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ABSRTACT

Continuous availability is a critical requirement for an
important class of software systems. For these systems,
runtime system evolution can mitigate the costs and risks
associated with shutting down and restarting the system for
an update. We present an architecture-based approach to
runtime software evolution and highlight the role of
software connectors in supporting runtime change. An
initial implementation of a tool suite for supporting the
runtime modification of software architectures, called
ArchStudio, is presented.

1 INTRODUCTION

For an important class of safety- and mission-critical
software systems, such as air traffic control, telephone
switching, and high availability public information
systems, shutting down and restarting the system for
upgrades incurs unacceptable delays, increased cost, and
risk. Supporting runtime modification is a key aspect of
these systems. Existing software systems that require
dynamic update generally adopt ad-hoc. application
specific approaches. Such systems would benefit from a
systematic, principled approach to runtime change
supported by a reusable infrastructure.

The benefits of runtime evolution are not restricted to

safety-intensive, mission-critical systems. A broadening
class of commercial software applications is beginning to
exhibit similar properties in an effort to provide end-user
customizability and extensibility. Runtime extension
facilities have become readily available in many popular
operating systems (e.g., dynamic link libraries in UNIX and
Microsoft Windows) and as parts of component object
models (e.g., dynamic object binding services in CORBA
[23] and COM [6]). These facilities enable system
evolution without recompilation by allowing new
components to be located, loaded, and executed during
runtime.

The kinds of support for runtime modification found in
operating systems, distributed object technologies, and

programming languages, have a major shortcoming
however. Enabling dynamism is, by itself, not sufficient to
ensure the consistency, correctness, or desired results of
runtime change. Support for change management is critical
to effectively utilizing mechanisms for runtime change.
Change management is a principle aspect of runtime
system evolution that:

• helps identify what must be changed,
• provides a context for reasoning about, specifying, and

implementing change, and
• controls change to preserve system integrity.

Without change management, risks introduced by runtime
modifications may outweigh those associated with shutting
down and restarting a system.

Software architectures [25, 33] have the potential to
provide a foundation for systematic runtime software
evolution. Architectures shift the development focus away
from lines-of-code to coarse-grained components and their
overall interconnection structure. This enables designers to
abstract away unnecessary details and focus on the "big
picture:" system structure, communication protocols of
interacting components, assignment of software
components to processing elements of the execution
environment, and, potentially, runtime change. Central to
architectures, in our view, are connectors, which mediate
and govern interactions among components. Using
connectors separates computation from communication,
minimizes component interdependencies, and facilitates
system understanding, analysis, and evolution.

Architectures provide three key enables for effective
change management.

• Explicit system structure allows dynamism to be mod
eled separately from the functional behavior of compo
nents.

• Separation of architecture from implementation enables
architectural changes to be analyzed before they are
applied to the running system.

• Separation of computation from communication allows
designers to focus on either runtime change to the func
tionality (components) or to communication mecha
nisms and protocols (connectors).

This paper presents an architecture-based approach to
runtime software evolution. Three unique elements of our
approach are (a) an explicit architectural model, which is
deployed with the system and used as a basis for change.
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(b) preservation of explicit software connectors in
implemented systems, and (c) an imperative language for
modifying architectures. We have completed an initial
prototype of a tool suite, AichStudio, thatsupports runtime
software evolution at the architectural level.

The paper is organized as follows. Section 2 describes key
aspects of effective change management. Section 3
summarizes previous approaches to runtime software
change. Section4 advocates an architecture-based
approach to runtime change management and demonstrates
how different kinds of software evolution are supported at
the architectural level. Sections describes the roles
components and connectors play in supporting these
architectural changes. Section 6 briefly describes the
particulararchitectural style that our tool suite, described in
Section 7, supports. Section 8 identifies research areas
relevant to this work and Section 9 summarizes the
contributions of the paper.

2 MANAGING RUNTIME CHANGE

This section describes several critical aspects ofmanaging
change. These aspects determine the degree to which
change can be reasoned about, specified, implemented, and
governed.

• Change policy controls how a change is applied to a
running system. A particular policy, for example, may
instantaneously replace old functionality with new func
tionality. Another policy may gradually introduce
change by binding invocations subsequent tothe change
to the new functionality, and preserving bindings previ
ously established to the old functionality. Ideally, policy
decisions should be made by the designer based on
application requirements. Dictating a particular policy
negatively influences design since designers must
"design around" the restrictions to attain desired effects.

• Change scope is the extent to which different parts ofa
system are affected by a change. A particular approach,
for example, may stall the entire system during the
course of a change. The designer's ability to localize the
effects ofruntime change by controlling its scope facili
tates change management.

• Separation of concerns captures the degree to which
issues concerning a system's functional behavior are
distinguished from those regarding runtime change. The
greater the separation, the easier it becomes to alter one
without adversely affecting the other.

• The level ofabstraction at which changes are managed
plays a significant role in determining the complexity
thatmust be effectively managed.

We refer to these aspects In subsequent sections of the
paper when comparing and contrasting different
approaches to runtimechange.

3 PREVIOUS APPROACHES TO RUNTIME
CHANGE

Traditionally, designers have sought alternatives to runtime
change all together. Safety critical systems, for example,
typically provide manual overrides that relinquish
computercontrol to a person during system maintenance. If

around-the-clock system availability is not required, system
updates are postponed until the next scheduled downtime.
Some distributed systems employ functional redundancy or
clustering to circumvent the need for runtime change. A
Web server, for example, can be upgraded by redirecting
incoming network traffic toa redundant host, reconfiguring
the original host in a traditional manner, and redirecting
network traffic back to the original host. However, these
approaches may not be feasible in some cases due to the
increased risk and costs they impose. Our hope isto reduce
the costs and risks designers typically associate with
runtime change, making it a more attractive design
alternative.

Several approaches to runtime software evolution have'
been proposed in the literature [14, 17, 26, 31]. In the
following paragraphs, we descrite several representative
approaches and evaluate them with respect to the aspects of
change management presented in Section 2. We slan by
discussing techniques for statement- and procedure-level
runtime change and move up levelsof abstraction.

Gupta et al. describe an approach to modeling changes at
iht statement- and procedure-level for a simple theoretical
imperative programming language [14]. The technique is
based on locating program control points at which all
variables affected by a change are guaranteed to be
redefined before use. They show that in the general case
locating all such control points is undecidable, and
approximate techniques based on source code data-flow
analysis and developer knowledge are required. Scaling up
this approach to manage change in large systems written in
popular programming languages is still an open research
problem. Dynamic programming languages, such as Lisp
and Smalltalk, also support statement- and procedure- level
runtime change. However, this flexibility is gained at the
expense of heterogeneity and performance. Applications
must be written entirely in the given language to benefit
from dynamism. This incurs performance overhead since
every function invocation must be bound dynamically.
Furthermore, application behavior and dynamism are not
explicitly separated or localized. As a result, concerns
regarding dynamic change permeate system design, making
change management exceedingly difficult.

Peterson et al. present an approach toruntime change at the
module-level based on Haskel, a higher-order, typed
programming language [26]. The technique requires
programmers to anticipate portions of the program that
might change during runtime, and structure the program
around functions that encapsulate such changes.
Application programmers encode decisions regarding
change policy and scope in the application source code.
Permitting fine-grained control over runtime change
enables designers to implement change policies best suited
for the application. However, requiring that these policies
be implemented in the source code makes them difficult to
alter independently of application behavior. As a result,
managing change in large systems becomes overly
complex.
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Kramerand Magee present an approach to runtime change
at the structure-level based on distributed system
configurations [17]. Configuration in a distributed system
consists of processing nodes interconnected using
unidirectional communication links, called connections. To
make a particular runtime change, nodes directly affected
by thechange as wellas theiradjacent nodes are directed to
enter into a "quiescent" slate by a reconfiguration manager.
While in the quiescent state, a node voluntarily agrees not
to initiate communication with peers. This ensures that
nodesdirectly affected by a change will not receive service
requests during the course of the change. Changes,
specified in a declarative language, are induced to the
running system by the reconfiguration manager. The
reconfiguration manager is responsible for making
decisionsregardingthe change policy and its scope. It must
do so based on a limited model of the application consisting
of the system's structural configuration and whether or not
Its nodes are in quiescent states. As a result, designers must
consider the reconfiguration manager's role in runtime
change,and structure the system to attaindesired effects.

4 RUNTIME ARCHITECTURAL CHANGE

We advocate an approach that operates at the architectural
level. Four immediate benefits result when managing
change at the architectural level. First, software engineers
commonly use the system architecture when describing,
understanding, and reasoning about overall system
behavior [25, 33]. Leveraging the engineer's knowledge at
this level of system design holds promise in helping
manage runtime change. Second, accommodating
commercial-off-the-shelf components becomes feasible as
long as no restrictions are placed on component internals.
Third, decisions regarding change policy and scope are
separated from application-specific behavior allowing them
to be altered independently. Fourth, control over change
policy and scope can be placed in the hands of the system
architect, where decisions can be made based on an
understanding of the application requirements. Previous
approaches to runtime change either dictate a particular
policy or fail to separate application-specific functionality
from runtime modification. As a result, concerns over
runtime change permeate system design.

In the following subsections, we demonstrate how
architectures can support different types of software
evolution and the circumstances under which the change
may or may not be performed. Three characteristic types of
evolution are corrective, perfective, and adaptive [12].
Corrective evolution removes software faults. Perfective
evolution enhances product functionality to meet changing
user needs. Adaptive evolution changes the software to run
in a new environment.

4.1 Runtime Component Addition

Component addition supports perfective evolution through
augmentation of system functionality. Some design styles
are more readily amenable to component addition than
others. For example, the observer design pattern [9]
separates data providers from its observers, facilitating the
addition of new observers with minimal impact to the rest

of the system. In the mediator design approach [34], new
mediators may be introduced to maintain relationships
between independent components. Design approaches that
utilize implicit invocation mechanisms [11] are generally
more amenable to runtime component addition since the
invoking component is unaware of the number of
components actually invoked.

In order for a component to function properly when added
to a running system, it mustnotassume that the system is in
its initial state. Typically, a component added during
runtime must discover the state of the system and perform
necessary actions to synchronize its internal state with that
of the system.

Architectural change specifications typically specify
structural configuration changes for incorporating new
components. In some cases, the structural configuration
changes may be implicit in the architectural style,
application-domain, or derivable from externally visible
properties of the component. For example, Adobe
Photoshop plug-in components export a "plug-in type"
property, whose value is selected from a fixed list [1].
Photoshop uses these values when determining how to
interact with the plug-in.

4.2 Runtime Component Removal

Component removal supports the extraction of unneeded
behavior, potentially as a result of recent additions
supplanting original behavior. Appropriate conditions
governingcomponentremoval are application-specific. For
example, the system's execution model may prohibit
component removal if any of its functions are on the
execution stack. Some systems, especially distributed
systems communicating over inherently undependable
connections, are specifically designed to tolerate sudden
loss of functionality. As with component addition, certain
design approaches and styles are more amenable to runtime
removal than others.

4.3 Runtime Component Replacement

We consider component replacement as a special case of
addition followed by removal when two additional
properties of runtime change are required: (1) the state of
the executing component must be transferred to the new
component, and (2) both components must not be
simultaneously active during the change. Corrective and
adaptive evolution are characteristic of such changes.

Component replacement is largely trivial when components
lack state or belong to systems specifically designed to
tolerate state loss. Such systems typically detect state loss
and switch to a degraded mode of operation while
recovering. Another approach, exemplified by the Simplex
architectural style [31], incorporates an "operational
model" in the implementation. The model rejects upgraded
components when they do not satisfy explicit performance
and accuracy requirements.

In systems not specifically designed to tolerate state loss,
component replacement requires additional considerations
beyondthosealreadydiscussed for componentaddition and
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removal. Several approaches for preserving component
stale and preventing communication loss during runtime
change have been proposed [5, 8, 16]. Hofmeister's
approach [16] requires each component to provide two
additional interface methods: one for divulging state
information, and the other for performing special
initialization when replacing another component. These
approaches are generally applicable only when the new
component's externally visible interface isa strict superset
of the component being replaced. Approaches not restricted
in such a manner are an open research topic.

4.4 Runtime Reconfiguration
Structural reconfiguration of the architecture supports
recombining existing functionality to modify overall
system behavior. Systems based on data-flow architectures,
such as UNIX's pipe and filter style and Weaves [13], have
attained significant flexibility by supporting static
reconfiguration of existing behaviors. UNIX's pipe-and-
filter style, for example, enables the construction of a rich
set of behaviors through the recombination of existing
behavior.

Since connectors mediate component communication,
runtime reconfiguration can be performed by altering
connector bindings. As with component replacement,
preventing communication loss may be necessary if
components assume reliable communication.

4.5 Summary

It is important to note that with any type of architectural
change, concerns regarding the mechanics ofchange must
be separated from the semantic effects of change on the
particular application. If any of the architectural changes
discussed above are applied injudiciously, system integrity
can be compromised. This is precisely why such changes
must be verified before being applied to a running system.
The use of architectural modeling and analysis tools is
crucial in this regard.

5 ENABLING RUNTIME ARCHITECTURAL
CHANGE

This section outlines the roles we believe components and
connectors should play in supporting the kinds of
architectural changes described in the foregoing section.
The following subsections describe the specific roles
components and connectors must fulfill to support runtime
change.

5.1 Components

Components are responsible for implementing application
behavior. We treat their internal structure as a black box. A
component encapsulates functionality of arbitrary
complexity, maintains state information, potentially utilizes
multiple threads of control, and may be written in any
programming language. Treating components as black
boxes significantly increases the opportunity for reusing
off-the-shelf (OTS) components. There are obvious
limitations if the OTS component does not export adequate
functionality needed to support some types of runtime
change. For example, the inability to extract component

state prevents component replacement. We cannot
circumvent these problems without modifying the
component.

Components do not directly reference one another when
communicating. Instead, they utilize a connector, which
localizes and encapsulates component interfacing
decisions. This minimizes coupling between components,
enabling binding decisions to change without requiring
component modification [28].

Every component must provide a minimal amount of
additional behavior to participate in runtime change. To
support runtime addition andremoval, components must be
packaged in a form that the underlying runtime
environment can dynamically load. Most popular operating
systems provide a dynamic linking capability. Dynamic
linking provides a language independent mechanism for
loading new modules during runtime and invoking the
services they export. Higher level mechanisms, such as
CORBA [23] and COM [6], may also be utilized. To
support runtime reconfiguration, components must be able
to alter their connector bindings. These additional
behaviors can typically be provided in the form of reusable
code libraries which act asa wrapper orproxy to the actual
component (see Section 7). This alleviates the burden of
implementing such functionality for every component.
5.2 Connectors

Connectors are explicit architectural entities that bind
components together and act as mediators between
them [33]. In this way, connectors separate a component's
interfacing requirements from its functional
requirements [28]. Connectors encapsulate component
interactions and localize decisions regarding
communication policy and mechanism. As a result,
connectors have been used for a wide variety of purposes,
including: ensuring a particular interaction protocol
between components [3]; specifying communication
mechanism independent of functional behavior, thereby
enabling components written in different programming
languages and executing on different processors to
transparently interoperate [28]; visualizing and debugging
system behavior by monitoring messages between
components [27]; and integrating tools by using a
connector to broadcast messages between them[29].

Although connectors are explicit entities during design,
they have traditionally been implemented as indiscrete
entities in the implementation. In UniCon, for example,
procedure call and data access connectors are reified as
linker instructions during system generation [32]. Similarly,
component binding decisions, while malleable during
design, are typically fixed during system generation. As a
result, modifying binding decisions during runtime
becomes difficult.

Connectors, like components, must remain discrete entities
in the implementation to support theirruntime addition and
removal. They must also provide a mechanism for adding
and modifying component bindings in order to support
reconfiguration. Supporting runtime rebinding can degrade
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performance in primitive connectors, such as procedure
calls, since an additional level of indirection is introduced.
For more complex connectors, such as RFC and software
buses (e.g. Field [29]), the functionality we require can
usually be integrated without a significant runtime
performance penalty. New approaches to dynamic linking
attempt to reduce or eliminate the runtime overhead
associated with altering binding decisions during
runtime [7]. Ultimately, designers should determine which
connectors are used based on application requirements. If
runtime change is not required, connectors without the
rebinding overhead may be used.

Connectorsplay a central role in supportingseveral aspects
of change management. They can implement different
change policies by altering the conditions under which
newly added components are invoked. For example, to
support immediate component replacement, a connector
can direct all communication after a certain point in time
away from the old component to the new one. To support a
more gradual component replacement policy, a connector
can direct new service requests to the new component,
while directing previously established requests to the
original component. To support a policy based on
replication, service requests can be directed to any member
of a known set of functionally redundant components.
Connectors can also be used as a means of localizing
change. For example, if a component becomes unavailable
during the course of a runtime change, the connectors
mediating its communication can queue service requests
until the component becomes available. As a result, other
components are insulated from the change. Encapsulating
change policy and scope decisions within connectors lets
designers select the most appropriate policy based on
application requirements.

6 APPLYING CONCEPTS TO A SPECIFIC ARCHI
TECTURAL STYLE

Our goal is to develop a technique for runtime architecture
evolution that is applicable across application domains,
architectural styles, and architecture modeling notations.
We are also investigating a general formal basis for
architectural dynamism. However, the field of software
architectures is still relatively young and a number of its
facets remain largely unexplored. This Is certainly the case
with dynamism: we can learn from traditional approaches
to dynamism, outlined in Section 3, but many of the issues
they raise will be irrelevant to architectures; at the same
time, architectures are likely to introduce other, unique
problems, such as supporting heterogeneity, adhering to
architectural styles, and maintaining compatibility with
OTS components.

For these reasons, our initial strategy has been to address
concrete problems and leam from experience. We have
focused our efforts on supporting architectures in a layered,
event-based architectural style, called C2 [35]. In the C2-
style, all communication among components occurs via
connectors, thus minimizing component interdependencies
and strictly separating computation from communication.
The style also imposes topological constraints: every

component has "top" and "bottom" sides, with a single
communication port on each side. This greatly simplifies
the task of adding, removing, or reconnecting a component
in an architecture. A C2 connector also has a top and a
bottom, but the number of communication ports, and hence
the interface it exports, is determined by the components
attached to it: a connector can accommodate any number of
components or other connectors. This enables C2
connectors to accommodate runtime rebinding. Finally, all
communication among components is done asynchronously
by exchanging messages.

Although the C2 style places several restrictions on
architectures and architectural building blocks, we believe
these restrictions to be permissive enough to allow us to
model a broad class of applications. At the same time,
narrowing our focus has enabled us to construct tools for
supporting runtime architectural change. As a result, we've
gained direct practical experience with runtime evolution of
architectures and uncovered important issues in effectively
supporting them.

7 TOOLS SUPPORTING ARCHITECTURE-BASED
EVOLUTION OF SOFTWARE SYSTEMS

This section describes our tool suite, ArchStudio, that
implements our architecture-based approach to runtime
software evolution. The following subsections describe our
general approach to enabling evolution of software systems
at the architectural level. We then present our initial
implementation based on this approach and demonstrate its
use on a simple application. We conclude the section by
discussing the current limitations of our implementation.

7.1 Approach

Our general approach to supporting architecture-based
software evolution consists of four interrelated mechanisms
(see Figure 1). The mechanisms are described and
motivated below. Section 7.2 describes our implementation
of these mechanisms.

Explicit Architectural Model. In order to effectively
modify an evolving system, an accurate model of its
architecture must be available. We deploy a portion of the
system's architecture as an integral part of the system. The

changes
applied to.
model /

Architeaural

Architectural
Changes

changes
. implicitly affect
^^implementation

Implementation

\ Reusable Runtime /
Infrastructure governs ^

consistency through
architectural constraints

Figure 1. Architectural changes applied to the model
are reified into implementation by the runtime
infrastructure.
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deployed model includes the interconnections between
components and connectors, and their mappings to
implementation modules. The mapping enables changes
applied to this partial model to effect corresponding
changes to the implementation. As architectural
modifications are performed, the correspondence between
the model and the implementation must ^ maintained.

Describing Runtime Change. Modifications are expressed
in terms of the architectural model, and should include
operations for adding and removing components and
connectors, replacing components and connectors, and
changing the architectural topology.

Our desire is to support a flexible model of system
evolution in which modifications are provided by multiple
organizations (e.g., the application vendor, system
integrators, site managers) and selectively applied by end-
users based on their particular needs. By applying different
sets of modifications, each end-user effectively creates a
different member of the system family at their site. As a
result, the modifications should be robust to variations in
those architectures. Facilities for querying the architectural
model and using the results of the query to guide
modifications should be provided as an integral part of
supporting architectural change. Using the model to inform
and guide modifications eliminates many accidental
difficulties inherent in evolving systems.

Governing Runtime Change: A principled approach to
runtime system evolution must support a mechanism for
restricting changes that compromise system integrity.
Constraints play a natural role in governing change, and
several approaches to applying them at the architectural
level have been developed (see Section 8). In addition to
constraining architectural changes, mechanisms governing
runtime change should also constrain when those changes
may occur.

During the course of a complex modification, the system
structure may "move" through several invalid states ^fore
reaching a final valid state. Although constraints may
legitimately restrict certain modification "paths", doing so
solely based on intermediate invalid slates runs the risk of
preventing valid runtime changes. As a result, a mechanism
supporting transactional modifications should be provided.

Reusable Runtime Infrastructure: The runtime
infrastructure is responsible for (a) maintaining the
consistency between the architectural model and
implementation as modifications are applied, (b) reifying
changes to the architectural model into implementation, and
(c) checking architectural constraints. The runtime
infrastructure uses the architectural model's
implementation mapping and the facilities of the
underlying environment to implement changes.

7.2 Arcbstudio: A Tool Suite For Runtime Modification
Of C2-style Architectures

This section describes our initial prototype of a tool suite,
ArchStudio, which implements the mechanisms described
in the preceding section. The tools comprising ArchStudio
are implemented in the Java programming language, and

can modify C2-style applications written using the Java-C2
class framework [21]. The Java-C2 class framework
provides a set of extensible Java classes for fundamental C2
concepts such as components, connectors, and messages.
Developers create new components and connectors by
subclassing from framework classes and providing
application-specific behavior. The framework is structured
such that components can execute in a shared or private
thread of control by subclassing from different framework
classes. Connectors remain discrete entities in the

implementation, and support runtime rebinding through a
set of functions they export. Connectors that utilize intra-
and inter-process communication facilities are provided
with the framework.

Figure 2 depicts a high-level view of the ArchStudio
architecture. The Architectural Model represents an
application's current architecture. Our current
implementation encapsulates the architectural model in an
abstract data type (ADT). This ADT exports operations for
querying and changing the application's architectural
model. The model is stored in a structured ASCII format
and maintained by the runtime infrasuucture. The model
consists of the interconnections between components and
connectors, and their mapping to Java classes. Runtime
modifications consist of a series of query and change
requests to the architectural model and may generally arrive
from several different sources.

The Architecture Evolution Manager (AEM) maintains the
correspondence between the Architectural Model and the
Implementation. Attempts to modify the architectural
model invoke the AEM, which determines if the
modification is valid. The current implementation of the
AEM uses implicit knowledge of C2-style rules to
constrain changes. The AEM allows the use of architectural
constraints or external analysis tools; the incorporation of
these is planned for the future. If a change violates the C2-

changes
appliedtoy
model /

Architectural
Model •

Sources of
Architectural Change

I Script
I ArchShell I

changes
^ implicitly affect
^^implementation

Implementation

ADL Runtime
infrastructure Infrastructure

Architecture

Evolution Manager

External
Analysis
Tools

Figure 2. High-level architectural diagram for the
ArchStudio tool suite.
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Figure 3. (a)Onthe left, thecargo routing system's userinterface, (b)Ontheright, the architecture of thecargo routing
system in the C2-slyle.

style rules, the AEM prevents the change. Otherwise, the
architectural model is altered and its implementation
mapping isused tomake the corresponding m^ification to
the Implementation.

ArchStudio currently includes three tools which act as
Sources of Architectural Modification: Argo, ArchShell,
and the Extension Wizard.

Argo [30] provides a graphical depiction of the architectural
model that may be directly manipulated by the architect.
Newcomponents and connectors are selected from a palette
and added to the architecture by dragging them onto the
design canvas. Components and connectors are removed by
selecting them, and issuing a delete command. The
configuration is altered by directly manipulating the links
between components and connectors.

ArchShell [24] provides a textual, command-driven
interface for specifying runtime modifications. Commands
are provided for adding and removing components and
connectors, reconfiguring the architecture, and displaying a
textual representation of the architecture. ArchShell
provides two commands currently not available in Argo.
The first command enables the architect to send arbitrary
messages to any component or connector in the same
manner as if they were sent from another component or
connector. This facilitates debugging and exploration of
architectural behavior. The second command causes
ArchShell to read and execute commands from an ASCII
text file.

As design tools for architects, Argo and ArchShell facilitate
rapid exploration of architectural designs. They also
provide valuable feedback in exploring runtime
architectural change.

Argo and ArchShell are interactive tools meant for use by
software architects to describe architectures and
architectural modifications. The Extension Wizard, in
contrast, provides a greatly simplified end-user interface
for enacting runtime change. TTie Extension Wizard is
deployed as a part of the application and executes

modification scripts. Modification scripts are written by
system architects, and can query and alter the architectural
model using the same mechanisms as Argo and ArchShell.
End-users use a Web browser to display a list of
downloadable system update files, e.g. provided on the
application vendor's Web site. A system update file is a
compressed file containing a runtime modification script
and any new implementation modules needed by the
change. Selecting a system update causes the Web browser
to download the file and invoke the Extension Wizard to
process it. The Extension Wizard uncompresses the file,
locales the modification script contained within, and
executes it. Our approach to end-user system extension is
similar to that of Hall et al. [15].

7.3 The Cargo Routing System Example

We demonstrate the use of our tool suite using a simple
logistics system for routing incoming cargo to a set of
warehouses. Figure 3(a) shows the user interface for the
cargo routing system. The three list boxes on the top
represent three incoming cargo delivery ports, in this case
two airport runways and a train station. When cargo arrives
at a port, an item is added to the port's list box. The system
keeps track of each cargo's content, weight, and the amount
of time it has been sitting idle at the port. The text box in
the center displays availablevehicles for transporting cargo
to destination warehouses. The system displays the
vehicle's name, maximum speed, and maximum load. The
bottom most text box displays a list of destination
warehouses. The system displays each warehouse's name,
maximum capacity, and currently used capacity. End-users
route cargo by selecting an item from a delivery port, an
available vehicle, and a destination warehouse, and then
clicking the "Route" button.

Figure 3(b) depicts the architecture of the cargo routing
system in the C2 architectural style. The Ports, Warehouses,
and Vehicles components are ADTs which keep track of the
stale of ports, the transportation vehicles, and the
warehouses, respectively. The Telemetry component
determines when cargo arrives at a port, and tracks the
cargo from the time it is routed until it is delivered to a
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> add comp
CUssNaroe; c2.plantur.RouterArxut
Name? RouierAnist
>weld

Top entity: Cormeaorl
Bottom entity: RouterArtist
>weid

Top entity: RouterArtist
Bottom entity: Conneaor4
>start

Entity: RouterArtist

Figure 4. The ArchShell commands used lo add the
Router Artist component. Commands are denoted using
bold text and command arguments are denoted using
italicized text.

particular warehouse. The Port Artist, Vehicle Artist, and
Warehouse Artist components are responsible for depicting
the state of their respective ADTs. The Router component
records the port, vehicle, and warehouse last selected by the
end-user and notifies the telemetry component when the
end-user presses the "Route" button. The Graphics
component renders the graphical drawing requests sent
from the artists using the Java AWT graphics package.
We now describe the use of ArchShell in adding a new
graphical visualization of cargo routing, and the use of the
Extension Wizard in adding an automated planning
component which assists users in making optimal routing
decisions. Both changes are made during the execution of
the cargo routing system.

Adding the new visualization involves adding a Router
Artist component lo the architecture. The new router artist
is addedbetween Connector 1and Connector 4 since it uses
notification messages provided by the Port, Warehouse,
and Vehicle ADTs and utilizes the Graphics component for
drawing graphics. The architect uses ArchShell to add the

Port-l: Airport Runwiy 1 Port-a:AbportFtunwiy 2 Pert4; Ti*j SMfen

V«hicl*.1 Shpiwnl

Port-?

Dat>d3Qes

IDLE

IV«hler*.3 srspmentstonjofw#
I PM-3 I--

|v«hici«4 KKimctv. sentorcont
I fw3 •—

V«Nd»a snpmcnt 4tamot»a

Porn

IDLE

n-aianouM4

A-5renou30.3

if (roodel.architectureName().equa]s("CafgoSystem")) {
Cooneaorabove = model.conaeciorBelowC'Pofts");
Connector below - model.connectorAboveCPoftArtist");
modeLaddComponentCPianner", "planner");
modeI.weld(above, "planner");
roodcl.weld("planner". below);
nK>del.startEntity("plaooer");
return mie;

} else return false;
) catch (ArchitectureModificationException e) {

return false;

Figure 5.Aportion ofthe Extension Wizard script used
to add the Planner component into the running system.
The "model" represents the ADT interface to the
system's architectural model.

component using the "add comp" command, connect it to
buses using the "weld" command, and signal that the
component should receive execution cycles using the
"start" command (see Figure 4).

Adding the automated planner involves adding a Planner
component to the architecture. Uie new planner component
is added below Connector 1 since it monitors the state of
the ADTs to determine optimal routes. Figure 5 shows the
critical portion of the modification script the Extension
Wizard executes to install the change for end-users. The
script determines if the architectural model is that of the
cargo routing system, then queries the model to determine
the names of the connectors to which the planner
component must beattached. If any of these operations fail,
an exception is thrown which aborts the installation.
Operations may fail if the architectural elements on which
the change relies have been previously altered by other
architectural modifications.

Figure 6(a) and (b) depict the updated user interface and

Router

\riisl

Clock I I Ports Warehouses Vehicles

Planner

Port

Artist

Warehouse
Artist

Connector 4

Vehicle

Artist

Figure 6. (a) On the left, the cargo routing
system user interface after the addition of the
new router artist andplanner components, (b)
Onthe right, theupdated cargo system
architecture highlighting new components.
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architecture of the system after both modifications have
been made.

The cargo routing system consists of approximately
190 kilobytes of compiled Java code, which includes
100 kilobytes for the Java-C2 class framework. Supporting
runtime modification requires the deployment of the
Architecture Evolution Manager, the Extension Wizard,
and a portion of the cargo routing system's architectural
model. The Architecture Evolution Manager and the
Extension Wizard consist of 38 kilobytes of compiled Java
code. The cargo routing system's architectural model
consumes 2 kilobytes of disk space. The Planner system
update, which consists of the modification script and the
compiled Planner component, is 6 kilobytes.

7.4 Limitations and Future Work

Our initial prototype has facilitated exploration of
architectural dynamism, but has several practical
limitations. Currently, all components and connectors must
be written using the Java-C2 class framework. The
framework, however, does not make any assumptionsabout
execution threads and processes or message passing
protocols. This has allowed us to implement runtime
component addition using Java's dynamic class loading
facilities. In the future, we plan on using language
independent facilities, such as those provided by CORBA
and COM.

For simplicity, we assume a one-to-one mapping between
components in the architectural model and implementation
modules written as Java classes. This has enabled us to
focus on dynamism independently of issues concerning
mappings between architectures and their implementations,
which is an open research problem of significant
complexity [10, 22].

The runtime infrastructure currently supports the addition
and removal of components and connectors, and the
reconfiguration and querying of the architectural model.
There is currently no support for component replacement,
though the implementation allows currently available
approaches to be adopted.

Finally, the runtime infrastructure currently only checks
constraints derived from the C2-siyIe. Integrating a general
constraint checking system is a topic of future work.

8 RELATED ISSUES

This section briefly outlines a number of cross cutting
research issues that are pertinent to runtime architecture
modification.

Architecture Description Languages (ADLs): ADLs
provide a formal basis for describing software architectures
by specifying the syntax and semantics for modeling
components, connectors, and configurations. Since a
majority of existing ADLs have focused on design issues,
their use has been limited to static analysis and system
generation. As such, existing ADLs support a static
description of a system, but provide no facilities for
specifying runtime architectural changes. Although a few
ADLs, such as Darwin [19], Rapide [18], and LILEANNA

[36], can express runtime modification to architectures,
they require that the modifications be specified and
"compiled into" the application. Our approach, in contrast,
can accommodate unplanned modifications of an
architecture and incorporate behavior unanticipated by the
original developers. It is important to note that our
approach does not attempt to replace static architecture
description languages. In fact, our tools can utilize current
ADLs, instead of our own, for the static portion of the
architectural model. In this way, our approach augments
current ADLs with runtime change support.

Architectural modification languages (AMLs): While
ADLs focus on describing software architectures for the
purposes of analysis and system generation, AMLs focus
on describing changes to architecture descriptions. Such
languages are useful for introducing unplanned changes to
deployed systems by changing their architectural models.
The Extension Wizard's modification scripts, C2's
AML [20], and Clipper [2] are examples of such languages
and share many similarities.

Architectural constraint languages: Several approaches
for specifying architectural constraints havebeenproposed.
Constraint languages have been used to restrict system
structure using imperative [4] as well as declarative [19]
specifications. Others advocate behavioral constraints on
components and their interactions [18]. Finding appropriate
mechanisms for governing architectural change using
constraints is an active topic of ongoing research.

9 CONCLUSIONS

Software architectures have the potential to provide a
foundation for systematic runtime software modifications, as
opposed to brittle, "one-of-a-kind" patches. A principled
approach to runtime change can reduce the risks and costs
designers have traditionally associated with such change.
Basing runtime evolution on architecture can benefit fix>m a
component-based development philosophy, explicit
representation of system structure, and separation of
computation from communication. This paper has outlinedan
approach to architecture-based runtime evolution. Our
approach is characterized by {1)an explicit architectural model
deployedwith the system,(2) explicitsoftwareconnectors that
manage the scope and policy of runtime changes, and (3) a
tool suite that effectively supports such changes.

Our work has benefited ft-om hands-on experience with
architectural dynamism. In the process, we have produced a
set of results that are generallyapplicableto the problem of
effecting runtime architectural changes to implemented
systems. We have been able to confirm the central role of
connectors in supporting runtime change and identify the
desired characteristics of connectors that facilitate that
change. We have also demonstrated the role of connectors
in supporting different change policies. We have
recognized the need for both architecture-specific
(structural) and application-specific (behavioral)
constraints in making runtime changes, as well as the need
for transaction support during those changes. Finally, a
simple imperative modification language has proven to be
adequate for specifying the types of runtimechange.
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