
UC San Diego
UC San Diego Previously Published Works

Title
Systems biology of the structural proteome

Permalink
https://escholarship.org/uc/item/5x32f5nw

Journal
BMC Systems Biology, 10(1)

ISSN
1752-0509

Authors
Brunk, Elizabeth
Mih, Nathan
Monk, Jonathan
et al.

Publication Date
2016-12-01

DOI
10.1186/s12918-016-0271-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5x32f5nw
https://escholarship.org/uc/item/5x32f5nw#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE Open Access

Systems biology of the structural proteome
Elizabeth Brunk1,2†, Nathan Mih3†, Jonathan Monk1, Zhen Zhang1, Edward J. O’Brien1, Spencer E. Bliven3,4,
Ke Chen1, Roger L. Chang5, Philip E. Bourne6 and Bernhard O. Palsson1*

Abstract

Background: The success of genome-scale models (GEMs) can be attributed to the high-quality, bottom-up
reconstructions of metabolic, protein synthesis, and transcriptional regulatory networks on an organism-specific
basis. Such reconstructions are biochemically, genetically, and genomically structured knowledge bases that can
be converted into a mathematical format to enable a myriad of computational biological studies. In recent years,
genome-scale reconstructions have been extended to include protein structural information, which has opened
up new vistas in systems biology research and empowered applications in structural systems biology and systems
pharmacology.

Results: Here, we present the generation, application, and dissemination of genome-scale models with protein
structures (GEM-PRO) for Escherichia coli and Thermotoga maritima. We show the utility of integrating molecular
scale analyses with systems biology approaches by discussing several comparative analyses on the temperature
dependence of growth, the distribution of protein fold families, substrate specificity, and characteristic features of
whole cell proteomes. Finally, to aid in the grand challenge of big data to knowledge, we provide several explicit
tutorials of how protein-related information can be linked to genome-scale models in a public GitHub repository
(https://github.com/SBRG/GEMPro/tree/master/GEMPro_recon/).

Conclusions: Translating genome-scale, protein-related information to structured data in the format of a GEM
provides a direct mapping of gene to gene-product to protein structure to biochemical reaction to network
states to phenotypic function. Integration of molecular-level details of individual proteins, such as their physical,
chemical, and structural properties, further expands the description of biochemical network-level properties, and
can ultimately influence how to model and predict whole cell phenotypes as well as perform comparative systems
biology approaches to study differences between organisms. GEM-PRO offers insight into the physical embodiment of
an organism’s genotype, and its use in this comparative framework enables exploration of adaptive strategies for these
organisms, opening the door to many new lines of research. With these provided tools, tutorials, and background, the
reader will be in a position to run GEM-PRO for their own purposes.

Background
The success of genome-scale modeling can be attributed
to high-quality, bottom-up reconstructions of metabolic,
protein synthesis, and transcriptional regulatory networks
on an organism-specific basis [1–4]. Such network recon-
structions are biochemically, genetically, and genomically
(BiGG) structured knowledge bases [5] that can be used
for discovery purposes (such as model-driven discovery of
unidentified metabolic reactions [6], studies of

evolutionary processes [7], and analysis of biological net-
work properties), as well as practical applications (such as
metabolic engineering, prediction of cellular phenotypes
[8], and interspecies similarities and differences). Others
have explored host/pathogen interactions [9], cocultures
and microbial communities [10–13], ecology [14], and
chemotaxis [15]. Numerous recent developments have
broadened the predictive scope of genome-scale models by
incorporating other sources of biological data, such as
protein structural data, into reconstructions [7, 16, 17].
The complementarity of molecular-level and systems-

level data types has led to the integration of protein
structurally-derived data into genome-scale models.
Using genome-scale models of metabolism (GEMs), we
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link metabolic enzyme activities to characteristics of ob-
served phenotypes, whereas using structural biology, we
link molecular interaction details (e.g., protein-ligand
binding) to the activities of enzymes. The genome-scale
models with protein structures (GEM-PRO) framework,
therefore, gives a direct mapping of gene to transcript,
to protein structure, to biochemical reaction, to network
states, and finally to phenotype (Fig. 1). Understanding
the structural properties of proteins as well as their re-
spective ligand binding events (e.g., metabolite, drug or
oncometabolite) enables the characterization of molecular-
level events that trigger changes in states of an entire net-
work. Such a multi-scale approach acts as bridge between
systems biology and structural biology, two scientific disci-
plines that, when combined, become the emerging field of
structural systems biology [18–22]. This union has brought
about exciting advances, which would have otherwise
been out of reach: the evolution of fold families in
metabolism [7], identification of causal off target ac-
tions of drugs [16], identification of protein-protein
interactions [23, 24], and determination of causal mu-
tations for disease susceptibility [24, 25].
In recent years, the number of publicly available bio-

logical macromolecule structures has grown to more
than 110,000 entries, and continues to increase yearly by
roughly 10 % [26]. The increasing availability of protein
structural data brings about a number of implications
for GEM-PRO models. First, to keep pace with the del-
uge of protein data coming from experiments, there is a
developing need for pipelines that use systematic map-
ping and quality assurance processes to read, filter, and
process all newly deposited structures, ultimately man-
aging all relevant data in an easy-to-use knowledgebase.
Second, increasingly accessible protein structural data
enhances the predictive scope of systems biology re-
search; the more description we have of the biological
components involved in complex systems, the more we
can understand cellular processes that span a wide range
of biological, chemical, and structural detail. Expanding

these models would allow for the progressive description
from a 1 to a 2- to a 3-D view of biology. Finally, to aid
in the dissemination and further development of these
resources, growing datasets and pipelines should be de-
veloped together with in silico tools that increase data
accessibility and training.
Here, we address each of the above implications and

demonstrate how linking protein structural data to
GEMs enables the generation, dissemination, and appli-
cation of GEM-PRO for studying two contemporary or-
ganisms, T. maritima and E. coli. For the generation and
updating of GEM-PRO, we present a novel pipeline that
systematically maps genes in a metabolic model to their
respective high-quality structural data. We present four
novel applications areas which demonstrate the utility of
modeling at the intersection of systems and structural
biology: (i) metabolic protein specificity; (ii) the relation-
ship between protein complex stoichiometry and in vivo
protein abundance; (iii) the diversity of bacterial pro-
teomes; (iv) protein properties of growth rate-limiting
reactions at high temperatures. Finally, for dissemination
and training purposes, we distribute the GEM-PRO
knowledgebase together with tutorials, which explicitly
describe how GEM-PRO can address the following ques-
tions: (i) How are protein fold families distributed over
metabolism? (ii) How does temperature, and hence pro-
tein instability, determine growth rate?

Results and discussion
Generation and updating of GEM-PRO using a systematic
pipeline
As with metabolic network reconstructions [1], structural
proteome reconstructions require constant curation and
updating to incorporate newly deposited experimental
protein structures. For example, over the course of two
years, the number of available experimentally determined
protein structures for E. coli has increased substantially
(since 2013, 356 additional experimental E. coli protein
structures can be linked to genes in the metabolic network

Fig. 1 Structural systems biology emerges from the integration of networks and structural biology. Genome-scale models incorporate multi-omic
data and large-scale curation from databases such as KEGG and UniProt. Molecular-level analyses enable atomic-level characterizations of secondary
structure, substrate binding, and comparisons of similar catalytic sites among proteins in the metabolic network
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model, iJO1366 [27]) and the structural coverage of genes
in the model has increased by 10 % (133 genes). In this
section, we describe the construction of a quality assess-
ment pipeline which enables newly deposited crystallo-
graphic or NMR structures to be searched, assessed, and
managed within a structured k-base. In total, 2 person-
hours are required by this workflow, once all homology
models have been constructed for proteins without avail-
able crystallographic structures. Time and computational
requirements for homology modeling are discussed in the
I-TASSER pipeline [28]. The workflow discussed here can
be carried out with no specific hardware require-
ments, and software requirements are outlined within
the tutorial notebooks.

Coverage of protein structures in metabolism
We find that the coverage of all experimental (X-ray
crystallography and NMR) protein structures (PDB) for
genes in T. maritima and E. coli is between 30–45 %,
which is 6–10 % higher compared to the original GEM-
PRO reconstructions (Fig. 2). The updated GEM-PROs
for T. maritima (iBM478-GP) and E. coli (iBM1366-GP)
include 336 and 3425 PDB structures, respectively, an
additional 5–10 % of newly deposited protein structures
compared to the original versions (see inner versus outer
nested pie chart in Fig. 2). Of the newly deposited pro-
tein structures, the majority are linked to subsystems in
metabolism with a higher coverage of protein struc-
tures compared to others (e.g., alanine and aspartate
metabolism, see Fig. 3 and Additional file 1: Figures S3
and S4).
As shown in Fig. 2, nearly 56–69 % of genes in the

GEMs cannot be mapped to available experimental pro-
tein structural information. To a large extent, the 3D
structure of a protein can be estimated from homology
modeling, which predicts structure based on experimen-
tal templates of proteins that are homologous in se-
quence to the protein of interest. Here, we selected the
I-TASSER (iterative threading assembly refinement) suite
of programs [29, 30], which has been the highest ranking
program for automated protein structure prediction for
the the past two CASP experiments [30–33]. Mapping
the E. coli model to available I-TASSER homology
models [24, 34, 35], we find that the coverage is nearly
complete for its metabolic proteome (1343 genes have
available template-based homology models and 23 have
ab initio models [34]). For T. maritima, we have per-
formed homology modeling using the I-TASSER proto-
col to generate models for a total of 333 genes lacking
experimental protein structure information. We find
that the updated GEM-PRO models make use of over
100 recently deposited (and higher quality) experimen-
tal structures compared to the previous models (see
Additional file 1).

Quality of experimental and homology-based structures
In many cases, experimental protein structures may con-
tain unresolved fragments of the protein or mutations in
the sequence (often as artifacts or the result of a
crystallization protocol or due to natural disorder). Small
variations in sequence can have large-scale effects on the
structure and function of proteins. Thus, we perform a
rigorous assessment of the quality of all structural data for
each model organism. To determine which experimental
structures require further modeling (e.g., group iii pro-
teins, displayed in Fig. 2a and b) or minimal modification
(e.g., group ii proteins, displayed in Fig. 2a and b), we de-
vised a scoring metric that ranks each PDB structure

Fig. 2 a The new GEM-PRO model for T. maritima (TM). Displayed in
the pie chart on the left is the coverage of genes by a PDB structure
or homology model, and a comparison of those structures available
in 2009 versus 2015. In the pie chart on the right, the available PDB
structures are further classified into three groups based on the
overall quality of the structure: (i) high quality structures that have
no mutations in the interior of the protein (112 genes involved in
210 reactions; in teal); (ii) high quality structures that have some
mutations and require minimal modification to revert back to wild-
type sequence (24 genes involved in 49 reactions; in light green) and
low quality structures (13 genes involved in 20 reactions; blue) that
may have large gaps of unresolved sections of the protein or a large
number of mutations at the interior of the protein and require further
homology modeling (in light blue). Determining the quality of a PDB is
explained in detail in the section entitled Quality control and quality
assessment of all structures. The same quality assessment evaluations
were carried out for E. coli in (b)
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based on a set of criteria: the maximum coverage of the
wild-type amino acid sequence, PDB resolution, and min-
imal number of missing or unresolved parts of the struc-
ture (see Fig. 4b and Additional file 1 for more details).
In the previous E. coli GEM-PRO, 43 % of all pro-

teins contained unresolved fragments. After carrying
out the QC/QA pipeline, we correct for all cases and
provide 100 % complete (gap-less) and sequence
identical structures of proteins. To further assess the
quality of protein structures in the updated GEM-
PRO, we have evaluated all structures using PRO-
CHECK [36], which assesses the stereochemical qual-
ity of a protein structure, and PSQS, based on
statistical potentials of the mean force between resi-
due pairs and between solvent and residue [37].
While the average quality scores for all protein struc-
tures in the updated versions of GEM-PRO are
similar to those of previous versions, the complete-
ness of all structural models in the updated GEM-
PROs substantially enhances the quality of the struc-
tures in the model and their capacity for future
applications.

Structural and sequence refinement of structures
The final step in the workflow (Fig. 4c) carries out
minimal sequence modifications of nearly perfect,
high-quality experimental structures (e.g., group ii
proteins, displayed in Fig. 2a and b). Modifications of
this set of structures are mainly needed to fix: (i) a
minimal number of single-residue mutations (i.e., not

more than two sequential mutations); or (ii) a min-
imal number of deletions or missing residues in the
interior of the protein. This final step enables one of
the most considerable improvements in the updated
GEM-PRO framework, providing a complete set of
minimally modified experimental structures that have
100 % sequence identity to wild-type sequence. Using
our PDB refinement pipeline (Fig. 5), we find that
16 % (24/136) and 23 % (136/490) of experimental
protein structures in the GEM-PRO of T. maritima
and E. coli, respectively, require minimal modifica-
tions to revert the PDB sequence to the wild-type se-
quence. See Table 1 for details on average sequence
identity and completeness.

Final outcome of mapping protein structures to
genome-scale data
The overall coverage and quality of the selected
experimental and homology-based structures for each
organism is detailed in Table 2. This database increases
the scope and capacity of genome-scale models when ap-
plied within a model and data-driven workflow, As shown
in Fig. 6a, the combination of protein data (e.g., melting
temperature) and a genome-scale model of metabolism
can be used to predict the effect of temperature on the
growth rate of a model organism. These in silico
findings can then be tested with experiments to provide
input into the next round of this iterative workflow
(Supplementary IPython notebook, titled “Temperature_-
Dependent_Growth_ Prediction.ipynb”).

Fig. 3 All available PDB structures mapped to the network of E. coli metabolism (iJO1366 model [27]). The heat map indicates an increase in the
number of available experimental protein structures that map to a given reaction in the pathway (grey to blue to red transitions represents 0 to
more than 10 PDB structures). Subsystems such as glycolysis and TCA are highlighted by the colored grey squares and transporters by transparent
rectangles with grey borders. The largest increase in coverage in subsystems involved in alanine and aspartate metabolism, glycolysis and
gluconeogenesis, folate metabolism, cysteine metabolism, the citric acid cycle, arginine and proline metabolism, tRNA charging, and nitrogen metabolism
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Modeling at the intersection of systems and structural
biology
Once a GEM-PRO database has been constructed, it can
be queried and used in conjunction with experimental
data and genome-scale modeling approaches to under-
stand the nature of the underlying biology. Here, we
present four novel case studies which demonstrate how
properties derived from the structures of proteins deter-
mine systems-level behavior.

Characterizing the degree of diversity in substrate
specificity of metabolic proteins
Evaluating protein structural properties together with
their binding capacities provides insight into structure-
function relationships of isozymes and proteins that
catalyze similar reactions. We are interested in using
GEM-PRO to formulate hypotheses about which pro-
teins are most likely to act promiscuously on substrates
other than their native one (i.e., substrate ambiguity).
Assessing the degree of substrate ambiguity with EC
numbers has been explored through evaluation of fourth
digit of the enzyme commission number (e.g., 2.6.1.X)

[38]. Here, we take a different approach, we apply GEM-
PRO to evaluate the degree of diversity in the sub-
strates/ligands bound to crystallized proteins within
various EC families.
Many enzymes in the transaminase family are known

to be capable of dual substrate recognition [39, 40].
Querying GEM-PRO, we find that aspartate aminotrans-
ferase, aspC (2.6.1.1), and tyrosine aminotransferase,
tyrB (2.6.1.57), are both pyridoxal 5' phosphate (PLP)-
dependent enzymes, share a common protein fold family
(PF00155; Fig. 7b) and structurally align to give a high
overlap of the substrate and cofactor binding sites. Struc-
tural properties such as these have been used to generate
hypotheses about possible “underground” activities of en-
zymes, and some have been recently validated in vivo
using an isozyme discovery workflow [6]. Extending the
above analysis to the entire proteome, we are interested in
addressing the question: “What is the degree of substrate
specificity of proteins in a metabolic network?” Using the
metabolic network models of E. coli and T. maritima, we
find that both organisms have a subset of multi-
functionality genes (i.e., genes that can catalyze more than

Fig. 4 Workflow for generating simulation-ready models of all proteins in metabolism. a The first stage involves mapping the genes of the organism to
available crystallographic and NMR protein structures, found in the Protein Data Bank (PDB). The second stage performs homology modeling for genes
without available structures. The third stage performs ranking and filtering of structures and homology models for each gene based on set selection
criteria (e.g., SSI, Sres and Scomp). These criteria refer to a scoring metric that ranks a PDB structure based on sequence identity (SSI), resolution (Sres), or
homology model based on the similarity in secondary structure composition (Scomp) compared to the structure. As shown in b, evaluation of the
sequence identity between the protein structure sequence and that of the wild-type sequence and PDB resolution (in Å) allows filtering of low-quality
structures. In the final stage, all high quality PDB files that require minimal modification (e.g., reversion of the sequence to match that of the wild-type)
are further refined, as depicted in (c)
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one reaction); in E. coli, 4.4 % (60) of metabolic genes are
involved in multiple enzymatic complexes and in T. mari-
tima, over 19 % (90) are multi-functional. Although T.
maritima has a higher degree of multifunctional peptides,
the number of reactions with isozymes is consistent with
that of E. coli (~30 %).
Protein structures of holoenzymes (i.e., proteins co-

crystallized with cofactors or substrates/analogs) also
provide a wealth of information on different protein-
ligand interactions, as they can be directly compared to
existing enzyme-substrate interactions in the metabolic
network. We analyzed proteins bound to a representa-
tive set of compounds present in metabolism (e.g., not
bound to glycerol, non-catalytic water molecules, or
other types of detergents). To filter the large majority of
these cases from the dataset, we classified the types of
ligands bound to protein structures, which clusters
ligands using a fast heuristic graph-matching algorithm

[41, 42]. The type of ligand bound to a protein structure
is grouped into different superclasses (e.g., lipids, amino
acids, sugars, antibiotics), by comparing discriminating
factors, such as the atom element, chirality, valence,
and/or bond order (see Supplementary IPython note-
book “Classify_PDB_Ligands.ipynb” and ref [41]). After
filtering the ligands into metabolic (and non-metabolic)

Fig. 5 This workflow demonstrates the final stage of refinement for PDB structures, performed to replace atomic coordinates of atoms in a mutated
residue with atomic coordinates corresponding to the wild-type residue. Using a combination of Biopython modules and the AMBER suite of programs,
each PDB structure is modified and the final structure is minimized. For example, an original crystal structure and its wild-type sequence differ by two
residues (Glu115His and Glu131Gln). The modified structure is reverted back to the original wild-type sequence in three stages: (i) all atoms in the R-
group of the target amino acid (except for the peptide backbone atoms) are stripped from the file; (ii) new atoms with their respective 3D atomic coor-
dinates are placed in the “empty” amino acid ‘site’ (e.g., the R-group atoms of Glu); (iii) the modified structure undergoes energy minimization using a
steepest descent algorithm to relieve any bad contacts (i.e., steric hindrance) that may be caused by the addition of new atoms

Table 1 Quality statistics of all available protein structures in
GEM-PRO models

Property T. maritima E. coli

Mean sequence identity 92.1 ± 15.8 % 91.8 ± 16.4 %

Mean completeness 92.3 ± 15.5 % 91.9 ± 16.1 %

Mean resolution 2.2 ± 0.5 Å 2.3 ± 1.0 Å

Mean sequence identity, completeness, and resolution refers to the average of
the three metrics over all experimental protein structures in GEM-PRO. The
standard deviation is given for each metric. Mean sequence identity refers to
exact amino acid matches between sequence and structure, while mean
completeness disregards exact matches
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superclasses, we find 39 % of the total genes in the E.
coli GEM-PRO model are representative holoenzymes
(26 % of T. maritima genes). Surprisingly, we observe a
large amount of metabolite binding versatility in E. coli,
as 50 % of holoenzymes are experimentally shown to
bind more than six different ligands (i.e., in different
crystallographic structures of the same protein, see
Fig. 7a). Each metabolite was described (according to its
metabolite fingerprint similarity using Tanimoto coeffi-
cients [43]) and these coefficients were compared across
the set of ligands bound to a given protein to determine
the degree of variation in substrate specificity. We find
that certain classes of enzymes, such as transferases

(EC 2.-.-.-.), are only bound to very similar metabolites
(which is consistent between E. coli and T. maritima),
whereas lyases (EC 4.-.-.-.), are bound to the most
structurally diverse set of substrates (see Additional file 1:
Figures S13 and S14).

Protein complex stoichiometry predicts in vivo enzyme
abundances
Does protein complex stoichiometry determine in vivo
enzyme abundance? Previous work using ribosome pro-
filing techniques revealed that multi-protein complexes
have proportional synthesis rates [44]. This is both inter-
esting and important because catalysis or activation of
proteins is dependent on the proper complex formation
of a specific number of homo- or hetero- subunits. Here,
we apply a complementary approach, using genome-scale
modeling of metabolism in conjunction with ribosome
profiling data to identify which protein abundances are
constrained by complex stoichiometry and which have
higher free protein abundances.
Information about the stoichiometry (or ratio) of genes

in the respective enzyme complex (and its functional
properties) is found in organismal [45, 46] or protein da-
tabases [47] and can be directly incorporated into GEMs
(e.g., in the annotated gene-protein-reactions, or GPRs).
GPRs link a set of genes to the metabolic enzyme to the
catalyzed reaction, providing a starting point for the re-
construction of enzyme complex stoichiometry. In this
section, we discuss how to predict enzyme abundances,
identify peptides that are not expressed stoichiometric-
ally, and predict the partitioning of peptides across the
multiple complexes to which it belongs. To associate the
metabolic reactions with structures of their catalyzing
enzymes, we integrated GEM-PRO together with the
genome-scale models of metabolism and expression
(ME-model) for E. coli [48]. The coverage of complex
stoichiometry is relatively complete (95 %). We find that
the majority of metabolic enzymes are homomers
(90.3 %), for which, we see a strong preference for even
stoichiometry. This is consistent with general trends
among homomeric complexes towards even stoichiom-
etry, and has been explained based on the ability of com-
plexes with even stoichiometry to form complexes with
dihedral symmetry as well as rotational symmetry [49].
Furthermore, we find that 4.4 % (60) of metabolic genes

Fig. 6 a The master GEM-PRO data frame which stores various
protein-related properties for a specified organism. b A proposed data
workflow, in which a genome-scale model is integrated with protein
structural information, thus forming a GEM-PRO which can then be
mapped to other data types, such as melting point temperatures, and
can subsequently be applied to genome-scale applications, such as
predicting growth rate of E. coli at different temperatures. Finally, these
in silico predictions are compared to experiments for validation

Table 2 Quality statistics of GEM-PRO models

Model PDB coveragea Homology model coverageb PDB quality scorec Homology model quality (TM-score)d

T. maritima 136/478 342 0.82 (0.86) 0.79

E. coli 490/1366 1366 0.77 (0.95) 0.82
aNumber of total genes with PDB structures (includes minimally modified) after QC/QA; bNumber of total genes with homology models. Note that there may be
overlap between PDB and homology model coverage; cMean quality score of PDB structures in the GEM-PRO model for all available PDB structures. In parentheses
are the subset of “best representative structures” for all metabolic gene (as ranked by the QC/QA pipeline), scaled (0, 1] where 0 is low quality and 1 is the highest
quality; dMean quality score of the homology models taken from the I-TASSER TM-score metric, is the range [0,1] with a value >0.5 implying correct topology of
the model [28]
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are involved in multiple enzymatic complexes and 30 %
of reactions are catalyzed by isozymes.
Coupling information from genome-scale reconstruc-

tions, known enzyme complex stoichiometry, and ribo-
somal profiling data, we can predict in vivo protein
abundance in E. coli. As depicted in Fig. 7c, this novel
framework can be applied to identify and predict protein
complex stoichiometry [44, 50]. As illustrated in the
Supplementary IPython notebook, "Complex_Stoichio-
metry.ipynb", protein complex stoichiometry can be con-
verted into a computable (mathematical) format for
validation with experimental ribosomal profiling data
[44, 51]. A protein stoichiometric matrix is assembled in
which the rows represent proteins, the columns repre-
sent enzymes, and the entries indicate the stoichiometry
of the protein within the enzyme (akin to a stoichiometric
matrix of metabolism, used in GEMs [5]). This matrix,
combined with quantitative data on protein expression
[52, 53], can then be used to determine feasible enzyme
(and free peptide) abundances using constraint-based
modeling methods [54] and available software [55, 56].
We find that the maximal and minimal enzyme abun-
dances, computed using flux variability analysis (assuming
free peptide abundance is minimized) indicate that en-
zyme abundances are quite constrained by stoichiometry
alone (see Additional file 1: Figure S15). Interestingly, we
find that many of the proteins with the largest free

abundances are periplasmic substrate binding proteins
(see Additional file 1: "Complex_Stoichiometry.ipynb").
These proteins are not always in complex with the trans-
porter protein itself and, therefore, are not produced stoi-
chiometrically with the rest of the transporter complex,
making their abundances less constrained.

Comparative systems biology of different bacterial
proteomes
To date, there has been a great deal of attention placed
on understanding the genetic differences between T.
maritima and other Eubacteria [57–63]. Whole-genome
similarity comparisons indicate that T. maritima is the
most Archaea-like organism compared to other eubac-
terial species [57–63], with 24 % of genes appearing to
be more closely related to archaeal genes [63, 64]. Less
attention, however, has been focused on characterizing
the differences between proteomes of species. Of the
studies that evaluate protein-level differences, many have
focused on families of proteins [65, 66], and few have
focused on comparing proteins that span across entire
metabolic networks. The novelty of using GEM-PRO for
comparative studies is the ability to map genes to their
gene products (proteins) to the reactions they catalyze
within a single database. Such a mapping allows for
high-level structural comparisons of functionally rele-
vant sets of genes: homologous genes, genes that

Fig. 7 New structural systems biology applications using GEM-PRO. a The counts of different ligands from the Ligand Expo database (PDB) that
are bound to holoenzyme protein structures in the E. coli GEM-PRO model and are linked to catalytic metabolic reactions. b An example of a
highly promiscuous family of enzymes, transaminases, which have been shown to rescue the activity of another protein when its respective gene
has been knocked out [6]. Pfam refers to shared protein fold family, '% id' refers to percent sequence identity, and '% align' refers to the 3D structural
alignment of the two proteins. The plot in c demonstrates how the GEM-PRO model can be combined with experimental data, such as ribosomal
profiling, to predict the in vivo abundance of proteins and their complex stoichiometry. The example shown here is that of ATP synthase,
which indicates a high overlap between the complex stoichiometry stored in GEM-PRO and an experimental measurement
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catalyze more than one reaction (i.e., promiscuous),
genes that catalyze similar reactions (i.e., isozymes) and
genes with high sequence or structural similarity. Here,
we apply GEM-PRO to address the question, “How
different are bacterial proteomes and what are the main
properties that distinguish them?”
The first notable difference, when comparing GEM-

PROs of E. coli and T. maritima, is the spread of mo-
lecular motifs across metabolic proteins, which greatly
distinguishes the two proteomes from one another. We
used the Flexible structure AlignmenT by Chaining
AFPs (Aligned Fragment Pairs) with Twists (FATCAT)
[67] algorithm to detect all of the aligned fragment pairs
(AFPs), based on previous PDB-wide alignment of repre-
sentative protein domains [68]. The observed AFPs are
regions of a protein that cluster based on similarities in
local geometry and take into consideration protein flexi-
bility by clustering regions of the protein that can undergo
different geometric transformations. Considering all pro-
teins in both the E. coli and T. maritima GEM-PRO
models, we found a total of 874 and 197 unique domains
(according to SCOP or PDB-based annotations), respect-
ively, which span the whole of metabolism (i.e., 1819 total
protein structures). We find that 36 domains are shared
between T. maritima and E. coli (see Additional file 1: for
more details). Furthermore, comparing the distribu-
tion of complex stoichiometry between E. coli and T.
maritima, we find that for both organisms, the major-
ity of metabolic enzymes are homomers (90.3 % and
71.1 %, respectively).
To understand whether the properties of entire pro-

teomes are distinguishable between organisms, we
carried out PCA on 29 computed secondary structural
properties (see Additional file 1: Table S5 and Fig. 8a).
The projections of the first two principal components
explain 60 % of the normalized property distribution.
Using K-means clustering, we find that protein proper-
ties separate into four discrete clusters (based on the
percent variance within clusters as detailed in Additional
file 1). The main difference between the clusters of
proteins is the percent composition of secondary struc-
tural elements, such as α-helical and β-extended strand,
solvent-accessible surface area and percentage of charged
residues (Fig. 8b). For example, in one cluster (‘1’), 64.7 %
of amino acids are found in α-helices. A correlation matrix
derived from the properties of proteins in this cluster indi-
cates that the majority of residues found in α-helices also
have higher percentages of hydrophobic content while
other residues found in β strands are highly charged. The
majority (155 out of 247) of this cluster of proteins are
membrane-bound proteins, which are known to have
distinguishing exterior domains [69, 70], and correlate
based on a preference for α-helices and a neutral surface
charge, compared to those proteins in other clusters.

As illustrated in Fig. 8c, the percentage of the prote-
ome in each of the four clusters differs between organ-
isms; certain clusters are present (or enriched) in only
one of the organisms (such as cluster 0 for E. coli and
cluster 2 for T. maritima). Comparing the unique as-
pects of proteins within each of the clusters, we find that
certain characteristic features distinguish proteins based
on their metabolic roles as well as based on which
organism they belong to. For most clusters, proteins
belong to a single (or a select few) subsystem(s), which
suggests that these features may play a role in self
assembly and cellular localization. For example, compar-
ing the second and third clusters (1 and 2), many of the
members (over 70 %) function as transport proteins
versus alternative carbon metabolism and cofactor
biosynthesis (33 %). For differences between proteomes,
we find that the first cluster (0) consists of only E. coli
proteins (Fig. 8c), which are enriched in surface-exposed
residues and tend to be polar or positively charged
(Fig. 8b). However, in the third cluster (2), we find an in-
creased number of thermophilic proteins compared to
the number of mesophilic proteins with a higher degree
of buried, nonpolar residues, and are less polar and solv-
ent accessible. This is consistent with what is generally
known about protein stability [71], such as those domi-
nated by forces that drive protein folding (e.g., the burial
of nonpolar groups, increased number of hydrophobic
interactions and decreased solvent accessibility).

Characterization of proteins with growth rate-limiting
reactions at high temperatures
High temperatures impose a heavy burden on organisms
with respect to the functioning of cellular metabolism.
Understanding the molecular basis for stability is neces-
sary to grasp the the fundamental nature of protein
structure as well as to engineer high-temperature indus-
trial processes [72]. In general, structure-based analyses
have been used to discover properties of thermostability
[71, 73–75], however, there remains a significant challenge
to pinpoint which characteristic features of proteins lead
to detectable differences between thermophiles and meso-
philes [76, 77]. Using an entirely different approach,
genome-scale models of metabolism point to specific pro-
teins that limit the ability of the cell to grow and function
at a given temperature [17]. For example, specific E. coli
proteins, identified as “hotspots,” are linked to reactions in
the metabolic network that limit or diminish the cellular
growth rate at higher temperatures (e.g., due to protein
unfolding/degradation). The novelty of this approach is
that we can hypothesize which “hotspot” proteins are
under selective pressure (on the basis of how important
their function is to the entire metabolic network) and re-
quire adaptation to function at higher temperatures.
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Here, we are interested in the characterization of mo-
lecular properties of T. maritima homologs that set them
apart from their E. coli counterparts, potentially allowing
for functional proteins at higher temperatures. To begin,
we focused on hotspot proteins in E coli, which are known
to be growth-rate limiting at high temperatures. To iden-
tify T. maritima homologs within the subset of hotspot
proteins , we took advantage of the extensive database of
both GEMs to effectively map between E. coli and T. mar-
itima genes that have a similar sequence and metabolic
function (a total of 219 homologs; see Additional file 2:
"Database S2: Table 01"). In this case, we clustered align-
ments of E. coli with T. maritima PDB templates into
three classes (high, medium, and low-medium overlap)
based on the root-mean-squared-deviation (RMSD) of the
protein backbones (less than 5 Å, 5–7 and 7–10 Å, re-
spectively) and an alignment coverage of greater than
70 % of the total length of the protein. Surprisingly, we
find that, out of 219 homologs, only 10 % (19) of E. coli
genes share a structurally similar domain with their T.
maritima homologs (all cases align with RMSD < 5 Å). Of
the 10 % that are structurally similar, we linked their re-
spective metabolic functions to amino acid biosynthesis,

cofactor biosynthesis, or cell envelope biosynthesis. A few
cases related to tRNA and methionine metabolism also
show a high degree of structural similarity, despite low nu-
cleotide sequence identity (e.g., b3559/TM_0216 have
30.1 % sequence identity and b4019/TM_0269 have
27.8 % sequence identity).
Particularly interesting cases pulled out from this

analysis are those of 3-phosphoglycerate kinase (pgk, EC
5.3.1.1) and the b subunit of atp synthase (atpB, EC
3.6.3.14). Comparing the extremely stable thermophilic
pgk with its less stable, mesophilic homolog reveals that
this peptide correlates to proteins in cluster 2, whereas
the thermophilic pgk correlates to proteins in cluster 1.
The crystallographic structure of the thermophilic pgk
shows increased rigidity from the many intramolecular
contacts, alpha helices, and loop regions [78] consistent
with cluster 1 properties. Furthermore, the size of the T.
maritima pgk is three times that of its E. coli counter-
part (280 kDa versus 43 kDa), as it is a tetrameric fusion
protein (pgkfus) of two enzymes, namely pgk and triose-
phosphate isomerase (tpi, 2.7.2.23), illustrated in Fig. 8d,
bottom. Despite a difference in relative enzyme efficiency,
the fusion protein is active when previously cloned and

Fig. 8 In a, K-means clustering of all E. coli and T. maritima protein structural properties (29 features, including SASA, percent polar, nonpolar, bur-
ied, surface, charged residues and others). The K-means clustering algorithm clusters all proteins into four distinct clusters (based on the percent vari-
ance explained per cluster using the elbow method, see Additional file 1). Interestingly, metabolic subsystems in E. coli show distinct structural
characteristics in their respective proteins. The subsystem with the most proteins in a given cluster is reported. In b, we report the main structural
characteristics that distinguish proteins across clusters. The numbers represent averaged scaled property values across all proteins within a given cluster
(see Additional file 1). The property values generally represent the percentage of the protein that is described by a given property (e.g., percentage of the
protein which is nonpolar). In c, the percentage of E. coli and T. maritima proteomes within each cluster are shown. Surprisingly, certain clusters are
enriched in E. coli proteins (cluster 0) and certain in T. maritima proteins (cluster 2). Total numbers of proteins in each cluster are 154, 318, 592, and 763
for cluster 0–4, respectively. In d, an example of a homolog (pgk) which is present in entirely different clusters (cluster 2 for E. coli and cluster 1 for
T. maritima). The structural differences can mainly be explained by the fact that in T. maritima, pgk (PDB 1VPE) is fused with tpi (PDB 1B9B), creating a
protein which is triple in length to that of its E. coli counterpart (PDB entry 1ZMR)
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expressed in E. coli, confirming the authenticity of the two
separable proteins and enzyme activities resulting from
this gene in the mesophilic host [79]. In this context, cova-
lent fusion of two proteins to complexes or assemblies
might represent an additional stabilization strategy, par-
ticularly for “hotspot” enzymes that become unstable at
higher temperatures, like pgk.
A structural comparison of the β subunit of ATP syn-

thase polypeptides indicates that the T. maritima protein
has a higher degree of buried, nonpolar residues that, on
average, are less solvent exposed (i.e., a larger average resi-
due depth of the alpha carbon atoms in the protein). In
contrast, the E. coli peptide is much more solvent exposed
and its residues are, on average, more polar or positively
charged. A previous study, which characterized the
chimeric soluble β polypeptides in vitro showed that the
T. maritima protein melted cooperatively with a midpoint
more than 20 °C higher than that of the E. coli sequence
[80]. The study revealed the effects of substituting differ-
ent sequences in the E. coli peptide, showing which parts
of the peptide tolerated the most change without a loss of
function and which changes led to an increased thermo-
stability. The structural differences brought out by this
pairwise comparison are consistent with the fact that the
average relative contact order (which correlates to solvent
accessibility) of T. maritima proteins is significantly differ-
ent than their close mesophilic homologs [77].

Dissemination of GEM-PRO and development of new
training resources
Equally important to providing higher quality models is
providing the community with complete knowledge bases,
tools, and training examples for the continuous develop-
ment of genome-scale modeling approaches. Historically,
advances in genome-scale modeling have been accelerated
by the wide dissemination of network reconstructions,
modeling methods, and their continual curation and up-
dating to incorporate new information. Furthermore, as
GEM-PRO enables modeling of cellular processes that
span a wide range of biological, chemical, and structural
detail, input from different scientific disciplines could
vastly enhance the capabilities of current methods and ap-
proaches used in systems biology. To make GEM-PRO ac-
cessible to a wide-range of scientific backgrounds, we
present GEM-PRO workflows for these two contemporary
organisms, E. coli and T. maritima.
As Additional file 1, we describe how various protein-

related data types are paired with GEMs (Fig. 6). We
provide bioinformatics scripts together with tutorials (in
the form of IPython notebooks) as Additional file 1 to
explicitly describe how protein-related information can
be linked to genome-scale models to study: (i) the
evolution of protein fold families in metabolism; (ii)
temperature-dependent growth rate predictions; (iii) the

diversity in protein-ligand interactions in a metabolic
network; (iv) the organization of protein complex stoichi-
ometry and how it can be paired with ribosomal profiling
data to describe in vivo protein abundance.

Conclusion
Protein structures and their molecular assemblies offer a
wide range of possibilities to further enhance the
predictive scope of genome-scale modeling by providing
information on the sequence of molecular events in a
pathway, how to interfere with a pathway to treat a
pathology, or the evolutionary history of contemporary
organisms. The further integration of protein-related
data into metabolic network reconstructions will rely on
clear mapping protocols and the development of bio-
informatics tools that will aid in this process. This con-
tribution, the bioinformatics tools, and the
accompanying tutorials, which are based on constraint-
based modeling methods through COBRApy [56],
describe the generation and application of GEM-PRO
models. Here, we have shown the utility of integrating
molecular scale analyses with systems biology ap-
proaches by discussing several comparative analyses on
the temperature dependence of growth, the distribution
of protein fold families, substrate specificity, and
characteristic features of whole cell proteomes.
The dissemination of the GEM-PRO modeling frame-

work is likely to broadly impact work in a wide array of
disciplines, including structural biology, computational
chemistry, systems biology, and biotechnology. The ability
to characterize the structural, chemical, and binding
characteristics of metabolic proteins in different organ-
isms also enables the further development of in silico tools
capable of identifying isozyme activity on a genome-scale.
Recently, a number of studies have emerged [6, 81, 82]
that have used genome-scale models together with com-
plementary bioinformatics techniques to characterize the
versatility of enzymes on a systems level. Such studies can
easily be extended to include the assessment of protein
structural data and can be used to complement current
“gap-filling” methods [83, 84] for model improvement.
Current “gap-filling” methods typically use amino acid
sequence identity as a measure for predicting enzyme
similarity. However, some candidates are likely to be
overlooked, since proteins with low sequence identities
(e.g., <15 % in the globin family) have also been shown
to share similar folds and functions [65, 85, 86]. Evalu-
ating the capacity of a protein to catalyze more than
one reaction is also especially important to applications
in metabolic engineering [87–89], where such proteins
serve as an ideal starting platform for engineering novel
capabilities as well as increasing substrate specificity.
Finally, GEM-PRO models offer insight into the phys-

ical embodiment of an organism’s genotype and provides
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a new way to compare genomes by linking genes to their
encoded gene product, to the protein’s structure, and
finally, to the reaction catalyzed by that protein (or its
molecular assembly). The use of GEM-PRO models as a
comparative systems biology approach demonstrates that
important aspects of the functional differences between
organisms (e.g., due to lifestyle changes) are not only
derived from differences in their genetic components
but also from the physical interactions of their molecular
components. Together with previous applications on
the phylogenomic analysis of protein structure [90],
global motifs on protein fold and domain architecture
[91, 92], and evolution of modern metabolism [7, 93],
mapping the properties of proteins to their respective
genes offers a novel perspective of the molecular,
biochemical, and phenotypic features of contemporary
organisms. This comparative framework enables ex-
ploration of adaptive strategies for these organisms
and opens the door to many new lines of research,
including metabolic engineering and the design of
thermostable enzymes.

Methods
Data retrieval and manipulation
Incorporating protein-related information into a GEM
involves four stages of semi-automated curation: (i)
map the genes of the organism to available experimen-
tal protein structures, found in publicly available data-
bases, such as the Protein Data Bank (PDB); (ii)
determine genes with and without available protein
structures and perform homology modeling using the I-
TASSER suite of programs [30] to fill in gaps where
crystallographic or NMR structures are not available;
(iii) perform ranking and filtering of PDB structures for
each gene based on a set selection criteria (e.g., reso-
lution, number of mutations, completeness); (iv) map
GEM genes to other databases (e.g., BRENDA [94, 95],
SwissProt [96], Pfam [97], SCOP [98]) for complemen-
tary protein-structure derived data. The quality of the
reconstruction expansion process to include high confi-
dence protein structures is considered by carrying out a
series of QC/QA verification steps during the ranking
and filtering stage. The GEM annotation of the organ-
ism of interest is stored in SBML and Matlab formats
and many organisms can be found in the BiGG data-
base [5]. Amino acid sequence of the proteins of inter-
est are stored in FASTA format. To map protein
structural data to a GEM, we make use of Python mod-
ules, ProDy [99, 100] and Biopython [101] to parse in-
formation in the PDB files. The molecular visualization
software VMD [102] was used for viewing the 3D struc-
ture of the modeled protein and the predicted func-
tional sites and the creation of images. Installation of

PfamScan and HMMER3 algorithms are required for
generating protein fold families for certain proteins
[103, 104]. Open source software for protein structural
predictions are available and are used in conjunction
with the IPython framework.

Data organization into IPython Notebooks
In the Supporting Information, we provide discrete ex-
amples of how to use the expanded metabolic network
reconstructions with protein information to predict
cellular phenotypes, which include (i) the discovery of
multimeric properties of metabolic enzymes; (ii) the pre-
dicted growth of E. coli at different temperatures; (iii)
predicting the effects of antibacterial drugs in E. coli; (iv)
the discovery of patterns in fold families distributed
across the metabolic network in E. coli and (v) the dis-
covery of ligand similarity and potential for promiscuity
in the metabolism E. coli. The tutorials provided in Sup-
porting Information are designed in such a way that aids
the user to properly access information in the GEM-PRO
database, easily reproduce previously reported findings
and organize information into meaningful representations.
The main objective of the designed framework is to assist
in (i) mapping between useful and unique identifiers; (ii)
locate and query various data sources and (iii) identify
fruitful and meaningful associations between the disparate
datasets. We provide tutorial-like IPython notebooks as a
means to organize the output of the database into easily
manageable and understandable modules. Such a frame-
work is the first of its kind for constraint-based modeling
and provides full details that can be reproduced and
updated as new data becomes available. For more details,
see the Additional file 1.

Homology modeling framework
The I-TASSER protocol is described by the following
steps: (i) for each protein of interest, homologous tem-
plates are identified and used to assemble the queried
protein; (ii) modified Monte Carlo based replica exchange
simulations are performed to cluster the lowest-free en-
ergy states of the assembled structure; (iii) the fragment-
based assembly simulation is performed a second time to
further refine the model and remove steric clashes; (iv) the
function of the query protein is inferred by structurally
matching the predicted 3D models against the proteins of
known structure and function in the PDB. In order to as-
sess the quality of the predicted structure, the accuracy is
predicted from a confidence score (C-score or TM-score),
which is defined based on the quality of the threading
alignments and the convergence of the assembly re-
finement simulation used in steps ii and iii. I-TASSER
is capable of generating multiple model predictions with a
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rank-ordered C-score. For more details about I-TASSER,
please refer to the published literature [28].

Prediction of Pfam family folds (HMMER)
The database currently maintains 14,831 manually
curated entries in the current release and is accessible
via web servers (http://pfam.sanger.ac.uk/ and http://
pfam.xfam.org/). This information allows for the
classification of proteins via amino acid sequence into
distinct protein families who share domain architecture
through the HMMER suite of programs [105]. The
challenges of predicting protein families using
HMMER3 are discussed elsewhere [106]. For the genes
in our models without Pfam annotations, we have run the
freely available HMMER source code [103, 104] to fill in
the “gaps” in the Pfam knowledgebase.

Temperature-based Predictions in the E. coli Metabolic
Network
Temperature-related properties of proteins (e.g., melt-
ing point temperature or TM) were determined using
both experimental and predicted values for the melt-
ing temperatures of proteins. The two main sources
of this experimental data were taken from ProTherm
[107] and BRENDA [95] online data services. By querying
ProTherm and BRENDA temperatures of specific meta-
bolic proteins were linked to metabolic genes via their
respective EC number. In the Additional file 1, we have
provided a script that performs the direct mapping
between Blattner number and EC for querying both
ProTherm and BRENDA databases (see the Supple-
mentary IPython notebook titled, "Predicting Growth
Rate at Various Temperatures"). For the iJO1366
model of E. coli, we find low coverage of temperature
related data (only 29 out of 1366 genes with automated
querying and 193 genes with semi-automated and manual
curation). Thus, the experimentally determined TM values
were supplemented with predicted TM using a previously
published method [108]. We provide an example of one
out of the four bioinformatics-based computational predic-
tion of TM which derived from the amino acid sequence.

Reconstruction of Protein Complex Stoichiometry
We updated the reconstruction of complex stoichiometry
of enzyme complexes that catalyze metabolic reactions to
include over 500 new complexes. We have included the list
of added reactions together with the nearly complete
mapping to complex stoichiometry in the Additional file 1.
Metabolic models contain gene-protein-reaction relation-
ships (GPRs), which are boolean statements on the
requirements of genes for catalysis. However, more detailed
reconstructions that include protein structures and models
of metabolism and protein expression (ME-Models) benefit
[48, 109] from information on enzyme stoichiometry.

While the previous versions of GEM-PRO [7, 110]
included information on single protein chains and protein
complexes (using information both experimentally deter-
mined and putative PISA predictions [111]), the updated
GEM-PRO extends the coverage to include additional data
derived from experimentally determined enzyme complex
stoichiometry. There are several additional sources of data
on the stoichiometry of proteins in complexes, including
PDB structures and protein gels; much of this data is
already compiled in databases such as Ecocyc [45, 46] or
UniProt [47]. Experimentally determined structures and
structures from homology modeling were used to achieve
93 % structural coverage of proteins in the iJO1366 net-
work and between 24 % and 33 % coverage of protein-
substrate binding conformations. Manual curation for en-
zymes and metabolic reactions that do not perfectly match
between the M-Model and databases is necessary. This
procedure was performed by O'Brien et al. [48] starting
from the iJO1366 metabolic model and mapping to the en-
zyme annotation in EcoCyc [45].

Calculation of Protein 3D Structural Properties
We calculate 29 physical properties of the protein to
construct a multidimensional data matrix, including
solvent-accessible surface area (SASA), number of total
contacts, disulfide bond distance (SS-bond), percent of
the protein that is buried, percent of the protein that is
on the surface, secondary structure composition (α−heli-
cal content, β−strand content, 310 helix content, π−helix
content, hydrogen bonded turn content, bend content,
disordered content), ovality (SASA/Nres

2/3), residue depth
(distance of the C atom from the protein surface), percent
of the total structure that is nonpolar, polar, positively
charged, or negatively charged, and percentage of the
surface/buried residues that are nonpolar, polar, positively
charged, or negatively charged. SASA was calculated
according to the algorithm of Lee and Richards [112, 113]
with a probe radius of 1.4 Å. Residues with a SASA
measurement greater than 3 Å2 are assigned as surface
residues. The residue depth has been calculated for all
atoms in the entire protein based on Michel Sanner's
Molecular Surface (MSMS) method [114] and is evaluated
from the average distance of all atoms to the surface of
the protein. The number of disulfide-bonds is calculated
from the 3D coordinates of sulfur atoms (using a 5 Å
bonding distance cutoff).

Availability of data and materials
Database S1: E. coli. Excel file containing GEM-PRO
related information for E. coli (Additional file 3).

� Table 01: GEM-PRO master dataframe. All
reactions, genes, sequence and
structure ID mappings.
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� Table 02: Enzyme complex information for
the associated reaction.

� Table 02a: Updates to the previous complex
information available in 2013.

� Table 03: 3D structural properties of all
representative structures per gene.

� Table 03a: 3D structural properties of all homology
models.

� Table 04: PFAM retrieved and computed properties.
� Table 05: Structural quality of PDB structures,

including PSQS and PROCHECK scores.
� Table 06: Structural quality of homology, including

TM-scores, C-scores, PSQS, and
PROCHECK scores.

Database S2: T. maritima. Excel file containing GEM-
PRO related information for T. maritima (Additional
file 2).

� Table 01: GEM-PRO master dataframe. All reactions,
genes, sequence and structure ID mappings.

� Table 02: Enzyme complex information for the
associated reaction.

� Table 03: 3D structural properties of all
representative structures per gene.

� Table 04: PFAM retrieved and computed properties.
� Table 05: Structural quality of PDB structures,

including PSQS and PROCHECK scores.
� Table 06: Structural quality of homology, including

TM-scores, C-scores, PSQS, and
PROCHECK scores.

Dataframes, mapping files, analysis scripts, tutorials
and other documentation have been uploaded to a public
Github repository and are available at: https://github.com/
SBRG/GEMPro/tree/master/GEMPro_recon/.
Four iPython tutorial notebooks are hosted in the

same Git repository and are available for viewing:

I. Understanding evolutionary relationships of fold
families in metabolism: https://github.com/SBRG/
GEMPro/blob/master/GEMPro_recon/Ecoli/
tutorials/Protein_Fold_Familes.ipynb,
https://github.com/SBRG/GEMPro/blob/master/
GEMPro_recon/Tmaritima/tutorials/Protein_Fold_
Familes.ipynb.

II. Predicting growth rate at various temperatures:
https://github.com/SBRG/GEMPro/blob/master/
GEMPro_recon/Ecoli/tutorials/Temperature_
Dependent_Growth_Prediction.ipynb.

III. Classify and characterize the co-crystallized ligands
in GEM-PRO: https://github.com/SBRG/GEMPro/
blob/master/GEMPro_recon/Ecoli/tutorials/Classify_
PDB_Ligands.ipynb, https://github.com/SBRG/

GEMPro/blob/master/GEMPro_recon/Tmaritima/
tutorials/Classify_PDB_Mols.ipynb.

IV. Protein complex stoichiometry for M-Model
enzymes: https://github.com/SBRG/GEMPro/blob/
master/GEMPro_recon/Ecoli/tutorials/Complex_
Stoichiometry.ipynb, https://github.com/SBRG/
GEMPro/blob/master/GEMPro_recon/Tmaritima/
tutorials/Complex_Stoichiometry.ipynb.

Additional file

Additional file 1: Supplementary information. (PDF 2299 kb)

Additional File 2: Database S2: T. maritima. Excel file containing GEM-
PRO related information for T. maritima. (XLSX 775 kb)

Additional File 3: Database S1: E. coli. Excel file containing GEM-PRO
related information for E. coli. (XLSX 13.3 mb)
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