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ABSTRACT OF THE DISSERTATION 

 

 

Species Conservation in the Big Data Era: Leveraging Genomic and Community Science Datasets for 

Conservation Management  

 

by 

 

Joseph Nikko Curti 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2024 

Professor Brad Shaffer, Chair 

 

Many vertebrate species across the planet are experiencing major declines due to rapid expansion of 

urban areas, habitat destruction for animal agriculture, and human-caused climate change, among other 

drivers. Recently, the establishment of public data repositories for species occurrences and genetic 

sequence data have begun to resolve some of the former data limitations that inhibited conservation 

biologists from acting on declines due to lack of fundamental knowledge for many species. Conservation 

biologists are therefore primed to now make immense strides in addressing species declines by applying 

these publicly available datasets to species conservation worldwide. Here I describe two primary 

approaches to species conservation in the era of big publicly available data using genomic sequencing 

data and community science occurrence records. Specifically, in Chapter 1, I demonstrate how whole 

genome datasets can be used to evaluate the barrier effect of roadways on wildlife movement and gene 

flow in a North American ground bird, the California quail (Callipepla californica). I show that compared 

to other factors including differences in environment or habitat suitability, the presence of roads is the 

most important factor shaping quail gene flow in Southern California. In Chapter 2, which is now 



 

 iii 

published in Journal of Heredity, we use PacBio HiFi long reads and Omni-C chromatin-proximity 

sequencing technology to generate one of the most complete de novo genome assemblies for an abundant 

and widespread North American bat species, the Yuma myotis bat (Myotis yumanensis). In Chapter 3, I 

leverage the novel genomic resource generated in Chapter 2 to summarize genome-wide diversity, 

historical demography, and range-wide phylogenetics of Yuma myotis to evaluate current subspecies 

designations and establish genomically-informed management units. Through this work, I found that 

genomic datasets are generally discordant with existing subspecies designations, revealing two primary 

genomic groups of Yuma myotis across North America. Additionally, I found that populations of Yuma 

myotis have high genome-wide diversity and high estimates of contemporary effective population sizes 

across most populations assessed, which presents a positive conservation outlook for the species.  In 

Chapter 4, which is now published in PLOS ONE, we demonstrate how another big data source – 

community science data from iNaturalist – can be used to evaluate urban affinities of Southern California 

native vertebrate taxa. Taken as a whole, this body of work demonstrates how big data sets can be applied 

to conservation on multiple spatial scales – from guiding local biodiversity initiatives for the City of Los 

Angeles, to suggesting range-wide, continental-scale management units for species conservation. 
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CHAPTER 1: Why didn’t the quail cross the road? Using whole genome data to evaluate roadways 

as barriers to gene flow in a North American ground-dwelling bird 

 

ABSTRACT 

Roadway infrastructure is a dominating feature of landscapes across the globe and the ecological 

impacts of these roadways are leading to declines in many natural populations. To date, research on the 

genetic impacts of roadways on bird populations has produced mixed results, with some studies 

demonstrating that roads correlate with observed levels of genetic differentiation while other studies have 

failed to find an effect. Here, we use a high coverage whole genome dataset to quantify the impacts of 

roadway infrastructure on the population genetic differentiation of California quail (Callipepla 

californica), a ground-dwelling and ground-nesting bird species. We non-lethally sampled wild quail 

from populations located on either side of major and minor roadways in Southern California, a region 

with the densest road network in the United States. Using a combination of Reciprocal Causal Modeling, 

Principal Component Analysis, and Estimated Effective Migration Surface analyses, we demonstrate that 

roadways are the most important factor shaping patterns of genomic differentiation in southern California 

quail populations. We also show that quail populations sampled alongside the two busiest roadways 

traversing their southern California habitat have higher levels of inbreeding than other populations within 

the region resulting from close sibling matings within the last 10 generations. Findings from this study 

will help guide conservation management efforts for this species, including the construction of the Wallis 

Annenberg Wildlife Crossing over the 101 Freeway and other efforts to improve wildlife connectivity. 

 

INTRODUCTION 

 Habitat loss and fragmentation pose significant threats to global biodiversity (Wilson et al. 2016). 

One of the major contributors to global habitat loss and fragmentation is through the construction of 

roadways (Jaeger et al. 2005; Jaeger et al. 2007; Madadi et al. 2017). Roadway infrastructure is extensive 

and increasing, with approximately 3,097,279 km of roadways in the United States alone, and this number 
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is projected to increase 15% by 2050 (Meijer et al. 2018). Roadways can impact wildlife in several ways, 

including both direct effects such as mortality due to vehicle strikes (Summers et al. 2011) and acting as 

barriers to wildlife movement and gene flow (Forman and Alexander 1998), as well as indirect effects 

such as noise (McClure et al. 2013) and light pollution (Blackwell et al. 2015). These indirect factors also 

effectively extend the ecological impact of roadways – termed the “road effect zone” – and this has been 

estimated to cover approximately 19% of the continental United States (Forman and Alexander 1998). 

Many bird species across the world are in a state of decline and a primary cause for declines are 

habitat loss and degradation, including that due to roads (Lees et al. 2022). For example, Cooke et al. 

(2020) found that at least 47 species of birds in Great Britain, or 53% of all species assessed, decreased in 

abundance as roadway exposure increased. The impact of roads on avian communities can be attributed to 

both direct and indirect factors associated with roads (Kociolek et al. 2011), for example road mortalities 

of bird species (Loss et al. 2014), the fragmentation sensitivity of a given species due to their association 

with shrub cover (Bolger et al. 2001), or the impacts of artificial light at night (La Sorte et al. 2022) and 

noise pollution (Parris and Schneider 2009) from vehicles. Not all bird species are equally impacted by 

roads, however, impacts appear greatest for birds within more wooded environments (Kroeger et al. 

2022), species with smaller population sizes, smaller body size, and that are migratory (Cooke et al. 

2020), and birds with non-carnivorous diets (de Jonge et al. 2022). 

Roadway infrastructure can also leave a detectable signature on the genomic structure of 

populations by impeding gene flow across the landscape. To date, research aimed at understanding the 

impacts of roadway infrastructure on gene flow and genetic diversity has largely focused on non-volant 

terrestrial mammals (Fusco et al. 2021) and herpetofauna (Beninde et al. 2016; McCartney-Melstad et al. 

2018; Schmidt and Garroway 2021). For these groups, measures of anthropogenic impacts including 

human population density and road density can be strong predictors of genetic diversity (Schmidt et al. 

2020; Habrich et al. 2021), and in some cases explain up to 50% of all genetic differentiation between 

populations (Remon et al. 2022; but see Beninde et al. 2016). Perhaps unsurprisingly, the genetic impact 

of roads seems to be negatively correlated with dispersal ability, as volant mammals such as bats showed 
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little genetic differentiation across urban environments compared to exurban sites, likely due to their 

increased vagility and species-specific associations with urban environments (Richardson et al. 2021). 

Little research has analyzed the potential impacts of roadway infrastructure on bird genetic diversity and 

gene flow, but due to their increased vagility it is possible they would respond in a similar way as bats. 

This is supported by some studies that have shown no consistent effect of roadway infrastructure on 

genetic diversity and differentiation across seven resident North American bird species (Schmidt et al. 

2020). However, not all birds are equally mobile, and the degree to which avian populations are impacted 

by roadways may also depend on species-specific natural history, dispersal ability and life history traits. 

For example, Roy and Gregory (2016) found that composite metrics of human disturbance that include 

roadway infrastructure (i.e., human footprint index [Venter et al. 2016]) significantly explained genetic 

differentiation in Greater Prairie-chickens (Tympanuchus cupido), a ground-dwelling bird species, and 

Delaney et al. (2010) reported high levels of genetic differentiation related to urban habitat fragmentation 

and a large roadway for a habitat-specialist bird in Southern California. These conflicting results indicate 

that more research is needed to fully understand the impact of roadways on structuring levels of genetic 

differentiation in avian communities.  

To properly attribute putative impacts of roadway infrastructure to observed patterns of 

landscape-level genetic differentiation, it is necessary to first compare support for competing hypotheses. 

Generally, the null expectation for varying levels of genetic differentiation across a landscape is isolation 

by distance (IBD), defined as a positive relationship between genetic and geographic distance (Wright 

1943; Slatkin et al. 1993). Genetic differentiation can also be related to the resistance of the intervening 

landscape to the organism as it moves between habitat patches (isolation by resistance, IBR; McRae 2006; 

Zeller et al. 2012), and local barriers to gene flow reflecting selection against maladapted migrants 

(isolation by environment, IBE; Wange and Summers 2010; Wang and Bradburd 2014, Sexton et al. 

2014). Determining the specific factors limiting gene flow is often a critical consideration for wildlife 

managers seeking to establish the boundaries of management units based on population connectivity 

(Oyler-McCance et al. 2016; Cassin-Sackett et al. 2019). 
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In the Santa Monica Mountains and Simi Hills (“SMM”) north of Los Angeles (Los Angeles and 

Ventura Counties, California, USA), the effect of roadways on gene flow has been studied in mule deer 

(Odocoileus hemionus; Pease et al. 2009; Fraser et al. 2019), bobcats (Lynx rufus) and coyotes (Canis 

latrans; Riley et al. 2006), mountain lions (Puma concolor; Riley et al. 2014) and three species of lizard 

(Uta stansburiana, Plestiodon skiltonianus, Sceloporus occidentalis) and wrentits (Chamaea fasciata; 

Delaney et al. 2010; Thomassen et al. 2018). These studies indicate that even wide-ranging species, 

including the wrentit, a small, non-migratory bird, experience reduced gene flow and population 

fragmentation from urbanization and roads, and that this form of cryptic, but intense habitat fragmentation 

may be a ubiquitous feature of urban landscapes. This pattern of reduced gene flow as a result of roads 

may well be due to the magnitude of Los Angeles roadway infrastructure development, which is the 

densest road network in the United States with more than 39,000 kilometers of roads (Fraser and Chester 

2015). 

To further explore the relationship between roadway infrastructure, genetic diversity and gene 

flow in Southern California birds, we chose the California quail (Callipepla californica) as a model 

organism for studying these impacts. California quail are a common, ground-foraging species across 

Southern California (Leopold 1985). Their range is often dissected by large roadways and urban land 

features, and they are generally thought to be limited dispersers, with estimates of median dispersal 

distance of 633 meters (Rushing et al. 2022) and maximum dispersal between 2.03 km (Rushing et al. 

2022) and 8 km (Ahlborn and Johnson 2024). To date, there has been no attempt to explicitly quantify the 

impact of roadways on California quail, despite substantial evidence of enigmatic declines in the species 

(Brennan 1994) and evidence from closely related quail species indicating increased local extinction risk 

when habitat patches become too small (i.e., from encroaching roadways; Fies et al. 2002). Further, 

several studies have identified California quail as a “fragmentation sensitive” species (Bolger et al. 2001; 

Crooks et al. 2003), suggesting that roads may impact their population genetic connectivity.  

 Using high coverage whole genome resequencing data from 61 individual quail, we set out to 

understand how roadway infrastructure influenced observed patterns of genetic differentiation and 
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diversity. Specifically, we had the following aims: 1) evaluate genetic population structure of California 

quail across the SMM and specifically across roadways of differing traffic volume, 2) estimate the impact 

of different landscape features such as roadway presence and traffic volume on quail migration and 

connectivity, and 3) describe patterns of genome-wide heterozygosity and homozygosity and evaluate any 

possible relationships with the presence of roadway infrastructure. We predicted that patterns of 

population structure would emerge around large roadways with high traffic volume such as the US-101 

and I-405 freeways and that populations separated by smaller roadways would not form genetically 

distinct populations. We also predicted that models would identify major roadways such as the US-101 

and I-405 freeways as significant barriers to migration and that roadway infrastructure would explain 

most of the variation in our genetic dataset. 

Finally, this project was motivated by ongoing construction of the Wallis Annenberg Wildlife 

Crossing over the 101 freeway in Southern California. This wildlife crossing will be a first of its kind, 

spanning one of busiest freeways in the nation with an estimated peak daily traffic of 171,000 vehicles in 

2022 (California Department of Transportation 2022). As connectivity of wildlife in light of increasing 

levels of urbanization continues to be a major issue across the region and largely for many cities across 

the world, this study will provide timely insights into the genomic implications of this decreased 

connectivity. Further, with only a handful of studies on the impacts of roadways on southern California 

native wildlife species, and none on the impacts to primarily ground-dwelling bird species, our California 

quail dataset provides a critical baseline for future studies on the purported benefits of wildlife crossing 

structures.  

 

METHODS 

Sampling, DNA Extraction, and Sequencing 

Blood samples were collected from 47 wild California quail across the Santa Monica Mountains 

and Simi Hills, Los Angeles and Ventura, CA, USA (Figure 1-1; approximate centroid: 34.068589N, 

118.770905W) between July 2020 - April 2022. Quail were non-lethally captured using baited funnel 
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traps modified from Smith et al. (1981) set approximately 30 minutes before sunrise until 12PM or when 

quail were captured. Captured quail were removed from traps and immediately placed in an individual 

cotton drawstring bag until they were processed. Processing including aging of birds based on plumage 

patterns and molt, as well as sexing and the collection of morphometric data including tarsus, bill, and 

wing lengths. Holding time never exceeded 50 minutes, and all trapping was  approved by the UCLA 

Institutional Animal Care and Use Committee (IACUC Protocol #: ARC-2020-034) and the California 

Department of Fish and Wildlife (Scientific Collecting Permit S-201150005-20147-001). A sample of 30 

- 70 μl of blood was collected via brachial vein puncture (Owen 2011) using a 25 gauge needle and a 

capillary tube and stored in avian blood buffer (Seutin et al. 1991, 1:30 blood to buffer). DNA was 

extracted from blood using a DNeasy Blood and Tissue Kit (Catalog #: 69504, QIAGEN Sciences, 

Maryland, USA), quantified using a QubitTM fluorometer (Thermo Fisher Scientific, Maryland, USA) and 

a 2100 Bioanalyzer (Agilent Technologies, California, USA), and sent for library construction and 

sequencing on Illumina NovaSeq 6000 at either the Vincent J. Coates Genomics Sequencing Laboratory 

at University of California, Berkeley or Novogene sequencing facility, depending on the sample.   

We also sampled two specimens from the Los Angeles County Natural History Museum (Catalog 

#: LACM 107541, LACM 112287) and two from the Western Foundation of Vertebrate Zoology (Catalog 

#: WFVZ 52698, WFVZ 53206). Approximately 25 grams of tissue was sampled from dried toe pads, 

DNA was phenol-chloroform extracted following Tsai et al. (2018), and sent for library construction and 

sequencing on Illumina NovaSeq 6000 at the Daicel Arbor Biosciences sequencing facility. Ten 

additional quail genomes provided by study collaborators were included in this study. These samples 

were collected from quail populations in Northern California and Southern California outside of the SMM 

and were used to provide broader landscape-level context for genomic data observed in the SMM 

(Benham et al. in prep). 
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Data Processing and Alignment 

 We processed all raw sequencing reads using pipelines from Kyriazis et al. (2023) 

(https://github.com/ckyriazis/moose_WGS_project/) and Nigenda-Morales et al. (2023) 

(https://github.com/snigenda/Fin_whale_Population_Genomics/tree/V1.0), following the Genome 

Analysis Toolkit (GATK) Best Practices (DePristo et al. 2011; Van der Auwera et al. 2013). Samples 

with multi-lane sequencing reads were concatenated prior to alignment. Raw 150 bp paired end reads 

were assessed for quality using FastQC v. 0.12.1 (Andrews 2010) and adapter sequences were trimmed 

using picard MarkIlluminaAdapters v. 3.1.1. (https://broadinstitute.github.io/picard/). Adapter-free 

sequencing reads were then aligned to the California quail reference genome (GCA_023055505.1 

[bCalCai1.0.p]; Benham et al. 2023) using BWA-MEM (Li 2013) and alignment quality was assessed 

using qualimap v. 2.3 (Okonechnikov et al. 2015). 

 

Sex Chromosome Identification  

Given that sex chromosomes spend unequal times in males and females, the effects of selection 

and genetic drift differ from autosomal chromosomes (Johnson and Lachance 2013). Thus,  we excluded 

sex chromosomes from all analyses. We identified the quail Z chromosome by performing a genome-to-

genome long-read alignment between the California quail reference genome and the chicken (Gallus 

gallus) reference genome (GCA_016700215.2 [bGalGal1]) in minimap2 v. 2.24 (Li 2018) allowing for 

up to 5% sequence divergence (-asm5). The resulting .sam file was converted to a .bed file using 

BEDOPS v. 2.4.41 sam2bed (Neph et al. 2012), and the output file was visually inspected for matches 

between scaffolds in the quail reference genome and the identified scaffold for the Z chromosome in the 

chicken reference genome (CM035082.1). We did not perform a search for the W chromosome because 

the reference genome for the California quail was generated using tissues derived from the homogametic 

sex (a ZZ male). 

 

 

https://github.com/ckyriazis/moose_WGS_project/
https://github.com/snigenda/Fin_whale_Population_Genomics/tree/V1.0
https://broadinstitute.github.io/picard/
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Genotype Calling and Filtering 

Joint genotyping of invariant and variant sites across the quail autosomal genome was performed 

using GATK v. 3.8. PCR duplicates were removed from aligned .bam files using picard MarkDuplicates, 

genotypes were called for individual samples using GATK HaplotypeCaller which included filtering to 

remove low quality bases (--min-base-quality-score = 20), Z chromosome scaffolds were removed, and 

joint genotyping was performed using GATK GenotypeGVCF on all autosomal scaffolds >1Mb in length 

for a total genome length of 951,641,657 Bp (87.68% of total genome size of 1,085,331,016 bp). We do 

not have a known database of variants for California quail, therefore we did not conduct Base Quality 

Score Recalibration. Instead, hard filtering was performed. 

We filtered all autosomal SNPs using a series of depth, missingness, and quality filters modified 

from GATK filtering recommendations, retaining only high quality biallelic SNPs and monomorphic 

sites. Prior to hard filtering, we ran GATK SelectVariants to select SNPs from our unfiltered .vcf file, and 

GATK VariantsToTable to output INFO field variant annotations. We then visualized the distributions of 

these annotations in R studio v. 4.2.2 (R Studio Team 2020) to determine appropriate hard filtering 

thresholds. We also filtered for depth across all samples and on the individual sample basis. For all 

sample depth filters, we filtered for sites with depth less than 6x and greater than the 99th percentile of 

depth values across all samples. We then filtered depth on the individual level by subsetting our unfiltered 

.vcf file to the individual-level using VCFtools v. 0.1.16 (Danecek et al. 2011) and calculating the 99th 

percentile of depth for each individual sample using a custom python script. We then filtered our dataset 

using GATK VariantFiltration and a custom python script to remove all SNPs that fell outside of these all 

sample and individual sample depth filters. We also applied the following GATK hard filtering 

parameters: QUAL < 30, QD < 4.0,  FS > 12.0, MQ < 40.0, MQRankSum < −12.5, ReadPosRankSum < 

−8.0, SOR > 3.0. Finally, we masked all repetitive regions across the autosomal quail genome identified 

by using a combination of RepeatModeler v. 2 (Flynn et al. 2020) and ‘RepeatMasker’ v. 4.1.2 (Smit et 

al. 2015).  
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Relatedness and Population Structure 

 To disentangle family structure from population structure, we subsetted our filtered .vcf file to 

only contain individuals with below second-degree kinship, or the equivalent of retaining samples that 

were at most first cousins (Kinship Coefficient ≦ 0.0884), and used this set of individuals in all 

subsequent analyses. We further refined our SNP set by pruning for linkage disequilibrium (LD) using an 

r2 threshold of 0.2 and filtered for minor allele frequency (MAF) < 0.01 using snpgdsLDpruning in 

SNPRelate v.1.32.0 (Zheng et al. 2012), and this SNP set was used for all population structure analyses 

unless otherwise directed by the package manual.  

 To address our first study aim of evaluating genetic population structure across the SMM, we ran 

ADMIXTURE v. 1.3.0 (Alexander et al. 2009) on all individuals after filtering for LD and MAF. We first 

converted our filtered and pruned .vcf file to .ped file using PLINK v. 1.90b6.21 (Purcell et al. 2007), and 

then ran ADMIXTURE for K = 1 through 10, with 10 iterations each. We determined the best fitting 

model using cross validation (CV) analysis by averaging CV scores for all 10 runs of a given K value and 

selecting the model with the lowest CV score. To further investigate population structure, we conducted a 

principal component analysis (PCA) in SNPRelate using the snpgdsPCA function.  

 To evaluate genetic differentiation across quail populations in the SMM only, we calculated 

pairwise FST using a version of Hudson FST (Hudson et al. 1992; Bhatia et al. 2013) implemented in 

PLINK v. 2.00a5.12. We transformed  FST  to (FST/1-FST) (Slatkin 1993) and visualized the resulting 

values of pairwise genetic difference using a symmetrical pairwise difference matrix using the 

df_to_pw_mat function in the graph4lg v. 1.8.0 package in R. We also calculated values of pairwise 

Euclidean distance between sampling points in graph4lg using the mat_geo_dist function. We then log 

transformed these geographic distance values and tested for IBD using Mantel tests in the R package 

vegan v. 2.6-4 (Oksanen et al. 2013). 
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Migration Between Sampling Locations 

To address our second objective of estimating the impact of different landscape features such as 

roadway presence and traffic volume on quail migration and connectivity, we first assessed if there were 

differences in quail migration patterns across the SMM using by modeling the effective migration surface 

using EEMS v. 0.0.0.900 (https://github.com/dipetkov/eems/tree/master; Petkova et al. 2016). As input 

into EEMS we used a pairwise average genetic dissimilarity matrix generated using the bed2diffs 

function, a habitat perimeter file generated online (https://www.birdtheme.org/useful/v3tool.html), and a 

.txt file of our sampling locations. Following the package documentation, we ran the function runeems-

snps to calculate our migration surface using parameter settings for proposal variances that resulted in 

accepted proposals no less than 10% and no more than 40% of the time. We ran separate models for 100, 

200 and 300 demes, and each model was run three times with different starting parameters (i.e., a 

different random seed for each MCMC chain) for a total of 5,000,000 iterations with a 2,500,000 burn in 

period. We assessed MCMC chain convergence via a posterior probability trace plot and visualized 

EEMS outputs using the reemsplot2 and ggplot2 packages in R 

(https://github.com/dipetkov/reemsplots2/tree/master).  

 

Estimating The Impact of Roads on Patterns of Genetic Differentiation  

To further address our second aim, and to specifically identify what environmental features of the 

landscape might impact quail migration and connectivity, we performed reciprocal causal modeling on 

spatial data sets of habitat suitability, landscape and environmental variables, as well layers of road 

presence and traffic volume. 

 

Habitat suitability modeling 

To test whether landscape features such as habitat suitability and roadway infrastructure shape 

patterns of genetic differentiation in quail populations, or if the null expectation of IBD is the 

predominant force shaping genetic differentiation in our samples, we generated spatial datasets of select 

https://github.com/dipetkov/eems/tree/master
https://www.birdtheme.org/useful/v3tool.html
https://github.com/dipetkov/reemsplots2/tree/master
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landscape features. To capture variation in habitat quality, we generated a predicted habitat suitability 

surface  using MaxEnt v.3.2.3 (Phillips et al., 2006) implemented in the R package dismo v. 1.3-9 

(Hijmans et al., 2024). Following MacDonald et al. (2022), we defined the study extent as a minimum 

convex polygon encompassing all sequenced individuals buffered by 50 km (>50% the maximum 

Euclidean distance between samples), ensuring that extent edges did not interfere with downstream 

connectivity analyses. Input presence data included the capture locations of all quail samples as well as 

presence data from iNaturalist (iNat, accessed 2024 August 13; research-grade observations, coordinate 

uncertainty ≤ 300 meters). After thinning to one presence per 300x300 m raster cell (see below for raster 

details), 304 occurrences remained for model training. Predictor variables were generated according to 

MacDonald et al. (In Review) and included the Enhanced Vegetation Index (EVI; a measure of 

photosynthetic activity), terrain ruggedness index (TRI),  the presence of and distance to surface water, 

land cover classification based on the National Land Cover Database (Dewitz 2021), percent 

imperviousness, VIIRS artificial light at night (Elvidge et al. 2021), and a number of environmental 

variables generated using ClimateNA v. 7.50 software (Wang et al. 2016). Environmental variables 

included mean temperature in summer and winter, total precipitation in summer and winter, the difference 

in mean temperature between coldest and warmest months (continentality), and heat load (MacDonald et 

al. In Review). All spatial data layers were generated in or resampled to a 300x300m spatial resolution in 

an equal-area projection optimized for California (NAD 1983 California [Teale] Albers Equal Area 

Conic; EPSG:3310) . For a complete list of data sources for these layers, see Table S1-1. 

We ran MaxEnt using 10,000 random background points to characterize the distribution of 

predictor variables within the study extent (Beninde et al. 2023). All feature classes were made available 

and the regularization parameter was set to 1.0 (Phillips 2006). A predicted habitat suitability surface was 

then generated using  MaxEnt’s “clog-log” output (predict function the the R package raster v. 3.6-26 

(Hijmans 2023). Prediction accuracy was assessed using using area under the receiver operating 

characteristic curve (AUCROC) (Phillips et al. 2017). Additional information on generation of predictor 

layers and MaxEnt modeling can be found in the Supplemental Methods 1-I. 
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Spatial layers of roads and traffic volume 

To test for the impacts of roadway infrastructure on quail genetic differentiation, we generated a 

continuous spatial layer of roadways in southern California by constructing two spatial layers of roads. 

First, we downloaded all roadway data for the study extent from the US Census Bureau TIGER/line 

dataset (https://www.census.gov/cgi-bin/geo/shapefiles/index.php), filtered to include only primary and 

secondary roadways (MTFCC values of S1100 and S1200), as other road types were minimally present 

within the study area. We then converted these linear features into a raster (equal in resolution and 

projection to rasters generated above) using the R package terra v. 1.7-29 (Hijmans 2024), assigning all 

road pixels a value of one and all non-road pixels zero. Second, we used the same TIGER/line dataset and 

combined this with statewide data on traffic volume (California Department of Transportation 2022) to 

create a raster (~82.5 m2 resolution), bound by the polygons identified as primary and secondary 

roadways, of annual average daily traffic (AADT), a measure of the average daily traffic volume derived 

from the annual number of vehicles that pass over a given roadway. Additional information the making of 

the traffic volume layer can be found in the Supplemental Methods 1-I. 

 

Geographic, Ecological, and Environmental Distances 

For geographic distances between our sampling points, we calculated euclidean distances using 

the spDists function in the R package sp v. 2.1-2 (Pebesma and Bivand 2005). For landscape layers of 

habitat suitability and roadways, we calculated both least cost paths and resistance distances between 

sampling points. Least cost path distances often have had more power than euclidean distance alone in 

explaining genetic differentiation (Storfer et al. 2007; Wang et al. 2009). Alternatively, resistance 

distances use circuit theory to calculate an integrated measure of distance between many random walk 

paths between two points (McRae and Beier 2007). The efficacy of each of these two measures of 

resistance distance to predict gene flow between populations can depend on species-specific traits (Spear 

et al. 2015); therefore we present both measures. Least cost path and resistance distance were calculated 

using the R package gDistance v. 1.6.4 (van Etten 2017), using resistance surfaces created from the 

https://www.census.gov/cgi-bin/geo/shapefiles/index.php
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inverse of our habitat suitability model as well as our layers of road presence and traffic volume. Finally, 

we also calculated environmental distances for summer and winter temperature and precipitation. 

Environmental distances were calculated as the absolute difference in environmental variable values 

between sampling locations (Wang et al. 2013). 

 

Genetic Distances  

Choice of genetic distance metric can impact landscape genomics results (Beninde et al. 2024). 

We calculated both Euclidean genetic distance and Nei’s genetic distance. Euclidean genetic distance is 

defined as the sum of the squared difference of genotypes at a given locus and makes no assumptions 

about the underlying processes that generate genetic variation (Georges et al. 2023). Nei’s genetic 

distance is another common distance metric based on difference in allele frequencies across genomic loci 

(Nei 1972) and increases as divergence between populations increases due to mutation, selection, and 

genetic drift. We calculated Euclidean genetic distance using the dist function in the R package adegenet 

v. 2.1.10 (Jombart 2008) and Nei’s D using the stamppNeisD function in the R package StAMPP v. 1.6.3 

(Pembleton et al. 2013). After calculating these two genetic distances, we assessed their degree of 

correlation in R using the cor.test function and found that these two measures were nearly perfectly 

correlated (Pearson’s R(1033) = 0.996, p < 0.001). Therefore, we only present results for Euclidean 

genetic distance given its ease of interpretability and presence in the literature (Shirk et al. 2017; 

MacDonald et al. 2020; MacDonald et al. 2022). 

 

Reciprocal Causal Modeling 

We used reciprocal causal modeling (RCM) to identify which factors (i.e., landscape resistance, 

environmental, or geographic) best explained observed patterns of genetic differentiation and gene flow. 

RCM has been shown to have high statistical power in identifying causal models that influence patterns 

of genetic differentiation between highly correlated variables (Shirk et al. 2012) and has shown to 

effectively resolve landscape genomic relationships in both simulation (Shirk et al. 2018) and natural 
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(MacDonald et al. 2020; MacDonald et al. 2022) settings. We performed partial Mantel tests between 

genetic distances and pairs of landscape/resistance, environmental, and geographic factors with 999 

permutations in the R package vegan. This method calculates the Mantel R coefficient between genetic 

distance and a focal variable (RPM-A), conditioned on a second alternative variable (Cushman et al. 2013). 

Focal and alternative variables are then reversed, and Mantel correlation coefficients are re-calculated 

(RPM-B), and whatever focal variable receives a higher mantel R coefficient is determined to be the 

variable with the highest support. We then calculated an index of relative support for each comparison of 

the focal and alternative variables by taking the difference, where (RPM-A > RPM-B) indicates that the focal 

variable has more support and (RPM-A < RPM-B) indicates that the alternate variable has more support. 

Finally, these relative support values are averaged across all focal variables to generate a single relative 

support value, and we visualized these pairwise comparisons with a heatmap. 

 

Genetic Diversity and Runs of Homozygosity 

To address our third study aim of describing patterns of genome-wide heterozygosity and 

homozygosity and evaluating any possible relationships with the presence of roadway infrastructure, we 

first calculated autosomal heterozygosity, or the total number of heterozygous sites divided by the total 

number of variant and invariant sites (i.e., per base pair heterozygosity), within 10 Mb sliding windows 

across the genome. Following Robinson et al. (2021), we filtered out windows where the number of 

called sites was less than half the length of the sliding window (i.e., 5Mb) to control for the potential 

effect of low genotyping rate along certain scaffolds on heterozygosity calculations. 

We also calculated the proportion of the genome covered in runs of homozygosity (FROH) using 

BCFtools RoH v. 1.9 (Narasimhan et al. 2016), as this has been shown to be a robust measure of 

inbreeding when compared to other methods (Caballero et al. 2020). We calculated  FROH by summing the 

total length of runs of homozygosity (ROH) and dividing by the total length of the scaffolds used in the 

analysis (951,641,657 bp). We visualized the results in binned size categories (0.1 - 1Mb, 1 - 10Mb, and 

10 - 100Mb) of ROHs using a custom R script (Kyriazis et al. 2023). 
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We also estimated the relative age of ROH segments following Stoffel et al. 2021. Based on the 

chicken genome, we assumed that 2.7 centimorgans (cM) approximately equals 1 Mb (Robinson et al. 

2021; Groenen et al. 2024) To calculate time to the most recent common ancestor (TMRCA) of ROHs, we 

used the formula: ((100/2*g) cM / (2.7 cM/Mb)). We binned values in non-overlapping windows of 2 

generations ago (g), 2 - 4g, 4 - 8g, 8 - 16g, 16 - 32g, and greater than 32g. 

To test for significant differences in per base pair heterozygosity and the FROH between sampling 

locations across the state, we performed a non-parametric Kruskal-Wallis rank sum test in the R package 

‘stats’ (R Core Team 2023) and with post-hoc Dunn’s tests using the R package rstatix (Kassambara 

2023). To test for significant differences in the amount of ROHs within binned TMRCA groups and between 

roads, we used bootstrapping to test the null hypothesis that there is no difference in median number of 

summed ROHs within an age group between quail on either sides of the US101 and I405 freeways, and 

all other quail sampling locations that are not separated by these major roadways (Calmettes et al. 2013). 

Briefly, we conjoined summed lengths of ROHs by age class from both sampling locations into a single 

set, and resampled with replacement from this set. This was repeated 10,000 times, and the 5% and 95% 

cutoffs of the 10,000 computed differences were used as the cutoffs to evaluate statistical significance (ɑ 

= 0.05). 

 

RESULTS 

Genomic Data  

We achieved high per-individual average genomic sequence coverage (before filtering mean = 

24.8, range = 15.0 - 47.5; after filtering mean = 16.4, range = 11.5 - 34.6). Missingness per sample was 

generally low (average = 0.026, range = 0.0041 - 0.097), but one sample that was derived from preserved 

museum tissues had high average missingness (x = 0.69) and was subsequently removed from analysis. 

After filtering, we retained a total of 940,401,236 nucleotides containing 25,199,223 SNPs.  
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Relatedness, Population Structure, and Genetic Differentiation 

We detected several samples with first-degree (kinship coefficient = 0.177 - 0.354) and second-

degree (kinship coefficient = 0.0884 - 0.177) relationships (Figure S1-1). For samples with second-degree 

relationships and above, we randomly removed individuals from the dataset so that only one of the related 

individuals remained for all analyses that assumed that input samples were unrelated to each other (e.g., 

analyses focused on detecting population structure). 

ADMIXTURE analysis failed to detect population structure across sampling locations in 

California or within the SMM (Figure S1-3). Cross validation results indicated that the top supported 

model has K = 1 population clusters and this was consistent across hierarchical runs of ADMIXTURE 

that excluded Northern and Southern California samples (Figure S1-4). Principal component analysis, 

which can be more sensitive, revealed large-scale population structure between sampling locations, with 

the first principal component axis (PC1) separating Northern California, SMM, and Southern California 

samples (Figure 1-2A). Within the SMM cluster (Figure 1-2B), PC1 separated the eastern SMM samples 

(I-405) from the western samples (US-101, N-23, Newbury Park, Kanan Road), while PC2 separated 

samples from either side of the I-405 freeway in the eastern SMM. This pattern was generally consistent 

with more and less explanatory principal components, although at higher principal component axes, the 

cluster of samples from east of I-405 became more dispersed and clustered more closely with samples 

from Topanga Cyn (Figure S1-2).  

Estimates of genetic differentiation (FST) from quail across different sampling locations were 

generally low (mean = 0.034, range = -0.0082 to 0.071; Figure S1-5), although some sampling sites such 

as South US101, west of Malibu Cyn., Montenido, and Stunt Rd. had moderate (x > 0.07) levels of 

pairwise genetic differentiation. There was a weak positive relationship between Euclidean genetic 

distance and geographic distance, providing little support for a model of isolation by distance (mantel R = 

0.068, p = 0.33; Figure S1-6), suggesting that something other than geographic distance is contributing to 

levels of genetic differentiation. 
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Estimated migration surface  

We estimated effective migration of quail across the SMM in EEMS. For each iteration of the 

total number of demes, all three MCMC chains converged based on visualization of the posterior trace 

plots (Figure S1-7). The migration surface for 100, 200 and 300 modeled nDemes all indicated low 

effective migration for samples on either side of the I405 freeway and Malibu Canyon Rd., and to a lesser 

extent the US101 freeway. Further, the migration surface for 100 and 200 modeled nDemes indicated an 

increase in effective migration along Topanga Canyon and the two eastmost sites north of the US101 

(Figure 1-3). 

 

Habitat Suitability Modeling 

We used MaxEnt to generate an ecological niche model for Santa Monica Mountains quail.  The 

resulting model performed well in accurately discriminating habitat suitability (AUC = 0.88; Figure S1-

8). The relative contributions (RC) and permutational important (PI) for the top five variables are as 

follows: Terrain Ruggedness Index (RC = 39.8, PI = 29.7), winter temperature (RC = 13.2, PI = 9.2), 

night light (RC = 11.6, PI = 15.7), percent impervious surface (RC = 10.7, PI = 19.7), and EVI  (RC = 

6.5, PI = 9.2; Table S1-1). We used the inverse of this model to parameterize a resistance surface for 

Reciprocal Causal Modeling. 

 

Reciprocal Causal Modeling 

We assessed support for geographic, environmental, and resistance variables in explaining 

observed patterns of genetic differentiation in our data using reciprocal causal modeling, and summarized 

these results in a heatmap (Figure 1-4). The heatmap displays the focal variable of the partial mantel test 

along the y-axis (rows) and the alternative variable along the x-axis (columns). Each cell represents a 

partial mantel test between the focal variable (row) and the matrix of genetic differentiation while 

partialling out the effect of the alternative variable (column). Variables with higher support are visualized 

with warmer colors. Across all variables, the variable with the highest correlation with genetic 
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differentiation was road resistance distance, followed by least cost paths distance of roads, least cost paths 

distance of the habitat suitability model, Euclidean distance between sampling locations, and the 

resistance distance of the habitat suitability model (Table S1-2). Environmental variables were the least 

supported correlates in RCM analysis and all had negative relative support values with the exception of 

winter temperature. 

 

Genetic Diversity and Runs of Homozygosity 

Across California, California quail genome-wide diversity was high (average = 5.01x10-3 het/bp, 

range = 4.25x10-3 to 5.29x10-3  het/bp). Quail significantly differed in levels of diversity between 

sampling locations  (ꭓ2(2) = 10.76, p = 0.0046; Figure 1-5A), with the highest overall genomic diversity 

in quail sampled from the SMM (average = 5.05x10−3, range = 4.60x10−3 to 5.29x10−3 ), followed by 

Southern California samples (average = 4.91x10−3, range = 4.83x10−3 to 5.03x10−3), and Northern 

California samples (average = 4.43x10−3, range = 4.25x10−3 to 4.71x10−3). This represents a significant 

increase in overall heterozygosity of about 12.3% between populations of quail in the SMM compared to 

quail sampled in Northern California (z = 2.92, adj. p = 0.0106). 

Levels of inbreeding across all sampled quail populations were low, with an average 2.66% of the 

autosomal genome in ROHs ≥ 100 Kb (FROH range = 0.87  to 9.00%). Average values of FROH were nearly 

twice as large in northern California (average =  4.24%, range = 2.62 to 5.11%) compared to southern 

California (average = 2.62%, range = 1.28 to 3.35%) and the SMM (average = 2.58%, range = 0.872 to 

9.00%), although this difference was not significant (Figure 1-5B). The fraction of the genome coverage 

in ROHs ≥ 1 Mb was generally low (1.57%, range = 0.159 to 7.77%), with the highest levels in northern 

California (average = 2.06%, range = 0.995 to 2.96%) and much lower values in the SMM (average = 

1.55%, range = 0.159 to 7.77%) and southern California (average = 1.40% , range = 0.592 to 2.00% ). 

Two samples from west of the I-405 and north of the US-101 in the SMM had ROHs ≥ 10 Mb, totalling 

in 10.21 Mb and 28.34 Mb in size (Figure 1-5C). Given these high values, we investigated the timing of 

inbreeding, comparing samples adjacent to the US101 and I405 freeways to all other roadways studied in 



 

 19 

the SMM. We found an increase in recent inbreeding between 2 - 4 and 4 - 8 generations ago at sites near 

the US-101 and I-405 when compared to all other roadways in the SMM (Figure 1-5D), although these 

comparisons were not statistically significant (Figure S1-9). Further, we found an increase in older 

inbreeding events at all other roadways when compared to the US-101 and I-405 freeways including 

between 8 - 16, 16 - 32, and greater than 32 generations ago, although only the most ancient inbreeding 

events were statistically significant (p = 0.03). 

 

DISCUSSION 

Understanding the factors that influence genetic diversity, at local and regional scales, is critical 

to landscape ecology and conservation biology. Although we often think of birds as vagile organisms that 

can readily seek out suitable habitat and thus escape most of the human-caused impacts on the landscape, 

we also know that some species are still affected by roads and urbanization, especially in xeric western 

North America (Benítez-López et al. 2010; Aronson et al. 2014; Seress and Liker 2015).  California quail, 

an important game species, is a strong, but generally reluctant flier that has never been genetically 

evaluated as its California habitat has become increasingly fragmented and urbanized. We found that 

major roadways that dissect the SMM left a detectable signature on California quail genomic architecture, 

and reciprocal causal modeling demonstrated that road presence is the most important factor shaping quail 

population structure and genetic differentiation. Fortunately, overall levels of genome-wide diversity were 

high for California quail, although levels of inbreeding increased in birds living proximal to the largest 

roads in our study. To our knowledge, our study is the first genomic dataset published for this species and 

one of the few attempts to determine the genomic consequences of roadway infrastructure on birds. These 

results indicate that quail tend not to cross major freeways, and provide a valuable baseline of 

differentiation related to connectivity in the region, including before the widely anticipated Annenberg 

Wildlife Overpass traversing US-101 in the SMM is completed. 
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Roads as barriers to gene flow 

Results from the Principal Components Analysis, Reciprocal Causal Modeling, and Estimated 

Effective Migration Surface analysis provide strong support for isolation by resistance acting as the 

prevailing force structuring observed levels of genomic differentiation in SMM California quail 

populations. Specifically, both least cost paths and resistance distances generated using the road presence 

resistance surface had the highest relative support values when compared to other distance matrices for 

habitat suitability and environmental factors. These findings were further substantiated by clustering of 

samples from either side of the US-101 and I-405 in the PCA analysis and evidence of decreased 

migration near these same roadways in the EEMS analysis. Relative model support values for the 

presence of roads were higher than those generated using the road traffic volume resistance surface, 

indicating that road surface avoidance behavior is more important than traffic avoidance behavior in 

structuring quail populations within the study area, and this result adds to the growing information that 

bird abundances are affected by distance to roadway infrastructure but not the intensity of traffic 

(Benítez-López et al. 2010). We notably did not test for the hypothesis that quail avoid roads due to the 

increased noise levels (Jaeger et al. 2005). Road noise is an important factor shaping bird communities 

(McClure et al. 2013) and future studies should include measures of the “soundscape” to better 

understand its effect.  

In the context of other landscape genomics research in birds, factors that best explain patterns of 

genetic differentiation vary greatly depending on the taxa being studied. For example, in some studies the 

most important factors for shaping genetic differentiation in birds include linear structures such as rivers 

(Wenzel et al. 2016), manmade features such as reservoirs (Cros et al. 2020), the amount of managed 

agricultural lands and exposed soils (Malpica and González 2024), as well as landscape resistance due to 

elevation (Sonsthagen et al. 2022; Jiao et al. 2024; Kimmitt et al. 2024) and vegetation cover (Row et al. 

2018; Cheek et al. 2022; Luna et al. 2023). However, support for IBE (Manthey and Moyley 2015; 

Provost et al. 2022; Wang et al. 2022) and IBD (Rodríguez-Bardía et al. 2022; Spurgin et al 2024) are 

also common in avian systems. To our knowledge, this is the first study to find roads as the principal 
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factor structuring genetic differentiation in a bird species after ruling out competing hypotheses of IBD 

and IBE. 

 

Roads and genetic diversity  

 Only a few studies have evaluated the relationship between roadway infrastructure and levels of 

standing genetic variation in birds. Schmidt et al. (2020) used microsatellite data for 129 bird species 

across the United States and Canada and found no significant association between levels of genetic 

diversity and measures of urbanization that included the presence of roadways. This study attributed a 

lack of a relationship between urbanization and genetic diversity to the high vagility of bird species, 

which they suggested can confer some resilience to the genetic impacts of habitat fragmentation. 

However, research from the same region that we studied found that wrentits, a habitat specialist bird 

species, exhibited significant levels of genetic differentiation associated with intense fragmentation 

including across a major roadway (Delaney et al. 2010; Thomassen et al. 2017). We found that California 

quail harbor high levels of genome-wide diversity (mean per base pair heterozygosity = 5.01x10-3) 

throughout much of their range, presumably reflecting the large populations that were historically present 

in the state (Leopold 1985), but that there were no significant differences in heterozygosity within the 

SMM relating to sampling location or what side of the road quail were sampled from. Further, unlike 

wrentits, we did not find significant genomic differentiation across the US-101 or between any of our 

sampling locations (mean FST = 0.034), indicating that the standing genetic variation that we observed is 

largely shared across sampling sites. Relative to genomic diversity in other bird species, these values are 

higher than average (Ellegren 2013; Brüniche-Olsen et al. 2021; Mathur and DeWoody 2021), and higher 

than in other species of quail (northern bobwhite quail [Colinus virginianus], per base pair heterozygosity 

= 4.17x10−3, Oldeschulte et al. 2017; scaled quail [Callipepla squamata], per base pair heterozygosity = 

2.48x10−3, Oldeschulte et al. 2017, and Montezuma quail [Cyrtonyx montezumae], per base pair 

heterozygosity = 1.2x10−3, Mathur and DeWoody 2021). Overall, the high levels of standing genetic 

variation observed here is a positive finding for the species, as high levels of genetic diversity have been 
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demonstrated in many systems to be correlated to fitness and adaptive potential (DeWoody et al. 2021). 

Further, these values provide an important baseline that can be reevaluated in the future in response to 

changes in census size estimates.  

 In addition to providing traditional measures of genetic diversity, whole genome sequencing data 

enables researchers to more effectively estimate levels of inbreeding in wild populations. Inbreeding, 

which results in an overall increase in homozygosity, can lead to many detrimental impacts to individuals. 

In birds, this can include congenital defects and decreased embryonic survival (Fu et al. 2019), decreases 

in juvenile survival rates (Duntsch et al. 2023), decreased hatchling weight (Chen et al. 2016), decreased 

hatching and fledging success (Suzulkin et al. 2007; Chen et al. 2016), and decreases in lifetime fitness 

(Harrisson et al. 2019). To our knowledge, no studies have tried to link levels of inbreeding in a wild bird 

population with the presence of roadway infrastructure. We found that all quail populations in the SMM 

harbored on average 2.66% of their genomes in long tracts of homozygous alleles greater than 100 Kb in 

length, and that some quail sampled ~1 mile from the US-101 and I-405 freeways had large ROHs greater 

than 10Mb that had an estimated time to the most recent common ancestor of 2- 4 generations ago. ROHs 

of this length indicate recent inbreeding, which can lead to decreased fitness due to inbreeding depression 

(Robinson et al. 2023). While we did not sample quail to explicitly test how distance from roadways 

impacts inbreeding, there is at least some evidence that quail near major roadways such as the US-101 

and I-405 freeways have increased levels of non-random mating between close kin. This information is 

important for wildlife managers in the region, as inbreeding is a process that removes genetic diversity 

from populations over time, and this future loss in diversity could impact quail populations fitness and 

survival in the future.  

 Compared to other avian species, these levels of inbreeding are relatively low. For example, 

values of FROH in SMM quail are similar to values for recovering populations of Seychelles paradise 

flycatcher (Terpsiphone corvina;  FROH ~ 0.01%; Femerling et al. 2023), Canary Island populations of 

Berthelot's pipit (Anthus berthelotii; FROH = 0.8 - 3.90%; Martin et al. 2023), and outbred wide-ranging 

species such as turkey vultures (Cathartes aura; FROH = 4.24%; Robinson et al. 2021), although these 
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values are also similar to the ‘Alalā (Corvus hawaiiensis; FROH = 5.6%; Sutton et al. 2018) which is now 

extinct in the wild. However, the values of FROH that we found in CA quail are far lower than those 

observed in wild avian species threatened with extinction, which can range from 14.4 - 53% (Fu et al. 

2019;  Dussex et al. 2021; Duntsch et al. 2023; Sato et al. 2023). Values of observed FROH in the SMM 

could be due to a variety of factors including local population declines, overall low levels of movement 

between populations due to roads and other anthropogenic features on the landscape, and heightened 

levels of consanguineous matings (Robinson et al. 2018; Kyriazis et al. 2023). Further increases in levels 

of inbreeding in SMM quail populations could have long lasting impacts on viability of these birds, as 

populations that were historically large have an increased risk from inbreeding depression due to their 

increased burden of deleterious variants across the genome (Kyriazis et al. 2021). As genomic resources 

are made available for the species including an annotation to the existing reference genome, it will be 

possible to establish whether or not there is spatial variation in the accumulation of deleterious variation 

including in these populations where large ROHs were observed. Determining exactly how prevalent 

these recent inbreeding events have become across the landscape will help determine if additional 

conservation actions are needed and where they should be implemented to prevent increases in inbreeding 

in the future. 

 

Mitigating the barrier effect of roads 

 In light of our findings regarding the impact of roadways on quail gene flow, a natural next 

question is ‘can conservation actions such as wildlife crossings mitigate the barrier effect caused by 

roadways for California quail’? Unfortunately, it is not a straightforward question to answer. The general 

lack of information regarding the efficacy of wildlife crossings on gene flow in avian systems makes it 

unclear whether or not the addition of a wildlife overpass will have its intended impact on quail 

populations. Research on the efficacy of wildlife crossing structures on lessening the barrier effect of 

roadways is extremely limited (Denneboom et al. 2021), and we found no research or established 

guidelines relating to wildlife crossing design that might suggest ways to improve crossings for birds 
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(Kociolek et al. 2015) let alone quail, which we predict may be more affected by roads than other bird 

species. In non-avian taxa, a few examples from the literature demonstrate that the addition of wildlife 

crossing structures can increase gene flow in regions where habitat is bisected by a major roadway. For 

example, Sawaya et al. (2014) found evidence of bidirectional gene flow and reproduction between 

formerly isolated bear populations following the construction of multiple wildlife crossing structures. 

Similarly, Soanes et al. (2018) found that road crossing structures erased the signature of genetic structure 

for some populations of gliding marsupials as soon as five years after construction. There is at least some 

evidence that quail and other ground birds use underpass structures (Kociolek et al. 2015; Smith et al. 

2015; Caldwell and Klip 2020; Young et al. 2023) and that wildlife overpasses can create crossing 

opportunities for bird species that otherwise would not cross roads due to their dispersal ability (Pell and 

Jones 2015). Based on our relatedness analysis alone, we did not find evidence of recent reproduction 

between quail populations separated by major roadways which may be attributable to the near complete 

barrier these structures create for quail movement. Therefore, if quail adjacent to the Annenberg Wildlife 

Crossing are able to locate and utilize the structure, it seems plausible that this wildlife crossing could 

alleviate some of the constraints to quail migration that roadways in Southern California cause. In order to 

evaluate the efficacy of the wildlife crossing for quail populations in the SMM, we recommend long-term 

deployment of passive methods to assess quail use of the crossing such as camera traps or acoustic 

detectors as well as additional genetic sampling post-construction to evaluate potential increases in gene 

flow and reproduction. Ultimately, this first assessment of quail genomic health provides invaluable 

baseline data to understand how conservation actions such as wildlife crossings can benefit this iconic 

game bird species across the state. 
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FIGURES  

 

 

Figure 1-1. Map of the study area. Black circles indicate sample locations and number of samples. 

Dashed line represents the boundary of Santa Monica Mountains National Recreation Area. 

 

 

 

 

 

 



 

 26 

 

 

Figure 1-2. A) PCA of 53 samples colored by sampling location, black box indicating samples from 

panel B, and B) PCA of 46 samples excluding outgroup samples from northern and southern California, 

colored by sampling location, shape indicates side of the road the sample was collected from if applicable. 
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Figure 1-3. Maps of the Santa Monica Mountains area with effective migration surface estimated using 

EEMS. Warmer colors indicate below average migration and cooler colors indicate above average 

migration. Black circles with numbers indicate the sampling locations and number of samples. 
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Figure 1-4. Heatmap summarizing Reciprocal Causal Modeling outputs. Rows represent focal variables 

while columns represent alternate variables. For any given comparison within a row, warmer colors 

indicate more support for the focal variable in explaining patterns of genetic differentiation while 

partialling out the effect of the alternate variable. Values in scale correspond to correlation coefficients of 

partial mantel tests. 
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Figure 1-5. Genetic diversity across sampling locations, including A) Genome-wide autosomal 

heterozygosity, B) proportion of the genome in runs of homozygosity ≥ 100 Kb (FROH), C) Summed 

lengths of runs of homozygosity, and D) TMRCA of ROHs for samples located on either side of the US101 

and I405 freeways compared to samples from all other roadways. 
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APPENDIX 1-I: SUPPLEMENTAL METHODS 

Predictor variables used in MaxEnt Modeling 

Template 

As a basis for predictor variables, we first downloaded tiled Digital Elevation Model (DEM) rasters from 

the USGS 3D Elevation Program (3DEP) at 1 arc-second 

(https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b). We next 

reprojected and resampled the tiled collection to NAD 1983 California (Teale) Albers Equal Area Conic 

(EPSG: 3310) at a spatial resolution of 300 x 300 m (all resulting grid cells are square and identical in 

size—a problem if spatial data are reprojected but not resampled). This projection is optimized for state-

wide mapping and area-based calculations, and is recommended by the California Department of Fish and 

Wildlife. This raster served as the basic template for generating all other spatial data layers (identical 

origin, resolution, and projection). 

 

Terrain 

We generated a terrain ruggedness index, estimated as the mean of absolute differences between the 

elevation value of each cell and the 8 surrounding cells (“terrain” function, terra R package). We also 

estimated a heat load index using the R package spatialEco (Evans &amp; Ram, 2021), measuring 

variation in solar radiation according to the slope and aspect of each cell.  

 

Water 

We downloaded surface water vector data from the Hydrosheds database (https://www.hydrosheds.org, 

accessed Aug 15, 2024). These vector data were buffered by 100 m, intersected with the template raster, 

and turned into binary raster layers (value of 1 if a raster cell contained water, 0 otherwise). This was 

performed separately for lotic and lentic data, creating separate raster layers. We also generated a raster 

measuring the shortest distance from each raster cell’s centroid to any surface water. 

 

https://www.hydrosheds.org/
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Land cover 

Land cover GIS data was acquired from the Commission for Environmental Cooperation (www.cec.org, 

accessed Aug 15, 2024), generated using 2020 Landsat satellite imagery. The fine native resolution (30 

m) of these data meant no down sampling was required when reprojecting and resampling (bilinear 

method) to match our template rasters. Fifteen land cover categories are present within the study area, 

including different types of human land use (e.g., “urban” and “cropland”). 

 

Vegetation 

We quantified the amount of photosynthetic activity on the landscape using the enhanced vegetation 

index (EVI) (Jiang et al., 2008). This was generated following MacDonald et al. (In Reivew) using the 

entire MODIS AQUA (MYD09A1) (Vermote, 2021a) and TERRA (MOD09A1) (Vermote, 2021b) 

collection. We generated median EVI values from 2000 to 2023 using Google Earth Engine (Gorelick et 

al., 2017). We chose median values rather than mean because the annual distribution of EVI values are 

often moderately to highly skewed (Dong et al., 2019) 

 

Urbanization 

As an index of variation in urbanization, we downloaded Nighttime Light maps from the Earth 

Observation Group’s Version 4 DMSP-OLS Nighttime Lights Time Series (Elvidge et al., 1997; Baugh et 

al., 2010; native resolution of 30 arc-seconds). From this dataset, we reprojected and resampled the 

average of the visible band digital number values to match template rasters. Values ranged from 0-63, 

with no missing data present within the study extent. 

 

Environmental data  

We downloaded data for five environmental variables, generated by MacDonald et al. (In Review) using 

ClimateNA v7.30 software (Wang et al., 2016). Variables included mean temperature of the warmest 

quarter, mean temperature of the coldest quarter, difference between mean temperatures of the warmest 

http://www.cec.org/
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and coldest quarters (WorldClim) (hereafter, “continentality”), mean precipitation of the warmest quarter, 

and mean precipitation of the coldest quarter. We selected these variables to best capture environmental 

variation while minimizing collinearity (|r| < 0.75). These data were generated using an origin, resolution, 

and projection identical to our template, meaning no processing was required. These layers are 

approximately 10X finer than WorldClim 2.1 data (Fick & Hijmans, 2017), conferring greater power to 

resolve heterogeneity in habitat suitability at a fine spatial scale. 

 

Creating continuous layers of traffic volume 

To create a continuous layer of traffic volume for use in the RCM analysis, we first overlaid values of 

“ahead AADT” (estimated in a single direction and useful estimators when road widths are relatively 

uniform) from the California Department of Transportation (https://gisdata-

caltrans.opendata.arcgis.com/datasets/d8833219913c44358f2a9a71bda57f76_0/about) for the year 2022, 

on to our roads vector layer using QGIS v. 3.20.2-Odense (QGIS 2024). As these data are available as 

multiple point estimates where traffic volume is recorded, rather than as a continuous layer, we 

interpolated the traffic volume along the entire road by separating primary and secondary roads and 

individually performed an inverse distance weighted interpolation across the study using the five nearest 

neighbor “ahead AADT” points. We then clipped this interpolated surface to the polygon representing 

primary and secondary roadways (generated by buffering the centerline of the roadway by 50-meters in 

each direction) and set all background points equal to zero. This surface was then used as a predictor, 

along with other rasters representing continuous environmental variation, in downstream migration and 

modeling methods.  

 

 

 

 

 

https://gisdata-caltrans.opendata.arcgis.com/datasets/d8833219913c44358f2a9a71bda57f76_0/about
https://gisdata-caltrans.opendata.arcgis.com/datasets/d8833219913c44358f2a9a71bda57f76_0/about
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APPENDIX 1-II: SUPPLEMENTAL FIGURES 

 

 

Figure S1-1. Pairwise identity by descent (IBD) matrix of quail samples. Samples in yellow indicate 

individuals with second-degree relationships and samples in red indicate samples with first-degree 

relationships. Self-comparisons in dark gray. 
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Figure S1-2. Principal component analysis of 46 samples comparing the first three principal components. 

Points are colored by sampling location, shape indicates side of the road the sample was collected from if 

applicable. 
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Figure S1-3. Admixture output for k values 1 - 6. Best supported k value = 1.   

 

 

 

 



 

 36 

 

 

 

Figure S1-4. Cross validation score for each K value for A) all unrelated quail samples, and B) unrelated 

quail samples from the Santa Monica Mountains. Lower CV score indicates better model fit. 
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Figure S1-5. Pairwise FST heatmap of quail samples. Self-comparisons in black along the diagonal. 
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Figure S1-6. Scatter plot with fit line of pairwise linearized FST values and log transformed geographic 

distance from 46 samples 
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Figure S1-7. Posterior trace plots showing model convergence for three MCMC runs each of three 

different numbers of nDemes (100 - 300). 
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Figure S1-8. Results of ecological niche modeling including A) map of study extent with predictive 

suitability surface built using locations of quail from this study (red points) and from publicly accessible 

community science data from iNaturalist (blue points), with more suitable habitat in green and less 

suitable habitat in red, and B) percentage contribution of each landscape and environmental variable 

included in the MaxEnt model. 
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Figure S1-9. Histograms of bootstrapped distribution of mean FROH lengths by age of autozygous 

segments. Dotted lines indicate the 5% and 95% percentile and the blue line indicates the observed mean 

difference between FROH lengths between samples from the US101 and I405 freeways and all other 

sampling locations in the Santa Monica Mountains. 
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APPENDIX 1-III: SUPPLEMENTAL TABLES 

Table S1-1. Variables used in the ecological niche model listed in order of their percent contribution and 

permutational importance.  

Variable Percent 
Contribution 

Permutation 
Importance 

TRI 39.8 29.7 

temp_winter 13.2 9.2 

night_light 11.6 15.7 

imperviousness 10.7 19.7 

EVI_median 6.5 9.2 

rivers_lakes 5.4 1.6 

precip_winter 2.8 1.2 

precip_summer 2.7 4.2 

continentality 2.4 3 

dist_water 2.1 2.7 

landcover 1.2 0.5 

heatload 1.1 0.1 

temp_summer 0.5 3.3 
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Table S1-2. Distance metrics used in the Reciprocal Causal Modeling analysis and their relative support 

values. 

Distance Measure Relative 
Support 

roads_resistance_dist 2.987 

roads_least_cost_dist 1.478 

habitat_least_cost_dist 1.461 

euclidean_dist 1.441 

habitat_resistance_dist 1.396 

traffic_resistance_dist 0.948 

temp_winter_dist 0.400 

continentality_dist -0.625 

traffic_least_cost_dist -1.337 

temp_summer_dist -1.946 

precip_summer_dist -2.733 

precip_winter_dist
  

-3.472 
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Abstract 
The Yuma myotis bat (Myotis yumanensis) is a small vespertilionid bat and one of 52 species of new world Myotis bats in the subgenus 
Pizonyx. While M. yumanensis populations currently appear relatively stable, it is one of 12 bat species known or suspected to be susceptible 
to white-nose syndrome, the fungal disease causing declines in bat populations across North America. Only two of these 12 species have ge-
nome resources available, which limits the ability of resource managers to use genomic techniques to track the responses of bat populations 
to white-nose syndrome generally. Here we present the first de novo genome assembly for Yuma myotis, generated as a part of the California 
Conservation Genomics Project. The M. yumanensis genome was generated using a combination of PacBio HiFi long reads and Omni-C 
chromatin-proximity sequencing technology. This high-quality genome is one of the most complete bat assemblies available, with a contig N50 
of 28.03 Mb, scaffold N50 of 99.14 Mb, and BUSCO completeness score of 93.7%. The Yuma myotis genome provides a high-quality resource 
that will aid in comparative genomic and evolutionary studies, as well as inform conservation management related to white-nose syndrome.
Key words: California Conservation Genomics Project, CCGP, chiroptera, long-read assembly, Myotis yumanensis, reference genome

Introduction
Bats (order Chiroptera) are the second-most diverse mam-
malian order, representing 22% of global mammal diversity 
(Simmons and Cirranello 2018; Mammal Diversity Database 
2022). Despite their global distribution and ecological and 
economic importance, the conservation status of bats is less 
well understood than other species of mammals or birds 
(Frick et al. 2020). In step with data gaps in the global con-
servation status of bats, genomic resources for bats are also 
underdeveloped. Since the first reference genome of the little 
brown bat (Myotis lucifigus) was published by the Broad 
Institute in 2011 (Lindblad-Toh et al. 2011), 50 additional 
bat reference genomes have been made publicly available, al-
though 37 (74%) of these genomes are highly fragmented, 

primarily short-read assemblies. Eleven of the 19 currently 
recognized chiropteran families have at least one reference ge-
nome, and most are from species in the families Pteropodidae, 
Phyllostomidae, and Vespertilionidae, including four in the 
genus Myotis. Given that the genus contains more than 120 
globally distributed species, many of which have experienced 
declines in recent decades, additional genomic resources are 
sorely needed for the group.

The Yuma myotis bat (hereafter “Yuma bat”; Myotis 
yumanensis; Allen 1864) is one of 47 bat species endemic to 
North America. The Yuma bat is abundant and widely dis-
tributed, occurring as far north as British Columbia, Canada, 
south throughout most of the western United States, and 
as far south as Morelos, Mexico (Braun et al. 2015). Yuma 

© The American Genetic Association. 2023.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com
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bats are closely associated with riparian habitat for foraging 
(Brigham et al. 1992; Duff and Morrell 2007) and utilize a 
variety of natural (Braun et al. 2015) and manmade (Evelyn et 
al. 2004) roost types (Fig. 1). There are six putative subspecies 
of Yuma bat including M. y. lambi, M. y. lutosus, M. y. ox-
alis, M. y. saturatus, M. y. sociabilis, and M. y. yumanensis, al-
though the extent to which these subspecies are supported as 
evolutionarily distinct lineages by genomic data is unknown 
(Braun et al. 2015).

The Yuma bat is also one of 12 bat species in North America 
with confirmed detection of Pseudogymnoascus destructans 
(Pd), the fungus responsible for white-nose syndrome (WNS). 
For some species of bats such as the little brown bat, WNS has 
resulted in more than 90% loss from certain colonies (Frick 
et al. 2010). Furthermore, although the IUCN considers the 
Yuma bat stable across its native range (Solari 2019), occu-
pancy models derived from acoustic data indicate a slight 
decline in summer occupancy over the three-year period of 
2016–2019 (Udell et al. 2022). As WNS continues to spread 
across North America (Duncan 2023), it will be important to 
monitor common, abundant species such as the Yuma bat to 
detect and document population declines as they occur.

Genomic data provide an effective, efficient tool to monitor 
WNS-related mortalities in bat populations, as well as the genes 

underlying survival. Using whole genome resequencing data, 
researchers have identified single nucleotide polymorphisms 
related to torpor and immune function in bat populations 
that survive WNS (Lilley et al. 2020b; Gignoux-Wolfsohn 
et al. 2021) and have investigated potential declines in ge-
nomic diversity following mass die offs (Lilley et al. 2020b). 
Genomic studies such as these rely heavily on the availability 
of high-quality reference genomes (Brandies et al. 2019).

Here, we describe the genome assembly for M. yumanensis, 
generated through the California Conservation Genomics 
Project (CCGP; Shaffer et al. 2022). One of the primary 
goals of the CCGP is to generate reference genomes and 
whole genome resequencing data for a comprehensive set of 
153 ecologically and phylogenetically diverse species across 
California (Shaffer et al. 2022), and the Yuma bat is one of 
two chiropteran species in the project. Using PacBio HiFi 
long reads and Omni-C chromatin-proximity sequencing 
technology, we generated the first assembly for the species. 
The Yuma bat genome is an invaluable resource for basic 
research on diversification among Myotis species and the 
evolution of unique traits like echolocation and disease re-
sistance, as well as more applied work on population size, 
connectivity, and genomic health that will aid in WNS man-
agement planning.

Fig. 1. (A) Profile view and (B) front-on view of Yuma myotis bats (Myotis yumanensis). (C) M. yumanensis day roost in a longitudinal joint of a bridge in 
Riverside County, California, USA.

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/article/115/1/139/7274366 by U

niversity of C
alifornia, Los Angeles user on 04 D

ecem
ber 2024



 

 59 

 

 

Journal of Heredity, 2024, Vol. 115, No. 1 

Methods
Tissue collection and cell culture
We captured a juvenile male Yuma bat from a maternity colony 
located in Chester, Plumas County, California. The specimen 
was collected by California Department of Fish and Wildlife 
(CDFW) staff under the department’s jurisdiction as the trustee 
for wildlife management in the state of California, CA Fish & 
Game Code § 1802 (2015). The animal was transported to a 
CDFW laboratory facility where it was humanely euthanized via 
a combination of isoflurane and cervical dislocation. The carcass 
was immediately dissected and tissues were collected for genome 
sequencing. Several aliquots of kidney, lung, heart, spleen, liver, 
testes, intestine, skeletal muscle, and brain were washed sequen-
tially in molecular grade water, ethanol, and water again before 
being flash frozen in liquid nitrogen. One aliquot of each tissue 
was reserved for generating primary cell cultures. Species iden-
tity was confirmed through Sanger sequencing of a fragment of 
the cytochrome oxidase subunit 1 (COI) mitochondrial gene 
using the methodology of Walker et al. (2016).

Primary cell cultures from the skin (plagiopatagium and 
body), heart, brain, cartilage, and eye were grown following 
Yohe et al. (2019) with modifications. Tissue samples were 
rinsed serially in baths of DPBS, 70% ethanol, and DPBS, and 
then stabilized in a cell culture medium consisting of BenchStable 
DMEM/F12 (Gibco Cat. #A4192002, Thermofisher Scientific 
Inc., Waltham, MA) supplemented with 20% FBS (Gibco Cat. 
#26140087), 0.2% Primocin (InvivoGen Cat. #ant-pm-1, San 
Diego, CA), and 15 mM HEPES (Gibco Cat. #15630080). 
Tissues were minced in 500 µL of DPBS using surgical scissors, 
and the tissues were digested overnight in 1 mg/mL Collagenase 
IV (Stemcell Technologies Cat. #07909, Vancouver, Canada) 
supplemented with 0.2% Primocin. The dissociated tissues 
were centrifuged at 500 × g for 5 min, and washed twice with 
DPBS (Gibco Cat. #14190144). Cells were plated in T75 flasks 
containing cell culture media formulated as described, and 
grown in a 37 °C incubator with 5% CO2 atmosphere.

Adherent cells were passaged four days post-collection 
(“Passage 0”) using 0.05% Trypsin-EDTA (Gibco Cat. 
#25300054). Cells were then counted and replated in high 
glucose DMEM (Gibco Cat. #10569010) with pyruvate 
and GlutaMax supplementation, plus 10% FBS and 1% 
penicillin-streptomycin (Gibco Cat. #10378016). Three T175 
flasks were seeded with approximately two million cells each 
after the first passage to generate triplicates of 10 million cell 
aliquots for DNA and RNA extraction.

Nucleic acid library preparation
High molecular weight genomic DNA (HMW gDNA) was 
isolated from cultured cells following a protocol described 
previously (Jain et al. 2018). Briefly, 10 million cultured skin 
fibroblast cells were lysed with 2 mL lysis buffer containing 
10 mM NaCl, 25 mM EDTA, 0.5% (weight/volume) SDS, 
and 100 µg/mL Proteinase K overnight at room temperature. 
The lysate was treated with RNase A for 30 min at 37 °C 
and cleaned with equal volumes of phenol/chloroform using 
phase lock gels (Quantabio Cat. #2302830, Beverly, MA). The 
HMW gDNA was precipitated by adding 0.4× volume of 5 
M ammonium acetate and 3× volume of ice cold ethanol. The 
pellet was washed with 70% ethanol twice and resuspended 
in elution buffer (10 mM Tris, pH 8.0). The purity was 
accessed using NanoDrop spectrophotometer (260/280 = 1.8 
and 260/230 = 2.0) and the integrity of the HMW gDNA was 

verified on a Femto pulse system (Agilent Technologies, Santa 
Clara, CA).

The HiFi SMRTbell library was constructed using the 
SMRTbell Express Template Prep Kit v2.0 (Pacific Biosciences 
of California [PacBio] Cat. #100938900, Menlo Park, CA) ac-
cording to the manufacturer’s instructions. HMW gDNA was 
sheared to a target size distribution between 15 and 20 kb. 
The sheared gDNA was concentrated using 0.45× of AMPure 
PB beads (PacBio Cat. #100265900) for the removal of single-
strand overhangs at 37 °C for 15 min, followed by further 
enzymatic steps of DNA damage repair at 37 °C for 30 min, 
end repair and A-tailing at 20 °C for 10 min and 65 °C for 
30 min, ligation of overhang adapter v3 at 20 °C for 60 min 
and 65 °C for 10 min to inactivate the ligase, then nuclease 
treated at 37 °C for 1 h. The SMRTbell library was purified 
and concentrated with 0.45× AMPure PB beads for size selec-
tion using the BluePippin/PippinHT system (Sage Science Inc. 
Cat. #BLF7510/HPE7510, Beverly, MA) to collect fragments 
greater than 79 kb. The 15–20 kb average HiFi SMRTbell li-
brary was sequenced at the University of California, Davis, 
DNA Technologies Core (Davis, CA) using three SMRT Cell 
8M Trays (PacBio Cat. #101389001), Sequel II sequencing 
chemistry 2.0, and 30-h movies each on a PacBio Sequel II 
sequencer.

The Omni-C library was prepared using a Dovetail 
Omni-C Kit (Dovetail Genomics Cat. #21005, Scotts 
Valley, CA) according to the manufacturer’s protocol with 
slight modifications. First, cultured cell pellets (Sample ID: 
MYYU_CA2020_CCGP) were resuspended in 1× PBS. Then, 
chromatin was fixed in place in the nucleus, and the fixed chro-
matin was digested with DNase I and extracted. Chromatin 
ends were repaired and ligated to a biotinylated bridge adapter 
followed by proximity ligation of adapter-containing ends. 
After proximity ligation, crosslinks were reversed and the 
DNA was purified from proteins, purified DNA was treated to 
remove biotin that was not internal to ligated fragments, and 
a sequencing library was generated using the NEBNext Ultra 
II (New England Biolabs Inc. Cat. #E7645, Ipswich, MA) with 
an Illumina compatible y-adaptor. Biotin-containing fragments 
were then captured using streptavidin beads. The post capture 
product was split into two replicates prior to PCR enrichment 
to preserve library complexity with each replicate receiving 
unique dual indices. The library was sequenced at the Vincent 
J. Coates Genomics Sequencing Laboratory (Berkeley, CA) on
an Illumina NovaSeq 6000 platform (Illumina, San Diego, CA)
to generate approximately 100 million 2 × 150 bp read pairs
per Gb of genome size.

Nuclear genome assembly
We assembled the M. yumanensis genome following the 
CCGP assembly pipeline Version 5.0, as outlined in Table 
1, which lists the tools and nondefault parameters used. The 
pipeline uses PacBio HiFi reads and Omni-C data to pro-
duce high quality and highly contiguous genome assemblies. 
First, we removed the remnant adapter sequences from the 
PacBio HiFi dataset using HiFiAdapterFilt (Sim et al. 2022) 
and generated the initial dual or partially phased diploid 
 assembly (http://lh3.github.io/2021/10/10/introducing-dual- 
assembly) using HiFiasm (Cheng et al. 2022) on Hi-C 
mode, with the filtered PacBio HiFi reads and the Omni-C 
dataset. We then aligned the Omni-C data to both 
assemblies  following the Arima Genomics Mapping Pipeline  
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(https://github.com/ArimaGenomics/mapping_pipeline) and 
scaffolded both assemblies with SALSA (Ghurye et al. 2017, 
2019).

Both genome assemblies were manually curated by iteratively 
generating and analyzing their corresponding Omni-C contact 
maps. To generate the contact maps we aligned the Omni-C 
data with BWA-MEM (Li 2013), identified ligation junctions, 
and generated Omni-C pairs using pairtools (Open2C et al. 
2023). We generated a multi-resolution Omni-C matrix with 
cooler (Abdennur and Mirny 2020) and balanced it with 
hicExplorer (Ramírez et al. 2018). We used HiGlass (Kerpedjiev 
et al. 2018) and the PretextSuite (https://github.com/wtsi-
hpag/PretextView; https://github.com/wtsi-hpag/PretextMap; 
https://github.com/wtsi-hpag/PretextSnapshot) to visualize the 
contact maps where we identified misassemblies and misjoins, 
and finally modified the assemblies using the Rapid Curation 
pipeline from the Wellcome Trust Sanger Institute, Genome 
Reference Informatics Team (https://gitlab.com/wtsi-grit/

rapid-curation). Some of the remaining gaps (joins generated 
during scaffolding and curation) were closed using the PacBio 
HiFi reads and YAGCloser (https://github.com/merlyescalona/
yagcloser). Finally, we checked for contamination using the 
BlobToolKit Framework (Challis et al. 2020).

Genome assembly assessment
We generated k-mer counts from the PacBio HiFi reads using 
meryl (https://github.com/marbl/meryl). The k-mer counts 
were then used in GenomeScope 2.0 (Ranallo-Benavidez et al. 
2020) to estimate genome features including genome size, het-
erozygosity, and repeat content. To obtain general contiguity 
metrics, we ran QUAST (Gurevich et al. 2013). We evaluated 
genome quality and functional completeness using BUSCO 
(Manni et al. 2021) with the Mammalia ortholog database 
(mammalia_odb10) which contains 9,226 genes. Assessment 
of base level accuracy (QV) and k-mer completeness was 

Table 1 Assembly pipeline and software used. Software citations are listed in the main text

Assembly Software and any non-default options Version 

Filtering PacBio HiFi adapters HiFiAdapterFilt Commit 64d1c7b

K-mer counting Meryl (k=21) 1

Estimation of genome size and heterozygosity GenomeScope 2

De novo assembly (contiging) HiFiasm (Hi-C Mode, –primary, output p_ctg.hap1, p_ctg.hap2) 0.16.1-r375

Scaffolding

 Omni-C data alignment Arima Genomics Mapping Pipeline Commit 2e74ea4

 Omni-C scaffolding SALSA (-DNASE, -i 20, -p yes) 2

 Gap closing YAGCloser (-mins 2 -f 20 -mcc 2 -prt 0.25 -eft 0.2 -pld 0.2) Commit 0e34c3b

Omni-C contact map generation

 Short-read alignment BWA-MEM (-5SP) 0.7.17-r1188

 SAM/BAM processing samtools 1.11

 SAM/BAM filtering pairtools 0.3.0

 Pairs indexing pairix 0.3.7

 Matrix generation cooler 0.8.10

 Matrix balancing hicExplorer (hicCorrectmatrix correct --filterThreshold -2 4) 3.6

 Contact map visualization HiGlass 2.1.11

PretextMap 0.1.4

PretextView 0.1.5

PretextSnapshot 0.0.3

Genome quality assessment

  Basic assembly metrics QUAST (--est-ref-size) 5.0.2

  Assembly completeness BUSCO (-m geno, -l mammalia) 5.0.0

Merqury 2020-01-29

Contamination screening

  Local alignment tool BLAST+ (-db nt, -outfmt ‘6 qseqid staxids bitscore std’ , -max_tar-
get_seqs 1, -max_hsps 1, -evalue 1e-25 )

2.1

  General contamination screening BlobToolKit 2.3.3

Mitochondrial assembly

  Mitochondrial genome assembly MitoHiFi (-r, -p 50, -o 1) 2.2

Comparing available genome assemblies

 Genome contiguity ggplot2 3.4.1 (R version 
4.2.3)

Custom script (https://github.com/joeycurti3/myyu_joh) Commit 3f5c8dd

 Genome genic completeness gVolante (-cuttoff length = 1, -sequence type = Genome (nucleotide), 
-ortholog search pipeline = BUSCO v5, -ortholog set = mammalia

2.0.0
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performed using the previously generated meryl database 
and merqury (Rhie et al. 2020). We further estimated ge-
nome assembly accuracy via BUSCO gene set frameshift 
analysis using the pipeline described in Korlach et al. (2017). 
Measurements of the size of the phased blocks are based on 
the size of the contigs generated by HiFiasm on HiC mode. 
We followed the quality metric nomenclature established by 
Rhie et al. (2021), with the genome quality code x·y·P·Q·C, 
where, x = log10[contig NG50]; y = log10[scaffold NG50]; 
P = log10 [phased block NG50]; Q = Phred base accuracy 
QV (quality value); C = % genome represented by the first 
“n” scaffolds, following a karyotype of 2n = 44 (Braun et al 
2015). Quality metrics for the notation were calculated on the 
assembly for Haplotype 1.

Mitochondrial genome assembly
We assembled the mitochondrial genome of M. yumanensis 
from the PacBio HiFi reads using the reference-guided pipe-
line MitoHiFi (Allio et al. 2020; Uliano-Silva et al. 2021). 
The mitochondrial sequence of an existing M. yumanenis 
(NCBI:NC_036319.1; Platt et al. 2018) was used as the 
starting reference sequence. After completion of the nuclear 
genome, we searched for matches of the resulting mitochon-
drial assembly sequence in the nuclear genome assembly 
using BLAST+ (Camacho et al. 2009) and filtered out contigs 
and scaffolds from the nuclear genome with a percentage of 
sequence identity >99% and size smaller than the mitochon-
drial assembly sequence.

Comparing available genome assemblies
We queried the National Library of Medicine’s National 
Center for Biotechnology Information (NCBI) on 11 April 
2023 for all representative genome assemblies using the taxon 
id for Chiroptera (search term: txid9397[Organism:exp]). 
For each assembly, we recorded the genomes’s global statis-
tics including genome size, scaffold number, scaffold N50, 
contig number, and contig N50. To compare the conti-
guity of available genomes, we accessed NCBI full sequence 
reports for all 50 available bat genomes and plotted the cu-
mulative coverage of the genome by scaffold of a given size 
(NGx plot) in R (R Core Team 2022), using the package 
“ggplot2” (Wickham 2016) following scripts from Lin et 
al. (2022). To compare completeness of available genomes, 
we downloaded fasta sequences for all 50 available bat 
genomes on NCBI and we used gVolante (Nishimura et al. 
2017, 2019) to run BUSCO using the Mammalian ortholog 
database (mammalia_odb10).

Results
The Omni-C and PacBio HiFi sequencing libraries generated 
120.4 million read pairs and 4.7 million reads, respectively. 
The latter yielded ~40-fold coverage (N50 read length 
16,323 bp; minimum read length 43 bp; mean read length 
16,158 bp; maximum read length of 52,146 bp) based on the 
Genomescope 2.0 genome size estimation of 1.9 Gb. Based 
on PacBio HiFi reads, we estimated 0.194% sequencing error 
rate and 0.809% nucleotide heterozygosity rate. The k-mer 
spectrum based on PacBio HiFi reads show a bimodal distri-
bution with two major peaks at ~38 and ~75-fold coverage, 
where peaks correspond to homozygous and heterozygous 
states of a diploid species (Fig. 2A).

The final assembly (mMyoYum1) consists of two partially 
phased haplotypes that vary slightly in size compared with 
the estimated value from GenomeScope 2.0 (Fig. 2A), as 
has been observed in other taxa (see e.g. Pflug et al. 2020). 
Haplotype 1 consists of 476 scaffolds spanning 1.94 Gb with 
contig N50 of 28.03 Mb, scaffold N50 of 99.14 Mb, longest 
contig of 120.09 Mb, and largest scaffold of 240.34 Mb. 
The Haplotype 2 assembly consists of 250 scaffolds, span-
ning 2.05 Gb with contig N50 of 26.79 Mb, scaffold N50 of 
94.21 Mb, longest contig of 59.72 Mb, and largest scaffold of 
216.39 Mb. Assembly statistics are reported in Table 2, and 
graphical representation for the primary assembly in Fig. 2B.

During manual curation, we generated a total of 12 breaks 
and 153 joins, with 6 breaks per haplotype, 79 joins for 
Haplotype 1, and 74 joins were made for Haplotype 2. We 
were able to close 45 gaps, 19 on Haplotype 1 and 26 on 
Haplotype 2, and we filtered out 2 contigs (1 per haplotype), 
corresponding to mitochondrial contamination. No further 
contigs were removed. The Omni-C contact maps show that 
both assemblies are highly contiguous (Fig. 2C and 2D). We 
have deposited both assemblies on NCBI (see Table 2 and 
Data Availability for details).

Haplotype 1 has a BUSCO completeness score of 93.7% 
using the Mammalian ortholog database, a per-base quality 
(QV) of 63.62, a kmer completeness of 89.64, and a frameshift 
indel QV of 40.98. Haplotype 2 has a BUSCO completeness 
score of 91.2% using the same ortholog database, a per-base 
quality (QV) of 63.88, a kmer completeness of 93.97, and 
a frameshift indel QV of 40.27. The Omni-C contact maps 
show that both assemblies are highly contiguous with some 
chromosome-length scaffolds (Fig. 2C and 2D, respectively; 
see Table 2 and Data availability for details).

The final mitochondrial genome size was 17,366 bp. The 
base composition of the final assembly version is A = 33.55%, 
C = 22.93%, G = 13.44%, T = 30.08%, and consists of 22 
unique transfer RNAs and 13 protein-coding genes.

Across all available bat genomes, genome contiguity based 
on scaffold N50 values ranged from 0.0107 to 171.1 Gb 
(x̄ = 29.73). Furthermore, completeness based on BUSCO 
percentage of complete genes detected ranged from 47.33 to 
96.61 (x̄ = 85.39). Generally, short-read genome assemblies 
were less contiguous (x̄ = 11.03 Mb) and less complete 
(x̄ = 81.91) than assemblies that used a combination of long 
and short reads (x̄ = 92.44 Mb and x̄ = 95.21%, respectively).

Discussion
Here we provide the first genome assembly for the Yuma 
bat. This genome is highly contiguous and when compared 
against standards set by the Vertebrate Genome Project (VGP; 
https://vertebrategenomesproject.org/), this genome exceeds 
the proposed standards for the VGP2020 category (Rhie et al. 
2021), with the exception of the “chromosome status” quality 
category, since we did not name or match chromosomes. This 
genomic resource is comparable in its contiguity and com-
pleteness to other modern de novo genome assemblies that 
use a combination of short and long-read technologies, and 
is one of the most contiguous bat genomes currently avail-
able based on scaffold N50 (99.14 Mb for Yuma bat, range 
of other taxa: 0.0107–171.1 Gb). When compared with the 
other available genomes for bats in the genus Myotis, this 
genome is the most contiguous based on scaffold N50 (99.14 
Mb for Yuma bat, range of other taxa: 3.226–94.45 Mb; Fig. 
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Fig. 2. Visual overview of genome assembly metrics. (A) K-mer spectra output generated from PacBio HiFi data without adapters using 
GenomeScope2.0. The bimodal pattern observed corresponds to a diploid genome. K-mers covered at lower coverage and lower frequency correspond 
to differences between haplotypes, whereas the higher coverage and higher frequency k-mers correspond to the similarities between haplotypes. 
(B) BlobToolKit Snail plot showing a graphical representation of the quality metrics presented in Table 2 for the M. yumanensis primary assembly
(mMyoYum1.0.hap1). The plot circle represents the full size of the assembly. From the inside-out, the central plot covers length-related metrics. The red
line represents the size of the longest scaffold; all other scaffolds are arranged in size-order moving clockwise around the plot and drawn in gray starting
from the outside of the central plot. Dark and light orange arcs show the scaffold N50 and scaffold N90 values. The central light gray spiral shows the
cumulative scaffold count with a white line at each order of magnitude. White regions in this area reflect the proportion of Ns in the assembly. The dark
versus light blue area around it shows mean, maximum, and minimum GC versus AT content at 0.1% intervals (Challis et al. 2020). (C-D) The Omni-C
contact map for the primary (C) and alternate (D) genome assemblies generated with PretextSnapshot. Omni-C contact maps translate proximity of
genomic regions in 3D space to contiguous linear organization. Each cell in the contact map corresponds to sequencing data supporting the linkage (or
join) between two such regions. Scaffolds are separated by black lines, and higher density corresponds to higher levels of fragmentation (See online
version for color figure).
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3), and the second most complete based on its BUSCO score 
of 93.7% (range of other taxa: 86.57%–96.18%). Future 
work could further improve this assembly through addi-
tional manual curation of scaffold placement and targeted 
DNA-FISH to assign scaffolds to true karyotypes (Shakoori 
2017). Such work, along with gene annotation using RNA-
seq for gene prediction, is planned for future versions of this 
assembly.

Genomic data are increasingly being applied to investi-
gate the unique traits bats possess, including the ability 
to act as hosts to many pathogens without succumbing 

to illness (Chattopadhyay et al. 2020; Moreno Santillán 
et al. 2021), the physiological basis of unique feeding 
behaviors like sanguivory (blood feeding; Zepeda Mendoza 
et al. 2018), and the exceptional longevity of bats relative 
to their small body size (Foley et al. 2018; Sullivan et al. 
2022). While these and other bat genomic studies have the 
potential to prove useful to human biomedical research as 
well as our understanding of chiropteran evolution, they 
are often severely limited by the availability and quality 
of genomic resources. For example, of the 50 bat refer-
ence genomes currently available, 34 (74%) are short-read 

Table 2 Sequencing and assembly statistics, and accession numbers

Bio Projects & Vouchers CCGP NCBI BioProject PRJNA720569

Genera NCBI BioProject PRJNA765635

Species NCBI BioProject PRJNA777197

NCBI BioSample SAMN30526064

Specimen identification MYYU_CA2020_CCGP

Genome Sequence NCBI Genome accessions Haplotype 1 (Primary) Haplotype 2 (Alternate)

Assembly accession JAPQVT000000000 JAPQVU000000000

Genome sequences GCA_028538775.1 GCA_028536395.1

Sequencing Data PacBio HiFi reads Run 1 PACBIO_SMRT (Sequel II) run: 4.7 M spots,
76.5 G bases, 57 Gb

Accession SRX19740654

Omni-C Illumina reads Run 2 ILLUMINA (Illumina NovaSeq 6000) runs: 120.5 
M spots, 36.4 G bases, 11.9 Gb

Accession SRX19740655, SRX19740656

Genome Assembly Quality Metrics Assembly identifier (Quality code*) mMyoYum1(7.7.P7.Q63.C96)

HiFi Read coverage§ 33.26X

Haplotype 1 Haplotype 2

Number of contigs 685 465

Contig N50 (bp) 28,025,655 26,795,370

Contig NG50§ 28,147,841 28,130,932

Longest Contigs 120,097,812 597,242,388

Number of scaffolds 476 250

Scaffold N50 99,144,700 94,205,551

Scaffold NG50§ 99,144,700 109,018,441

Largest scaffold 240,344,003 2,163,927,272

Size of final assembly 1,952,479,771 2,050,500,308

Phased block NG50§ 27,204,636 27,189,810

Gaps per Gbp (# Gaps) 107 (209) 104 (215)

Indel QV (Frame shift) 40.98297536 40.27268042

Base pair QV 63.6294 63.8881

Full assembly = 63.76

k-mer completeness 89.6446 93.9753

Full assembly = 99.442

BUSCO completeness
(mammalia) n = 9226

C S D F M 

H1‡ 93.70% 90.20% 3.50% 1.00% 5.30%

H2‡ 95.80% 92.20% 3.60% 1.00% 3.20%

Organelles 1 complete mitochondrial sequence CM053173.1

* Assembly quality code x.y.P.Q.C derived notation, from (Rhie et al. 2021). x = log10 [contig NG50]; y = log10 [scaffold NG50]; P = log10 [phased block
NG50]; Q = Phred base accuracy QV (Quality value); C = % genome represented by the first ‘n’ scaffolds, following a known karyotype for M. yumanensis
of 2n = 44 (Braun et al 2015). Quality code for all the assembly denoted by Haplotype 1 assembly (mMyoYum1.0.hap1)
§ Read coverage and NGx statistics have been calculated based on the estimated genome size of 1.95 Gb
‡ (H1) Haplotype 1 and (H2) Haplotype 2 assembly values.
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assemblies with very low overall contiguity and complete-
ness (Supplementary Materials). Our Yuma bat assembly 
provides a high quality, near-chromosome level resource in 
support of these research efforts. At the level of California 
biodiversity, the Yuma bat genome is the first chiropteran 
reference genome sequenced by the CCGP, filling a major 
gap in our emerging phylogeny of California biodiversity 
(Toffelmier et al. 2022). It contributes a new reference ge-
nome that will help in resolving outstanding questions on 
both species delimitation and phylogenetic relationships 
for the hyperdiverse genus Myotis, including the role of hy-
bridization in shaping contemporary genomic architecture 
(Korstian et al. 2022). The CCGP will also generate 163 
resequenced genomes throughout the species’ distributional 
range, including all currently recognized subspecies, and this 
reference genome will be critical to evaluating the validity 
of, and relationships among, those taxa.

Genomic resources can also enhance the conservation and 
management of bat species, both in California (Fiedler et 
al. 2022) and globally. Two major foci of bat conservation 
are to better understand the susceptibility of individuals 
and species to WNS, and predict the spread of the pathogen 
among North American populations. Currently, only 5 of 20 
bat species known to be affected by WNS have available ge-
nomic resources, including the reference genome presented 
here. Increasing genomic resources for these species will fa-
cilitate research on impacts of WNS, including the loss of 
genetic diversity due to population declines (Lilley et al. 
2020b) and genomic predictions regarding individual-to-
individual spread of the pathogen across landscapes (Lilley 
et al. 2020a).

In conclusion, we present the first high-quality genomic 
resource for the Yuma bat, a currently abundant and wide-
spread North American species. This highly contiguous 
and complete de novo genome assembly will be a valuable 

resource for studies aimed at understanding the evolution of 
unique bat traits and will contribute to bat conservation and 
management planning.

Supplementary material
Supplementary material can be found at http://www.jhered.
oxfordjournals.org/.
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CHAPTER 3: How Myotis move: range-wide genomics of Yuma bats (Myotis yumanensis) 

 

ABSTRACT 

As we enter into a period of unprecedented species decline, it becomes more important than ever to 

identify the best ways to manage species across their range. For many species, there have been no modern 

attempts to establish management units or reevaluate subspecies groupings, and this can hamper 

conservation efforts. Furthermore, where efforts to establish management units have occurred, they have 

primarily been applied to rare species, despite the fact that many common species have experienced 

similar rangewide declines and provide the bulk of ecosystem services globally. Within this current 

context, we used high throughput genome resequencing data to evaluate management units and genomic 

health in a common and widespread species of vespertilionid bat, Yuma myotis (Myotis yumanenesis). 

We find evidence of fine scale population structure, patterns of landscape-level genetic diversity, and 

historical demography that generally correspond with a post-glacial expansion from southern parts of the 

species’ range. Further, we find that existing subspecies designations are discordant with results using 

large whole genome marker sets, indicating that these putative subspecies may not represent the best 

management units for the species. Finally, we find high levels of genome-wide heterozygosity and high 

contemporary effective population size across most MYYU populations assessed, which overall provides 

a positive outlook for the conservation status of the species.  

 

INTRODUCTION 

 In a period of 50 years between 1970 and 2020, global vertebrate populations declined by 73% 

(WWF 2024), and for most taxa the current rates of extinction far outpace historic baselines (Ceballos et 

al. 2015). Given this backdrop of decline and extinction, conservation biologists and resource managers 

must use a variety of tools to halt current extinctions and address the causes of declines to prevent them in 

the future. One of the foundational steps in this process involves determining if there are meaningful ways 

to partition the management of species across the landscape – for example, through the establishment of 
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management units – and to determine if some or all of these population partitions are healthy. Further, 

given that conservation resources are often limited, management should focus on species that have key 

functional roles in ecosystems and where proactive management can have the greatest impact 

(Lindenmayer et al. 2011). For example, species managers may opt to direct resources towards common 

and abundant species, since they experience similar rates of decline as rare species globally (Daskalova et 

al. 2020), but represent the bulk of the total biomass (Greenspoon et al. 2023) and disproportionately 

contribute to ecosystem function compared to rare species (Gaston 2010; Gaston et al. 2018). 

 There are several means of establishing management units that depend on the species being 

studied, and these can include designating units based on ecological and behavioral differences between 

populations (Morin et al. 2024), culturally significant management units (Lamb et al. 2022), and unique 

evolutionary lineages based on the distribution of genetic variation across a species’ range (i.e., 

Evolutionarily Significant Units, ESUs; Funk et al. 2012; Hohenlohe et al. 2021). Following Moritz 

(1994), ESUs are populations that have been historically isolated, have distinct adaptive potential, and are 

characterized by reciprocal monophyly and divergence in allele frequencies. ESUs are an especially 

important means of managing and protecting species in light of changing climate, as they not only 

preserve evolutionary heritage but also encapsulate adaptive variation and thus evolutionary potential 

(Moritz 1994; Barbosa et al. 2018). Further, studying how past climatic fluctuations and human-caused 

disturbances have shaped modern patterns of genetic diversity across the landscape may provide insights 

into the future under current human-caused climate change (Hofreiter and Stewart 2009).  

 Given rapid advancement in genomic technologies and as genomic datasets become more readily 

available for a variety of non-model organisms, species managers are uniquely positioned to utilize large 

quantities of genomic data to best determine ESUs. Whole genome data provide a complete picture for 

the different aspects of the evolutionary history of a species, including both neutral and selective 

processes shaping modern genomic variation, and a comprehensive analysis of genetic variation at the 

whole genome level establishes a baseline for analyses now and in the future (Supple and Shapiro 2018). 

Furthermore, by increasing the numbers of markers used, managers may be able to detect cryptic and 
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finescale population structure that was not previously described (Emerson et al. 2010; McCartney-

Melstad et al. 2018; Sunde et al. 2020; Gallego-García et al. 2021; Dufresnes et al. 2023), including for 

highly mobile migratory species, where finescale patterns of genomic differentiation can be obscured by 

recurrent gene flow and lack of significant barriers to dispersal (Moussy et al. 2013; Turbek et al. 2023). 

 One particularly understudied group of animals in terms of available genomic resources is bats 

(Order: Chiroptera). For example, efforts to survey the available reference genomes for bats have found 

incomplete coverage across the bat tree of life, with strong patterns of overrepresentation in just 3 of the 

19 recognized bat families (Pteropodidae, Phyllostomidae, and Vespertilionidae; Teeling et al. 2018; 

Curti et al. 2024). This lack of genomic resources is in line with the general lack of knowledge about the 

status of bat populations globally, with 18% of bats considered data deficient according to the 

International Union for the Conservation of Nature (IUCN) – a higher percentage compared to all other 

mammals (13%) or birds (1%; Frick et al 2020). This knowledge gap hampers the ability of researchers to 

advance bat conservation, which is critically needed considering the ecosystem services provided by bats 

through pollination, seed dispersal, or consumption of invertebrate pests (Gallai et al. 2009; Boyles et al. 

2011; Kunz et al. 2011; Postel et al. 2012; Frick et al. 2020). 

 In North America, emerging pathogens, particularly the fungal disease known as white nose 

syndrome (WNS), also represent a major threat to extant bat species (Hammerson et al. 2017). WNS was 

first introduced to bat populations in New York in 2006. To date, WNS has been detected in 40 U.S. 

states and nine Canadian provinces (www.whitenosesyndrome.org/where-is-wns), including most 

recently in California. In California, WNS is suspected to be present in four counties following the 

detection of the causative fungal pathogen Pseudogymnoascus destructans (Pd) on the carcasses of two 

Yuma bats, Myotis yumanensis, (H. Allen, 1864) in the northwestern corner of the state, in Humboldt 

county in 2023 (Osborn et al. 2024). These recent confirmed cases in M. yumanensis (MYYU) represent a 

major threat to bat populations in the western U.S., given that WNS has decimated the hibernation 

colonies of other Myotis species in the Eastern U.S. by as much as 73% (Frick et al. 2010). In anticipation 

of potential declines of MYYU, species managers must begin to develop a framework for guiding 
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conservation efforts where they are most needed, and a large part of this should involve characterizing the 

spatial distribution of genetic diversity across the landscape, establishing baselines for current effective 

population size to track the magnitude of future declines, and establishing ESUs. 

 Here, we use whole genome re-sequencing data to study rangewide patterns of gene flow and 

genetic diversity in the Yuma myotis bat. MYYU is ideal for this type of study for several reasons. First, 

MYYU is still an abundant and widely distributed bat species, with a distributional range from southern 

Alaska to Morales, Mexico (Braun et al. 2015). Second, MYYU are more closely tied to the presence of 

fresh water sources than any other bat species of the United States (Barbour and Davis 1969; Brigham et 

al. 1992; Metcalfe et al. 2023), making them particularly vulnerable to the impacts of human-caused 

climate change. Finally, while there are currently six recognized subspecies of MYYU (Braun et al. 2015) 

based primarily on morphological data, including M. y. lambi (Benson 1947), M. y. lutosus (G. S. Miller 

and G. M. Allen 1928), M. y. oxalis (Dalquest 1947), M. y. Saturatus (Say in James, 1823), M. y. 

sociabilis (H.W Grinnell 1914), and M. y. Yumanensis (H. Allen 1864), their reality as taxonomic or 

management units has never been adequately tested. 

 Therefore, this study set out to fill in critical gaps in our knowledge of MYYU populations using 

thousands of single nucleotide polymorphisms (SNPs). Specifically, our objective was to characterize the 

following: 1) genetic structure among MYYU populations rangewide and the validity of current 

subspecies using genomic data; 2) conservation-related genetic measures such as heterozygosity, 

inbreeding coefficient, and kinship; 3) changes in contemporary and historical effective population size; 

and 4) if ESUs can be established based on the genomic data. Ultimately, we hope these findings will help 

to better understand the movement of MYYU (and therefore their diseases) across the western United 

States and assist species managers through the establishment of ESUs. 
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METHODS 

Sampling, DNA Extraction, and Sequencing 

 Tissues were derived primarily from four sources for this project. Non-lethal 3 mm biopsy 

punches were collected from 12 wild bats across California. Bats were captured using mist nets primarily 

set over fresh water sources. Captured bats were removed from nets and 3 mm biopsy punches were 

collected from both the plagiopatagium and uropatagium (wing and tail membranes) and stored on silica 

gel beads until DNA extraction was performed. We also obtained 53 tissues from bats subject to rabies 

screening by the California Department of Public Health. Yearly, bats that test negative for rabies are 

surrendered to the California Department of Fish and Wildlife and tissue punches were performed on bat 

carcasses that did not show visible signs of decay and that had high coordinate resolution for the place of 

origin. An additional 18 wing punches were harvested from tissues preserved in existing museum 

collections (Table S3-1). Finally, collaborators from across the western US provided 32 additional 

MYYU samples, for a total of 115 samples.  

 DNA was extracted following the standard tissue extraction protocol of Mag-Bind Blood and 

Tissue DNA HDQ 96 kit (Omega Bio-Tek, Norcross, GA) automated on Nimbus liquid handling robot 

(Hamilton, Reno, NV). For samples with muscle tissue available, 20 - 30mg of tissue was input into the 

extraction. For samples without 3mm wing biopsy punches, we performed extractions using both punches 

collected from the same individual to maximize DNA yield. 

 We performed quality control on extracted DNA using three methods. First, DNA concentration 

was determined by using the M3 SpectraMax spectrophotometer (Molecular Devices, San Jose, CA) with 

AccuBlue Broad Range dsDNA Quantitation chemistry (Biotium, Fremont, CA). A minimum of 100 ng 

of DNA was submitted for whole genome sequencing, with 500 ng being the target mass. Second, DNA 

size was determined using gel electrophoresis, with a goal of sequencing primarily high molecular weight 

DNA >20 kb in length. Finally, in cases where species identity could not be confirmed in the field with 

acoustics (Rodhouse et al. 2008), we confirmed species identity using Sanger Sequencing of a 202 bp 

segment of the mitochondrial COI gene using primers (SFF_145f and SFF_351r) and PCR conditions 
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from Walker et al. (2015) and a ABI 3500XL Genetic Analyzer (Thermo Fisher Scientific, Waltham, 

MA). Generated COI sequences were manually trimmed and analyzed with Sequencher 5.4.6. (Gene 

Codes Corp., Ann Arbor, MI). Trimmed sequences were compared to known sequences in the NCBI 

BLAST database v. 2.15.0 (Camacho et al. 2009) and confirmed that the collected tissue was from 

MYYU. 

 Whole genome libraries were constructed from genomic DNA using both a custom version of the 

plexWell™ WGS24 Library Preparation Kit (seqWell, Beverly, MA, USA) and the KAPA EvoPlus 

Library Preparation Kit (Roche Sequencing, Indianapolis, Indiana, USA). The Roche KAPA EvoPlus Kit 

utilized the manufacturers instructions with the following modifications: an initial digest time of 10 

minutes, SPRI ratio of 0.8x, and using quarter reaction volumes. Whole-genome sequencing using 150 

bp, paired-end reads was performed on Illumina Novaseq 6000 S4 at the Vincent J. Coates Genomics 

Sequencing Laboratory at University of California, Berkeley and Illumina NovaSeq X 25B flow cell at 

the Center for Applied Technologies at University of California, San Francisco. 

 All mist netting activities were covered under a permit from the UCLA Institutional Animal Care 

and Use Committee (IACUC Protocol #: ARC-2021-024) and under a work authorization letter from the 

California Department of Fish and Wildlife. 

 

Sequence Data Processing and Alignment 

 Raw sequencing reads were processed using the Snakemake pipeline 

(https://github.com/ccgproject/ccgpWorkflow/tree/main) which is modified from snpArcher workflow 

(Mirchandani et al. 2024) and which follows the Genome Analysis Toolkit (GATK) Best Practices 

(DePristo et al. 2011; Van der Auwera & O'Connor 2020). Quality control and adapter trimming for 

paired-end reads was performed using fastp (Chen 2023) by enabling the “-detect_adapter_for_pe” flag. 

Cleaned reads were then aligned to the MYYU reference genome 

(GCA_028538775.1[MYYU_CA2020_CCGP]; Curti et al. 2024) using bwa-mem (Li 2013). 

 

https://github.com/ccgproject/ccgpWorkflow/tree/main
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Sex Chromosome Identification  

 Sex chromosomes were identified and excluded from all downstream analyses. Sex chromosomes 

were identified by performing a sequence-to-sequence alignment  in minimap2 v. 2.24 (Li 2018) allowing 

for up to 5% sequence divergence (-asm5) between the MYYU reference genome and the reference 

genome for the pale spear-nosed bat (GCA_004126475.3; Phyllostomus discolor; Jebb et al. 2020). We 

chose this reference genome because it was highly contiguous and had named sex chromosomes in NCBI. 

The output of minimap2 was converted to a .bed file using the sam2bed function in BEDOPS v. 2.4.41 

(Neph et al. 2012), and scaffolds in the MYYU reference genome that mapped to the sex chromosomes in 

the P. discolor reference genome were removed. 

 

Genotype Calling and Filtering 

 We performed joint genotyping across the MYYU genome using GATK v. 3.8. Prior to joint 

genotyping, as part of the Snakemake pipeline, PCR duplicates were removed using picard 

MarkDuplicates and genotypes were called for individuals using GATK HaplotypeCaller. We then ran 

joint genotyping across all autosomal scaffolds > 1 Mb in length (1,804,940,391 bp of 1,952,500,671 bp 

total length, or 92.44%) using GATK GenotypeGVCF. We performed hard filtering instead of Base 

Quality Score Recalibration given that no reference database of known variants is available for the 

species.  

 We used genotype-level annotations in the .vcf to determine hard filtering cutoffs. We queried the 

INFO field annotations in the unfiltered .vcf file using GATK SelectVariants to select SNPs and GATK 

VariantsToTable to output annotations. We imported the resulting annotation tables into R studio v. 4.2.2 

(R Studio Team 2020) and visualized the distributions to determine appropriate cutoffs. We also 

determined depth cutoffs by querying the distributions of depth for each individual using a custom python 

script and determining the 99th percentile of the distribution (Kyriazis et al. 2023). We then filtered our 

.vcf file using GATK VariantFiltration and a custom python script (Robinson et al. 2021) to remove 

SNPs with low quality and with site-level depth lower than 6x and higher than the 99th percentile of 
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depth for that individual. Following GATK best practices, we applied the following hard filtering 

parameters: QUAL < 30, QD < 4.0,  FS > 12.0, MQ < 40.0, MQRankSum < −12.5, ReadPosRankSum < 

−8.0, SOR > 3.0. Finally, we removed repetitive regions identified using RepeatModeler v. 2 (Flynn et al. 

2020) and RepeatMasker v. 4.1.2 (Smit et al. 2015). 

 

Relatedness and Population Structure 

 We removed closely related individuals prior to performing principal component analysis (PCA) 

and ADMIXTURE analysis to disentangle family and population structure. To do this, we removed 

individuals with kinship coefficients > 0.0884, which is equivalent to a second-degree level of kinship 

(i.e., equivalent to the relatedness between children and grandparents). We estimated pairwise kinship 

between all samples using SNPRelate v.1.32.0 (Zheng et al. 2012) by first converting our filtered .vcf file 

to a .gds file using snpgdsVCF2GDS. Next, we used the King Kinship Estimator by calling 

snpgdsIBDKING. Unless otherwise stated by the package manual, we also pruned our dataset for linkage 

disequilibrium (LD) using snpgdsLDpruning and a r2 threshold of 0.2 and for minor alleles with 

frequencies < 0.01 (MAF). 

 For each sample, we inferred ancestry proportions using ADMIXTURE v. 1.3.0 (Alexander et al. 

2009). ADMIXTURE analysis was performed on all unrelated individuals that had been pruned for LD 

and MAF. We ran ADMIXTURE analysis inferring model fit for K = 1 - 10 population clusters, each run 

for six iterations. We determined the best fitting model by selecting the K value with the lowest cross 

validation score averaged across all six iterations. We visualized ADMIXTURE outputs using the R 

package pophelper v. 2.3.1 (Francis 2017) and mapped the ADMIXTURE proportions using the 

mapmixture shiny app (Jenkins 2024; https://tomjenkins.shinyapps.io/mapmixture/) To provide additional 

information on the population clusters identified in the ADMIXTURE analysis, we also ran PCA in 

SNPRelate using snpgdsPCA.  

 To investigate support for models of K=2-5 clusters produced by ADMIXTURE, we ran Analysis 

of Molecular Variation (AMOVA). First, we converted our .vcf to a genind object in vcfR v. 1.15.0 

https://tomjenkins.shinyapps.io/mapmixture/
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(Knaus and Grünwald 2017), assigned population stratifications for putative subspecies and K=2-5 

clusters based on majority ancestry proportion for a given cluster, and ran AMOVA in poppr v. 2.9.6 

(Kamvar et al. 2014) using the poppr.amova function. We tested for significance for these population 

stratifications using the built in function randtest using 999 permutations. 

 

Genetic Diversity and Runs of Homozygosity  

 To estimate how genetic diversity varies across the MYYU distributional range, we calculated per 

base pair heterozygosity for all samples. Heterozygosity was calculated in 10Mb sliding windows across 

the autosomal genome. To control for variation in genotyping rate per scaffold and the potential impact 

this might have on heterozygosity estimates, we filtered out sliding windows where the number of called 

sites was below half the window length (5 Mb). We then visualized these results in a manhattan plot using 

a custom R script.  

 To estimate inbreeding in MYYU, we calculated the total proportion of the autosomal genome in 

runs of homozygosity (FROH). To determine ROHs we used BCFtools RoH v. 1.9 (Narasimhan et al. 2016; 

Caballero et al. 2020). We then calculated FROH by summing all ROHs greater than 100 Kb in length by 

the total length of the scaffolds used in this analysis (1,802,989,729 bp). Following Kyriazis et al. (2023), 

we estimated the approximate distribution of age classes of autozygous segments by binning the ROHs 

into size categories (0.1 - 1Mb, 1 - 10Mb, and 10 - 100Mb), where the largest binned group represents 

ROHs that likely occurred due to recent inbreeding within the past ~10 generations (Mulim et al. 2022).  

 We also evaluated any significant differences in heterozygosity and FROH between clusters 

identified in the PCA and ADMIXTURE analyses. We first assessed the relationship between depth and 

missingness and levels of genetic diversity, and found a significant relationship between heterozygosity 

and both depth and missingness as well as FROH and depth (Figure S3-1). Given this relationship, we used 

a subset of our data only containing individuals with >15x coverage and <20% missingness (i.e., where 

the slopes of these relationships began to plateau) for all analyses that set out to determine significant 

differences in genetic diversity and inbreeding between spatial clusters. For K=2 clusters, we evaluated 
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differences in heterozygosity and FROH using a nonparametric Wilcoxon test in the R package stats. For 

K=3-5 clusters, we used a nonparametric Kruskal-Wallis test in the R package stats, and post-hoc Dunn’s 

Tests using the R package FSA v. 0.9.5 (Ogle et al. 2023) with the built-in function dunnTest. Finally, to 

assess if differences in heterozygosity were consistent with expectations given biogeographic theory, we 

assessed the relationship of heterozygosity and latitude using a standard regression in R.  

 

Historical Demography 

 We estimated fluctuations in historical demography in two ways. First we estimated recent 

historical demography between 50 - 200 years ago using GONE (Santiago et al. 2020). We first 

downloaded all GONE scripts from github (https://github.com/esrud/GONE) and converted our filtered 

but not pruned .vcf to .ped format using VCFtools v. 0.1.16 (Danecek et al. 2011) for input into the 

program. GONE assumes that samples are not admixed and do not contain overlapping generations. Some 

work has demonstrated that violating the model assumption of non-overlapping generations can lead to 

downward biased effective population size estimates (Kardos and Waples 2024). To avoid this bias, 

Kardos and Waples (2024) suggested subsetting samples to only contain individuals from a single cohort, 

where individuals share the same parents (Kardos and Waples 2024). Unfortunately, the landscape 

approach of sampling used here prevents us from applying this recommendation. Therefore, we 

minimized the extent of temporal lumping by selecting samples from as narrow a date range as possible 

while also balancing the need for a sufficient number of samples to effectively analyze patterns of LD 

among individuals. We ran GONE using default parameters settings and assuming the average rate of 

recombination in mammals of 1 cM/Mb on three primary groups of samples: five samples from ID, MT 

and BC that ranged in sample collection data from 2001 - 2003, 26 samples from CA from north of Point 

Conception that ranged in collection dates from 2017 - 2021, and five samples from NM, TX, and MX 

that ranged in collection dates from 2008 - 2016. For all groupings we ran the program 20 times to 

estimate confidence intervals. In both Northwest US and Canada as well as Southwest US and Mexico 

samples we observed large drops in Ne in the first 10 - 30 years which are not reflective of best available 

https://github.com/esrud/GONE
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data on census population size in these bats. Given the unpredictable nature of GONE estimates in these 

recent time intervals due to the presence of population structure (Novo et al. 2023) or age structure 

(Waples et al. 2014), we only present data for the period of 50-200 years before present, where we believe 

we have the greatest confidence in estimates. For all of these GONE runs we extracted the total difference 

in effective population size between 50 - 200 years (ΔNe) by taking the absolute value of the difference of 

Ne estimates from these time periods. 

 We also estimated deep historical fluctuations in demography between 10 kya and 10 mya ago 

using PSMC v. 0.6.5 (Liu and Hansen 2017). Using our filtered but not pruned .vcf, we created a 

consensus file using BCFtools v.1.11, masking uncalled regions of the genome, and used this as input into 

PSMC. Following Chattopadhyay et al. (2019), we used default parameters including” 4+25*2+4+6” as 

the setup for the number of atomic time intervals and free interval parameters. Given that PSMC is 

sensitive to low coverage and high missingness within samples (Nadachowska-Brzyska et al. 2016) and to 

population structure (Mazet et al. 2015), we selected 12 samples with >18x coverage, <10% missingness, 

and from non-admixed locations across the MYYU range. To estimate model robustness, we ran PSMC 

for 25 iterations, ensuring that log-likelihood reached a plateau by the final iteration and that the model 

was not overfit by verifying that the expected number of segments in the interval [tk,tk+1) was >10. We 

also performed 100 rounds of bootstrapping for each sample using the built in splitfa function in PSMC. 

We then imported the PSMC outputs into R to rescale estimates and visualize them using μ = 2.366x10-9 

(Ray et al. 2008) and the estimated generation time of 2 years (You et al. 2010). 

 

 

Phylogenetic Relationships Between Populations  

 To investigate phylogenetic relationships between samples and to determine if putative 

subspecies designations would cluster together in a phylogenetic analysis, we created a phylogenetic 

network using SplitsTree v. 6.0.0 (Huson and Bryant 2024). First, we subsetted our .vcf to 43 individuals 

to provide coverage across five of the six MYYU subspecies, including two M. y. lutosus, nine M. y. 
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yumanensis, five M. y. oxalis, six M. y. sociabilis, and 20 M. y. saturatus samples. We did not have any 

M. y. lambi samples. We then converted our .vcf to a .nexus format using vcf2phylip v. 2.0 (Ortiz 2019) 

for input into splitstree. In splitstree, we created a neighbor net tree of a P-distance matrix (Hamming 

1950) using default parameter settings (Bryant and Moulton 2004; Bryant and Huson 2023). Additionally, 

we used IQ-TREE v. 2.3.6 (Minh et al. 2020) to construct a maximum likelihood tree based on the GTR 

model with 1,000 bootstrap replicates. For this analysis, we used the concatenated autosomal SNPs, 

filtered to include loci present in 95% of sampled individuals (866,389 SNPS) to accommodate 

computational limitations.  

 

RESULTS 

Genomic Dataset  

 After genotyping and filtering the dataset, we were left with a total of 115 samples with a mean 

sequencing coverage of 15.7 (range = 6.21–37.4). Missingness was generally low, with an average per 

sample percent missingness of 8% (range = 1–41%). After filtering, our dataset contained a total of 

1,804,939,434 sites and 43,240,875 SNPs. 

 

Relatedness and Population Structure 

 Across the 115 rangewide MYYU samples, we found high levels of shared ancestry between two 

California samples collected in San Diego county, with a first-degree relationship (kinship coefficient > 

0.35) equivalent to a monozygotic twin. We only retained the sample with the higher coverage in all 

subsequent analyses. Across the remaining samples we detected low level kinship that did not reach our 

threshold for removal (kinship coefficient < 0.0884; Figure S3-2). 

 Principal Component Analysis (PCA) showed evidence of fine-scale population structure across 

the range of MYYU (Figure 3-1). PC axes 1 explained 2.55% of the variation and axis 2 1.67% of the 

variation in our dataset, and they revealed two primary clusters. Cluster 1 contains samples from 

California, Idaho, Washington, British Columbia, and Alaska and approximately recapitulates the shape 
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of Western North America, consistent with a general pattern of isolation by distance. Cluster 2 contains 

all samples from Nevada, New Mexico, Utah, Colorado, Oklahoma, and Mexico, with the sample from 

Oklahoma separating the furthest from all samples in PC space. Further, given the overrepresentation of 

California samples in our dataset, we randomly down sampled California and reran the PCA, and the 

results are generally consistent with those derived using the entire dataset (Figure S3-3), with a couple of 

exceptions. First, in the reduced dataset, samples from Catalina Island in California and Oklahoma 

separated away from the rest of all other samples along both PC axis 1 and 2. Further, samples from 

Colorado and Utah do not appear as distinct from Cluster 1 in the reduced dataset as they do in the full 

dataset. 

 Our ADMIXTURE analysis was concordant with the findings of the PCA. Although cross 

validation analysis shows that the model with the highest support is K=1 cluster (Figure S3-4), outputs of 

K=2 align with the clusters present in the PCA (Figure 3-2A), grouping all samples from the Western US 

and Canada together and all samples from the Southwestern US and Mexico together. We also visualized 

K=3 through K=5, or the number of putative subspecies of MYYU within our sample. In K=3, samples 

from Los Angeles County group together with a zone of introgression between southern California and 

the rest of the state present just north of Point Conception extending approximately 161 km (~100 miles) 

in either direction (Figure 3-2B). Outputs of K=4 further split northern California from the rest of the 

western US and Canada samples, and K=5 splits Baja California, Nevada, Utah and Colorado from the 

rest of the Southwest US and Mexico samples (Figure S3-4). Finally, we assessed whether or not putative 

subspecies for MYYU were captured in the ADMIXTURE outputs of K=5 clusters and this analysis 

provided little support for the subspecies groupings (Figure 3-3). 

 We ran AMOVA to estimate support for putative subspecies groupings as well as K=2-5 models 

of population structure output by ADMIXTURE. Subspecies groupings explained 3.24% of the variation 

between samples and the remaining 96.8% of variation was explained by variation within samples (ΦST 

= 0.032, df = 4, p = 0.001). Among the different values of K, K = 4 clusters explained the highest amount 

of variation between groups at 4.45%, while the remaining 95.5% of variation was explained by variation 
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within samples (ΦST = 0.045, df = 3, p = 0.01). AMOVA results for all values of K are presented in 

Table 3-1. 

 

Genetic Diversity and Runs of Homozygosity 

 Per base pair heterozygosity varied across the MYYU range (mean = 1.91x10-3, range = 1.05x10-3 

- 4.57x10-3; Figure 3-4A). Generally, heterozygosity decreased with latitude (R2 = 0.471, F(1,51) = 47.21, 

p < 0.001; Figure 3-5). Using K=2 clusters, samples from the western US and Canada had significantly 

lower mean heterozygosity (mean = 1.65x10-3, range = 1.05x10-3 - 2.35x10-3) compared to samples from 

the Southwest US and Mexico (mean = 2.81x10-3, range = 1.68x10-3 - 4.57x10-3;  Wilcoxon Rank Sum, 

W = 193, p < 0.001; Figure 3-6A). There were also significant differences in mean heterozygosity under 

K=3 clusters (Kruskal-Wallis, ꭓ2 = 42.2, df = 2, p < 0.001; Figure 3-6C). Specifically, post-hoc Dunn’s 

tests with Bonferroni corrections revealed that samples from the western US and Canada excluding 

southern California had significantly lower mean heterozygosity (mean = 1.45x10-3, range = 1.05x10-3 to 

1.84x10-3) compared to samples from the Southwest US and Mexico (mean = 3.59x10-3, range = 2.65x10-

3 to 4.57x10-3; Dunn’s Test, z-value = 5.73, adj. p < 0.001), and that samples from southern California had 

significantly lower mean heterozygosity (mean = 2.06x10-3, range = 1.60x10-3 to 2.35x10-3) compared to 

samples from the Southwest US and Mexico (Dunn’s Test, z-value = 4.71, adj. p < 0.001). We did not 

find a significant difference in mean heterozygosity between the western US and Canada and southern 

California (Dunn’s Test, z-value = -2.12, adj. p = 0.101). This pattern was generally consistent at higher 

values of K (Figure 3-6E & 3-6G).  

 On average, estimates of inbreeding measured as FROH were low across the MYYU range (mean = 

4.00%, range = 0.17 - 24.4%; Figure 3-4B). A few samples at the edge of the estimated MYYU range had 

elevated levels of FROH, including the samples from Montana (FROH = 24.4%), Alaska (FROH = 24.3%), 

Catalina Island, CA (FROH = 22.3%), Idaho (FROH = 16.3%) and Baja California (FROH = 15.1%). We also 

evaluated the extent to which FROH varied across population structure with K=2-5 and these did not reach 

the level of statistical significance with the exception of K=5 (Figure 3-6B, 3-6D, 3-6F, 3-6H). ROHs in 
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all samples except 3 were < 10Mb. Specifically, the MYYU sample collected from Oroville, CA had a 

single large ROH of 10.25 Mb, the sample from Catalina Island, CA had a single large ROH of 11.04 Mb 

and the sample from Chester, CA had a large ROH of 12.84 Mb in size (Figure 3-7).  

 

Historical Demography 

 Estimates of recent effective population size (Ne) using GONE were large and stable in each of 

the MYYU populations we investigated. Specifically, GONE estimates of Ne were greater than 3,000,000 

for all populations assessed (Figure 3-8). For samples from California north of Point Conception, Ne 

estimates did not fluctuate greatly between 50 ya to 200 ya, with a total change in Ne of 3,016, and this 

was two orders of magnitude larger in  samples from NM, TX, and MX (ΔNe = 337,530) and in samples 

from BC, ID, and MT (ΔNe = 427,889). 

 To further contextualize modern estimates of Ne, we ran PSMC to estimate fluctuations in deep 

historical timescales (between 10 kya - 10 mya). These analyses revealed two distinct demographic 

patterns for rangewide MYYU populations during this period. Specifically, MYYU samples from the 

Southwest US and Mexico had higher Ne at the start of the Last Interglacial Period (mean = 517,903, 

range = 370,081 - 668,772) relative to MYYU samples from the western US and Canada (mean = 

141,248, range = 123,452 - 161,707; Figure 3-9). Focusing on the period between the Last Interglacial 

Period and the Last Glacial Maximum, 67% (4/6) of MYYU sampled from the western US and Canada 

experienced a population expansion during this time, compared to 40% (2/5) from Southwest US and 

Mexico. Finally, we also observed that  while historical Ne estimates were somewhat variable between 

samples (Table 3-1; Figure S3-5), MYYU from the Southwest US and Mexico generally entered the mid-

Holocene with higher estimates of Ne (median = 9,903,876 , range = 713,236 - 38,033,338) when 

compared to samples from Western US and Canada (median = 6,402,832, range = 50,580 - 9.94x1010).  

Phylogenetic Analysis 

 Using splitstree we created an unrooted phylogenetic network that fit our data well (Fit parameter 

= 99.9; Figure 3-10). In this phylogenetic network, none of the MYYU subspecies are grouped in a 
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monophyletic clade, and generally two clusters are apparent separating M. y. yumanensis and M. y. 

lutosus from all other MYYU subspecies. This generally corresponds to the geographic clustering 

observed in ADMIXTURE and PCA results. We also constructed a phylogenetic tree using a maximum 

likelihood approach with 1,000 bootstrap replicates, and branch placements had high support based on 

bootstrap support values >86%. We observed concordant results between the splitstree phylogenetic 

network and our maximum likelihood tree, where samples of Southwest US and Mexico are paraphyletic 

to a single fully supported clade containing all samples from the western US and Canada, with none of the 

MYYU subspecies grouped in a monophyletic clade. 

 

DISCUSSION 

 Bats are critical components of functioning ecosystems worldwide and bat populations are 

threatened by a multitude of primarily human-caused stressors (Frick et al. 2020). As many bat 

populations decline in abundance, it becomes more important than ever to utilize new and innovative 

ways to direct conservation resources in the most efficacious manner possible. Here we use whole 

genome resequencing data to provide the first genomic assessment of MYYU to investigate rangewide 

population structure, genetic diversity, and historical demography. We found evidence of finescale 

population structure across the range of MYYU that roughly corresponds to geography. Further, we find 

high levels of genetic diversity across most populations of MYYU studied, with some interesting regions 

of low diversity and inbreeding at the leading edge of the species’ range. We also found that methods of 

measuring fluctuations in historical population size were generally concordant between deep historical 

time and the recent past, and that overall these estimates demonstrate high effective population size for 

MYYU. Finally, we find that phylogenetic methods provide little support for current subspecies 

designations for MYYU. These data come in light of recent news that WNS was recently detected in 

MYYU populations in previously WNS-free regions of California, further emphasizing the need for 

baseline genomic data prior to anticipated declines due to this advancing pathogen. 
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Subtle population structure in a mobile bat species  

 Previous morphometric work has demonstrated substantial phenotypic variation in MYYU across 

its distributional range which has been used to establish six putative subspecies (Braun et al. 2015). While 

no landscape genomic methods have been applied to this species to date, Korstian et al. (2024) found 

evidence of genetic differentiation in a few samples of MYYU derived from ultraconserved elements 

across the genome, although they did not describe the spatial variation in this structure or its relationship 

with putative subspecies. It is well established that population structure can be challenging to detect in 

migratory species such as bats, especially given that bats typically exhibit uneven gene flow across the 

landscape (e.g., strong female philopatry and male-biased dispersal), which can obscure signals of 

population structure (Moussy et al. 2013; Collevati et al. 2020). While data on sex-biased dispersal is not 

known for MYYU and consensus on migratory behavior has not yet been reached (Braun et al. 2015), 

MYYU are capable of nightly foraging flights up to 4-km away from their roosting structures (Nagorsen 

and Brigham 1993; Evelyn et al. 2004). Despite their vagile nature, we found that MYYU had subtle, yet 

detectable, population structure across their distributional range based on PCA, ADMIXTURE, and 

phylogenetic approaches. Specifically, we found that across all clustering methods used, samples from the 

Southwest US and Mexico clustered together and separated out from the rest of our MYYU samples. 

Increasing values of K in ADMIXTURE provided finer scale resolution on genetic differentiation 

between groups of MYYU, including separating out southern California from the rest of the samples in 

the state at K=3, separating out samples from AK, BC, WA, ID, and MT from CA at K=4, and separating 

MYYU in Southwest US and Mexico into two clusters of bats from NV, UT, CO, and Baja California 

Sur, and bats from NM, TX, and mainland MX in K = 5 clusters. These results contrast with those from 

little brown bats (Myotis lucifugus), a congener with a similar widespread nearctic distribution and well 

studied migratory behavior, which show little evidence of genetic differentiation across much of their 

distributional range (Vonhof et al. 2015; Gignoux‐Wolfsohn et al. 2021). 

 It is possible that the clustering observed in the genomic data can be explained by transitions in 

ecoregions throughout the MYYU range. Given that MYYU are so closely tied to the presence of open 
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water sources and that geographical barriers such as the Strait of Gibraltar have been shown to be 

important in genetically structuring other Myotis species (García-Mudarra et al. 2009; Ruedi et al. 2013), 

it is possible that the arid landscape at the confluence of the Central, Sonoran and Mojave Basins acts as a 

substantial barrier to MYYU populations, which may explain the apparent clustering of bats east and west 

of this divide in the PCA and the lack of admixture between these populations in population structure 

analysis at K=3-5. Efforts to model habitat suitability in North American bat species have demonstrated 

that drought and habitat represent major factors shaping past, present and future bat distributions 

(Chattopadhyay et al. 2019; Piccioli Cappelli 2021; Smith et al. 2021; Hamilton et al. 2022), and thus 

future studies can build upon these hypotheses by combining genomic sequencing data provided here with 

species distribution modeling, assessing whether regions separating these two primary clusters in our data 

represent areas of reduced habitat suitability. Further, as the distance that bats travel between roosting and 

foraging sites is highly dependent on the heterogeneity of vegetation close to their roosting sites (Laforge 

et al. 2021), it is possible that the xeric nature of these landscapes make it impossible for MYYU to 

perform longer distance movements to forage and reproduce, and studies utilizing radio telemetry 

methods in this region could help illuminate how landscape factors relate to apparent genetic connectivity 

of MYYU populations. 

 

Modern genomic data as an echo from the past 

 The currently accepted biogeographic theory of the origins of Myotis in the nearctic is through 

colonization of North America in the mid-miocene across the Bering Strait followed by vicariant 

evolution between nearctic and neotropical myotis leading to many extant lineages including M. 

yumanensis (Ruedi et al. 2013; Korstian et al. 2024). Best available evidence indicates that MYYU 

lineages were also shaped by changing geographic and climatic landscapes during the Quaternary Period, 

with a presumed single climatic refugia for the species in the lower Colorado River basin that later 

expanded into eastern Mexico and into northwestern North America following the retreat of the 

Laurentide Ice Sheet (Harris 1974).  
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 Under this biogeographic scenario, we might expect to see a directional gradient of genetic 

variation decreasing outward from the lower Colorado River basin, into Mexico and up the western coast 

of North America (Hewitt 1996; Eckert 2008). Our data provide partial support for this biogeographical 

explanation. First, genome-wide heterozygosity levels decrease as a function of increasing latitude. 

Counter to our expectation, this lack of a bidirectional signal might indicate that the broader region in the 

Southwestern US and Mexico represented one large glacial refugia during the last glacial maximum, or 

that a more complex refugia scenario is possible (e.g., Shafer et al. 2010). In fact, Chattopadhyay et al. 

(2019) modeled habitat suitability for the big brown bat (Eptesicus fuscus), another insectivorous 

vespertilionid bat in North America, and found that suitable habitat during the Last Glacial Maximum 

extended into Mexico and throughout much of California for this species. The extent to which this applies 

to MYYU remains to be determined and will require additional work to specifically tailor this modeling 

approach given the unique natural history of MYYU. Another possible explanation for these patterns of 

genetic diversity could be potential hybridization in Mexican MYYU, which would increase 

heterozygosity in hybrid individuals and obscure patterns of historical biogeography in the genomes of 

these animals. Some unpublished work from the region (Cortazar 2020) provides evidence that MYYU 

are capable of hybridization with several other species including California myotis (M. californicus) and 

peninsular myotis (M. peninsularis), providing some support to this hypothesis. While we do not 

explicitly investigate hybridization, the high coverage whole genome resequencing data provided here in 

combination with re-sequencing of other Myotis species will enable investigation into exactly how 

widespread hybridization is across the species’ range. 

 In addition to patterns of heterozygosity, past climate can also leave a signature on historical 

demography of organisms (Mestre et al. 2022), and various methods to estimate Ne have been used to 

provide insights into vertebrate biogeography related to quaternary fluctuations (Dussex et al. 2020; Yang 

et al. 2022; McCarthy et al. 2024). Under this biogeographical explanation we might also expect to see 

differing historical demography in populations of MYYU within the region of the historic climatic refugia 

compared to the leading edge of expansion. Specifically, we might expect lower effective population size 
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at the range edge compared to the core (Eckert et al. 2008), perhaps as a result of increased mutational 

load at the range edge that can reduce fitness and decrease population size, thus enforcing the species 

range boundaries (Willi et al. 2018). Based on PSMC analysis, we found that populations of MYYU 

within the Southwest US and Mexico had consistently higher effective population sizes during the Last 

Interglacial Period compared to MYYU from the rest of the range, and that this pattern was observed 

across all samples assessed. We also found that MYYU within the Southwest US and Mexico also had 

consistently higher effective population size going into the mid-Holocene, although these estimates for 

the most recent time period in PSMC analysis bear the highest uncertainty (Li and Durbin 2011) reflected 

in increased size of confidence intervals in these results. Taken together, these results also suggest that 

MYYU in the Southwest US and Mexico represent a unique demographic population that corresponds to 

quaternary climatic fluctuations. Compared to other similar efforts, Chattopadhyay et al. (2019) found 

that insectivorous bats generally exhibited overall high effective population size and a decline in Ne 

between the LIG and LGM, which agrees with our findings for MYYU. However, our results disagree for 

values of Ne going into the Holocene, which represents the period of lowest overall Ne for other bat 

species in their study but represents the period of highest Ne for MYYU, with the exception of one bat 

from Catalina Island which we discuss further below. Our estimates of modern Ne based on GONE 

outputs provides further support for our PSMC results, as we generally observe high effective population 

sizes in the last 50 - 200 years, although we lack any estimates for the period between 200 ya - 10 kya.  

 Our findings here represent novel insights into the role of Quaternary fluctuations on the 

evolutionary history of MYYU in North America. These findings are important in the face of climate 

change that will likely lead to range contractions and possibly extirpation of many bat species worldwide 

(Festa et al. 2023). For example, information about the historic movement and recolonization of bats 

following periods of global warming can provide critical Information required to estimate the rates at 

which species are tracking the movement of habitats in response to climate change (Provan and Bennett 

2008). Further, information on historical fluctuations in population size for species can have implications 

for conservation management in the present, as population size prior to bottlenecks can have a direct 
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impact on the amount of deleterious variation that a population harbors which can be expressed when 

populations go through sudden contractions (Kyriazis et al. 2021). Information about the mutational load 

of species is being readily used in conservation as genomic data become easier and more cost-effective to 

generate (Robinson et al. 2023). Of course, the correspondence of our estimates of Ne to climatic 

oscillations is based on rescaling using the inferred mutation rate for another Myotis spp., therefore future 

work could build upon these estimates by deriving a mutation rate for MYYU and assessing if these 

effective population size estimates change. Ultimately, our findings here provide a baseline for more in 

depth analysis aimed at further elucidating the role of historical climate on patterns on MYYU genetic 

diversity and effective population size. 

 

Do subspecies designations represent the most meaningful management unit for MYYU? 

 In the absence of genomic data, subspecies designations based on morphometric data alone are 

often used by species managers to direct conservation actions across a species’ range. We asked whether 

or not our rangewide genomic dataset for MYYU support existing morphometric-based subspecies 

designations. Based on ADMIXTURE and phylogenetic analyses, we found little support for existing 

subspecies designations. Specifically, in the ADMIXTURE analysis, when individuals are grouped by 

putative subspecies there is evidence of admixture between and within putative subspecies groupings. 

Further, these admixed individuals are not just found along boundaries between putative subspecies but in 

the core of their purported distributions. Similarly, based on the results of the phylogenetic network 

analysis and the maximum likelihood tree, subspecies did not group exclusively in any of the major 

clusters identifiable in the network or clades in the phylogenetic tree. Instead, samples are generally 

clustered in a manner consistent with the major groupings identifiable in the PCA and ADMIXTURE 

analysis. Finally, AMOVA results similarly demonstrate that subspecies designations are among the 

lowest determinants of genetic structure based on the percentage of variation explained between groups. 

Taken together, these results suggest that there are inconsistencies between putative subspecies for 

MYYU and molecular data that bring the validity of these subspecies into question. This overall lack of 
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concordance between molecular and morphometric data is not completely surprising, as several recent 

studies in bats have revised formerly accepted taxonomy in light of molecular data (Brown et al. 2011; 

Vonhof et al. 2015; Morales et al. 2016). These studies demonstrate that for a traditionally understudied 

group of organisms such as bats, we still have much to learn regarding the evolutionary histories of 

species. Although the results here converge on a general lack of support for putative subspecies 

designations in MYYU, we encourage future studies to take an integrative approach to defining 

conservation management units, incorporating both acoustic and morphometric data with the genomic 

data presented here (e.g., Solari et al. 2019).  

 In the absence of subspecies designations to group and manage MYYU, the logical next step is to 

ask ‘what are the best means of grouping MYYU across their range?’ Based on the genomic data 

provided here we have strong evidence for the presence of at least two major groups of MYYU, between 

Southwest US and Mexico samples and the remainder of samples across the range, and this split is 

generally supported by differences in genome-wide heterozygosity and demographic independence 

between the groups. However, low levels of differentiation seen in the AMOVA results between clusters 

as well as disagreement between the optimal K value in ADMIXTURE analyses and the separation of 

these clusters in PCA space might indicate that there is recurrent gene flow between these groups. 

Additional work to evaluate connectivity is needed in order to properly assess the degree of 

distinctiveness of these clusters. We also identify several samples across the range of MYYU that exhibit 

elevated levels of inbreeding, including samples on Catalina Island and at the range edge in Alaska, 

Montana, and Baja California, Mexico.  When summed across the entire genome, average levels of FROH 

for MYYU (mean = 4.00%, range = 0.17 - 24.4) far exceeds documented average FROH for other bat 

species that have been assessed (mean = 0.096%, range = .00020 - 0.978; Brüniche-Olsen et al. 2018). To 

some extent, these results are not surprising, as inbreeding on the California Channel Islands is well 

established in other mammal species (Robinson et al. 2016) and the sample in Alaska represents a recent 

range expansion (Olson et al. 2014) where census populations sizes are expected to be exceedingly low, 

thus increasing the probability of inbreeding. However, the degree of inbreeding in these samples may be 
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of concern for conservation, as MYYU in these regions show increased levels of medium (> 1Mb) and 

long  (>10 Mb) ROHs, which can be enriched in putatively deleterious variation (Szpiech et al. 2013) and 

have direct fitness and demographic consequences in wild mammal populations (Stoffel et al. 2021). 

 Overall, high levels of genome-wide heterozygosity and high effective population size estimates 

for the past 50 - 200 years paints a positive picture for MYYU conservation, and these conclusions would 

not be possible without the comprehensive genomic dataset we present here. We show that genomic 

datasets can reveal interesting patterns of rangewide population structure for a highly mobile species, 

contrasting with results for other bat species using reduced marker sets. As bat species continue to 

experience impacts due to habitat destruction and human-caused climate change, it is important to use all 

available resources to document common species prior to declines in order to establish appropriate 

baselines for the future. 
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FIGURES 

 

Figure 3-1. Principal Component Analysis of 115 MYYU samples using 143,496 unlinked SNPs. Shape 

and color indicate sampling location. 
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Figure 3-2. ADMIXTURE analysis outputs of sample-level ancestry proportions for A) K=2, and B) K=3 

populations. Color of bar indicates proportion of ancestry belonging to each cluster for each individual. 
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Figure 3-3. ADMIXTURE output for K=5 populations, grouped by putative subspecies. Color of bar 

indicates proportion of ancestry belonging to each cluster for each individual. Grouping labels indicate 

putative subspecies for samples. 
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Figure 3-4. Map of study samples detailing rangewide A) levels of per-base pair heterozygosity, and B) 

proportion of the genome in runs of homozygous alleles greater than 100 Kb (FROH). 
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Figure 3-5. Scatterplot of per base pair heterozygosity 53 MYYU samples with >15x coverage and <20% 

missingness plotted against latitude. 
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Figure 3-6. Barplots of per base pair heterozygosity and  FROH between clusters assuming A-B) K=2 

clusters, C-D) K=3 clusters, E-F) K=4 clusters, and G-H) K=5 clusters. Letters indicate significant 

differences between groupings. 
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Figure 3-7. Sample-level summed lengths of runs of homozygosity, binned into three groups: [100 Kb - 

1Mb), [1Mb - 10 Mb), ≥ 10Mb. 
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Figure 3-8. Estimated fluctuations in effective population size (Ne) using GONE between present day and 

200 years ago for three populations of MYYU. Populations include British Columbia, Montana, and 

Idaho samples (medium blue), California samples (dark blue), and New Mexico, Texas, and Mexico 

samples (teal). Inset shows additional detail on California MYYU population Ne trajectories. 
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Figure 3-9. Estimated fluctuations in Ne using PSMC between 10 kya and 10 mya for two individuals. 

The red sample is representative of the general demographic trajectory of MYYU sampled from the 

western US and Canada, while the blue sample is representative of the trajectory of MYYU sampled from 

the Southwest US and Mexico. Thick line is the full run of PSMC while the thinner lines are 100 

bootstrap replicates. LGM = Last Glacial Maximum, LIG = Last Interglacial Period. 
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Figure 10. Phylogenetic analysis of MYYU, including A) neighbor net phylogenetic network of 43 

MYYU samples, and B) maximum likelihood estimate tree of 110 MYYU samples. Branches colored by 

putative subspecies assignment and outgroup. Map of geographic distribution of individual subspecies in 

C), adapted from Braun et al. 2015. 
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TABLES 

Table 3-1. Summary table of AMOVA outputs by cluster assignment for different numbers of clusters 

(K) between K = 2 and K = 5. Table details the percentage of variation explained by clusters and within 

samples, along with the amount of genetic differentiation between groups (ΦST), degrees of freedom (df), 

and p-values. 

 

K % Explained 
by Clusters 

% Explained 
within Samples 

ΦST 
 

df p-value 

2 3.15 96.9 0.031 1 0.001 
3 4.35 95.7 0.043 2 0.01 
4 4.45 95.5 0.045 3 0.01 
5 3.47 96.5 0.035 4 0.01 
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Table 3-2. Table of PSMC outputs for the mid-Holocene (ca. 6 kya), the Last Glacial Maximum (LGM, 

ca. 20 kya) and the Last Interglacial Period (LGI, 110 - 130 kya). Tk parameter is the scaled time 

parameter and Ne is the scaled λk from PSMC. Trend determined by taking the difference in effective 

population size between the LGI and the LGM. 
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APPENDIX 3-I: SUPPLEMENTAL FIGURES 

 

Figure S3-1. Regression between A) per base pair heterozygosity and depth, B) per base pair 

heterozygosity and missingness, C) FROH and depth, and D) FROH and missingness for 115 MYYU 

samples. 
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Figure S3-2. Pairwise identity by descent (IBD) matrix of MYYU samples. Samples in yellow indicate 

individuals approaching second-degree relationships and samples in red indicate samples with first-degree 

relationships. Self comparisons in dark gray. 
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Figure S3-3. Principal Component Analysis of A) 38 downsampled MYYU samples, black box 

indicating samples from panel B, and B) PCA of 36 MYYU samples excluding two outlier samples. 

Shape and color indicate sampling location. 
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Figure S3-4. ADMIXTURE analysis outputs of sample-level ancestry proportions for A) K=4, and B) 

K=5 populations. 
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Figure S3-5. Estimated fluctuations in Ne using PSMC between 10 kya and 10 mya for twelve MYYU. 

Red samples indicate MYYU sampled from the western US and Canada, while the blue indicates MYYU 

sampled from the Southwest US and Mexico. Thick line is the full run of PSMC while the thinner lines 

are 100 bootstrap replicates. LGM = Last Glacial Maximum, LIG = Last Interglacial Period. 
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APPENDIX 3-II: SUPPLEMENTAL TABLES 

Table S3-1. Table of MYYU samples detailing species, putative subspecies, forearm length (mm) sex, 

age, sampling locality and collector. 

 

Sample Name SPP SubSPP FA Sex Age Year Locality Contributor
041408_oceaside_myyu MYYU saturatus NA NR NR 2008 Escondido, San Diego County, CA SDMNH
043017_harbison_myyu MYYU saturatus NA M A 2017 El Cajon, San Diego County, CA SDMNH
070708_stadium_myyu MYYU saturatus NA NR NR 2008 Escondido, San Diego County, CA SDMNH
071007_hiddentr_myyu MYYU saturatus NA M J 2007 Escondido, San Diego County, CA SDMNH
080807_brandonst_myyu MYYU saturatus NA NR NR 2007 Spring Valley, San Diego County, CA SDMNH
08082021_patandbill1_myyu MYYU yumanensis NA F J(?) 2021 Lodge storage near Bishop, Inyo County, CA P. Brown, W. Rainey
08082021_patandbill6_myyu MYYU yumanensis NA F A 2021 Lodge storage near Bishop, Inyo County, CA P. Brown, W. Rainey
080919_pinevalley_myyu MYYU saturatus NA NR A 2019 Pine Valley, San Diego County, CA SDMNH
090607_chulavista_myyu MYYU saturatus NA F NR 2007 Carlsbad, San Diego County, CA SDMNH
092007_chulavista_myyu MYYU saturatus NA M NR 2007 Hemet, Riverside County, CA SDMNH
092020_elcajon_myyu MYYU saturatus NA M A 2020 El Cajon, San Diego County, CA SDMNH
092221_catalinabarn_myyu1 MYYU saturatus 33.30 M A 2021 Quail Valley, Catalina Island, CA J. Curti, E. Hamblin
092807_poway_myyu MYYU saturatus NA F NR 2007 Poway, San Diego County, CA SDMNH
092816_nordahl_myyu MYYU saturatus NA NR NR 2016 San Marcos, San Diego County, CA SDMNH
102121_whitewater_myyu1 MYYU saturatus 35.00 M A 2021 Whitewater Preserve, 9160 Whitewater Canyon Rd, Whitewater, CA 92282 J. Curti, M. Bourne, L. Basulto
15A MYYU oxalis NA M A 2021 Suisun Creek, Solono County, CA D. Johnston
20210616_MODOC_myyu_ca1 MYYU sociabilis NA F A 2021 Bridge by West Valley Reservoir, Modoc County, CA J. Curti, N. Hamilton, C. Ramirez
20230722_SteelheadPreserve_myyu1 MYYU saturatus NA M A 2023 Steelhead Preserve, Ojai, CA, USA J. Curti
20230823_Temecula MYYU saturatus NA F A 2023 Temecula Creek under I15, Temecula, CA, USA J. Curti, J. Carpenter, L. Harris
26A MYYU yumanensis NA F A 2021 Bat Cave Wash, Topock, San Bernadino County, CA D. Johnston
28Oct2021_Yos_Bat1_MYYU MYYU saturatus NA NR NR 2021 Cascade Picnic Area, Yosemite National Park, Mariposa County, CA, USA A. Waag
DP87_myyu MYYU sociabilis NA F A 2002 Ovando, MT Dixie Pierson, Maarten Vonhof
DP96_myyu MYYU sociabilis NA F NR 2003 Malad Gorge, ID Dixie Pierson, Maarten Vonhof
DSJ_15 MYYU saturatus NA F A 2001 Butte Creek, Butte County, CA Von Hoff
DSJ_9 MYYU saturatus NA F J 2001 Bradley Bridge, Monterey, CA Von Hoff
hartpark_093021_myyu1 MYYU saturatus 34.90 M A 2021 Hart Park, Bakersfield, CA J. Curti, C. Ramirez, E. Noel
JW06_A MYYU sociabilis NA F J 2001 Corn Creek, ID Jo Wenger, Maarten Vonhof
MK31_A MYYU saturatus NA NR J 2002 Clowhom Lake, British Columbia Mandy Kellner, Maarten Vonhof
MK33_A MYYU saturatus NA F A 2002 Campbell River, British Columbia Mandy Kellner, Maarten Vonhof
MVZ146766a_MYVE MYVE NA 44.00 M NR 1974 Minas Armalilla, 6 mi NW Alamos, State of Sonora, MX Berkeley MVZ, Maarten Vonhof
MYYU_4 MYYU yumanensis 35.60 NR NR 2022 Monument Ponds, CO Dan Neubaum, Maarten Vonhof
MYYU_CA2008_004 MYYU saturatus NA F A 2008 Alviso Cannery, Santa Clara County, CA D. Johnson
MYYU_CA2012_018 MYYU saturatus NA F A 2012 Dye Creek Preserve, Tehama County, CA D. Johnson
MYYU_CA2014_013 MYYU oxalis NA NR NR 2014 Hughson (95326), Stanislaus County, CA CDPH
MYYU_CA2015_001 MYYU saturatus NA A F 2015 San Benito County, CA CDPH
MYYU_CA2015_012 MYYU oxalis NA NR NR 2015 Livermore, Alameda County, CA CDPH
MYYU_CA2016_001 MYYU saturatus NA NR NR 2016 Apple Valley, San Bernadino County, CA CDPH
MYYU_CA2016_004 MYYU saturatus NA NR NR 2016 Santa Maria, Santa Barbara County, CA CDPH
MYYU_CA2016_009 MYYU saturatus NA NR NR 2016 Rialto, San Bernadino County, CA CDPH
MYYU_CA2016_011 MYYU saturatus NA NR NR 2016 Oakland, Alameda County, CA CDPH
MYYU_CA2016_013 MYYU oxalis NA NR NR 2016 Pleasanton, Alameda County, CA CDPH
MYYU_CA2017_003 MYYU oxalis NA F A 2017 Putah Creek Oxbow, Solano Count, CA Harris
MYYU_CA2017_006 MYYU saturatus NA NR NR 2017 Mariposa County, CA Harris
MYYU_CA2017_011 MYYU saturatus NA NR NR 2017 San Luis Obispo County, CA Harris
MYYU_CA2017_013 MYYU sociabilis NA NR NR 2017 Big Spring, Lassen National Park, Shasta County, CA Angerer
MYYU_CA2017_014 MYYU saturatus NA NR NR 2017 San Luis Obispo County, CA Unknown
MYYU_CA2017_023 MYYU saturatus NA NR NR 2017 Chino Hills, San Bernadino County, CA CDPH
MYYU_CA2017_026 MYYU saturatus NA NR NR 2017 Ontario, San Bernadino County, CA CDPH
MYYU_CA2017_027 MYYU saturatus NA NR NR 2017 Yucaipa, San Bernadino County, CA CDPH
MYYU_CA2017_031 MYYU saturatus NA NR NR 2017 San Jose, Santa Clara County, CA CDPH
MYYU_CA2017_032 MYYU saturatus NA NR NR 2017 Windsor, Sonoma County, CA CDPH
MYYU_CA2017_033 MYYU saturatus NA NR NR 2017 Rancho Cucamonga, San Bernadino County, CA CDPH
MYYU_CA2017_037 MYYU oxalis NA NR NR 2017 Stockton (95209), San Joaquin County, CA CDPH
MYYU_CA2017_039 MYYU saturatus NA NR NR 2017 San Francisco, San Francisco County, CA CDPH
MYYU_CA2017_040 MYYU saturatus NA NR NR 2017 San Francisco, San Francisco County, CA CDPH
MYYU_CA2017_043 MYYU saturatus NA NR NR 2017 Palo Alto, Santa Clara County, CA CDPH
MYYU_CA2017_044 MYYU saturatus NA NR NR 2017 Upland, San Bernadino County, CA CDPH
MYYU_CA2018_004 MYYU saturatus NA F A 2018 Cañada Del Puerto, Santa Cruz Island, Santa Barbara County, CA P. Brown
MYYU_CA2018_007 MYYU saturatus NA NR NR 2018 Whiskeytown NRA, Shasta County, CA Chung-McCoubry
MYYU_CA2018_008 MYYU oxalis NA NR NR 2018 Yolo County, CA Unknown
MYYU_CA2018_014 MYYU saturatus NA F J 2018 Yorba Linda, Orange County, CA CDPH
MYYU_CA2018_015 MYYU saturatus NA M J 2018 Rancho Santa Margarita, Orange County, CA CDPH
MYYU_CA2018_017 MYYU saturatus NA M J 2018 Brea, Orange County, CA CDPH
MYYU_CA2018_034 MYYU saturatus NA F A 2018 Costa Mesa, Orange County, CA CDPH
MYYU_CA2018_036 MYYU saturatus NA M A 2018 Orange, Orange County, CA CDPH
MYYU_CA2018_040 MYYU saturatus NA F A 2018 Costa Mesa, Orange County, CA CDPH
MYYU_CA2018_043 MYYU saturatus NA F A 2018 Rancho Mission Viejo, Orange County, CA CDPH
MYYU_CA2018_046 MYYU saturatus NA F A 2018 Trabuco Canyon, Orange County, CA CDPH
MYYU_CA2018_048 MYYU saturatus NA F A 2018 Irvine, Orange County, CA CDPH
MYYU_CA2018_056 MYYU saturatus NA F A 2018 Laguna Niguel, Orange County, CA CDPH
MYYU_CA2018_062 MYYU saturatus NA F A 2018 Foothill Rance, Orange County, CA CDPH
MYYU_CA2018_063 MYYU saturatus NA F A 2018 Lake Forest, Orange County, CA CDPH
MYYU_CA2018_065 MYYU saturatus NA F A 2018 Anaheim, Orange County, CA CDPH
MYYU_CA2018_069 MYYU saturatus NA NR NR 2018 Spring Valley Lake, San Bernadino County, CA CDPH
MYYU_CA2018_070 MYYU saturatus NA NR NR 2018 Mountain View, Santa Clara County, CA CDPH
MYYU_CA2018_075 MYYU oxalis NA NR NR 2018 Tracy (95304), San Joaquin County, CA CDPH
MYYU_CA2018_076 MYYU saturatus NA NR NR 2018 Monte Rio, Sonoma County, CA CDPH
MYYU_CA2018_080 MYYU saturatus NA NR NR 2018 Atascadero, San Luis Obispo County, CA CDPH
MYYU_CA2018_081 MYYU saturatus NA NR NR 2018 Monte Sereno, Santa Clara County, CA CDPH
MYYU_CA2018_085 MYYU saturatus NA NR NR 2018 Thousand Oaks, Ventura, CA CDPH
MYYU_CA2018_087 MYYU saturatus NA NR NR 2018 Hidden Valley Lake, Lake County, CA CDPH
MYYU_CA2018_088 MYYU saturatus NA NR NR 2018 Monte Rio, Sonoma County, CA CDPH
MYYU_CA2018_094 MYYU saturatus NA NR NR 2018 Richmond, Contra Costa County, CA CDPH
MYYU_CA2018_113 MYYU saturatus NA NR NR 2018 Sebastapol, Sonoma County, CA CDPH
MYYU_CA2019_016 MYYU saturatus NA NR NR 2019 Petaluma, Sonoma County, CA CDPH
MYYU_CA2019_045 MYYU saturatus NA NR NR 2019 San Andreas (95249), Calaveras County, CA CDPH
MYYU_CA2020_001 MYYU saturatus NA Unk Unk 2020 Colusa County, CA S. Osborn
MYYU_CA2020_032 MYYU yumanensis NA Unk Unk 2020 Hot Creek Hatchery, Mono County, CA Heide
MYYU_CA2020_034 MYYU saturatus NA NR NR 2020 Morgan Hill, Santa Clara County, CA CDPH
MYYU_CA2020_036 MYYU saturatus NA NR NR 2020 Arcada (95521), Humboldt County, CA CDPH
MYYU_CA2020_037 MYYU saturatus NA NR NR 2020 Napa County, CA CDPH
MYYU_CA2020_038 MYYU saturatus NA NR NR 2020 Santa Cruz, Santa Cruz County, CA CDPH
MYYU_CA2020_CCGP MYYU sociabilis NA M J 2020 Plumas County, CA D. Fraser
MYYU_CA2021_003 MYYU saturatus NA M A 2021 Rock Pools near Century Dam, Malibu Creek State Park, Los Angeles, Los Angeles County, CA J. Curti, N. Hamilton
MYYU_CA2021_007 MYYU saturatus NA M A 2021 Along Sawpit Creek near Somes Bar, Siskyou County, CA J. Curti, N. Hamilton
MYYU_CA2021_034 MYYU saturatus NA M A 2021 Culvert, Redlands, Riverside County, CA J. Curti, C. Ramirez
MYYU_CA2021_035 MYYU saturatus NA F A 2021 E Street Culvert, Riverside County,  CA J. Curti, C. Ramirez
MYYU_CA2021_042 MYYU saturatus NA F A 2021 Green River Golf Course, Riverside County, CA J. Curti, C. Ramirez
MYYU_CA2021_046 MYYU yumanensis NA F A 2021 Riverview Mine, San Bernadino County, CA J. Curti, C. Ramirez, R. Peat
MYYU_CA2021_084 MYYU saturatus NA NR NR 2021 Lancaster, Los Angeles County, CA CDPH
MYYU_CA2021_087 MYYU saturatus NA NR NR 2021 Castaic (91384), Los Angeles County, CA CDPH
MYYU_CA2021_088 MYYU saturatus NA NR NR 2021 Saint Helena, Napa County, CA CDPH
MYYU_CA2021_089 MYYU saturatus NA NR NR 2021 Santa Barbara County, CA CDPH
MYYU02 MYYU yumanensis 32.02 NR NR 2008 San Basilio, Baja California Sur, Mexico Winnifred Frick
NE90_A_MYYU MYYU yumanensis NR M A 2002 Gypsum mine near I-15 and Moapa Exit, NV Mike O'Farrell, Jason Williams, Maarten Vonhof
TD9845 MYYU lotusus NR F NR 2016 Las Charcas, San Nicolás Tolentino Municipality, San Luis Potosí State, MX Instituto Politécnico Nacional/Celia López-González
TK163190 MYYU yumanensis 34.00 M NR 2009 BLACK MESA STATE PARK, Cimarron County, OK Texas Tech Museum
TK186214 MYYU yumanensis 34.00 F NR 2014 TRUJILLO CREEK RD AND NM HWY 187, Sierra County, NM Texas Tech Museum
TK199418 MYYU yumanensis 34.00 M NR 2016 TX HWY 17, N FORT DAVIS, JEFF DAVIS CO Texas Tech Museum
TK48571 MYYU yumanensis 32.00 M NR 1995 20 KM N LAS HERRERAS, State of DURANGO, MX Texas Tech Museum
TK48589 MYYU lotusus 35.00 F NR 1995 30 KM W HUEJUQUILLA DEL ALTO, State of Jalisco, MX Texas Tech Museum
UAM_Mamm_120402 MYYU saturatus 36.00 F J 2014 Hugh Smith Lake at Sockeye Creek, Ketchikan Quad, AK University of Alaska Museum
UH20_A MYYU saturatus NR F A 2002 Silver Reef WH48, Washington County, UT Kate Grandison, Maarten Vonhof
WA351 MYYU saturatus NA F A 2021 Snohomish County, WA Abigail Tobin
WA358 MYYU sociabilis NA F A 2021 Kittitas County, WA Abigail Tobin
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Abstract

In response to biodiversity loss and biotic community homogenization in urbanized land-

scapes, there are increasing efforts to conserve and increase biodiversity within urban

areas. Accordingly, around the world, previously extirpated species are (re)colonizing and

otherwise infiltrating urban landscapes, while other species are disappearing from these

landscapes. Tracking the occurrence of traditionally urban intolerant species and loss of tra-

ditionally urban tolerant species should be a management goal of urban areas, but we gen-

erally lack tools to study this phenomenon. To address this gap, we first used species’

occurrences from iNaturalist, a large collaborative dataset of species observations, to calcu-

late an urban association index (UAI) for 967 native animal species that occur in the city of

Los Angeles. On average, the occurrence of native species was negatively associated with

our composite measure of urban intensity, with the exception of snails and slugs, which

instead occur more frequently in areas of increased urban intensity. Next, we assessed

8,348 0.25 x 0.25 mile grids across the City of Los Angeles to determine the average grid-

level UAI scores (i.e., a summary of the UAIs present in a grid cell, which we term Commu-

nity Urban Tolerance Index or CUTI). We found that areas of higher urban intensity host

more urban tolerant species, but also that taxonomic groups differ in their aggregate toler-

ance of urban areas, and that spatial patterns of tolerance vary between groups. The frame-

work established here has been designed to be iteratively reevaluated by city managers of

Los Angeles in order to track the progress of initiatives to preserve and encourage urban

biodiversity, but can be rescaled to sample different regions within the city or different cities

altogether to provide a valuable tool for city managers globally.

Introduction

The Earth is experiencing an extinction crisis, with modern species extinction rates, based on
vertebrate taxa, estimated to exceed background rates of extinction by at least an order of mag-
nitude [1,2]. In this contemporary era of species loss, there are a multitude of factors driving
global declines including habitat loss, invasive species, disease, direct exploitation, pollution,
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and human-caused climate change [3–7]. Many of the effects of these extinction drivers are
increased due to synergistic interactions [8]; particularly, urbanization is well known to com-
pound all of these drivers of extinction [8–10]. Globally, urban cover is predicted to increase
by 2.5% between 2000 and 2030, such that urbanization will continue to increase as a driver of
biodiversity loss [11]. Increases in urban cover are predicted to grow especially fast within
global biodiversity hotspots, potentially by 200% between 2000 and 2030 [11], which could fur-
ther exacerbate rates of species decline. With this predicted increase in urban areas, city man-
agers and conservation biologists can work collaboratively to make cities more hospitable to
native biodiversity in order to help avert increasing levels of extinctions.

The impacts of urbanization on biodiversity are well documented, especially in birds [12],
arthropods [13,14], and plants [15]. Research on urban biodiversity has traditionally focused
on quantifying changes in species richness along the urban-rural gradient (e.g., [16]). For
example, studies demonstrate that native woodland bird species tend to be replaced by urban-
adapted species in more urbanized habitats nearer to the city center [17,18], and that this pat-
tern appears to be stronger for migratory species compared to residents [19]. Patterns of bird
diversity are also tied to factors such as vegetation composition and structure. For example,
canopy cover and native plant species diversity correlate with increases in native bird species
richness in urban woodlands [20–22]; whereas, increases in lawn cover are related to increases
in non-native and synanthropic species richness [23]. In other taxonomic groups, climatic var-
iation has been shown to modulate the strength of the relationship between urbanization and
species diversity. For example, in mammals, larger-bodied animals have more negative rela-
tionships with urbanization than smaller-bodied animals, but this relationship is intensified in
cities that are characterized by warmer climates [24]. Furthermore, the level of taxonomic
organization studied can impact the relationship between biodiversity and levels of urbaniza-
tion. For example, a metanalysis of arthropod community responses to urbanization found an
overall negative effect of increased urbanization on arthropod abundance and diversity, but
the magnitude of this effect was much greater for specific orders of arthropods, with an
increased negative effect in Coleoptera and Lepidoptera and a neutral response (i.e., mean
effect size crossing zero) in Araneae [14]. These studies both demonstrate that the mechanisms
underlying urban biodiversity are complex, and highlight the need for studies with wide geo-
graphic and taxonomic breadth to help us generalize patterns in ways that help cities improve
their biodiversity [13,15,25,26].

Considering the projected increase in urban land cover within the next decade, the future
of urban biodiversity will ultimately rely on the ability of global cities to attract and maintain
populations of species that are largely considered urban intolerant. Well-planned cities can
preserve and restore the habitat requirements of native species by facilitating heterogeneous
landscapes, migratory stopover sites, and increased gene flow [27], among other initiatives.
Likely as a result of urban planning efforts, some species’ ranges have increased in urban areas
over the past century [28–31]. Several studies have examined what factors increase and main-
tain urban biodiversity, for example, by evaluating the minimum number of native trees in
urban residential yards needed to maintain diverse bird communities [32] or quantifying
native species gained in planted rooftop gardens [33]. While these projects can help inform
policy geared towards supporting and enhancing urban biodiversity, city managers still lack a
comprehensive tool that can track spatio-temporal changes in urban biodiversity at the com-
munity level. As more native species are either threatened with extirpation or expand their
ranges into urban environments, creating a tool that can track changes in urban diversity and
community composition is more important than ever before.

In order to monitor diversity patterns and quantify the effects of varying levels of urbaniza-
tion on different groups of native species, large amounts of data are needed across multiple

PLOS ONE Using crowd-sourced data to evaluate urban tolerance of terrestrial native species

PLOS ONE | https://doi.org/10.1371/journal.pone.0295476 May 29, 2024

Funding: The author(s) received no specific
funding for this work.

Competing interests: The authors have declared
that no competing interests exist.



 

 120 

 

 

taxonomic groups and across broad areas of the urban environment. To correct for researcher
biases that lead to datasets with limited geographic scope and taxonomic coverage, many stud-
ies have turned to large crowd-sourced datasets [15,34,35]. Such datasets are often referred to
as ‘unstructured’ in that there is no required protocol for data collection, resulting in data that
vary widely in their quality, organization, and information content [36]. One such platform,
iNaturalist, has over 74 million observations for over 342,000 different species globally, 58% of
which come from developed (i.e. urbanized) areas [37]. The size of the iNaturalist dataset gives
it great potential for tracking and managing urban biodiversity. For example, Callaghan et al.
[38] used community science data from metropolitan regions around Boston to quantify spe-
cies- and community-level biodiversity responses to multiple urban gradients. These data were
at a small-enough spatial unit to influence local policymaking. Large-scale public participatory
datasets make urban biodiversity assessments at large spatial scales possible, even in cities,
which tend to contain private lands that are largely excluded from structured biodiversity sur-
veys [39].

Despite the abundance of data points from programs like iNaturalist, there are challenges
associated with using these unstructured datasets to measure and manage urban biodiversity.
For example, opportunistic sampling may lead to biases in data, as sampling effort is not equal
across space, time, and taxonomic groups [40,41], potentially causing differences in user meth-
odology to be misinterpreted as temporal or spatial changes in populations [42]. Analytical
methods to best mitigate these inherent biases in unstructured data continue to be developed,
including using both models and data processing to better account for unequal observations
across space and time [43–45]. Particularly, these new methods use higher order taxa as indica-
tors of survey effort which can inform negative occurrences and thus convert presence-only
data to robust presence-absence format.

Here, we describe and implement an approach to spatially and temporally characterize
urban tolerance of native species within the city of Los Angeles, California, USA using unstruc-
tured species occurrence data from iNaturalist. This approach was initially conceived to sup-
port the LA Biodiversity Index Baseline Report published by the Los Angeles Department of
Sanitation and Environment [46] through the creation of an evaluative metric (Metric 1.2b;
[47,48] that represents and monitors “Native Species Presence in Urban Areas.” We refer to
this index as a “Community Urban Tolerance Index” (CUTI), as it broadly aims to track how
well native species that are often urban intolerant occur within Los Angeles by rating spatial
units on the average urban association index or "UAI" (based on levels of urban tolerance) of
their species assemblages. To assess this metric, we used iNaturalist data to estimate a species-
level UAI for 967 species across six broad taxonomic focal groups that occur in Southern Cali-
fornia. We then applied these indices to spatiotemporally thinned species occurrence data in
order to calculate the CUTI for a spatial grid covering the city of Los Angeles. The CUTI repre-
sents the degree that the terrestrial animal community is composed of species that are either
tolerant or intolerant to urbanization within a spatial unit. We then calculated a mean CUTI
across all grid cells in Los Angeles, resulting in a single score for Metric 1.2b in the LA City
Biodiversity Index. The methodology provided herein provides a framework for establishing
repeated measures over time of urban tolerance within the city of Los Angeles and is applicable
to other urban areas. Ultimately, these methods can help local managers and city officials
across the region, state, or country understand and track the success (or failures) of local initia-
tives to support biodiversity and attract historically urban intolerant species to their cities. As
urbanization poses a continued threat to biodiversity, particularly in biodiversity hotspots, the
methods presented here will enable local governments to better manage and protect native
biodiversity.
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Methods

Study area

Our study was focused on Southern California, with an emphasis on the greater Los Angeles
area, situated in the California Floristic Province, one of 36 biodiversity hotspots in the world
[49,50]. The region is also one of five Mediterranean ecosystems in the world, which occur
only on the western margins of landmasses between 30 and 40˚ latitude and which are typically
characterized by cold and wet winters and warm and dry summers. Southern California has
diverse topography, including the transverse mountain ranges to the north and east and the
peninsular mountains ranges to the south, as well as diverse habitat types, including chaparral,
coastal sage scrub, oak woodlands, coastal dunes and bluffs, riparian woodlands, and a variety
of wetland habitats, which host over 2,200 species of vascular plants [51]. While the calculation
of a formal CUTI was limited to areas within the city of Los Angeles, for the estimation of spe-
cies-level UAI, our study area included all land within a 200 km buffer of the Los Angeles City
boundary (approximate centroid: 34.031656 N, 118.241716 W), including the cities of Los
Angeles, San Diego, Bakersfield, and Santa Barbara. We chose to focus on this broad geo-
graphic region because we were interested in creating a metric that could be measured repeat-
edly over time and would be robust to species that do not currently reside in our focal area of
Los Angeles, but could colonize in the future. Furthermore, we treat urban tolerance here (as
measured by the UAI) as a species-level trait, which is best estimated using occurrence data
from a broader geographic region than just Los Angeles. As such, we aimed to include areas
with a wide range of levels of urbanization, including multiple manifestations (i.e., cities) of
urban land-use within the broader Southern California region.

Urban intensity

In order to estimate urban associations, we first had to define a continuous spatial layer of the
urban intensity of our study region. To do this, we used Principal Component Analysis (PCA),
which decomposes multivariate datasets into major axes of variation, to create a single com-
posite index of urban intensity from multiple sources. Following [38], this index included the
Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights data layer, but we added
additional environmental variables related to urbanization as different taxa are likely to
respond to different aspects of the urban environment. We initially tested a set of six data lay-
ers to depict urban intensity across our study area, but we removed several layers including
pollution of fine particles smaller than 2.5 micrometers (PM2.5) [52], Average Traffic Volume
[52], and Population Density [53] due to collinearity and coarser resolution. Thus, our PCA
index represents a composite of three layers: (1) light pollution from VIIRS Version 4
DMSP-OLS Nighttime Lights Time Series (https://eogdata.mines.edu/products/dmsp/#v4_
dmsp_download) [54], (2) "Percent Impervious Surfaces" from National Land Cover Database
(NLCD) 2016 Percent Developed Imperviousness (CONUS) (https://www.mrlc.gov/data/
nlcd-2016-percent-developed-imperviousness-conus) [55], and (3) "Noise Pollution" from
National Park Service (NPS) Geospatial Sound Modeling 2013–2015 (https://irma.nps.gov/
DataStore/Reference/Profile/2217356) [56]. All spatial layers were reprojected and resampled,
as needed, to a 0.25 x 0.25 mile grid prior to combination. The first axis of the PCA explained
86.5% of the variance in all three layers (S1 Table), indicating as expected that the three layers
are all indicative of the same general process (i.e., “urban intensity”) yet individually add
unique information. Because PCA axis 1 (“PC1”) explained >70% of the variation, we retained
it as our sole spatial index of urban intensity (Fig 1).
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iNaturalist records and data quality filtering

We focused our analysis on selected target taxonomic groups, which were picked a priori with
expert input to represent 12 taxonomic groups that are generally well-detected and well-sur-
veyed by community scientists on the iNaturalist platform. The 12 groups include: snails and
slugs (Order: Stylommatophora); spiders (Order: Araneae); dragonflies and damselflies
(Order: Odonata); grasshoppers, locusts, and crickets(Order: Orthoptera); leafhoppers (Fam-
ily: Cicadellidae); lady beetles (Family: Coccinellidae); hoverflies (Family: Syrphidae); bees and
wasps (Family: Apidae and Vespidae); butterflies and moths (Families: Papilionidae, Pieridae,
Lycaenidae, Nymphalidae, Sphingidae and Erebidae); herpetofauna (Classes: Amphibia and
Reptilia); mammals (Class: Mammalia); and birds (Class: Aves). We queried the iNaturalist
API for occurrence data on 13 January 2022 using the ‘rinat’ package version 0.1.8 [62]. We
downloaded all iNaturalist records between 2011–2021 for the higher order taxa groups
defined above, only limiting records to “research quality” georeferenced occurrences (i.e.,

Fig 1. Map of urban intensity measured across a broad study region in Southern California. Our metric of urban intensity was determined as the first PCA
axis of three different variables. Warmer colors indicate higher levels of urban intensity. Solid lines detail major roadways within California. Map created using
data from [57–61].

https://doi.org/10.1371/journal.pone.0295476.g001
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those with a consensus taxonomic ID and location coordinates) bound within our broader
study region (i.e., 200 km radius around Los Angeles). After downloading, we further filtered
our data to remove species that had more than 60% of all observations records marked as
“Geoprivacy = obscured” (a situation where iNaturalist provides spatial coordinates of sight-
ings, but these coordinates are randomly offset by up to 22 km from the true location).
Although we additionally filtered out all obscured spatial records for all species, we wholly
excluded species meeting this arbitrary threshold as we believed that such a widespread degree
of geoprivacy indicated species for which remaining iNaturalist data would not likely represent
the species’ true distribution within the study area. Finally, we reclassified all records identified
to the subspecies level to the species level following other similar work using related datasets
[63,64].

Expert review

After downloading iNaturalist records and applying our initial hard filters for data quality, we
engaged the LASAN Biodiversity Expert Council, a regional group of scientists and taxonomic
specialists who advise the annual biodiversity report, to further assist in data curation and QA/
QC. Five experts in areas of specific taxonomic focus for the species included in this study (i.e.,
arthropods, mollusks, mammals, birds, and herpetofauna) were asked to evaluate occurrence
data for the specific higher order taxonomic grouping they specialized in by using the follow-
ing questions: 1) Is this species native to the study area?; 2) Is the species terrestrial?; 3) Is the
natural history of this species so different from others in its taxonomic grouping that records
for this particular species should not be used as indicators of search effort for other similar spe-
cies?; and 4) Is there any other reason why we should exclude this species from this study? The
third question refers to the issue that iNaturalist data are presence-only and do not, on their
own, provide information on absence or non-detection. Increasingly, however, ecologists are
using multi-taxa presence-only surveys to bin species into ‘detection groups’, whereby an
observation of one species at a location provides inference on the non-detection of other spe-
cies [44,65]. This assumption of substitutability is justified as natural history observers are
often searching broadly within taxonomic groups; for example, a birdwatcher’s positive record
of one bird species says more about the non-detection of another bird species than it does
about the non-detection of a butterfly. In the context of the present study, we did not require
species’ occurrences to be perfect indices of non-detection for other species, but simply sought
taxonomic groups where the presence of one species in that group would serve as a broad
index of survey effort for all species in that group. Thus, we sought via expert review to exclude
taxa that differed so much from the rest of their grouping (e.g., diurnal versus nocturnal; or
identifiable via photography versus identifiable only via microscope) that they should not be
treated as survey effort proxies. For the fourth question, some common reasons for excluding
species based on expert review included species with extremely limited distributions that
would otherwise be uninformative to urban tolerance (e.g., a species of plethodontid salaman-
der limited to a single remaining population on Mt. Baldy, Los Angeles, USA), or misidentifi-
cations based on recent taxonomic splits.

Following data review by taxonomic specialists, we curated their responses to make sure
that experts interpreted these questions similarly. We filtered observations based on these
responses to exclude non-native species, species unlikely to be detected by typical observers,
non-terrestrial (i.e. marine or freshwater) species, and species according to additional criteria
as determined by the taxonomic group specialists.
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Controlling for differences in sampling effort

We took a number of steps to control for differences in sampling evenness and effort in iNa-
turalist data. First, to address the inherent biases associated with sampling evenness, we per-
formed a broad spatiotemporal thin [66,67]. We thinned species-specific data to one
observation per year within each 0.25 x 0.25 mile grid cell. This produced a database where
every species is recorded as present or not detected in each grid cell and for each year between
2011–2021 (i.e. the number of yearly detections out of 11 years). Second, to address the addi-
tional bias associated with varied sampling effort, we defined site-specific sampling effort for
each of the twelve focal taxonomic groups. We did this because observers may not equally
record observations for all taxonomic groups (e.g., an observer may not observe spiders while
recording birds). Taxonomic group-specific effort grids were calculated based on the observa-
tion effort per year for the corresponding focal taxonomic groups, summing within grid cells
the number of years with at least one observation in a year of a species from within a taxo-
nomic group. Thus, taxonomic group-specific effort layers indicate the number of years (0–
11) in which observers obtained at least one record of a target group, which serves as the maxi-
mum potential number of thinned presences for any given species of that group. As such, the
thinned species presence layer and the matching effort layer represent a spatially-varying bino-
mial response, where the number of binomial trials is the effort in a grid cell and the number
of binomial successes is the thinned number of species’ presences.

Measuring species-level relationship to urban intensity layer in study area

Species-level indices of urban association were calculated based on thinned occurrence data
and taxon-matched effort data across the entire Southern California study region. We calcu-
lated a UAI for each species that had at least 25 thinned annual occurrences across our study
region. Specifically, using the ‘stats’ package [68], for each species we modeled the number of
thinned occurrences, given effort per cell, as a binomial process that varied as a function of a
single covariate: the urban intensity (PC1) of the grid cell. This model allowed us to estimate
the number of thinned species occurrences as a binomial variable, where the number of suc-
cesses (i.e., ‘occurrences’) was capped by the number of years with non-zero effort for the taxo-
nomic group in each cell. In this way, our model accounted for taxon-specific sampling effort
over time in each grid cell. The resulting logit-linear slope of the trend line, which indicates
the relationship between species’ occurrence and urban intensity, was stored as the UAI for a
given species. Positive slopes indicate urban tolerance, negative slopes suggest urban intoler-
ance, and slopes of zero indicate no relationship of occurrence to urban intensity.

Calculating a Community Urban Tolerance Index (CUTI)

After calculating a UAI for each species, we quantified a CUTI for each grid cell in Los Angeles
by taxonomic group, as well as a composite score for the entire city (i.e., metric 1.2b for the
city of Los Angeles). To calculate a taxonomic group-specific CUTI for each grid cell in Los
Angeles, we matched species’ UAIs to species occurrences in individual grid cells and calcu-
lated a raw CUTI score per cell by taking the mean UAI score of all species within any given
cell, weighted by the thinned temporal occurrence of each species (i.e., a value of 1–11 for the
number of years that the species occurred in that cell). This resulted in 12 grids (one for each
taxonomic group) with a group-specific CUTI score for every cell in the city in which the
group was detected. To interpret these results at a broader taxonomic scale, we also calculated
the mean CUTI across all pixels for each of the 12 taxonomic groups. Finally, to calculate a
composite CUTI across all taxonomic groups, we averaged the 12 taxonomic group grids and
city-wide scores. In all cases, the raw CUTI scores were binned into a 5-point scale as follows:

PLOS ONE Using crowd-sourced data to evaluate urban tolerance of terrestrial native species

PLOS ONE | https://doi.org/10.1371/journal.pone.0295476 May 29, 2024



 

 125 

 

 

-Infinity to -0.5 = 5; -0.5 to -0.25 = 4; -0.25 to 0 = 3; 0 to 0.25 = 2; 0.25 to 0.5 = 1; and 0.5 to
Infinity = 0. On this scale, a cell with a CUTI index of 4 or 5 suggests that species in aggregate
are more natural-area associated, while a cell with an index of 0 or 1 suggests that species are
more urban tolerant. To test for an association between UIA and urban intensity (with the
hypothesis that areas of higher urban intensity have lower CUTI scores), we used an ANOVA
and Tukey HSD test in the ‘stats’ package [69] with urban intensity as the response variable
and categorical binned CUTI scores for each grid cell as an independent variable.

Results

Our iNaturalist query yielded a total of 958,624 observations from 127,553 observers (Table 1;
[64]). After filtering these observations, we retained 567,996 observations from 71,120 observ-
ers. Our filtered query included a total of 967 unique native species found within the study
area, of which 563 occurred at least once within the city of Los Angeles. We were able to calcu-
late UAI for 510 species in our dataset, of which 408 occurred at least once within the city of
Los Angeles. The species assessed were on average negatively associated with our measure of
urbanization, although there was variation across species (cross-species mean = -0.21, range =
-2.93 to 0.62; Figs 1 and 2, & S2 Table). UAI varied between the 12 taxonomic groupings
(Table 2), with snails and slugs having the highest (i.e. more urban tolerant) score (group
mean = 0.24, range = -0.096 to 0.62), and butterflies and moths having the lowest (i.e. more
urban intolerant) UAI (group mean = -0.40, range = -2.93 to 0.46). The most urban associated
species in our study was the slipper snail (Cochlicopa lubrica) (UAI = 0.62), and the least urban
associated species was the greenish blue butterfly (Icaricia saepiolus) (UAI = -2.93).

Table 1. Counts of observations and observers between unfiltered dataset downloaded from iNat API using specific identifiers for higher order groupings (i.e., iNat
Taxa ID) and iNaturalist data subject to exclusion by expert review (see methods for criteria) and hard filters resulting in a filtered dataset of native species.

Taxa Information Unfiltered Filtered

Higher Order Grouping Taxon iNat Taxa ID # Observations # Observers # Observations # Observers # Species

Snails and Slugs Stylommatophora 47485 22,539 5,507 919 213 5

Spiders Araneae 47118 28,148 8,897 16,029 5,778 144

Dragonflies and Damselflies Odonata 47792 16,391 3,431 16,366 3,426 73

Grasshoppers, Locusts, and Crickets Orthoptera 47651 17,267 5,670 13,816 4,483 140

Leafhoppers Cicadellidae 53237 2,585 849 796 236 41

Lady Beetles Coccinellidae 48486 18,030 5,090 9,246 2,677 37

Hoverflies Syrphidae 49995 10,654 2,200 8,212 1,832 40

Bees and Wasps Apidae 47221 34,748 11,105 11,499 3,166 68

Vespidae 52747 5,113 1,826

Butterflies and Moths Erebidae 121850 3,939 1,714 28,480 6,973 68

Lycaenidae 47923 15,199 2,479

Nymphalidae 47922 38,786 10,023

Papilionidae 47223 8,514 3,963

Pieridae 48508 9,528 2,504

Sphingidae 47213 6,988 3,967

Herpetofauna Amphibia 20978 19,892 5,229 72,312 13,992 42

Reptilia 26036 70,637 13,601

Mammals Mammalia 40151 56,914 11,763 34,107 7,514 49

Birds Aves 3 572,752 27,735 356,214 20,830 260

TOTAL 958,624 127,553 567,996 71,120 967

https://doi.org/10.1371/journal.pone.0295476.t001
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We assessed 8,348 0.25 x 0.25 mile grid cells across the city of Los Angeles for their CUTI,
weighted by the temporally thinned occurrence of each species. A total of 2,010 grid cells did
not have records for any target taxa after filtering and were not included in our calculation of
summary scores. Averaging across all higher order taxonomic groupings, the city had an aver-
age CUTI of 2.01 (raw, unbinned score = 0.129; Fig 3). Average CUTI varied between higher
order taxonomic groupings (Table 3), with snails and orthoptera demonstrating the highest
average CUTI (snails: 1.40 binned, 0.30 raw; orthoptera: 1.54 binned, 0.17 raw), and odonates
and mammals showing the lowest average CUTI (odonates: 2.25 binned, 0.06 raw; mammals:
2.16 binned, 0.07 raw) (Fig 4). There was a significant relationship between urbanization val-
ues and the cross-taxa average CUTI of those cells, with areas of higher urban intensity holding
taxa that, on the whole, were more urban tolerant (i.e, have higher UAI values) (ANOVA,
p< 0.001; S1 Fig). This general relationship held true for every individual taxonomic group
(ANOVA, p< 0.001), except for snails (ANOVA, p = 0.99).

Fig 2. Species vary widely in their response of occurrence to urbanization. Scatterplots of three different taxa showing urban intolerance (left), urban
ambivalence (center), and urban tolerance (right). Scatterplots show the proportion of detections (out of a maximum of 11 years) for each species across each
grid cell in the broader Southern California study region (Fig 1). Trend lines show the 95% confidence interval surrounding a binomial regression of detection
frequency as a function of urban intensity. Species’ UAI scores (β) are the logit-linear slope of the trend line.

https://doi.org/10.1371/journal.pone.0295476.g002

Table 2. Average urban association index (UAI) scores for each of the 12 higher order taxonomic groupings. Spe-
cies-level UAI scores ranged from -2.9 to 0.62, with more negative numbers indicating more urban intolerant species
and more positive scores indicating more urban tolerant species. Range of values in parentheses.

Higher Order Grouping Average UAI Score (range of all species)

Snails and Slugs 0.24 (-0.10 to 0.62)

Spiders -0.14 (-0.90 to 0.62)

Dragonflies and Damselflies -0.20 (-1.32 to 0.37)

Grasshoppers, Locusts, and Crickets -0.37 (-2.20 to 0.36)

Leafhoppers -0.08 (-0.51 to 0.34)

Lady Beetles -0.08 (-0.63 to 0.37)

Hoverflies -0.11 (-0.54 to 0.27)

Bees and Wasps -0.16 (-0.83 to 0.43)

Butterflies and Moths -0.40 (-2.93 to 0.46)

Herpetofauna -0.34 (-1.32 to 0.35)

Mammals -0.39 (-2.20 to 0.31)

Birds -0.15 (-1.79 to 0.47)

https://doi.org/10.1371/journal.pone.0295476.t002
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Discussion

Using over 567,000 publicly available community science records from iNaturalist, we present
the first comprehensive species-level evaluation of urban tolerance for Southern California
taxa. For the City of Los Angeles, we found that on average, native species within the city were
negatively associated with our measure of urban intensity (i.e. light pollution, impervious

Fig 3. Map of the City of Los Angeles with overlaid mean composite urban association (UAI) scores. Warmer colors
indicate more natural area tolerant species, whereas cooler colors indicate more urban tolerant species. Areas within Los
Angeles city boundaries with insufficient data to calculate the score are colored gray. Map uses a 0.25 x 0.25 mile scale.

https://doi.org/10.1371/journal.pone.0295476.g003
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surfaces, and noise pollution), and that this pattern was conserved across the higher order tax-
onomic groupings with the exception of snails and slugs, which were positively associated with
urban intensity. We then averaged this species-level response to our measure of urban inten-
sity on a ¼ mile grid across the City of Los Angeles to understand the geographic distribution
of urban intolerant species. Ultimately, this metric of native species urban tolerance (CUTI)
can be reassessed regularly as a means of evaluating change in urban tolerance over time and
following specific biodiversity improvement measures in the city.

Extrinsic and intrinsic factors leading to differences in UAI

The most urban tolerant species in our study was the slipper snail (C. lubrica). This species is
known to be widespread and euryhygric (i.e. able to withstand a broad range of moisture con-
ditions), and it is possible that urbanized areas such as Los Angeles provide year-round access
to a variety of moisture regimes through the addition of ornamental landscapes and lawns
[70–72]. Other studies have found high native snail abundance in areas of high urban intensity
in Tennessee [73]. Given that there were only five species of snails and slugs that remained in
our dataset post-filtering, this pattern could largely be due to a small sample size of species,
and perhaps more purposeful sampling is required to truly ascertain the affinity of this entire
taxonomic group for urban environments.

The most urban intolerant species in our study was the greenish blue butterfly (Icaricia sae-
piolus). Compared to other North American butterfly families, Lycaenidae is overrepresented
in terms of number of species proposed for listing [74]. This is largely due to host plant speci-
ficity of Lycaenids, primarily for plants in the genera Lupinus and Eriogonum, and the fact
that these plants are adapted to disturbance regimes that are infrequent in the urban context
[74–76]. Conservation of many of the special status butterfly species including several Lycae-
nids therefore relies on maintaining and expanding critical segments of habitat that contain
host plant species within urban settings and maintaining habitat fragments of varying sizes
through deliberate disturbance as a management tool [76]. For example, the Palos Verdes blue
butterfly (Glaucopsyche lygdamus palosverdesensis) is an endangered subspecies of Lycaenid
butterfly in Los Angeles County, and findings from the US Fish and Wildlife Service demon-
strate that the species appears to be establishing in reintroduction sites due primarily to efforts

Table 3. Community urban tolerance index (CUTI) scores for each of the 12 higher order taxonomic groupings.
Raw CUTI values are the average of weighted average of species-level UAI scores, while binned CUTI values rescale to
a 5-point index, where a CUTI index of 4–5 suggests that species in aggregate are more natural-area associated, while
an index of 0–1 suggests that species are more urban tolerant.

Taxa Raw CUTI Binned CUTI

Snails and Slugs 0.30 1.40

Spiders 0.22 1.63

Dragonflies and Damselflies 0.06 2.25

Grasshoppers, Locusts, and Crickets 0.17 1.54

Leafhoppers 0.10 2.15

Lady Beetles 0.12 1.98

Hoverflies 0.10 1.95

Bees and Wasps 0.20 1.81

Butterflies and Moths 0.13 1.96

Herpetofauna 0.14 1.99

Mammals 0.07 2.16

Birds 0.10 2.15

https://doi.org/10.1371/journal.pone.0295476.t003
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Fig 4. Map of the urban association scores separated by higher order taxonomic groupings. Levels correspond to Fig 3, where warmer
colors indicate more urban intolerant species, cooler colors indicate more urban tolerant species, and gray indicates cells with insufficient data
to calculate a score.

https://doi.org/10.1371/journal.pone.0295476.g004

PLOS ONE Using crowd-sourced data to evaluate urban tolerance of terrestrial native species

PLOS ONE | https://doi.org/10.1371/journal.pone.0295476 May 29, 2024



 

 130 

 

 

to remediate historical habitat through mechanical disturbance, non-native plant removal, and
planting of successional host plants [77]. Based on the findings from this study, the City of Los
Angeles could use existing butterfly observations to identify target areas for conservation for
the Palos Verdes blue butterfly and other imperiled butterfly species. In areas where observa-
tions overlap with property owned and managed by the City of Los Angeles, the city can focus
restoration efforts on increasing host plant abundance through direct plantings of early succes-
sional plants and targeted mechanical disturbance to create conditions necessary for early suc-
cessional habitat needed by the butterflies. Following restoration activities like these, city
managers can evaluate success through a reevaluation of this metric on an annual basis.

All other higher order taxonomic groups had higher presence in less urbanized regions
within the city. Previous research in Los Angeles, research has demonstrated that the presence
of many taxonomic groups is negatively affected by increased levels of urbanization. For exam-
ple, coyotes and bobcats in mixed urban/natural areas have home ranges that primarily utilize
natural areas [78], and some regionally common amphibian species are markedly absent from
streams within urbanized areas of the city [79], but within taxonomic groupings there was
high levels of variation in individual species-level responses. Many factors contribute to these
varied responses of species to different levels of urban intensity, including species-specific
functional traits. Specifically, in mammals and birds, functional traits help explain urban toler-
ance of species, including body size, dietary breadth, clutch size, and nesting strategy, among
other predictors in birds [64] and litter size in mammals [80]. While our study does not seek to
evaluate all individual species-level traits and how they relate to values of the UAI, some previ-
ously noted relationships between species’ functional traits and responses to urbanization are
recapitulated in our findings. For example, Cooper et al. [81] found that urban raptors in Los
Angeles including Cooper’s hawk (Accipiter cooperii) and red-shouldered hawk (Buteo linea-
tus) responded to increases in urban cover within their home ranges by increasing nesting in
urban sites, while other species of urban raptors such as American kestrels (Falco sparverius)
were more likely to nest in less-urban areas within their home ranges. They concluded that
nesting strategy may play a role in the response of urban raptors to levels of urbanization, as
American kestrels are cavity nesters and dead trees are likely to be removed by homeowners
[81]. Notably, these previously-reported responses to urbanization for Cooper’s hawks, red-
shouldered hawks, and American kestrel are confirmed in our estimated values of UAI (0.11,
0.19, and -0.03 respectively). Future studies could further explore the relationships between
species-specific functional traits and UAI for the 510 native species studied here using existing
databases of functional traits such as AVONET [82], AnimalTraits [83], or COMBINE [84].

In addition to intrinsic characteristics of species, many extrinsic factors may contribute to
species-level responses to varying levels of urban intensity. For example, research on urban
insect populations in Los Angeles found that diurnal temperature range had a consistent nega-
tive effect on occurrence of all arthropod species studied [85]. We found a negative association
with urbanization across all native arthropods, although we also observed high levels of varia-
tion within higher order taxonomic groupings. It is possible that spatial variation in water
resources across the city can partly explain this within-group variation, as has been demon-
strated for desiccation-sensitive invasive insect species in Los Angeles [86]. The heterogeneous
presence of water on the landscape also strongly influences the vegetation community present,
which in turn strongly influences arthropod community composition. Additional research
could build off our findings to investigate the relationship between our measures of UAI and
both spatial variation in abiotic gradients and functional traits of individual species, such as
desiccation tolerances of insects. The large amount of variation within groups can perhaps also
be explained by different species-level responses to the anthropogenic stressors that come with
urbanization, namely light pollution and noise pollution. Because spatial datasets of artificial
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light at night (ALAN) and anthropogenic noise were used in the creation of our urban inten-
sity layer for this study, we know that these measures of anthropogenic stressors explain much
of the variation in our dataset when considered in aggregate (S1 Table). This is unsurprising
given the broad impacts of ALAN [87] and anthropogenic noise [88] for many different groups
of organisms, including many of the higher-order taxonomic groupings studied here, such as
birds (light: [89]; noise:[90]), mammals (light: [87]; noise: [91]), and invertebrates (light: [92];
noise: [93]). These stressors can lead to a variety of responses that are specific to individual spe-
cies or communities, including some positive responses (e.g., some bats species have increased
foraging opportunities as a results of ALAN; [94]). Finally, large within-group variation in
UAI values may also be related to the variable, and relatively artificial, taxonomic levels that we
used to aggregate data; future studies with more fine resolution groupings (e.g., at the genus
level) may reveal more taxonomically conserved and biologically relevant relationships.

Limitations of and future directions for using crowd-sourced data

While this study includes over 500 native species observed within the study area, approxi-
mately 59% of the total community science records were excluded from the analyses because
they were considered undetectable to the general public (e.g. small insects, nocturnal mam-
mals, etc.), the data were not at the “research grade” level, or the records for a given species
were geoobscured due to species status or user preference. Other studies have noted similar
data quality issues and biases in iNaturalist records [95–97]. In order to circumvent data qual-
ity issues, this study relied on expert review to identify higher order taxonomic groupings that
could be reliably identified by the general public, but in doing so, may have increased ascer-
tainment bias and decreased the overall scope of the data. In an effort to reduce the amount of
data lost, future assessments of this metric may benefit from developing a relationship with
iNaturalist in order to obtain user-obscured data en masse, which is not currently possible
without requesting thousands of individual records from each iNaturalist user. This study may
also be limited by bias within higher order taxonomic groups for species that are common or
more easily observed, as has been reported previously [98,99]). While we were unable to con-
firm whether any given species is present within our dataset more or less often than “true”
occurrence, due to a relationship with their abundance on the landscape or other factors, we
believe that this bias should act randomly across the study area and therefore not impact the
overall interpretability of our findings. Additional work could greatly benefit the field by inves-
tigating the potential over- or underrepresentation of common species within community sci-
ence datasets.

While we present several limitations to the available crowd-sourced species presence dataset
within our sampling area, these data limitations also provide targets for local environmental
managers to improve these datasets and therefore biodiversity monitoring in their regions.
Based solely on the number of assessed grid cells across the City of Los Angeles in this study, it
is clear that there needs to be substantial effort placed on bolstering community science proj-
ects that focus on underrepresented taxonomic groups (e.g. snails and slugs and leafhoppers).
Findings from other community science projects indicate that local city residents are under-
represented contributors to community science datasets [100], yet for community science-
based biodiversity monitoring to be successful, it must be built from a bottom-up approach
that includes both participatory and contributory opportunities for the communities where
biodiversity monitoring is to take place [101]. While some efforts in Los Angeles to involve res-
idents in taxonomically focused community science projects have led to increased knowledge
of urban biodiversity for these taxa groups (e.g. the BioSCAN project, see https://nhm.org/
community-science-nhm/bioscan; [102]), these projects are limited in geographic scope, are
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often short-term assessments, and the primary role of residents is that of data collection, which
may not lead to sustained participation by community members in the future [103]. Moreover,
efforts to educate the public on specific indicator species is underway in Los Angeles [104],
and these efforts could be directed at underrepresented taxonomic groups highlighted in this
study. It has been demonstrated that community science datasets can match if not surpass tra-
ditional biodiversity assessment methods in data quantity, and do so in a fraction of the time
[105,106]. Therefore, developing long-term and mutually beneficial partnerships with local
communities to assess urban biodiversity should be a primary focus of city managers who plan
to use large unstructured community science datasets to measure the efficacy of city-wide bio-
diversity measures.

Conclusions

Herein we present a broad taxonomic assessment of the urban tolerance of native animal spe-
cies for the City of Los Angeles. We found that there are clear differences in species level
responses to our measures of urban intensity and that native species within Southern Califor-
nia are largely urban intolerant. This is even more true within the City of Los Angeles. This
study provides a baseline assessment of the degree of presence of urban intolerant species
within the City of Los Angeles in a ten year study period. Repeated assessment of this metric
will allow stakeholders such as the City of Los Angeles to monitor success of its stated goal of
no-net biodiversity loss by 2035. An important metric within the City’s Biodiversity Index is
the ability of this urban system to attract and maintain healthy populations of urban intolerant
species.

Supporting information

S1 Fig. Regression plot of urban intensity (first PCA axis) and CUTI scores for all 510 spe-
cies.
(TIF)

S1 Table. Table detailing the loadings and variance explained for the composite urban
intensity layer separated by contributing layers and PC axes.
(DOCX)

S2 Table. Table of all species considered in this paper and their associated urban affinity
scores.
(CSV)

Acknowledgments

We would like to acknowledge Dan Cooper, Miguel Ordenana, and Jessica West for providing
us access to iNaturalist project data. The study authors would like to specifically thank Gary
Bucciarelli, Rachel Chock, and Jann Vendetti for their expert review of iNaturalist data of her-
petofauna, mammals, and slugs and snails, respectively. The study authors would also like to
acknowledge the LA City Biodiversity Expert Council, and particularly the members who
attended the workshop for Metric 1.2b. Finally, we thank the iNaturalist observers and identifi-
ers for their contributions that made this research possible.

Author Contributions

Conceptualization: Joseph N. Curti, Michelle Barton, Rhay G. Flores, Maren Lechner, Alison
Lipman, Albert Y. Park, Morgan W. Tingley.

PLOS ONE Using crowd-sourced data to evaluate urban tolerance of terrestrial native species

PLOS ONE | https://doi.org/10.1371/journal.pone.0295476 May 29, 2024



 

 133 

 

 

Data curation: Joseph N. Curti, Graham A. Montgomery, Morgan W. Tingley.

Formal analysis: Joseph N. Curti, Morgan W. Tingley.

Methodology: Michelle Barton, Morgan W. Tingley.

Project administration: Joseph N. Curti, Michelle Barton, Alison Lipman, Morgan W.
Tingley.

Supervision: Joseph N. Curti, Michelle Barton, Alison Lipman, Morgan W. Tingley.

Visualization: Kirstin Rochel, Morgan W. Tingley.

Writing – original draft: Joseph N. Curti.

Writing – review & editing: Joseph N. Curti, Michelle Barton, Rhay G. Flores, Maren Lechner,
Alison Lipman, Graham A. Montgomery, Albert Y. Park, Morgan W. Tingley.

References
1. Ceballos G, Ehrlich PR, Barnosky AD, Garcı́a A, Pringle RM, Palmer TM. Accelerated modern

human–induced species losses: entering the sixth mass extinction. Sci Adv. 2015; 1: e1400253.
https://doi.org/10.1126/sciadv.1400253 PMID: 26601195

2. McCallum ML. Vertebrate biodiversity losses point to a sixth mass extinction. Biodivers Conserv.
2015; 24: 2497–2519. https://doi.org/10.1007/s10531-015-0940-6

3. Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural sys-
tems. Nature. 2003; 421: 37–42. https://doi.org/10.1038/nature01286 PMID: 12511946

4. Sodhi NS, Bickford D, Diesmos AC, Lee TM, Koh LP, Brook BW, et al. Measuring the meltdown: driv-
ers of global amphibian extinction and decline. Freckleton R, editor. PLoS One. 2008; 3: e1636.
https://doi.org/10.1371/journal.pone.0001636 PMID: 18286193

5. Szabo JK, Khwaja N, Garnett ST, Butchart SHM. Global patterns and drivers of avian extinctions at
the species and subspecies level. PLoS One. 2012; 7: e47080. https://doi.org/10.1371/journal.pone.
0047080 PMID: 23056586

6. IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo; 2019. https://doi.org/10.
5281/zenodo.6417333

7. Munstermann MJ, Heim NA, McCauley DJ, Payne JL, Upham NS, Wang SC, et al. A global ecological
signal of extinction risk in terrestrial vertebrates. Conserv Biol. 2022; 36: e13852. https://doi.org/10.
1111/cobi.13852 PMID: 34668599

8. Brook B, Sodhi N, Bradshaw C. Synergies among extinction drivers under global change. Trends Ecol
Evol. 2008; 23: 453–460. https://doi.org/10.1016/j.tree.2008.03.011 PMID: 18582986
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12. Batáry P, Kurucz K, Suarez-Rubio M, Chamberlain DE. Non-linearities in bird responses across
urbanization gradients: a meta-analysis. Glob Chang Biol. 2018; 24: 1046–1054. https://doi.org/10.
1111/gcb.13964 PMID: 29080260

13. Faeth SH, Bang C, Saari S. Urban biodiversity: patterns and mechanisms. Ann NY Acad Sci. 2011;
1223: 69–81. https://doi.org/10.1111/j.1749-6632.2010.05925.x PMID: 21449966

14. Fenoglio MS, Rossetti MR, Videla M. Negative effects of urbanization on terrestrial arthropod commu-
nities: a meta-analysis. Global Ecol Biogeogr. 2020; 29: 1412–1429. https://doi.org/10.1111/geb.
13107

PLOS ONE Using crowd-sourced data to evaluate urban tolerance of terrestrial native species

PLOS ONE | https://doi.org/10.1371/journal.pone.0295476 May 29, 2024



 

 134 

 

 

15. Rega-Brodsky CC, Aronson MFJ, Piana MR, Carpenter E- S, Hahs AK, Herrera-Montes A, et al.
Urban biodiversity: state of the science and future directions. Urban Ecosyst. 2022; 25: 1083–1096.
https://doi.org/10.1007/s11252-022-01207-w

16. McDonnell MJ, Pickett STA. Ecosystem structure and function along urban-rural gradients: an unex-
ploited opportunity for ecology. Ecology. 1990; 71: 1232–1237. https://doi.org/10.2307/1938259

17. Blair R. The effects of urban sprawl on birds at multiple levels of biological organization. Ecol Soc.
2004; 9: art2. https://doi.org/10.5751/ES-00688-090502

18. Blair RB, Johnson EM. Suburban habitats and their role for birds in the urban–rural habitat network:
points of local invasion and extinction? Landsc Ecol. 2008; 23: 1157–1169. https://doi.org/10.1007/
s10980-008-9267-y
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