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Abstract

We describe an unsupervised method for learning a probabilistic grammar of an
object from a set of training examples. Our approach is invariant to the scale and
rotation of the objects. We illustrate our approach using thirteen objects from the
Caltech 101 database. In addition, we learn the model of a hybrid object class
where we do not know the specific object or its position, scale or pose. This is il-
lustrated by learning a hybrid class consisting of faces, motorbikes, and airplanes.
The individual objects can be recovered as different aspects of the grammar for the
object class. In all cases, we validate our results by learning the probability gram-
mars from training datasets and evaluating them on the test datasets. We compare
our method to alternative approaches. The advantages of our approach is the speed
of inference (under one second), the parsing of the object, and increased accuracy
of performance. Moreover, our approach is very general and can be applied to a
large range of objects and structures.

1 Introduction

Remarkable progress in mathematics and computer science of probability is leading to a revolution
in the scope of probabilistic models. In particular, there are exciting new probability models [1,
3, 4, 5, 6, 11] defined on structured relational systems such as graphs or grammars. These new
formulations subsume more traditional models, such as Markov Random Fields (MRF’s) [2], and
have growing applications to natural languages, machine learning, and computer vision.

Although these models have enormous representational power, there are many practical drawbacks
which must be overcome before using them. In particular, we need efficient algorithms to learn the
models from training data and to perform inference on new examples. This problem is particularly
difficult when the structure of the representation is unknown and needs to be induced from the data.

In this paper we develop an algorithm called “structure induction” (or “structure pursuit”) which
we use to learn the probability model in an unsupervised manner from a set of training data. This
algorithm proceeds by building an AND-OR graph [5] in an iterative way. The form of the resulting
graph structure ensures that inference can be performed rapidly for new data.



Chair 90.9% Cougar 90.9% Piano 96.3% Scissors 94.9% Panda 90.0%

Rooster 92.1% Stapler 90.5 % Wheelchair 92.4% Windsor Chair 92.4% Wrench 84.6%

Figure 1: We have learnt probability grammars for these ten objects in the Caltech 101 database,
obtaining scores over 90 % for most objects. A score of 90.00 %, means that we have a detection
rate of 90 % and a false positive rate of 10 % (10 % = (100 - 90) %). The number of data examples
are 62, 69, 90, 39, 38, 49, 45, 59, 56, 39 ordered left-to-right and top-to-bottom.

Our application is to the detection, recognition, and parsing of objects in images. The training data
consists of a set of images where the target object is present but at an unknown location. This
topic has been much studied [16] (see technical report – Zhu, Chen and Yuille 2006 – for additional
references).

Our approach has the following four properties. Firstly, a wide range of applicability which we
demonstrate by learning models for 13 object categories from the Caltech-101 [16], Figure (1,5).
Secondly, the approach is invariant to rotation and a large range of scale of the objects. Thirdly, the
approach is able to deal with object classes, which we illustrate by learning a hybrid class consisting
of faces, motorbikes and airplane. Fourthly, the inference is performed rapidly in under a second.

2 Background

2.1 Representation, Inference and Learning

Structured models define a probability distribution on structured relational systems such as graphs
or grammars. This includes many standard models of probability distributions defined on graphs –
for example, graphs with fixed structure, such as MRF’s [2] or Conditional Random Fields [3], or
Probabilistic Context Free Grammars (PCFG’s) [4] where the structure is variable. Attempts have
been made to unify these approaches under a common formulation. For example, Case-Factor Di-
agrams [1] have recently been proposed as a framework which subsumes both MRF’s and PCFG’s.
In this paper, we will be concerned with models that combine probabilistic grammars with MRF’s.
The grammars are based on AND-OR graphs [1, 5, 6], which relate to mixtures of trees [7]. This
merging of MRF’s with probabilistic grammars results in structured models which have great repre-
sentational power.

There has been considerable interest in inference algorithms for these structured models, for example
McAllester et al [1] describe how dynamic programming algorithms (e.g. Viterbi and inside-outside)
can be used to rapidly compute properties of interest. Our paper is concerned with the task of unsu-
pervised learning of structured models for applications to detecting, recognizing, and representing
visual objects. In this paper, we restrict ourselves to a special case of Probabilistic Grammars with
OR nodes, and MRF’s. This is simpler than the full cases studied by McAllester but is more complex
than the MRF models standardly used for this problem.

For MRF models, the number of graph nodes is fixed and structure induction consists of determining
the connections between the nodes and the forms of the corresponding potentials. For these graphs,
an effective strategy is feature induction [8] which is also known as feature pursuit [9]. A similar
strategy is also used to learn CRF’s [10]. In both cases, the learning is fully supervised. For Bayesian
network, there is work on learning the structure using the EM algorithm [12].

Learning the structure of grammars in an unsupervised way is more difficult. Klein and Manning
[4] have developed unsupervised learning of PCFG’s for parsing natural language, but here the
structure of grammar is specified. Zettlemoyer and Collins [11] perform similar work based on
lexical learning with lambda-calculus language.



In short, to our knowledge, there is no unsupervised learning algorithm for structure induction for
a Probabilistic Grammar-MRF model. Moreover, our vision application requires the ability to learn
the model of the target object in the presence of unknown background structure. Methods exist in
the computer vision literature for achieving this for an MRF model [16], but not for Probabilistic
Grammars.

2.2 Our Model: High-Level Description

Figure 2: Graphical Models.

In this paper, we consider a combination of PCFG and MRF. The leaf nodes of the graph will be
image features that are described by MRF’s. Instead of using the full PCFG, we restrict the grammar
to containing one OR-node.

Our model contains a restricted set of grammatical rules, see figure (2). The top, triangular node, is
an OR node. It can have an arbitrary number of child nodes. The simplest type of child node is a
histogram model (far left panel of figure (2)). We can obtain more complex models by adding MRF
models in the form of triples, see figure (2) left to right. Combination of triples can be expressed
in a junction tree representation, see the sixth and seventh panels of figure (2). This representation
enable rapid inference. The computation complexity of inference is bounded by the width and height
of the subtrees.

In more abstract terms, we define a set of rules R(x, y) for allowable parses of input x to a parse tree
y. These rules have potentials φ(x, r, t) for a production rule r ∈ R(x, y) and ψ(x,wM , t) for the
MRF models (see details in the technical report), where t are nuisance parameters (e.g. geometric
transformations and missing data) and w = (wG, wM ) are model parameters. The wG are the
grammar parameters and the wM are the MRF parameters. We define a set W of model parameters
that are allowed to be non-zero (w = 0 if w /∈ W ). The structure of the model is determined by the
set W .

The model is defined by:

P (x, y, w, t) = P (t)P (w)P (y)P (x|y, w, t), (1)

where
P (x|y, w, t) =

1
Z

e

∑
r∈R(x,y)

wG·φ(x,r,t)+
∑

MRF
ΨMRF (x,t,wM )

, (2)

where MRF denotes the cliques of the MRF. Z is the normalization constant.

We now face three tasks: (I) structure learning, (II) parameter learning to estimate w, and (III)
inference to estimate y.

Inference requires estimating the parse tree y from input x. The model parameters w are fixed.
The nuisance parameters are integrated out. This requires solving y∗ = arg max

∑
t P (y, t|x,w)

by the EM algorithm using dynamic programming to estimate y∗ efficiently. During the E step, we
approximate the sum over t by a saddle point approximation.

Parameter learning we specify a set W of parameters w which we estimate by MAP (the other
w’s are constrained to be zero). Hence we estimate w∗ = arg maxw∈W

∑
y,t P (w, t, y|x). This

is performed by an EM algorithm, where the summation over y can be performed by dynamic
programming, the summation over t is again performed by a saddle point. The w can be calculated
by sufficient statistics.



Structure Learning corresponds to increasing the set of parameters w that can be non-zero. For
each structure we define a score given by its fit to the data. Formally we extend W to W ′ where
W ⊂ W ′. (The allowed extensions are defined in the next section). We now compute P (x|w ∈
W ) =

∑
w∈W,t,y P (x, y, t|w) and P (x|w ∈ W ′) =

∑
w∈W ′,t,y P (x, y, t|w). This requires EM,

dynamic programming, and a saddle point approximation. We refer to the model fits, P (x|w ∈ W )
and P (x|w ∈ W ′), as the scores for structure W and W ′ respectively.

3 Brief Details of Our Model

We now give a brief description of our model. A detailed description is given in our technical report
(Zhu, Chen, and Yuille 2006).

Figure 3: Triplets without Orientation (left two panels). Triplets with Orientation (right two panels).

3.1 The setup of the Model

We represent the images by features {xi : i = 1, .., N(τ)}, where N(τ) is the number of features in
image τ . Each feature is represented by a pair xi = (zi, Ai), where zi is the location of the feature
in the image and Ai is an appearance vector. The image features are detected by the Kadir-Brady
operator [13], and their appearance is calculated by the SIFT operator [14]. These operators ensure
that the features are invariant to scale, rotation, and some appearance variations.

The default background model for the image is to define a histogram model over the positions and
appearance of the image features, see first panel of figure (2).

Next we use triples of image features as the basic building blocks to construct a model. Our model
will be constructed by adding new triplets to the existing model, as shown in the first few panels of
figure (2). Each triplet will be represented by a triplet model which is given by Gaussian distributions
on spatial position and on appearance P (~x| ~M = ~1,T) = G(~z|T(~µG,ΣG)G( ~A|~µA,ΣA), where
µG, µA,ΣG, ΣA are the means and covariances of the positions and appearances. The {Mi} are
missing data index variables [15], and T denotes transformations due to rotation and scaling.

The major advantage of using triplets is that they have geometrical properties which are independent
of the scale and rotation of the triplet. These properties include the angles between the vertices, see
figure (3). Thus we can decompose the representation of the triplet into two types of properties:
(i) those which are independent of scale and rotation, (ii) those that depend explicitly on scale and
rotation. By using the invariant properties, we can perform rapid search over triplets when position,
scale, and rotation are unknown.

In addition, two triplets can be easily combined by a common edge to form a more complex model –
see sixth panel of figure (2). This representation is suitable for the junction tree algorithm [2], which
enables rapid inference.

For structure learning, we face the task of how to expand the set W of non-zero parameters to a
new set W ′. The problem is that there are many ways to expand the set, and it is computationally
impossible to evaluate all of them. Our strategy is to use a clustering method, see below, to make
proposals for expanding the structure. These proposals are then evaluated by model selection.



Our clustering method exploits the invariance properties of triplets. We perform clustering on both
the appearance and on the geometrical invariants of the triplets. This gives rise to a triplet vocabulary
consisting of triplets that frequently occur in the dataset. These are used to make proposals for which
triplets to include in the model, and hence for how to expand the set W of non-zero parameters.

Input: Training Image τ = 1, .., M and the triplet vocabulary {Ta : a ∈ Ω}. Initialize G to be the root
node with the background model, and let G∗ = G.
Algorithm for Structure Induction:

• STEP 1:

– OR-NODE EXTENSION
For T ∈ {Ta : a ∈ Ω}
∗ G′ = G

⋃
T (ORing)

∗ Update parameters of G′ by EM algorithm
∗ If Score(G′) > Score(G∗) Then G∗ = G′

– AND-NODE EXTENSION
For Image τ = 1, .., M

∗ P = the highest probability parse for Image τ by G
∗ For each Triple T in Image τ

if T
⋂

P 6= ∅
· G′ = G

⋃
T (ANDing)

· Update parameters of G′ by EM algorithm
· If Score(G′) > Score(G∗) Then G∗ = G′

• STEP 2: G = G∗. Go to STEP 1 until Score(G)− Score(G∗) < Threshold

Output: G

Figure 4: Structure Induction Algorithm

3.2 Structure Induction: Learning the Probabilistic Grammar MRF

We now have the necessary background to describe our structure induction algorithm. The full
procedure is described in the pseudo code in figure (4). Figure (2) shows an example of the structure
being induced sequentially.

Initially we assume that all the data is generated by the background model. In the terminology of
section (2.2), this is equivalent to setting all of the model parameters w to be zero (except those
for the background model). We can estimate the parameters of this model and score the model as
described in section (2.2).

Next we seek to expand the structure of this model. To do this, we use the triplet vocabularies
to make proposals. Since the current model is the background model, the only structure change
allowed is to add a triplet model as one child of the root node (i.e. to create the background plus
triple model described in the previous section, see figure (2)). We consider all members of the triplet
vocabulary as candidates, using their cluster means and covariances as prior probabilities on their
geometry and attribute properties. Then, for all these triples we construct the background plus triplet
model, estimate their parameters and score them. We accept the one with highest score as the new
structure.

As the graph structure grows, we now have more ways to expand the graph. We can add a new
triplet as a child of the root node. This proceeds as in the previous paragraph. Or we can take two
members of an existing triplet, and use them to construct a new triplet. In this case, we first parse the
data using the current model. Then we use the triplet vocabulary to propose possible triplets, which
partially overlap with the current model (and give them prior probabilities on their parameters as
before). Then, for all possible extensions, we use the methods in section (2.2) to score the models.
We select the one with highest score as the new graph model. If the score increase is not sufficient,
we cease building the graph model. See the structured models in figure (5).
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Figure 5: Individual Models learnt for Faces, Motorbikes and Airplanes.

Table 1: Performance Comparisons

Dataset Size Single Model Hybrid Model Constellation[16]

Faces 435 98.0 84.0 96.4
Motorbikes 800 92.6 82.7 92.5
Airplanes 800 90.9 87.3 90.2

Faces(Rotated) 435 94.8 – –
Faces(Rotated+Scaled) 435 92.3 – –

4 Experimental Results

4.1 Learning Individual Objects Models

In this section, we demonstrate the performance of our models for thirteen objects chosen from the
Caltech-101 dataset. Each dataset was randomly split into two sets with equal size(one for training
and the other for testing).

K-means clustering (typically, K is set to 150) was used to learn the triplet vocabularies (see Zhu,
Chen, Yuille 2006 for details). Each row in figure 3 corresponds to some triples in the same group.
In this experiment, we did not use orientation information from the feature detector.

We illustrate our results in figure (1) and Table (1). A score of 90 % means that we get a true positive
rate of 90 % and a false positive rate of 10 %. For comparison, we show the performance of the
Constellation Model [16]. (Further comparisons to alternative methods are reported in the technical
report).

The models for individual objects classes, learnt from the proposed algorithm, are illustrated in
figure (5). Observe that the generative models have different tree-width and depth. Each subtree
of the root node defines an Markov Random Field to describe one configuration of the object. The
computational cost of the inference, using dynamic programming, is proportional to the height of
the subtree and exponential to the maximum width(only three in our case). The detection time is



Figure 6: Parsed Results: Invariant to Rotation and Scale.

Figure 7: Hybrid Model learnt for Faces, Motorbikes and Airplanes.

less than one second (including the processing of features and inference) for the image with the size
of 320*240. The training time is around two hours for 250 training images.

4.2 Invariance to Rotation and Scale

This section shows that we can learn and detect objects even when the rotation (in the image) and the
scale are unknown (within a range). In this experiment, orientation information, output from feature
detector, is used to model the geometry distributions of the triplets. The relative angle between
the orientation of each feature and the orientation of the edge of tri-angle is calculated to make the
model invariant to rotation. See Figure (3).

We implemented the comparison experiment on face dataset. A face model is learnt from the training
images with normalized scale and orientation. We tested this model on the testing data with 360-
degree in-plane rotation and another testing data with rotation and scaling together. The scaling
range is from 60% of the original size to 150%(i.e. 180 ∗ 120 − 450 ∗ 300). Table (1) shows the
comparison results. The parsing results (rotation+scale) are illustrated in Figure (6).

4.3 Learning Classes of Models

In this section, we show that we can learn a model for an object class. We use a hybrid class which
consists of faces, airplanes, and motorbikes. In other words, we know that one object is present
in each image but we do not know which. In the training stage, we randomly select images from
the datasets of faces, airplanes, and motorbikes. Similarly, we test the hybrid model on examples
selected randomly from these three datasets.

The learnt hybrid model is illustrated in Figure (7). It breaks down nicely into or’s of the models
for each object. Table (1) shows the performance for the hybrid model. This demonstrates that the
proposed method can learn a model for the class with extremely large variation. The parsed results
are shown in Figure (8).

5 Discussion
This paper showed that it is possible to perform unsupervised learning to determine a probabilistic
grammar combined with a Markov Random Fields. Our approach is based on structure pursuit where
the object model is built up in an iterative manner (similar to feature pursuit used for MRF’s and
CRF’s). The building blocks of our model are triplets of features, whose invariance properties can
be exploited for rapid computation.

Our application is to the detection and parsing of objects. We demonstrated: (a) that we can learn
probabilistic models for a variety of different objects, (b) that our approach is invariant to scale and



Figure 8: Parsed Results by Hybrid Model (left three panels). Parsed by Standard Model (right three
panels).

rotation, (c) that we can learn models for hybrid classes, and (d) that we can perform inference
rapidly in under one second.

Our approach can also be extended. By using a richer vocabulary of features we can learn a more
sophisticated generative grammar which will be able to represent objects in greater detail and deal
with significant variations in viewpoint and appearance.
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