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ABSTRACT: Molecular surfaces play a pivotal role in elucidating the properties and
functions of biological complexes. While various surfaces have been proposed for specific
scenarios, their widespread adoption faces challenges due to limited efficiency stemming
from hand-crafted modeling designs. In this work, we proposed a general framework that
incorporates both the point cloud concept and neural networks. The use of matrix
multiplication in this framework enables efficient implementation across diverse platforms
and libraries. We applied this framework to develop the GENIUSES (Grid-robust Efficient
Neural Interface for Universal Solvent-Excluded Surface) model for constructing SES.
GENIUSES demonstrates high accuracy and efficiency across data sets with varying
conformations and complexities. Compared to the classical implementation of SES in the
AMBER software package, our framework achieved a 26-fold speedup while retaining ∼95%
accuracy when ported to the GPU platform using CUDA. Greater speedups can be obtained
in large-scale systems. Importantly, our model exhibits robustness against variations in the
grid spacing. We have integrated this infrastructure into AMBER to enhance accessibility for
research in drug screening and related fields, where efficiency is of paramount importance.

Accurate and efficient representation of surfaces holds
critical significance in various fields, including enzymol-

ogy, rational drug design, and molecular recognition,1 as well
as in interpreting physical properties like the partition
coefficient, solubility, and rate constants.2,3 Over the past few
decades, numerous methods have been introduced for specific
applications, such as the solvent-accessible surface (SAS),4,5

solvent-excluded surface (SES),6,7 and van der Waals (vdW)
surface.6,8,9 For instance, the SAS method, derived initially
from the solvent-accessible area, is used to study the protein
folding problem,4,6 while the SES boundary in the Poisson−
Boltzmann-based solvent model led to physically meaningful
results in the computation of reaction field energies and
potential of mean forces.10−12

In pursuit of accuracy and efficiency, extensive efforts have
been directed toward the development of analytical solutions
for surface generation.13,14 Distinct strategies and programs
have been tailored to specific surface generation scenarios.15−18

For example, a refined density function strategy founded on a
modified vdW surface was suggested for numerical Poisson−
Boltzmann applications.19 Taking both accuracy and efficiency
into consideration, an analytic surface representation was
generated in advance and then mapped onto arbitrary
lattices.13,14,20 Such strategy and algorithm were further
optimized and streamlined by Rocchia et al.21 Concurrently,
the field-view method was utilized for SES or SAS generation
under the finite-difference scheme.22 Yet, significant challenges
persist due to the time-consuming process and complexities in
determining adequate surface curvatures and higher-order

surface parameters for implicit solvent simulations. Addition-
ally, results are sensitive to grid discretization.23,24 It is worth
noting that a surface-free Poisson−Boltzmann solver model
treats the solute and solvent uniformly, bypassing the necessity
of generating a molecular surface.25 The level set function, a
mathematical tool leveraged in computer graphics, has
displayed versatility in shape representation and analysis.26,27

Although the efficiency has improved compared with analytical
algorithms, it is still far from ready for deployment in drug
screening in terms of speed. Lately, the application of machine
learning techniques has garnered increasing attention due to
their flexibility and efficiency in fitting given a sufficient
number of data samples. Successes have been documented in
various disciplines, including chemistry and physics.27−35

Considering the rapidly improving computational performance
of hardware (e.g., TPU (tensor processing unit) and GPU
(graphics processing unit)), the enhanced utilization of these
techniques is projected to boost efficiency.
Taking the SES as a representative example, due to its

complexity, we integrated the level set function with machine
learning techniques to balance accuracy and efficiency in
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surface generation. Contrary to our previous surface generation
method, MLSES,27 we proposed a novel framework that can be
generalized for any surface generation without requiring
specific expert knowledge (Figure 1). The core of this method
lies in matrix manipulation, which enables easy transfer across
various platforms and libraries. A model named GENIUSES
(grid-robust efficient neural interface for universal solvent-
excluded surface) was built using this framework and
implemented across four platforms and libraries. We applied
a set of metrics borrowed from computer vision to assess the
accuracy and efficiency of our model. Its performance was
validated over three distinct data sets, demonstrating that our
model is insensitive to grid spacing, suggesting further
potential improvements in efficiency without compromising
accuracy.
In this study, we utilized three distinct data sets. For model

training, we employed a set of 573 proteins derived from the
AMBER PBSA benchmark suite. This data set comprised
biomolecules with 377 to 8254 atoms, offering a diverse array
of geometries. The training and benchmark data for our model
was derived from the AMBER/PBSA surface builder, which
was tailored for the geometry-based SES, herein denoted as
“classical SES”.24 This approach followed the fundamental
principles articulated by You and Bashford13 and Rocchia et
al.21 We stratified this data set, allocating 20% for testing, with
the remaining 80% partitioned into training and validation data
sets. To evaluate our model’s transferability, we compiled a
data set of 364 biomolecular structures of nucleic acids, given
their distinct functional and rigidity characteristics compared
to proteins. In addition, we assembled a data set of 622 protein
complex structures, which are significantly larger than single
proteins, to test the model’s scalability. A detailed summary of
these three data sets can be found in the Supporting
Information (Section S1).
The level-set function has been extensively used for

representing the SES of a molecule due to its convenience.19,24

Within this framework, the entire surface is discretized into a
three-dimensional (3D) grid space G = {g1,···,gNg} containing
Ng grid points, where gi

3 signifies the coordinate of the i-
th point in the 3D space. The distance between two nearest
neighbor points is a constant value s ∈ (0, 1] (also referred to
as the grid spacing, Figure 1a). The sign of level-set values (yi)
indicates whether a grid point gi is positioned outside-of-
boundary or inside-of-boundary26 (as illustrated in Figure 1d),

=

+ +l
m
ooooooo

n
ooooooo

y

g

g

g

, exterior region

0, on surface

, interior region
i

i

i

i (1)

where Ω+ represents the exterior surface region and Ω−

corresponds to the interior region, + and are
corresponding positive and negative level-set values, respec-
tively. The sign transition between the inside and outside is
made at point ∂Ω, referred to as the surface. The surface,
therefore, can be ascertained by identifying the phase of sign
alteration.
The concept of point cloud was introduced here for the

representation of 3D molecular coordinates,36−38 where it
consists of a set of data points with each point denoting the
specific position of atoms in molecular systems. For a molecule
containing Na atoms, it can be expressed in digital format (A)

= { }A a a, ..., N1 a (2)

where ai
3 represents point located in the center of atom i

within a specified 3D space.
With the digital format of 3D molecules and grid space

available, the surface generation problem simplifies to mapping
the 3D molecules and grid space into the level-set function.
The objective is to identify function ϕ as defined below:

= =Ay i Ng( , ), 1, ...,i i g (3)

Upon correctly generating level-set values at grid points, a
continuous surface representation can be constructed from
discretely defined level-set values using an appropriate
interpolation function. This serves as a key mechanism in
various scientific processes, particularly those relying on grid
mapping.39 Quadratic or trilinear interpolation functions are
typically employed for interpolation.40 These functions are
instrumental in the construction of surface ∂Ω. Thus, the
molecule surface ∂Ω can be defined via the interpolation
function by identifying the position where the corresponding
level-set value equals zero:

{ } =y y: Interpolate( , ..., ) 0i Ng (4)

where Interpolate(•) is the interpolation function, yi is the
level-set value of grid point gi. As a result, resolving the

Figure 1. Schematic illustration of the workflow: (a) point cloud setup, digital representation of a specific molecule; (b) preprocessing the point
cloud to fulfill the invariance of surface with respect to the translation and rotation of the molecule and insensitivity to the predefined grid spacing;
(c) construction of neural network (NN) for fitting the level-set function; (d) construction of SES surface using the level-set function. Here, the
point cloud presentation of a helical protein is illustrated with an artificially coarse grid. One specific helix of the protein is highlighted for
subsequent processing.
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molecule surface construction problem is essentially reduced to
modeling the level-set function ϕ(•). Accurate estimation of
this function allows for a precise representation of any type of
surface of any given molecule.
Neural networks have demonstrated versatility and aptitude

in fitting functions of any form, provided there is a sufficient
amount of data. In this work, a neural network was utilized to
estimate the function ϕ(•) (cf. eq 3). Although the general
idea is straightforward, two significant challenges need to be
emphasized: (i) the need for surface invariance with respect to
the translation and rotation of a particular molecule; (ii) the
requirement for insensitivity to the predefined grid spacing (s).
In order to achieve surface invariance, we adopted the

relative distance as the feature of our model. Moreover, the
coordinates of the nearest-k atoms {a1, ..., ak} around the
queried grid point gi, along with their corresponding radii, were
chosen as the surrounding environments. This was done to
improve the representation and decrease the grid-spcaing
dependency. Additionally, this makes our method more
suitable for adapting changes from local modifications, such
as rotamer shifts in residues, given a previously built surface.
Such features could further shorten the time consumption in
the surface generation and are distinct from other methods that
necessitate a complete rebuild. The mathematical expression
for a specific grid point gi is formulated as follows:

= [ ]A r rx g d d( , ) , , ..., ,i i i i k k
d

,1 1 , (5)

where ri denotes the radius of the nearby atom ai, di,j designates
the relative distance vector (di,j = aj − gi) established between
target grid point gi and the nearby atom aj, and d is the
dimension of the feature vector xi (Figure 1b). A statistical
analysis was conducted on the number of nearby atoms in our
experiment, and the maximum value (k) did not exceed 24
(Figure S2). Hence, 24 nearby atoms around each grid point
were chosen, and the final dimension of the feature vector (d)
for training and inference was set to be 96.
Utilizing the aforementioned input features (xi) and

objective (Figure 1d), the task can be generalized as below,

= Ay x g( ( , ); )i i i (6)

where θ symbolizes the trainable parameters of the neural
network. The aim of the training objective function is to
minimize the disparity between the ground-truth level-set value
yi that was directly extracted from the AMBER PBSA
benchmark suite and the prediction yi
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Since the model is fully differentiable, a standard gradient
descent algorithm41 can be employed to update the model
parameter θ to minimize the given objective function:

A yg( , , )
(8)

where represents the preset learning rate parameter. For
more comprehensive details on the loss function, optimization
algorithm, learning rate, and neural network construction,
please refer to Figure 1c and Supporting Information. (Section
S2 and Section S3)
In order to robustly evaluate the performance of the model,

this study employs metrics designed to effectively quantify the
degree of accuracy between the predicted and actual surfaces.
The selected metrics are the coefficient of determination42−45

(R2) and the Mean Absolute Error46−49 (MAE), which assess
the level-set value prediction performance. In order to further
ascertain the accuracy of surface construction, we employ the
Chamfer Distance50,51 (CD) and the F-score,52,53 both
commonly used in 3D structure research.54,55

Chamfer distance (CD) is a metric for evaluating the
similarity between two point sets.56,57 It is computed by
aggregating the Euclidean distances between nearest neighbor
correspondences from two point clouds. In our setting, we
have the predicted boundary point set ∂Ω̂ and the ground

Figure 2. Estimation of model performance in the term of (a) MAE and (b) R2 with different architectures, respectively. Performances are also
color-coded, where higher performances are shown as warmer colors, as indicated by the respective scales.
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truth point set ∂Ω, therefore, for each point x ∈ ∂Ω̂, y ∈ ∂Ω,
the Chamfer Distance is defined as

=
| |

+
| |

x y x yCD
1

min
1

min
x y y x

2 2

(9)

where a lower distance value indicates a more accurate surface
estimation.
The F-score is calculated between two sets of points, with a

hit denoted by the existence of two points within a defined
radius r of each other.56 The F-score is formulated as

=
*
+

F
pr rc

pr rc
2r

(10)

where pr denotes the precision score, and rc signifies the recall
value. The F-score can be interpreted as a harmonic mean of
precision and recall with the optimal F-score value being 1 and
the worst value being 0.
In this work, we employed a three-layer neural network.

Within this architecture, the size of the second layer is selected
from the set {8, 16, 32, 64, 96, 100}, while the size of the third
layer is chosen within the set {8, 16, 32, 40} (Figure 1c). An
exhaustive grid search was conducted to optimize the balance
between accuracy and efficiency. As demonstrated in Figure 2,
both MAE and R2 achieve better results when increasing the
number of nodes within each layer. For instance, by fixing the
number of nodes in the second layer to 64 and increasing the
number of nodes in the third layer from 8 to 40, MAE
decreases from 0.103 to 0.100 and R2 increases from 0.943 to
0.945. However, solely increasing the nodes can substantially
increase the computational burden and may lead to over-
fitting.58 Taking into account both parameter size and model
performance, we found the combination of 64 and 32 appears

to be a good choice. All models in the subsequent section were
trained using this combination.
To assess the accuracy of the GENIUSES model, the

difference between the surfaces predicted by our model and
those predicted by classical approaches offers a direct measure.
As shown in Figure 3 a−c, superimposed surfaces predicted by
the GENIUSES (blue) and the classical SES (red) are
presented with respect to various shapes and conformations.
From these superimposed surfaces, it can be observed that
there are no noticeable visual discrepancies, since the points
(blue) generated by the GENIUSES model closely coincide
with those from the classical SES (red). This observation aligns
with the metrics calculated based on Chamfer Distance (CD),
and F-score (inserted in the top of Figure 3a−c).
Additionally, we compared our model to MLSES, a relevant

work in the context of machine learning for SES modeling.27

As outlined in Table 1, the GENIUSES model outperforms the

MLSES model significantly. The GENIUSES model achieved a
markedly lower CD score (CD = 0.1309) compared to the
MLSES model (CD = 0.2312). Given that the CD represents
the Euclidean distances between the closest corresponding
points of two point clouds on the Å scale, a deviation of 0.2312
is considerable, indicating a high degree of error. However, the
GENIUSES model reduces this error by 43.38%. Moreover,
the GENIUSES model surpasses the MLSES model in terms of
F-score (F = 0.9224 vs F = 0.8421). The GENIUSES model

Figure 3. Model accuracy and robustness with different test systems and grid spacings. (a−c) Superimposed surface generated by GENIUSES
(blue) and classical SES (red) for representative molecular structures, corresponding PDB ID’s and metric values are also shown. (d) Comparison
of PB reaction field energies across three different data sets with classical SES surface and GENIUSES surface. Here grid spacing is set to be 0.35 Å.
(e) R-squared values of GENIUSES for the three data sets. (f) Comparison of PB reaction field energies between the surface predicted by
GENIUSES with different grid spacings (s = 0.35, 0.55, 0.75, 0.95 Å) and classical SES surface with 0.35 Å grid spacing.

Table 1. Quantitative Analysis of Model Performance with
CD, F (with Autodetermined Radius Value), R2, and MAE

Model CD(↓) F(↑) R2(↑) MAE(↓)
MLSES 0.2312 0.8421 − −
GENIUSES 0.1309 0.9224 0.9438 0.1019
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also attains an R2 value of 0.9438 and an MAE of 0.1019. As
the MLSES model is classification-based, it does not provide
R2 or MAE values. Besides, its classification task introduces
sensitivity in surface construction.
Upon investigating less accurate cases, we identified that

such errors mainly come from the interior region where self-
intersection could occur between internal cavity and an
accessible region17 (Figure S4). Such inaccuracy mainly
comes from the imbalance between data distribution of the
exterior and interior (Figure S1). Further details regarding this
comparison can be found in the Supporting Information,
Section S4.
In a more realistic scenario, the estimation of Poisson−

Boltzmann reaction field energies utilizing predicted surface
was conducted and compared with energies calculated using
classical SES when both utilized a grid spacing of 0.35 Å. As
shown in Figure 3d, an excellent performance is demonstrated
in PB energy calculations. In the case of the protein data set
(blue square), which contains 573 molecules, R2 of fitted
function reached 1.00 and the corresponding slope is 1.02
showing a slight deviation from 1.00. These results collectively
confirm the accuracy of our model in terms of surface
coincidence and PB energy calculations.
The robustness of our model is initially demonstrated

through its transferability. The GENIUSES model, trained
exclusively on a protein data set, is subsequently applied
directly to surface generation for both nucleic acid and protein
complex data sets where the structural flexibility and pattern
are quite different from training ones. Among these data sets,
the nucleic acid data set encompasses a more diverse range of
conformations, while the protein complex data set comprises
more intricate structures (Section S1). Visual distinctions
between surfaces generated by our approach and conventional
methods are illustrated in Supporting Information, Figure S5.
Estimated PB energies across the nucleic acid and protein
complex data sets are presented in Figure 3d. It can be
concluded from these results that our model maintains an
exceptional performance as evidenced by all R2 is 1.00. Only a
minor decrease in slope is observed for the protein complex
data set, attributed mainly to its intricate structure. The same
conclusion can be drawn from R2. As illustrated in Figure 3e,
the GENIUSES model displays exceptional proficiency on the
protein validation data set, achieving an impressive accuracy
exceeding 90%. For the nucleic acid data set, the R2 value at
Q1 is approximately 0.97, and at Q3 it is around 0.99. The
mean R2 value, lying at 0.98, suggests an overall average
performance for nucleic acids that exceeds 98%. Similarly, the
overall average performance for protein complex is above
87.5%. The same trend applies to MAE, as shown in
Supporting Information, Figure S6.
We conducted an analysis on the accuracy of the surface

generation across a variety of grid spacings. A crucial
observation from Table 2 is that the accuracy of MLSES
model is heavily dependent on the grid spacing. For example,
the value of the CD score escalates from 0.1059 to 0.2312,
indicating an error rate increase of 118% when s rises from 0.35
to 0.95. In stark contrast, the GENIUSES model demonstrates
remarkable robustness against variations in grid spacing, as
evidenced by the slight change in CD score (an increase from
0.1035 to 0.1309, corresponding to a modest degradation of
26%) when s progresses from 0.35 to 0.95. This pattern is also
consistent with the F-score. As s expands from 0.35 to 0.95, the
MLSES F-score plunges from 0.7311 to 0.3718, marking an

error rate increase of 49%. Meanwhile, the GENIUSES model
demonstrates a modest F-score decrease from 0.7360 to
0.6833, signifying only a 7% degradation. A detailed
examination of Table 2 reveals that at a grid spacing s =
0.95, the GENIUSES model achieves superior performance
with only 30,000 data points, compared to the MLSES model
at grid spacing s = 0.55 that requires 150,000 data points. The
premise of fewer data points ensures the efficiency of our
model, which is expounded upon in the following section.
The PB energy calculations performed over the protein data

set using different grid spacings also manifest the robustness of
our model. As depicted in Figure 3f, no significant
discrepancies were observed in the energy estimation when
employing different grid spacings. The correlations between
the energies using the predicted surface of varying different
grid spacings (s = 0.35, 0.55, 0.75, and 0.95 Å) and those
derived from the classical SES surface with a grid spacing of
0.35 Å all remain 1.00, and the slopes of the fitted linear line
approach 1.00. These results validate the robustness of our
model concerning surface generation and subsequent applica-
tions.
At the heart of GENIUSES lies the treatment of matrix

multiplication, which enables its efficient implementation
across various platforms (CPU and GPU) or libraries (Torch
and CUDA). Here, to validate its efficiency and evaluate its
performance across these platforms and libraries, we
accommodated four distinct kernel configurations (Fortran,
Torch CPU, Torch CUDA, and CUDA) to meet different
utilization scenarios. The detailed implementation of this
method across various libraries and platforms is discussed in
Section S6.1 in the Supporting Information.
Using the build-in classical SES procedure in AMBER/PBSA

as a benchmark, we also compared the time consumption
among widely used classical implementations of SES methods,
namely EDTSurf18 and NanoShaper,17 as well as the machine-
learned method MLSES with our model implemented across
various platforms and libraries. For a fair comparison, we
disabled the printing of intermediate grid points information in
both AMBER/PBSA and GENIUSES, only retaining the
printing of surface information, consistent with other SES
programs. As shown in Figure 4a, with increasing number of
atoms, all methods tested in this work show a consistent trend.
This trend coincides with our intuition that the task of surface
construction is proportional to the number of atoms. For
systems containing fewer than 2000 atoms, regardless of the
platform or library utilized, our method (solid circle)
significantly outperforms the classical SES (blue “X”) and

Table 2. Quantitative Analysis of Model Performance with
CD and F at Different Grid Spacings (s)a

Model s (Å) Ng CD(↓) F0.15(↑)
MLSES 0.35 560K 0.1059 0.7311

0.55 150K 0.1459 0.5697
0.75 60K 0.1882 0.4535
0.95 30K 0.2312 0.3718

GENIUSES 0.35 560K 0.1035 0.7360
0.55 150K 0.1145 0.7116
0.75 60K 0.1230 0.6978
0.95 30K 0.1309 0.6833

aThe radius (r) required for the F-score calculation was kept constant
at 0.15 Å. Ng is the number of total grid points for a given target
molecule under current grid spacing.
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MLSES (pink “X”). When the atom count exceeds 2000, most
implementations of the method still outperforms the classical
SES (blue “X”) and MLSES (pink “X”), except that
implemented with the Kernel Fortran on CPU platform
(green solid circle), which exhibits a marginally slower speed
than MLSES (pink “X”).
The efficiency of our method is further quantified by the

relative speed compared with the classical SES fromAMBER/
PBSA, as shown in Figure 4b and Table 3. The relative
speedup average is calculated by taking the average of relative
speedup on the each molecule between the different SES
programs and the benchmark. From this analysis, we can safely
conclude that 26-fold speedup of our model with respect to the
classical SES could be achieved over the protein data set when
utilizing Kernel CUDA. (Table 3) Even with a CPU
implementation (LibTorch GENIUSES), our model still
exhibits a 5-fold speed-up compared to the classical SES.
These results were consistently observed over the other two
data sets, one of which includes much larger protein complex
structures (Figure S7). Comparison was further conducted
over widely used classical implementations of SES methods,
specifically EDTSurf and NanoShaper. As detailed in Table 3,
the EDTSurf method exhibits a slightly slower surface
construction rate compared to the benchmark method with a
speedup of 0.37 and 0.66 over nucleic acid and protein data
set, respectively. For NanoShaper, an 8-fold speedup was
achieved over protein data set when utilizing only one thread.
Such a speedup increases to around 19 when applying 32
threads. Further increasing threads to 64 does not significantly

accelerate its speed. The surface generation speed is highly
dependent on the molecular size.17 A comprehensive
comparison over large-scale protein complexes was conducted
and listed in Table 3. Both EDTSurf and NanoShaper
outperform the classical SES implemented in AMBER, the
speedup for EDTSurf is 2.15 and 18.16 for NanoShaper when
utilizing 64 threads. For our method, its scalability was further
demonstrated by a remarkable relative speedup of 33.28 over
data set protein complex when utilizing Kernel CUDA. Given
these findings, we further envision that the method could be
used in the process of drug screening where computational
speed is a critical factor. In a concerted effort to benefit the
broader research community, the efficient implementation of
our proposed method has been integrated into the widely used
molecular modeling software package, AMBER.59

In this work, we developed a universal framework for surface
construction that combines point cloud and neural networks,
effectively ensuring efficiency and accuracy. Notably, this
framework can be effortlessly adapted across different plat-
forms and libraries, including CPU, GPU, and related libraries.
To demonstrate its performance, we deployed this framework
in a model (GENIUSES) for the generation of solvent-
excluded surfaces (SES), due to its complexity. In terms of
accuracy, our model can achieve ∼95% fidelity compared with
the classical SES method implemented in AMBER. The
consistency between the PB energies computed with the
GENIUSES surface and those with the classical SES further
validates the accuracy of our model. In terms of efficiency, the
GENIUSES CUDA implementation on GPU can yield a

Figure 4. Comparative analysis of performance with average run time and relative speedup for the protein data set. (a) Run time as a function of
number of atoms using different methods and GENIUSES implemented on different platforms. GENIUSES related methods are all represented in
solid circles, while Classical SES and MLSES are in the style of “X”. (b) Relative speedup with respect to the Classical SES.

Table 3. Comparative Analysis of Performance with Average Run Time and Relative Speedup for the Nucleic Acids, Protein,
and Protein Complex Data Sets among Different SES Programsa

nucleic acid protein protein complex

Methods CPU GPU avg. time (std.) (s) rel. speedup avg. time (std.) (s) rel. speedup avg. time (std.) (s) rel. speedup

Classical SES@AMBER 1 0 4.45 (3.32) 1.00 8.30 (4.77) 1.00 35.07 (42.94) 1.00
GENIUSES Torch@CPU 1 0 0.88 (0.62) 5.02 1.54 (0.92) 5.44 6.87 (8.09) 4.87
GENIUSES Torch@GPU 1 1 1.16 (0.40) 3.61 1.03 (0.21) 7.64 1.67 (1.17) 17.52
GENIUSES CUDA@GPU 1 1 0.19 (0.15) 23.38 0.33 (0.20) 25.55 1.00 (1.18) 33.28
EDTSurf 1 0 14.69 (4.68) 0.37 14.09 (4.42) 0.66 15.32 (6.59) 2.15
NanoShaper 1 Thread 1 0 0.68 (0.45) 6.42 1.02 (0.50) 7.97 5.27 (8.35) 7.74
NanoShaper 32 Threads 32 0 0.27 (0.21) 16.98 0.43 (0.25) 19.30 2.43 (3.65) 15.86
NanoShaper 64 Threads 64 0 0.27 (0.21) 16.81 0.44 (0.25) 19.22 2.05 (2.89) 18.16

aAll speedups are with respect to the Classical SES from AMBER/PBSA.
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speedup about 26 times over the classical SES of AMBER
which is limited to the CPU platforms. Notably, in large-scale
systems, GENIUSES delivers an even more remarkable
speedup of 33 times. Moreover, our analysis further indicates
that the model is robust with respect to changes in grid spacing
and is scalable to larger systems without much loss of accuracy
or efficiency. For the benefit of the broader scientific
community, we integrated our model into the popular
AMBER platform and made it fully open-source. We believe
that this model will serve as a powerful and efficient tool for
large-scale molecular surface analysis. Despite these achieve-
ments, there is still room for improvement, particularly in the
treatment of inner cavities, which will be the focus of our
future development.
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