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ABSTRACT OF THE DISSERTATION

Causality in Point Processes

by

Ian Richard McGovern

Doctor of Philosophy in Statistics
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Professor Frederic R. Paik Schoenberg, Chair

This dissertation discusses observing causality within point processes. Firstly, a novel hy-

pothesis test for distinguishing between inhomogeneity and causal clustering is described,

validated on simulations, and then used in shooting data. Next, the hypothesis test is also

applied to temporal disease data to identify social contagion mechanisms. Lastly, a discus-

sion of a novel potential outcomes framework as applied to point process data is defined and

applied to simulated data.
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CHAPTER 1

Introduction and Preliminary Discussion

1.1 Introduction

This dissertation is, broadly, a discussion on looking at causality in the process of the point

process framework. Point processes, which will be defined more formally, are essentially a

collection of points that are located on some mathematical space. Primarily, the focus of

this work is on point processes that occur in either spatio-temporal or temporal spaces.The

introduction explores the basic definitions and types of point processes that are relevant to

this dissertation.

Chapter 2 and 3 primarily focus on a specific problem, which is distinguishing inhomo-

geneity from causal clustering. The basic issue of these chapters is looking at data in which

the mechanics of the function are unknown and attempting to decide if points are truly ”trig-

gering” other points, meaning increasing the likelihood of points occurring in the future, or if

the points are simply clustered together in some way due to inhomogeneity. The study of this

arose from an observation that many researchers were fitting models that involved triggering

to data, and when the data fit well enough to it, deciding that there was truly triggering

occurring. This is a dangerous conclusion to make-it is akin to observing a correlation and

then deciding that this is a causal relationship. For example, it makes sense to fit disease

data to triggering functions-usually, it is known that infections truly trigger other infections

if the disease is contagious. However, many of the triggering models typically used in point

process literature are flexible enough that if one were to, say, fit a model involving triggering
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to parking ticket data in Los Angeles, you would observe that there is in fact triggering

occurring. In reality, it would be clear to any observer that parking tickets would just be

clustered during certain times(Friday evenings for example) in certain places(Downtown, or

places with limited available parking).

The issue comes when the amount of triggering, if there is any, is unknown to the re-

searcher. An example would be in crime data-there has been a long history(which will be

explored further in Chapter 2) of individuals fitting triggering models to crime data, and

when they fit well, creating a theory of crime that crime can truly ”trigger” other crime to a

significant extent. Another example involves any sort of social contagion mechanism. Again,

while social contagion is a possible explanation, it is also very possible that there has simply

inhomogeneity in the data.

It is necessary, therefore, to develop a clear method for dealing with situations when the

triggering method is unknown, and to provide some sort of guardrails or alternate explana-

tions for any clustering behavior that does not lead immediately to assumptions of causal

triggering within the data. Chapter 2 will introduce and explore a proposed hypothesis test

to do so, and explore crime data with this hypothesis test. In Chapter 2, the hypothesis test

introduced is found to be accurate at distinguishing between clustering and causal clustering

models, with relatively high power when compared to previous methods that have been used

for similar problems.

Chapter 3 explores using this method on temporal, instead of spatio-temporal, data,

which is the type of data that was used for Chapter 2. Specifically, the type of data that is

explored is temporal data that has been binned into weekly counts. The focus of this chapter

is on disease data. In order to validate this method, both contagious and non-contagious

infectious diseases are studied. Measles and Chlamydia, which are both contagious diseases,

are studied to make sure that the hypothesis test is correctly able to identify contagious

diseases. Lyme disease, which has clustering properties due to its transmission that occurs

through ticks, is also studied to make sure that this method works correctly on diseases that

2



are clustered but not contagious. Finally, adolescent suicide data is studied to see if there is

a measurable social contagion within the suicide data of adolescents. The results find that

the test is able to correctly distinguish between contagious and non-contagious diseases, and

that the suicide data shows no evidence of clustering.

Chapter 4 explores a more formal investigation in how causality can be described with

point process data. Taking inspiration from the potential outcomes framework, a framework

for describing the causal effect of a point processes is explored. Specifically, models in which

there is triggering that can cause spill-over effects are explored, and a method is identified

to allow for an accurate representation of the causal effect in this situation. These methods

are explored through simulations, with both non-triggering and triggering models explored.

In addition, a method to allow for covariates to be included in the analysis is also discussed,

with simulations also performed. The simulations show that this method seems to have both

unbiased as well as consistent results, with the estimated causal effects in simulations being

centered around 0, as well as the amount of error decreasing as the amount of data increases.

1.2 Point Process Definition

A point process X on Rd is typically defined as a random set of points such that for any

B ∈ Rd such that B is a bounded Borel set, the number of points that are in B, denoted

typically as N(B), is a finite number(van Lieshout, 2019). This dissertation will primarily

focus on the case of a spatio-temporal Hawkes process, meaning that the point process is

occurring on the product of some spatial space S ∈ R2 and some temporal space T ∈ R+.

A more technical explanation can focus on a framework involving integer valued measures

and σ-algebras. A σ-algebra of a set X is defined as a collection Σ of subsets of X such

that:Σ contains X,Σ is closed under complement, Σ is closed under countable unions andΣ

is closed under countable intersections. A Borel Set is a set that can be obtained by taking a

countable number of operations from a collection of open sets, with the operations consisting

3



of unions, intersections, and complements(Srivastava, 1998). Let X be a complete separable

measure space, and let BX be the σ-field of the Borel sets of X . This means that Bx is a

collection of subsets of X that contain Borel sets as defined previously.

It is necessary to ensure that we do not have an infinite accumulation of points in a certain

area. Specifically, it is necessary for any bounded Borel set in the space to not contain an

infinite amount of points. Let N#
X represent the space of all boundedly-finite measures on

the σ-algebra of Borel sets of X , BX , with integer values. These are also called ”counting

measures”(Daley and Vere-Jones, 2008).

N#
X , is now, in fact, a complete separable measure space on its own. Therefore, it is

possible to define another σ-algebra over N#
X . Specifically, define B(N#

X ) as the Borel σ-

algebra over N#
X . This will be the smallest σ-algebra over N#

X such that the mappings

of N → N(A) are measurable for all A ∈ BX , the σ-algebra of Borel sets of XDaley and

Vere-Jones (2008).

This allows for the formal definition of a point process, which is a mapping from a

probability space (Ω,F ,P) to (NX ,B(NX )).

1.3 Conditional Intensity

Point processes are, in most cases, simply defined by the conditional intensity of the process.

The notation in the following paragraphs will involve spatio-temporal processes, however

these can be defined for any space that the process is occurring on. The conditional intensity

is typically denoted as λ(x, y, t|Ht). The ”conditional” portion of this intensity is represented

by conditioning onHt, which is the history of the process up until the time t. This conditional

intensity is defined as

λ(x, y, t|Ht) = lim
δx,δy ,δt→0

E[N((x, x+ δx)× (y, y + δy)× (t, t+ δt))]

δxδyδt
. (1.1)
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This essentially refers to the expected number of points in a given ϵ-ball around the point

(x, y, t) as the ϵ goes to 0-keeping in mind that N() is the number of points in a given region

of the point process.

Typically, a point process is solely defined by its conditional intensity and the form that

it takes. Different types of point processes are noted when the forms of their conditional

intensities follow different structures-for example, you can have a constant conditional in-

tensity, one that is based only on the location and ignores the time, or a variety of types of

conditional intensities that depend on the previous history of the process.

1.4 Likelihood of Point Process

Beyond the formal definition of a point process, it is also necessary to rigorously define the

likelihood of a point process. This section will specifically cover the case of a finite point

process, meaning that there is only a finite number of points. The likelihood of a finite

point process can be defined under some conditions. The conditions are as follows(Daley

and Vere-Jones, 2003):

1. As previously, let X represent a complete separable measure space. The point process

much take place within this space.

2. The point process has a probability distribution that corresponds to the total number

of points that occur within the point process. Let this distribution be denoted as

{pn}, which is a distribution over the non-negative integers n = 0, 1, ... such that∑∞
n=0 pn = 1. This allows for the number of points in the point process to be a random

process, so the total number of points in the process is a random variable.

3. For each non-negative integer m that is in the outcome space of{pn}, define a dis-

tribution Πm() over the Borel sets of X (m) = X × ... × X that determines the joint

distribution of the m points in that process, given that there are m points.
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his defines a process in which firstly the number of points in the process is randomly chosen

by {pn}, and then the location of those points is then chosen by choosing a random vector

from Πm().

For point processes, the sets of points are assumed to be unordered. This implies that

specific points found in certain areas are not relevant(for example, if the points consisted

of individuals, the only relevant information would be the location of the individuals, not

necessarily which exact individual is in a location). Ordered sets of points would be necessary

to display information about one specific individual. Therefore, it is necessary to further

specify the distribution Πm to properly further the goal of point processes dealing with

unordered sets. Πm should not give a different probability, therefore, to any permutation of

a set of points occurring in certain locations(as in, the order of the points should not change

the probability that the points occur in certain locations). Therefore, the symmetric form

of this distribution is defined(Daley and Vere-Jones, 2003).

For any partition A1, ..., An of X , the symmetric distribution, denoted as Πsym
m can be

defined asReinhert (2018)

Πsym(A1 × ...× An) =
1

n!

∑
perm

Πn(Ai1 × ...× Ain)

The notation
∑

perm is the summation over all permutations of the integers 1, ..., n, denoted

as i1, ..., in. Since there are n! such permutations, this sum is divided by n! to allow for this

to still be a distribution.

The symmetric distribution can, in turn, be used to define the Janossy measure,Jn. The

Janossy measure, Jn for a partition of a complete separable measure space X , denoted as

A1, ..., An, is defined asReinhert (2018)

Jn(A1 × . . .× An) = n!pnΠ
sym
n (A1 × . . .× An).

Recall that pn is the probability that there are n points in the process, and Πsym
n is a

probability measure, set up to be symmetric over the partitions of X , for the joint distribution

of the points in the point process.
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The Janossy measure is not a probability measure. However, the derivative of this is

easily interpretable, which is one reason why the Janossy measure is often used despite it

not being a probability density. Suppose the space the point process is occurring in is Rd.

Let jn(x1, ..., xn) be the density of the Janossy measure, Jn(), with respect to the Lebesgue

measure on (Rd)n. Then jn(x1, ..., xn)dx1dx2...dxn can be interpreted as the probability that

there are n points in the process, each occurring within the region of xi + dxi. Essentially,

this is the probability that the point process occurs, with the first stage being the random

variable corresponding to the total number of points, and then also specifying that each

point occurs in a certain location.

This clearly leads to a way to define the likelihood of a point process under this framework.

In order to do so, however, firstly the concept of a local Janossy measure must be defined.

Given a bounded Borel set A, the Janossy measures localized to A, denoted as Jn(|A), for

n = 1, 2, .., with locations of x1, .., xn ∈ A, can be defined such that Jn(dx1, ..., dxn|A) is the

probability that there are n points in A, at locations dx1 through dxnDaley and Vere-Jones

(2003).

Clearly, this simply specifies a Janossy measure over a certain bounded Borel set.This

directly allowed for a construction for the likelihood of a point process. The likelihood of a

realization of points x1, ..., xn of a regular point process N on a bounded Borel set A ⊆ Rd,

with n = N(A), is the local Janossy density(Reinhert, 2018)

LA(x1, ..., xn) = jn(x1, ..., xn|A)

The ”regular” point process definition is simply stating that the local Janossy measures

behave properly with regards to the Lebesque measure. This definition, while clearly more

formal and accurate, is not commonly used in the point process literature. Instead, the

likelihood is calculated from the conditional intensity directly, which will be shown later in

this introduction.
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1.5 Relevant Types of Point Processes

There are three primary types of point processes discussed in this dissertation: Poisson pro-

cesses, Poisson cluster processes,Neyman-Scott processes, and Hawkes processes. A Poisson

process is simply a process in which the conditional intensity is not dependent on Ht, mean-

ing that the intensity at a given spatio-temporal location does not depend on the history of

the process. In cases where the intensity is constant throughout the spatial and temporal

domain, this process is referred to as a ”homogeneous Poisson process,” and in cases where

this process is not constant throughout the spatial and temporal domain, this is referred

to as a ”heterogeneous Poisson process.” Therefore, the conditional intensity of a Poisson

process(λP ) is of the form

λP (x, y, t|Ht) = λP (x, y, t). (1.2)

This dissertation, as previously stated, focuses on cluster processes. Before examining

specific cluster processes, the idea of a cluster process needs to be more rigidly defined. A

cluster process can really be thought of as two separate processes occurring. Firstly, there is

a process that determines the ”centers” of the clusters, or where the clusters are originating

from. This is often called a ”center process” or ”parent process.” Within this paper, the

parent process will be denoted as Nc(). Sometimes this parent process is included in the

final point process, although sometimes this is considered an ”invisible” or ”latent” process,

in which these points are not observed in the defined point process.

Next, once the cluster center points are determined, there needs needs to be a distribution

or defined process for the points within a cluster. This process can be much more general than

the analysis in this dissertation extends to-it is possible to have each clustering process be

unique for each cluster center, or to have this clustering process defined by other covariates.

Therefore, it is possible to define a cluster process on a complete separable measure space

X . It can be stated that N is a cluster process on X if, for the center process Nc() occurring

in the complete separable measure space Y , with a clustering process of {N(|y) : y ∈ Y},
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that for every bounded A ∈ Bx,

N(A) =
∑

yi∈Nc()

N(A|yi)

is finite(Daley and Vere-Jones, 2003). Observe that a clustering process can be thought of as

an overlay of each individual clustering distribution, added up over all the points occurring

in the parent process.

In general, a Poisson clustering process is any process in which the underlying parent

process is a Poisson process, and each of these cluster centers creates some number of points

within the cluster according to some distribution(Daley and Vere-Jones, 2008). The number

of points triggered and the distribution can be as general as needed. These can be applied

to both spatial and spatio-temporal data, or in fact any point process.

A Neyman-Scott process is a certain type of clustering process with a two-part conditional

intensity(Neyman and Scott, 1958). This process consists of a hidden ”parent” process and

an observed ”children” or offspring process. The process begins with the parent points being

distributed through the domain space-this can be either homogeneous or heterogeneous.

Each parent then triggers a random number of offspring points that are observed, with a mean

number of points that are produced denoted as A. These offspring points are distributed

through some triggering density that is typically done as isotropic for each parent point.

These processes are used in a variety of spatial contexts-notably forestry(Penttinen et al.,

1992), galaxies(Neyman and Scott, 1958), and rainfall(Guttorp, 1996). The intensity of a

Neyman Scott process can be difficult to write out in a condensed form in most cases(Moller

and Waagepetersen, 2004), however the parameters can be well estimated by a variety of

methods such as maximum likelihood estimation(Baddeley et al., 2022). It is possible to

write out an intensity given a σ-algebra K(Zhuang, 2018); however this is not, strictly, a

conditional intensity as it does not depends on the history of the process. This intensity
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function can be written as

λ(x, y, t|K) = A
∑

(xi,yi,ti)∈Nc

g(x− xi, y − yi, t− ti). (1.3)

Hawkes processes are an example of a ”self-exciting” point process, and in this dissertation

will frequently be referred to as ”causal clustering” point processes(Hawkes, 1971b,a). They

have been widely used in earthquake analysis and infectious disease analysis(Ogata, 1988;

Reinhart, 2018). Both of these can be thought of as events in which there is some event

that increases the likelihood of the event occurring in the future. In the case of earthquake

analysis, a ”main shock” will increase the likelihood of aftershocks of earthquakes occurring

nearby in the future. In the infectious disease model, a person being infected with the disease

will increase the likelihood of others acquiring the disease through contagion methods.

A Hawkes process, similar to a Neyman Scott process, involves both a parent process and

an offspring process. However, unlike a Neyman Scott process, both the parent and offspring

process are observed. The parent process consists of a (potentially) inhomogenous Poisson

process that is denoted as µ(x, y, t) for spatiotemporal Hawkes processes. Each parent then

triggers an average of κ points according to some triggering density g(). The κ value is often

referred to as the ”productivity” of the Hawkes process. This triggering density can only

trigger points forward in time. The value of κ can change based on other variables or change

over time-a common example is the ETAS model for earthquakes in which the productivity

can change depending on the magnitude of the earthquake(Ogata and Zhuang, 2006).

The conditional intensity for a spatiotemporal Hawkes process is written as

λ(x, y, t|Ht) = µ(x, y, t) + κ
∑
i:ti<t

g(x− xi, y − yi, t− ti). (1.4)

The choice of g() is arbitrary, although typically a parametric distribution is chosen and

then the parameters are fit once that choice has been made. As explained later, typically

the triggering density is chosen as a distribution for computational reasons.
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The likelihood of a point process with conditional intensity λ(x, y, t|H) and with observed

points pi = (xi, yi, ti) can be expressed as

∏
1≤i≤n

λ(xi, yi, ti|Ht)× exp

(
−
∫
S
λ(x, y, t)dxdydt

)
(1.5)

such that S is the observation window of the point process.
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CHAPTER 2

Testing for Causal Clustering within Point Processes

2.1 Background and Framing Question

One of the key problems in point process research is distinguishing between inhomogeneity

and causal clustering patterns. It is very common for points, in a certain spatio-temporal

area, to occur closer together than expected for a random pattern. This results in a common

question-is this spatial and/or temporal clustering due to inhomogeneity, in which certain

spatiotemporal areas are simply more likely to have points occur, or is there some level

of triggering(or causal clustering) occurring in the process. A simple motivating example

would be to look at parking tickets in Los Angeles. Plotting these events in a spatio-temporal

map would show clear clustering occurring. One might argue that this shows that there is

some triggering within the clustering-as in, a parking ticket is ”causing”, or increasing the

likelihood, of a parking ticket to occur near by. A reasonable person would then say that

this is clearly the result of inhomogeneity-There is simply more parking tickets occurring in

downtown Los Angeles on a Friday due to the increased number of people and the likely

increased police presence.

This problem is of such importance that it is been called one of the most important issues

in point process analysis(Diggle, 2014). In the case of the parking tickets, it is clear that the

underlying mechanism is inhomogeneity, so fitting a causal point process model would not

make any sense. However, in cases in which the underlying mechanisms of the process are

not known a priori, it is possible to make this error without realizing an error is made. For
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example, if the disease process of a new illness is not known, a researcher might make the

mistake of identifying it as an illness that is contagious due to the clustering of the data in

certain spatio-temporal locations. However, it could be possible that the illness only occurs

in areas next to certain rivers and it is an illness transmitted through some water-based

method.

This chapter will identify a method to try to distinguish between these two cases, where

there is the possibility of the observed process resulting from inhomogeneity and the observed

process resulting from causal clustering.

2.2 Previous and Related Methods

This section will go over solutions that have been proposed for this problem as well as a look

into their limitations as well as their issues with certain applications.

Granger causality is a statistical method that is used for two sets of temporal data sets,

originally proposed as part of econometrics research (Granger, 1969a). The method looks

at whether it is possible to significantly predict a time series better when another, ”causal”

time series is also included in the modeling, as opposed to only using the time series itself.

Since this is so widely used for ”causal” analysis in time series and point process data, it is

necessary to more accurately define this method. Let yt and xt be two time series. Let Ht

be the history of both xt and yt up until time t. Let Htx be the history of xt up until time

t. Let P (xt) be the best prediction for the time series xt at time t. Then you would state

that yt is ”causal” to xt if

var[xt − P (xt|Ht−1)] < var[xt − P (xt|Ht−1xt
].

This corresponds to saying that the variance of the error term for predicting xt with the

information included in yt is less than the variance of the error term for the prediction of xt

only based on xt(Shojaie and Fox, 2022).
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While Granger chose to use the term ”causality” for this method, it is not a truly causal

method-it really studies a correlational relationship between two time series. This method

has been widely applied to point process research(Kim et al., 2011a; Xu et al., 2016), although

these studies do not help to answer the question that has been outlined in the introduction

of this section. This method can provide valuable insight into which variables to include in

prediction models, however it does not answer the question of a true causal relationship. For

example, it is possible that looking at a time series of the inflation rate in the United States

would ”granger cause” a time series that looks at the unemployment rate. While this even

could appear to be a reasonable assumption based on economic principles, the unemployment

rate could be caused by a variety of other factors that happen to be correlated with the

inflation rate.

Another method that was suggested by Diggle was to observe multiple realizations of the

point process in order to distinguish between causal clustering and inhomogeneity (Diggle,

2014). If the clusters of points occur in different locations in each realization, then it can be

concluded that the clustering is the result of a causal clustering mechanism. If the clustering

occurs in the same locations in each realization, then it can be concluded that the clustering

occurred due to inhomogeneity. This method is most likely among the best ways to distin-

guish these two situations when multiple realizations of the data can be observed. However,

as in most areas of statistics, seeing multiple realizations of a process is nearly impossible to

do-even if the process occurs multiple times, each of those times are by definition observed

in a different time window, which makes them not the same process observed multiple times.

Therefore, it is necessary to find a method that can be done on a single observed realization

of a point process. However, this definition is still a good framing for what the other methods

should attempt, in some way, to accomplish if possible.

Cordi proposed a solution that works on only an observed singular realization of the point

process(Cordi et al., 2017). This method was primarily tested on temporal data, although a

brief exploration into multiple dimensions was explored without the same amount of results
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presented. This paper primarily looked at temporal data with an exponential triggering

density. The basic outline of this method was to fit a Hawkes model to both the original

data, as well as to the ”reversed” data-meaning looking at the process that started at the

end and went backwards. The reasoning for this was that for a true Hawkes model, having

points trigger points backwards in time is not reasonable-for example, this could be thought

of as an earthquake causing an aftershock at some point in the past.

To estimate how well the model fit a Hawkes distribution, the compensators, which for a

Hawkes process with a triggering density of g() and a background rate of µ is calculated as

Λ(ti−1, ti) =

∫ t

ti−1

µ+
∑
tk<s

g(s− tk)ds

were calculated. For a Hawkes process, this distribution should follow an exponential distri-

bution with a rate of 1(Papangelou, 1972). A Kolmogorov-Smirov test than can be used to

establish how well a temporal dataset will fit to a Hawkes model.

This paper explored a variety of different values for the parameters of the exponential

distribution, and it resulted in a low Type I and Type II error. This method is most similar to

the method that will be developed and tested in this paper, however the method described

in this paper is much more suitable for spatio-temporal data. This method was also not

heavily tested in the case of spatially heterogeneous but non-causal data, which this paper

also seeks to distinguish from casual clustering more rigorously.

Another method that was previously explored for this purpose was a paper looking at

gang-related violence in the Los Angeles area(Park et al., 2021). This method focused on

attempting to distinguish between the causal portion of the Hawkes process-meaning the

points that are being triggered by other points- from the background rate µ(x, y), which was

assumed to be spatially heterogeneous. This method used generative additive modeling to

incorporate as much information as possible that could explain crime rates to isolate the

causal clustering that cannot be explained by any background variables.

This method is helpful in that it does allow to incorporate spatial variables into the
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analysis, however it has several shortcomings. Notably, this method can only incorporate

observable variables, and in fact can only incorporate available and measured variables. This

leaves out any variables that were not collected as well as any variables that are unobservable.

This limits the applications of this method, as well as the accuracy in identifying true causal

clustering. It also assumes that the background rate is being modeled correctly, which is

difficult to do. Namely, it becomes an issue of determining if any extra points that are

not represented by the background process are evidence of causal clustering or if they are

evidence that the background rate does not fit properly.

2.3 Proposed Methods of Distinguishing Inhomogeneity and Causal

Clustering

Another possible method to distinguish between causal clustering and heterogeneity is to

look at a hypothesis test involving a Poisson cluster process. The basic idea of the method

is similar to that of the method involving time reversal, notably that if the clustering of

a process is truly causal and not simply a result of inhomogeneity, then a paradigm in

which points can be ”triggered” backwards should not fit as well as a model going forward.

The primary difference between the reversal method and this method is that this method

involves a hypothesis test that can be used for both spatial and spatio-temporal processes,

which allows for a clear cut-off point for whether or not there is evidence of causal clustering.

2.3.1 Estimation of Parameters and Likelihoods

The first step of the test is to fit a Poisson cluster model and a Hawkes process to the

observed data. This can be done by maximum likelihood. For the purpose of the simulations

done to demonstrate this technique as well as the example data used for this method, it is

assumed that the triggering densities for these distributions are both Gaussian distributions.

Specifically, for the Poisson cluster process, it is assumed it is of the form of 1.3 with the
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triggering density g(x− xi, y − yi, t− ti) given as

g(x−xi, y−yi, t−ti) = (2π)
3
2σ3 exp

( 1
2
(x− xi, y − yi, t− ti)(x− xi, y − yi, t− ti)

T

σ2

)
. (2.1)

This is a multivariate normal distribution with a mean of the given parent point as well as

a variance that is assumed to be σ2 times the identity matrix. This assumes that the parent

process is both isotropic as well as independent. To fit the values for the maximum likelihood,

since this is equivalent to a Gaussian clustering process, a package called ’mclust’(Scrucca

et al., 2023) is used, which identifies the best Gaussian clustering process. This involves

selecting the number and location of parent points, what the value of σ2 is, as well as which

points are in each cluster. The average number of points per cluster is then used as the A

value, and the calculated σ2 and parent points are used for the estimation.

From the estimation of the A and σ2 value, as well as the location of the parent points,

it is then possible to calculate the likelihood of the Poisson cluster process for use in the

hypothesis test. This is done by calculating the intensity at every given point, which is given

by

λ̂(x, y, t) = Â
∑

(xi,yi,ti)∈Nc

ĝ(x− xi, y − yi, t− ti). (2.2)

If the triggering density is chosen such that∫
S
g(x− xi, y − yi, t− ti)ds = 1

then we can write the second part of the integral as∫
X

∫
Y

∫
T

∑
i:(xi,yi,ti)∈Nc

g(x− xi, y − yi, t− ti)dxdydt =

∑
i:(xi,yi,ti)∈Nc

∫
X

∫
Y

∫
T
g(x− xi, y − yi, t− ti)dxdydt =

∑
i:(xi,yi,ti)∈Nc

(1) = M

where M is the number of points in the parent process. Therefore, the integral can be

simplified to ∫
X

∫
Y

∫
T
A

∑
i:(xi,yi,ti)∈Nc

g(x− xi, y − yi, t− ti)dxdydt = AM.
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Without this simplification of the integral, calculating the likelihood of a Poisson cluster

point process would be much more computationally intensive. It would be necessary to do

a Monte Carlo integration over the entire observation window, which in the case of spatio-

temporal data is a three dimensional space with a highly irregular integral. However, this

computation allows for much faster calculation of the integral which then allows for a much

faster calculation for the hypothesis test.

The next step in the process is to fit a Hawkes process to the model. This is done

using maximum likelihood estimation. The triggering density in the Hawkes intensity, h(x−

xi, y − yi, t − ti) can be any distribution in which the density over (−∞, 0] is 0, however,

to match with the Poisson cluster process in the simulations in this section, the triggering

density in the temporal dimension is assumed to be given by a truncated normal distribution

with a lower bound of 0 and an upper bound of +∞. The triggering density in the spatial

dimensions is a bivariate normal distribution with independent dimensions for latitude and

longitude. Therefore, the full triggering density is given as

h(x− xi, y − yi, t− ti) =
ϕ( t−ti

σ
)

−Φ(0)
2πσ2

t exp

( 1
2
(x− xi, y − yi)(x− xi, y − yi)

T

σ2
s

)
∼ TrN(t, σt, 0,∞)N((x, y), σ2

sI).

For the integral over the observation window of the Hawkes process, it is also possible to

simplify the integral for computational purposes. For the Hawkes process, observe that if

h(x− xi, y − yi, t− ti) is a density, then∫
X

∫
Y

∫
T

λ(x, y, t|Ht) =

∫
X

∫
Y

∫
T

µ(x, y) + κ
∑
i:ti<t

h(x− xi, y − yi, t− ti)

= µT + κ
∑
i:ti<t

∫
X

∫
Y

∫
T

h(x− xi, y − yi, t− ti) = µT + κM

where T is the size of the temporal domain, and M is the total number of points in the

process. Similar to the Poisson cluster estimation, this allows for quick calculation of the in-

tegral instead of relying on Monte Carlo methods that, as the number of dimensions increase,

get exponentially more computationally intensive.
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(a)
µ κ σ

10 .95 .0005
(b)

µ κ σ

10 .9 .001

(c)
µ κ σ

10 .8 .01

Figure 2.1: Hawkes Process Examples
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(a)
µ A σ

10 10 .001
(b)

µ A σ

10 5 .0005

(c)
µ A σ

10 3 .01

Figure 2.2: Poisson Cluster(Neyman Scott) Process Examples
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2.3.2 BIC Method

Originally, the Bayesian Information Criterion(BIC) was considered to make a decision

of whether the model had evidence of causal clustering. The BIC is a model selection

method that is helpful for distinguishing between models with different numbers of param-

eters(Schwarz, 1978). The BIC is defined as

BIC = k ln(n)− 2l ln(L̂). (2.3)

L̂ is the estimated likelihood of the model, k is the number of parameters in the model, and

n is the number of observed points. The Poisson cluster process, in the way that it was

used in this research, has much more parameters than the Hawkes process. For Hawkes,

the only parameters that can be changed are κ, µ, and, in the Gaussian triggering densities

described previously, σ. The Poisson cluster process has the equivalent parameters of A and

σ, however each hidden parent point is also estimated as well. This creates a situation in

which the number of parameters for the Poisson cluster process is much higher than the

parameters for the Hawkes process, so the Poisson cluster process will nearly always have a

higher likelihood than the Hawkes process.

Hawkes processes were simulated to measure the power of this test for the BIC. These

simulations occurred in a spatio-temporal domain of a unit cube, consisting of the spatial

region with boundaries of [0, 1]× [0, 1] and the temporal region with boundaries [0, 1]. The

baseline values for the Hawkes parameters were κ = 6/7, µ = 17, and σ = .0005. For each set

of parameters where the power was calculated, 25 different Hawkes processes were simulated.

For each simulation in this analysis, three likelihood and BIC values were estimated.

First, the likelihood and BIC for the standard Hawkes model was computed using maxi-

mum likelihood. In addition, the likelihood and BIC were calculated for the Poisson cluster

model. Finally, the temporal dimension was reversed(in a similar process to the Cordi et.

al. process). This made the last event the first event and vice versa, as well as swapping all

the times so the whole process was backwards. The spatial coordinates, however, were kept
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(a) Accuracy for σ Values (b) Accuracy for µ Values

(c) Accuracy for κ Values

Figure 2.3: Power of the BIC test over the inputted σ, µ and κ values for a simulated

Hawkes process. The dashed lines represent the power for the Poisson Cluster(Neyman Scott)

method and the solid lines represent the power for the Time Reversal method
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the same. The likelihood and BIC were then found for the reversed Hawkes process. For

each simulation, the accuracy value that is shown refers to the percentage of simulations for

which the BIC correctly picked the non-altered Hawkes model as the correct process. This

is technically the ”power” of this process.

For the first set of simulations, the κ value was fixed at 6/7 and µ was fixed at 17. The

values of σ varied from .00005 to .01, with an even spread of 21 values in this range. The

results of this accuracy, as shown in Figure 2.3a, shows that there is a clear trend to how

accurate the BIC test is on different values of σ. The accuracy generally gets lower as the

value of σ increases. This is potentially due to the detection of clustering and fitting the

parameters when σ is larger. When σ is larger, the points appear to be much more random,

so distinguishing between the causal clustering processes is more difficult. In addition, the

time reversal method is universally more accurate than the Poisson cluster method, however

the two methods follow a similar pattern in shape.

In addition the µ values were altered. The κ value was fixed at 6/7 and the σ value

was fixed at .0005. The µ values were 21 values evenly spaced between 5 and 25. Figure

2.3b shows the results of the accuracy of the tests when using Hawkes models with these

parameters. For both the time reversal and Poisson cluster comparisons, as the value of µ

increases, the power of the test increases. Again, the time reversal method is more powerful

through all chosen values of µ. The reason for the increase in power as the value of µ increases

is most likely due to the fact that the power of tests is naturally raised when the number of

points increases. Logically, distinguishing between models should be much easier when you

have more data to make that decision as compared to less(in an extreme, only have one or

two points would make distinguishing between models impossible). The higher the value of

µ is the more points that will be observed on average.

Finally the κ values were altered. The value of µ and σ were kept at their default values,

and the value of κ was between .5 to .9, with 21 values evenly spaced on that grid. Figure

2.3c shows the power of the BIC test on this range of κ values. Similar to the µ values,
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the higher values of κ show a higher level of power for both the Poisson cluster and time

reversal method of the BIC comparison. Again, the time reversal method is more accurate

over all values of κ. The most likely reasoning for this increase in accuracy as κ increases is

partly due to the increased amount of clustering and partly due to the increased amount of

points as κ increases. Similarly to the analysis of the simulations in which µ was changed,

the power of a test increases as the number of points observed increases. However, the value

of κ also increases the number of points in each ”cluster” of points, or each set of points that

can be traced back to the same background point. This allows for more information about

what the clustering process looks like, which is crucial when distinguishing between different

types of spatio-temporal clustering.

2.3.3 Issues with the BIC Method

There are several issues involving the BIC method that made this method not be desirable for

general use. Firstly, the largest issue was the relatively low power over the values that were

examined, especially for the Poisson cluster method. The values of σ in fact were specifically

chosen as rather small, as any σ values that were chosen outside this range had almost no

power. In cases in which a Poisson cluster process or inhomogeneous Poisson process were

simulated, the test nearly always correctly did not select the Hawkes process, however this

is not actually helpful in distinguishing if the power of the test is so low.

The other primary issue with the Poisson cluster BIC method is that the Poisson cluster

model, being a clustering model, has the ability to fit to very small clusters that can lead

to over fitting. The clusters found with the Poisson cluster process often only have a small

number of points, which means that likelihood for the Poisson cluster model is very high.

This level of over-fitting is not cancelled out completely by the use of the penalty for the

cluster centers.

In addition, this test does not really have a measure to see whether or not the evidence

for causal clustering is higher or lower. The only value that would be returned, should one
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do this test on a single simulation, would be the BIC for two different models, and this is

used to select the model with the lower BIC. The scale of the difference in the BIC is not

known to a user of this method, and such the user does not get a clear understanding of

whether a Hawkes model fits exceptionally better or simply just slightly better than another

model. This method also does not work very well when comparing a Poisson cluster to a

Hawkes model, as the number of parameters are very different, and this could potentially

also be the cause of the low power of this method.

2.4 Hypothesis Testing Method

To look for evidence of causal clustering, the expected information gain statistic is used.

The expected information gain statistic measures the change in entropy between some null

model and some alternate model(Daley and Vere-Jones, 2016). Information gain measures

how well a model predicts the next occurring point in the point process. The calculation

of this statistic is often difficult to compute directly, however there are other methods of

estimation. The mean log-likelihood ratio is a good approximation for this statistic, and it

can computed as

Ĝn =
1

N
log

(
L1

L0

)
. (2.4)

L1 is the likelihood for the alternate model in the hypothesis test, L0 is the likelihood for

the null model in the hypothesis test, and N is the number of points observed in the point

process(Harte and Vere-Jones, 2005).

The idea of this hypothesis test is to set up a test with the following null and alternative

hypothesis:

H0: The data are generated from a Poisson cluster process.

H1: The data are generated from a Hawkes process.

These null and alternate hypothesis do seem to only distinguish between two separate pro-
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cesses, but the idea is that this can be extended to a more general test for testing between

inhomogeneity and causal clustering. A Poisson cluster process, by virtue of having parent

points ”triggering” points both forwards and backwards in time, should mimic inhomogene-

ity very well. Meanwhile, a Hawkes process often fits well to both inhomogeneity as well as

truly causal clustering, which creates an issue in distinguishing the two cases.

The logic in having the Poisson cluster process be the null hypothesis that there must

be evidence to reject is based primarily on the higher bar for causal associations. Just

like how causality is a much stronger claim than a correlation response, the assertion that

certain points are ”triggering” points should be taken as a much stronger claim than simple

inhomogeneity. It should be noted that this method does not truly involve using causal

analysis, and the ”causal clustering” is not representative of modern causal theory. In cases

where the underlying physical process is unknown, it is generally more acceptable to assume

that there is not any sort of contagion occurring, as the implication of a contagion model is

often much more substantial than a inhomogeneity model.

2.4.1 Monte Carlo Method for Estimation of Log Likelihood Ratio

Calculating the true information gain statistic is difficult to do, so as mentioned previously

the mean log-likelihood ratio is used instead. In addition, the sampling distribution for the

information gain statistic is not very well defined by any sources, so instead a Monte-Carlo

method is used in order to perform the hypothesis test.

Once the Poisson cluster and Hawkes models have been fit to the data using the methods

mentioned previously, the next step is to create a sampling distribution for the information

gain statistic between these two models. Since there is no known sampling distribution

that can be created using, for example, the central limit theorem, it is necessary to instead

simulate values under the null hypothesis and compare these values to the true estimated

value. This is similar to a randomization test or other test when the sampling distribution

is unknown.
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The full process for this is as follows. First, a Poisson cluster process is fit to the data,

and the values of A, the average number points triggered by each parent point, µ, the

expected number of parent points, and σ, the input to the Gaussian triggering density, are

calculated. From here, Poisson cluster processes are then simulated with the same values of

A, µ, and σ. From this, both a Hawkes and Poisson cluster model are fit to each simulation,

and the likelihood values for the Hawkes and Poisson cluster model are calculated. Finally,

the information gain statistic is calculated for each simulation. Then, the information gain

statistic from the true data can be compared to the simulated sampling distribution, and

the null hypothesis can either be rejected or be failed to be rejected.

2.4.2 Simulations for Hypothesis Test Method

Hawkes process are simulated to determine the power of the test, or the faction of the time

that the test correctly rejects the null hypothesis of a Poisson cluster process for a Hawkes

model. As before, a two dimensional Gaussian distributions is used fro the spatial triggering

density, and a truncated Gaussian distribution with a lower bound of 0 is used for the

temporal triggering density. The background rate is done using a constant rate of µ and the

spatio-temporal region is a unit cube([0, 1]× [0, 1]× [0, 1]).

In each simulation, the likelihood for the standard Hawkes process, a Poisson cluster

model, and the ”backwards” or ”reversed” Hawkes model were calculated. By design, this

model will fail to reject the null hypothesis with a probability of .95 given that the data is

truly a Poisson cluster model. However, similar simulations showed that consistently this

method also rejected the data when the data was a simulated inhomogeneous Poisson model

with a probability of at least .95, an even lower in cases without any significant clustering

such as with a homogeneous Poisson model.

In particular, the simulations were focused on looking at different values of µ, the back-

ground rate, κ, or the productivity, and σs and σt, the spatial and temporal triggering density

variances. The spatial and temporal values were allowed to vary to allow models in which
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the observation window is not a unit cube.

The values of κ, σs, σt and µ were set to values similar to the values there were used

in the applied problem of crime data in a later section. For κ, 100 Hawkes processes were

simulated, with µ = 18, σt = .0002 and σs = .0002. The power over values of κ from .75

to .9 can be found in Figure 2.4a. The Poisson cluster test has higher power over the time

reversal test for nearly all values of κ. The power of the test also increases as the value of κ

increases, with a peak at κ = .834 followed by a slight decline.

The power of Poisson cluster and Time-Reversal tests as a function of σt, for 100 simulated

Hawkes processes with temporal standard deviation σt, each with µ = 18, κ = .81, and σxy

= .0002, where for each simulated process can be found in Figure 2.4c. The power of the

Poisson cluster method is high over all values of σt, although the power of the time reversal

test decreases as the value of σt increases.

Next the power of the Poisson cluster and time reversal tests were examined as a function

of σs, the spatial clustering variable. This was done for 100 simulated Hawkes processes

with spatial standard deviation σs, each with µ = 18, κ = .81, and σt = .0002, where for

each simulated process. 100 Poisson cluster processes were fit by MLE in order to obtain

the sampling distribution. As seen in Figure 2.4d, the power decreases as the value of σs

increases for both tests. The Poisson cluster method is more powerful than the time reversal

method all values.

Finally, the power of the hypothesis test and reversal tests were examined as a function

of µ. For 100 simulated Hawkes processes with background rate µ, each with κ = .81, σt =

.0002 and σxy = .0002, where for each simulated process, 100 Poisson cluster processes were

fit by MLE in order to obtain the sampling distribution. The results can be seen in Figure

2.4b. The power of the test generally increases for both methods as µ increases. This is

true for both the time reversal and Poisson cluster method, and the Poisson cluster method

shows a higher power for nearly all values of µ except for lower some lower values.
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(a) κ (b) µ

(c) σt (d) σxy

Figure 2.4: Power of the BIC test over the inputted µ, κ, σt and σxy values for a simulated

Hawkes process. The dashed lines represent the power for the Poisson Cluster(Neyman Scott)

method and the solid lines represent the power for the Time Reversal method
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The reasoning for the power fluctuating throughout these observed values are most likely

due to the appearance of these different clustering processes. As shown in Figure 2.2, the

appearance of the clusters within the spatio-temporal process can vary wildly depending on

the inputted parameters. For κ, the higher values of κ have a larger amount of points in

each cluster. The shape of the cluster is critically important in determining which model

will fit better. For a Hawkes process, there is an individual starting point that sets off a

chain of points. Each point then potentially triggers additional points, creating a series of

chains coming out of the singular starting point. Meanwhile, for a clustering process, there

will be less of that ”chain-like” appearance to the data. When the value of κ is higher, the

individual clusters are much larger, which most likely makes differentiating these two types

of clustering easier.

The reasoning for the decrease in power as either σ parameter increases has a similar

cause. As the value of σ increases, as shown in Figure 2.2, the appearance of the clusters

are much harder to identify. In some cases, the process ends up looking similar to even a

homogeneous Poisson process. The core difference in these two processes, which are going

to be the structure of the clusters, are going to be difficult to determine if the relationship

between the different points in the clusters are difficult to determine.

The power increasing as µ increasing most likely is due to the increased information with

more points being observed. Any test will increase in power with more data and information,

and the more points that are observed means the more power a test will have. This also

allows for more clusters to examine and determine the causal structure of the data. Overall

the function of power with µ is similar to that of the function of power with κ.

2.4.3 Application to Crime Data

Recorded data on 8,862 reported illegal shootings in Boston between 2015 and 2021 were

collected from the public data source for the Boston government (https:// data.boston.gov

/dataset/shootings). Figure 2.5 shows a kernel smoothing of the locations of these reported

30



crimes. All points with a time and location were used. The excluded data included data

in which the latitude and longitude were entered as a default value of a location in Disney

World in Florida, and it was assumed that this meant that the data did not have a location

recorded.

Figure 2.5: Density Graph of Boston Crime Data

The data were divided into uniform 10 × 10 grid cells, each analyzed individually using

the tests described previously. Grid cells including less than 5 points were excluded from the

analysis as the tests have insufficient power in such cases, and the amount of data is too low

to make any real conclusions. The data was split into this grid for computational reasons-the

fitting of the maximum likelihood for the Hawkes, especially, is incredibly computationally

intensive, even without having to calculate the integral through Monte Carlo methods. This

allowed for each grid to be analyzed individually. Any spillover effects were considered to be
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minimal and not considered, however a more in-depth analysis might be needed to confirm

if that is true.

The data shows some evidence of spatial clustering. This is most likely due to the

geography of Boston, with the highest level of crimes occurring in areas that are the most

populated. Crime is typically clustered in certain areas of a city which is also likely the cause

of some of the spatial clustering.

For each remaining grid cell, a Poisson cluster model was fit by maximum likelihood

estimation to the data within the cell, and then realizations of Poisson cluster models were

simulated repeatedly with parameters equal to these maximum likelihood estimates, to create

a sampling distribution for the information gain statistic.

For each simulation, the likelihood, L1, for a Hawkes model, and the likelihood L0, for a

Poisson cluster model, were calculated, and used to calculate Ĝn. This creates a sampling

distribution for the value of the information gain statistic, and the value of Ĝn for the

actual data is then compared to this sampling distribution. If the value of Ĝn is above the

95% percentile for the simulated sampling distribution, then we say the test rejected the

null hypothesis. For the time-reversal test this procedure was repeated, but with L1 as the

likelihood of the Hawkes model given the data and L0 as the likelihood of the Hawkes model

with the times reversed.

Figure 2.6a shows the results of the Poisson cluster hypothesis test. Each dot represents a

single shooting within a grid, and the data points within each grid section have been colored

based on the result of the hypothesis test within that grid section. The results suggest that

for the majority of locations in Boston, there is significant causal clustering present in the

data on recorded shootings. Of the grid sections that were included within the analysis,

84.6% resulted in the test rejecting the null hypothesis, and these sections contained 83.7%

of the total reported shootings. At the same time, there are several locations, especially

on the Northwest borders of the data set, where the test fails to reject the null hypothesis

and suggests that the local aggregation of points in these locations may be entirely due to
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(a) Boston Clustering Poisson cluster

Hypothesis Test Results (b) Boston Time Reversal Test results

Figure 2.6: Boston

inhomogeneity.

The time reversal test results, shown in Figure 2.6b, have far more grid cells where the

test fails to reject the null hypothesis. The time reversal test only rejected the null hypothesis

in 44.2% of the grid cells, corresponding to a total of 46.8% of the reported shootings. The

majority of grid cells where the Poisson cluster test failed to reject the null hypothesis also

had the time reversal test fail to reject the null hypothesis, again suggesting inhomogeneity

as the dominant cause of aggregation of points in these areas.

The results of the Poisson cluster test indicate that, in the vast majority of locations

within Boston, the reported shooting data from 2015-2021 are significantly better fit by a

Hawkes model with causal clustering than by a Poisson cluster model. Since the test fails to

reject about 95% of the time when either a Poisson cluster model or inhomogeneous Poisson

model is the actual data generating mechanism, the results suggest that the clustering these

points is truly causal.

The results provide evidence that a Hawkes model with causal clustering may be ap-
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propriate for certain crime data. However, there are still some areas, especially near the

Northwestern borders of the observation region, where causal clustering is not indicated.

This could possibly be due to spatially varying covariates, differences in gang territory, or

other factors resulting in more causal clustering in certain locations rather than others.

The Poisson cluster and time reversal tests resulted in substantially different classifi-

cations. One possible explanation for this can be seen in the power analysis indicated by

the simulations, since the Poisson cluster test had higher power than the time reversal test

in most cases. Therefore, the reason that so many more sections failed to reject the null

hypothesis using the time reversal test could be because the power of this test was too low.

Distinguishing between causal clustering and inhomogeneity in point processes is still a

problem requiring much further study. Simulations show that under certain conditions, a

simulated Hawkes model can be correctly distinguished from a Poisson cluster model using

the information gain statistic, and furthermore, the test appears to have high power in distin-

guishing a Hawkes model from an inhomogeneous Poisson model as well. The time reversal

test, by contrast, has somewhat lower power. This power is affected by the parameters of

the simulation, with larger data sets and more intense clustering resulting in higher power

for both tests.

Hawkes models have been used extensively in crime data analysis(Sha et al., 2020; Olinde

and Short, 2020), typically without much investigation into whether or not the assumption

of causal clustering is indicated. Models without causal clustering, such as inhomogeneous

Poisson models or Poisson cluster models, may fit just as well to the data in some situations.

However, with regard to the application to the recorded shooting data in Boston, our results

do suggest strong evidence of causal clustering in most areas of the city.

However, while the level of clustering was significant(meaning that the value of κ was

statistically significant from 0), there is still some analysis of κ that should be investigated

when looking at application of Hawkes processes. The value of κ can be transformed to

calculated the expected number of points that are triggered by each starting point(E[g])
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from the mathematical expression

E[g] =
1

1− κ
. (2.5)

This equation should be used in determining whether or not that Hawkes process makes

sense in a certain case, and whether or not it is reasonable to have that level of triggering

within the data. For this data, the value of κ was typically between .3 and .5, indicating

that each point triggered between 1 and 2 other points. This could be considered reasonable,

however it is likely this is an overestimation. Fitting a stronger background rate would most

likely allow for a more reasonable estimation of the level of true causal triggering within this

model.

Future research should investigate this evidence of causal clustering further. Here, we

considered Gaussian triggering functions for both the Poisson cluster and Hawkes model,

but alternative triggering functions could be considered. In addition, we allowed each spa-

tial grid cell to have its own background rate, to account for spatially varying covariates such

as poverty levels or education levels. Future work could alternatively model the background

crime rate more more explicitly as a function of such socio-economic covariates(Park et al.,

2021). In addition, other types of reported crime data should be analyzed and the rela-

tionship between different types of crimes and the strength of evidence of causal clustering

should be studied.

2.5 Discussion of ”Neyman Scott Process” language

The likelihood of a Neyman Scott process, as mentioned previously, is difficult to calculate

exactly. There are methods for estimating the cluster centers and parameters(Tanaka et al.,

2008; Zhuang, 2018), however these methods rely on using methods such as second-order

intensities or palm likelihoods. For this reason, the process being estimated, while similar

to the form of a Neyman Scott process and using the same ideas, might be more carefully

described as a Poisson cluster process. There are times when these two processes are used
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interchangeably in this dissertation, however this is not an issue as while the process can be

generated as a Neyman Scott process, in reality the likelihood of the process is calculated

as if it is a Poisson cluster process. This section will overview the specifics of this and also

describe why this is not an issue for the hypothesis test described.

The clustering model is fit using a Poisson cluster algorithm with maximum likelihood

estimation. The number of cluster centers is calculated using BIC, with a penalty for each

addition cluster to balance fitting well to the data and preventing over-fitting. This process

also calculates a value for σ from the Gaussian clustering algorithm, which is assumed to be

a certain value spatially as well as a certain value temporally, resulting in a value of σt and

σs.

Once that model is fit, it is assumed that the cluster centers, or parent points using a

Neyman Scott paradigm, are known. This process can be labeled as N c. The average number

of points over all clusters is referred to as A. The conditional intensity for each point, given

these cluster centers, can be calculated simply as

λ(x, y, t) = A
∑

(xi,yi,ti)∈Nc

g(x− xi, y − yi, t− ti).

This provides an accurate measure of how well the data is fit to the data, meaning that

data that fits very well to this clustering model will have a higher combined product for

an intensity than data that has lower values overall for the intensity. The integral over the

whole area is then subtracted, which, as explained previously, can be just seen as AM with

M referring to the number of cluster centers. This therefore also allows for a penalty for the

number of cluster centers that is then scaled by the amount of data.

it is important to note that the goal of this hypothesis test is not to compare two different

models and determine which one fits better. The goal, rather, is to look at a model that

simply shows some level of inhomogeneous clustering and compare that to a Hawkes model

to see if the Hawkes model fits significantly better. Any model with clustering will fit well to

the clustering model that was defined in this section, depending on what triggering function

36



is used. The models here have similar triggering functions in order to narrow the model space

as well as to provide a fair comparison between these two types of models. The decision of

which triggering function to use is largely an intractable problem-there are an infinite amount

of triggering functions that could be examined and an infinite amount of parameters that

could be considered.

The rejection of the null hypothesis is still consistent in this case-it should be assumed

that if you reject the null hypothesis, the Hawkes process fits significantly better than a

clustering model and therefore there is evidence that the clustering within the data is truly

causal and not the result of inhomgeneity. However, failing to reject the null hypothesis

does not mean that the data is actually generated by a Neyman Scott process. In fact,

from the standard definition of a Neyman Scott process, this would not be reasonable in

the majority of applications. With regards to crime, that would mean shootings are truly

caused by some central parent process that is unobserved and triggers points both forwards

and backwards. For diseases, it would again mean that some sort of unseen parent process

is causing infections both forwards and backwards in time.

For that reason, the null and alternate hypothesis can also be written instead as

H0: The data are generated from a non-causal Poisson cluster model

H1: The data are generated from a Hawkes process.

Which more accurately describes the hypothesis being tested and provides a more clear

explanation of what the failure to reject the null hypothesis should mean to an individual

performing this test. Another proposed method of hypothesis tests would instead of focus-

ing on the exact model that is involved, instead to specify some value β, which could be

described as the level of contagious or causal clustering within the dataset. The null hypoth-

esis would be that β is 0, or that all the clustering can be explained by inhomogeneity. Any

other value of β greater than 0 would mean that some of the points can be explained by

inhomogeniety(the points that are from the background process in a Hawkes model) while
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some could be explained by causal triggering.

Therefore, a third way of phrasing the hypotheses, without changing the underlying

method of rejection of the null hypothesis, would be using this value of β to define the null

and alternate hypothesis, or

H0: β = 0

H1: β > 0.

. Again, the acceptance or rejection of these hypotheses remains consistent from the previ-

ously described method. The underlying idea is that in order to claim that there is evidence

of causal clustering instead of inhomogeneity, it is necessary to prove that a Hawkes model

with causal clustering fits significantly better than a Poisson cluster model, or a model with

non-causal clustering.

The question of whether or not this is an unreasonable model to fit at all to the data,

and that the hypothesis test is simply always going to show that a Hawkes model is better

because of the underlying structure of the null model has also been argued as a downside to

this method. This concern is not entirely unfounded, however from simulation and analysis

it appears to not be as problematic as expected. Since the null model that is fit is essen-

tially a generic clustering model, this model will fit reasonably well to both Hawkes models

and inhomogeneous data. While Hawkes models have a different conditional intensity than

clustering models, in practice the data is often fairly similar to a Poisson cluster process in

appearance. Each ”cluster” is started by a point that is triggered by the background process,

and then the cluster consists of that original point and all of the points that it triggered.

As seen in the simulated hypothesis tests, the power can often be very low if the level of

triggering, or the κ value, is too low. This means that the worry about the amount of false

positives is most likely unfounded, and that Poisson cluster models and Hawkes processes

do look relatively similar.

This method has been demonstrated to work on spatio-temporal cases with a Gaussian
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triggering function. There is significantly more options to explore for this method-including

using different triggering functions, as well as applying this to datasets that have known

triggering models and testing whether this process correctly identifies the type of triggering.

The next chapter attempts to do that with disease data, where the underlying process of

inhomogeneity or contagion is known due to the selection of diseases with known infection

methods.

2.6 Further Research

There is much further research that can be done on this method. This analysis, notably,

focused on only a Gaussian triggering density. This was done because of the clear analogue

for a density that is contained on the real line and a density that is contained on the

positive real line, in order to have a similar density for both the Poisson cluster as well as

the Hawkes model. Truncated Gaussian distributions are, however, not frequently used for

Hawkes models, and an exploration of other types of models such as exponential or power

distributions should also be explored. There are also other types of spatio-temporal data in

which the exploration using this method would be interesting-both data that has no causal

clustering as well as data with known causal clustering. Due to the relative scarcity of data

with unknown triggering methods that is spatio-temporal, the crime data used here was

highly unusual. However, there are several other types of spatio-temporal data that Hawkes

processes are used on that could potentially be explored.

Overall, this analysis shows that it is not entirely reasonable to simply fit a Hawkes

model to data and assume that if the fit is good, then the process is truly causal. This is a

method that allows for essentially no distinguishing between ”correlation,” or points simply

being clustered in groups, and ”causation,” or points directly triggering other points. While

this hypothesis test might not provide all the answers, it is also another way to check the

reasonableness of claiming that a point process has causal clustering within the data. This
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does not need to be the only check that one might use when determining if a Hawkes process

is reasonable to use for the data. Another method is to look at the κ value and determine

the reasonableness of this value in the context of the data. As explained before, you would

expect each parent point to trigger 1
1−κ

points total. Therefore, if the number of points

triggered by a parent point is unreasonable from the data, it is another check to see if a

clustering model is more appropriate to use.

Another area of exploration is involving looking at models in which clustering between

distinct areas is explored. For exploration of disease data, which is usually observed on a

regional level, it is common to model the spread between communities based on mobility

data or other information(Chiang et al., 2022). There is a possible extension of this method

that could be explored with this idea. While it is reasonable to assume some level of spread

between communities, it is common when fitting Hawkes models to disease data to show a

large amount of spread between communities that are far away.

As an example, when attempting to model the spread of Covid-19, it was found that

there is a large amount of spread between New York and Los Angeles. This is, obviously,

not reasonable. It is likely that this is similar to the core problem explored within this

analysis-attempting to discern between inhomogeneity and causal triggering. In this case,

the inhomogeneity is that there are certain times when Covid-19 was higher everywhere,

and these periods were often slightly apart in similarly large regions. So, while New York

City might have an increase in infections a week or two before Los Angeles does, it is not

necessarily because there is a large amount of infections transferring from New York to Los

Angeles specifically.

An extension of this method could therefore be done in which it could be determined

if there is in fact significant triggering between different regions. For each set of regions to

compare, both a model with triggering between the regions as well as a model where the

triggering between the regions is non-causal could be done. This would provide a test to

see if there should even be triggering between regions considered. Another method could be
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fitting a Hawkes model to each region specifically, and do a hypothesis test on the points

that are remaining. It might be assumed these points are the result of triggering between

regions, but if that data could be explained with a non-causal clustering model then it might

be decided that adding in triggering between regions is not needed.

Overall, this method should be considered whenever fitting Hawkes models to data in

which the triggering mechanism is unknown. While it is not a perfect solution, just like with

causal inference, the best solution would be observing the data over multiple realizations,

which is not possible in the real world. For that reason, any guardrails when it comes to

stating that a method involves true causality should be heavily questioned and looked at

critically to prevent associating what is essentially correlation with causation.

Future work in this area of study will hopefully provide more research into this hypothesis

test method, as well as potentially hypothesis tests with different a different set up for the

null hypothesis or a different test statistic. Any of these changes might result in a more

accurate hypothesis test to deal with this problem. Overall, the problem of distinguishing

between causal clustering and inhomogeneity will most likely never be solved fully, as the

theoretical solution is impractical, but hopefully further research will expand on the ideas

and methods expressed in this chapter.
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CHAPTER 3

Social Contagion Model Analysis with Causal

Clustering

3.1 Introduction and Motivation

As in the previous chapter, this chapter looks at the case where there is debate as to whether

clustering is simply the result of inhomogeneity or the result of causal clustering. In the

previous chapter, simulations of true spatio-temporal Hawkes processes was followed by an

analysis of spatio-temporal crime data. This method is slightly adjusted as well as expanded

to different types of data in this section.

Hawkes processes are also commonly used for modeling infectious diseases(Sun et al.,

2021; Rizoiu et al., 2018; Choi et al., 2015; Junhyung Park and Schoenberg, 2022), as the

contagion model of an infectious disease intuitively makes sense for a Hawkes process. A

point, in this case, refers to an individual that has contracted the infectious disease. The

background points, in this case, would refer to either people introduced into the study

area that are infected due to travel or people that potentially acquire the disease in a way

that is not the result of a person-to-person transfer. The ”triggering” within the Hawkes

process is the spread of the disease, and the κ value would be the average number of people

that each person infects. A simplistic Hawkes model without a changing κ value or other

modifications would slightly struggle with the case of a very small population, however, in

larger populations these models are still helpful to use.

There are cases, however, where there is doubt about the exact mechanism of a disease’s
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transmission, or if there is in fact any triggering involved at all. An example would be

the concept of social contagion-a broad theory that involves looking at the effects of social

interactions on certain behaviors or diseases(Christakis and Fowler, 2013). Social contagion

models has been modeled previously using Hawkes processes, based on the idea that social

contagion is essentially an infectious or causal clustering process(Palmowski and Puchalska,

2020) Specifically, there is research that suggests that suicide(Bearman and Moody, 2004;

Cheng et al., 2014) or non-suicidal self-injury(Jarvi et al., 2013), especially in adolescents,

can be affected by social contagion. Studies that advocate for this theory do typically find

some level of spatio-temporal clustering within suicide data. However, it is possible that

this spatial-temporal clustering might be explained as resulting from the large variation in

certain covariates such as poverty, mental health issues, and gun ownership, all of which are

correlated with suicide rates.

In addition, many studies simply use survey data that examines whether or not individ-

uals who know suicide victims are more likely to proceed to suicide, which is technically a

correlational approach, even when controlled for any observed covariates. Studies that have

challenged this narrative typically rely upon attempting to isolate a “social contagion” factor

amongst other variables that could lead to suicide(Ali et al., 2011), but such a method relies

upon the assumption that no significant unobservable variables are confounding the results,

which is not necessarily a reasonable assumption.

There are several additional points that also will be covered in this chapter to investigate

the usefulness of the hypothesis test previously developed. The first major change is that this

will look at temporal data that has been binned into weeks, instead of spatio-temporal data.

In addition, this chapter will determine how well the test works on actual infectious diseases

with known disease processes. The level of triggering will also be considered by investigating

the κ value that is estimated to each value to determine if the levels of triggering correspond

to what is expected for diseases with known disease processes and infection levels. Finally,

this chapter will look at whether or not the result of this hypothesis test suggests that suicide
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is indeed an epidemic that has noticeable and significant contagion.

3.2 Hawkes Models with Binned Temporal Disease Data

The collected data for diseases and deaths are often subject to privacy concerns, so the most

granular data available for study is temporal data that has been binned, often into weeks

or days. This presents a slight challenge as well as a potential modification of the power of

the hypothesis test that was defined in the previous chapter. The previous chapter focused

on a spatio-temporal Hawkes model, and a purely temporal Hawkes model has a conditional

intensity of

λ(t|Ht) = µ+ κ
∑
i:ti<t

g(t− ti). (3.1)

The µ and κ parameters function similarly to the spatio-temporal case. However,for the

temporal case, the triggering density, represented as g(δt), is different in that it only expresses

temporal triggering.

Within a contagious disease model, µ would typically represent the background rate of

immigration of the disease into the population of interest, and the triggering element would

represent spread between individuals. The value of κ would represent the speed at which

the disease is spreading on average-a higher κ value corresponds to a more highly contagious

disease.

It is possible and reasonable to fit a Hawkes model to data that has been binned into

discrete values(Browning et al., 2021), as in this case some discrete density would be chosen

for the triggering density. For instance, in the case that the data are weekly aggregates and

the geometric distribution is used for g, then g(k) = p(1− p)k, for k = 0, 1, 2, ... weeks. This

provides a model that follows a reasonable triggering density in which the highest values are

closest to 0 and then decreases as the number of weeks increases. This replaces the previous

parameter for the Gaussian spatio-temporal density of σ for the measure of spread with the

parameter p, which also can be seen as a measure of the spread of the triggering temporally.
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Simply fitting a Hawkes model to adolescent suicide data would not necessarily defini-

tively determine whether or not there is evidence of contagion within the data. Hawkes

models can fit well to clustered data, regardless of the true clustering mechanism. That is,

even if the aggregation of points in the point process is purely the result of inhomogeneity in

explanatory variables, a Hawkes model representing triggering of points might nevertheless

offer satisfactory fit. For this reason, more specialized methods are needed to distinguish be-

tween contagious clustering and clustering that is the result of inhomogeneity or non-causal

clustering.

Diseases with known contagion methods can be compared to suicide data in order to

evaluate and compare the fit of different clustering models. Three diseases that can be

compared to suicide data in adolescents in order to study the social contagion theory are

measles, Chlamydia, and Lyme disease.

Measles is a highly contagious disease that spreads rapidly through populations, so it

can potentially be modeled accurately using a Hawkes model(Laksono et al., 2016). Since

the level of contagion in measles is very high, the value of κ should be very high and it

should be very easy to distinguish between whether or not there is epidemic spread of the

disease using a hypothesis test method. Chlamydia is a sexually transmitted disease that is

not as highly contagious as measles since the level of contact needed for exposure is much

higher than for measles(Althaus Christian L., 2012). Therefore, it is expected that the

level of contagion will be lower than for measles, however it should still show evidence of

contagion. While there are outbreaks of Chlamydia within populations, typically the amount

of people that an individual can infect is much smaller than with measles. Lyme disease is

non-contagious from human to human but cases tend to be highly clustered, as the disease

is primarily spread through ticks, and this exposure is much more likely to happen during

warmer weather(Roome et al., 2018). Therefore, it is expected that the hypothesis test

should show that while there is clustering present, there is not contagion happening with

the data.
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3.3 Hypothesis Testing Method

A temporal Poisson cluster process N can be viewed as an example of a cluster process,

where the intensity is random, as it depends on the random collection M of hidden parent

points, but given M , the process N is a Poisson process with intensity

λNS(t|M) = A
∑

i:ti∈M

h(t− ti).

The parameter A represents the average number of points that each parent triggers, and h(δt)

represents the clustering density. Under this parameterization, this conditional intensity is

not based on the history of the process N but instead is based on knowing the hidden parent

process M . In addition, the clustering function h(δt) is not limited to positive values unlike

the triggering density in a Hawkes model.

In order to estimate the sampling distribution of the information gain statistic under

the null, the previous chapter proposed a Monte Carlo method. Specifically, in the context

of the datasets analyzed in the present analysis, a Poisson cluster process is first fit to the

data using a Gaussian triggering density. A Gaussian clustering algorithm is then performed

using maximum likelihood estimation, and the parameters for the Poisson cluster process

are estimated using the number of clusters (µ), the mean number of points per cluster (A),

and the standard deviation of the clusters (σ). Poisson cluster processes with these same

parameters are then simulated, and a Hawkes model is fit to each Poisson cluster simulation

by maximum likelihood. The information gain statistic is then calculated, and the sampling

distribution used is the collection of information gains between the Hawkes and Poisson

cluster model log-likelihoods for all of the simulations. Here, 500 simulations were used for

each dataset. The information gain statistic is then calculated for the original data in the

same manner and compared to the simulated sampling distribution to determine if the null

hypothesis can be rejected.

Even though the Poisson cluster model that is fit here is not discrete, there is intuition

behind why this is not problematic under this hypothesis testing paradigm. Firstly, this
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hypothesis test is not attempting to distinguish, truly, between a Poisson cluster and Hawkes

model. Instead, this process is attempting to distinguish between inhomogeneity, which

can be modeled well with a Poisson cluster model, from causal clustering. Therefore, the

theoretical properties of this Poisson cluster model, or even whether or not this model is a

”true” Poisson cluster model, is not relevant to the analysis. In addition, since this involves a

simulated sample distribution, the only relevant information is how extreme the general fit of

the Poisson cluster model is as compared to a Hawkes model for the simulations as compared

to the true data. Therefore, while the scale of the differences are affected, the relative values

of the fits between simulated and true data is still comparable for this method.

3.4 Disease Data and Descriptive Analysis

Adolescent suicide statistics were collected from the CDC Wonder Provisional Mortality

Statistics database which begins at 2018 and collects data through the most recent week. The

provisional mortality statistics are based upon death certificates for United States residents,

and any category with less than nine deaths is suppressed, as the CDC cannot guarantee

the accuracy of low numbers of deaths. No suppressed results were included in this analysis.

While it would be preferable to have data that was more centralized to a certain location,

any level of

The age range selected was from the five year age groups of 10-14 and 15-19. The method

of death was limited to UCD- ICD-10 Codes of X60-X84, which are all intentional self-harm

deaths. Specific method of self-harm death was not considered. The data selected was based

upon the years that the CDC did not label as ”provisional” in their reporting, which are

the dates 2018-01-01 to 2021-31-12. The data was collected weekly as this was the small-

est time interval is released, and there were no suppressed values in the output. Measles

data(Van Panhuis et al., 2018b), Chlamydia data(W. et al., 2018), and Lyme data(Van Pan-

huis et al., 2018a) for the United States were collected from Project Tycho, which compiles
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weekly case counts of various diseases(van Panhuis, 2013), with some geographical informa-

tion included.

Measles data consisted of weekly measles cases in Los Angeles County from 1928-01-01

to 1931-31-12 collected from Project Tycho. The length of the data collected was chosen to

match the number of weeks available for the adolescent suicide data, to make sure the power

of the tests were similar. The data was limited to Los Angeles as different counties in Cali-

fornia reported at different frequencies, and Los Angeles county reported data consistently.

The time period was selected as the first 4-year time period in which data was consistently

reported weekly.

Lyme data compiled in Project Tycho consisted of weekly case counts of Lyme disease

in California from 2008-01-01 to 2011-12-31.The four year period matches the length of the

observed data for adolescent suicide deaths. The years 2008 to 2011 were selected for this

analysis as this was the first four year time period to have consistent data reported weekly.

The data were limited to the state of California, which had the most consistent reporting of

weekly case counts, with no weeks missing during 2008-2011.

Weekly case counts of Chlamydia in California from 2008-01-01 to 2011-12-31 were com-

piled in Project Tycho. The time period and state was chosen to match the Lyme disease

data, and the Chlamydia data also had the same consistent weekly case reporting in Cali-

fornia during that time period.

First pass observation of the data shows some key differences between the different tem-

poral data sets. Firstly, the measles data set has the clearest evidence of clustering, with

some obvious outbreaks starting at around 103 weeks and 155 weeks. These are major out-

breaks that far exceed the average number of measles cases outside of those outbreaks. The

Chlamydia and Lyme data do seem to show some outbreaks within the data. There seem

sot be a trend of higher cases of Lyme, especially early within the time observation period.

The Chlamydia data has an outbreak around the 250 week mark with some level of increases

cases in that period.
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Figure 3.1: Weekly reported case counts for adolescent suicide data in the United States

from 2018-01-01 to 2021-31-12

The adolescent suicide data it slightly harder to determine without a formal test, which

will be done later in this chapter. There does seem to be some level of increased and decreased

periods within the temporal observation region. However, it is also possible that there is

simply randomness within the data that is suggesting a level of clustering. Regardless, it

is possible to check for both clustering as well as if there is significant temporal clustering

looking at the significance of the value of κ within the Hawkes model. There are other

measures of significance in clustering that could also be done, however since this is concerned

primarily with a point process framework that is the metric that will be examined.

3.5 Results of Hypothesis Testing

For measles, the estimated value of the information gain statistic is well above any of the

values in the sampling distribution, as seen in Figure 2a. The p-value is essentially 0, so the

null hypothesis is therefore rejected. This corresponds to the expected result, since measles
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Figure 3.2: Weekly reported case counts for measles cases in Los Angeles County, from

1928-01-01 to 1931-31-12

is highly contagious. The estimated value of the κ parameter is 0.973 with a confidence

interval of (0.954, 0.993), indicating significant clustering in the Hawkes process.

For the Chlamydia data, the p-value of the estimated information gain statistic is 0.006,

so the null hypothesis is again rejected. The estimated κ parameter is 0.580 with a 99%

confidence interval of (0.569, 0.591).

For Lyme disease, the estimated information gain statistic has a p-value of 0.061, indi-

cating that the null hypothesis is not rejected. The maximum likelihood estimate of κ is

0.575 with a 99% confidence interval of (0.429, 0.720).

The estimated information gain statistic applied to the youth suicide data results in a

p-value of 0.004, indicating that the null hypothesis is rejected, though the corresponding κ

estimate is just 0.128 with a 99% confidence interval of (−.012, .269).

Of the four conditions considered here, measles, Chlamydia, Lyme disease, and suicide,

the likelihood ratio tests for measles, Chlamydia, and suicide suggest that the Hawkes model
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Figure 3.3: Weekly reported case counts for Lyme cases in California, from 2008-01-01 to

2011-31-12

fits significantly better than a Poisson cluster model. The only condition for which the

likelihood ratio test did not reject the null hypothesis was Lyme disease.

This information is highly encouraging with regards to the accuracy of the test in in-

vestigating epidemic diseases. Lyme disease is not epidemic, however, it does have a level

of clustering due to the nature of its infection. Lyme disease is much more common in the

summer months(Department of Health, 2019) due to when tick populations are at their most

active and there are increased outside summer activities.

The measles and Chlamydia data having a significant level of causal or epidemic clustering

is also in line with the expected results. In fact, the measles data had by far the lowest p-

value, indicating that a true Hawkes model is a much better fit to the data than a simple

clustering model. The Chlamydia also fit to the data despite the clearly less obvious amount

of contagion and clear outbreaks in the data. Finally, the hypothesis test did suggest that

there is causal clustering within the adolescent suicide data, as the hypothesis test was
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Figure 3.4: Weekly reported case counts for Chlamydia Cases in California, from 2008-

01-01 to 2011-31-12

rejected. However, this simply means that the Hawkes model fit better than a clustering

model to the data set, and not necessarily that there is epidemic contagion, as will be

explored in the analysis of the residuals as well as the analysis of the estimated κ parameter.

The estimated κ values are also as expected for the epidemic diseases with a known

method of contagion. Firstly, the value of the κ in measles is the highest, with an estimated

value of .973. This would indicate that each person, on average, infects .973 other people.

Hawkes models usually specify that the value of κ cannot be over 1, as this would mean that

the number of points that each initial infection would trigger would be infinite. This corre-

sponds to the infection level of measles, which has a history of intense epidemic outbreaks

and can spread via aerosol methods.

The value of κ for chlamydia was estimated as .58. This is a reasonable value for chlamy-

dia, especially in comparison to the measles value. It is unreasonable to expect a high

number of infections from each individual for several reasons. Firstly, there will be some
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Figure 3.5: Log-likelihood test statistic and simulated null distribution for adolescent sui-

cide data in the United States from 2018-01-01 to 2021-31-12

level of data that is not collected from people who are unaware of their infection. In addi-

tion, the method of contagion, sexual contact, results in each person infecting fewer number

of people, on average.

The value of κ for Lyme, while still estimated in this case, is technically irrelevant as the

hypothesis test does not confirm that there is any epidemic spread of the disease. Therefore,

the value of κ should not be considered interpretable, although it is still notable that level

of spread is still less than measles and chlamydia.

Finally, for the adolescent suicide data, the value of κ is actually not significantly different

than 0 according to the 99% confidence interval. This is notable, as this would indicate that

the level of clustering, whether it is causal or not, is not significant enough to warrant calling

this data a Hawkes model. The reasoning for this is explored further in the analysis of the

residuals, and steps for a two-step process of checking for any significant level of clustering

will also be discussed.
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Figure 3.6: Log-likelihood test statistic and simulated null distribution for measles cases in

Los Angeles County, from 1928-01-01 to 1931-31-12

3.6 Fit and Residual Analysis

The fit and residuals for each of these datasets show many insights into how the two different

models fit to the dataset as well as potential explanations for the reasoning behind the κ

values and the hypothesis test results. Starting with measles, as seen in Figure 3.10, the

clustering model does not do well with estimating the conditional intensity for the several

large spikes of diseases, especially between the 100 and 150 weeks of data. Meanwhile, the

Hawkes model is much better suited at fitting to the data-while there is a small amount of

lag within the estimation that is common in Hawkes models, the large spikes of infection are

well modeled. The difference between the Poisson clustering process and the Hawkes process

is the largest of any of the data analyzed, which can also be seen in the residuals in Figure

3.14.

For the chlamydia data, as seen in Figure 3.12, the Hawkes model again is better able

to handle the larger outbreaks that occur, especially in the ending part of the dataset. The
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Figure 3.7: Log-likelihood test statistic and simulated null distribution for Lyme cases in

California, from 2008-01-01 to 2011-31-12

Figure 3.8: Log-likelihood test statistic and simulated null distribution for Chlamydia Cases

in California, from 2008-01-01 to 2011-31-12

difference is not as pronounced as in the measles data, which is reasonable as there are not

as large of outbreaks in the chlamydia data-the period of larger outbreaks do not explode
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κ(99% CI) p-value of Hypothesis Test

Measles (0.954 0.993) .000

Chlamydia (.569, .591) .006

Lyme Disease (.429,.720) .061

Adolescent Suicide (-.012,.269) .004

Table 3.1: Results of Tests for Clustering and Causal Clustering

Figure 3.9: Projected case counts in fitted Hawkes (red) and Poisson clustering (blue)

models for adolescent suicide data in the United States from 2018-01-01 to 2021-31-12

nearly as high as the measles data. In Figure 3.16, the difference in residuals between the

two models also is not as pronounced as compared to measles. This explains the finding that

the level of contagion in the chlamydia data was lower as well as the test statistic having a
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Figure 3.10: Projected case counts in fitted Hawkes (red) and Poisson clustering (blue)

models for measles cases in Los Angeles County, from 1928-01-01 to 1931-31-12

lower value than the measles test statistic.

For the Lyme data, the last dataset where the contagion method is known, the hypothesis

test was not able to reject the null. Looking at the fit of the two models in Figure 3.11, there

is little difference between the two models. Both the Hawkes and the Poisson clustering

model follow similar patterns throughout the data, and in cases where there is a larger spike

in cases, those are typically one-off values that neither the Hawkes or the Poisson clustering

model can handle well. In addition, as seen in Figure 3.15, both models have very similar

patterns in the residuals, which makes sense as to why the hypothesis test failed to reject

the null.

Finally, the adolescent suicide data analysis of fit reveals a potential reason as to the
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Figure 3.11: Projected case counts in fitted Hawkes (red) and Poisson clustering (blue)

models for Lyme cases in California, from 2008-01-01 to 2011-31-12

rejection of the null hypothesis. As seen in Figure 3.9, the Hawkes and Poisson clustering

models have very different fits. The Poisson clustering model seems to almost over fit to the

rise and fall in cases that happen throughout the time period. However, the Hawkes model

stays nearly constant throughout the entire time period. This is also reflected in the value

of κ, which is incredibly low, and has a confidence interval that contains a value of 0. The

residual analysis, seen in Figure 3.13 is less clear, with both models not fitting incredibly

well to the data and having residuals that seem to correspond to the data.

The fact that the Hawkes model fits better for the adolescent suicide data therefore does

not necessarily mean that there is causal clustering present, especially under the hypotheses

that were eventually adapted for this model. In fact, the level of causal clustering still seems
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Figure 3.12: Projected case counts in fitted Hawkes (red) and Poisson clustering (blue)

models for Chlamydia Cases in California, from 2008-01-01 to 2011-31-12

to be 0, since the level of significant clustering seems to be equal to 0. The Hawkes model

fits better as essentially a Poisson model with a constant rate, which is just better estimated

by a Hawkes model with a low κ value that a Poisson clustering model where there must be

clustering present to fit.

Therefore, this analysis seems to indicate that it is necessary to add an additional level

of analysis for claims of causal clustering in that the value of κ must also be significant in

the Hawkes model to indicate there is causal clustering within the data. Otherwise, the null

hypothesis, which is that any clustering present is caused my inhomogeneity, still holds. In

this case, the level of clustering is just very small, meaning that the level of causal clustering

is still 0.

59



Figure 3.13: Comparison of Residuals of projected case counts in fitted Hawkes (red) and

Poisson cluster (blue) models for adolescent suicide data in the United States from 2018-01-

01 to 2021-31-12

This analysis does not, by any means, rule out the possibility that there is social contagion

of suicide among adolescents. There are many possibilities that involve social contagion of

suicide of adolescents that would still result in not observing significant causal clustering

within the data. There could simply be a small enough amount of contagion that the data

collected is not enough to have a value of κ that is statistically significant. In addition,

this data was done at the national level and binned by weeks. Contagion in adolescent

suicide could be more present on a local level and therefore more observable with that level

of granular data. What this analysis does attempt to convey is that adolescent suicide data

does not behave similarly on a national scale to diseases with known contagion methods.
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Figure 3.14: Comparison of Residuals of projected case counts in fitted Hawkes (red) and

Poisson cluster (blue) models for measles cases in Los Angeles County, from 1928-01-01 to

1931-31-12

This does not necessarily contradict the analysis on suicide contagion, which typically looks

at areas as small as towns or high schools to indicate when some level of social contagion

has occurred.

This analysis attempted to answer three primary questions. Firstly, with regards to

whether this proposed test can accurately distinguish an infectious disease from a non-

infectious disease, this test was able to correctly distinguish between the infectious nature

of measles and Chlamydia and the non-infectious but clustered behavior of Lyme. This

indicates that the method is not fooled by diseases that are clustered but not contagious. In

addition, for the question regarding the degree of contagion, the measles data had both the
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Figure 3.15: Comparison of Residuals of projected case counts in fitted Hawkes (red) and

Poisson cluster (blue) models for Lyme cases in California, from 2008-01-01 to 2011-31-12

highest κ value as well as the lower p-value when compared to the Chlamydia data, which

is consistent with the level of contagion between the two diseases. The test did not suggest

that suicide is indeed an epidemic with significant contagion, however it does not necessarily

reject the claim that youth suicide could have some level of social contagion that is too small

to pick up on aggregate weekly data over the whole United States.

Further analysis for this would involve looking at different diseases to see how this hy-

pothesis test performs, as well as looking at disease data that is spatio-temporal or has a

more granular temporal range in order to increase the power of the tests and provide more

accurate results.
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Figure 3.16: Comparison of Residuals of projected case counts in fitted Hawkes (red) and

Poisson cluster (blue) models for Chlamydia Cases in California, from 2008-01-01 to 2011-

31-12

3.7 Further Research and Literature Review: Neural Network

Based Analysis

As with most areas of statistics, there has also been a recent analysis in using neural networks

in Hawkes process literature. There is a potential to use these methods for an extension of

this analysis. Specifically, the extension would be to allow for more complicated triggering

functions with the data that are based on a neural network architecture, and to compare

that to a neural network architecture that is not based on a Hawkes process to compare the

fit.
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As discussed previously, a limitation of this analysis is that the initial step of choosing a

form for the triggering function can potentially be highly influential to the outcome of the

hypothesis test. Since looking over every type of triggering function and optimizing it is

not feasible for this test, a potential solution is to use neural network architecture. As most

of the Hawkes process neural network architecture has been focused on temporal data, this

topic will be explored in this chapter in the context of temporal data.

One way to do this is to use a recurrent neural network to model the intensity based off

of a non-linear function of history(Du et al., 2016). A recurrent neural network is a type of

neural network that is frequently used for temporal data, as it has a built in structure that

allows for some understanding of ”time.” The recurrent neural network structure involves a

Figure 3.17: Recurrent Neural Network: Source(fdeloche, 2013)

series of inputs, x1, . . . , xp that are fed into a series of nodes, h1, . . . , hp. At each step there

is also the option of an output, denoted as o1, . . . , op. Another way they can be thought of

is as marks in a point processes. Marked point processes are used for a variety of purposes,

in which each point has not only a ”location” within the observation window but a mark

attached. An example would be using a marked point processes to model earthquake data,

where the marks would refer to the magnitude of the earthquake.

In the case of a marked point process, the inputs xt can be considered to be both the

time yt as well as the marker mt for each point in the point processes. The hidden process hj

would represent the learned history for predicting the marker of the event from a non-linear
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history function.

there is been several forms of recurrent neural networks that have also been popularized,

including the LSTM model, which is essentially the same form of a recurrent neural network

but has a more complicated function surrounding the hidden state cells. For a recurrent

neural network, the hidden state at time t, ht, is given as a nonlinear function of the inputs

and the previous hidden state, represented as

ht = n(Wt1xt +Wt2ht−1 + bt)

where n is some non-linear function, Wt1 and Wt2 are weights associated with the inputs of

xt and ht−1, respectively, and bt is some additional baseline constant. Meanwhile, LSTM,

standing for Long Short-Term Memory, allows for a more complicated saving of information

from the previous history. As the name implies, it is supposed to represent both a more

”short term” memory of the history as well as a ”long term” memory of the history to

create better predictions. Figure 3.18 shows what a hidden cell looks like for the LSTM

Figure 3.18: LSTM Neural Network: Source(Chevalier, 2018)

model. The LSTM model has also been used for modeling the intensity of point process

models(Xiao et al., 2017). This allows for a better way to store the longer term effects

of points in triggering additional points, which is something that is harder to train in a

65



more standard Recurrent Neural Network but is not unreasonable in the idea of a Hawkes

process(namely, it is possible for the triggering function to allow for triggering significantly

in the future).

There is been additional work in the application of Hawkes processes using machine

learning techniques. There is also been work on a multivariate Hawkes process using neural

networks(Mei and Eisner, 2017). This was slightly different than the previous methods in

that the state is updated discontinuously, and the event occurrence also evolves continuously.

This method allows for the future events to either be inhibited, or decreased in probability,

or excited, or increased in probability, from previous events. This is a feature of a neural

network that is slightly harder to do in Hawkes models. It is possible to have a triggering

function theoretically that involves inhibition of points, although these models are not very

frequently used.

In fact, the generality of these methods has only increased from there. Even more general

methods of looking at point processes through a machine learning framework have been

explored recently as well. Researchers have explored using even more general methods of

calculating the intensity function as the derivative of a generic Neural Network(Omi et al.,

2020) as well as using Reinforcement Learning to model the intensity function(Li et al., 2020).

These methods are very helpful in estimation and prediction of future points, since the neural

network architecture allows for highly complex and non-linear relationships between different

points in how they trigger or inhibit future points.

However, as has been explored in this dissertation, it is necessary to point out that these

methods should be cautioned against in the case where the triggering method is unknown to

the researcher. Since these methods often allow for even more complex triggering functions

than most standard Hawkes models, it is reasonable to assume that any data that is clustered

would fit well to these types of Neural Hawkes models. This provides even more of an issue

for distinguishing whether the clustering is truly causal or not. It is possible that a similar

hypothesis test could be performed using a type of Neural Hawkes model and a Neural
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Network based clustering algorithm that would allow for similarly non-linear and complex

triggering functions both forwards and backwards in time.

3.8 Conclusion

Social contagion is a phenomenon that, as previously discussed, is not typically looked at

through a statistical lens. The arguments for social contagion really come from the field

of psychology, in which the reasonableness come from more of an analysis of how humans

interact with each other.

Similar to the analysis of using Hawkes models on spatio-temporal data and then using

that as evidence for some level of causal clustering, there should also be caution in assum-

ing social contagion based off of clustering of behaviors or what appear to be increases of

behaviors in certain groups, and assume this is due to social contagion. Again, this comes

down to the assumption of causality that is built into a contagion model. As shown in this

analysis, there can be clustering that is non-causal that is possible to distinguish between

causal clustering. A social contagion model, as this is attempting to show a causal link

between points, should not be simply assumed if the model fits well to Hawkes data, and

in addition this type of model should be looked at as having the burden of proof of other

causal methods.

There is a lot of future research that can be explored in this realm. In general, it would be

helpful to get more granular data on certain data in which social contagion is often assumed

to be occurring. The granularity can be either in having more specific times for the data,

having the data over a certain smaller region, or having spatio-temporal information to the

data. Since for many instances, data on psychological issues, especially for those of minors,

is relatively confidential, this was not explored in this analysis. However, the field of social

contagion is rather broad, so hopefully there is some social contagion data that has more

granular data that can be studied in this way.
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Other diseases could also be explored with this method, as the method of transmission

in infectious diseases is often known to us directly through physical understanding of the

disease process. Therefore, with additional information this method could be further tested

on other diseases as well as compared t
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CHAPTER 4

Formal Causal Framework for Point Process Data

4.1 Background on Causality Research

The Rubin Causal Model, named for Donald Rubin(Holland, 1986), is a causality model

that is also sometimes referred to as the ”Potential Outcomes” framework. The potential

outcomes framework begins with a population of units to which a treatment may be applied.

Each unit, Yi, can either be exposed to the treatment or control. The assignment to treatment

is coded as a variable τ that can take a value of 0 or 1(Neal, 2020). The value Yi(1) represents

the value that the unit i would take if exposed to treatment τ = 1, and the value Yi(0)

represents the value that the unit i would take if exposed to treatment τ = 0.

Ideally, from these values the individual treatment effect(ITE), denoted as δi can be

calculated as

δi = Yi(1)− Yi(0)

Therefore, if the ITE can be calculated for every unit in a population, a perfect estimate

for the causal effect of a treatment can be calculated. However, the issue in that is the

”Fundamental Problem of Causal Inference”(Holland, 1986), which is that it is impossible

to observe both Yi(1) and Yi(0) for any unit. For example,in a drug trial, calculating the

ITE would require collecting data from the same unit that both did and did not take the

medicine at the same time.

Therefore, it is necessary to add additional assumptions in order to perform causal in-

ference on a population using the potential outcomes framework. While the ITE is not
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necessarily possible to calculate, the average treatment effect, or ATE, can be under certain

assumptions. Some of the assumptions that will be discussed(Neal, 2020), are as follows:

1. Ignorability: (Y (1), Y (0)) ⊥⊥ τ , or the potential outcome values are independent of the

treatment variable, τ .

2. Exchangeability: E[Y (1)|τ = 0] = E[Y (1)|τ = 1], or that the group assigned to τ = 1

would have the same potential outcome values if that group had been assigned to τ = 0.

3. No Interference: Any unit’s treatment is unaffected by any other unit’s treatment, or

Yi(τ1, ..., τi−1, τi, ...τn) = Yi(τi).

4. Consistency: If a unit is assigned to treatment τ = t, then the observed outcome Y is

necessarily the potential outcome under the treatment t, or τ = t → Y = Y (t).

Under these assumptions, the ATE can be calculated as

ATE = E[Y (1)− Y (0)] = E[Y (1)]− E[Y (0)] = E[Y |τ = 1]− E[Y |τ = 0]

Since E[Y |τ = 1], which is the observed average outcome for units that received treatment

τ = 1 and E[Y |τ = 0], the observed average outcome for units that received treatment τ = 0

are both values that are observed, the ATE is therefore possible to compute with data as

long as the proper assumptions have been met.

The Structural Causal Model(SCM) framework is a framework for causality first described

by Judea Pearl(Pearl, 2009). This framework is intended to be a more complete framework

of causality that contains elements of the potential outcomes framework, do-calculus, and

causality diagrams. The ideas in structural causal models(also called structural equation

models) are typically expressed through both causality diagrams and an equations frame-

work.

The diagram in Figure 1 may also be represented as a series of structural equations that

take into account what variables each variable relies upon based upon the diagram(Pearl,
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W

Figure 4.1: Example of a Causality Diagram(also referred to as DAG under certain con-

ditions)

2010). For Figure 1, the corresponding structural equations could be represented as follows:

w = fW (uw)

z = fZ(uz, w)

x = fX(ux, w, z)

y = fY (uy, x)

In each of these equations, the ui variable present is the (typically undrawn) unobserved

variables that also affect the I variable.

While there is extensive theory that focuses on this method of causality, for the purposes

of this paper, the potential outcomes model will be focused on much more than this model.

However, it should be noted that the Rubin Potential Outcomes framework is simply a

special case of Pearl’s model(Pearl, 2010), so this could be an area in which causality in

point processes is explored much more in the future.

Most preceding research in causality for point process data has been on studying Granger

causality, for example looking at Granger causality in Hawkes models(Xu et al., 2016),

Neural Spiking Data(Kim et al., 2011b), and image data(Prabhakar et al., 2010). Granger

causality,first introduced in 1969(Granger, 1969b), is a method that involves two times series,

Xt and Yt. It is said that Xt ”Granger causes” Yt if Yt can be predicted significantly better

with the information in Xt as opposed to only including information within Yt.

It should be noted that while this seems to consist of a lot of the causality research within
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point process and temporal data, Granger causality is not strictly a causal relationship as

it is typically described. There is not evidence that Xt actually affected Yt in any way,

simply that the information contained within Xt is helpful to determine the future of Yt. An

example of this that would potentially show Granger causality but not a more traditional

causality definition would be looking at temperature and crime rates-while higher tempera-

tures typically occurs along with higher crime rates, the typical interpretation of this is not

that the temperature is causing crime rates.

The idea of Granger causality is helpful in that temporal associations are considered,

and if it is possible to control one of the variables, using this as a true causality measure

would be better suited. However, overall despite the depth of research in this topic, Granger

causality is not considered causality for the point of this paper and will not be discussed.

4.2 Causality as Applied to Spatial and Spatio-temporal Data

Using spatial data for causality research has some unique complications compared to tradi-

tional data. Spatial data differs from much other data that is used in causality in that the

”units” in spatial data will typically be areas that are connected, while ”units” in other forms

of data are typically individuals that receive individual treatments. In addition, spatial data

can have treatments, covariates, errors, or outcomes that are spatially correlated(Akbari

et al., 2023)(Gao et al., 2022)(Reich et al., 2021). Each of these possible spatial correla-

tion situations(or combinations of situations) can lead to unique challenges in the methods

typically used for causal research in non-spatial data.

An issue when the treatment variable is spatially distributed is the ”spill-over” effect-

meaning that the treatment assignment in one location often affects the outcome variable in

another location(Akbari et al., 2023). For example, if one was attempting to figure out the

causal effect of a minimum wage increase in a certain town on rent prices, you would need

to assume that the minimum wage increase only affects rental prices within the town, even
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though it could affect rent prices outside the town. This clearly violates the ”No Interference”

assumption that is necessary for the potential outcome framework.

Another issue for traditional causality methods in spatial data occurs when the causal

effect of a treatment varies spatially(Akbari et al., 2023). For example, one could attempt to

do a study where the outcome variable is the amount of a specific pollution particle within the

air, and the treatment variable is a policy that limits the use of a certain chemical fertilizer

in the area. If one treatment region is an agricultural area and one treatment region is an

urban area, then the causal effect of this policy could be different in the two areas. This

violates SUTVA, since there is multiple versions of treatment.

Another issue in causality in purely spatial data is the lack of a time variable, which

greatly complicates distinguishing the direction of cause and effects(Gao et al., 2022). This

issue is prevented when we have temporal or spatio-temporal data, but with purely spatial

data, the direction of causal structures are very difficult to determine. In addition, spatial

data is typically going to consist of observational data, since in most scenarios assigning

treatment to random spatial regions is not feasible. Because of this, common issues with

causality in observational such as selection bias, confounding, and omitted variables are

frequently present in spatial data.

To summarize, a causal framework involving potential outcomes for point process models

needs to both consider several key factors. Firstly, what a unit is under a point process

paradigm must be established. Following that, the formal definition of a potential outcome

for that unit and how that will be measured also needs to be established. Next, there needs

to be discussion on what assumptions are necessary for the treatment process in order to

get accurate results for the data, as well as what assumptions need to be made for how the

units interact with each other in a spatial framework. This chapter lays out a foundation

for these questions as well as provides simulations to show how this process works.
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4.3 Framework for Causality in Point Processes

The framework that is developed here provides key theoretical properties and allows for a

discussion of the potential outcomes framework for point process data. For a point process

that is observed on a window X consisting of a spatial window of S, a subset of R2 and

temporal window of [0, T ] such that T is a positive real number. The treatment, τ , is

applied a time t∗ ∈ [0, T ] in some regions of S, while other regions are untreated. X can be

partitioned into p cells I1, . . . , Ip that from a partition of the spatial domain S such that⋃p
i Ii = S. Each cell is either assigned to treatment or control at time t∗, creating an index

of cells that have been assigned to treatment as some subset of 1, . . . , p. This provides a

clear answer for what the ”units” are when referencing point process data, in that each cell

is an example of a unit that receives either the treatment or control assignment. In addition,

this specifies what ”treatment” means in the application to a point process.

The point process observed in this window can be thought of as two separate point

processes that have been combined in a particular way. The point process Φ consists of a

control process, Φc and a treatment point process, Φt with separate observation windows

such that the union of their observation windows is X . Each cell Ij is assigned a treatment

condition, denoted by the index variable zj. The value of zj determines whether the cell

has been assigned to the treatment condition, which would mean that zj = 1, or the control

condition, which would mean that zj = 0.

The control process Φc is assumed to be observed on the full spatial domain until the

time of the application of the treatment condition t∗, as well as after t∗ in the cells that have

been assigned to the control condition. The treatment process Φt is observed in the cells

that have been assigned to the treatment condition after time t∗. In mathematical terms,

Φc is observed on

S × [0, t∗] ∪
( ⋃

j:zj=0

Ij × [t∗, T ]

)
.
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Meanwhile, the treatment process is observed on⋃
j:zj=1

Ij × [t∗, T ].

This framework is based on the potential outcome framework, so it is necessary to define

what a potential outcome means in a point process setting. The ”units” in this analysis refer

to a cell within the partition of the point process, represented by Ij. The potential outcome

of Ij, YIj(zj) with assigned treatment of zj would be given as

YIj(zj) = N(Ij × (t∗, T ]|zj).

As defined previously, N() refers to the counting measure of the point process of the given ob-

servation window. This is approximately equal to the integral over this observation window,

given by the integral ∫
Ij

∫ T

t∗
dN.

The individual treatment effect in this case(ITE) for cell Ij would be calculated as

YIj(zj = 1)− YIj(zj = 0)

which is the number of points that would be observed in the cell Ij after the treatment time

t∗ under the treatment condition subtracted by the number of points that would be observed

in the cell Ij after the treatment time t∗ under the control condition.

For the average treatment affect, since there is some level of discrepancy that can arise

due t the size of the individual cells Ij of the created partition of X , the average needs to be

weighted over the size of the space. Therefore, the average treatment affect for simulations

will focus on cases in which the control and treatment areas are equal in size, which in that

case would mean that the average treatment effect would be given as

τ =

p∑
j=1

YIj(1)− YIj(0)

p
.

Note that just like in the case of standard causal analysis, the τ is not observable under this

paradigm, as this would require observing both potential outcome values for a given cell.

Only one of YIj(1) or YIj(0) is observed for each cell.
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4.4 Synthetic Values for Estimation of the ITE/ATE

The way that the fundamental problem of causal inference is dealt with in these paradigm

is by creating synthetic values for the unobserved potential outcome values. Without loss

of generality, assume that the cell Ij has a treatment assignment vector value of zj = 1.

The potential outcome YIj(1) can be calculated as the number of points within the cell Ij

after time t∗. The synthetic or estimated value for YIj(0) is denoted as ŶIj(0). Let λ̂c be

an estimated conditional intensity of the control process ϕc with conditional intensity of λc.

λ̂c is assumed to be calculated with a maximum likelihood estimation method. Then the

synthetic value is given as

ŶIj(0) = E[ŶIj(0)] =

∫
Ij

∫ T

t∗
λ̂cdµ.

Given that the value of λc is calculated correctly in the region Ij and the time (t∗, T ], then

this would provide an estimate of the counterfactual for the number of points that would

have been observed had cell Ij been assigned to control. The next section will cover the

necessary assumptions about the treatment and control processes that would allow for this

counterfactual to be a reasonable estimation.

Assuming that these have been estimated correctly, then noting the tower property and

linearity of the expectation operator,

E[τ̂ ] =E

[
p∑

j=1

(
YIj(1)Izj + E[YIj(1)](1− Izj)

)
−
(
YIj(0)(1− Izj) + E[YIj(0)]Izj

)
p

]

=
1

p

p∑
j=1

E
[(
YIj(1)Izj + E[YIj(1)](1− Izj)

)
−
(
YIj(0)(1− Izj) + E[YIj(0)]Izj

)]
=
1

p

p∑
j=1

E
[
YIj(1)− YIj(0)

]
= τ

where the last equality is given by the accuracy of the synthetic data assumption. This

means that the estimator in this case is an unbiased estimator for τ . For Hawkes processes,
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again assuming that the intensities are accurately calculated, this means that

E[τ̂ ] =
1

p

p∑
j=1

∫
Ij

(
λ̂T − λ̂C

)
dµ

=
1

p

p∑
j=1

∫
Ij

(
κ̂T
∑
t<t′

f̂ − κ̂C
∑
t<t′

ĝ

)
dµ

=
1

p

p∑
j=1

∫
Ij

∑
t<t′

(
κ̂T f̂ − κ̂C ĝ

)
dµ

=
1

p

p∑
j=1

|Ij|
∑
t<t′

(
κ̂T f̂ − κ̂C ĝ

)
.

4.5 Necessary Assumptions as Applied To Point Processes

The no interference assumption means that the potential outcome of any unit is unaffected

by any other unit’s treatment assignment. In terms of this framework, it would mean that

YIj(z1, . . . zp) = YIj(zj). The consistency assumption requires that the observed counting

measure in a cell is the same as the potential outcome of that cell for the treatment that

was assigned. In other words, YIj(zj) = YIj if Ij received treatment zj.

Suppose that the control process ϕc and the treatment process ϕt are both Poisson pro-

cesses such that their conditional intensities are functions of the spatial dimensions. Let

λc = f(x, y) and λt = g(x, y). Let Ij be a cell in the partition of X . If Ij has a treatment

assignment value of zj, then due to the nature of a Poisson process, the potential outcome of

Ij under treatment assignment value zj will not depend on any zi such that i ̸= j. Therefore,

under this paradigm, the no interference and consistency assumptions will be met.

These assumptions can be potentially broken without special considerations, given the

type of point process. For example, in a Hawkes process, it is possible for points in one cell to

trigger points occurring in another cell. This phenomenon is often called ”spill-over” within

the point process paradigm. If there is any level of spill-over, then the potential outcome of

cell Ij which is given by the integral of the counting measure over IJ and the time (t∗, T ],
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can be affected by the treatment assignment of another cell. For a simple example, suppose

that ϕc is a process with a conditional intensity of λc = 0. Suppose that ϕt is a Hawkes

process with an intensity

λt(x, y, t) = µ(x, y) + κ
∑
i:ti<t

g(x− xi, y − yi, t− ti)

such that µ and κ are non-zero. If all cells are assigned to the control condition, then for a

specific cell Ij, the value of YIj(0) would be equal to 0, since the conditional intensity over

the whole observation window X is 0. Now, assume that all cells of index w such that w ̸= j

are assigned to the treatment condition. Then if a point within one of the cells Iw triggers

a point to occur within Ij, the potential outcome of Ij under the control condition is now

equal to 1. Therefore, we have that

YIj(0) ̸= YIj(1, 1, . . . , 0, . . . , 1)

which breaks the assumption of no interference. The exchangeability assumption, meaning

that the expected values for the potential outcomes for cells assigned to treatment would

not change had the cells been assigned to control(and vice versa), is not necessary for this

assumption, as the potential outcome values are estimated directly for each cell. This as-

sumption is only necessary when there is not an individual potential outcome calculated.

However, this assumption would also be violated given this paradigm under certain condi-

tions, specifically in the case of Hawkes processes.

The ignorability assumption means that the potential outcome values are independent of

the treatment assignment. We assume that cells are randomly assigned treatment, and that

the treatment assignment vector z ⊥ Q for any spatial covariates Q if those are considered.

We need to assume that the covariate-dependent portion of the specified (control/treat-

ment) intensities changes negligibly within the time window (t∗, T ], which can be referred

to as locality. The final assumption that is necessary to make is that estimated conditional

intensity of each process is calculated properly. Using MLE for calculating the parameters
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as well as a thinning method described later, this assumption can be reasonably assumed

given enough data under certain paradigms.

4.6 Homogeneous Poisson Process Application

Given a partition of the observation window X , it is possible to calculate the average treat-

ment effect τ as the difference between the observed potential outcome value and the syn-

thetic estimated potential outcome value in each cell. Let ϕc and ϕt both be Poisson processes

such that λc = g(x, y) and λt = f(x, y). Assuming that each cell is of equal area and the

treatment and control sections have the same area, we purpose an estimator of

τ̂ =

p∑
j=1

(
YIj(1)Izj + ŶIj(1)(1− Izj)

)
−
(
YIj(0)(1− Izj) + ŶIj(0)Izj

)
p

. (4.1)

This estimator will be unbiased if an accurate estimation of λc and λt can be found. As a

simple example, the case in which λc = µc and λt = µt will be explored.

For the case of λc, since the control process is observed on all of the spatial domain up

until time t∗, using MLE estimation on λc will provide an unbiased estimate of µc, which

will simply be the number of points observed divided by the length of the temporal domain.

The case where the spatial domain is [5× 5] and the temporal domain is [0, 50] with t∗ = 50

and λc = 2, the control process observed on [0, 25) is observed in Figure 4.2 In this case, the

MLE estimate of µc would simply be the number of points observed divided by 25, so in this

case the estimate would be 2.04.

Next, the treatment and control process are observed on t = [25, 50], however since this

is after t∗, the treatment process is visible on cells with zj = 1 and the control process is

observed on cells with zj = 0. In this case the value of µt = 20. As seen in Figure 4.3, the

observed process is now split into two separate treatment and control processes. From this,

it is possible to estimate µt just from the cells that were assigned to the treatment value.

Again, it is simply the number of points in those cells divided by 25 and multiplied by 2,to
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Figure 4.2: Poisson process observed on [5× 5]× [0, 25) with λc = 2. The dashed red lines

indicate the divisions of cells, with the spatial domain divided into 16 equal sized cells
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Figure 4.3: Poisson process observed on [5× 5]× [25× 50] with λc = 2 and λt = 20. The

dashed red lines indicate the divisions of cells, with the spatial domain divided into 16 equal

sized cells. The blue process is the treatment process and the black process is the control

process
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account for the fact this was only observed on half of the domain, giving an estimate of

µ̂t = 18.24.

From here, its trivial to calculate the an estimate for the average treatment affect τ .

Using the formula previously defined, this would be given by

τ̂ =
16∑
j=1

(228 + 228)− (24 + 24)

16
= 25.5

In this case, the actual value of τ can be calculated directly as

τ =
16∑
j=1

(250 + 250)− (20 + 20)

16
= 28.75.

Obviously this is just one example, however it is clear that this method is essentially just

following nearly the same method as looking at a difference in means in an experiment where

equal people are assigned to control and treatment and observing the average treatment

affect. This problem is quickly just reduced to finding mean values for a counting measure

with certain means, which is trivial.

If it can be assumed that λc and λt are both estimated in an unbiased manner, it is

possible to show that our proposed estimator is in fact unbiased. The estimation of λt and

λc gets considerably more complicated when the background rate has some level of spatial

variance. So far, there is not a reasonable way to deal with a Poisson process in which

the background rate varies spatially, specifically between the treatment and control process.

The reason for this is that since the treatment process is only observed on half the spatial

domain, finding a reasonable counterfactual for the treatment process on the cells assigned

to the control process is nearly impossible without many assumptions.

However, this paper will explore the case where the background rate depends on covariates

in a specific manner. This will be explored specifically in a Hawkes model case, however the

extension to Poisson processes is trivial, since a Poisson process can be thought of as a

Hawkes process with a triggering intensity κ of 0.
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4.7 Hawkes Process Application

In order to deal with spill-over effects in a Hawkes process model, an algorithm to accurately

estimate both the MLE of λc and λt values was developed. From here, the estimation of τ

can be completed as described previously. This section will also provide examples of this

method with simulated data. Assume that the conditional intensity is

λc(x, y, t) = Mc + κc

∑
ti:i<t

gc(x− xi, y − yi, t− ti|θc)

such that θc refers to any parameters that the triggering density gc relies on and the condi-

tional intensity of the treatment process is given as

λt(x, y, t) = Mt + κt

∑
ti:i<t

gt(x− xi, y − yi, t− ti|θt)

such that θt are any parameters that the triggering density gt relies on. For the sake of

computation, the following triggering densities are also defined as

αc = κc

∑
ti:i<t

gc(x− xi, y − yi, t− ti|θc)

and

αt = κt

∑
ti:i<t

gt(x− xi, y − yi, t− ti|θt)

Step 1: Calculate the MLE estimates of M̂c, κ̂c and θ̂c using the pre-treatment data.

Specifically, in the region of S × [0, t∗). Since this spatial-temporal region only contains the

control intensity, there is no need to control for spill-over effects. This allows for an accurate

and unbiased estimate of the control intensity, λ̂c.

Step 2: Thin the post-treatment cells assigned to treatment using λ̂c. Specifically in

the region of
⋃

zj=1 Ij × (t∗, T ], keep points with a probability of 1
α̂c
, which is referred to as

thinning. That means that, for the region of
⋃

zj=1 Ij × (t∗, T ], the conditional intensity of

those points will be

λ = λt ×
αc

α̂c
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which means that if the estimate of λ̂c is unbiased, then

E[λ] = E
[
λt ×

αc

α̂c

]
= E[λt] = λt.

Step 3: Calculate the MLE estimates of M̂t, κ̂t and θ̂t using the thinned points in the

post-treatment region assigned to treatment. Since now these thinned points have been

thinned of any spill-over effects from the control cells, it is now possible to get an accurate

estimate of the parameters for the treatment conditional intensity. Specifically, this will be

calculated on the post-thinned points in
⋃

zj=1 Ij × (t∗, T ].

Step 4: Thin the post-treatment time control cells using the estimated value of λ̂t.

Specifically, in the region of
⋃

zj=0 Ij × (t∗, T ] keep points with a probability of 1
α̂t
. This will

deal with any potential spill-over effects from the treatment cells to the control cells. That

means that now the value of the conditional intensity in the control region after time t∗ is

λ = λc ×
αt

α̂t

.

After thinning, this now means that

E[λ] = E
[
λc ×

αt

α̂t

]
= E[λc] = λc.

With the expected value of the conditional intensity for both the treatment and control

cells being unbiased estimators for the conditional intensity of the treatment and control

processes respectively, the counting measures for both the treatment and control cells are

now unbiased. As this is the basis of the potential outcome values, it is now possible to find

an accurate estimate of τ .

A simulation is done in order to demonstrate the process of estimating the treatment

effect using the thinning process as previously described. This simulation is done on a

spatio-temporal region, with the spatial domain on [0, 5] × [0, 5] and the temporal domain

on [0, 50]. As described in the assumptions of the process, only the control process, λC is

observed up until the time of treatment t∗ = 25.
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In this case we assume that λC and λT are dependent only on Ht and not on any spatial

covariates for the time being. Both the control and treatment triggering densities have

exponential densities for the distance(s) and the time(t) dimensions. The triggering densities

for the control and treatment process are both of the form

g(s− s′, t− t′) = f(s− s′, t− t′) = αe−α(s−s′) × βe−β(t−t′).

. In addition the background rate is of the form M(s|Q) = µ. The parameters for these

distributions are as follows:

Parameter Control Treatment

κ .4 .7

α 5 13

β 10 10

µ 10 10

The control process is then fit on the data up until t∗, and then the treatment assignment is

applied to cells and the process after t∗ is only observed on the cells that have been assigned

to control.

Once the process is fit on the control process up until t = 25 a shown in Figure 4.4 using

a standard maximum likelihood estimation, the control process after t = 25 is subset to

only the cells that have been randomly assigned to control, as seen in Figure 4.5. The fitted

parameters from the control process are then used to thin the treatment process, in order to

deal with any spill over effect between two sections of data.

As seen in Figure 4.6, there are some points that have a likelihood of being thinned,

as the ratio of the conditional intensity of that point between the control and treatment

process is high. This typically occurs on the values that are spatially at a border between a

treatment and control cell within the data. However since this is a spatio-temporal process

the points must also be temporally distant from other points within the treatment process,
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Figure 4.4: Control Process until t = 25, with the data shown on all cells, regardless of

treatment assignment. This is used to estimate the parameters of the control process.

86



Figure 4.5: Control process after t = 25, with only the cells that have been assigned to

control observed. This is used to thin the treatment process
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Figure 4.6: The treatment process and control process after time t = 25 displayed on the

same graph. The blue points are the control process and the black points are the treatment

process. The likelihood of thinning is represented by the size of the point
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Figure 4.7: The treatment process and control process after time t = 25 displayed on the

same graph. The blue points are the treatment process and the black points are the control

process. The likelihood of thinning is represented by the size of the point
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which explains why some points close to a border between treatment and control are not

likely to be thinned.

Once this is done, the parameters for the treatment process are estimated using maximum

likelihood estimation. Finally, the control process after time t = 25 is thinned using the

parameters found for the treatment process, which is visualized in Figure 4.7. From here an

estimate for τ can be made by comparing the number of points in the control and treatment

process after time t = 25, and compared to the expected value of τ . 1000 simulations were

done for this method and the resulting histogram can be seen in Figure 4.8. In addition,

the same parameters were used with increasing values of T to see if the estimated values

converged to the true value as the time increased, and this was found to be accurate as seen

in Figure 4.9.

Both of these graphs indicate that this process provides an unbiased and consistent estimate

of τ . Figure 4.8 shows that the estimates of τ follows an approximately normal distribution

that is centered at the true value of τ for these simulations. In addition, with more data

the level of variance becomes smaller, resulting in lower variance in the estimates as seen in

Figure 4.9.

4.7.1 Hawkes process with Covariates

In spatio-temporal data, as well as the causality framework, there are very typically variables

that must be controlled for in order to achieve accurate estimation. This method can also

work when there are covariates that need to be controlled for in the background rate. In

this case, the Hawkes process being fitted is of the form

λ(x, y, t|Ht) = µ(x, y) + κ
∑

(x′,y′,t′):t′<t

g(x− x′, y − y′, t− t′)

where the triggering density is exponential in both distance and time as before, and the

background rate density is given by

µ(x, y) = e−a|W (x,y)|
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Figure 4.8: Histogram of estimated τ values, with the true value of τ represented by the

vertical line

where a is a constant value andW (x, y) is the value of the covariate located at the point (x, y).

This can be expanded to multiple covariates by adding a linear combination of covariates to

the power of the exponential in this background rate function. For the case of this simulation,

only one covariate is considered. The value of W (x, y) is simply values proportional to a

bivariate normal distribution, on a 4x4 grid, as shown in Figure 4.10. The calculation

and simulation process is similar, with the only difference being a varied background rate.

The resulting estimate does need to consider the integral of the background rate over the

treatment and control areas, which is why there is not a fixed value for the value of τ in every

run. The value of τ will change depending on which regions are assigned to treatment and
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Figure 4.9: The (scaled) estimates for tau converging to the true value of τ as the time

increases-implying that as more data is collected, the estimates become more accurate.

control, as this will affect the background rate and therefore the expected number of points

in that region. In addition this will affect how thinning is done, since only the conditional

intensity that is coming from the triggering density should be considered.

The parameters used for this study are found below.
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Figure 4.10: Heat Map of Background rate variable

Parameter Control Treatment

κ .4 .7

α 5 13

β 10 10

µ 10 10

a .07 .07

First, just as before, the background process is simulated at the time t = t∗, which in this case

is 25 following the previous study. The control process until time t = 25 is fully observed,

although the background µ is now not constant. The control process is shown in Figure

4.11. This allows for an accurate estimate for λc, specifically the parameters κc, αc, βc,µc

and ac. Next, the control process is only observed after t = 25 on the cells that have been

assigned to treatment, as shown in Figure 4.12. The thinning process is shown in Figure

4.14 and Figure 4.15. The captions on the diagrams explain in more detail the steps. For
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Figure 4.11: The control process, observed over the entire observation spatial window, and

up until time t = t∗. The background rate is non-constant, so there is obvious clustering in

the middle sections of the grid, while the outer sections have less. This provides the estimate

for λc.

this simulation study, 200 simulations were performed for this method, and the results are

found in Figure 4.16. Figure 4.16 shows the difference between each τ and τ̂ value that was

calculated over the 200 simulations. Overall, it seems to suggest this is getting an unbiased

or close to unbiased result, with a distribution that is approximately normal and centered at

around 0. There is quite a bit of variation in this data, however this is most likely due to the

increased variation that comes from having a non-constant background rate in how many

points are present, along with which of the sections are placed into the control or treatment

group.
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Figure 4.12: The control process after time t = t∗, which is only observed on the sections

that have been randomly assigned to control. Since there is already an estimate for λc, this

data can be used to thin the treatment process in order to get an accurate estimate.

4.8 Further Study and Applications

While this is limited to only simulation studies, this framework provides a method to deal

with causality in a spatio-temporal sense under conditions that are potentially reasonable

to observe in the real world. An overview of these conditions will help future work for this

method as a way to verify if this is a reasonable method to apply to data. An example based

on using this method for a disease outbreak will be given.

Firstly, the process must be observed over the entire observation window before any

treatment is applied. This is necessary to get a reasonable estimate for the conditional

intensity of the control process. In the context of a disease process, this would mean observing

the spatio-temporal locations of infections before a treatment is applied to any group within

the region.
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Figure 4.13: The treatment process after time t = t∗, which is only observed on the cells

that have been randomly assigned to treatment. Observe that since there is the possibility of

spill-over, estimating λt from this data could potentially lead to a biased estimate as there

could be points that were triggered from the control process in the treatment cells.

Another condition is that the parameters θc and θt of the treatment and control process

do not vary over time. This would correspond to a disease not changing its κ value over time

significantly. In the context of a disease, the treatment would most likely be an intervention

that would change the speed of the spread of the disease, κ. This would mean that the

intervention should change κ at the time of the intervention, and this should not vary greatly

throughout the observation window. For the control process, it is assumed that the value of

κ or the amount of spread is relatively consistent throughout the whole observation window.

It is also assumed in this that the treatment and control sections are randomly chosen.

This is an assumption that is very difficult to find in actual data. This is often a problem

that is found in causal analysis literature. The hope of the example involving covariates

is to allow certain values it to allow for the same structure of conditioning on variables
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Figure 4.14: Thinning of the treatment process. The blue points represent the control

process, while the black points represent the treatment process. The black points are sized

according to the probability that they will be thinned-meaning that the larger points are more

likely to be thinned. Notice that this primarily occurs in the region with the highest background

rate, which is reasonable as there would be more points in general in that area. The points

that might be thinned are also at the edges of the grid sections bordering control grid sections.

and other methods that are involved with structural equations methods to be used. While

conditioning on certain variables to attempt to prove causality is often not theoretically

sound, it is possible that conditioning on variables would provide at least a better estimate

of a causal effect than if no variables can be conditioned on.

Further study using this framework could also involve looking at other types of point

process frameworks beyond just a Hawkes and Poisson model. These models are used fairly

often in practice in the point process literature, but other models could be explored. Similar

methods to the Hawkes process method could be used for any models in which there is any

level of triggering that goes forward in time as well as spatially out of certain points to
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Figure 4.15: Thinning of the control process. The blue points represent the treatment pro-

cess, while the black points represent the control process. The black points are sized according

to the probability that they will be thinned-meaning that the larger points are more likely to

be thinned. Notice that this primarily occurs in the region with the highest background rate,

which is reasonable as there would be more points in general in that area. The points that

might be thinned are also at the edges of the grid sections bordering treatment grid sections.

deal with the spill-over effects, and the thinning method would simply have to be slightly

adjusted to deal with different types of models.
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Figure 4.16: Estimation of τ with a non-constant background rate
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CHAPTER 5

Conclusion

The combination of causal analysis and point processes is a field in which there is relatively

little prior research-the applications to each other are fairly common, however, usually these

two fields are not looked at in compatible frameworks and methods. This dissertation shows

that there are many applications and methods that can help bridge this gap and provide a

clearer definition and detection for causality in point process data.

The hypothesis test introduced in this dissertation to find evidence of causal clustering

rather than inhomogeneity performed well on the simulated data in the spatio-temporal con-

text. This was then applied to crime data to investigate the contagion theory of crime, which

found some evidence to suggest this is reasonable to look at under certain circumstances. In

addition, this hypothesis test was applied to temporal data of different infectious diseases,

where the results were in line with the expected results. In addition, the contagion theory

for adolescent suicide could not be confirmed using this method, although it was not proved

negatively by any means.

The potential outcome framework for point processes worked well on simulations and

was able to be extended to deal with covariates if available. This framework was proved to

provide accurate estimations of the parameters for the treatment and control processes under

certain conditions, and to provide a way to deal with spill-over effects in Hawkes processes.

The future of this research should apply not only the methods discussed directly in this

dissertation but also to the general philosophy of the stringent proof needed to show causality

in the point processes framework. The study of causal inference has become relatively
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advanced over the short time it has been looked at in more rigorous ways, so this level of

advancement should also be applied and utilized for point process data.
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CHAPTER 6

Appendix
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6.1 Code for Spatio-temporal Hypothesis Test

loglhawk norm 2 = function ( theta , draw=0){

#pr in t ( ’ t h e t a = ’)

#pr in t ( t h e t a )

mu = theta [ 1 ] ; K = theta [ 2 ] ; sigma t = theta [ 3 ] ; sigma xy = theta [ 4 ]

#cat (”\n mu = ” ,m3(mu) ,” , K = ” ,m3(K) ,” , a lpha = ” ,m3( a lpha ) ,” , be ta

↪→ = ” ,m3( be ta ) ,” .\n”)

i f (min(mu,K, sigma t , sigma xy) <0.000000001) return (99999)

i f (K> .99999) return (99999)

i f ( draw ) {

r = seq (0 , 3 , length=100)

t = alpha/pi ∗ exp(−alpha ∗ r ˆ2)

l ines ( r , t , col=” orange ” , l t y =2)

}

sumlog = log (mu/X1/Y1)

int lam = mu∗T + K∗z$n

const = K∗1/ ( sqrt (2∗pi )∗sigma t )∗ (1/(2∗pi ) )∗ (1/sigma xy)

for ( j in 2 : ( z$n) ) {

#pr in t ( j )

g i j = 0

for ( i in 1 : ( j −1) ) {

#pr in t ( i )

#pr i n t ( j )

g i j = g i j + 1/ ( (1 − pnorm( (0 − z$t [ i ] ) /sigma t ) ) )∗exp(−1/(2∗sigma

↪→ t ˆ2)∗ ( z$t [ i ] − z$t [ j ] ) ˆ2 + −1/(2∗sigma xy)∗ ( z$ l a t [ i ] − z$

↪→ l a t [ j ] ) ˆ2 + −1/(2∗sigma xy)∗ ( z$ l on [ i ] − z$ l on [ j ] ) ˆ2)

}

lamj = mu / X1 / Y1 + const∗ g i j
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i f ( i s .na( lamj ) ) {

print ( ’ lamj  i s  NA’ )

return (99999)

}

i f ( lamj < 0) {

cat ( ”lambda  ” , j , ”  i s  l e s s  than  0 . ” )

return (99999)

}

sumlog = sumlog + log ( lamj )

}

l o g l i k = sumlog − int lam

#cat (” l o g l i k e i s ” , l o g l i k , ” . sumlog = ” , sumlog , ” . i n t e g r a l = ” ,

↪→ int lam , ” . \ n”)

i f ( draw ) l ines ( r , t , col=” white ” , l t y =2)

return ( −1.0∗ l o g l i k )

}

power check ing function <− function (mu in , K in , theta t in , theta xy

↪→ in , x in , y in , t in , M) {

theta sigma t <<− theta t in

theta sigma xy <<− theta xy in

T <− t in

mu <<− mu in ; theta K <<− K in ; theta alpha<<−3 . 5 ; theta beta<<−3 . 5 ;

↪→ theta b<<−1 ; theta m0<<−3 ; theta a<<−1

X1 <− x in

Y1 <− y in

t e s t hawk norm <− l i s t ( ’n ’ = 3)

while ( t e s t hawk norm$n < 6) {
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t e s t hawk norm = simhawk ( x1 = x in , y1 = y in , T=t in , mdensity =

↪→ pointmag , gt=normgt , gxy = normxy , gmi = pointprod )

}

#pr in t ( ’we go t out o f wh i l e loop ! ’ )

z <<− t e s t hawk norm

scatter3D ( z$ lon , z$ l a t , z$t )

for optim = optim(c (mu in ,K in , theta t in , theta xy in )/2 , loglhawk

↪→ norm 2 )

#pr in t ( f o r optim$par )

#pr in t ( f o r optim$ va lue )

z$ l on <<− rev ( z$ l on )

z$ l a t <<− rev ( z$ l a t )

z$t <<− rev ( z$t )

z$t <<− −(z$t − z$t [ 1 ] )

back optim = optim(c (mu in ,K in , theta t in , theta xy in )/2 , loglhawk

↪→ norm 2 )

#pr in t ( back optim$par )

#pr in t ( back optim$ va lue )

z <<− t e s t hawk norm

aa <<− Mclust (data = cbind ( z$ lon , z$ l a t , z$t ) , modelNames = ’EEI ’ )

num c l u s t <− ncol ( aa$parameters$mean)

avg s i z e <− mean( table ( aa$ c l a s s i f i c a t i o n ) )

sigma mat <− aa$parameters$var iance$Sigma

#l i b r a r y (mvtnorm)

t rue va l <− (− for optim$value − (−back optim$value ) )/ ( t e s t hawk norm$

↪→ n)

#pr in t (num c l u s t )

#pr in t ( avg s i z e )
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#pr in t ( sigma mat)

sampling d i s t r i b 1 <− c ( )

for (m in 1 :M) {

i f (m%%10 == 0) print (m)

sim ns <− matrix (data = NA, nrow = 3 , ncol = 1)

#sim ns <− cb ind ( sim ns , t ( temp ) )

for ( i in 1 :num c l u s t ) {

temp <− rmvnorm(max(1 , rpois (1 , avg s i z e ) ) , c ( runif (1 , 0 , X1) ,

↪→ runif (1 , 0 , Y1) , runif (1 , 0 , T) ) , sigma = sigma mat)

sim ns <− cbind ( sim ns , t ( temp ) )

}

sim ns <− sim ns [ , −1]

z$ l on <<− sim ns [ 1 , ]

z$ l a t <<− sim ns [ 2 , ]

z$t <<− sim ns [ 3 , ]

z$n <<− nrow( sim ns )

z$ l on <<− z$ l on [ order ( z$t ) ]

z$ l a t <<− z$ l a t [ order ( z$t ) ]

z$t <<− z$t [ order ( z$t ) ]

z$ l on <<− z$ l on [ z$t >0]

z$ l a t <<− z$ l a t [ z$t > 0 ]

z$t <<− z$t [ z$t > 0 ]

z$n <<− length ( z$t )

b3 <− optim(c (mu in ,K in , theta t in , theta xy in )/2 , loglhawk norm 2
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↪→ )

#pr in t ( b3$ va lue )

#pr in t ( b3$par )

z$ l on <<− rev ( z$ l on )

z$ l a t <<− rev ( z$ l a t )

z$t <<− rev ( z$t )

z$t <<− −(z$t − z$t [ 1 ] )

#z$ t

b4 = optim(c (mu in ,K in , theta t in , theta xy in )/2 , loglhawk norm 2

↪→ )

#pr in t ( b4$ va lue )

#pr in t ( b2$par )

sampling d i s t r i b 1 [m] <− (−(b3$value ) − (−b4$value ) )/ ( z$n)

}

return ( l i s t ( ’ t rue value ’ = true val , ’ sampling d i s t ’ = sampling

↪→ d i s t r i b 1) )

}

## General ETAS s imu la tor where the user can input d e n s i t i e s .

## Have a l l the parameters de f ined e x t e r n a l l y ! ! ! !

simhawk = function ( x1=1, y1=1, T=100 , rho=uni f rho , gt=powergt , gxy=

↪→ powerxy ,

gmi=expprod , mdensity=expmag , so r =1, keep=1){

##### THIS IS FOR SIMULATING A HAWKES PROCESS WITH

##### lambda ( t , x , y ) = mu rho ( x , y ) +

##### SUM gmi (m i ) g t ( t−t i ) gxy ( x−xi , y−y i ; mi) ,

##### on a space S = [0 , x1 ] x [ 0 , y1 ] (km) , in time [0 ,T] ,

##### background temporal ra t e mu and s p a t i a l d en s i t y rho ( x , y ) ,
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##### t r i g g e r i n g den s i t y g t ( t−t i ) gxy ( x−xi , y−y i ; mi) ,

##### pro du c t i v i t y gmi (m i ) ,

##### and magnitude den s i t y mdensity (m) .

##### sor = 1 outpu t s the po in t s in c h r ono l o g i c a l order .

##### keep = 1 means on ly keep the ones w i th in the space time window .

##### Both g t and gxy must be d en s i t i e s , so t ha t i f mu = 1/( x1y1 ) ,

##### then the i n t e g r a l o f lambda over the space time reg ion = mu T +

↪→ SUM gmi (m i ) .

##### Thus the ETAS parameter K i s inc luded in gmi .

##### I f no magnitudes are des i red , j u s t l e t gmi = K.

##### mu shou ld be de f ined e x t e r na l l y , a long wi th o ther parameters

↪→ used in the f unc t i on s .

y = bgpts ( x1 , y1 ,T, rho , mdensity ) ## lay down the background po in t s .

cat ( y$n , ” mainshocks .\n” )

c a l c b r = 0

c a l c b r = mean( gmi ( mdensity (1000000) ) ) ## ca l c u l a t e branching r a t i o .

↪→ Stop i f br > 1 .

cat ( ” branching  r a t i o  i s  ” , ca l cbr , ”\n” )

i f ( ca l cbr >1.0){

cat ( ” e r ror ,  branching  r a t i o  = ” , ca l cbr , ”  >  1 . ” )

return (0 )

}

stop1 = 0

i f ( y$n < 0 . 5 ) stop1 = 2

cat ( ” a f t e r s h o c k s  by  gene ra t i on \n” )

w = y

while ( stop1 < 1) {

z = a f t (w, x1 , y1 ,T, gt , gxy , gmi , mdensity ) ## place a f t e r s h o c k s down

↪→ around y .
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cat ( z$n , ”  ” )

i f ( z$n > 0 . 5 ) {

y = combine1 (y , z )

w = z

i f (min( z$t ) > T) stop1 = 2

}

i f ( z$n < 0 . 5 ) stop1 = 2

}

i f ( keep==1) y = keep1 (y , x1 , y1 ,T) ## to keep j u s t the p t s in the

↪→ window .

i f ( so r==1) y = so r t 1 ( y ) ## to have the po in t s so r t ed c h r o n o l o g i c a l l y .

y

}

## br = INT gmi (m) mdensity (m) dm, from m = m0 to i n f i n i t y .

normgt = function (n) {

## normal t r i g g e r i n g in time wi th mean gmean and gsd de f ined

↪→ e x t e r n a l l y !

rnorm(n ,mean=gmean , sd=gsd )

}

bgpts = function ( x1 , y1 ,T, rho , mdensity ) {

## de f i n e mu e x t e r n a l l y !

z1 = l i s t ( )

n = rpois (1 ,mu∗T)

z1$n = n

xy = rho (n , x1 , y1 )

z1$ l on = xy [ , 1 ]
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z1$ l a t = xy [ , 2 ]

z1$t = sort ( runif (n)∗T)

z1$m = mdensity (n)

z1$zt imes = c ( )

z1

}

a f t = function (y , x1 , y1 ,T, gt , gxy , gmi , mdensity ) {

## place a f t e r s h o c k s around y .

z1 = l i s t ( )

z1$t = c ( )

z1$n = 0

z1$m = c ( )

z1$ l a t = c ( )

z1$ l on = c ( )

z1$zt imes = c ( )

n2 = gmi ( y$m) ## vec to r o f number o f a f t e r s h o c k s f o r each mainshock .

for ( i in 1 : length ( n2 ) ) {

i f ( n2 [ i ] > 0 . 5 ) {

b1 = gt ( n2 [ i ] )

z1$zt imes = c ( z1$ztimes , b1 )

z1$t = c ( z1$t , b1 + y$t [ i ] )

xy = gxy ( n2 [ i ] , y$m[ i ] )

z1$ l on = c ( z1$ lon , xy [ , 1 ] + y$ l on [ i ] )

z1$ l a t = c ( z1$ l a t , xy [ , 2 ] + y$ l a t [ i ] )

z1$m = c ( z1$m, mdensity ( n2 [ i ] ) )

}

}

z1$n = sum( n2 )
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z1

}

combine1 = function (y , z ) {

z1 = l i s t ( )

z1$t = c ( y$t , z$t )

z1$n = y$n + z$n

z1$m = c ( y$m, z$m)

z1$ l a t = c ( y$ l a t , z$ l a t )

z1$ l on = c ( y$ lon , z$ l on )

z1$zt imes = c ( y$ztimes , z$zt imes )

z1

}

keep1 = function (y , x1 , y1 ,T) {

## keep only the p t s o f y t ha t are w i th in the space time window [0 , x1

↪→ ] x [ 0 , y1 ] x [ 0 ,T ] .

keeps = c ( 1 : length ( y$t ) ) [ ( y$t<T)&( y$ lon<x1 )&( y$ l a t<y1 )&( y$ lon >0)&( y$

↪→ l a t >0) ]

y$t = y$t [ keeps ]

y$m = y$m[ keeps ]

y$ l on = y$ l on [ keeps ]

y$ l a t = y$ l a t [ keeps ]

y$n = length ( keeps )

y

}

s o r t 1 = function ( y ) {

## sor t the p t s c h r o n o l o g i c a l l y .
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ord2 = order ( y$t )

y$t = y$t [ ord2 ]

y$m = y$m[ ord2 ]

y$ l on = y$ l on [ ord2 ]

y$ l a t = y$ l a t [ ord2 ]

y

}

## rho take s an i n t e g e r n and x1 and y1 and ou tpu t s a matrix o f n

↪→ l o c a t i o n s o f mainshocks .

## gt t a k e s an i n t e g e r n and ou tpu t s a vec t o r o f n nonnegat ive t imes

↪→ s ince mainshock .

## gxy take s an i n t e g e r n and magnitude m and outpu t s a matrix o f n

↪→ l o c s from mainshock .

## gmi take s a vec t o r o f mags m and outpu t s a vec to r o f number o f

↪→ a f t e r s h o c k s per mainshock .

## mdensity t a k e s an i n t e g e r n and lower mag t h r e s h o l d m0 and outpu t s a

↪→ vec t o r o f n magnitudes .

## Below are examples o f f unc t i on s rho , gt , gxy , gmi , and mdensity .

un i f rho = function (n , x1 , y1 ) {

## Uniform s p a t i a l background den s i t y rho on [0 , x1 ] x [ 0 , y1 ] .

x = runif (n ,min=0,max=x1 )

y = runif (n ,min=0,max=y1 )

cbind (x , y )

}

## dens i t y = b e ˆ −bm. cd f = 1 − eˆ−bm. m means m − m0.
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## u = un i f (0 ,1) . F( x ) = u . 1 − eˆ−b (m−m0) = u .

## So lve f o r m.

## eˆ−b (m−m0) = 1−u .

## −b (m−m0) = lo g (1−u) .

## m − m0 = log (1−u)/−b .

## m = − l o g (1−u)/b + m0.

expmag = function (n) { ## need t h e t a b and t h e t a m0 de f ined e x t e r n a l l y !

−log(1−runif (n) )/ theta b + theta m0

}

pointmag = function (n) rep (0 , n )

## expmag = func t i on (n , the ta , m0=3.5){

## ## exponen t i a l magnitude den s i t y mdensity wi th minimum m0 and

↪→ mean m0+b1 .

## THIS IS WRONG! ! ! rexp (n , ra t e=1/ t h e t a$b ) + m0

## }

expgt = function (n) { ## need t h e t a be ta de f ined e x t e r n a l l y !

## exponen t i a l t r i g g e r i n g func t i on in time gt , wi th mean be ta .

## f (u) = be ta eˆ(− be ta u) .

rexp (n , r a t e=theta beta )

}

normgt = function (n) {

abs (rnorm(n , sd = theta sigma t ) )

}
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powergt = function (n) {

## power law t r i g g e r i n g func t i on in time g t . Define t h e t a c and t h e t a

↪→ p e x t e r n a l l y !

## f (u) = (p−1) c ˆ(p−1) (u+c )ˆ−p .

v = runif (n)

theta c∗(1−v ) ˆ(1/(1− theta p) ) − theta c

}

## Notes f o r powergt .

## i f v = run i f (1) , then new time i s found by l e t t i n g v = F( t ) and

↪→ s o l v i n g f o r t .

## F( t ) = INT from 0 to t o f f (u) du = (p−1) c ˆ(p−1) (u+c )ˆ(1−p ) / (1−p

↪→ )

## from u = 0 to t

## = −c ˆ(p−1) ( t+c )ˆ(1−p ) + c ˆ(p−1) cˆ(1−p ) = 1 − c ˆ(p−1) ( t+c )ˆ(1−p ) .

## Se t t i n g v = 1 − c ˆ(p−1) ( t+c )ˆ(1−p ) and s o l v i n g f o r t , we ge t

## cˆ(p−1) ( t+c )ˆ(1−p ) = 1−v .

## ( t+c )ˆ(1−p ) = (1−v ) cˆ(1−p ) .

## t+c = c (1−v ) ˆ{1/(1−p ) } .

## t = c (1−v ) ˆ{1/(1−p )} − c .

powerxy = function (n ,m) {

## de f i n e t h e t a d and t h e t a q e x t e r n a l l y !

## power law t r i g g e r i n g in space accord ing to ETAS (2 . 3 ) , gxy , o f

## Ogata (1998) . See h t t p ://w i l d f i r e . s t a t . uc la . edu/ p d f l i b r a r y /ogata98

↪→ . pd f .

## Here the den s i t y does not depend on magnitude o f the mainshock .

## f ( x , y ) dxdy = 1 = h ( r ) r d r d = 2 h ( r ) rdr .

## h( r ) = c ( r ˆ2 + d)ˆ(−q ) .
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## h( r ) rdr = c ( rˆ2+d)ˆ(1−q )/(2−2q ) , r=0 t o . For q > 1 , t h i s i s

↪→ 0+cdˆ(1−q )/(2 q−2) .

## So c = (q−1)dˆ( q−1)/ .

v = runif (n)

d i s t 1 = sqrt ( theta d∗(1−v ) ˆ(1/(1− theta q) )−theta d)

thet1 = runif (n)∗2∗pi

x = cos ( thet1 )∗d i s t 1

y = sin ( thet1 )∗d i s t 1

cbind (x , y )

}

pointxy = function (n ,m) matrix (0 , ncol=2,nrow=n)

expxy = function (n ,m) {

## de f i n e t h e t a a lpha e x t e r n a l l y !

## exponen t i a l t r i g g e r i n g in space . f ( r ) = alpha/p i exp(−a lpha r ˆ2) .

## Here the den s i t y does not depend on magnitude o f the mainshock .

## To see t ha t t h i s i s a dens i ty ,

## f ( x , y ) dxdy = f ( r ) r d r d = 2 f ( r ) rdr

## = 2alpha exp(−a lpha r ˆ2) r dr = −exp(−a lpha r ˆ2) , r=0 t o , =

↪→ 0+1, f o r alpha >0.

v = rexp (n , r a t e=theta alpha )

d i s t 1 = sqrt ( v )

thet1 = runif (n)∗2∗pi

x = cos ( thet1 )∗d i s t 1

y = sin ( thet1 )∗d i s t 1

cbind (x , y )

}
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normxy = function (n ,m) {

#the t a xy

rmvnorm(n , sigma = diag ( rep ( theta sigma xy , 2 ) ) )

}

expprod = function (m) {

## de f i n e m0, t h e t a K, and t h e t a a e x t e r n a l l y !

## exponen t i a l p r o d u c t i v i t y wi th parameters K and a f o r gmi .

rpois ( length (m) , theta K∗exp( theta a∗ (m−theta m0) ) )

}

## expec t Kexp(am) = Kexp(am) bexp(−bm)dm = Kb exp (am−bm)dm =

↪→ Kb/( b−a ) .

## This i s the branching r a t i o .

#y = mdensity (1000)

#z = gmi ( y )

#mean( z )

pointprod = function (m) rpois ( length (m) , theta K) ## Here each po in t has

↪→ p r o d u c t i v i t y t h e t a K.

## Define t h e t a K e x t e r n a l l y !

u n i f g t = function (n) sort ( runif (n ,max=u n i f t length ) )

## Define un i f t l e n g t h e x t e r n a l l y !

uni fxy = function (n ,m) {

## de f i n e un i f xy rad e x t e r n a l l y !

## genera te 3n candida te po in t s on the un i t square , keep the ones in

↪→ the un i t c i r c l e , and r e s c a l e .
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numcand = max(100 ,3∗n)

candx = runif (numcand)∗2−1

candy = runif (numcand)∗2−1

keep = ( candxˆ2 + candyˆ2 < 1)

i f (sum( keep )<n) cat ( ”\n\n\n  Error !  \n\n\n” )

x2 = candx [ keep >0]

y2 = candy [ keep >0]

x = ( x2 [ 1 : n ] ) ∗u n i f xy rad

y = ( y2 [ 1 : n ] ) ∗u n i f xy rad

cbind (x , y )

}

power check ing function NS <− function (mu in , K in , theta t in , theta

↪→ xy in , x in , y in , t in , M) {

theta sigma t <<− theta t in

theta sigma xy <<− theta xy in

T <− t in

mu <<− mu in ; theta K <<− K in ; theta alpha<<−3 . 5 ; theta beta<<−3 . 5 ;

↪→ theta b<<−1 ; theta m0<<−3 ; theta a<<−1

X1 <− x in

Y1 <− y in

t e s t hawk norm <− l i s t ( ’n ’ = 3)

while ( t e s t hawk norm$n < 6) {

t e s t hawk norm = simhawk ( x1 = x in , y1 = y in , T=t in , mdensity =

↪→ pointmag , gt=normgt , gxy = normxy , gmi = pointprod )

}

#pr in t ( ’we go t out o f wh i l e loop ! ’ )

z <<− t e s t hawk norm
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scatter3D ( z$ lon , z$ l a t , z$t )

for optim = optim(c (mu in ,K in , theta t in , theta xy in )/2 , loglhawk

↪→ norm 2 )

print ( ’ f o r optim ’ )

print ( for optim$par )

print ( for optim$value )

#z$ l on <<− rev ( z$ l on )

#z$ l a t <<− rev ( z$ l a t )

#z$ t <<− rev ( z$ t )

#z$ t <<− −(z$ t − z$ t [ 1 ] )

#back optim = optim ( c (mu in ,K in , t h e t a t in , t h e t a xy in )/2 , l og l hawk

↪→ norm 2 )

#pr in t ( ’ back optim ’ )

#pr in t ( back optim$par )

#pr in t ( back optim$ va lue )

#z <<− t e s t hawk norm

aa <<− Mclust (data = cbind ( t e s t hawk norm$ lon , t e s t hawk norm$ l a t ,

↪→ t e s t hawk norm$t ) , modelNames = ’EEI ’ , verbose = FALSE)

num c l u s t <− mu in

avg s i z e <− 1/(1−K in )

sigma mat <− diag (c ( theta xy in , theta xy in , theta t in ) )

ns t rue va l <− ns l i k e l i h o o d func (cbind ( t e s t hawk norm$ lon , t e s t hawk

↪→ norm$ l a t , t e s t hawk norm$t ) )

print ( ’ ns  l i k ’ )

print ( ns t rue va l )

#l i b r a r y (mvtnorm)

t rue va l <− (− for optim$value − ( ns t rue va l ) )/ ( t e s t hawk norm$n)

118



#pr in t (num c l u s t )

#pr in t ( avg s i z e )

#pr in t ( sigma mat)

sampling d i s t r i b 1 <− c ( )

for (m in 1 :M) {

i f (m%%10 == 0) print (m)

sim ns <− matrix (data = NA, nrow = 3 , ncol = 1)

#sim ns <− cb ind ( sim ns , t ( temp ) )

for ( i in 1 :num c l u s t ) {

nsamp <− rpois (1 , avg s i z e )

#pr in t ( ’ nsamp ’ )

#pr in t (nsamp)

i f ( length (nsamp) > 0 & nsamp > 0) {

temp <− rmvnorm(nsamp , c ( runif (1 , 0 , x in ) , runif (1 , 0 , y in ) ,

↪→ runif (1 , 0 , t in ) ) , sigma = sigma mat)

sim ns <− cbind ( sim ns , t ( temp ) )

}

}

sim ns <− sim ns [ , −1]

z$ l on <<− sim ns [ 1 , ]

z$ l a t <<− sim ns [ 2 , ]

z$t <<− sim ns [ 3 , ]

z$n <<− nrow( sim ns )

z$ l on <<− z$ l on [ order ( z$t ) ]

z$ l a t <<− z$ l a t [ order ( z$t ) ]

z$t <<− z$t [ order ( z$t ) ]
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z$ l on <<− z$ l on [ z$t >0]

z$ l a t <<− z$ l a t [ z$t > 0 ]

z$t <<− z$t [ z$t > 0 ]

z$n <<− length ( z$t )

gg i <− cbind ( z$ lon , z$ l a t , z$t )

scatter3D ( z$ lon , z$ l a t , z$t , main = ’ Simulated ’ )

b3 <− optim(c (mu in ,K in , theta t in , theta xy in )/2 , loglhawk norm 2

↪→ )

print ( ’ b3 ’ )

print ( b3$par )

print ( b3$value )

#pr in t ( b3$ va lue )

#pr in t ( b3$par )

#z$ l on <<− rev ( z$ l on )

#z$ l a t <<− rev ( z$ l a t )

#z$ t <<− rev ( z$ t )

#z$ t <<− −(z$ t − z$ t [ 1 ] )

#z$ t

#b4 = optim ( c (mu in ,K in , t h e t a t in , t h e t a xy in )/2 , l og l hawk norm 2

↪→ )

#pr in t ( b4$ va lue )

#pr in t ( b2$par )

print ( ’ ns l i k ’ )

print ( ns l i k e l i h o o d func ( gg i ) )

sampling d i s t r i b 1 [m] <− (−(b3$value ) − ( ns l i k e l i h o o d func ( gg i ) ) )/

↪→ ( z$n)
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}

return ( l i s t ( ’ t rue value ’ = true val , ’ sampling d i s t ’ = sampling

↪→ d i s t r i b 1) )

}

ns l i k e l i h o o d func <− function (data ns ) {

kk <− Mclust (data ns , modelNames = ’EEI ’ , verbose = FALSE )

num c l u s t <− ncol ( kk$parameters$mean)

avg s i z e <− mean( table ( kk$ c l a s s i f i c a t i o n ) )

sigma mat <− kk$parameters$var iance$Sigma

l o g l i k <− 0

for ( j in 1 :nrow(data ns ) ) {

l o g l i k j <− 0

for ( k in 1 : ncol ( kk$parameters$mean) ) {

l o g l i k j <− l o g l i k j + avg s i z e ∗dnorm(data ns [ j , 1 ] , mean = kk$

↪→ parameters$mean [ 1 , k ] , sd = sqrt ( sigma mat [ 1 , 1 ] ) )∗dnorm(data

↪→ ns [ j , 2 ] , mean = kk$parameters$mean [ 2 , k ] , sd = sqrt ( sigma

↪→ mat [ 2 , 2 ] ) )∗dnorm(data ns [ j , 3 ] , mean = kk$parameters$mean [ 3 ,

↪→ k ] , sd = sqrt ( sigma mat [ 3 , 3 ] ) )

}

l o g l i k <− l o g l i k + log ( l o g l i k j )

}

l o g l i k <− l o g l i k − avg s i z e ∗num c l u s t

l o g l i k

}

6.2 Code for Temporal Hypothesis Test
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hypothes i s t e s t NS <− function (data in , theta in , K) {

#f i t i n t pu t data

out matrix <− matrix (NA, nrow = sum(data in ) , ncol = 2)

#pr in t (nrow( out matrix ) )

count <− 0

print ( length (data in ) )

ns l i k <− l o g l ns (data in )

for ( k in 1 : length (data in ) ) {

for ( g in 1 :data in [ k ] ) {

#pr in t ( k )

i f (data in [ k ] > 0) {

count <− count + 1

#pr in t ( count )

out matrix [ count , 1 ] <− k

out matrix [ count , 2 ] <− 1

}

}

}

c l u s t <− Mclust ( out matrix [ , 1 ] , modelNames = ’E ’ )

#return number o f c l u s t e r s , average s i z e o f c l u s t e r s , and sigma

↪→ va l u e s

num c l u s t <− length ( c l u s t $parameters$mean)

avg s i z e <− mean( table ( c l u s t $ c l a s s i f i c a t i o n ) )

sigma <− sqrt ( c l u s t $parameters$var iance$sigmasq )

sampling d i s t <− c ( )

for (m in 1 :K) {
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i f (m%%100 ==0){print (m) }

sim ns <− c ( )

mean v a l s <− runif (num c lu s t , min = 1 , max = length (data in ) )

for ( i in 1 :num c l u s t ) {

sim ns <− c ( sim ns , mean v a l s [ i ] + rnorm( rpois (1 , avg s i z e ) , 0 , sd

↪→ = sigma ) )

}

sim ns <− round( sim ns )

sim ns <− sim ns [ order ( sim ns ) ]

sim ns <− sim ns [ sim ns > 0 ]

sim ns hawk <− c ( )

for ( i in 1 :max( sim ns ) ) {

sim ns hawk [ i ] <− sum( sim ns == i )

}

ns l i k sim <− l o g l ns ( sim ns hawk)

#pr in t ( sim ns hawk )

forward optim <− optim( theta in , l og l 2 , input data = sim ns hawk)

forward optim <− optim( forward optim$par , l o g l 2 , input data = sim

↪→ ns hawk)

#pr in t ( forward optim$ va lue )

#back optim <− optim ( t h e t a in , l o g l 2 , input data = rev ( sim ns hawk )

↪→ )

#back optim <− optim ( back optim$par , l o g l 2 , input data = rev ( sim ns

↪→ hawk ) )

#pr in t ( back optim$ va lue )

sampling d i s t [m] <− (− forward optim$value + ns l i k sim )/ ( length (

↪→ sim ns ) )

#pr in t ( sampling d i s t )

}
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forward optim <− optim( theta in , l og l 2 , input data = data in )

forward optim <− optim( forward optim$par , l o g l 2 , input data = data in

↪→ )

return ( l i s t ( ’ va l ’ = (− forward optim$value + ns l i k )/ (sum(data in ) ) ,

↪→ ’ d i s t ’ = sampling d i s t ) )

}

l o g l ns <− function ( input data ) {

out matrix <− matrix (NA, nrow = sum( input data ) , ncol = 2)

count <− 0

for ( i in 1 : length ( input data ) ) {

i f ( input data [ i ] > 0) {

for ( j in 1 : input data [ i ] ) {

count <− count + 1

out matrix [ count , 1 ] <− i

out matrix [ count , 2 ] <− 1

}

}

}

c l u s t <− Mclust ( out matrix [ , 1 ] , modelNames = ’E ’ )

l o g l i k <− 0

for ( i in 1 :nrow( out matrix ) ) {

for ( j in 1 : length ( c l u s t $parameters$mean) )

l o g l i k <− l o g l i k + log (dnorm( out matrix [ i , 1 ] , mean = c l u s t $

↪→ parameters$mean [ j ] , sd = sqrt ( c l u s t $parameters$var iance$

↪→ sigmasq ) ) )

}

l o g l i k = mean( table ( c l u s t $ c l a s s i f i c a t i o n ) )∗ l o g l i k

return(− l o g l i k )
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}

l o g l 2 <− function ( theta , input data ) {

i f (min( theta ) < 0 .00000001) return (9 e20 )

mu = theta [ 1 ]

K = theta [ 2 ]

p = theta [ 3 ]

i f (p > . 999999) return (9 e20 )

i f (K > . 999999) return (9 e20 )

n <− length ( input data )

l o g l i k = input data [ 1 ] ∗ log (mu) − (mu)

for ( i in 2 : n ) {

lami = 0

for ( j in 1 : ( i −1) ) {

l am i j <− input data [ j ] ∗dgeom( x = ( i−j ) − 1 , prob = p)

lami = lami + lami j

}

l o g l i k = l o g l i k + input data [ i ] ∗ log (mu + K∗ lami ) − (mu + K∗ lami )

}

return(− l o g l i k )

}

l ibrary ( mclust )

Chl Data Week$x

l l <− hypothes i s t e s t NS( Chl Data Week$x , c ( . 1 , . 9 , . 5 ) , 500)

l l $va l

l l $ d i s t

6.3 Simulation for Potential Outcomes Framework

125



## General ETAS s imu la tor where the user can input d e n s i t i e s .

## Have a l l the parameters de f ined e x t e r n a l l y ! ! ! !

simhawk = function ( x1=1, y1=1, T in =100 , rho=uni f rho , gt=powergt , gxy=

↪→ powerxy ,

gmi=expprod , mdensity=expmag , so r =1, keep=1){

##### THIS IS FOR SIMULATING A HAWKES PROCESS WITH

##### lambda ( t , x , y ) = mu rho ( x , y ) +

##### SUM gmi (m i ) g t ( t−t i ) gxy ( x−xi , y−y i ; mi) ,

##### on a space S = [0 , x1 ] x [ 0 , y1 ] (km) , in time [0 ,T] ,

##### background temporal ra t e mu and s p a t i a l d en s i t y rho ( x , y ) ,

##### t r i g g e r i n g den s i t y g t ( t−t i ) gxy ( x−xi , y−y i ; mi) ,

##### pro du c t i v i t y gmi (m i ) ,

##### and magnitude den s i t y mdensity (m) .

##### sor = 1 outpu t s the po in t s in c h r ono l o g i c a l order .

##### keep = 1 means on ly keep the ones w i th in the space time window .

##### Both g t and gxy must be d en s i t i e s , so t ha t i f mu = 1/( x1y1 ) ,

##### then the i n t e g r a l o f lambda over the space time reg ion = mu T +

↪→ SUM gmi (m i ) .

##### Thus the ETAS parameter K i s inc luded in gmi .

##### I f no magnitudes are des i red , j u s t l e t gmi = K.

##### mu shou ld be de f ined e x t e r na l l y , a long wi th o ther parameters

↪→ used in the f unc t i on s .

y = bgpts ( x1 , y1 ,T in , rho , mdensity ) ## lay down the background po in t s

↪→ .

cat ( y$n , ” mainshocks .\n” )

c a l c b r = 0
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c a l c b r = mean( gmi ( mdensity (1000000) ) ) ## ca l c u l a t e branching r a t i o .

↪→ Stop i f br > 1 .

cat ( ” branching  r a t i o  i s  ” , ca l cbr , ”\n” )

i f ( ca l cbr >1.0){

cat ( ” e r ror ,  branching  r a t i o  = ” , ca l cbr , ”  >  1 . ” )

return (0 )

}

stop1 = 0

i f ( y$n < 0 . 5 ) stop1 = 2

cat ( ” a f t e r s h o c k s  by  gene ra t i on \n” )

w = y

while ( stop1 < 1) {

z = a f t (w, x1 , y1 ,T in , gt , gxy , gmi , mdensity ) ## place a f t e r s h o c k s down

↪→ around y .

cat ( z$n , ”  ” )

i f ( z$n > 0 . 5 ) {

y = combine1 (y , z )

w = z

i f (min( z$t ) > T in ) stop1 = 2

}

i f ( z$n < 0 . 5 ) stop1 = 2

}

i f ( keep==1) y = keep1 (y , x1 , y1 ,T in ) ## to keep j u s t the p t s in the

↪→ window .

i f ( so r==1) y = so r t 1 ( y ) ## to have the po in t s so r t ed c h r o n o l o g i c a l l y .

y

}

## br = INT gmi (m) mdensity (m) dm, from m = m0 to i n f i n i t y .
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normgt = function (n) {

## normal t r i g g e r i n g in time wi th mean gmean and gsd de f ined

↪→ e x t e r n a l l y !

rnorm(n ,mean=gmean , sd=gsd )

}

bgpts = function ( x1 , y1 ,T in , rho , mdensity ) {

## de f i n e mu e x t e r n a l l y !

z1 = l i s t ( )

n = rpois (1 ,mu∗T in )

z1$n = n

xy = rho (n , x1 , y1 )

z1$ l on = xy [ , 1 ]

z1$ l a t = xy [ , 2 ]

z1$t = sort ( runif (n)∗T in )

z1$m = mdensity (n)

z1$zt imes = c ( )

z1

}

a f t = function (y , x1 , y1 ,T in , gt , gxy , gmi , mdensity ) {

## place a f t e r s h o c k s around y .

z1 = l i s t ( )

z1$t = c ( )

z1$n = 0

z1$m = c ( )

z1$ l a t = c ( )

z1$ l on = c ( )
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z1$zt imes = c ( )

n2 = gmi ( y$m) ## vec to r o f number o f a f t e r s h o c k s f o r each mainshock .

for ( i in 1 : length ( n2 ) ) {

i f ( n2 [ i ] > 0 . 5 ) {

b1 = gt ( n2 [ i ] )

z1$zt imes = c ( z1$ztimes , b1 )

z1$t = c ( z1$t , b1 + y$t [ i ] )

xy = gxy ( n2 [ i ] , y$m[ i ] )

z1$ l on = c ( z1$ lon , xy [ , 1 ] + y$ l on [ i ] )

z1$ l a t = c ( z1$ l a t , xy [ , 2 ] + y$ l a t [ i ] )

z1$m = c ( z1$m, mdensity ( n2 [ i ] ) )

}

}

z1$n = sum( n2 )

z1

}

combine1 = function (y , z ) {

z1 = l i s t ( )

z1$t = c ( y$t , z$t )

z1$n = y$n + z$n

z1$m = c ( y$m, z$m)

z1$ l a t = c ( y$ l a t , z$ l a t )

z1$ l on = c ( y$ lon , z$ l on )

z1$zt imes = c ( y$ztimes , z$zt imes )

z1

}

keep1 = function (y , x1 , y1 ,T in ) {
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## keep only the p t s o f y t ha t are w i th in the space time window [0 , x1

↪→ ] x [ 0 , y1 ] x [ 0 ,T ] .

keeps = c ( 1 : length ( y$t ) ) [ ( y$t<T in )&( y$ lon<x1 )&( y$ l a t<y1 )&( y$ lon >0)&(

↪→ y$ l a t >0) ]

y$t = y$t [ keeps ]

y$m = y$m[ keeps ]

y$ l on = y$ l on [ keeps ]

y$ l a t = y$ l a t [ keeps ]

y$n = length ( keeps )

y

}

s o r t 1 = function ( y ) {

## sor t the p t s c h r o n o l o g i c a l l y .

ord2 = order ( y$t )

y$t = y$t [ ord2 ]

y$m = y$m[ ord2 ]

y$ l on = y$ l on [ ord2 ]

y$ l a t = y$ l a t [ ord2 ]

y

}

## rho take s an i n t e g e r n and x1 and y1 and ou tpu t s a matrix o f n

↪→ l o c a t i o n s o f mainshocks .

## gt t a k e s an i n t e g e r n and ou tpu t s a vec t o r o f n nonnegat ive t imes

↪→ s ince mainshock .

## gxy take s an i n t e g e r n and magnitude m and outpu t s a matrix o f n

↪→ l o c s from mainshock .

## gmi take s a vec t o r o f mags m and outpu t s a vec to r o f number o f
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↪→ a f t e r s h o c k s per mainshock .

## mdensity t a k e s an i n t e g e r n and lower mag t h r e s h o l d m0 and outpu t s a

↪→ vec t o r o f n magnitudes .

## Below are examples o f f unc t i on s rho , gt , gxy , gmi , and mdensity .

un i f rho = function (n , x1 , y1 ) {

## Uniform s p a t i a l background den s i t y rho on [0 , x1 ] x [ 0 , y1 ] .

x = runif (n ,min=0,max=x1 )

y = runif (n ,min=0,max=y1 )

cbind (x , y )

}

un i f rho boundry = function (n , x1 , y1 ) {

x = runif (n , min = . 2 , max = x1 − .2)

y = runif (n , min = . 2 , max = y1 − .2)

cbind (x , y )

}

## dens i t y = b e ˆ −bm. cd f = 1 − eˆ−bm. m means m − m0.

## u = un i f (0 ,1) . F( x ) = u . 1 − eˆ−b (m−m0) = u .

## So lve f o r m.

## eˆ−b (m−m0) = 1−u .

## −b (m−m0) = lo g (1−u) .

## m − m0 = log (1−u)/−b .

## m = − l o g (1−u)/b + m0.

expmag = function (n) { ## need t h e t a b and t h e t a m0 de f ined e x t e r n a l l y !

−log(1−runif (n) )/ theta b + theta m0

}

131



pointmag = function (n) rep (0 , n )

## expmag = func t i on (n , the ta , m0=3.5){

## ## exponen t i a l magnitude den s i t y mdensity wi th minimum m0 and

↪→ mean m0+b1 .

## THIS IS WRONG! ! ! rexp (n , ra t e=1/ t h e t a$b ) + m0

## }

expgt = function (n) { ## need t h e t a be ta de f ined e x t e r n a l l y !

## exponen t i a l t r i g g e r i n g func t i on in time gt , wi th mean be ta .

## f (u) = be ta eˆ(− be ta u) .

rexp (n , r a t e=theta beta )

}

powergt = function (n) {

## power law t r i g g e r i n g func t i on in time g t . Define t h e t a c and t h e t a

↪→ p e x t e r n a l l y !

## f (u) = (p−1) c ˆ(p−1) (u+c )ˆ−p .

v = runif (n)

theta c∗(1−v ) ˆ(1/(1− theta p) ) − theta c

}

## Notes f o r powergt .

## i f v = run i f (1) , then new time i s found by l e t t i n g v = F( t ) and

↪→ s o l v i n g f o r t .

## F( t ) = INT from 0 to t o f f (u) du = (p−1) c ˆ(p−1) (u+c )ˆ(1−p ) / (1−p

↪→ )

## from u = 0 to t
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## = −c ˆ(p−1) ( t+c )ˆ(1−p ) + c ˆ(p−1) cˆ(1−p ) = 1 − c ˆ(p−1) ( t+c )ˆ(1−p ) .

## Se t t i n g v = 1 − c ˆ(p−1) ( t+c )ˆ(1−p ) and s o l v i n g f o r t , we ge t

## cˆ(p−1) ( t+c )ˆ(1−p ) = 1−v .

## ( t+c )ˆ(1−p ) = (1−v ) cˆ(1−p ) .

## t+c = c (1−v ) ˆ{1/(1−p ) } .

## t = c (1−v ) ˆ{1/(1−p )} − c .

powerxy = function (n ,m) {

## de f i n e t h e t a d and t h e t a q e x t e r n a l l y !

## power law t r i g g e r i n g in space accord ing to ETAS (2 . 3 ) , gxy , o f

## Ogata (1998) . See h t t p ://w i l d f i r e . s t a t . uc la . edu/ p d f l i b r a r y /ogata98

↪→ . pd f .

## Here the den s i t y does not depend on magnitude o f the mainshock .

## f ( x , y ) dxdy = 1 = h ( r ) r d r d = 2 h ( r ) rdr .

## h( r ) = c ( r ˆ2 + d)ˆ(−q ) .

## h( r ) rdr = c ( rˆ2+d)ˆ(1−q )/(2−2q ) , r=0 t o . For q > 1 , t h i s i s

↪→ 0+cdˆ(1−q )/(2 q−2) .

## So c = (q−1)dˆ( q−1)/ .

v = runif (n)

d i s t 1 = sqrt ( theta d∗(1−v ) ˆ(1/(1− theta q) )−theta d)

thet1 = runif (n)∗2∗pi

x = cos ( thet1 )∗d i s t 1

y = sin ( thet1 )∗d i s t 1

cbind (x , y )

}

pointxy = function (n ,m) matrix (0 , ncol=2,nrow=n)

expxy = function (n ,m) {
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## de f i n e t h e t a a lpha e x t e r n a l l y !

## exponen t i a l t r i g g e r i n g in space . f ( r ) = alpha/p i exp(−a lpha r ˆ2) .

## Here the den s i t y does not depend on magnitude o f the mainshock .

## To see t ha t t h i s i s a dens i ty ,

## f ( x , y ) dxdy = f ( r ) r d r d = 2 f ( r ) rdr

## = 2alpha exp(−a lpha r ˆ2) r dr = −exp(−a lpha r ˆ2) , r=0 t o , =

↪→ 0+1, f o r alpha >0.

v = rexp (n , r a t e=theta alpha )

d i s t 1 = sqrt ( v )

thet1 = runif (n)∗2∗pi

x = cos ( thet1 )∗d i s t 1

y = sin ( thet1 )∗d i s t 1

cbind (x , y )

}

expprod = function (m) {

## de f i n e m0, t h e t a K, and t h e t a a e x t e r n a l l y !

## exponen t i a l p r o d u c t i v i t y wi th parameters K and a f o r gmi .

rpois ( length (m) , theta K∗exp( theta a∗ (m−theta m0) ) )

}

## expec t Kexp(am) = Kexp(am) bexp(−bm)dm = Kb exp (am−bm)dm =

↪→ Kb/( b−a ) .

## This i s the branching r a t i o .

#y = mdensity (1000)

#z = gmi ( y )

#mean( z )

pointprod = function (m) rpois ( length (m) , theta K) ## Here each po in t has
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↪→ p r o d u c t i v i t y t h e t a K.

## Define t h e t a K e x t e r n a l l y !

u n i f g t = function (n) sort ( runif (n ,max=u n i f t length ) )

## Define un i f t l e n g t h e x t e r n a l l y !

uni fxy = function (n ,m) {

## de f i n e un i f xy rad e x t e r n a l l y !

## genera te 3n candida te po in t s on the un i t square , keep the ones in

↪→ the un i t c i r c l e , and r e s c a l e .

numcand = max(100 ,3∗n)

candx = runif (numcand)∗2−1

candy = runif (numcand)∗2−1

keep = ( candxˆ2 + candyˆ2 < 1)

i f (sum( keep )<n) cat ( ”\n\n\n  Error !  \n\n\n” )

x2 = candx [ keep >0]

y2 = candy [ keep >0]

x = ( x2 [ 1 : n ] ) ∗u n i f xy rad

y = ( y2 [ 1 : n ] ) ∗u n i f xy rad

cbind (x , y )

}

## Make sure the data are s t o r ed in z , and you de f i n e T,X1,Y1, and M0

↪→ e x t e r n a l l y .

## Fi r s t we w i l l w r i t e the l o g l i k e l i h o o d func t i on in R.

loglhawk = function ( theta , draw=0){

mu = theta [ 1 ] ; K = theta [ 2 ] ; alpha = theta [ 3 ] ; beta = theta [ 4 ]

#cat (”\n mu = ” ,m3(mu) ,” , K = ” ,m3(K) ,” , a lpha = ” ,m3( a lpha ) ,” , be ta

↪→ = ” ,m3( be ta ) ,” .\n”)
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i f (min(mu,K, alpha , beta ) <0.000000001) return (99999)

i f (K> .99999) return (99999)

i f ( draw ) {

r = seq (0 , 3 , length=100)

t = alpha/pi ∗ exp(−alpha ∗ r ˆ2)

l ines ( r , t , col=” orange ” , l t y =2)

}

sumlog = log (mu/X1/Y1)

int lam = mu∗T in + K∗z$n

const = K∗alpha/pi∗beta

for ( j in 2 : ( z$n) ) {

g i j = 0

for ( i in 1 : ( j −1) ) {

r2 = ( z$ l on [ j ]−z$ l on [ i ] ) ˆ2+(z$ l a t [ j ]−z$ l a t [ i ] ) ˆ2

g i j = g i j + exp(−beta∗ ( z$t [ j ]−z$t [ i ] )−alpha∗r2 )

}

lamj = mu / X1 / Y1 + const∗ g i j

i f ( lamj < 0) {

cat ( ”lambda  ” , j , ”  i s  l e s s  than  0 . ” )

return (99999)

}

sumlog = sumlog + log ( lamj )

}

l o g l i k = sumlog − int lam

#cat (” l o g l i k e i s ” , l o g l i k , ” . sumlog = ” , sumlog , ” . i n t e g r a l = ” ,

↪→ int lam , ” . \ n”)

i f ( draw ) l ines ( r , t , col=” white ” , l t y =2)

return ( −1.0∗ l o g l i k )

}
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loglhawk = function ( theta , draw=0){

mu = theta [ 1 ] ; K = theta [ 2 ] ; alpha = theta [ 3 ] ; beta = theta [ 4 ]

#cat (”\n mu = ” ,m3(mu) ,” , K = ” ,m3(K) ,” , a lpha = ” ,m3( a lpha ) ,” , be ta

↪→ = ” ,m3( be ta ) ,” .\n”)

i f (min(mu,K, alpha , beta ) <0.000000001) return (99999)

i f (K> .99999) return (99999)

i f ( draw ) {

r = seq (0 , 3 , length=100)

t = alpha/pi ∗ exp(−alpha ∗ r ˆ2)

l ines ( r , t , col=” orange ” , l t y =2)

}

sumlog = log (mu/X1/Y1)

int lam = mu∗T in + K∗z$n

const = K∗alpha/pi∗beta

for ( j in 2 : ( z$n) ) {

g i j = 0

for ( i in 1 : ( j −1) ) {

r2 = ( z$ l on [ j ]−z$ l on [ i ] ) ˆ2+(z$ l a t [ j ]−z$ l a t [ i ] ) ˆ2

g i j = g i j + exp(−beta∗ ( z$t [ j ]−z$t [ i ] )−alpha∗r2 )

}

lamj = mu / X1 / Y1 + const∗ g i j

i f ( lamj < 0) {

cat ( ”lambda  ” , j , ”  i s  l e s s  than  0 . ” )

return (99999)

}

sumlog = sumlog + log ( lamj )

}

l o g l i k = sumlog − int lam
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#cat (” l o g l i k e i s ” , l o g l i k , ” . sumlog = ” , sumlog , ” . i n t e g r a l = ” ,

↪→ int lam , ” . \ n”)

i f ( draw ) l ines ( r , t , col=” white ” , l t y =2)

return ( −1.0∗ l o g l i k )

}

demonstrat ion function <− function ( x v , y v , T v ,mu control , theta K

↪→ control , theta alpha control , theta beta control , theta b control

↪→ , theta a control , mu treatment , theta K treatment , theta alpha

↪→ treatment , theta beta treatment , theta b treatment , theta a

↪→ treatment ) {

mu <<− mu control ; theta K <<− theta K control ; theta alpha<<−theta

↪→ alpha control ; theta beta<<−theta beta control ; theta b<<−theta

↪→ b control ; theta m0<<−3 ; theta a<<−theta a control

T in <<− T v

X1 <<− x v

Y1 <<− y v

t e s t sim control = simhawk ( x1 = x v , y1 = y v , T in =T v , mdensity =

↪→ pointmag , gt=expgt , gxy = expxy , gmi = pointprod , keep = 1 , rho

↪→ =uni f rho boundry )

mu<<−mu treatment ; theta K <<− theta K treatment ; theta alpha<<−theta

↪→ alpha treatment ; theta beta<<−theta beta treatment ; theta b<<−

↪→ theta b treatment ; theta m0<<−3 ; theta a<<−theta a treatment

t e s t sim treatment = simhawk ( x1 = x v , y1 = y v , T in=T v , mdensity =

↪→ pointmag , gt=expgt , gxy = expxy , gmi = pointprod , rho=un i f rho

↪→ boundry , keep = 0)

l a t max <− max( t e s t sim control$ l a t , t e s t sim treatment$ l a t )
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l on max <− max( t e s t sim control$ lon , t e s t sim treatment$ l on )

l a t min <− min( t e s t sim control$ l a t , t e s t sim treatment$ l a t )

lon min <− min( t e s t sim control$ lon , t e s t sim treatment$ l on )

t max <− max( t e s t sim control$t , t e s t sim treatment$t )

t min <− min( t e s t sim control$t , t e s t sim treatment$t )

t e s t pp3 control <− pp3 ( t e s t sim control$ lon , t e s t sim control$ l a t ,

↪→ t e s t sim control$t , c ( lon min , lon max, l a t min , l a t max, t min , t

↪→ max) )

t e s t pp2 control <− ppp( t e s t sim control$ lon , t e s t sim control$ l a t ,

↪→ xrange = c ( lon min , lon max) , yrange = c ( l a t min , l a t max) )

t r e a t a s s i g n <− rep (c ( 0 , 1 ) , 8)

#t r e a t a s s i gn <− t r e a t a s s i gn [−1]

t e s t quads <− quadrats ( t e s t pp2 control$window , nx = 4 , ny = 4)

#p l o t ( t e s t pp3 con t r o l )

marks ( t e s t quads ) <− t r e a t a s s i g n

marked control <− cut . ppp ( t e s t pp2 control , t e s t quads )

t r e a t a s s i g n function <− as . function ( t e s t quads , va lue s = t r e a t

↪→ a s s i g n )

t e s t pp2 control$marks <− t r e a t a s s i g n function ( t e s t pp2 control )

t e s t pp3 control$marks <− t e s t pp2 control$marks

#f i t t i n g lambda c on data up to time t∗

z <<− l i s t ( )

t s t a r <− T in/2

z$t <<− t e s t sim control$t [ t e s t sim control$t < t s t a r ]

z$ l a t <<− t e s t sim control$ l a t [ t e s t sim control$t < t s t a r ]

z$ l on <<− t e s t sim control$ l on [ t e s t sim control$t < t s t a r ]

z$n <<− sum( t e s t sim control$t < t s t a r )
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theta1 = c ( 2 , . 7 5 , . 5 , . 5 ) /2

T in <<− t s t a r

X1 <<− max( t e s t sim control$ l a t ) − min( t e s t sim control$ l a t )

Y1 <<− max( t e s t sim control$ l on ) − min( t e s t sim control$ l on )

#pr in t ( ’made i t to here ! ! ! ! ’ )

#pr i n t ( t he ta1 )

b1 = optim( theta1 , loglhawk )

#pr in t ( ’ a l s o mat i t here ’ )

f i t lambda c = optim( b1$par , loglhawk )

f i t lambda c$par

#su b s e t t i n g on ly as s i gned con t r o l un i t s a f t e r time t s t a r

t e s t pp3 control sub <− subset ( t e s t pp3 control , t e s t pp3 control$

↪→ marks == 0)

control th inn ing <− l i s t ( )

control th inn ing$ l on <− t e s t pp3 control sub$data$x

control th inn ing$ l a t <− t e s t pp3 control sub$data$y

control th inn ing$t <− t e s t pp3 control sub$data$z

control th inn ing$n <− length ( t e s t pp3 control sub$data$y )

t e s t pp3 control sub <− subset ( t e s t pp3 control sub , t e s t pp3 control

↪→ sub$data$z > t s t a r )

#simu la t ing treatment proces s
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mu<<−mu treatment ; theta K <<− theta K treatment ; theta alpha<<−theta

↪→ alpha treatment ; theta beta<<−theta beta treatment ; theta b<<−

↪→ theta b treatment ; theta m0<<−3 ; theta a<<−theta a treatment

#t e s t sim treatment = simhawk ( x1 = x v , y1 = y v , T in=T v , mdensity =

↪→ pointmag , g t=expgt , gxy = expxy , gmi = pointprod , keep = 0 , rho

↪→ = uni f rho boundry )

#T t r e a t max <− max( t e s t sim treatment$ t )

t e s t pp3 treatment <− pp3 ( t e s t sim treatment$ lon , t e s t sim treatment$

↪→ l a t , t e s t sim treatment$t , c ( lon min , lon max, l a t min , l a t max, t

↪→ min , t max) )

t e s t pp2 treatment <− ppp( t e s t sim treatment$ lon , t e s t sim treatment$

↪→ l a t , xrange = c ( lon min , lon max) , yrange = c ( l a t min , l a t max) )

t e s t pp2 treatment$marks <− t r e a t a s s i g n function ( t e s t pp2 treatment )

t e s t pp3 treatment$marks <− t e s t pp2 treatment$marks

t e s t pp3 treatment sub <− subset ( t e s t pp3 treatment , t e s t pp3

↪→ treatment$marks == 1)

t e s t pp3 treatment sub <− subset ( t e s t pp3 treatment sub , t e s t pp3

↪→ treatment sub$data$z > t s t a r )

#th inn ing

#pr in t ( ’ t e s t 1 ’ )

print ( f i t lambda c$par )

prob <− c ( )

for ( k in 1 :nrow( t e s t pp3 treatment sub$data ) ) {

prob [ k ] <− min(1 , 1/hawkes i n t e n s i t y function ( x = t e s t pp3

↪→ treatment sub$data$x [ k ] , y = t e s t pp3 treatment sub$data$y [ k ] ,

↪→ z = t e s t pp3 treatment sub$data$z [ k ] , theta = f i t lambda c$

↪→ par , pp th in= control th inn ing ) )
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}

#pr in t ( ’ t e s t 2 ’ )

prob t <− prob

t e s t pp3 treatment sub <− r t h i n ( t e s t pp3 treatment sub , prob )

#pr in t ( ’ t e s t 3 ’ )

#f i t t i n g t h e t a hat treatment

z$ l on <<− t e s t pp3 treatment sub$data$x

z$ l a t <<− t e s t pp3 treatment sub$data$y

z$t <<− t e s t pp3 treatment sub$data$z

z$n <<− length ( t e s t pp3 treatment sub$data$z )

t e s t sim treatment post <− z

z$t <<− z$t − t s t a r

theta1 = c ( 2 , . 7 5 , . 5 , . 5 ) /2

T in <<− max( z$t ) − t s t a r

X1 <<− (max( t e s t sim treatment$ l a t ) − min( t e s t sim treatment$ l a t ) )/2

Y1 <<− max( t e s t sim treatment$ l on ) − min( t e s t sim treatment$ l on )

#pr in t ( ’made i t to here ? ’)

b1 = optim( theta1 , loglhawk )

f i t lambda t = optim( b1$par , loglhawk )

print ( f i t lambda t$par )

#th inn ing on con t r o l

prob c <− c ( )

for ( k in 1 :nrow( t e s t pp3 control sub$data ) ) {

prob c [ k ] <− min(1 , 1/hawkes i n t e n s i t y function ( x = t e s t pp3

↪→ control sub$data$x [ k ] , y = t e s t pp3 control sub$data$y [ k ] , z =

↪→ t e s t pp3 control sub$data$z [ k ] , theta = f i t lambda t$par , pp
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↪→ th in= t e s t sim treatment post ) )

}

t e s t pp3 control sub <− r t h i n ( t e s t pp3 control sub , prob c )

T in <<− T v

T c a l c <− max(nrow( t e s t pp3 treatment sub$data ) − nrow( t e s t pp3

↪→ control sub$data ) )

tau <− mu treatment∗ (1/(1− theta K treatment ) )∗ (T in/2)∗ (mean( t r e a t

↪→ a s s i g n ) ) − mu control∗ (1/(1− theta K control ) )∗ (T in/2)∗ (1 −

↪→ mean( t r e a t a s s i g n ) )

l i s t ( ’ t r e a t f i n a l ’ = t e s t pp3 treatment sub , ’ c o n t r o l f i n a l ’ = t e s t

↪→ pp3 control sub , ’ tau hat ’ = nrow( t e s t pp3 treatment sub$data )

↪→ − nrow( t e s t pp3 control sub$data ) , ’ tau ’ = tau , ’ prob t ’ = prob

↪→ t , ’ prob c ’ = prob c )

}

#in t e n s i t y f unc t i on to use f o r th inn ing

hawkes i n t e n s i t y function <− function (x , y , z , theta , pp th in ) {

mu = theta [ 1 ] ; K = theta [ 2 ] ; alpha = theta [ 3 ] ; beta = theta [ 4 ]

#pr in t ( ’ k ’ = )

#pr in t (K)

#pr in t ( a lpha )

const = K∗alpha/pi∗beta

g i j = 0

for ( i in which(pp th in$t < z ) ) {

r2 = (x−pp th in$ l on [ i ] ) ˆ2+(y−pp th in$ l a t [ i ] ) ˆ2

g i j = g i j + exp(−beta∗ ( z−pp th in$t [ i ] )−alpha∗r2 )

}

#lamj = mu / X1 / Y1 + const∗ g i j

lamj = const∗ g i j
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lamj

}
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