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‘ABSTRACT

‘The deca:y of a-fermion of e.rbitrery spin into an unstable
‘spir‘i-3/2 fe'r_mion' plus a spinleés‘ boson is treated wi.th-deri.sity-" '
?‘ " metr'ix techniques. The formalism described is an extension of
that developed by Byers and Fenster for the decay of a fermion into
spin- 1/2 and spin-0 partlcles. Decay d1str1but10ns are completely '
described for th'ree success'iv‘e decay processes. Varieus te‘sts for

'spm. and parlty of the parent fermlon are suggested e

-3 . N RPN
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" I. INTRODUGCTION

A formalism for treaﬁng strong or weak decay of a ferfnion ieto a
epin—i/z particié and a 'spinle'ss boson was deQeloped errna year ago by
' Bye'rs and F'enst:er.1 The purpose'df this article is to extend the formalism
to treat fermion deca}? into a spin-3/2 fermion plus a spinless boson.
The angular distribution of the deeay and also the anguiar dependence
. 'of the fermion's polarization eomponents afford tests for spin and pa-rit&

Ahypotheses' concerning the parent fermion. In‘ general, the analysis of
' second'—'ran'k tensor polarization of the spin-3/2_fermien is possible; in

addition, vector and third-rank tensor polarizations may be analyzable.
II. THE DECAY MATRIX
‘The decay process

X—+Z+B 2 o (1)

_ (spin: J =~ 3/2 + 0)

may be described (in the rest frame of X) by expressing the spin~space
density matrix of Z in terms of that for X:

= Mot @
where 777 is the decay matrix. ¢ We -suppose p,. to be. given in the
usual J, M representation, with sorhe ebnvenient direction defined by |
X pl;oduction (e. g., the production normal) as the quantization axis.
Further, we wish to treat the decay ‘of X into Z in tﬁe syetem which
yields helicity states for the Z. Thus the decay matfix fney be considered
as having two parts: a rotation matrix w’hich transforms Py into the -
| 'helicity system'' for Z (v;;ith'quantizatien axis along 2, ‘the direction

- of "particle" Z in the X rest frame); and a diagonalized transition
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matrix (A) describing the decay X = Z + B. That is, p, = A(Rpy rfyal, ™
j whére . R represents a rotation operation. : |

The complete element of the decay matrix may be written
| 12 pyI% | "
Y = Ay 2T+ 1)/4n] / o .0, 0), o (3)

with A, = -3/2, -1/2, 1/2, and 3/2 for the case under discussion here.

The %/IX' is a matrix element for a rotation operator (and may also be
' 3,4 ’

referred to as a '"symmetrical-top function'). The A)\ ‘are the helicity

amplitudes, the elements of the diagonalized transition matrix describing -

X = Z + B.” Their form depends on the spin of Z, the spin of X, and the
relative X-~Z parify. | |

The helicity amplitudes ax;e obtained as f'oll.éws.. Each A)\ repre-

. sent.s the probability amplitude for the bre'akup'of a systém of total spin Jh
(with projection A on the helicity axis) into a sirs.tefn which has spin 3/2
(and helicity component X) and any allowed orbital aﬁgular momentum

‘(with helicity component zero). The A)& rﬁay have contributions from
four orbital angular-momentum waves, £ = J -3/2 through J+ 3/2; two
of thesef-. 2 waves have even parity and two have odd paritf. The relative
c‘ontributions from the different orbital states rﬁay be expressed in ierms

" of the complex decay amplitude a, and the Clebsch-Gordan coefficient "

* for combining £. and spin 3/2 to obtain spin J: >

A)\=

z

L (T2, e aen/2ae i) Ve cuigemion
=_‘-)h'3/2 %al’c;(;;,g,_z;h,_x,, S T

The second expressidn for A)\' given in Eq (4) folléws from the ﬁfst
" by ‘the'use of symmetry properfies of the 'Clebschv—Gordan coefficients;

' the form of the second expression is reasb.nablé, ‘in that a, ‘multiplies




kY

' since the A = 3/2 and -3/2 spin states are not accessible to an initial
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- the coefficient giving the probability amplitude for forming the angular cos

momentum state £. (For the familiar case of decay into spin 1/2, the |

hélicity-amplitudés Ai/z =a+b and A_i/‘2 = a - b may be found by -

'::evaJ_.uating A, = ("-)}"'.1/2 %: a, C(J 1/24;\, -\) or by diagonalizing the

;o

- transition matrixa+b 0'fF. See Appendix I for further discussion.)

It is perhaps more practical to discuss strong rather than weak

- decay of the X, and to keep the opposite-parity "amplitudes" separate. | The

"Ay amplitudes receive contributions from orbital angular momenta

1= J-3/2 (not allowed for J = 1/2) and J+ 1/2 if the X has spin. and

+

parity, relative to the Z, of 1/27, 3/2°7, 5/27, etc.; 'thAey have con-

 tributions from £=J-1/2 and J+3/2 if the X has J¥ =1/2",3/2%,5/2°, etc.

The two sets of helicity amplitudes have the following forms: s

o o9 R R P
aag + XE ﬁJ _ _ : b3 o,J,~l-d[3J -

. : .a'\]—g ﬁJ—caJ ‘ . 'bﬁJ - dN3 a5 ;
A=l and A' = . (5)
aN3 ﬂJ .- coy 'P6J+d.'\/_§°'J
| | aagt c‘\lng ) '—b'\/_.'?o.J - dB;
; SR . i

for the 1/2.+ and the 1/2 parity sevquences, respectively. All four A)\

elements are actually applicable only to the decay of an X with J 23/2,

particle with spin 1/2. . The coefficients a, b, ¢, and d in these matrices

- represent the complex amplitudes a, for decay through the channels with ' =
' 21=J-3/2, -1/2; ,-‘-1/2,and +3‘/2,, respectively; the remain‘ing: symbols are
dependent on the original X particle's spin,- with ay _='\}A J+3/Z and with

By ="\IJ;-1/2.. These A, amplitudes are subject to.<the'cons‘traint'é'-‘ of

normalization (total decay probability being equal to 1):

TrAAT or TrAAT=4. 0 (6)



. LI, FINAL DENSITY MATRIX
'Expi'essions for the angula.r'distribution a,nd for the polarization
.components of the Z "“particle'" are obtained by expressmg Px ‘in matrix

) ﬁform and carrymg out the transformatxons of Eqs. (2) and (3) We take

. _Z.Jx v : -
(zJ )7 Y (2L+1) T (7).
Px = fo LM “LM

in the manner of Byers and Fenster. 6 It is convenient to use the irre-

7 (These are

ducible tensors T as basis operators in spin space.

LM :
’traceless and symrnetric tensors;'i\nd hence their use;simplifies the
satisfaction of nofma.lization and hermiticity requirements for the density
. matrix.- Further, they eombine naturally Qith the orthogonal YLM(G, $)
tensors in dAece'xy distributions aerived from the density matrix.) These 'i{.
tensors have forzne in spin space lwhich correspond to those of the YLM |
in coordinate epace; e.g., Y, (x+iy)/r and Ty« (Sx+_iSy)/‘!~S], where
“the Sx ‘and 'SY are spin operat':ors. and I:S |l is m 'i‘he T

- tensors obey the symmetry relation TL, _M = (_)M'TEM’

LM

In Eq., {7), the T operators have a maximum rank (L)’?equal

LM

to ZJx.' The tiMm represent the expectatmn values <T > which

describe the X initial spin state. ~ The expressmn'for an element of the
final 2 densit‘y matrix becomes, by the use of Eqs. (2) and (3)",-
pz]ni —M"M' Ay 19;’;\ [LZM (2L+1) tLM TLM} ,&M X
. Then, as shown by Byez"s and Fenete.r; Clebsch-Gordan celefﬁcients may.
" be substituted for the matrix elements of th‘e‘-TL.M' : _ |
M}w' = C(JLJ :M'M) w1th M"— M + M :‘-‘ (9

’ for‘-the representa.;mn where TLO" is d1a.gona1 Thm substltutmn y].elds

A;f /;.n., (8)

-,
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s J v
= (A A ./41r) Z Z (2L+1) t C(J LJ;M'M)ﬁ " .
} AN M"M L, o M'"\ M)\
(10)
- With the use of various properues of the 48' functxons and of Clebsch-Gordan

6,8

coe£f1c1ents, this reduces to" . ‘

Pz)xx' = = H“M (A\A x' /4") N 2J+1
X Z [NaL+1 craLia, )
L, M

xet B 6,0, S Cay
Evidently the derivation of Eq. (11) is a g;eneral one, which is valid for
any spin of X or of Z (integer as wellb aé-half—integer).
" The elements of the pz dénsity matrix may be used to derive
theoretical expressions for decay .distribut'ibns. after simplification of

terms. It is convenient to define the :-:yn.dbol9

o (2N
e '

T Neay/a Y2 casionman, 0 (12)
~ where \- as‘s'umes the usual values from +3/2 to -3/2 and where Y has
a value of 0,1, 2, or 3 (m béing )\-h'). | 'Th-e‘d'iagonal elements: of the‘derisivty

‘matrix then maf be‘c_axpr‘esse-d as

e § 2N) % o o
‘J'_Axl Z (Lo)t’;LM LM(6¢)

Pry =
‘ AL L, M
20y (zx) '? | B
= |Aa | Z | (9 ¢) (13)
| | | i Lo ‘LM LM - Rt
, * .
v'w1th YLM(O ¢) replacmg ‘\](2 +1)/41r MO (¢, 9 O)- .. The three

‘elements Just above the diagonal of pZ are s1m11ar, but contain »8 M1 HE
.the two elements above these conta.m BMZ 4 etc. The denszty ma.trlx thus '

has the followmg form [w1th DMM

'J (2L+1)/41r W\ (¢' 6, 0)] L P

repla.cmg the orthonormal function |



2. (3) ok .
LM'A3| "LoYm - fLms’
2 . . 2

P W

- - . —_— : | L0 YLM e

R N
G

s
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. As the density matrix is self-adjoint, all terms of Py below the
»_dlagonal are easily obtained from the terms above.

: The n(ﬁz:')\ coeffzc:ents may be related by the use of symmetry

B propertles and recursion relatmns for the Clebsch-Gordan coefficients;

€. g. M 7 -
( 2)‘)—( )L (2 ) for any L, \- )
and (3) {1 - L(L+)[(I+3/2)(3-1/2)] ~ } n'!) for evea L.

See Appenchx hii for other ng:;,\) expreséions.

IV. DECAY DISTRIBUTIONS

The angular distribution and all possible polanzatmn distributions

i l
¢

 for the Z may be found by taking the expectation values of all spin '

| operators required to describe the Z ‘spin'state: TOO (the identity),
Tio0 T20r Ta1r Tazr T30

operators as those described above; but here they have a dimensionality

T31', and T32. These are the same tensor

of 4 (are represented by 4 by 4 matrices) rather than ZJX+.1 as above.

{
The theoretical expressions for the expectatlon values are derived

(in terms of the t descnbmg the original X sp1n state) by takmg

LM
, '.the trace of Py T LM (and normahzmg through d1v1s1on by Tr pZ)
The angular distribution of the Z in the' X rest_frame 1$ found,
with the use of Eq. (15), by e'valuating“l'1
2J-1 ' o :
(1) :
Z Z [(A3/2+A 3/2 L0+(A1/Z+A 1/2) Apol tpm ¥ (6 9) (26)

The mdex Le takes on only even values be(‘:ause the cpmbination of

B
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) A and -\ elements of pz causes odd L contr1but1ons to casncel (for
strong decay). The appropnate forms of the A)\ amphtudes and of the
ﬁLO coefficients may be substituted to predlct the angulaf distribution for
any spin.and parity of the initial X sy;stefn. : As an example, the distri-

bution for JP = 3/2-_ 1s (if the production normal is the polar axis) -

rs

2,2 | ' B
1(9,_¢)—4(a +c )noo 00 00—-8Rea c ﬁ( O[tZO 20+2Re(t22 22)] : (47)

whereas that for J© = 3/2+ is

10, 6) = 20(6%+d2) i g gt Yo 82 -24+3 Re BF d) ) [t2@Y20+ 2Relt,y,¥3,)]. (18)

Because of the normalization requirement of Eq. (6), the first terms (or
average cross sections) are identical in these two cases. (Eaeh is equal

Y. = 1/47.) The complexity of the 1{6, ¢) distribution demanded'

to npotoo* o0
by experimental data of course gives information on J, the X spin.

i

Polarization determinations are necessary to establish the X parity, as

Well as to obtaln more information on the spin.
- Although < O>Z’ < 1>Z’ and <T1 —1>Z‘ the components of
""'vector polarlzatlon" of the Z, are produced by the X-’ Z decay process,
strong decay of the Z cannot serve for a.nalys1s of this polanzatlon. A
~ tensor component.. of  Z polarization which will be found in the angular
. . , P . .z.r =2 . P . '
distribution of Z decay is <T2.O> 7 & <3 SZ S > (This is the Z spin

alignment along its direction of flighf, as the density matrix Py used to

derive -<T20> = Tf(p TZO) is in the helicity re'pre_sentation.) Further
contributors to t';he Z decay dis’tribution are '<_T2,‘:‘!:1'> 7. and <’I‘2/’ 2 > 7 |
however, these are observable only if azimuthal as well as pola.r decay

angles (relative to Z) are investigated. .The expressmns for these tensor

' polanzatlon components are given by the followmg

. i
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l‘I.v <?zo;> z = Trlp,T,0) = f1/5)_1/2 IEM 3

H(AZ 2 . (3)_ .2 2 .1 a5
X {(A:’./Z*A«z’/z)‘“(r.,g - (A1/2+A71/z)“£3] trmYTmi6r @)
' = 1/2 LA A 2I+L|
I (T )g = @/5) / LZM [-A1/2A§/2+A_ 3/28 1/2( Sk * }
X 600ty [(ZL“)/"‘"] 1z ‘gmi (4. 6.0) o ) (19

A ) 1/2 [ * o’ 2J+L]
1 (T, ), - (?/5) / L, M ;j“-1/aA3/z’ -3/2" 1/2( 7)

X 3 by L /4mn 2DL, (40,6,0)

As these are unnormalized, the.y representﬂl(e', $) times <Tlm >Z.(9, b).
[@ll of the relatio.nvs in Eq. (19) may be readily derived with the use of
the TI - matrices for spin 3/2, which can be calculated from Eq. (9).
’I‘hese are present‘ed in matrix form in Ref. 12] .
in order for the polarization components‘ of Z to be analyzed,
the nature of Z decey ﬁust be examined.v The simplest possibility is
the strong decey | .
Z~F+b N 10
(spin: 3/2 - 1/2 + 0), |
where F may be an unstable fermion (& or A) vor a'stable one (p or n).
The original Byers-Fenster formallsm may be apphed to obtam angular
~and polanzatmn d1str1but10ns for F (1n the Z rest frame) in terms of

, < T£ >Z‘ parameters descnbed above (If the ferm1_on F ha_s spin 3/2 _
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rather than 1/2, the express1ons developed above for pz -should be '
reapplied to determine P and hence the various. *I T:z::i >F )
The formahsm predicts that the angular distribution of F (spin 1/2)

in the "Z rest frame is (with ammuthal angle 1gnored)
ogl (4,)‘: _.1__.1(9 )[4 - <T | > G(3c‘osz¢-1)/z] : | (21) |
4w V0 .20/ 2 : * .

Here the-'angie Y- must refer to the angle between F and Z '(2 being

now defined as the d1rect10n of transformatmn into the z rest frame),

' "correlatxon" angle; this is requ1red by the 1nterpretat1on given <T20 >Z :

in deriving Eq. (19). Equatmn (21) has a partmularly simple form if the

direction of -2 (sPec1f1ed by angles 6 and ¢) is averaged 'QVer, as all

, terms then vamsh in 1(6 ¢) and I <T20> except for the L, M =0,0 terms ]

1y

of Eqs. (16) and (19); thus I(0, ¢) becomes equal to TrAA /4Tr = i/4'rr -

and I <T >Z become's a ccnstant det)endent' on the helicity a;nplitudee R |

' .for X+ Z. As the he11c1ty amphtudes are functxons of Iy ‘and these = .

functions depend on the X parlty, some sp1n par1ty 1nformat10n may

' be extracted from a 51mple F-Z correlatlon analye1s. 1f only the

- lower 4 wave [amplitude a or b of Eq. \(5)] is included, the expect_ed

distribution 1s 13

é’(w « a®[47- <1/2)( -2743)(3 cos Py~ 1)] oc[1+ (%;1’) c'qs’zwl ) |
for the 3/2 : 5/2+ /2.-', etc. panty sequence (£=3- 3/2), and 1t is

e w)oc b’ [4J+4 (J+5/Z)(3 cos ¢ 1)] dw(%%}%) éo‘s' ¢] | | ey '

~f<5r the'3/2 5/2-.. ‘,7/2+, etc. parlty sequence (= J 1/2) For the case

of J' 1/2 there 1s no parity dlscnmmatmn, the correlatlon dlstnbutlon

"._for 1/2 or 1/2 o "i-i RO ‘,

,3 (¢) [1+(3/2) cos q;] o S e2e)
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If all angles are observed in the X - Z - F' deeay eéhain, the
b

B

angular dlstnbutmn of the ‘spin- 1/2 F may be expressed as follows:

09 (6, 4 27 L)— 24 10, ¢ - <Tzo> (6, ¢)~f"(3 cos?y - 1)/2 - (25)
| +2(15/2)1/2[\Re< 1>(6 ¢)cos§,+1m< 1>(9 ¢)s1n§]sm¢cos¢

15/ 2 [Re (T,, (6, $) cos 20 +Im <T22> (6, ¢)sin2e] sinZy}, "
. -where ._0, ¢ angles give the direction of 2, and ¢, § ahgles give the direcytio'n
of F (in the X land Z rest frames, respectively).. The expefimenfal o
evaluation of theee angles shoeld" me.l.ce use of "direct "jLore-ntz trans -
. formations" to mo\;e reference axes from one reet framie to.the next.14
Further, the aximuthal angle‘ { of F should be referred to the x axis -
used vfor eonstructing Py this is found by taking ;2 = m) where ;
’ 3/ is the polarl axis for 6 (probably the pre.dt'lction normal).. |
If the fermion F is unstable, its decay provides an analyzer for.
the (vector) polarization compof;ents of the F. It .is“o'nly in these polar-
. .1zat10ns that the odd i <T >Z appear; if the ‘F has bee‘n produced
by strong deeay -The expressions for these" <TJZ >Z in terms of the
_ LM parameters descr1b1f1g the or1g1na1 X spm sta.te are (w1th L0
takmg only odd values) _
I <T10>z = Tr("z 10) “/15 /2 Z

=0

2y (3) . s
[3(“"3/2’rA 3/2 140‘”“‘1/2"A 1/2)n ] BRY LM(B o

1N

i/2 7 e J+L
1<m>z--<2/15>/ 5 __{[Aa/zA,a/;z.fé» uz(f RRLER #ERED



2- B UGRL-11903
t2A_y /oA 1/2 (ﬁ}} ‘LM{('ZL+3)/4w] UZ@& (¢eo) cont. (26)
1 (T >z'= (1/35)1{?‘_ L}:M {[Ag/z+A"13/zl_-"
. R
X n(L& -3[Af/z_.+Af.'1-/2] ng&} tLMY;:M{(G,q?)_

v

RECR STV Ep)

L. M
' (1)_4 (-1) L . -
X { 1/2 3/2 Li“f—A 1/2 1/2 L1” 3/2 -1/2 Li]LMﬁm1(¢'ef 0)
. <T32>Z,_-(2/7) » z [A-1/2‘9‘3/2n1.2 -A-3/2A1/2nL2]tLM011;12.(¢’6’ 0)

L, M

f
!

| 1/2 L
’2(1/7) /%4 ALz oh 3/2 LZM n1.3 LM"GM3 (¢, 6, 0).

1 (73

" The cbntlfibutiohs of these expettation value_s to the longitudinal and trans-

‘. \',e_rse polariz‘atien componente of the F are given i)y the followi‘ng:

09 P.F - (4w)~,1/~_’~ {9.488[@10)&10 + ZARe'( <T“> Yf‘ij] |
a1.34] <T30> Y3O+Z 2Re(<T3v Y;,)]} | Sy

9 217 9 = -ytsn & AT (0080t (1) B

G- o T ) B LM o) 82,0

NN
where X' = F X(FXZ2Z) and §' = ZXF. The surnmatipn index Vv runs from
1 to 3. The Y m andﬁ . ',' symbdls represent the functions Yl (W, C_,)v
and /Q 2 m! (Q ¢y, 0),_ respectlvely, also,v in both equatmns, the subst1tut10n

of (~) <T n)for(T > has been made. In the second of these equa.tlons, ’
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-, the symbﬁol. vy is to be taken as +1 ot' ;-1 if the felative'Z-;j‘iI-" parity is

such that the aﬁéular monﬁentum in Z decay is J-1/2 or J+1/2, re-
spectlvely The polanzatmn components of Eq. (27) are determmed
expenmentally by taking (3/&)2 p- F (3/0.) Z p- X', and (3/&)}: P
vwhere a is the usual asymmetry parameter for F decay and p is the
vdecay momentum in the F rest frame; the sttms are taken over all events

with F at some particular {,{ orientation,

V. EXPERIMENTAL TESTS FOR SPIN AND PARITY

. One possible test for parity and ‘sp'in of the X :is to be found in
the sign and magnitude of the 005241_ coefficient of Egs. (22) through (24),
which are valid under the assumption that only the %ower angﬁlar-momentgm ‘
wave contributes to X deeay. Equation (23)is not very sensitive to spin ]
assumption, and Eq. (24) yields no informat.iort on parity. Other possible '
tests, some of them more general than the'above,'v are I;res'ented in thev
following paragraphs.
The <T2 > values describing the Z spin state rhay be detexfmined.
from the angular distribution observed for the process Z —+ F. [See Eq (25).]
If ¥ undergoes weak decay, the <T1m>Z with £ =1 and 3 may also be |
determined.‘. (In p"rin.ciple,' a scattering of F with a known analyzing
B target would alse yield the <T1m >Z and <T3m>z ) The experimental evaluatigns/,?f
: I.(9,‘$>)'for X =+ Z and the three <T2m >Z (6,9¢) from X = 2Z -~ F l)’ield:a B :
total of fou.r evaluations of each even-L., A- ‘LM descnbmg the initial X
|  - state;'.‘further, the two V<T >Z and the four <T >Z yleld'51x evalua-

tions of each odd- L t descnbmg the X state. Odd-L (even-L) tLM

LM
. may also be obtamed from <T2m> (<T1m> and <T >) for m ;é 0; but
these arise from 1nterference of the two orb1ta1 amplltudes permitted for a

 given X parity [the a and corxb and d amphtudes of Eq (5 )]and thus are.

kel ama]‘
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@A ) coefficient appearing with a tr M in the 1{0, 4;)

(1)

, Eve Ty n

- or < > distributions may be expressed as nro t1me{§ some factor

- containing Jx and L. (See Appendix II.) The Ay hel;cn:y amplitudes

also depend on J, uiflJiuist 32 3/2. Thus, by compariéon of the

A)\A)\' ng)\) coefficients of YE" -01"0@1 m' from one distribution

with those in another d1str1but1on, various tests of J may be made. One

way of estimating J is to construct a functmn similar to a xz which

(1)

compares values of n; 4 LM obtained in two or more distributions and
to treat J as a variable parameterin this fﬁnction;ié " another possible )
. ,:

approach is constructmn of a general 11ke11hood functlon treat1ng all

stages of decay and maximizing of this function for various J assump-

" tions. A final and poAssibl'y very useful method is evaluation of a J-dependent’

function multiplying some ng()) trM by. taking ratios of terms in v;rious i‘
d‘J'.stributions. 17 .

A poss1b1e approach in settmg up a general spm test function m1ght
be the following. Let the definition of "moment' be the coefficient of |
or [(2L+1)/4n’j 1/'2,9’ L li (projecte..d out of a distribution by

s
YLM

. .
weighting - that distribution with YLM‘ or [(2Lf1)/4ﬂ]'.1/208’1\12M, and

' - summing over all events) _va LM(“ stands for the L, M'moment obtained

from one d1str1but10n, and if fJ(i) is the function of J which mﬁst be

.. e . e (1) S ae
divided into this moment to ob‘ta1n n;.o tLMf and if tLM(Z)-represents

- a similar term from a second distribution, etc., _thén a comparison can
" 'be made of the four evaluations of'-e'ven'-nL "tI._,M's' by: calculating th§ follow-

-‘ing for various J “values.’ -(A minimurn ' "xz'" yields the.best J eﬁtlmate.) S

Z Z {[t (1>/f (1)]— t (1)/f (z)}G"’"' (28)
LM,” LM J <LM J> LM(I).LM()

x{[tLMm/fJ(J)]-(t Mm/fj(a)> }
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The indices i and j designate the four evalnations; and< > represents
an: average of these. The symbol G stands for a varianc'e,%natrix. {That is,
:‘GLM(i), L' Ml(j) is the second-moment matrix, the average value of
) e 2
3 - . 3 - 3 . "
AW R CRWIANS I CRRIRTC) RSP C) N B S

of odd-L moments may be developed by analogy with Eq. (28).

. Y
" for the six evaluations

Construction of a likel_ihood function is not difficult; the pronei‘
distribution function is & (¥, 1) if the fermion F does not decay, and |
is Q X [1+a PF- p] if it does decay. Either of these distribution functi'ons'
- would be most useful if expressed in terms of n(L()) LM t1mes the fJ(l)
function of J discussed above. A hxgh spm form of the 11kel1hood
function, one apprOpnate for the maximum .J' asaumed might be used

then a maximum could be 'sought as a function of J, n M" and the’

| Lo'L
L -wave amp_litudes (without changing the form of the likelihood function).
Finally, spin functions may be evaluated by taking ratios of‘a '

part1cu1ar L, M moment found in one experimental dlstnbutmn to the

corre5pond1ng L, M moment found in another distribution. For example,

after substitution of expressions for helicity amphtudes and for nI(JZM

coefficients (see Appendix II), the ratio of an even-L moment in I <T20> ,
: | - A ,

* to the same moment of 1(6,4)) yields [from"Eqs'..(l‘?)jand (16)] 18

(3-27)(23- 1)—2L(L+1) .
<<T20> YLM>/<YLM> 4120 1) -2L(L41) (29

I <'I‘2 0> ' moment

I moment

Also, the ratio of moments from I <T22> and 1 <T21>y1elds for even Land J >3/2

| ) B / ((T0a) 1) | = @r1/2/lws2nw-01Y2 Goy
Similar spm tests may be constructed from odd 2 I <T > 1f they can be
evaluated exper1mentally Care must be taken in the 1nterpretat1on of these _
' J estimations ; the ratio ‘of two normally dxet;lbuted qnant1t1es._1s 1tse1f not
normally distribnted.iz,wr .\ B | o |
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A S1mp1e test may be made for the X - Z relatweg\panty for any J-

assumptlon, the test bemg the determmatmn of the relaj,we s1gn of a moment e

in I <T22> with respect to the correspondmg moment in 1 <T21> (The o

: he11c1ty amphtudes for these moments are: the same except for a s1gn
_dependent on the par1ty.) Thus 1£I" +1 or -1 for’ J'P- 3/2 /2+, ete. or

3/2+. '5/27, etc.: Tespectwely, for even L and.J >3/2

<<T 2) ﬁMIé* >/ () B2 )= I?.(H1/2)/‘[(L+,2)('L'-1)] RATRNE T
A 51m11ar test may be found in the odd £ I <T£ > . AII(;'I“hese tests are
analogous to the test which may be made for the parlty of a part1c1e decay-
¥ mg strongly into a sp1n-—1/2 fermlon the determmatmn of the sign of any
(.odd -1 moment in the I <T11> or (P x+i P ¥) dlstrlbutlon, relative to '
~ the S1gn of the same moment in the (’I‘10> or long1tudmal polanzatmn'
.of the spin- 1/2 fermion.) A )(2. which tests the’ equahty of correspondmg
‘moments w1th P +1 or -1 is ea511y constructed A
In the course of ana1y31s, it may be convement to study the odd - L: N
'moments.from the I <T > -d1stnbut1ons and the even-L moments flrom‘..'
1 <’I‘ > or I <T3 > d1str1butzons, as these are proportmnal to
2 Im Ay A B and may give a measure ‘of the mterference of the h1gher
' IZ ~wave, | |

if the spin J of "part1cle" X is 1/2 ‘only the quant1t1es I, 1. <T20>

I <T10> v 1<T“> , I<T30> » and I <T31> can be non-zero, :as: pZ] ! is zeTo

FEDA for ])\] or | A |>1/2 Panty of a spm 1/2 X may be found by comparing
the L, M = 1 0 moment in I <T“> w1th the correspondmg moment m 1 <T10>

‘ ; or by compa,rmg a moment of 1 <T 1) w1th the corresponchng one in I <’I’30>,etc. :

"[See Eqs (26) and (5) ]
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VL 'APPLIC‘ATIONS -
| Some of the tests descnbed above are bemg apphed to the
'. decay sequence ..:. (1820) —""'* (1530)+ﬂ', E (1530)* E - A+
) Unfortunately, the number of useful events 1s small and the background
. is apprec1able.19:‘ Other proeesses to whzeh the formahsm for sp1n J’
~decay mto spm 3/2 rmght be apphcable are (a) hlgher ly:mg N* ->N33
“and (b) v*(1815) = \Ya (1385). ’ ' |
The author expresses apprec1at1on to Dr. Robevj;t Glasser, _
Un1vers1ty of Maryland, for a dlSCUSSth of statlstlcal problems, and
" to Suh Urk Chung for a dlscussmn of he11c1ty amphtudes. 'Ifh‘e ;nteres;

of Prof Charles Zemach has been appremated B b

e
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APPENDICES TR

......

L He11c1ty Amplitudes’

.The general form of a hel1c1ty amphtude is SR
-(-"SZ jz(:(Jsfz xv-x) '_ : };_;-Ej ‘(32)"

for the decay of a partzcle of- spm J into one with spm S plus a spmless R

o boson, where J’ and S may be e1ther mtegral or half- 1ntegra1 spins.

" to be

- The helicity amphtudes may be read1ly constructed for the case of spm.‘ A -
- J ~ [spinJ. plus spmless boson] by takmg c0mb1nat1on4 of irreducible
tensors in the spin space of d1mens1ona11ty .2J+1r In analogy with the
-constructmn of the tran51t1on matrix for decay 1nto a spm 1/2 obJect, the
-matr1x for decay mto spm' J- *would seem requ1red by invariance argumer?ts
ZJ |

. A = Z (pLM LMX complex c0ef£1c1ent)) L - (33)

L :
‘where pLM represents an 1rreduc1b1e tensor formed from components of

decay momentum° In the he11c1ty representat1on, only the pLO terms are

nonzero, these in fact become constants because pZ p. W1th the absorp-

tion of Pio factors, the tra_n81t10n matmx becomes, in the hehc1ty
- representation,

A ='a.‘+'~ [ TZO for one parity .
o ' : B (34) .

and A' =b Tyot d T30 for the obposite parity of decay.
However, when the initial and final.spins differ in a'decay, factors dependent
on initial spin modify the various elements 'of.A‘ and these must be calculated
- by a prescription s1m11ar to that of Eq. (4) Decay into fmal spm 1/2. is .
an exception to th1s statement, as the re is only one m1t1a1 spm factor
which 1s common to 51/2 and ‘_A-1/2$ and th1s is’ absorbed in vthe normal-

P :‘"v’ e w

ization of the ampiitudes. L
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L. Relations Among. n(an. Coeffzcients |

The derivation of general expressions for

fﬁf = (- )J"" [(2J+1)/41r] 1/2 CUIL; A,-—A’-)' CN=Aem (35)

in terms of nﬁg is useful because comparlson of experimental dxstnbu- |

tions’ contammg these coeff1c1ents may test for J the’ spm of X. ’ The

2J+L C(JJL; )\ )‘A) permits der1vat10n of

(2)\)

relatlons between the M\ and ->\ forms of n; o and al,so relat1ons be-

.1dent1ty C(JJ L, AAy) = (- )

tween the . n(2 ) coefficients in the (A, \') and (-)\ ,,"‘)\) elements of Py

[Eq. "(14)]:

SRCIN (_)2J+L+1 (2n) ’
n10 10
(Lii) - (2T n(3),

n“g - (- )ZJ+L+1 fz) . L (36)

Recursion relations for Clebsch-Gordan coef_ficientsl(p. 39, Edmonds,

Ref. 3) may be utilized to obtain the following'

403) - (/%) L(L+1)+u+1/2) [1+(- )””‘]} all) - (37)
_which becomes - ni>) = (1/X)[X -L(L+1)] n (“ for even L
and - (3) = (1/%)] 3J(J+i) - 1/4 L(L+1)] () for oad L,

- where X = (J+3/2)(J 1/2) Further,. by use of the same recursion relations,
ol = (2J+1)[L(L+1)]“1/2 (1) [14}(-)””4]/2 : '(38)
“Qm . x-1/2 {L(L+1) (J+1/2) [1+( )2J+L]}[L(LH)]-1/2 (1) (39)
al3) - '1/2(J+1/z),, {{1+< 23+ L(L+4)}[(L+2)<L 1)L(L+1)] 1/ ? Ifo (40)

-ngg +1/2 [“( )2J+L] [(L+3)(L 2)] 1/2 Lz . ey
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M. E. Rosé€, Elementary Theory of Angular Momentum (John W1ley

1
o

& Sons, Inc., New York, 1957).
M. Jacob and G. C. chk, Ann. Phys. 1, 404 (1959) show tha't the *°
matrix. element connectmg ald, M representation of a state with a |

helicity representation is [(27+1)/47] 1/21* L0 (6,6, -¢).  The third

' argument is not observable in processes dlscuSSed here

'The flrst expressmn in Eq. (4) follows from Eq. (BS) of Jacob and

Wick, Ref 4, These Clebsch—Gordan coeff1c1ents are wrltten in the
form used by Jacob and chk C(Jijzj,m 2) | |

See reference 1 and also ‘the unpubhshed appendlx of "Determmatxon : '

_ of Spin and Decay Parameters of Fern‘uon States, " N Byers and

- S. Fenster, unpubhshed report of Dept. of Physms, Un1vers1ty of

Cahforma, Los Angeles, May 27, 1963

'I‘hese T tensors have been prevxously ut111zed to descnbe the

LM

spin state of the deuteron in scattermg processes See W Lakm,




o,

10,

" An alternate def1n1t1on, more convenient for calculation,is
NN [2L+1
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The useful relations, found in Rose and Edmonds (iRef 3), are -

1
Bp'i 1‘78}.&21'1’1 z C(JiJzJ:}"it"z)C(JiJlemi 2)’@:11"1‘-2:“11*“‘2 .

and DT (apy) - mim B 1 (apy) and also.

mym, C(jijzj;mimz) C(jijz'j';mimz)_: ijt. The first relation here

‘holds also for products of spherical harmonics. YLM' as

Y1 0000:0) &= O (6,6, 0)%

The d@II:'AM: functions are described in Jacob and Wick? as well as

in Rose a.nd Edmonds‘; some ate tabulated in thé former reference
in terms of s:.mple 0 and ¢ functlons For eyaluatmn of Eq. (11),

symmetry propertles of the TLM (see TL M expressmn in text)

and OT 1 are uséful [ O T (€00 0) = f)L+pa®Mp(¢,Tr-9. 0)*]_'

1/2
Lm —'-'4-1".——] C(JLJ )\-'7’\’\ YYL)
Takmg Tr(p TI ) is eqmvalent to fmdmg <x ITIm |xn> for each spm

~ state n and summing over all spin states with proper we1ght1ng

An alternate derivation of the distributions for partlcle F may be

* ».used which does not demand the caiculation of the I <T2m> quantities

' for Z. This is the transforming of the density métrixpz by use of .

a transition matrix (Wi) fof the Z -+ F decay; i. el. , the calcdletien.of
.pf =)4/L' Py )’){'T from the‘expr'ession for Py, in"Eq. (8). . The transi-

tion matrix Y here involves the weli‘—knownABz:‘n‘u functions ét_nd the

helicity amplitudes for spin 3/2 decay into spin 1/2 plus spin 0.
v Although thls 1s a more elegant der1vat1on, it does not prov1de so

| clearly the means for making spm a.nd par1ty tests as dOes the method ’

presented in the text.



11.

12,
13,

14.

15,

... transformation is maintained. See H. P. Stapp, Relativistic 8
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The 6 ‘and’ ¢ angles must be referred to axes. defmed by vectors s

l
4

in the X productlon process. If the normal serves,{as polar ax1s).

all t,LM with odd M are zero.

‘See appendix. of J. Button-Shafer and D. W.. Merrill, "Properties:~

of the E Hyperon,'" Lawrence Radiation Laboratory Report

'UCRL~11884 December 1964 (unpublished).
- Prof. Charles Zemach has derlved these same dlstnbutlons by the

. use of an entn‘ely dlfferent. forma.hsm. Charles Zema.ch (Unlversny

of Callfornla, Berkeley), prlvate commumcahonm 1%4
A d1rect' Lorentz transformatlon means the transdatmg of axes so

that their orientation relative to th_e direction of ihe usual Lorentz

4

.. Transformation of Spin Directions, University of California Radiation

Laboratory Report UGRL-~8-0«96; Detember _1957.'(unpublished).

Here the first two eXpreséions represent longitudinal ‘and trans-

' -~

verse peolarization compbnents'fer Z; i. e._,',»"I‘iOOC"_S—- Z and
T11°C(Sl' X+1S:¥)

Some r-elati‘onsﬂfrom Apbendix II have been utilized to simplify

;- eXxpressions.

This function cannot be interpre-ted' as a true xz, but should yield

an unbiased estimate of J. An exarnple of the application of a "y 2-"_ ]

 test for variable J is presented in an analysis of the Y*(1385),

Janice B. Shafer and Darrell O. Huwe, Phys: Rev. 134, B1372

(1964)., the xz of Eq (19) and F1g (2) tests the relatlon v

-,

from 10ng1tudma1 ‘and transve r_se compo'nents '.of polar1zat1qn, o

) respe‘ctively.-‘. I o

s

<

v(2J+4) t(1) [L(L+1)] 1/2 t(Z), where t(1) and t(2) represent moments :




T
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An example is given in the calculatmn of (2J+1) from moments for

kY

= decay suggested by M. Ademollo and R. Gatto, Phys. Rev. 133,

. B531 (1964), or in the calculation of 2J+1 for strong decay suggested

18,

| _‘by Byers and Fenster, Ref 1
Equatmn (29) is valid only 1f the 2y amphtude of h1gher orbital

" angular momentum can be 1gnored relatwe to the amphtude of lower

L ‘angular momentum (i.e., ¢ << a or d<< b)

19,

; sphttmg a.n X resonance band a.t 2 X 0) (b) treat background Y

As no gene’ral formalism exists for the treatmentf.o'f background

“or mterference problems, the experlmenter confronted with these .
' problems can at best (a) throw away events in portmns of Tresonance -

' ‘bands showing mter-ference (by using strong-decay symmetry and

near resonance separately a.nd compare results and (c) try to find

) tests least sens1t1ve to background. i
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