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Abstract

Rationale The default mode network (DMN) is a functional
network which is implicated in a range of cognitive
processes. This network is proposed to consist of hubs
located in the ventromedial prefrontal cortex (vmPFC),
posterior cingulate/retrosplenial cortex (PCC/rSpl), and
inferior parietal lobule (IPL), with other midline cortical
and temporal lobe nodes connected to these hubs. How this
network is modulated by neurochemical systems during
functional brain activity is not yet understood.

Objectives In the present study, we used the norepineph-
rine/dopamine transporter inhibitor modafinil to test the
hypothesis that this drug modulates the DMN.

Methods Eighteen healthy right-handed adults participated
in a double-blind, placebo-controlled study of single oral
dose modafinil 200 mg. They performed a simple visual
sensorimotor task during slow event-related fMRI. Drug
effects were interrogated within the DMN defined by task-
induced deactivation (TID) on placebo.

Results There was a trend toward faster reaction time (RT)
on modafinil (Cohen’s d=0.38). Brain regions within the
DMN which exhibited significant modafinil-induced aug-
mentation of TID included vmPFC, PCC/rSpl, and left IPL.
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Across subjects, the modafinil effect on TID in the vimPFC
was significantly and specifically associated with drug
effects on RT speeding.

Conclusions Modafinil augments TID in the DMN to
facilitate sensorimotor processing speed, an effect which
may be particularly dependent on changes in vmPFC
activity. This is consistent with the gain control function
of catecholamine systems and may represent an important
aspect of the pro-cognitive effects of modafinil.

Keywords Catecholamines - Default mode network -
Modafinil - Task-induced deactivation - Gain control -
Negative BOLD response

Introduction

The default mode network (DMN) is a distributed
network of functionally connected cortical regions which
can be identified in functional neuroimaging paradigms
where task demands are associated with decreased
activity relative to a “baseline” (Mazoyer et al. 2001).
This is typically referred to as “task-induced deactivation”
(TID) and identifies a network that is qualitatively similar
to that observed in resting state connectivity (reviewed in
Buckner et al. 2008). The DMN contains “hubs” in the
ventromedial prefrontal cortex (vmPFC), posterior cingu-
late/retrosplenial cortex (PCC/rSpl), and bilateral inferior
parietal lobule (IPL). These are strongly connected to each
other and to all other nodes of the network (Buckner et al.
2008), and there is evidence that the PCC may be the most
prominent functional hub in the brain, from a study that
integrated resting-state blood oxygen level-dependent
(BOLD) imaging data across 19 independent research
sites and 979 subjects (Tomasi and Volkow 2010). The
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DMN is generally active in the relative absence of strong
or salient environmental stimuli and is deactivated with
attention or control-demanding processes (Fox et al. 2005;
McKiernan et al. 2003).

There is now considerable convergent evidence indicat-
ing that attention and control processes are strongly
modulated by subcortical catecholamine systems (see
(Amsten 1997; Aston-Jones and Cohen 2005; Goldman-
Rakic et al. 2000; Miller and Cohen 2001; Robbins 2005
for reviews). Cortically projecting systems arising in the
locus coeruleus (LC) and the ventral tegmental area exert a
gating function for cortical ensembles supporting a given
cognitive process (Aston-Jones and Cohen 2005). Cate-
cholamine neurotransmission leads to both the relative
suppression of background or spontaneous activity and
relative enhancement of excitability to task-relevant excit-
atory inputs. The combined effect is manifest as an
increased gain in the input/output relationships for these
cortical neurons, which may be critical to their participation
in an active cortical ensemble to support a given cognitive
process (Aston-Jones and Cohen 2005).

It remains quite unclear, however, whether this physio-
logical process is employed to modulate cortical regions
such as those found in the DMN. A few studies have
addressed catecholamine modulation of TID in the DMN,
with transient dopamine (DA) depletion (Nagano-Saito et
al. 2008), apomorphine administration (Nagano-Saito et al.
2009), natural variation in DA transporter (DAT) binding
(Tomasi et al. 2009), and variation in the gene coding for
catechol-O-methyl transferase (Liu et al. 2010).These
findings generally suggest that higher DA transmission is
associated with augmented TID in the DMN.

While DA-regulated TID in DMN areas is observed as a
function of parametric task demand, it remains unclear
whether catecholamine modulation of the DMN is a
predictor of actual task performance. Errors and slowed
reaction times (RTs) occurring spontaneously during task
performance are preceded within trials by transient attenu-
ations in TID in midline DMN areas (Li et al. 2007; Polli et
al. 2005; Weissman et al. 2006). This critically suggests
that TID in the DMN, particularly midline areas in vimPFC
and PCC/rSpl, may be a determinant of task performance.
This has been shown with single doses of nicotine, which
deactivates DMN areas such as the vmPFC and PCC to
enhance visuospatial performance (Hahn et al. 2007).

With these considerations, we tested the role of
catecholamine systems in the modulation of TID in the
DMN and the relationship of this modulation to task
performance. We identified the DMN via TID during a
visual sensorimotor processing task and used a pharmaco-
logical intervention to enhance catecholamine neurotrans-
mission. Modafinil is an FDA-approved agent that inhibits
the norepinephrine (NE) transporter (NET) and DAT
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(Madras et al. 2006; Volkow et al. 2009), leading to
increased synaptic levels of NE and DA, with indirect
effects on other neurotransmitter systems (reviewed in
Minzenberg and Carter 2008). There is also considerable
evidence that modafinil can enhance cognitive perfor-
mance, including in healthy individuals (reviewed in
Minzenberg and Carter 2008). These effects appear to be
most strongly manifest on tasks that are highly dependent
on the prefrontal cortex (e.g., Turner et al. 2003; see review
in Minzenberg and Carter 2008). We hypothesized that
modafinil would augment TID in the DMN, as an
analogous expression of gain control in support of task-
relevant information processing, and that this effect would
be associated with improved performance.

Methods
Subjects/overview of procedures

The study was conducted at the University of California,
Davis Medical Center from the period March 2006 to
January 2008. All procedures were approved by the UCD
Institutional Review Board, and all subjects provided
informed consent for all procedures. Five subjects con-
sented for the study, but were excluded for the following
reasons: Two declined further participation prior to any
testing procedures, one tested positive for illicit substances
prior to testing, one completed one testing day only (this
subject’s data were not analyzed), and one experienced
equipment malfunction. All additional subjects (n=18)
completed this study and provided data for the present
analysis. Subjects were all recruited from the community
and were included if they were aged 18-50; right-handed;
free of past or present psychiatric illness as determined by
the Structured Clinical Interview for DSM-IV Disorders,
non-patient version; lacked significant medical illness, any
neurological illness, and a family history of major psychi-
atric illness by report; and were not taking medications with
either psychotropic effects or established drug—drug inter-
actions with modafinil at study. There were ten men and
eight women who completed the study, with mean age
33.6 years. All subjects were instructed to maintain their
usual quantities and patterns of nicotine and caffeine intake,
without changes on or between test days, in order to avoid
neural/cognitive effects due to changes in intake from their
baseline. All included subjects tested negative for drugs of
abuse in the urine on each testing day. Each completed a
double-blind, placebo-controlled crossover study of the
effects of modafinil (single oral dose 200 mg) on neural
activity measured by fMRI during performance of a
sensorimotor task. We chose 200 mg as a dose that was
likely to optimize experimental effects with tolerability in a
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single dose to drug-naive subjects. Randomization of
treatment order was performed without stratification with
a computer algorithm by a research pharmacist who also
packaged active medication and placebo in identical-
appearing capsules for administration and was otherwise
uninvolved in the study. Ten subjects completed the active
drug testing day first and eight subjects completed the
placebo day first, with at least 3 days between test days
(mean 5.7+4.1 days) to allow for complete drug washout.
All investigators remained blind to treatment order for
individual subjects until all data were acquired for that
subject and treatment order information was then necessary
to sort data for inferential testing. All subjects received the
dose in the morning, and echo-planar imaging was initiated
at an average elapsed time 3.6+0.2 h post-dose, within the
time window of reported average peak plasma levels of
modafinil (Robertson and Hellriegel 2003). No subjects
reported any adverse subjective or physical symptoms
during study procedures.

Task paradigm

The visual sensorimotor processing task was modified from
(Handwerker et al. 2004) and is associated with robust
positive event-related activation of the visual cortex and
primary motor cortex. It was presented using EPrime
software. The trial structure was as follows: A contrast-
reversing checkerboard was presented for 200 ms; after
stimulus offset, the stimulus was replaced with the central
fixation cross again. The interstimulus interval was ran-
domly varied between 18 and 22 s (at 2-s intervals), both to
optimize the convolution of the hemodynamic response
function (HRF) with the BOLD signal time series and to
minimize preparatory responses by subjects. Therefore, the
duration of each trial was 18-22 s, and the number of brain
volumes acquired on each trial varied from 9 to 11.
Subjects were instructed prior to the task onset to maintain
fixation on the crosshair, and then with checkerboard onset,
to press a button with the right index finger as fast as
possible. One block of 20 trials was presented. To our
knowledge, this particular paradigm has not been evaluated
to date for TID or other DMN effects.

fMRI acquisition and pre-processing

Event-related fMRI was conducted on a 3-T Siemens Trio
MRI system with a Siemens eight-channel phased array
coil. Measurement of BOLD contrast was conducted during
single-shot, echo-planar imaging (EPI) using a T2*-weight-
ed sequence and whole brain coverage. The parameters of
the EPI sequence were TR 2,000 ms, TE 30 ms, flip angle
90°, FOV 220x220 mm, with 36 contiguous slices in the
axial oblique plane with voxel size 3.4 mm isotropic. Pre-

processing was performed using SPMS. The first five
images (preceding onset of trial 1 of block 1) were
discarded to allow for stabilization of the scanner signal.
The remaining images were realigned (motion-corrected) to
the first retained image in the first block, then adjusted for
acquisition time (slice timing correction), then subject to
spatial normalization directly to the EPI template from the
SPMS5 library. Images were then resliced to 2x2x2 and
spatially smoothed with an 8-mm, full-width-at-half-maxi-
mum Gaussian kernel. At this point, drug and placebo day
scans were concatenated for the purpose of modeling of the
signal and inferential testing.

Inferential testing of voxel-wise drug effects
on neural activity

Derivation of the signal proceeded with the use of the
general linear model. Regressors were established for
Drug Event and Placebo Event. A canonical (double-
Gaussian) hemodynamic response function was convolved
with a series of delta functions to model the BOLD time
series, with regressors placed at event onset. We also
established the temporal derivative of the HRF as a
regressor, paired with each of the experimental condition
regressors, to account for temporal variation in the latency
of the event-related response. A 0.0125-Hz high-pass filter
was used and a first-order autoregressive function to
account for serial autocorrelations. We evaluated the data
with global normalization both included and excluded in
the model, in parallel analyses. We did this in order to
evaluate the potential for detecting spurious deactivations in
these data, which have been found by others in BOLD time
series data using global normalization (Aguirre et al. 1998;
Desjardins et al. 2001; Gavrilescu et al. 2002). A recent
paper has found that this effect is minimal in the DMN and
that global normalization significantly improves the detec-
tion of activity in functional networks that are well
established from both animal models and structural ana-
tomic imaging methods in humans (Fox et al. 2009). In the
present context, global normalization facilitates the integra-
tion of BOLD data across tests days, primarily by
accounting for machine-related variation in signal across
days. Nevertheless, we evaluated the potential effect of
global normalization on the inferential test results by
repeating the regression model estimation with the no-
scaling option in SPM (as per Desjardins et al. 2001). This
analysis revealed test statistics virtually identical to that
derived with the proportional scaling option, suggesting
that this step in the estimation of the regression model does
not show spurious effects on inferential tests in this data set.
The results of the no-scaling analysis are reported in
“Results” below. After signal estimation, linear contrasts
were defined at the single-subject level (see below), and
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then relevant contrast maps from individual subjects
(containing voxel-wise parameter estimates for a given
contrast) were entered into the group-level analysis for
inferential testing.

In order to test hypotheses regarding drug effects within
the DMN, we interrogated voxels solely within DMN hubs
(identified in Buckner et al. 2008). These voxels were
identified by meeting each of the following criteria: (a)
significant TID in the group-level Placebo Event minus
Baseline contrast at a voxel-wise threshold of p<0.0005
uncorrected (negative activations observed in ESM Fig. 1);
(b) significant TID in the group-level Drug Event minus
Baseline contrast, also at a voxel-wise threshold of p<.0005
uncorrected; (c) located within any of the four following
anatomic masks from the AAL library (utilized in the
MarsBaR program): bilateral vmPFC (identified in the
AAL library as anterior cingulate cortex, which spans
the rostral/subgenual ACC and adjacent ventral aspect of
the medial frontal gyrus, to comprise the vmPFC),
bilateral rSpl/PCC (identified as posterior cingulate cortex),
and left and right inferior parietal lobules (identified as such;
Tzourio-Mazoyer et al. 2002). These conjoined masks (each
of which were fixed across subjects) had volumes as follows:
vmPFC, 8,072 mm?; rSpl/PCC, 2,160 mm’, left IPL,
272 mm® (see Fig. 1). The right IPL did not contain any
voxels that met these criteria, and therefore, drug effects in
this region were not interrogated. The use of this DMN-
defining procedure is unbiased for testing drug effects and
also allows for unambiguous inferences about the direction
of these hypothesized treatment effects. This is because any
Drug minus Placebo effects manifest as negative values
must represent activity further below baseline since
activity in these voxels on Placebo is below baseline to
start with (i.e., represents TID). For the contrast of
Drug Event minus Placebo Event, the threshold for
statistical significance was set at p<0.05, with a small-
volume correction (using the volumes defined by the
above criteria) for multiple comparisons. We hypothesized
that significant drug effects would be manifest as further
deactivations within the DMN, i.e., negative activity in the
contrast (Drug_Event minus Placebo_Event).

Region of interest analyses

We also derived the mean beta values within each of the
three aforementioned ROIs (Fig. 1), in each treatment
condition, in order to provide a convergent, omnibus test
(by ANOVA) of drug effects on TID in these DMN hubs.
We also tested the hypothesis that drug effects on TID
within these DMN hubs predict drug effects on task
performance. For this second test, we established a
regression model with RT change on drug as the
dependent variable and stepwise entry of beta change
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on drug within each of these three ROIs as predictor
variables. This analysis allowed us to evaluate the
comparative strength with which drug effects in these
ROIs predicted performance.

Results
Effect of modafinil on task performance

There was a trend toward faster RT on drug versus placebo:
421+130 versus 476158 ms (Cohen’s d=.38, t=1.46, p=
0.08 by one-tailed paired ¢ test).

Effect of modafinil on TID within the DMN

ESM Fig. 1 depicts the task-related changes in brain
activity, with significant deactivation in characteristic
DMN regions in response to task demands (i.e., TID).
These results are used to define the DMN for interrogation
of drug effects. As observed in ESM Fig. 2, drug
administration was associated with robust effects in
augmentation of TID, within each of the three hubs of the
DMN: vmPFC, PCC/tSpl, and left IPL. Clusters within
each of these cortical regions exceeded the corrected
threshold for statistical significance. Statistics for these
clusters are listed in Table 1.

We also defined the task-positive network of activation
as voxels with increased activity in the contrast (Place-
bo Event minus Baseline) at p<0.0005 uncorrected (ESM
Fig. 1) and then used this mask to interrogate drug effects
on task-positive activity in the contrast (Drug_Event minus
Placebo_Event). This analysis revealed no brain regions
with changes on drug that met statistical significance (data
not shown).

ROI analysis of drug effects on TID

ANOVA of mean beta values within the ROIs revealed
main effects of treatment (F=7.91, df=1,17; p=0.012), ROI
(F=4.00, df=1,17; p=0.039), but no significant effects of
the treatment-by-ROI interaction (F=0.17, df=2,16; p=
0.845). Post hoc analyses of individual ROIs revealed a
significant drug effect on betas in each ROI by paired ¢ test
(vmPFC, r=-2.28, p=0.036; PCC/rSpl, t=-2.59, p=0.019;
left IPL, t=—2.32, p=0.033; see Fig. 2, top panel).

Relationship of TID in the DMN hubs to RT

Drug effects on TID in the vmPFC significantly predicted
drug effects on RT speeding (adjusted R*=.26, =.51, F=
2.34, p=.032; see Fig. 2). After entry of this predictor
variable to the regression model, drug effects on TID in the
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Fig. 1 Brain regions exhibiting task-induced deactivation within the
default mode network in both treatment conditions. Standard brain
template image depicting the volumes used to interrogate drug effects

other two hubs did not contribute to significant variance in
RT speeding across subjects: rSpl/PCC (1=0.78, p=0.45)
and left IPL (#=1.5, p=0.16). In other words, stronger TID
on drug in the vimPFC specifically predicted RT speeding
on drug. The linear relationship of drug effects on TID in
the vmPFC to drug effects on performance is shown in
Fig. 2 (bottom panel).

Discussion

In this study, we found that a pharmacological intervention
which enhances catecholamine neurotransmission augment-
ed the deactivation in the DMN in response to a
sensorimotor processing demand. Modafinil, a NET/DAT
inhibitor, significantly augmented deactivation in the three
major hubs of the DMN—the vmPFC, PCC/rSpl, and IPL.
Among these areas, TID in the vmPFC significantly
predicted speeding of RT on drug.

There is now considerable evidence that modafinil
shows efficacy for a range of cognitive processes, partic-
ularly those that are dependent on the PFC (Minzenberg
and Carter 2008; Turner et al. 2003). This has been

on TID. The vmPFC and PCC/rSpl are shown in the midsagittal plane
(left panel) and left IPL shown in the coronal plane (right panel)

demonstrated in healthy populations, sleep-deprived subjects,
and a range of neuropsychiatric populations. One very
characteristic finding in this literature is that modafinil
enhances processing speed, just as it did in the present study.
The present evidence therefore suggests that the modulatory
effects of modafinil on catecholamine systems may lead to
enhanced cognition, in part by augmentation of TID.
Additionally, there is evidence that modafinil affects levels
of other extracellular neurotransmitters such as serotonin and
amino acid neurotransmitters; however, there is no evidence
that this agent binds directly to elements of these other
neurotransmitter systems, suggesting that these latter effects
are mediated via direct catecholamine effects (Minzenberg
and Carter 2008). It does remain possible that the drug
effects observed here result from indirect modafinil effects
on these other neurochemical systems. This seems less
likely, however, given (a) the primary effects of this drug on
DAT and NET; (b) the literature on modafinil effects on
cognition and behavior in animals, which strongly empha-
sizes catecholamine effects (reviewed in Minzenberg and
Carter 2008); (c) our prior evidence of the specific effects of
modafinil on task-independent activity in the locus coeruleus
using similar fMRI methods (Minzenberg et al. 2008); (d)

Table 1 Brain regions with significant augmentation of task-induced deactivation within the default mode network on modafinil

Brain region Brodmann area

Volume (mm?)

Peak T value Peak MNI coordinates: x, y, z

Medial frontal gyrus 10 5,544
Left posterior 1,512
Cingulate gyrus 31/23

Right posterior

Cingulate gyrus 7/31

Left inferior parietal 256
Lobule 7/19

4.46 0 50 -2
3.68 -4 —54 28
3.68 4 58 30
2.89 -34 ~76 44

Location of clusters with significant drug-related augmentation of TID within the DMN, significant at p<0.05 with small-volume correction. See

text for details of data acquisition/analysis
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Fig. 2 Modafinil effects on task-induced deactivation in default mode
network hubs and association of vmPFC with modafinil effects on
task performance. Top panel Mean beta (:SEM) within DMN hubs for
the drug and placebo effects on TID. Bottom panel Linear correlation
between relative deactivation in vmPFC on drug versus placebo
(change in mean beta) and relative reaction time on drug versus
placebo (change in mean RT). Pearson’s ¥=0.51, p=0.016 (one-tailed)

the topographic specificity of the observed effects (e.g., no
diffuse effects on positive activity throughout the brain, as
might be expected with known modafinil effects observed in
animals to increase glutamate and decrease GABA signal-
ing); and (e) the consistency of the present findings with the
general model of catecholamine-mediated gain control
during information processing (Aston-Jones and Cohen
2005), which emphasizes the modulation of task-relevant
brain activity. This notion can be tested more fully in the
future by testing the cognitive effects of modafinil in
combination with a second catecholamine agent.
Drug-induced modulation of activity in DMN areas was
associated with task performance despite the simple sensory
and motor demands of the task. Primary sensory and motor
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areas of the cortex do not participate in the DMN whose
hubs generally are not strongly connected to these
sensorimotor areas (see Figs. 5-8 in Buckner et al. 2008).
This is particularly the case for vimPFC which showed the
strongest experimental effects. Nevertheless, TID in
vmPFC was a predictor of task performance across
subjects. These results indicate that catecholamine systems
modulate the DMN and suggest that one information-
processing role of these systems is to diminish DMN
activity in response to task demands. The role of catechol-
amine systems in cognitive processes such as attention,
working and episodic memory, and cognitive control is well
established and appears to be expressed via a gating or gain
control function in active cortical neuronal ensembles
(Aston-Jones and Cohen 2005; Montague et al. 2004). We
previously found a complex pattern of effects of modafinil
on a rostrodorsal pontine area consistent with the LC, in
concert with changes in the cortical-subcortical cognitive
control network, during cognitive control task performance
(Minzenberg et al. 2008). These effects were consistent
with the shift of the LC-NE system to a relatively low-
tonic/high-phasic mode of activity, which optimizes task-
relevant activity in cortical ensembles by a gain control
mechanism (Aston-Jones and Cohen 2005). The present
findings suggest that just as catecholamine neurotransmis-
sion augments task-related excitatory throughput in active
ensembles, it similarly augments task-related deactivation,
and this contributes to task performance.

The association of enhanced TID with enhanced perfor-
mance may appear paradoxical, given that TID scales with
attention demand (McKiernan et al. 2003), which itself
tends to lead to decrements in performance, either in
accuracy and/or speed. TID can reasonably be considered
one important process engaged to meet this demand and
support ongoing performance, as a mirror (i.e., “anticorre-
lated”) response to task-positive activity in the frontopar-
ietal network. This perspective is supported by the finding
that errors are preceded by transient attenuations in TID in
the DMN (Li et al. 2007; Polli et al. 2005; Weissman et al.
2006). Therefore, TID is unlikely to directly lead to
performance impairments. This is analogous to the notion
that dorsal anterior cingulate activity is associated with
errors, but does not cause them, and in fact is engaged in
order to positively meet cognitive control demand (van
Veen and Carter 2006). This line of reasoning would
suggest that a pharmacological intervention that enhances
TID should enhance performance in concert. This is the
prediction that we have tested with the regression analysis,
and the results support this prediction, particularly for the
vmPFC. This is a novel finding and, we believe, not
inconsistent with the foregoing evidence.

These results also implicate the vmPFC as a particularly
strong anatomic substrate for catecholamine effects on TID,
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especially as a determinant of cognitive performance. This
cortical area receives significant DA and NE innervation
arising from the ventral tegmental area and LC, respectively
(reviewed in Steketee 2003). The vmPFC and adjacent
orbitofrontal cortex in humans forms a “medial PFC
network” projecting to limbic forebrain, hypothalamus,
and brainstem areas such as periaqueductal gray, in contrast
to the “orbital PFC network™ (Ongur and Price 2000). This
pattern of connectivity, which likely influences the expres-
sion of basic drives, suggests that default mode activity in
this cortical area represents the operation of an “intrinsic,
probabilistic model of anticipated events” (Raichle and
Gusnard 2005) which is altered with the demands of an
externally driven, goal-directed task. The distinct patterns
of medial PFC network connectivity with the subregions of
both the striatum and the mediodorsal nucleus of the
thalamus suggest that the medial PFC network may also
participate in a unique striato-pallido-thalamo-cortical cir-
cuit (Ongur and Price 2000), which could mediate the
relationship of TID in vmPFC to task-related neural
network activity that serves as a proximal driver of goal-
directed task performance. Among the hubs of the DMN,
there is evidence that vmPFC and PCC have differing
patterns of effective connectivity with their respective
anticorrelated dorsal/lateral cortical networks (Uddin et al.
2009) and differing patterns of local functional connectivity
density (Tomasi and Volkow 2010). These observations
suggest that modulation of vmPFC may have unique
consequences (within the DMN) for cortical areas that are
brought online during task performance.

The cellular or local network basis of TID, and more
generally of BOLD signal changes below baseline, remains
to be characterized. However, recent evidence suggests that
deactivations, or negative BOLD responses (which can be
defined objectively as local increases in oxygen extraction
fraction), are associated with increases in local neuronal
inhibitory processes, including neuronal membrane hyper-
polarization (Boorman et al. 2010; Devor et al. 2007;
Northoff et al. 2007; Shmuel et al. 2002). Importantly, this
phenomenon may be one mechanism of gain modulation
(Wade and Rowland 2010). Hyperpolarization of cortical
neuron membranes may be mediated by either gamma-
amino butyric acid (GABA) receptors or by several
monoamine receptor subtypes. Catecholamine systems are
well suited to modulate complex local network dynamics
that are inhibition-dependent as catecholamine receptors
located on both GABAergic interneurons and primary
cortical neurons may afford a sensitive control over
spatiotemporal patterns of membrane polarization states
(Shmuel et al. 2002; Gu 2002). Many important effects of
catecholamines on cortical function are mediated via
GABAergic interneurons (Bacci et al. 2005; Durstewitz et
al. 2000; O’Donnell 2003), and these may be expressed in

cortical oscillations such as gamma-range activity. Cortical
oscillations such as those in the gamma range are not only
associated with BOLD signal change in animal models
(Logothetis et al. 2001; Mukamel et al. 2005; Niessing et
al. 2005) but are also proposed to represent one important
mechanism of gain control in the brain (Salinas and
Sejnowski 2001). There is intriguing preliminary evidence
that during waking periods, gamma-range power is associ-
ated with resting-state fluctuations in BOLD activity (He et
al. 2008). It remains unknown whether TID measured in
humans during BOLD-fMRI is associated with task-
induced changes in oscillatory activity. It is also important
to note that these cortical areas are subject to modulation by
other ascending subcortical neurotransmitter systems, and
there is evidence, for instance, that nicotinic receptors can
mediate deactivation in DMN areas to support cognitive
performance (Hahn et al. 2007).

Study limitations

In the present study, we used a rather simple task with
minimal frontoparietal task demands in order to evaluate
drug effects on TID in the DMN. The apparent inverse
functional relationship between the dorsal/lateral frontopar-
ietal control network and the DMN, which has been
reported in other studies (e.g., Fox et al. 2005), is likely
an important feature of distributed network activity as it
determines cognitive performance. This could even repre-
sent a general, or fundamental, feature of cognition as it is
instantiated in brain dynamics. With the present experi-
mental design, we are not able to evaluate intra- or inter-
network dynamics directly. Nevertheless, we are able to
gain a degree of inferential leverage from the lack of
engagement of the dorsal frontoparietal network. The
present results suggest that catecholamine modulation of
DMN in the service of sensorimotor processing is not
simply an indirect consequence of the positive modulation
of activity in other more dorsal/lateral PFC subregions and
the cognitive processes that they subserve. Regarding the
question of how neurochemical systems may aid the
integration of frontoparietal and DMN networks, a more
conclusive answer will require the use of cognitive tasks
where these networks can be interrogated concurrently. Given
the nearly ubiquitous presence of catecholamines throughout
the cortex of humans (Gu 2002), these neurochemical
systems seem well suited to integrate the function of these
two large, widely distributed cortical networks. Current
models of catecholamine-mediated gain control in cortical
neuronal ensembles would predict that this anticorrelation
should be strengthened with interventions that enhance
catecholamine neurotransmission. We also did not conduct
other tests of cognition in this study, so the cognitive process
specificity of these findings is uncertain. Our working model
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would suggest that augmentation of task-relevant neural
changes is a general feature of catecholamine drug effects,
but this remains to be fully tested in future work, along with
the possible modulation of connectivity within the DMN.
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