. CI ¼ confidence interval.

A
R

T
IC

LE

J. Jeon et al. | 253

Deleted Text: non-invasive
Deleted Text: -
Deleted Text: -
Deleted Text: ten 
Deleted Text: ,
Deleted Text: -
Deleted Text: -
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djz112#supplementary-data
Deleted Text:  
Deleted Text: -
Deleted Text: to 
Deleted Text: non-invasive
Deleted Text: -
Deleted Text:  
Deleted Text:  (PCSM)


tumor miRNA abundances, therefore, integration of urine-
derived signatures with clinic-pathological variables may im-
prove prediction accuracy. One limitation of our study is that
further validation of urine miRNA biomarkers in large tightly
defined patient populations is required to improve risk stratifi-
cation protocols for prostate cancer and perhaps other genitouri-
nary diseases.
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