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Chapter one examines how FDA regulation affects innovation and market concentration.
I examine this question by exploiting FDA deregulation events that affected certain medical
device types but not others. I collect comprehensive data on medical device innovation, device
safety, firm entry, prices, and regulatory changes and enhance these data using text analysis
methods. My analysis of these data reveals three key findings. First, deregulation events
significantly increased the quantity and quality of new technologies in affected medical device
types relative to controls. These increases are particularly strong among small and inexperienced

firms. Second, these events increased firm entry and reduced prices for medical procedures that
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utilize affected medical device types. Finally, rates of serious injuries and deaths attributable to
defective devices did not significantly increase following these events. Interestingly, deregulating
certain device types was associated with reduced adverse event rates, possibly due to firms
increasing their emphasis on product safety in response to increased litigation risk.

In chapter two, we analyze wartime prosthetic device patents to investigate how demand
shocks and procurement environments can shape medical innovation. We use machine learning
tools to develop new data describing the aspects of medical and mechanical innovations that
are emphasized in patent documents. Our analysis of historical patents yields three primary
facts. First, we find that the U.S. Civil War and World War I led to substantial increases in the
quantity of prosthetic device patenting relative to patenting in other medical and mechanical
technology classes. Second, we find that the Civil War led inventors to increase their focus on
reducing cost, while World War I did not. The Civil War era emphasis on cost is consistent
with a role for that period’s cost-conscious procurement model. Third, we find that inventors
emphasized dimensions of product quality (e.g., a prosthetic limb’s comfort or facilitation of
employment) that aligned with differences in buyers’ preferences across wars. We conclude that
procurement environments can significantly shape the dimensions of the technical frontier with
which inventors engage.

In chapter three, we study how government price reforms affect innovation, market
structure, and product quality within the health care sector. We exploit a Medicare payment
reform that reduced expenditures on certain types of durable medical equipment (DME) by 66%
while leaving other types unaffected. We find that manufacturers filed 29% fewer patents and
introduced 22% fewer new models in DME types affected by the price reform relative to those
that were unaffected. Additionally, patents filed after the price reform increasingly focused
on “process” rather than “product” innovation, consistent with increased market demand for
lower-cost products. The market structure was also affected, with 25% fewer manufacturers
entering affected product markets and a 65% increase in outsourcing to foreign companies. The

shift towards cost-cutting, both in patenting and supply chain restructuring, was associated with
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increased device repair rates among Medicare beneficiaries and reported adverse events. Firms
that outsourced to foreign manufacturers experienced the highest increase in adverse events.
While the Medicare price reform generated substantial savings, these gains were dampened
by the adverse effects on innovation, market structure, and product quality in the long run.
Our findings highlight the importance of considering long-run impacts when designing policy

reforms.
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Chapter 1

Regulating the Innovators:
Approval Costs and Innovation in Medical
Technologies

While new technologies can improve consumer well-being, they can also cause harm.
One way to mitigate harm is through regulation that requires innovators to demonstrate the safety
of their products before commercialization, an ex-ante approach taken by the U.S. Food & Drug
Administration (FDA). Another strategy relies on the threat of ex-post litigation to deter harm.
A decades-long debate considers these alternatives. Critics of regulation claim that it chills
innovation and market competition by raising entry costs (Peltzman 1973) and that litigation is
more efficient (Coase 1960). Proponents counter that regulation increases public confidence in
products marketed by lesser-known firms, encouraging entry and innovation (Carpenter et al.
2010). Clear evidence testing these claims is important given the $2.8 trillion market size of
FDA-regulated products alone (FDA 2020b).

I advance this debate by measuring the impact of FDA regulation on innovation and
market structure. To study this relationship, I first consider a less stringent regime by examining
deregulation events that moved, or “down-classified,” certain higher-risk medical device types,
like spinal implants, from stringent (Class III) to moderate (Class II) testing requirements.
Second, I consider the litigation alternative by analyzing events that moved lower-risk device

types, like ventilator tubing, from moderate (Class II) to no testing requirements (Class I),



exposing innovators to more litigation. Examining both of these types of events is valuable for
two reasons: First, it allows me to measure the impact of strict FDA regulation (i.e., clinical
trials) relative to the existing alternative policies. Second, it enables me to estimate local average
treatment effects among deregulated devices at different points in the distribution of safety risk
(low-to-moderate risk versus moderate-to-high risk devices).

I infer the causal effect of these events by comparing affected device types to a variety
of possible control groups. These groups include device types matched on pre-event means,
intuitively similar devices, later-deregulated devices, and a broad set of unaffected devices. I find
that my results are stable across these control groups. Further, comparing deregulated device
types to control groups reveals no divergent pre-existing trends in the outcomes of interest,
consistent with the “unpredictable” characterization of these events by device manufacturers
(Makower et al. 2010, Powell 2018).

An important contribution of this paper is the assembly of novel data on the tradeoffs
of FDA regulation. Regulation affects many factors, and data on these factors are siloed,
unorganized, and unconnected to medical device types, limiting research on this topic. [ use a
combination of programmatic online text extraction, text analysis algorithms, and hand linkages
to create, merge, and harmonize the required data. When unified, these data comprehensively
detail the effects of medical device regulation by device type. These data include all FDA device
type regulation changes over the last 40 years and multiple corroborative measures of device
innovation, innovator characteristics, innovation quality, market structure, prices, and device
safety.

My analysis of these data shows that down-classification events increase the quantity
and quality of new technologies. After moving from Class III (high regulation) to II (moderate),
device types exhibited a 200% increase in patenting and FDA submission rates relative to
control groups. Patents filed after these events were also of significantly higher quality, as

measured by a 200% increase in received citations and market valuations. These effects do not



spill over into similar device types.! For Class II to I deregulations, the rate of patent filings
increased by 50%, though insignificantly, and the quality of patent filings exhibited a significant
10-fold improvement, suggesting that litigation better promotes innovation. There is substantial
heterogeneity in how firms respond to deregulation as increases in innovation are strongest
among smaller firms and those with the least regulatory experience—the same subset of firms
found most likely to produce groundbreaking innovation (Wu et al. 2019).

Second, these events led to significant changes in market structure. Class III to II events
generated a ten-fold increase in new entry (i.e., firms with no approved devices) and a four-fold
increase in incumbent entry (i.e., firms with approved devices of another type) into treated device
types. Increased competition impacted health care prices: Using claims data from a university
hospital system, I find that these events were associated with a significant 40% drop in the
prices of medical procedures that use deregulated device types relative to controls.? Class II to I
events led to a significant 200% increase in new entry into treated device types, with no effect on
incumbent entry, suggesting that litigation obstructs new firm entry less than regulation.

Down-classification yields considerable benefits, as the proponents of deregulation would
predict, but what of product safety? Perhaps counterintuitively, I find that deregulation can
improve product safety by exposing firms to more litigation. Despite some adverse event rates
increasing after Class III to II events (albeit insignificantly), Class II to I events are associated

with significantly lower adverse event rates.>

My analysis of patent texts also reveals that
inventors focus more on product safety after deregulation. These results suggest that litigation
encourages product safety more than regulation: Instead of meeting Class Il requirements, which

the National Institute of Medicine deems as insufficient for product safety (IOM, 2011), inventors

must decrease the likelihood that their products injure consumers to prevent litigation. I identify

I'These localized effects could be explained by extreme specialization: many device inventions originate from
practicing physicians or researchers acting within their medical specialty (NIM, 2010).

2This price drop could even be mechanically driven by the 68% reduction in testing costs from these events
(Makower et al. 2010), which may reduce markups intended to recover regulatory costs.

3“Rates” are counts per device type-year. I do not normalize by utilization, but I show that this normalization
would likely strengthen my adverse event estimates as deregulation increases utilization.



litigation as a mechanism using variation in firms’ exposure to litigation after deregulation:
Smaller firms expect less liability as they can use bankruptcy to avoid liability that exceeds their
assets (Shavell 1986). I find that safety improvements are strongest at larger firms for which a
larger share of liability is unavoidable.

A back-of-the-envelope calculation suggests that the benefits of these events outweigh
the costs. Accounting for the cost of adverse events and the value of increased innovation and
decreased health care prices, the unmeasured costs of Class III to II events would need to be
larger than the measured costs to justify Class III regulation. For Class II to I events, there are
virtually no measurable costs of down-classifications as adverse events decline. By contrast,
the benefit of these events amounts to more than $22 million a year per device type. Although
these benefits are based on local average treatment effects among deregulated device types, I find
evidence that these benefits may generalize to current Class II device types: More dangerous,
marginal deregulated device types (according to the FDA’s decision rule) exhibit the largest
decreases in adverse events. If this relationship holds, the yearly forgone benefits could amount
to as much as $55 billion across 2,500 current Class II device types, or nearly 32% of the annual
value of medical devices consumed.

I build a model that illustrates the range of possible consequences of deregulation. The
model incorporates the central concerns of medical device innovators. First, regulation imposes
approval delays, but firms shorten delays as they gain more experience navigating approval
requirements through “learning by doing” (Arrow 1971). Firms also face financing costs if
approval costs exceed their assets (Buera and Shin 2013, Moll 2014). Lastly, when regulations
are lifted (Class 1), firms are exposed to more litigation from product design flaws, but small firms
are exposed to less liability due to bankruptcy. This characterization of the firm’s decision shapes
the effects of deregulation: Deregulation can improve product safety and disproportionately
benefit small firms and those with less regulatory experience.

My findings contribute to several literatures. First, I add to the growing literature on



the effects of public policy on medical innovation.* Despite the significant size of the medical
device market, valued at around $500 billion and projected to reach nearly $1 trillion by 2030
(Stewart 2022), there is a lack of evidence on the impact of regulation on innovation in this sector.
Previous studies by Stern (2017) and Grennan and Town (2020a) use cross-group comparisons
to suggest that regulations affect investments in Class III cardiovascular technologies, but they
do not address the broader impact of FDA regulation on innovation. My research fills this gap by
examining the relationship between regulation and innovation using quasi-exogenous regulatory
shocks across a range of device types and at several levels of regulatory stringency. Additionally,
my study evaluates the safety benefits of device regulation, which has received little attention.

I also add to a longstanding literature on the tradeoffs between regulation and litigation.”
Regulation, a preventive strategy, sets a lower bar on product safety, whereas litigation, a
deterrence strategy, punishes those who violate standards through the courts (Kessler 2010). A
study by Philipson et al. (2010) finds that regulation and litigation together are less efficient than
regulation alone, but did not examine which approach is more efficient on its own. I find that
litigation can more effectively prevent adverse events while promoting innovation.

Lastly, my findings relate to the literature on endogenous growth (Romer 1990). Recent
work shows that labor regulations can influence innovation, the key determinant of economic
growth (Acharya et al. 2014; 2013, Aghion et al. 2019). Other work shows that regulation can
reduce market competition, creating long-run inefficiencies (Buettner 2006, Aghion et al. 2009;
2005, Djankov et al. 2006, Hahn and Hird 1991). I add to this literature by showing that product
regulation reduces innovation and market competition. My findings, however, depart from the
common presupposition that regulatory knowledge flows smoothly across firms: Deregulation
disproportionately benefits firms with less regulatory experience, suggesting that regulatory
proficiency stays with the firms that acquire it (akin to Azoulay et al. (2011)). These frictions

amplify the costs of regulation and may advantage experienced multiproduct firms across a wide

4See Mulligan (2021), Grennan and Town (2020a), Clemens and Rogers (2020), Stern (2017), Budish et al.
(2015), Acemoglu and Linn (2004b), Finkelstein (2004b).
3See Coase (1960), Ehrlich and Posner (1974), Kolstad et al. (1990), Glaeser et al. (2001), Shavell (1986; 2018).



range of regulated products.

The tension between regulation and litigation affects a variety of everyday products.
These products range from those regulated similarly to Class III or II medical devices, like
pharmaceuticals and genetically modified foods, to broader categories like aircraft, automobiles,
pesticides, and over 15,000 consumer products regulated by the Consumer Product Safety Com-
mission (Schwartz and Appel 2020, Schauzu 2000, Pisani 2011). After regulatory compliance,
these products receive at least some protection from litigation, making my findings particularly
relevant.

This paper is organized as follows. Section 1.1 provides background on the FDA
regulatory process, section 1.2 provides the conceptual framework, section 3.2 discusses my data,
section 3.3 describes my empirical strategy, section 1.5 presents my empirical results, section

1.6 presents a back-of-the-envelope welfare calculation, and section 3.5 concludes.

1.1 Background

This section describes the structure and legal consequences of FDA medical device
regulations. Medical devices include products like COVID-19 tests, pacemakers, X-ray machines,

and spinal implants.

1.1.1 Enactment of Medical Device Regulations

In 1976, the Medical Device Amendments (MDA) expanded the FDA’s oversight to
include medical devices. According to these new laws, medical devices were grouped into
generic types to allow targeted regulation. “Daily-wear soft contact lenses,” for example, is a
device type regulated differently than “extended-wear soft contact lenses.” The policy variation I
study occurs at the level of these generic device types, and I refer to them as “device types.”

Device types are organized into a three-tier risk classification system. Manufacturers
of Class I low-risk devices must register their facility with the FDA, which carries a small fee

and takes less than one month to process. The FDA requires Class II, moderate risk device



manufacturers to file a “510(k)” to prove their device is similar to an already marketed device.®

This process of proving “substantial equivalence” has been criticized by many, including the
National Institute of Medicine, as being insufficient for establishing safety (IOM, 2011) while
imposing substantial costs. The 510(k) process, on average, costs firms $24 million (Makower et
al. 2010) and delays commercialization by ten months. Class III, high-risk device manufacturers
must conduct clinical trials via the “premarket approval” (PMA) process to ensure their new
device is safe and effective before commercialization. The PMA process is much longer than the
510(k) process and costs, on average, $75 million (Makower et al. 2010). The average costs of

these different levels of regulation are shown in figure 1.1. Appendix A5.3 provides more details.

1.1.2 Deregulation of Medical Device Types

The FDA can lower the class of a medical device type after observing the safety outcomes
of marketed devices. Without any safety information, the FDA regulates new, markedly novel
devices in Class III to ensure safety in the presence of unknown risks.” Surveillance data from
marketed devices clarify these risks and inform the FDA’s choice to move a device type into
Class II, or “down-classify” (see figure 1.1).8 These events are described by manufacturers as
“unpredictable,” suggesting the difficulty of anticipating such policy changes (Powell 2018). My
empirical analysis supports this assessment as I do not find evidence of divergent pre-existing
trends when comparing down-classified device types to control groups.

By contrast, the Class II to I down-classifications I study are systematic. In 1995, the
FDA scored all Class II devices based on average yearly adverse event counts and down-classified

those that fell below a previously unknown threshold (FDA 1995). Although this policy change

®Manufacturers must also follow best-practice protocols (called “special controls™).

"In 1997, the FDA began allowing manufacturers of markedly novel devices to petition for a direct Class II
or I classification under the “De Novo” process by showing that best practices assure the safety and efficacy of
their device. However, all the device types I consider existed before 1997 and thus were either automatically or
intentionally classified into Class III.

8 Additionally, manufacturers can file a petition for down-classification, bringing the FDA’s attention to particular
device types for further investigation. My analysis, however, focuses on down-classification events explicitly enacted
by the FDA’s initiative (rather than a petition).



appears to justify using a regression discontinuity design, the sparseness of device types at the
threshold does not permit this approach. Instead, a series of unaffected Class I device types that
would have received similar scores as treated device types serve as appropriate controls. These
types include previously deregulated and always Class I device types. Importantly, scores were
not contingent on potential changes in adverse events or trends.” My event-study results reaffirm
these assessments.

It is worth noting that deregulation only occurs in established medical device types. Thus,
rather than measuring the effect of regulation on radical innovation, this paper measures how
regulation affects the development and improvement of existing medical device types. Improving
medical devices may require fundamental scientific advances and bring substantial health benefits

through increased efficacy or reduced side effects and adverse events.

1.1.3 Regulation versus Litigation: Federal Preemption

In the US, medical device firms incur damages from tort claims amounting to as much as
3.8% of annual revenues (Fuhr et al. 2018). Galasso and Luo (2018) show that this liability risk
chills innovation and can bankrupt smaller firms. Compared to Europe, the US is particularly
litigious, with class-action lawsuits, high punitive damage payouts, and few damage caps
(Guendling 2016). These conditions make liability risk a powerful incentive for ensuring the
safety of products marketed in the US.

However, FDA approval shields medical device manufacturers from product liability,
creating a stark tradeoff between regulation and litigation. This protection, called “federal
preemption,” is upheld by Riegel v. Medtronic Inc. (2008), a supreme court case establishing that
Class III device approvals bar legal claims against device manufacturers. The Class Il devices |
analyze are also often protected from litigation as they are FDA-approved and subject to “special

controls” requirements that ensure safety and efficacy (Costello and Pham 2016).'° Class I

9See appendix A5.1 for more details and for an example of Class III to II events.
10The recent court case Kelsey v. Alcon Laboratories Inc. (2019) offers an example of a Class II approval barring
legal claims through preemption. In this case, the plaintiff claimed that Alcon’s contact lens disinfectant did not



devices are not FDA-approved, exposing manufacturers to litigation.

1.2 Conceptual Framework

In this section, I model R&D as a two-stage process: development and commercialization.
First, firms invent and patent a new product, improve its safety profile, and raise capital to cover
commercialization. Second, firms bring their products to market by attaining regulatory approval,
forming distribution networks, etc. The model builds on that of Budish et al. (2015), who
formalize the impacts of commercialization lags on innovation. For comparability, I follow
their notation closely wherever possible. I introduce into their framework two alternative policy
regimes (i.e., regulation and litigation), which include differences in commercialization lags,
liability risk, and financing costs.

The model’s purpose is to illustrate the range of possible consequences of deregulation,
to connect these to underlying fundamentals, and, in particular, to relate these effects to firm
traits. In turn, the insights from this model will be helpful for interpreting my empirical results.
My model considers the medical device industry, though its implications may apply to other

regulated products.

1.2.1 Model Preliminaries

Undirected R&D yields stochastic inventions to a representative, profit-maximizing firm.
Upon realizing the new technology, the firm decides if it will allocate capital for directed R&D to
(1) improve the product’s safety profile during the development phase and (i1) commercialize the
invention. The firm makes this decision in one of two environments: regulation “R” or litigation

“L.” The model is characterized by the following parameters:

prevent a severe eye infection due to a product flaw. However, the disinfectant was approved as a Class II regulated
device and was subject to special controls. The district court handling the case deemed that the FDA’s approval
adequately tested the product’s safety, preventing legal liability. This is just one of many recent instances where
Class II medical devices have been protected from design defect claims through preemption. Other examples
include cases involving latex gloves, contact lenses, tampons, condoms, angioplasty catheters, wound dressing,
tissue adhesive with wound closure device, a hemorrhoid prevention pressure wedge, and electrical stimulation
devices (Munford 2018).



Timing Parameters.—The year a firm realizes and develops an invention is given by
tinvent» Which I normalize to zero. The years it takes to commercialize the product i fcomm, f-
In the medical device industry, FDA approval plays a key role in delaying commercialization
(Makower et al. 2010, Pietzsch et al. 2012).!! Thus, for concreteness, think of fcomm,f @s the
approval delay. Under litigation L, there are no approval delays (i.e., fcomm,r,. = 0). In the
regulated environment, approval delays are positive but decrease with regulatory experience
(Olson 1997, Carpenter 2004b, Makower et al. 2010).12 Following Arrow (1971), I model this
relationship by equating the present delay Zcopm, s to the learning curve 8 Tf_y, where Ty is prior
experience, f is the delay with no prior experience (i.e., T = 1) and ¥ > 0. Delay costs are given

by Xtcomm,f» where J is the yearly cost of approval delays.!3

Financing Costs.—Smaller firms must raise external capital to cover the costs of develop-
ment and commercialization at time f;yep;. -+ Fundraising can be difficult: 56% of small medical
device firms claim funding as a central challenge (Emergo 2019). Following Stein (2003), I
capture these financing frictions by assuming deadweight costs given by C(es), where C( ) is
an increasing convex function of external funds ey (similar to the R&D model of Stern (2017)).
External funds e are equal to the difference between the non-financing costs and internal capital

K. I omit other costs of commercialization for simplicity.

Regulated and Deregulated Effective Lives.—A successfully commercialized product
becomes less relevant over time. For expositional ease, I describe the neoclassical risk-adjusted

discount factor of the R&D project as 8, which includes obsolescence and commercialization

! Approval delays in other areas of health care, like delays in securing medical procedure reimbursement codes,
have also been shown to play a key role in innovation (Dranove et al. 2022).

2Two factors may explain this pattern, both of which are driven by the complexity of the regulatory process. First,
inexperienced firms report difficulty benefiting from hired regulatory experts and must instead learn the process
independently (Y Combinator 2016). From the regulator’s perspective, having prior experience with a firm reduces
the uncertainty about the quality of its products, which may merit shorter review times (Olson 1997, Carpenter
2004b).

3Makower et al. (2010) find an average monthly cost of $1.3 million for Class III approval delays (e.g., clinical
trial costs, etc.). I assume fcomm, and several other parameters below are deterministic for simplicity.

4For simplicity, I assume firms finance their project instantaneously. Although fundraising could prolong
commercialization delays, removing this assumption does not change my theoretical results.

10



risk.!>-16 Firms enjoy longer or shorter effective product lives depending on the regulatory
environment. Under regulation, I define an invention’s Regulated Effective Life (REL) as the
expected years it will be commercialized and non-obsolete in present value terms as discounted
by the regulated firm. The effective life of the regulated product begins at time comm, r, yielding
an effective life of RELy = Y° 0! = §leonms /(1 —3). By contrast, in a deregulated
environment N, I define an invention’s Effective Life (EL) similar to REL, except the lifespan of
the product starts at tjyens, given by EL = Y;° 6" = 1/(1—3). Notice that RELy < EL by

definition, as regulated profit flows are delayed.

Expected Damages and Safety Effort Costs.—Borrowing from Shavell (1986) and
Boomhower (2019), if a firm chooses to commercialize its product, it exerts xy effort to improve
product safety, costing W per unit, at #;,,.’ Under litigation L, a commercialized product
generates stochastic adverse events that yield ¢ (x f;Z) legal damages per year, a random variable
with expected value D(xf;Z) and vector Z containing other factors that influence damages in
expectation (e.g., firm seizable assets K, the litigation environment, damage caps). The expected
damages function D( ) is a positive decreasing convex function of safety effort x. The firm
exerts effort to maximize the returns to commercialization by equating the marginal cost of effort
v+ C(yx} — Ky) to the present value of its marginal benefits —EL- D’ (x;i;Z) (i.e., marginal
abatement of expected damages). By contrast, under regulation R, the firm is exposed to no legal
damages due to federal preemption. Thus, firms exert the mandated level of safety effort x, as

any further effort yields no return.

Profits.—If the product is successfully commercialized and non-obsolete, it generates

IS A product may also face a probability of successful commercialization p, which may be appropriately modeled
as a function of safety effort; however, the FDA approves 80%-90% of all medical device submissions (GAO,
2009). Thus, for simplicity, I assume that approval is certain given a firm achieves the mandated safety effort,
and I abstract away from other non-approval-related commercialization uncertainty. Including product denial and
commercialization risks does not meaningfully change my theoretical insights.

16 Although obsolescence risk is more appropriately modeled as endogenous to R&D investments, I follow the
patent literature and take it as exogenous (Budish et al. 2015).

TFor simplicity, I assume firms exert safety effort instantaneously. Alternatively, safety efforts could prolong
commercialization delays. Modeling such delays, however, would not change the model implications.
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profits 7 per year for the innovating firm. Although regulation can affect profits by altering market
structure, I do not model this relationship, focusing instead on motivating my firm composition
and product safety results. Thus, for simplicity, I assume that deregulation increases the aggregate
level of R&D, consistent with my empirical findings, which implies that deregulation does not
cut profits enough to outweigh declines in commercialization costs.!® T assume only expert
regulators can perceive safety effort (i.e., asymmetric information); hence, safety effort does not

affect profits once a product is approved.

1.2.2 Characterization of the Investment Decision

In the regulated environment R, firm f expects to receive profits from commercializing
a device for RELy years. The firm will develop and commercialize its invention if and only if

these expected profits exceed the combined delay, safety effort, and financing costs: !

Regulated Firm Invests <= REL; - 7R > Xlcommf + yx +C(err). (1.2.1)

Regulated ~ Profits Delay costs Mandated safety  Financing
effective life effort costs costs

The amount of external capital ez needed to finance the project is given by the difference
between the non-financing commercialization costs and the firm’s internal capital Ky (i.e.,
efRr = Xtcomm,f +Wx—Kyrif ey g > 0, and O otherwise).

In the litigation environment L, firm f will choose to commercialize if and only if the

net expected profits (less expected damages) are greater than the combined safety effort and

¥Note that this assumption also places an upper bound on the value of legal damages and safety effort costs after
deregulation.

Notice the implicit assumption that firms do not consider the future benefits of regulatory experience (i.e.,
learning by doing) in their investment decisions. This assumption is consistent with a large literature documenting
that managers maximize short-term rather than long-term firm value (Budish et al. 2015).
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financing costs:°

Deregulated Firm Invests < EL -[ m, —D(x*:Z)] > Xy +Clerr). (1.2.2
g EL, [ m —D(xpiZ)] > yxy (err). (1.2.2)

Effﬁ%ive Profits  Expected Optimal safety ~ Financing
damages effort costs costs

The amount of external capital e;; needed to finance the project is given by the difference
between safety effort costs wx}and the firm’s internal capital K.

Notice the key differences between the investment incentives in environments R and L:
firms that commercialize in L (i) expect legal damages, (ii) choose and pay for an optimal level
of safety effort, (iii) enjoy a longer effective life of their products, and (iv) do not incur delay

costs.21

1.2.3 Distortions from Regulation

I focus on model implications related to distortions in firm participation and safety efforts
resulting from regulation. Throughout, I assume that deregulation increases the level of R&D
activity. This assumption is supported by my empirical results and allows me to more clearly
motivate the less intuitive results I find in my analysis.

First, I explore how deregulation can improve product safety. If mandated levels of safety
effort are low enough, deregulation can improve safety by increasing the net incentives for safety

improvements. I state this formally as follows:

Proposition 1 (Deregulation can increase firm safety efforts) If the marginal cost of regulated
effort is less than the ex-post marginal benefit of that effort (i.e., W+ Cy(x) < —EL-D'(x)), then

deregulation will increase firm safety effort.

Figure 1.2 helps clarify the necessary conditions for proposition 1. The figure shows that

the ex-ante-mandated safety effort is sufficiently low, leading the deregulated firm to exert more

20Note that financing frictions do not affect the payment of damages since they can be financed with profits (i.e.,
in expectation, damages will always be less than profits if a firm chooses to commercialize).

21profits and financing costs also differ across these environments; however, the direction of the difference is
ambiguous (e.g., if expected damages are large, safety effort costs could increase financing costs).
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effort. This proposition implies that ineffective regulations could make products less safe. I show
in section 1.5 that Class II regulations may lead to such an outcome. These insights, however,
may be specific to the litigious US environment. For example, if a country aggressively caps
damages (represented in 7), firms would face lower expected damages, and safety effort could
drop relative to regulated levels.

Another factor influencing a firm’s expected damages is the value of its seizable assets.
Following insights on the “judgment proof problem” (Shavell 1986), when damages exceed the
value of a firm’s seizable assets, the difference can be discharged through bankruptcy. This option
protects small firms from worst-case damages, lowering expected damages and the marginal
benefit of exerting safety effort. Thus, if deregulation increases safety efforts, it will do so most

for large firms. I state this as follows (and more formally in appendix Al):

Proposition 2 (Deregulation introduces bankruptcy distortion) Assume firm A has fewer assets
than firm B (i.e., Ky < Kp) and has too few assets to cover its worst-case damages. Firms A and
B are otherwise identical. If deregulation increases firms’ safety effort (see Proposition 1), then

Jirm B will increase its safety efforts the most.

The next distortion I detail arises from regulatory complexity (i.e., the delays from com-
plex regulatory requirements). Complexity distorts the composition of firms that commercialize
as inexperienced firms reap lower returns from commercialization. Deregulation removes these
distortions and disproportionately increases the returns to commercialization for inexperienced

firms. To formalize this claim, I present the following proposition:>

Proposition 3 (Deregulation disproportionately benefits inexperienced firms) If firm A has less
regulatory experience than firm B (i.e., Ty < Tp; all else equal), then deregulation increases the

returns to commercialization most for firm A.

An example helps illustrate the potentially dramatic implications of proposition 3. Con-

sider firm A has no prior experience, and firm B has one previously commercialized project that

22Proofs are presented in appendix A2.
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was delayed for two years. Consistent with the values of the learning curve parameters y and 3
estimated in section A3.1, firm A must wait out a two-year delay. By contrast, firm B waits out a
one-year delay, incurring 50% lower delay costs than firm A and enjoying a longer effective life
of its product. Although deregulation removes delay-related costs for both firms, the increase in
returns to commercialization is at least twice as large for firm A.

Lastly, I discuss distortions that arise from financing frictions and regulation. Small
firms incur deadweight costs when raising capital to commercialize their products (Gaglani
2014, Emergo 2019). Deregulation can decrease commercialization costs and financing costs,

especially for small firms. I state this claim formally as follows:

Proposition 4 (Deregulation can disproportionately benefit smaller firms) Assume firm A is
smaller than firm B and has non-zero financing costs when regulated (i.e., Ky < Kp and
Ky < Xtcomma + Wx). Firms A and B are otherwise identical. If deregulation does not in-
crease financing costs for firm A (i.e., Yx3 < Xtcomma + WX), then deregulation increases

commercialization returns most for firm A.

However, deregulation could lead to lower returns to commercialization for small firms
if financing costs increase after deregulation. For example, if deregulation induces enough
additional safety effort costs to outweigh the decrease in approval delay costs, financing costs
could increase for smaller firms. By contrast, if the assumptions hold, Proposition 2 will amplify
Proposition 4 as small firms face lower expected damages and lower safety effort costs after

deregulation and, thus, even lower financing costs.

1.3 Data

To conduct my empirical analysis, I compile data from eight sources to provide an
expansive view of the costs and benefits of medical device regulations. Summary statistics for
these data are provided in table 1.1 and a data catalog is presented in figure Al.

FDA Device Submissions (PMA and 510(k) Databases). The primary dataset used in this
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study is derived from FDA administrative data on the universe of medical devices submitted for
FDA approval. These data combine the FDA’s PMA and 510(k) databases to cover both Class III
and II devices. Submissions include the submitting company name, device brand name, medical
device type, and submission and approval dates. I use fuzzy matching to form three measures of
market dynamics and innovation. First, I measure “new entry” by identifying firms submitting
approval documents for the first time. Second, I also form a measure of “incumbent entry,” by
locating firms that have filed prior approval documents but are starting to submit for approval in
a given device type. Third, I isolate the first occurrence of unique device brand names within a
device type to form the “unique devices submitted” measure. These variables are aggregated to
the device type-year level. To measure each firm’s regulatory proficiency, I calculate the total
approval delays (in days) the submitting firm has experienced up to the given point in time.

FDA Deregulation Events. To provide a comprehensive analysis of FDA deregulation
events, I collect all down-classifications from 1980 to 2015. For Class III to II events, I also
indicate whether the event was motivated by the FDA’s “own initiative” or by an industry petition.
This distinction is empirically important. Figure A2 shows that device types that experience a
petitioned down-classification exhibit divergent pre-trends in patenting rates in the five years
before the event. The Class III to Il events I consider are those enacted by the FDA’s own initiative
and for which down-classified device types experienced at least one PMA document submission
beforehand.?® For Class II to I events, I consider affected device types that experienced at least
one 510(k) document submission beforehand.

FDA Adverse Event Reports (MAUDE). The FDA’s Manufacturer and User Facility
Device Experience (MAUDE) database contains adverse event reports related to medical devices.
Using this data, I create measures of device safety using reported deaths, hospitalizations, and
life-threatening events for each device type from 1992-2019. I follow Ensign and Cohen (2017)
to account for data and coding idiosyncrasies in the MAUDE data. Adverse events are aggregated

to the device-type-year level. Adverse event rates (e.g., deaths per year) of down-classified

Z3Many Class III “preamendment” devices were never officially required to submit PMA documentation.
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device types are similar to those of device types in the prospective class (see figure A3). For
the top 300 manufacturers by adverse event volume, I hand-linked firm names listed on adverse
event reports to data on firm assets. Asset totals are derived for public firms using data from
CRSP/Compustat. This linkage allows heterogeneity analyses of device safety by firm size.

USPTO Patent Grants Extract. Patents offer an additional measure of innovation to
support my “unique devices approved” measure. However, there is no standard dataset linking
medical devices with their associated patents (similar to the “Orange Book™ data for drugs). To
address this, I follow a three-step procedure to create a patent-based measure of innovation for
each device type. First, I compile a list of keywords from each FDA device type description.
Second, I use a computer program to collect all patents granted by the USPTO that contain those
keywords in their text. Third, I calculate the annual number of patents filed within each device
type based on the date the patent was first filed. The resulting dataset is a panel of yearly patent
counts across 5,000 FDA-defined medical device types from 1976 to 2019. Patents are a useful
complement to FDA device data for several reasons. First, patents allow me to analyze how
Class II to I events affect innovation, as I only observe my “unique devices approved” measure
for Class III and II devices. For this same reason, patents also enable comparisons of effect sizes
across down-classification types. Lastly, an analysis of two different measures of innovation
provides corroborative evidence. In section 1.5, I show that the estimates of changes in patent
filing rates and device submission rates are quite similar for Class III to I events. Appendix A4
provides more details on the patent collection process.

Patent and Patent Applicant Characteristics. 1 enrich the patent data with measures
of innovation quality and applicant characteristics. A patent’s quality is measured using the
number of citations it received from other patents and its market value.>* Patent market values
(in millions USD) are derived from Kogan et al. (2017). These values are based on the increase

in the patent assignee’s stock price resulting from a USPTO announcement of patent issuance

241 omit examiner citations and set patent citations and market values to zero when no patents were filed in a
given device-type-year.
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and are only available for publicly traded firms. I also generate a quality-related measure of
device safety using patent texts. Following a procedure used in Clemens and Rogers (2020),
I calculate the annual share of patents within a device type that mention keywords related
to safety.?> This variable allows me to directly analyze how deregulation affects inventors’
emphases on improving device safety, corroborating adverse event analyses. Lastly, to analyze
how deregulation affects innovation from firms of different sizes, I link total firm asset holdings
from the CRSP/Compustat database to patent applicants.

UCSD Health Insurance Claims Extract. Insurance claims data from UCSD Health
provide information on how healthcare prices respond to deregulation. To my knowledge, no
available data, including ECRI PriceGuide, reliably measures the direct prices that providers
pay for medical devices before 2011. As another option, device prices could also be reflected
in insurance claims data, provided that device costs comprise a substantial share of procedure
costs. However, insurance claims databases before 2011 do not measure exact paid amounts
at the procedure level, the granularity necessary for attributing costs to device usage. Thus,
I acquire claims data from UC San Diego Health that detail prices at the Current Procedural
Terminology (CPT) level. I then identify claims with procedures that use medical device types

6.26

that were down-classified since 200 To form control groups, I collect a set of procedures

that use matched control device types and randomly select 100 procedures. Together, these data
contain nearly 500,000 unique patient claims from 2005-2020. I then take the average amount

paid for a given procedure in a given year, forming a panel of procedure-year prices.?’

23To construct a comprehensive list of keywords related to medical device safety, I use Word2Vec, an algorithm
that maps text to a vector space, with proximity indicating semantic similarity. After gathering semantically similar
keywords, I search patent claims to identify whether a patent contained any of the keywords of interest and calculate
the fraction of patents that mention these keywords in a given device-type-year. If no patents were filed in a given
year, [ set the fraction of patents mentioning safety to zero (i.e., no scientific advancements in product safety). See
table A10 for a list of keywords used.

261n total, five Class III to II down-classified medical device types fit this criterion. All Class II to I down-
classifications that I analyze are outside the time coverage of the claims database.

%7 Although the average UCSDH procedure amount paid is close to the average procedure amount paid by
Medicare, using only UCSDH claims data is a limitation of my study.
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1.4 Empirical Strategy

My strategy for estimating the effects of deregulation includes “stacked” difference-in-
differences and event-study designs. After describing each design, I underscore how I address
potential issues when generating causal estimates in my context.

The first regression specification uses a staggered difference-in-differences design. I
use a “stacked” regression, similar to Cengiz et al. (2019), which avoids potential biases from
using staggered treatment designs in the presence of heterogeneous treatment effects within-unit
over time (Goodman-Bacon 2018, de Chaisemartin and d’Haultfoeuille 2019).28 This approach
assembles event-specific panel data using each treated group r € {1,...,N'} and all admissible
controls. Then, all event-specific panels are stacked while allowing unique time and group fixed

effects for each panel. Thus, the estimating equation is given by

Yicr = Yer+ Y+ Brl{reclass}, . +&.cr. (1.4.1)

In equation 1.4.1, ¢ denotes the medical device type, t denotes time, r denotes the event,
and l{reclass}n ¢ 18 an indicator equal to one when down-classification has occurred in device
type c. The outcomes of interest are denoted by Y; . .. Event-by-time fixed effects (¥ ,) and
event-by-device type fixed effects (., ,) are included. The coefficient of interest, 3, estimates
the differential change in the outcome variable for treated device types relative to control device
types after down-classification. I estimate equation 1.4.1 separately for Class III to II events and
Class Il to I events.

The number of FDA-initiated Class III to II events is relatively low (N I'=13). Thus,
I follow Conley and Taber (2011), who provide a method of constructing reliable confidence
intervals for differences-in-differences estimates in the presence of a small number of policy

changes. This approach uses information from control group residuals to form confidence

281 find that my results do not change meaningfully when I consider another estimator in the heterogeneous
treatment effects literature from Borusyak et al. (2021) (see tables A11, A12, and A13).
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intervals.
Like all difference-in-differences designs, my specification relies on the assumption that
differential trends in the outcomes of interest do not pre-date the down-classification events. To

test this assumption, I estimate a stacked event-study design using OLS, given by

Yier="Yer+%r+ Z B 1{Treated} ., x 1{Years from Reclass}, , + & ¢ - (1.4.2)
1#0

In equation 1.4.2, the omitted interaction between the treated group indicators (i.e.,
1{Treated},) and the time dummy variables (i.e., 1{Years from Reclass}, ,) aligns with the
year the event occurred. Thus, each parameter f3; represents the difference-in-differences estimate
of the change in the outcome in a given period relative to that reference period. Standard errors
for each f3; are calculated using Conley and Taber (2011).

Down-classification rulings are typically announced a year before enactment. Since
innovators could respond to a down-classification announcement, 1{reclass}, . is equal to one
for all device-type-years after an announcement occurs in device type c. However, FDA adminis-
trative data will not reflect changes until the year of enactment since firms cannot market devices
under new regulations before enactment. Thus, for FDA-derived outcome data, the indicator
1{reclass}17C is equal to one for all device-type-years after a down-classification is enacted in
device type c. For the event-study, the event-time t = 0 follows accordingly.

Identifying control device types that track the counterfactual development of the outcome
variables is a central challenge in my empirical context. Controls could be unsuitable for several
reasons. Control device types, for example, could be affected by unique scientific developments,
have lower scientific potential, or face different market forces. Alternatively, some device types
could be affected by spillovers from treated device types. Lastly, the FDA selects device types for
down-classification based on inherent risk. Thus, down-classified devices may be less dangerous

than those not chosen.
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I provide four control groups, each addressing aspects of these concerns, and find that
my results are robust across these groups. The first control group broadly comprises all Class
IIT and II devices (for III to II events) and all Class II and I devices (for II to I events) that
have not been down-classified. This group provides baseline DID estimates. The second group
includes “later-treated” control device types that were down-classified after treated device types
and after the latest sample year.?” This “later-treated” group allows me to compare only device
types that the FDA deemed appropriate for the same kind of down-classification. If later-treated
device types are different from those treated earlier, the later-treated group may produce biased
estimates. To ensure comparability, I form the third control group, a data-driven matched control
group computed using nearest neighbor matching on baseline adverse events and innovation
rates. Although I do not find evidence for spillovers in my context, I ensure that matched control
device types do not treat the same medical ailments as treated device types.3°

Finally, I provide a set of “intuitive” controls. This fourth set of controls includes
medical device types that target similar diseases. I also ensure that device risk is intuitively and
empirically comparable. For example, I avoid inappropriate comparisons between external-use
devices and implantable or life-sustaining devices (e.g., contact lenses versus pacemakers), as
these devices would have drastically different safety profiles. Instead, I compare like with like
(e.g., daily- vs. extended-wear soft contact lenses). Profiles of the treatment and intuitive control
groups are given in table A15 for Class III to II down-classifications, and in tables A16 and A17
for Class II to I down-classifications. Although the estimates are similar across control groups,
the matched control groups constitute my preferred specification.

Additionally, some medical device types may never exhibit adverse events or innovative

activity and thus would be incomparable to those that do. Thus, I also provide results from

2Specifically, for Class III to II events, I gather controls from all Class III to II events that occurred after 2015,
censoring the outcome data after 2015. For Class II to I events, all device types moved from Class II to I in late
2019 constitute the control group. The 21st Century Cures Act drove this Class II to I event and was the first
time FDA-initiated down-classifications of Class II devices occurred since 1998 (the year of the event I analyze).
Importantly, the FDA used the same explicit down-classification criteria in both events.

30See table A14 for spillover estimates.
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analyses that consider only treated and control device types with positive counts of a given
outcome in the appendix tables A18, A19, and A20. My findings are robust to these restrictions.

As with every non-experimental research design, selection into treatment is a primary
concern. Since the FDA selects medical device types to down-classify based on baseline yearly
adverse event rates, down-classification may be endogenous to changes in adverse event rates.>!
Thus, I cannot ascertain how deregulation would affect the adverse event rates for a randomly
chosen device type. However, I can speak to the optimality of the FDA’s decisions on the margin

of their rule (i.e., the most dangerous down-classified devices).

1.5 Results

This section presents estimates of equations 1.4.1 and 1.4.2, which capture the effect of
deregulation on various outcomes of interest. Subsection 1.5.1 presents the effects on the flow
and quality of innovation. Subsection 1.5.2 provides the effects on market structure. Subsection
1.5.3 details how the effects of deregulation on innovation and market structure differ by firm

characteristics. Subsection 1.5.4 presents the effects on device safety.

1.5.1 Changes in Innovation

Table 1.2 reports estimates of equation 1.4.1 for my innovation outcomes.?> Panel A
provides estimates for Class III to II events, and panel B provides estimates for Class II to I
events. Column (1) reports a 5-year pre-treatment mean of the outcomes for treated groups.
Columns (2)—(5) report the estimates of equation 1.4.1 when comparing treated groups to a
matched control group, intuitive controls, “later-treated” device types, and all untreated device
types, respectively. Conley-Taber standard errors are reported below the estimates.

Table 1.2, panel A indicates that Class III to II events led to statistically significant

increases in patenting rates, unique device submissions, mean citations-per-patent, and mean

31See appendix A5.1 for more details.
32Table A18 presents the results from only including device types with some positive outcome counts.
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patent values across control group comparisons (columns 2-5). Depending on the control
group, the results reveal that these events generated 189%—-470% more patents and new device
submissions per year per affected device type (pre-means: 8 patents/yr; 0.5 devices/yr). Patents
filed after these events received 180% more citations and exhibited similar increases in market
values. Panel B of table 1.2 shows that patents filed after Class II to I events (i.e., complete
deregulation) received 330%—1,070% more citations and yielded 10%—-50% higher market values,
suggesting a divergence between scientific and private value. These results are robust across
comparison groups (columns 2-5). Although economically significant, the increase in patenting
rates from Class II to I events was not statistically significant under my preferred specification.

I examine the dynamics of the innovation responses by estimating the event-study equa-
tion 1.4.2. The top subpanels of figures 1.3 and 1.4 plot the innovation responses (i.e.,
coefficients) for Class III to IT and II to I events, respectively, when using the “matched” control
groups.>? The results of this analysis provide several insights for interpreting my findings. First,
trends in all outcomes were similar in treatment and control groups for ten years before deregu-
lation; trends were also similar for other control groups (not shown). This insight strengthens
the identifying assumptions that (i) treatment and control groups would have exhibited similar
trends in outcomes absent the policy change, (ii) policies were not anticipated, and (iii) policies
were not endogenous to increases in innovative activity. Second, figures 1.3 and 1.4 indicate
a persistent increase in the flow of innovation, suggesting that these events led to investments
in new technologies that would not otherwise have occurred, rather than a forward shift in the
timing of those investments.

Lastly, the event-study estimates for Class III to II events suggest that the increase in
new technologies (i.e., patents) was slow, whereas the upsurge in access to new and existing
technologies (i.e., unique devices submitted) was fast. This distinction, thus, is driven by rapid
changes in the availability of existing technologies. First, firms may have “on-the-shelf” ideas

and products that they have not commercialized due to the expensive approval process. Second,

BFigures A4 and AS show event-study estimates for the innovation quality variables.
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firms may promptly repurpose existing technologies for new indications. Third, deregulation
accelerates the approval pipeline, leading to a sudden influx of products at different ex-ante
stages of approval. Lastly, since, until recently, E.U. regulations were more lenient, firms may
have introduced their E.U.-approved devices to U.S. markets after deregulation (Grennan and
Town 2020a). By contrast, patenting rates increase gradually after deregulation, consistent with
the time-intensive R&D process. U.S. patenting rates, unlike device submissions, are not affected
by sudden influxes of existing technologies as these technologies are either already patented or
are not patentable. In particular, if a firm files a patent in one country, it must file patents in other
countries where it desires protection within one year to receive protection in those countries
(Popp 2005). Applying for patents in multiple countries is inexpensive as firms can concurrently

file patents in up to 153 countries through the Patent Cooperation Treaty (WIPO 2020).

1.5.2 Changes in Market Structure (Firm Entrants and Prices)

To investigate the effect of deregulation on market structure, I reestimate equation
1.4.1 for five different outcomes: new and incumbent firm entry measured separately by each
data source and prices for procedures that use device types of interest. Table 1.3 presents the
estimates.>* The structure of table 1.3 is similar to that of table 1.2, with the exception of an
additional comparison group matched on pre-event prices (column 2). Panel A reveals that Class
III to IT events led to statistically significant increases in incumbent and new firm entry across
control groups (columns 3—-6) and data sources (patents and FDA devices). Strikingly, these
events increased the rate of new firm entry by 840%-1,000% (pre-mean: 0.1 firms/yr) when
measured by FDA data and by 150%-420% when measured by patent data.>> The discrepancy
between the magnitudes of these two estimates suggests a strong increase in the availability

of existing technologies. Regarding the effects on incumbent firms, these events increased

34Table A19 presents results from including only device types with some positive outcome counts.

33Supply-side factors may not be the sole driver of these dramatic changes in market structure. As shown in
figure A6, there were considerable equilibrium forces at play: After the number of suppliers of treated device types
increased, demand increased for procedures that use treated devices three years after deregulation, plausibly driven
by lower prices. No significant pre-trends are measured.
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incumbent entry by 400% when measured by FDA data and by 130%-240% when measured by
patent data.

The procedure price estimates are reported in the first row of table 1.3. The results show
that Class III to II events are associated with a statistically significant decrease in the prices of
procedures that use treated device types when using two out of three control groups (columns 2
and 3). The estimates translate to a 33—40% drop in prices, plausibly driven by the increase in
firm entry and competition (Busso and Galiani 2019).3® There are several reasons why these
price results should be interpreted with some caution. First, my price data is only available
after 2004, restricting the number of treated device types I study to five. Second, the estimate
generated using the entire sample of procedures as controls (column 6) is quite noisy, indicating
that the results are less robust. Lastly, UCSD healthcare claims data only cover one regional
hospital system.

Table 1.3, panel B shows the effect of Class II to I events on new and incumbent firm
entry as measured by patent data (device data is unavailable for Class I). The results indicate that
these events increased new firm patenting by 50%—145%, though the estimate under my preferred
specification is only marginally significant. By contrast, incumbent firm entry is statistically and
economically insignificant under my preferred specification. The distinction between the new
and incumbent results suggests that litigation may obstruct new entry less than regulation, but
both environments similarly impact incumbent firms.

To help interpret these findings, I present event-study estimates of equation 1.4.2 for my
market structure outcomes. The f3; coefficients are shown in the bottom subfigures of figures

1.3 and 1.4 for Class III to IT and Class II to I events, respectively.>” The figures suggest that

36The example of spinal implant deregulation highlights the plausibility of these price estimates. There are several
margins along which a drop in the price of spinal implants could affect the overall costs of spinal fusion procedures.
First, spinal implants account for roughly 40% of the costs of spinal fusion procedures (Beckerman et al. 2020).
Thus, the direct effect of a drop in the prices paid for spinal implants could measurably change the procedure price.
Moreover, new technology could be labor-saving, reducing the costs of labor required to perform the procedure.
Lastly, a lower price for spinal implants could attract more providers to offer the procedure, potentially driving
down prices further.

3TFigure A7 plots these coefficients for the Class III to II price outcome, and figure A8 plots these coefficients for
the Class III to II market structure outcomes measured using patent data.
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identifying assumptions (i)—(iii) (listed above) are satisfied and that, when present, the estimated
effects are persistent. For similar reasons given above, figures A8 and 1.4 illustrate a gradual
increase in the rate of new firms patenting (slow R&D), while FDA device data reveals a sharp
increase in device submissions from new firms (includes existing technologies). Figure A7
reveals that procedure prices dropped two years after the events, despite sharp increases in firm
entry. This lagged response is consistent with the contractual nature of healthcare markets; prices
are “sticky” as hospitals periodically renegotiate contracts with suppliers and insurers (Reinhardt

2006, Grennan and Swanson 2020).

1.5.3 Heterogeneity in Firm Proficiency and Size

The average treatment effects estimated in the last two sections overlook heterogeneity in
firm size and regulatory proficiency. In this subsection, I separately estimate equation 1.4.1 across
firm size and proficiency quantiles for the outcomes of interest. I link this heterogeneity analysis
to the propositions in section 1.2 to gain further insight into the mechanisms that drive the overall
results. The identified mechanisms highlight design elements that may make regulation more
amenable to small and inexperienced firms.

Firm Proficiency. To examine how regulation affects firms with different regulatory
proficiencies, I estimate equation 1.4.1 for the device submission outcome across proficiency
quartiles. I center this analysis on FDA data, allowing a cleaner linkage between firms, profi-
ciency, and innovation. Panel A of figure 1.5 presents the results expressed as percent changes
relative to pre-event averages. Class III to II events generated statistically significant increases
in new device submissions across proficiency quartiles. However, the events were associated
with much higher increases among inexperienced firms. Firms in the first proficiency quartile
exhibited a 1,000% increase in new device submissions compared to a 50% increase from firms

in the top quartile.>® These results indicate a quickly diminishing response while moving up the

3Strategic judgment proofing is not driving these results. In other words, these effects are not driven by larger
firms forming small subsidiaries to shield themselves from liability. For example, only 1 out of 20 new spinal
implant manufacturers entering the market after deregulation were subsidiaries.
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proficiency distribution. This pattern is consistent with the estimated learning curves presented in
figure 1.5, panel B as firms in the lowest proficiency quartile benefit from the highest reduction
in approval delays. This reduction translates into outsized decreases in commercialization costs
for inexperienced firms and, thus, higher increases in commercialization activity (as claimed in
proposition 3).

Designing regulation that is simpler and standardized could help less regulation-proficient
firms.3* For example, Stern (2017) shows that when the FDA sets approval expectations by
publishing guidance documents, approvals times of new firms drop by roughly 40 percent. To
simulate the impact of these types of efforts on innovation, I iteratively shrink the gap in delays
between inexperienced and proficient firms by lowering the learning rate Y while measuring R&D
response from a hypothetical distribution of firms (see figure A9 and appendix A3.2 for more
details). Table A21 presents the results of this simulation. The results suggest that flattening the
learning curve could increase the number of unique devices approved up to 63%, with the least
proficient firms exhibiting the largest gains.

Firm Size. To assess how regulation impacts firms with different levels of internal capital,
I estimate equation 1.4.1 across capital terciles for the patenting rate outcome. I perform this
analysis for both down-classification types. Figure 1.6, panels A and B present the results.*
Both event types are associated with larger increases in patenting rates among firms in the bottom
tercile of asset holdings.

Interpreting the heterogeneous effects of regulation through the lens of my conceptual
framework indicates that profits increase after deregulation and that small firms face lower
financing costs after deregulation, despite incurring potentially higher safety effort costs. These
results confirm aspects of the propositions in section 1.2 and suggest that small and inexperienced

firms face relatively high regulatory costs to innovate.

1n multiple interviews, inventors described to me the FDA approval process as “byzantine” and “too much for
us to navigate alone.”

401 focus on patents for two reasons. First, they can be linked easily to patent applicants and capital holdings.
Second, patents allow comparisons across down-classification types.
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The results of this subsection should be interpreted with some caution. Other factors
may be correlated with firm size and proficiency that also contribute to these R&D responses.
However, in addition to the striking similarity between the empirical results and the predictions
made in section 1.2, device manufacturers express that regulatory proficiency and financing costs

are key factors that influence R&D decisions.*!

1.5.4 Changes in Device Safety

I examine whether deregulation is associated with decreased device safety by reestimating
equation 1.4.1 for two different outcomes: the rate of adverse events and the rate at which
inventors emphasize safety. Table 1.4 details the results and is structured like table 1.2.*> Table
1.4, panel A reveals that Class III to II events are not associated with statistically significant
changes in adverse event rates and inventor emphasis across control groups. However, these
events are associated with economically significant increases in hospitalization rates under my
preferred specification.

Table 1.4, panel B shows that Class II to I events are associated with statistically sig-
nificant reductions in the rates of hospitalizations and deaths across three out of four control
groups. In contrast to Panel A, all but two estimates are significant at the 10% level, and all
suggest improvements in device safety. The results indicate an associated 93-97% reduction in
hospitalizations and a 49-69% reduction in deaths per year per treated device type (pre-mean:
0.3 deaths/yr). Panel B reveals that these events are also associated with a statistically signif-
icant 100% increase in the share of patents that emphasize an advancement in product safety,
corroborating the results generated by the FDA adverse event report outcomes.

How could deregulation improve device safety? A compelling answer is that deregulation

exposes firms to more litigation, which may increase the net incentives to improve device safety.*?

41Firm size, the most obvious potential confounder, is uncorrelated with firm FDA experience (see table A22).
This lack of correlation may result from publicly traded companies having high baseline assets relative to the
average MedTech firm.

42Table A20 presents the results from including only device types with some positive outcome counts.

43Several other potential mechanisms may contribute to improved product safety after Class I to I down-
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To shed further light on liability as the mechanism for this change, I use variation in ex-post
exposure to legal liability by firm size. Small firms can avoid worst-case damages through
bankruptcy, while large firms cannot. If liability risk plays a central role, deregulation should
lead to disproportionate increases in device safety among larger firms. Indeed, the top subfigure
of figure 1.7 shows that larger firms in the top tercile of asset holdings exhibit a significant 100%
increase in the likelihood of demonstrating at least one safety innovation per year per treated
device type. By contrast, smaller firms respond much less dramatically. The bottom subfigure
of figure 1.7 mirrors this finding and shows a more significant drop in the likelihood of serious
adverse events among larger firms.

Figures A10, A11, and A12 illustrate the dynamics of my device safety findings. These
figures plot the f3; coefficients estimated from event-study equation 1.4.2. Figure A10 shows that
Class III to II events are associated with a gradual increase in hospitalization rates and serious
event rates as new devices are invented and marketed within treated device types. Figure A1l
shows that Class II to I events are associated with a persistent and gradual decrease in adverse
events as inventors increase their emphasis on safer technologies (see also figure A12).

A few caveats accompany my device safety analysis. First, the FDA explicitly down-
classifies device types for which prospective regulation adequately mitigates harm. Thus, the
insignificant adverse event results associated with Class III to II events should be interpreted as
a local average treatment effect. For Class II to I events, however, I use the FDA decision rule
described in appendix AS5.1 to assess whether the FDA’s decisions are optimal on the margin
(i.e., at higher “DPM scores”). Accordingly, I separately estimate equation 1.4.1 for each treated
device type relative to a matched control (matched based on DPM score) and plot the relationship

between the effect size and the score value. Figure A13 shows that marginal device types are

classifications. For example, deregulation may increase competition among firms, which may encourage them
to focus more on product safety as a means of differentiation. Additionally, deregulation can lead to increased
innovation, which may result in more product safety innovations. However, I do not observe similar safety
improvements after Class III to II down-classifications, where innovation and market competition tend to increase
more significantly. It is also possible that, after deregulation, firms are no longer constrained by regulatory parameters
such as substantial equivalence, allowing them to more freely innovate in the realm of product safety.
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associated with fewer deaths when compared to control groups, relative to less dangerous treated
device types. This pattern may generalize to most current Class II device types, of which 95%
exhibit fewer adverse events than the most marginal deregulated device type.

Second, the FDA does not normalize adverse event rates by device utilization due to
data limitations. Growth in utilization would increase the likelihood of adverse events. Thus,
fluctuations in adverse event rates reflect changes in product safety and utilization. Hence, using
adverse event rates as a signal of product safety provides a conservative estimate of the net
benefit of deregulation as deregulation increases utilization. Figure A6 shows that, although
no pre-trends are present, utilization rates of treated medical device types significantly increase
three years after Class III to II deregulations, plausibly due to increased supply. Although I
do not have similar utilization data for Class II to I events, treated device types also exhibit
increased supply after deregulation. All else equal, if the demand curve is not perfectly inelastic,
an outward shift in the supply curve would increase utilization.

Lastly, media and regulatory decisions may influence adverse event reports. Manufactur-
ers, for example, could be less likely to report adverse events if they are subject to less regulatory
scrutiny or if reports are more likely to make news after deregulation. However, I focus on
mandatory reports of deaths or severe injuries from hospitals and device manufacturers, which
are less sensitive to these factors than voluntary reports of less severe injuries (FDA 2020c). The
FDA enforces the reporting of serious events using financial penalties and criminal resolution
(Bragg et al. 2018, Emergo 2022).** Lastly, when the FDA announced the largest Class II to I
down-classification event in 1995, it created new authorities that enabled closer monitoring of
the affected devices to “take appropriate remedial action, if necessary” (FDA 1995), suggesting

that adverse event reports would be more challenging to conceal.

44Both user facilities (i.e., hospitals) and manufacturers are required to report serious adverse events to the FDA.
Thus, if either entity fails to report an event, but the FDA is notified by the other (or other sources like end users),
then it is implicated in incompliance. Additionally, the FDA increased its monitoring of deregulated device types to
take appropriate remedial action if products had become less safe, which would make it it more difficult for firms
marketing affected devices to hide adverse events relative to those marketing unaffected devices (FDA 1995).
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1.6 Back-of-the-Envelope Calculation: Costs & Benefits

This section presents the costs and benefits of deregulation, which are measured by the
three core results derived in section 1.5. First, deregulation increases patenting rates. The value
of this increase is determined by the sum of each additional patent’s market value, accounting
for creative destruction and increases in value from deregulation. Second, deregulation decreases
market concentration and healthcare prices. To value lower healthcare prices, I convert price
changes to changes in expenditures by assuming constant utilization. Lastly, complete deregula-
tion reduced adverse event rates. The resulting drop in deaths is appraised at the statistical value
of all lives saved, while prevented hospitalizations are valued according to Moses et al. (2019).
The assumptions and math underlying these calculations are detailed in table 1.5.

Table 1.5 presents the measured costs and benefits of down-classification decisions. To
justify the FDA’s decision rule for Class III to II down-classifications, the unmeasured costs (e.g.,
political risks) associated with these events would have to be larger than the measured costs.
Class II to I down-classifications do not exhibit any measurable costs as they are associated with
fewer adverse events and more innovative activity. The benefits of these down-classifications,
including fewer adverse events, amount to roughly $24 million per year per treated device type,
even at the margin of the most dangerous treated devices ex-ante. Since there are 2,500 Class 11
devices, the yearly forgone net benefits from stalling deregulation could amount to as much as
$60 billion, or nearly 34% of the value of medical devices consumed each year.

I do not include all costs and benefits of deregulation in these calculations. For costs, I
do not measure the value of efficacy assurances provided by the FDA, which are lost after down-
classification (see Grennan and Town (2020a)). However, one criterion for down-classification is
whether device efficacy is easily verifiable and maintained after deregulation, so these costs are
likely small. Second, waiting to deregulate to learn more about a device type’s inherent risk is
valuable if deregulation could lead to increased adverse events (i.e., the option value of waiting).

However, Class II regulations are associated with increased adverse event rates relative to Class
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I, so waiting to deregulate may not provide value. Lastly, there are potential political costs of
misguided deregulation that I do not measure.

The unmeasured benefits of deregulation include reductions in FDA administrative costs,
price reductions from Class II to I events, the value of new jobs created with firm entry, the

benefits of innovation from private firms, and the scientific value of innovation.

1.7 Discussion and Conclusion

This paper analyzes the effect of regulation on medical device innovation, market struc-
ture, and adverse events. My theoretical model clarifies how “learning by doing” and financing
costs make regulation especially burdensome for small and inexperienced firms investing in
the development of new technologies. In turn, the model shows that deregulation increases
the profitability of innovation most for these types of firms and may raise the net incentives
to improve product safety by exposing firms to greater liability risk. I then investigate these
insights, and my broader questions, empirically in the context of the medical device industry,
where complex regulations prevent litigation. For my empirical analysis, I develop a data set that
combines eight underlying sources on innovation, market dynamics, firm characteristics, and
product safety. I find that deregulation disproportionately benefits small and inexperienced firms
and broadly accelerates technological progress and firm entry. This change in market structure
reduces related healthcare prices. Lastly, Class II to I down-classifications are associated with a
significant decrease in adverse events, providing evidence that legal liability risk creates strong
incentives to improve product safety relative to the requirements of medical device regulation.
Increases in product safety are highest among devices originating from large firms that have the
most assets at risk in liability proceedings, providing additional evidence supporting liability as
the driver of this result.

A back-of-the-envelope calculation suggests that deregulation exhibited higher measured

benefits than costs. Class II to I events are associated with net benefits amounting to $24 million
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per year per treated device type. These benefits are higher for marginal, higher-risk device
types, suggesting my results may generalize to other Class II devices.*> These results align
with sentiments from the National Institute of Medicine and physician commentators, which
have criticized the effectiveness of Class II regulations and have advocated for alternatives that
ensure quality and encourage innovation. My results suggest that deregulating Class II devices,
relying instead on the deterrent effects of litigation, is one such alternative: litigation can improve
product safety, hasten innovation, and lower administrative costs.

Class III to II events, however, are difficult to evaluate. On the one hand, I find that the
benefits of deregulation, namely a 470% increase in the availability of new technologies, are quite
large. In the short run, the magnitude of this increase is consistent with deregulation removing
the wedge between the available technologies in the E.U. and the U.S. For example, over 80%
of cardiac stents marketed in the E.U. are unavailable in the U.S., a potential byproduct of
regulation (Grennan and Town 2020a). In the long run, the increase in access to new technologies
is persistent. In practice, however, these events present the FDA with asymmetric costs and
benefits; an increase in salient device-related deaths could degrade the regulator’s reputation
and undermine its more cost-effective efforts elsewhere (Carpenter 2004a;b). In contrast, the
technological benefits that come from deregulation are more abstract. Thus, the FDA’s optimal
strategy may be “too conservative” (Isakov et al. 2019) relative to the social optimum to uphold
its reputation at the expense of innovation. This asymmetry is evident in FDA documents
outlining the criteria for down-classification as the value of forgone innovation is not considered.
This study seeks to clarify these forgone benefits. However, more empirical research is needed
to assess the costs of regulatory mistakes and the value of regulator reputation.

My study focuses on the large and growing medical device market, but the results may
also be relevant to other settings with similar regulations. For instance, FDA regulations for

Class III devices are similar to those in the EU, and requirements for these devices resemble

4Moreover, 95% of current Class II devices have lower adverse event rates than the most dangerous deregulated
device type before deregulation.
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those for brand-name drugs in the US and other countries (Van Norman 2016).46 Additionally,
Class II device regulations are similar to those used abroad and resemble those for generic
drugs—which are also protected from product design tort claims after FDA approval—and
genetically modified (GM) foods (Schwartz and Appel 2020, Schauzu 2000). These similarities
suggest that medical technology and food regulations may slow innovation and increase market
concentration worldwide. Lastly, my analysis highlights the potential issues that arise when
regulators use imperfect proxies or heuristics to evaluate product quality, such as the “substantial
equivalence” heuristic used for Class II devices, generic drugs, tobacco products, and GM foods.
These heuristics may be particularly pervasive when product quality is hard to verify or when
regulators are under-resourced. In such situations, a robust legal system with impartial judges

and high damage caps may better incentivize product safety through litigation.

46Tabarrok (2000) offers some evidence that FDA pharmaceutical regulations are too stringent.
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Figure 1.1. Background on Medical Device Regulations. Note: This figure presents background

on FDA Medical device regulations and the deregulation policy changes I leverage in my analysis.
Device types are placed into one of three classes, each corresponding to a level of perceived risk.
Higher perceived risk requires a longer approval process and additional costs to conduct testing and
maintain business operations before a product is approved. The time and cost values are averages
within the given class and are derived from Makower et al. (2010). While learning about a device
type’s underlying risk, the FDA can deregulate a device type by moving it from a higher-risk class to
a lower-risk class (called “down-classification”). This decision dramatically reduces the approval
delays and costs that device manufacturers confront. The FDA rarely reclassifies device types
into a higher-risk class. The last column includes examples of Class III, II, and I devices, namely,
pacemakers, x-ray machines, and tongue depressors, respectively. *Medical devices with attendant
“special controls” requirements (Class II devices) are often protected from product liability (Costello
and Pham 2016). However, there is no supreme court precedent that guarantees preemption; thus,
courts exercise some discretion in their interpretation of federal preemption with Class II devices.
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Figure 1.2. Theoretical Change in Safety Effort after Deregulation. Note: This figure presents
a possible change in the level of safety effort after deregulation. This scenario is one in which
deregulation could lead to an increase in safety effort, given a sufficient increase in damages, as
described in section 1.1. The x-axis indicates the level of safety effort exerted. The y-axis denotes
the monetary value. The marginal cost of effort curve indicates a marginal cost of psi at initial values
of safety effort before financing costs are incurred, at which point marginal costs increase with effort.
The marginal abatement of damages curve under regulation is always equal to zero due to federal
preemption. The counterfactual dotted section of the marginal abatement curve under regulation
represents the marginal abatement of damages from exerting effort below mandated levels while still
achieving FDA approval. Deregulation shifts the marginal abatement curve as legal damages are no
longer prevented by federal preemption. The value x-star represents the optimal level of safety effort
after deregulation (i.e., where the marginal cost of safety effort is equal to the marginal abatement of
expected damages). The value x-underbar represents the mandated level of safety effort. The vector
Z contains other factors that affect a firm’s legal damages in expectation, which might be specific to
the given legal system, like damage caps.
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Figure 1.3. Effects of Class III to II Events (High to Moderate Regulation). Note: This figure presents the estimates of the coefficients from the
event-study equation 1.4.2 for some innovation and market structure outcomes. Only Class III to IT down-classification events are considered.
Controls are device types matched on baseline averages of the outcome. Data are analyzed at an annual frequency. The top-left subfigure illustrates
the evolution of patents filed per year in treated device types relative to matched control groups. The top-right subfigure describes the evolution
of unique devices approved per year by the FDA for treated device types relative to control groups. The bottom-left subfigure illustrates the
evolution of the rate of new firm entry (counts per year), calculated using device submission data relative to matched control groups. New firm
entry represents firms that have never before submitted FDA documentation. The bottom-right subfigure illustrates the evolution of the rate of
incumbent firm entry (counts per year of firms that have previously submitted FDA documents) in treated device type relative to controls. Standard
errors are calculated following Conley and Taber (2011).
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Change in Safety Effort by Firm Assets
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Figure 1.7. Change in Emphasis on Safety by Firm Asset Terciles (II to I). Note: This figure presents
separate DID estimates of equation 1.4.1 for the change in the likelihood of device types exhibiting
at least one annual occurrence of the given outcome variable by firm asset terciles. I set all outcomes
greater than zero to one (LPM) as safety mentions and serious events are rare. The baseline outcome
values across asset terciles are roughly equal and do not drive these disparate effects. The top figure
presents the change in the likelihood of safety-related innovations, and the bottom figure illustrates
this change for serious adverse events (death, hospitalization, or life-threatening event). Terciles are
formed using the asset totals from firms that are publicly traded. The x-axis describes the tercile:
first, second, or third, and the y-axis conveys the percent change in the likelihood. 95% confidence
interval bars are provided.
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Table 1.1. Summary Statistics. Note: Tables A7, A8, and A9 provide summary statistics for each class
independently. See Kogan et al. (2017) for more information on the patent market valuation data,
which was merged into my patent dataset. The CRSP/Compustat database was used to derive the
total assets of the firms applying for patent protection and is a proxy for firm size. Market values
and applicant assets are only available for patents filed by publicly traded firms, representing roughly
25% of the total sample of patents. Missing observations account for the discrepancies between (i)
the number of total FDA device types (5,542) and the number of device types represented in device
submissions, adverse event reports, and patents (many device types have no associated patents), (ii) the
total number of patents and the number of patents with market valuations and applicant assets, and (iii)
the total number of claims and claims containing amounts paid. *“Regulatory proficiency” indicates
the total number of days a firm has experienced approval delays across all its submitted devices.

N Mean SD Range
FDA Admin. Data—Device Submissions (PMA and 510(k) Databases)
Total 168,880 - - -
per Device Type 4,710 (Types)  35.5 110.8 [1,2,457]
Total Submitting Firms 20,343 - - -
Firms per Device Type 4,710 (Types)  15.7 39.5 [1, 1,048]

Firm Regulatory Proficiency 4,660 (Types) 19.5yrs  65.4yrs [0, 686.2yrs]*

FDA Admin. Data—Adverse Event Reports (MAUDE)

Total 9,238,733 - - -

per Device Type 4,111 (Types) 2,353.3 18,939.9 [1, 0.6M]

Serious Events per Dev. type 2,400 (Types) 571.7 5186.8 [1, 0.15M]

Assets of Offending Firm 7,139,727 $3.76B  $5.77B [$0, $0.79T]
USPTO Device Patents

Total 1,248,292 - - -

per Device Type 2,113 (Types)  590.8 2077.4 [1, 23,056]

Citations 1,248,292 14.6 88.8 [1,5,817]

Market Valuation 377,465 $13.1M  $30.7M [$45, $1.9B]

Applicant Assets 377,465 $26.7B  $54.8B  [$0.07M, $1.1T]
UCSD Healthcare Claims Extract

Total 495,519 - - -

per Procedure Code 528 (Codes) 880.4 2397.5 [1, 18,915]

Unique Patients 55,621 - - -

Price 453,079 $135.7  $389.0 [$0, $0.01M]

Price per Proc. Code 528 (Codes) $354.8  $576.1 [$0, $5,401]
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Table 1.2. Effect of Down-Classifications on Innovation. Note: The table presents estimates of equation
1.4.1, which is a difference-in-differences (DID) style OLS regression model. Outcomes are derived
from USPTO patent databases, FDA administrative data, and Kogan et al. (2017). Column (1) presents
the 5-year baseline average of treated device types for the outcomes listed on the left-hand side.
Columns (2)—(5) present DID estimates for the listed outcomes using different control groups: namely,
a matched control group, intuitively similar device types (treat similar diseases), “later-treated” device
types (treated after sample window), and the full sample, respectively. Device submissions are derived
from FDA data and are not available for Class I devices. For column (4), Class III to II, control device
types are treated after 2015; thus, all observations after 2015 are dropped. Confidence intervals are
calculated using Conley—Taber test statistics. +, *, **, and *** correspond with statistical significance
at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (D) (2) 3) 4) 5
A. Class III to II:
Patenting Rate 7.95 14.99%*  25.6]1*%* 26.65% 18.14

(9.27) (5.57) (8.98) (10.36) (20.58)
Device Submission Rate 0.47 2.69%** 2 36%* 2.26%* 2.2 %%
(1.03) (0.59) (0.77) (0.73) (0.33)
Citations-Per-Patent Rate 9.06 16.59* 21.86* 19.43%*  26.24%%*
(20.65) (7.48) (9.81) (6.41) (5.62)
Average Patent Value 4.36 8.24%*%k  11.29%%%  11.58%%**  10.50%**
(6.12) (1.81) (2.91) (2.96) (1.59)

Sample Size 1540 1056 920 60456

B. Class I to I:

Patenting Rate 16.32 7.34 7.06 13.32%%  209.17%%*
(37.11) (4.86) (6.77) (5.01) (7.18)

Citations-Per-Patent Rate 0.64 6.85%* 2.12% 3.98%**  6.00%**
(0.48) (2.30) (1.08) (0.84) (1.43)

Average Patent Value 6.49 337wk 0.90+ 2.04x%%k 6, ]3H*
(14.19) (0.67) 0.47) (0.46) (0.56)

Sample Size 15180 20592 27764 32472
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Table 1.3. Effect of Down-Classifications on Market Structure. Note: The table presents estimates of
equation 1.4.1, which is a difference-in-differences (DID) style OLS regression model. Column (1)
presents the 5-year baseline average of treated device types for the outcomes listed on the left-hand
side. Columns (2)—(6) present DID estimates for a given outcome using different control groups.
These groups are (2) matched on baseline prices, (3) matched on baseline innovation and adverse
event levels, (4) an intuitively comparable group, (5) a later-treated group, and (6) the full sample
of controls, respectively. Column (5) of Panel A uses control device types treated after 2015, so all
observations after 2015 are dropped. Procedure prices were only available after 2004, restricting
sample size. There are no price estimates in columns (4) and (5) due to data limitations. Confidence
intervals are calculated using Conley—Taber test statistics. +, *, **, and *** correspond with statistical
significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates
Pre-mean Price Matched Intuitive  Later Full
Down-Classification (D) 2) 3) @) 5 (6)
A. Class III to II:
Procedure Price 95.31 -58.25%*  -43.54%* - - -27.50
(123.95) (21.16)  (15.66) - - (144.11)
Sample Size 160 176 - - 36240
Incumb. Entry (dev.) 0.40 - 1.58%*% ] 48%* 1.46%*  1.44%%*
(0.91) - (0.36) (0.54) (0.52) (0.22)
New Entry (dev.) 0.07 - 0.67**%*  0.70%*  0.59%*  (.63%**
(0.31) - (0.19) (0.22) (0.19) (0.13)
Incumb. Entry (pat.) 1.47 - 1.91%*  278*%*  3.56%%* 2.98%*
(1.78) - (0.59) (1.01) (1.34) (1.48)
New Entry (pat.) 3.78 - 5.63%**%  11.19%* 11.94%%* 8.88
(4.76) - (1.61) (3.75) (4.31) (6.32)
Sample Size - 1364 1056 920 60456
B.Class I to I:
Incumb. Entry (pat.) 2.26 - 0.04 0.32 0.61%* 1.36%*
(4.33) - (0.45) (0.36) (0.29) (0.42)
New Entry (pat.) 7.27 - 3.85+ 2.60 4.87**%  10.55%**
(16.87) - (1.99) (2.10) (1.57) (2.07)
Sample Size - 13552 20592 27764 32472
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Table 1.4. Effect of Down-Classifications on Adverse Events. Note: The table presents estimates of
equation 1.4.1, which is a difference-in-differences (DID) style OLS regression model. Column (1)
presents the 5-year baseline average of treated device types for the outcomes listed on the left-hand
side. Adverse event outcomes are derived from the FDA MAUDE database. Columns (2)—(5) present
DID estimates for the listed outcomes using different control groups: namely, a matched control
group, intuitively similar device types (treat similar diseases), “later-treated” device types (treated
after sample window), and the full sample, respectively. For column (4), Class III to II, control device
types are treated after 2015; thus, all observations after 2015 are dropped. Confidence intervals are
calculated using Conley—Taber test statistics. +, *, **, and *** correspond with statistical significance
at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (D) (2) 3) 4) 5

A. Class III to II:

Emphasis on Safety 0.16 0.073+ - - -
(0.21) (0.039) - - -
Life-Threatening Event Rate 0.07 0.65 0.89 -0.92 -240
(0.31) (0.55) (0.83) (0.64) (1.83)
Hospitalization Rate 0.25 2.38+ 3.07 1.39 -3.48
(0.84) (1.27) (1.94) (1.16) (3.72)
Mortality Rate 0.08 -1.21 1.08 -0.07  0.26

(0.46) (2.21) (0.68) (0.59) (2.53)

Sample Size 616 672 552 38472

B. Class Il to I:

Emphasis on Safety 0.065 0.05%** - - -
(0.218)  (0.012) - - -
Life-Threatening Event Rate 0.07 -2.18 -0.36+  -3.24*% -3.18*
(0.43) (2.02) (0.19) (1.63) (1.56)
Hospitalization Rate 0.17 -2.05%** - -3.04+  -4.87*% -5.44%
(0.94) (0.60) (1.56) (2.35) (2.54)
Mortality Rate 0.26 -0.43%*%* -0.27  -0.46+ -0.57*

(2.13) (0.14) (0.20)  (0.26) (0.27)

Sample Size 10332 13104 17668 20664
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Table 1.5. Costs and Benefits of Down-Classification. Note: This table provides the back-of-the-envelope

calculations of the costs and benefits of Class III to II and Class II to I down-classification events.
Assumptions are detailed at the header of the table. Patent estimates are calculated using only publicly
traded companies for which I can obtain patent values as calculated in Kogan et al. (2017). I provide
95% confidence intervals for the costs and benefits. Costs and benefits are annualized and averaged at
the device type level (as defined by the FDA). The column “Value” is the value per unit of the estimate.
In my data, procedures using treated medical device types generate, on average, $26,849 a year of
health expenditures. Scaling this total to a national level ($26,849/ 0.0008, where .0008 is the share
that UCSDH executes) gives roughly $33 million a year spent per treated procedure, on average. This
total is similar to the average yearly cost of medical procedures seen when Medicare data is scaled
to national expenditures, at $34.7 million a year per procedure. Since I find that costs, as measured
by paid amounts, decrease by 44—62% a year, I use these percentage decreases in prices to calculate
annual national expenditure changes per treated medical device type. These calculations are presented
in the “Prices” row for Class III to II down-classifications. “Patented Inn.” represents innovation that
is patented by public firms, and “Hospital.” represents hospitalizations.

-Cost of mortality is EPA’s VSL of $10 million.
-Average inpatient hospital stay costs $22,000. No other costs.

7]
.g -Creative destruction of 4/5 from value of patents.
2 -Do not consider private firm patent values.
§ -Do not consider scientific value of innovation.
g -No value of efficacy information from regulations.
-No value from firm entry (e.g., not considering value of new jobs).
-UCSDH performs .08% of total U.S. procedures (calculated from data).
Outcome Estimate 95% C.1. Value Total 95% C.1.
Mortality 1.08 [-0.3,2.4] $10m $10.8m [-$3m, $24m]
= Hospital. 2.38 [-0.1,4.9] $.02m  $.05m [$Om, $0.1m]
S $10.9m  [-$3m, $24m]
E » Patented Inn. 5 [3.2,8.1] $13m/5 $13m [$8.2m, $21.1m]
23 S Prices -$14.7m [-$2.6,-$26.8] -1 $14.7m [$2.6m, $26.8m]
$24.7m  [$11m, $48m]
Mortality -0.43 [-0.7, -0.16] $10m -$43m  [-$7m, -$1.6m]
= Hospital. 2.1 [-3.3, -0.9] $0.02m -$0.04m [-$0.06m, $0]
7]
- 3
E -$4.3m  [-$7m, -$1.6m]
% »n Patented Inn. 9 [3.1, 14.9] $10m/5 $18m [$6m, $30m]
-_ &
© £
2 $18m  [$6m, $30m]
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Chapter 2

Demand Shocks, Procurement Policies,
and the Nature of Medical Innovation: Ev-
idence from Wartime Prosthetic Device
Patents

From 1960 to 2019, U.S. health spending rose from 5 to nearly 18 percent of GDP.
Research has documented that the advance of medical innovation underlies a substantial share
of this cost growth (Smith et al. 2009, Cutler 2004), which raises a variety of questions. First,
what factors drive the volume of medical innovation? Second, what leads inventors to focus
on reducing costs (e.g., by streamlining production processes) versus improving quality? More
generally, what factors shape the specific problems with which medical innovators choose to
engage?

Wars and pandemics, among other events, can create acute needs for medical innovation.
The COVID-19 pandemic, for example, generated demand for new vaccines, new diagnostic
tests, testing infrastructure, and personal protective equipment. The value of new vaccines is
widely recognized. Improvements in medical equipment, reductions in production costs, and
expansions in productive capacity can also have substantial value when demand rises sharply.
This motivates us to study how demand shocks and procurement environments shape the volume
of medical innovation, its emphasis on the production process, and its emphasis on dimensions

of product quality.
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We analyze the effects of demand shocks and procurement environments on the quantity
of medical innovation and the product and production process attributes it emphasizes. Our
empirical analysis considers two important periods in the history of prosthetic device innovation:
the U.S. Civil War and World War I. We begin by presenting key details of these historical
contexts, including differences in demand, differences in procurement incentives, and differences
in the stated goals of the public procurers. We show that both the Civil War and World War I
led to substantial increases in prosthetic device patenting. A point of contrast is that the Civil
War led to a much greater focus on cost-conscious innovation while World War I did not. To the
best of our knowledge, this analysis provides the first evidence that cost-conscious procurement
environments can indeed steer medical innovation in a cost-conscious direction.

Empirically assessing how incentives shape the emphases of inventors requires over-
coming two primary challenges. First, existing data sources that categorize patents or clinical
trials do not provide information on an invention’s detailed economic attributes. Extracting
this information requires going deeper into an invention’s details. Second, linking procurement
environments to the specific attributes on which inventors focus requires analyzing settings
across which those environments exhibit variation.

To gain insight into how inventors advanced the frontier of prosthetic device technology,
we use machine learning tools to construct a novel data set. We begin by closely reading 1,200
patents from the periods surrounding the U.S. Civil War and World War I. Our selection comprises
prosthetic device patents and patents from other medical and mechanical technology classes.
Based on these close readings, we code variables describing the economic traits emphasized in
each patent. These variables include three traits that we interpret as production-process attributes,
three traits that capture distinctive dimensions of product quality, and two additional traits that
are less clearly defined as quality or production process traits. We then use machine learning
tools to extend our data set to include a much larger set of patents.

The U.S. Civil War and World War I generated dramatic increases in demand for ar-

tificial limbs, as amputations were remarkably common. The associated public procurement
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environments created incentives that differed across the two wars. Our empirical analysis of
these episodes includes a combination of time series and difference-in-differences methods.
In the time series analysis, we directly examine changes in prosthetic device patents. In the
difference-in-differences analyses, we use patents from other medical and mechanical technology
classes to construct control groups.

Our first result quantifies the effects of the Civil War and World War I on the quantity
of prosthetic device innovation. For several years during these historical episodes, prosthetic
device patenting rose by nearly 100 log points relative to patenting in our control groups. Despite
analyzing only two events, the relative increases in prosthetic device patenting are strongly
statistically distinguishable from zero. Our evidence from patents filed with the U.S. Patent and
Trademark Office (USPTO) is supplemented by patents from the short-lived Confederate patent
office, as well as from the British and Spanish patent authorities. !

For the Civil War period, we have sufficient information to infer an elasticity of innovation
with respect to potential revenues. We estimate an elasticity on the order of one for both patenting
and firm entry; this is higher than typical estimates of long-run elasticities of medical innovation
with respect to long-run changes in market size (Dubois et al. 2015). Innovation may respond
more rapidly to crisis-driven shocks than to standard changes in market size, as Agarwal and
Gaule (2021) have observed in the context of the COVID-19 pandemic.

Second, we find that the demand shock associated with the Civil War generated substantial
effort to reduce the cost of producing prosthetic devices. During the Civil War, the average
prevalence of production process traits doubled in prosthetic device patents but was essentially
flat within other technology classes. There was a far more modest shift towards production
process traits during World War 1. The Civil War era shift towards cost-oriented innovation is
consistent with an important role for procurement incentives. As discussed in section 2.1, the

U.S. government’s Civil War era procurement program involved modest, fixed-price payments

'In the British patent data, we see a large increase in prosthetic device patenting during World War I and no
increase during the U.S. Civil War. Spain participated in neither conflict and the Spanish data exhibit no increase in
prosthetic device patenting.
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to artificial limb manufacturers, which can create strong incentives for innovation to reduce
production costs.? As further suggestive evidence for the role of procurement incentives, we
show that patents for artificial arms, for which profit margins were lower than for artificial legs,
exhibit a more substantial shift in emphasis towards cost reduction during the Civil War.

Third, the prosthetic device patents of the Civil War and World War I diverged with
respect to dimensions of quality. Civil War-era prosthetic device patents exhibit a substantial
increase in emphasis on comfort. By contrast, World War I-era prosthetic device patents
de-emphasize comfort and place greater emphasis on occupation-oriented “appliances.” The
latter shift connects quite directly to the historical narrative, which highlights an emphasis of
governments and medical professionals on the re-employment of veterans with amputated limbs.
Civil War and World War I-era differences in emphasis on comfort are plausibly linked to a World
War I-era shift in choice away from veterans and toward medical professionals. As detailed
below, the historical narrative provides validation for the channels through which the Civil War
and World War I-era procurement environments may have altered these dimensions of inventor
effort.

Our analysis adds to a broad line of research on the effects of potential profits on
innovation. This includes labor economics applications (Acemoglu 1998, Hémous and Olsen
2022) as well as a substantial environmental economics literature summarized by Popp (2010;
2019). In the context of health care, research on the effects of potential profits on innovation has
focused primarily on pharmaceutical innovation (Finkelstein 2004a, Acemoglu and Linn 2004b,

Budish et al. 2015).% Exceptions include analyses of medical equipment and device patenting

2With fixed prices set moderately below baseline costs, for example, sales are not profitable until manufacturers
find ways to reduce production costs. More generally, even when the fixed price exceeds cost, a lower baseline profit
per unit increases the returns to innovating to reduce cost relative to the returns to innovating to increase market
share by increasing quality.

3 Additional papers include Blume-Kohout and Sood (2013a), who find that research on drugs with high Medicare
market shares rose following the introduction of Medicare Part D, Yin (2008), who finds positive effects of the
Orphan Drug Act, Dubois et al. (2015), who find that potential profits affect the number of new molecular entities
that come to market, and Agarwal and Gaule (2021) who study medical innovation in the context of the COVID-19
pandemic.
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by Clemens (2013) and by Galasso and Luo (2017; 2022).* We contribute to this literature by
providing novel evidence on the effects of large demand shocks on prosthetic device innovation.
We additionally provide evidence that innovation may respond more aggressively to crisis-driven
shocks than one would infer on the basis of long-run elasticity estimates.

We also contribute to the literature on medical innovation by applying text analysis
methods to gain insight into innovators’ emphases on cost versus dimensions of product quality.
Analyses of patent texts have become increasingly common in the innovation literature.> We
apply text analysis methods to develop the novel data required to make progress in understanding
whether procurement environments can shape the particular dimensions of the technical frontier
on which inventors focus. Methodologically, we develop several practical insights into best
practice methods for this class of machine learning applications. The substance of our findings
provides evidence that cost-conscious procurement environments can indeed steer medical
innovation in a cost-conscious direction.

The paper proceeds as follows. Section 2.1 provides historical background and section
2.2 summarizes the hypotheses that are motivated by our historical settings. Section 2.3 discusses
our novel data set and section 2.4 our empirical strategy. Section 3.4 presents our results and

section 2.6 concludes.

2.1 Civil War and World War I Demand for Artificial
Limbs

The U.S. Civil War and World War I were both associated with dramatic increases in
demand for prosthetic devices. In this section, we begin by describing the size of these demand
shocks. We then provide background on the relevant systems for rehabilitating veterans and

procuring artificial limbs.

4Clemens (2013) studies medical equipment patenting surrounding the introduction of Medicare. Galasso and
Luo (2017) study the effects of tort reform on medical equipment and device innovation, while Galasso and Luo
(2022) study the effects of liability risks faced by the suppliers of medical implants.

3See, for example, Khoury and Bekkerman (2016), Bergeaud et al. (2017), Iaria et al. (2018), Watzinger and
Schnitzer (2019), Arts et al. (2018), Cockburn et al. (2018).
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2.1.1 The Magnitude of Wartime Demand Shocks

The U.S. Civil War was contested between the armies of the Union and the Confederacy
from April 1861 to May 1865. An estimated 35,000 veterans with amputated limbs survived
the war on the Union side alone (Linker 2011; p. 98). Because the government had not formed
a permanent bureaucracy for addressing veteran health care needs prior to the war, both the
Union and Confederacy implemented ad hoc artificial limb procurement systems as the scope of
need became clear. Wartime production levels (Barnes and Stanton 1866, Hasegawa 2012) far
exceeded pre-war production as documented in the 1860 Census of Manufacturing. In developing
our evidence of the effects of Civil War-era demand on innovation, we draw primarily on patents
filed with the USPTO, but also consider patents filed with the short-lived Confederate patent
office.

World War I produced an estimated 300,000 veterans with amputated limbs worldwide.
Relative to the Civil War, demand associated with 4,000 U.S. veterans was relatively modest.
Because production capacity was low among the European powers and high in the United States,
the U.S.-based artificial limb industry played an important role in satisfying global demand.
Great Britain, for example, which was home to an estimated 41,000 surviving veterans with
amputated limbs (Guyatt 2001; p. 98), invited the largest American prosthetic companies “to set
up workshops at the main amputee center” (Linker 2011; p. 99). In developing our evidence of
the effects of World War I-era demand on innovation, we study patents from both the United

States and Great Britain.

2.1.2 Background on Civil War and WWI-Era Procurement

During the Civil War, the manufacturers of artificial limbs faced a competitive environ-
ment in which they were reimbursed on a “fixed-price” basis. To become eligible for purchase

through the Union’s limb allowance program, artificial limb models had to be certified by a board
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of physicians.® If the board deemed a prototype to be “serviceable,” its manufacturer entered
the list of manufacturers from which soldiers could select the provider of their artificial limb.
Fixed-price reimbursements were set at modest levels relative to manufacturers’ stated costs
from the pre-war period, and balance billing was prohibited (Hasegawa 2012; p. 37-38).”

By World War I, the U.S. had substantively formalized the treatment of veterans with
amputated limbs. This occurred within a broader effort to formalize veterans’ health care. In
addition to being formalized, care for veterans with amputated limbs was mostly centralized at
large facilities, including the recently built Walter Reed Hospital.®

Progressive Era policymakers worried that veterans with amputated limbs would, like
many of their Civil War predecessors, fail to return to gainful employment. A perception of
limbless Civil War veterans “pocketing” their allowances and opting out of the labor force
impacted World War I-era views regarding care and rehabilitation (Linker 2011). As Linker
(2011; p. 13) writes, "The veterans of America’s First World War were expected to become
citizen-workers once their military service was over; they were to make useful lives, not to
languish at the expense of the US Treasury.”

Between the Civil War and World War I, discretion in the choice of artificial limb shifted
from veteran to government. During World War I, veterans underwent extensive rehabilitation
prior to their return to civilian life, including obligatory use of standard-issue prosthetic limbs.
Linker (2011; p. 101) writes that “the OSG [Office of the Surgeon General] forcefully mandated

artificial limb wear, creating legislation that made it virtually impossible for US amputee soldiers

% As Hasegawa (2012) documents, General William Hammond convened a panel of physicians to, in Hammond’s
words, “determine what kind of Artificial Limbs should be adopted for the use of mutilated soldiers.”

"During the latter half of the war, the price for artificial legs was set at $75 (roughly $1,500 in 2018 dollars)
and the price for artificial arms was set at $50. A small number of products were authorized for sale at higher rates
(Hasegawa 2012; p. 40). In such cases, the veteran was responsible for the difference between the approved price
and the government’s allowance of $75 per leg or $50 per arm. These products were meant to be sold at the approved
prices on a fixed rate basis with no balance billing. Hasegawa (2012) documents that a leading manufacturer told
the government his costs were $150 per artificial leg.

8Treatment of veterans with amputated limbs also took place at Letterman hospital in San Francisco. As
Linker (2011; p. 80) writes, “Surgeon General Gorgas designated two general hospitals to become permanent
installations for rehabilitative care: Letterman General Hospital in San Francisco and Walter Reed General Hospital
in Washington. Later in the war, the list of military rehabilitation hospitals would grow to 14, but Letterman and
Walter Reed remained the flagship facilities during and after the war.”
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to be discharged from military service without months of rehabilitation and daily routine artificial
limb wear.” In contrast with the Civil War, demand for artificial limbs was thus shaped to a
significant degree by the veterans’ medical bureaucracy and to a lesser degree by wounded
veterans.

The incentives facing artificial limb manufacturers were shaped by the preferences of
World War I-era medical bureaucracies in both the U.S. and Europe. While we cannot know
the precise criteria each bureaucracy used in their procurement of artificial limbs, the historical
record provides clues regarding approaches to rehabilitation. Medical professionals of the World
War I-era de-emphasized comfort in favor of a strict rehabilitation program. Linker (2011;

p. 109-114) writes, for example:

Once surgical healing had been attained... the ‘toughening’ of the stump by
‘pounding it on a firm surface’ should be "vigorously pursued’... Following stump
pounding exercises, ‘patients usually complained of discomfort’... Another report
stated that when amputees were forced to wear artificial limbs soon after surgery,
they often ‘expressed gratitude when the artificial limb [was] removed.’

In addition to driving a relatively severe program of physical rehabilitation, the desire for social
reintegration spurred an emphasis on re-employment. The British government had similar views
on the importance of rehabilitation and re-employment.” The historical record thus suggests that
World War I-era procurers placed substantial emphasis on artificial limbs’ capacity to restore an

individual’s employability.

2.2 Implications of Wartime Demand Shocks for Innovation

We draw on the historical narrative regarding Civil War and World War I-era demand
shocks and procurement environments to develop hypotheses regarding the potential effects of
these events on prosthetic device innovation. The hypotheses motivated by the historical record

are as follows:

9See, for example, the discussions of British World War I-era rehabilitation and artificial limb manufacturing in
Novotny (2017) and Guyatt (2001).
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First, the large demand shocks associated with both the Civil War and World War I
increased incentives for developing novel prosthetic devices. The hypothesis that these demand
shocks would increase flows of innovation is perhaps the most standard hypothesis in the
literature on demand-driven innovation.

Second, the Civil War-era procurement environment featured a low, fixed-price reim-
bursement regime. We hypothesize that this regime may have generated an increase in inventor
emphasis on cost-conscious innovation. This hypothesis is linked in part to the fact that produc-
tion costs must be driven below the reimbursement level before sales become profitable.

Third, we hypothesize that the emphasis of World War I-era procurers on the re-
employment prospects of wounded veterans may have increased inventor emphasis on the
capacity for artificial limbs to enhance their wearer’s social reintegration and employability.
Social reintegration could be facilitated by limbs that more faithfully mimicked the appearance
of a natural limb. Employability could be facilitated by a line of artificial limb technology we
call “appliances.” In this context, the word “appliances” refers to interchangeable artificial limb
attachments which serve functions that connect directly to occupational tasks.

Fourth, we hypothesize that the Civil War-era procurement environment may have
increased inventors’ emphasis on characteristics demanded by veterans, who could choose across
products, while the more centralized World War I-era procurement environment prioritized the
preferences of the veterans’ medical bureaucracy. This final hypothesis has less precise empirical
content than hypotheses one through three. It may be relevant to such traits as an artificial limb’s

comfort and appearance.

2.3 Patent Data and Text Analysis Methods

We begin this section with a discussion of the historical patent data we use to estimate
the effects of wartime demand shocks on overall patent flows. We then discuss the new data we

generated through text analysis (or natural language processing) using a combination of close
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readings and machine learning techniques.

2.3.1 Historical Patent Data

The first question we attempt to answer is if wartime increases in demand for prosthetic
devices increased the rate of prosthetic device patenting. This analysis requires information on
19th and early 20th century patents by technology class. Until relatively recently, the patent data
sets analyzed by economists did not facilitate this type of historical analysis. The groundbreaking
NBER patent database (Hall et al. 2001), for example, begins with patents granted in 1963.
Economists have recently developed databases extending to the earliest surviving records of
the U.S. Patent and Trademark Office (USPTO). To identify historical patents based on their

technology classes, we use the database assembled by Berkes (2018).1°

We supplement these
data with additional data on Confederate patents, British patents, and Spanish patents.!!

One shortcoming of the Civil War era patent data is that, before 1873, patents reported
the date the patent was issued, but not the date it was filed (Berkes 2018). Consequently, we
organize patents according to their date of issuance throughout our analysis. Patents from 1873
onward allow us to gauge the typical lag between patent filing and issuance during the period we
analyze. From 1873 through the end of our World War I sample, the average lag between filing
and issuance was 1.2 years for the full set of technologies we analyze and just over 0.9 years for
prosthetic devices.'> We test whether indexing by patent issuance dates changes our findings
relative to indexing by filing dates using data from the World War I era. We find that the time

series for both our treatment and control classes are shifted forward by roughly one year when

indexed by patent filing year, as shown in panels A and B of Figure B26. This has little influence

19Tn a comparison of several recent efforts to compile data sets on the universe of U.S. patents, Andrews (2019)
concludes that the database laid out in Berkes (2018) is “currently the gold standard.” Additional analyses of 19th
and early 20th century patents, including those by Berkes and Nencka (2019) and Berkes et al. (2019) have been
made possible by these data.

1S4iz (2000) and Siiz et al. (2008) generously provided Spanish patent data.

121n the technology classes we analyze, the average lag between filing and issuance has exceeded three years
during the 21st century. Lags between filing and issuance have thus been much longer in recent years than during
our sample.
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on our reading of the evidence.

Figure 2.1 provides an initial look at time series on prosthetic device patents and other
broad categories of patents during the historical episodes we analyze. The dashed vertical lines in
each panel encompass the years we subsequently associate with war-induced booms in prosthetic
device patenting. It is quite clear from the panels of Figure 2.1 that both the Civil War and
World War I were associated with substantial increases in the rate of prosthetic device patenting
among combatant nations (i.e., the United States during the Civil War and World War I, the
Confederacy during the Civil War, and the United Kingdom during World War I), but not among
non-combatant nations (i.e., the United Kingdom during the U.S. Civil War and Spain during
both the U.S. Civil War and World War I). However, quantifying the causal effect of wartime
demand shocks requires constructing counterfactuals, which we discuss in section 2.4.

There are limitations when using patent counts to measure innovation. Primarily, patent
counts do not necessarily measure changes in meaningful innovation. Thus, during the period
surrounding World War I, we follow standard practice in the literature by using citations as a
proxy for patent quality. As shown in Panel B of Figure B24, the average number of citations
per patent was fairly stable during World War I, suggesting that the prosthetic device patent
boom was associated with patents of similar impact as the pre-war patents. Citation measures
of quality for Civil War patents are less reliable. As described by Berkes (2018), 19th-century
patents have less complete and noisier citation data. Panel A shows that, during the Civil War
period, the sparsity of citation data likely renders this exercise uninformative. To validate the
quality of Civil War era patents, we look to information reported in Tables 2.1 and 2.2, which we
describe below in detail.

Several features of the Civil War period allow us to establish that changes in patenting
connect to real industry responses. The most striking point is that we directly observe the entry
of new manufacturers. Further, as reported in Table 2.1, we are able to establish links from

patents to manufacturers, from manufacturers to sales through May 1866, and from both sales
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and manufacturers to expert assessments of quality.'> Twelve out of the thirteen most notable
manufacturers of artificial legs and eight out of the nine most notable manufacturers of artificial
arms from the Civil War period can be linked to at least one patent. Through May 1866, these
patent-holding manufacturers accounted for nearly all of the artificial legs and nearly 90 percent
of the artificial arms furnished to Union Army veterans. As shown in Table 2.2, contemporaneous
sources reveal a dramatic increase in the number of artificial limb manufacturers, artificial limbs
produced, and the total value of artificial limb output during the U.S. Civil War. Finally, medical
histories document that these episodes were, in fact, episodes of substantial advance in artificial

limb technologies.'*

2.3.2 Coding Patent Attributes

Beyond measuring patent flows, our analysis aims to understand the economic attributes
that are emphasized in each patent. We pursue this to understand how inventors distributed
their efforts across improving aspects of production processes and/or particular dimensions of
each product’s quality. Because the data required for this analysis did not previously exist, we
developed a novel data set.

Our data set contains information that quantifies the economic attributes emphasized in
historical patent documents. To generate this information, we first created a program to scrape
historical patent documents from Google Patents. Using the text of each patent document, we then
coded a set of product and/or production process attributes on which the patent places emphasis.

We describe three of these attributes, namely cost, simplicity, and adjustability, as cost-oriented

13 A limitation of this analysis is that we can only estimate market shares for the 6,075 artificial limbs documented
in Barnes and Stanton (1866). Because this memorandum was submitted on May 11, 1866, it cannot document
market shares for artificial limbs delivered after that time.

14Post- and late-war rankings of artificial limbs by quality further support a link between quality and market share
(Barnes 1865, Houston et al. 1866). The top three rated artificial legs accounted for just under 60 percent of sales
through May 1866, while the top four rated artificial arms accounted for just over 60 percent of sales through May
1866. The highly-rated limbs with low market shares were those developed relatively late during the war, namely
the artificial arms of John Condell and the National Arm and Leg Company. The low market shares we observe for
these limbs in sales through May of 1866 are thus largely mechanical, as they were not on the market when most
of the limb purchases for which we have documentation occurred. Low-rated limbs with non-trivial market share
tended to be either unpatented or to involve pre-war patents, suggesting an incumbency advantage.
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production process traits. That is, these traits involve aspects of a product’s production. We use
the term ““adjustability,” for example, to describe patents that emphasize uniform production of
outputs that can subsequently be fitted (or “adjusted”) to the needs of a specific consumer. Three
traits, namely comfort, appearance, and occupation-oriented appliances, are quality-oriented
attributes. We also code two additional traits, namely materials and durability, that we have not
explicitly labeled as either product or production-process traits.

Table 2.3 presents a concise verbal definition of each economic attribute. The table also
summarizes three important aspects of each attribute related to the quality of the information
we capture with each variable. The first aspect, summarized in column 3, is the strength of
the linkage between each trait and the hypotheses we have generated based on the historical
record (i.e., the hypotheses laid out in section 2.2). The second aspect, summarized in column 4,
is our assessment of the extent to which our text analysis procedure generated a variable that
successfully captures the economic content we sought to capture. The third aspect, summarized in
column 5, is our assessment of the challenges associated with identifying comparison technology
classes to construct control groups for our analysis of a given trait.

How successfully can the variables we generate capture the intended economic content
of patents? A key point regarding this important methodological question is that the difficulty
of identifying economic concepts in text can vary substantially from concept to concept. In the
remainder of this section, we illustrate the underlying issues with a small number of examples.
Appendices B1 and B2 provide substantially more detail.

Some economic concepts are straightforwardly conveyed in text. We found this to be true,
for example, of the traits cost and simplicity. One patent, for example, describes the mechanism
underlying an artificial knee joint as having “great simplicity, and therefore cheapness.” A second
states “The object of my invention is to imitate this eccentric motion of the knee-joint in the
simplest manner.” For both simplicity and cost, there is little difference between the performance
of our close readings, our fully refined machine learning model, and a straightforward keyword

search.
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Other concepts are more inherently difficult to track in text than cost or simplicity.
Tracking the use of new materials, for example, proved difficult because establishing a set of
keywords requires knowing what materials are common and what materials are newly introduced
in manufacturing products in a given technological class. These difficulties are sufficiently severe
that we place little emphasis on our findings for the “materials” trait.

Other traits can capture clear and distinctive technological developments despite being
very specific to a particular technological class. The trait we term “appliances” exemplifies this
third scenario. As illustrated through a set of examples, occupation-oriented “appliances” were
a critical, clearly defined dimension of prosthetic device innovation during World War 1. This
dimension of prosthetic devices, however, does not have a strong analogy in other technology
classes. This fact casts doubt on the potential utility of constructing a control group for analyses
of such a trait, as conveyed by our designation of appliances as “weak’ in column 5 of Table
2.3. For a trait like “appliances,” evidence from simple time series differences may be more

informative than analyses that incorporate counterfactuals based on other technology classes.

2.3.3 Text Analysis

This section provides an overview of the text analysis tools we developed and imple-
mented. Appendix B2 describes these tools in greater detail and underscores several best practices
to consider when generating variables with machine learning algorithms.

Our text analysis methods can be concisely described as the output of a keyword search
that has been informed by domain-specific knowledge and enhanced by machine learning tools.
We developed domain-specific knowledge by closely reading just over 1,200 patent documents.
While reading these patents, we completed two tasks. First, we form the data set to train our
machine learning model by indicating whether each patent has specific attributes. Second, we
construct the initial sets of keywords that we associate with each of the attributes.

The set of closely-read patents (i.e., the “training set”) covers the domains relevant to

our analysis. That is, our training set includes patents from both the prosthetic device class and
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candidate control classes, as well as from both the Civil War and World War I-eras. To achieve
this coverage, we randomly selected our sample of closely-read patents after stratifying across
technology classes and war episodes. As summarized in Table B31, the manually coded data set
contains 195 prosthetic device patents and 399 other medical or mechanical patents from the
Civil War period, as well as 302 prosthetic device patents and 305 other medical or mechanical
patents from the World War I period. "

Our text analysis task faces a common problem of dimensionality. With just over 1,200
patents in our training set, algorithms will perform poorly if we attempt to use every word from
every patent document as an input. We thus implement an approach to limit the algorithm’s
attention to the most relevant words, or “features,” in each patent document’s text.!® The features
we selected are a set of keywords, synonyms, and a small neighborhood of textual context
surrounding the keywords and synonyms (see appendix B2 for more details). We developed
our initial lists of keywords based on our 1,200 closely read patents. We next augment these
keywords with synonyms that appear in similar linguistic contexts, which we selected using
the*“Word2Vec” algorithm (Mikolov et al. 2013). Finally, to aid our algorithm in identifying
context-specific word meanings, we gather a “spread” of contextual words surrounding the
appearance of each keyword. Our augmented set of keywords and their accompanying contextual
“spread” are the features from each patent that we use as inputs into our machine learning model.
After training and validating our model, we use the model to extend our encodings to roughly

750,000 patent texts that span our treatment and control groups.

5The attribute “appliances” is an exception. The relevance of occupation-oriented appliances was drawn to our
attention by a referee in August 2021, which was several years after we completed the close readings underlying
the coding of other traits. Our coding of appliances is thus based on a keyword search that is informed by close
readings of a smaller number of patents.

16This approach, which is called “feature selection,” has been shown to improve the efficiency of predictive
models (Guyon and Elisseeff 2003). The familiar Lasso procedure, for example, limits the number of features in the
model by applying a penalty factor within its objective function.

63



2.3.4 Novel Data Set on Patent Attributes

Our final data set, produced by our machine learning approach, describes the economic
attributes of 745,558 patents, with the earliest coming from 1840 and the latest from 1940. There
are 814 prosthetic device patents, 19,666 other medical patents, and 725,078 mechanical patents.
Our regression analyses focus on samples of our 745,558 patents for which the patent year is in
relatively close proximity to each conflict. These samples extend from 1855 to 1867 and from
1910 to 1922.

Across this large set of patents, appendix Table B33 shows that the economic traits we
coded are only modestly correlated with one another. The primary exceptions are cost and
simplicity. Among prosthetic device patents, cost and simplicity share a correlation of 0.378
with an associated r-squared of 0.142. Similarly, across all patents in our data set these traits
share a correlation of .303 with an associated r-squared of 0.092. Correlations across all other
trait pairs are between -0.12 and 0.13, highlighting that the traits capture independent dimensions

of innovation.

2.4 Empirical Strategy

We now present our specifications for analyzing changes in patenting rates and in the
economic characteristics emphasized in patent documents. After presenting each estimation
framework, we highlight the key challenges we face when attempting to generate causal estimates

of the effects of wartime demand shocks.

2.4.1 Analyzing Patent Counts

We begin by estimating the effects of the Civil War and World War I on patent counts
using the regression equations below. The first is specified as an Ordinary Least Squares model

for predicting the log of patents per year:
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In(Ni.e) = O po(r) + 0 + Br1{War}, x 1{Prosthetic} .+ & (2.4.1)

The second is specified as a Poisson model of patent counts:

E[N; c|Xi] = exp(Ye () + % + Bi11{War}, x 1{Prosthetic} +&.). (2.4.2)

In both equation (2.4.1) and equation (2.4.2), ¢ denotes patent classes, ¢ denotes time (multi-year
time periods for these specifications), and w(¢) denotes war episodes (Civil War and World War
I). N; . denotes the number of patents in class c at time . The specifications include time fixed
effects (o or ;) and episode-by-patent class fixed effects (. ,,(;) Or ¥.(;))- The coefficient of
interest is B;, which is an estimate of the differential change in the patenting rate for prosthetic
devices relative to the control classes during war episodes relative to pre-war periods. The
periods over which the wars influenced prosthetic device patenting are defined to extend from
1862 to 1866 for the Civil War and from 1916 to 1922 for World War 1.

The key challenge in developing causal estimates is to construct control groups that
approximate the counterfactual development of patenting rates for prosthetic devices. Technology
classes might generate inappropriate counterfactuals for a variety of reasons. They might, for
example, be affected by very different sets of scientific developments (e.g., nuclear technology vs.
prosthesis). Alternatively, a plausibly comparable technology class will be a poor control class
if it is directly affected by wars (e.g., firearms) or if it is shaped by spillovers from prosthetic
device innovation.

Our selection of a complementary set of control groups follows the logic of Finkelstein
(2004a), whose analysis of vaccine clinical trials is analogous to our setting in some key respects.
The patents we use to construct control groups come from broad categories of medical and
mechanical innovations. In all analyses, we exclude technology classes for which there was one
or fewer patents per year within the time periods into which we divide the data. Our largest

control group incorporates all medical and mechanical technology classes that meet this criterion.
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We also consider sub-groups chosen to either increase comparability or reduce the likelihood
that the control group contains patent classes that could be directly affected by the wars. Like
Finkelstein (2004a), we also consider data-driven control groups. For our analysis of patent
flows, the data-driven approach selects the control group to match baseline flows of prosthetic

device patents in levels.

2.4.2 Analyzing Patent Traits

Our analysis of the traits emphasized by wartime prosthetic device patents confronts
challenges that differ from the challenges facing our analysis of patent counts. The variables of
interest in this analysis describe the share of patents within a given technology class and time

period that emphasize the characteristic of interest:

# Category Patents with a Trait,,, ;4

Category Trait Share,.,,; =
SO period # Category Patents ,,, ;g

For our analysis of patent traits, it is less clear what might constitute a reasonable control
group. It may simply be less relevant, for example, to worry that the traits emphasized by
prosthetic device patents will shift markedly for reasons unrelated to the wartime demand shocks
on which our analysis focuses. As an initial estimator, this leads us to consider simple time series

changes among prosthetic device patents:

BT = [Prosth. Trait Share,.qysjme — Prosth. Trait Share eyar] (2.4.3)

This is captured by B7% from equation (2.4.3).
We also consider difference-in-differences estimates, which net out changes in the

emphasis on a given trait among the patents within a control group. For analyses of this sort,
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selecting control groups is non-trivial because some traits of interest are only relevant to a small
set of the technology classes within our broadest control group. As shown in Table B32, for
example, this is true of traits including “appearance” and “comfort.” This leads us to select
control groups using several complementary approaches, which include the construction of
synthetic control groups as well as a simple matching procedure.!” We discuss additional aspects
of our application of the synthetic control procedure in Appendix B3. The resulting estimator

takes the form below:

BPP = [Prosth. Trait Share,qime — Prosth. Trait Share peya]

— [Other Trait Share,yqsime — Other Trait Share ,reyar], (2.4.4)

We interpret our findings as being robust if we obtain similar results whether we rely on the
time series variation, as in equation (2.4.3), or any of several plausible difference-in-differences

strategies, as in equation (2.4.4).

2.5 Results

This section presents estimates of equations (2.4.1), (2.4.2), (2.4.3), and (2.4.4). Subsec-
tion 2.5.1 presents estimates of the effects of the Civil War and World War I demand shocks
on flows of prosthetic device patents. Subsection 2.5.2 discusses the magnitudes of our esti-
mates. Subsections 2.5.3 and 2.5.4 present estimates of changes in the attributes emphasized in

prosthetic device patents during the wartime patent booms relative to the pre-war periods.

7"When implementing the synthetic control approach for our Civil War sample, patent flows for many technology
classes were limited, including prosthetic devices. In each of 1858 and 1861, for example, there was a single
prosthetic device patent. The maximum across the pre-Civil War years was seven, which occurred in 1859. The
share of patents emphasizing a given trait is thus highly volatile across the Civil War baseline when expressed at an
annual frequency. Matching year-to-year trends would amount to matching noise. For our baseline method, we thus
match levels and trends in four-year moving averages. As a natural robustness check, we have confirmed that our
results are little changed by matching levels and trends on either three-year moving averages or five-year moving
averages.
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2.5.1 Overall Patent Flows

Table 2.4 presents estimates of equation (2.4.1). The estimates presented across the
columns differ exclusively with respect to the patent classes used as controls. The estimate in
column 1 reveals that wartime changes in prosthetic device patenting were roughly 95 log points
larger than changes in patenting in all other medical or mechanical patent classes. Columns 2
through 7 reveal that this estimate is only moderately sensitive to using subsets of the broader
set of controls. The subsets include other categories matched based on baseline patenting rates
(column 2), other medical categories only (column 3), the “miscellaneous” mechanical classes
(column 4), metalworking mechanical classes (column 5), materials processing mechanical
classes (column 6), and all classes except those that would be plausibly affected by wartime

demand shocks (column 7).!8

The estimates range from 85 log points to 102 log points. Panels
B and C reveal substantial increases in prosthetic device patenting during each war episode, with
economically larger increases occurring during the Civil War than during World War 1.
Appendix B4 provides additional evidence relevant for interpreting these findings. First,
Table B30 presents estimates of the Poisson model described by equation (2.4.2). Second, Figure
B21 presents an “event study” analysis, which provides evidence against the concern that wartime
increases in prosthetic device patenting were driven by pre-existing trends. Third, Figure B22
illustrates why, despite having only two class-by-time period treatment events, the wartime
increases in prosthetic device patenting are nonetheless strongly statistically distinguishable

from zero when we conduct inference using “randomization tests” (Imbens and Rosenbaum

2005). Each observation underlying Figure B22’s histograms represents the change in patenting

80ur restriction of the control group to other medical technology classes (column 3), is similar to the approach
taken by Moser et al. (2014) in their analysis of chemicals patenting. We obtain similar, though modestly smaller,
results when further narrowing our control group to the sub-category “Miscellaneous-Drugs and Medicine,” which
also contains Prosthesis innovation. This sub-category is quite small during these periods, however, as it comprises
only two other classes, namely “Optics: Eye Examining, Vision Testing and Correcting” and “Dentistry.” A further
issue facing this approach to selecting control classes is that optics and dentistry are medical categories for which it
is plausible that the Civil War and World War I may have had a direct effect. This may contribute to why we obtain
moderately smaller point estimates when using these control classes rather than a broader control group. For details,
we refer readers to the descriptions of the technology classes that are available on the website for the NBER patent
database: http://www.nber.org/patents/.
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in a patent class in our broadest control group. The dashed vertical lines are placed at the
value of the change for prosthetic devices. In the Civil War histogram (Panel A), the change in
prosthetic device patenting is the rightmost point in the distribution; this underlies the uniformly
low p-values in Panel B of Table 2.4. The change during World War I is quite close to the right
end of the distribution (Panel B). Figure B23 presents the results of the randomization inference

procedures we implement, which are described in greater detail in the appendix.

2.5.2 Interpreting Magnitudes

The estimates in Tables 2.4 and B30 capture the short-run responsiveness of patent flows
to large shocks to market size. The magnitudes of both the shock and industry response are more
readily translated into elasticities in the context of the Civil War than in the context of World War
I.1° Between data from Barnes and Stanton (1866), Hasegawa (2012), and the 1860 Census of
Manufacturers, we can infer that the Civil War elevated annual revenues across the artificial limb
industry by an average of roughly 100 log points over four years.? The estimates in Panel B of
Table 2.4 thus suggest that, during the Civil War, the elasticity of short-to-medium run patenting
with respect to the short-to-medium run shock to potential revenues was slightly greater than
1. We can similarly infer an elasticity of firm entry with respect to the Civil War era demand
shock. As reported in Table 2.2, there were five artificial limb manufacturers in the 1860 Census
of Manufacturing, and at least 17 manufacturers in 1865, implying an increase of at least 120

log points. This implies an elasticity of firm entry of greater than 1. These elasticity estimates

91t is less feasible to infer elasticities for the World War I period due to a combination of conceptual hurdles
and data limitations. The key conceptual hurdle is that the conflict’s global nature makes it difficult to infer the
precise markets to which the firms who were patenting with the USPTO were responding. The key data limitation is
that we lack sources on the number of manufacturers either during or preceding the war. In the 1910 Census of
Manufacturing, for example, artificial limb manufacturers have been merged with a broader category including
surgical appliances.

20From the 1860 census of manufacturers, we know that the value of the industry’s output was roughly $53,000
in 1859. From Barnes and Stanton (1866), we know that over the first four years of the Union Army’s artificial
limb program, an average of roughly $91,000 in artificial limbs were procured. Viewing this as an increase over
baseline demand from causes outside of the war, we estimate a 100 log point increase by comparing /n(53,000)
to In(53,000 +91,000). The increase in units sold exceeded the increase in revenues because the Civil War limb
allowances were substantially lower than pre-war prices.
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are larger than typical estimates of the long-run effects of potential market size on innovation,
as discussed by Dubois et al. (2015). Consistent with recent findings from Agarwal and Gaule
(2021), who analyze the COVID-19 context, we find relatively sharp short-run responses of
innovation to crisis-driven demand shocks.

Interestingly, wartime booms in prosthetic device patenting were not sustained over
the long run. This might initially seem puzzling, given that the government’s commitment to
providing limbs was ongoing. Historical context provides evidence, however, that sustained
demand for U.S.-manufactured prosthetic limbs was short-lived during both episodes. Following
World War I, demand for U.S.-manufactured devices was short-lived because the European
powers made conscious efforts to develop their own prosthetic device industries. By 1920,
moreover, veterans with amputated limbs in Germany, Canada, and the United States were
documented to prefer adapting to life without a prosthetic (Linker 2011; p. 114,118). The same
was true following the Civil War; an overwhelming majority of Union veterans chose cash
over replacement artificial limbs when they were given that choice during the post-war years.?!
Substantial demand for replacement limbs thus may not have materialized. In both settings,

the preference for cash over replacement limbs is suggestive that, contemporaneous innovation

notwithstanding, quality remained low in an absolute sense.

2.5.3 Traits of Wartime Prosthetic Device Patents

We now turn to estimating the effects of wartime procurement on the economic character-
istics of prosthetic device patents. Our estimates of equations (2.4.3) and (2.4.4) are presented in

Table 2.5, while the underlying time series are presented in Figures 2.2 and 2.3, with additional

210ver the decades immediately following the Civil War, the U.S. government provided allowances for the regular
replacement of artificial limbs. Notably, veterans were allowed to choose between a replacement limb and cash,
which was referred to as a commutation payment (Hasegawa 2012; p. 76). Statistics from annual reports of the
army’s Surgeon General reveal that veterans overwhelmingly preferred cash; from 1870 to 1891, “arm amputees
chose a new device over commutation only 1.4 percent of the time, and leg amputees selected a new leg 21.9 percent
of the time” (Hasegawa 2012; p. 76). This suggests, perhaps unsurprisingly, that quality was low in an absolute
sense. The shock to artificial limb purchases was thus a pronounced shock spanning a period of four to five years.
Our estimates will thus tend to capture the short-to-medium response of industry to a large but temporary shock to
demand.
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detail in Appendix Figures B27, B28, B29, B30, and B31. Several facts of interest emerge from
this analysis.

We find that the Civil War was associated with across-the-board increases in emphasis
on our cost-oriented production process traits. The average across these traits (namely “cost,”
“simplicity,” and ““adjustability’’) more than doubled from a base of 0.16, as shown in Figure 2.2.
This estimate is statistically distinguishable from zero at the 0.01 level using either the simple
time series or synthetic control estimator, as it is a true outlier relative to the distribution of
randomization test outcomes. In contrast, the average across cost-oriented production process
traits moved quite modestly during World War I. While both periods ushered in substantial
increases in emphasis on adjustability, Civil War-era prosthetic device patents also exhibit
economically substantial shifts towards emphases on “cost,” and “simplicity” as shown in Figure
2.3. Changes in the latter two traits were relatively modest during the World War I episode, as
can be seen in Appendix Figure B28. This contrast is plausibly linked to procurement incentives,
as the low, fixed-price reimbursements of the Civil War period created strong incentives for
innovation to reduce costs. While we do not know the precise details of World War I procurement
arrangements for artificial limbs, cost-plus contracts, which blunt incentives for innovation to
reduce costs, were “the most common type of contract” during that period (Graske 1941; p. 17).%

A comparison between patents for artificial arms and legs provides an additional, sugges-
tive piece of evidence that the emphasis of Civil War era prosthetic device patents on production
processes can be linked to the Union’s procurement policy. The government’s procurement
arrangement, namely fixed-price reimbursement of $50 per arm and $75 per leg (roughly $1,000
and $1,500 in 2018 dollars), created a strong incentive for cost-oriented production process
innovation because these payments were modest relative to manufacturers’ costs. Cost data

from the 1860 manufacturing census indicates that payments for artificial arms implied a lower

charge-to-cost ratio than for artificial legs (roughly 2/3 vs. 3/4), creating an even greater incentive

22Withrow Jr (1942) links the predominance of cost-plus contracts during the World War I-era to the reluctance
of firms to submit bids on a fixed-price basis given the risks associated with rapidly rising prices for raw materials.
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for cost-reducing innovation. As shown in Figure B25, patents for artificial arms did indeed
exhibit a more dramatic increase in their emphasis on production process improvements, and in
particular on cost reduction, in comparison with patents for artificial legs.

An alternative possibility is that the emphasis of Civil War era artificial limb patents on
the production process might simply have reflected the industry’s natural trajectory. That is, if
artificial limbs were a “new” technology during the pre-war period, a surge in production-process
innovation might naturally be expected. This is not plausible, however, as the pre-war state-of-
the-art technology had existed for quite some time. Patents held by Benjamin Franklin Palmer,
the pre-war artificial limb industry’s leading manufacturer, extended back to 1846. Throughout
the 1850s, the rate of production process innovation evolved quite smoothly for artificial limb
patents as well as for patents in our control groups. The early-1860s spike in production process
innovation for artificial limbs is a distinctive break from this pattern.

We next consider dimensions of quality, for which two findings are both empirically
robust and connect directly to historical narratives. First, both our simple time series and
synthetic control estimators provide evidence that World War I-era patents exhibit an increase
in emphasis on occupation-oriented appliances (see Table 2.5 and Figure 2.3). This finding
has a strong connection to the historical records regarding both the intentions of World War
I-era artificial limb procurement and the specific technologies to which this period’s patents
gave rise. Regarding the specific technologies, these “appliances” involved interchangeable,
occupation-oriented attachments like the hammer, welding, and woodwork oriented attachments
shown in Figures B4, BS, and B6 in appendix B1. Notably, as shown in column 5 of Table
2.5, British World War I-era patents offer a strong piece of supplemental evidence that the
demand associated with employment-oriented rehabilitation programs generated increases in
emphasis on occupation-oriented appliances. This is relevant in part because the shift towards
occupation-oriented appliances in the U.S. patents is, despite representing a substantial increase
in percent terms, not an outlier within the relevant placebo distribution and is thus on the margins

of statistical significance.
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Second, both our simple time series and synthetic control estimators yield strong evidence
that Civil War-era prosthetic device patents exhibit a substantial increase in emphasis on comfort
(see Table 2.5 and Figure 2.3). By contrast, World War I-era prosthetic device patents de-
emphasized comfort (see Table 2.5 and Figure 2.3). These findings are plausibly linked to shifts
in demand, which came directly from veterans during the Civil War and from the veterans’
medical bureaucracy during World War 1. Of course, such a difference in innovation across wars
may reflect a variety of factors aside from those that we identify. The historical record, however,
as discussed in section 2.1, suggests that the World War I-era medical bureaucracy played a heavy
hand. Our findings for this period are very much in line with the bureaucracy’s de-emphasis
on the veteran’s comfort and emphasis on social and labor market reintegration. As with our
evidence on occupation-oriented appliances, British patents offer supplemental evidence on the

decrease in emphasis on comfort during the World War I period.

2.5.4 Robustness of Analysis of Patent Traits

In section 2.4, we discussed the challenges underlying the construction of control groups
in our analysis of the product and production process traits emphasized in patent documents.
These challenges motivated our presentation of both a simple time series estimator and a synthetic
control estimator in Table 2.5. In this section, we present an additional robustness analysis in
which we deploy a range of alternative procedures for constructing control groups. Tables B34,
B35, B36, and B37 present difference-in-differences estimates using the following approaches:
Table B34 relies exclusively on our full sample of 1,200 manually coded patents; Table B35 uses
the full sample of patents as coded using our machine learning model; Table B36 restricts the
control group to medical patent classes; finally, Table B37 selects control groups using a simple

“caliper” matching procedure.?

BIn yet another robustness check, we have constructed synthetic controls from a sample of medical and
mechanical technology classes that excludes all classes that might be directly affected by wars. In addition to classes
involving firearms and ammunition, we exclude surgery, classes with plausible linkages to military uniforms (e.g.,
boot and shoe making, buckles, etc.) camp equipment (e.g., tents), and several others. Excluding these technology
classes from the set of potential “donors” to our synthetic control groups has very little effect on our estimates.
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The results we have emphasized throughout are findings that are robust to deploying this
full set of strategies for constructing control groups, as well as to relying exclusively on the time
series change in the emphases of prosthetic device patents as in equation (2.4.3). These include
our findings on the Civil War-era increase in emphasis on production process innovation, the
Civil War-era increase in emphasis on comfort, the World War I-era decrease in emphasis on
comfort, and the World War I-era increase in emphasis on occupation-oriented appliances. In
each of these cases, our estimates are robust across the full range of strategies for constructing
control groups and imply large percent changes in emphasis on the trait in percent terms.

In contrast with the robust evidence on the findings discussed above, our evidence on
appearance and durability illustrate methodological challenges in the analysis of patent texts.
The estimates in Tables 2.5, B34, B35, B36, and B37 reveal that our estimates for appearance
and durability, and to a lesser extent materials, are sensitive to whether we look to the simple
time series change, use the full set of candidate controls, or use a data-driven control group. As
we discuss in greater detail in appendices B1 and B2, these traits pose challenges with respect
to both the construction of control groups and the implementation of text analysis methods.
Consequently, we interpret our evidence on appearance, durability, and materials as weak. Our
conclusions thus emphasize the traits for which our evidence is robust and for which we have

greatest confidence in the output from our text analysis methods.

2.6 Discussion and Conclusion

Our analysis of Civil War and World War I-era prosthetic device patenting yields several
findings of potential interest. First, we find that wartime procurement programs were associated
with large increases in the volume of prosthetic device patents. We thus add to an existing body
of evidence that finds that innovation can respond quite strongly to changes in demand.

Second, we find that cost-conscious production process innovation increased substantially

during the Civil War. This highlights the potential relevance of the Civil War period’s procurement

74



model, which involved fixed-price reimbursement at modest rates. Experts observe that modern
medical innovations have tended to bring costly enhancements to quality rather than cost-
conscious improvements in productivity (Chandra and Skinner 2012, Skinner 2013). Our findings
provide a useful counter-example to this tendency. Demand shocks coupled with cost-conscious
payment models can steer innovation in a cost-conscious direction.

Third, we find that the prosthetic device patents of the Civil War and World War I episodes
diverged with respect to dimensions of quality. Civil War-era prosthetic device patents exhibited
an increase in emphasis on comfort. By contrast, World War I-era prosthetic device patents
de-emphasized comfort and emphasized occupation-oriented “appliances.” These differences
are plausibly linked to a World War I-era shift in choice away from veterans and towards
medical professionals. This shift was associated, in turn, with a heightened emphasis on veteran
rehabilitation and re-employment. As a caveat, we note these differences between Civil War
and World War I-era prosthetic device innovations may stem from several factors that would be
difficult to empirically disentangle.

A caveat accompanying our analysis relates to the limitations of text analysis. As
discussed in appendix B2, seemingly modest reductions in the accuracy of our text analysis
models can substantially attenuate our estimates of the effects of wartime procurement on the
direction of prosthetic device innovation. While the accuracy of our models is generally quite
high, it varies across the variables we construct. Moderately lower accuracy warrants caution,
for example, in interpreting our analysis of the traits we term “materials” and “durability.”
Further, we highlight a key difference between dimensions of product quality and aspects of the
production process. Dimensions of product quality can be highly context-specific, which makes
it difficult to select control groups. Consequently, we have more confidence in our analyses
of attributes that relate to the production process than in our analyses of attributes that capture
dimensions of quality. For researchers who desire to apply similar text analysis tools in other
settings, we provide a set of best-practice insights to help guide the development and evaluation

of text analysis models.
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Readers may also wonder about the rapid pace with which both the patent counts and
their emphases evolved during the historical episodes we analyze. An anecdote may help to
confirm that the responses we track are real. James Hanger, a renowned prosthetic limb inventor,
is documented to have invented and produced a prosthetic limb within six months of being
injured during the Civil War’s initial skirmishes. Hanger’s invention entailed improvements to
both function and comfort. Hanger, Inc., the company he subsequently founded, remains in
operation today. Beyond this anecdote, the tendency for large shocks to generate rapid innovative
responses has been observed elsewhere. Hanlon (2015) finds, for example, that the British textile
industry responded quite rapidly to the Civil War’s impact on its supply chains. More recently,
Agarwal and Gaule (2021) find that the COVID-19 pandemic has had a much greater and more
rapid impact on innovation than long-run elasticity estimates would lead one to predict.

We conclude by reflecting on the role of innovation in enabling individuals and societies
to respond to large and negative health shocks. Both wars and pandemics can have dramatic
effects on the need and demand for medical innovations. Our analysis adds to a body of research
on how innovation responds to these societal needs. While the overall consequences of wars and
pandemics are devastating, the evidence reveals how their adverse effects can be blunted by the

ingenuity of inventors and entrepreneurs.
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Table 2.2. Facts on Industry Response Surrounding the Civil War. Note: Data for 1865 come from
Barnes and Stanton (1866) and Hasegawa (2012). Other years come from Census of Manufacturing
tabulations. Patent dates come from Berkes (2018).

(1859) (1865) (1869)
Manufacturing Establishments 5 > 17 24
Artificial Limb Output ~ 350 > 3,461 ~ 1,000-2,000
Value of Output $53,000 > $223,550 $160,416
Patents in Surrounding 5 Years 15 87 27
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Table 2.5. Changes in the Nature of Prosthetic Device Patents. Note: The table presents estimates of
the effect of wartime procurement arrangements on the fraction of prosthetic device patents that
emphasize a given economic trait. Estimates in columns labeled “Simple Diffs” are of beta-TS from
equation (3), while estimates in columns labeled “Synth Estimate” are estimates of beta-DD from
equation (2.4.4), where the control group is constructed separately for each trait using the synthetic
control procedure described in greater detail in the main text. One-sided p-values are presented in
parentheses beneath each point estimate, and two-sided p-values are presented in brackets. In several
instances (including Civil War era production process innovation, WWI era de-emphasis on comfort,
and WWI era emphasis on employment-enhancing “appliances”), the historical narrative delivers
strong one-sided predictions for the evolution of prosthetic device patents. All p-values are generated
using randomization inference (Imbens and Rosenbaum 2005), which in this application involves
straightforwardly ranking the point estimate for the prosthetic device technology class against the
“placebo” point estimates associated with the other technology classes in our sample.

(L 2 3 4) )] (6)
US Civil War US WWI GB WWI Notes
Simple Synth Simple Synth Simple

Diffs Estimate Diffs Estimate Diffs

Panel A: Aggregated Traits

Production Average 0.187 0.190 0.074 0.038 0.124 Strong Civil War
(0.000)  (0.000) | (0.008)  (0.049) Narrative (+)
[0.000]  [0.000] | [0.016] [0.098]

User Average 0.006 0.036 -0.007 0.019 -0.109

(0.330)  (0.054) | (0.139)  (0.115)
[0.660] [0.108] | [0.279]  [0.230]

Panel B: Individual Traits

Cost 0.152  0.141 | 0079  0.050 0.028 | Strong Civil War
(0.032)  (0.054) | (0.074)  (0.066) Narrative (+)
[0.064] [0.109] | [0.148] [0.131]

Simplicity 0238  0.195 | 0043  -0.001 0.226 | Strong Civil War
(0.032) (0.011) | (0.254) (0.557) Narrative (+)
[0.064] [0.022] | [0.508]  [0.990]

Adjustability 0.171 0076 | 0.099  0.116 0.118

(0.000)  (0.143) | (0.016)  (0.008)
[0.000] [0.286] | [0.033] [0.017]

Appliances 0.049 NA 0.065 0.038 0.112 Strong WWI
(0.106) (0.049)  (0.066) Narrative (+)
[0.213] [0.098] [0.131]

Comfort 0.150 0.303 -0.119 -0.116 -0.230 Strong WWI (-)
(0.032)  (0.016) | (0.000)  (0.000) and Civil War (+)
[0.064] [0.033] | [0.000] [0.000] Narratives

Appearance -0.182 0.078 0.033 0.068 -0.209

(0.043)  (0.037) | (0.107)  (0.008)
[0.085] [0.074] | [0.213] [0.016]

Durability 0.016  0.149 | 0064  0.025 0.102
(0.372)  (0.083) | (0.041) (0.172)
[0.745]  [0.167] | [0.082]  [0.344]

Materials 0.026  0.035 | 0.008 -0.005  -0.050
(0.138)  (0.104) | (0.328)  (0.496)
[0.277]  [0.209] | [0.656]  [0.990]
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Chapter 3

The Dynamics of Health Care Price Re-
form

Governments play a significant role in health care markets. The US government’s
Medicare health insurance program is a key example, accounting for 21% of national health care
spending (Cubanski and Neuman 2023). However, the program’s high and rising expenses have
prompted policymakers to focus on identifying measures to control costs (Arad and McClellan
2022, Navathe et al. 2020). Among the prominent solutions is price reform, which aims to
lower health care prices through price ceilings, negotiations, or competitive bidding (Frank and
Nichols 2019, Ji 2023). While these reforms can reduce government expenditures in the short
run (Ji 2023), there is limited evidence of their long-term consequences, which are important
to understand given the government’s significant role in these markets. For instance, price
regulation could change the profitability of innovating in affected markets, influence the direction
of innovation, alter how firms structure supply chains, and affect the quality of products being
produced. These potential consequences pose a critical challenge in designing health insurance
programs and broader procurement policies: how can we strike a balance between cost savings
for patients and taxpayers while mitigating potential adverse impacts on innovation, product
quality, and market structure?

In this study, we explore the impact of price regulation on innovation, product quality,

and market structure. We focus on the medical device sector, characterized by substantial
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research and development (R&D) activity, a wide range of differentiated products, and intricate
global supply chains, allowing us to study the effects of price reform on a diverse range of
outcomes. Specifically, we focus on durable medical equipment (DME), which are medical
devices prescribed for home use, such as insulin pumps, oxygen tanks, and wheelchairs. We
investigate the impact of price regulation by leveraging a series of price reforms enacted by the
Centers for Medicare and Medicaid Services (CMS). These reforms lowered the Medicare prices
paid by 45% for certain DME categories in the largest metropolitan statistical areas (MSAS).
By 2019, these reforms cut the total Medicare expenditures for these categories by two-thirds
compared to unaffected categories.!

To identify the impact of price reform policies, we compared outcomes in DME categories
affected by the reform to those that remained unaffected. We employed a stacked difference-
in-differences strategy to account for the reforms affecting additional categories over time. As
a potential source of endogeneity, CMS chose categories for reform based primarily on pre-
reform Medicare expenditures. Despite expenditure differences between affected and unaffected
categories, there were no divergent pre-existing trends in the outcomes studied among affected
categories relative to unaffected ones. Further, we also leverage within-category variation in
the extent to which firms were exposed to price reform by comparing firms with a larger share
of their product portfolio within treated categories to those with smaller shares. The firm-level
results were consistent with those at the category level, providing further support for our findings.

Our analysis makes use of multiple administrative data sets to capture the multifaceted
effects of price reform on various outcomes. These data sources include global patent data,
FDA device submissions, FDA adverse events reports, Medicare fee schedules, Medicare claims,
and novel data on Medicare-contracted device suppliers and manufacturers. By combining
these diverse data sets, we construct three sets of outcomes to examine the long-run market
dynamics following the price reform: quantity and direction of innovation, market structure and

supply-chain reactions, and product quality.

! Authors’ analysis of the Medicare claims data.
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Our first set of results shows a decrease in innovation and a shift in the direction of
innovation following the DME price reform. We define two measures of innovation: the number
of new device submissions to the FDA for approval and the number of (US and foreign) patents
filed in DME categories. We estimate a statistically significant decline in FDA submissions by
22% in DME categories affected by the reform, with a similar, albeit not statistically significant,
decrease of 29% in the number of patents filed. Focusing on firms whose existing product
portfolios were affected by the reform, we find that those with above-median exposure to the
price reform were 29% less likely to file for new patents in the affected categories, a statistically
significant reduction. In contrast, patenting activity in unaffected categories remained unchanged.

The results also show that firms most affected by the price reform increased their emphasis
on cost-cutting innovations following reform. Specifically, we define patents as “product” and
“process” innovations following Bena and Simintzi (2022). Following the price reform, we
find that firms shifted towards “process” innovations, which involve pioneering new methods to
improve the production process and reduce production costs, as opposed to “product” innovations
like introducing a new product feature. We find a statistically significant 32% increase in the
share of patents focusing on process innovations and a statistically significant 15% decrease in
the share of patents focusing on product innovation among these most-affected firms relative to
those less affected.

Our second set of results reveals a reduced rate of entry by manufacturers and an
increase in offshoring the production process following the price reform. Specifically, we find a
statistically significant 25% reduction in the number of new entrants into the affected product
categories, driven by a 47% reduction in entry by US manufacturers, and a smaller (albeit
statistically insignificant) 8% increase in entry by foreign manufacturers. The diverging trends in
entry between US and foreign manufacturers may reflect their differential comparative advantages
in production, with the latter being more favored in an increasingly cost-conscious environment
created by the price reform. Furthermore, manufacturers responded to the price reform by

shifting their production overseas. Among manufacturers still operating in affected markets, the
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number of firms outsourcing manufacturing to other companies increased by 50%, although the
estimate is not statistically significant. However, there was a statistically significant increase of
65% in the number of firms outsourcing production to foreign manufacturers, suggesting that
firms adapted to lower prices by leveraging foreign supply chains to cut production costs. These
results suggest a shift towards global supply chains and a change in the composition of products
sold in the US, with an increasing proportion manufactured by foreign firms.

Our third set of outcomes explores changes in product quality following price reform. We
find that these cost-cutting strategies are associated with a decline in product quality, evidenced
by increased device repairs and reported adverse events. Our analysis of Medicare claims data
suggests a 100% increase in the repair rate for affected DME among Medicare beneficiaries,
resulting in an estimated additional 700,000 repairs per year for Medicare. Furthermore, our
analysis of FDA adverse event reports> suggests a 233% increase in adverse events reported for
affected DME categories, despite decreasing utilization (Ji 2023). Notably, adverse event reports
increased most significantly for products manufactured by foreign companies and contractors,
suggesting that either the utilization of foreign-made DME increased to such an extent that
it resulted in a substantial rise in adverse events or that foreign-made DME, especially DME
outsourced to foreign manufacturers, was more prone to quality issues.

Our paper contributes to several literatures. First, we add to research on the relationship
between market profitability and medical innovation, which has largely focused on the pharma-
ceutical sector. Although previous studies have shown that expansions in market size lead to
large increases in R&D (Acemoglu and Linn 2004a, Blume-Kohout and Sood 2013b, Finkelstein
20044a), there is limited empirical evidence on the effects of price reform.? Our research aims

to fill this gap, which has been made especially important by recent provisions in the Inflation

2CMS increased its surveillance of affected DME categories after price reform, which may have affected the
reporting rate of adverse events. Thus, the adverse event outcomes are suggestive. However, results from our
claims-based repair rates — which are not directly monitored by CMS — corroborate our adverse event results,
strengthening our conclusions drawn from this data.

3Existing evidence is limited to theoretical (Filson 2012), simulation-based (Abbott and Vernon 2007, and
correlational (Giaccotto et al. 2005, Civan and Maloney 2009) studies. See Philipson and Durie (2021) for a
comprehensive review.
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Reduction Act that allow CMS to set price ceilings on certain types of drugs by 2026. To our
knowledge, our study is the first to measure the effects of health care price reform on innovation
using quasi-exogenous variation in price reform policy and the first to examine its effects on
product quality, the direction of innovation, and market structure.

Furthermore, our paper contributes to the literature on regulatory tools that affect inno-
vation. Prior research has examined the impact of patent protection (Budish et al. 2015), entry
regulation (Rogers 2023, Grennan and Town 2020b), and tort reforms (Galasso and Luo 2017)
on innovation. We extend this work by examining the effects of price regulation on innovation
and related outcomes.

Lastly, our paper also adds to the literature on procurement policy and innovation (Che et
al. 2021, Slavtchev and Wiederhold 2016, Cozzi and Impullitti 2010). We show that procurement
price can influence innovation and the flow of trade in a globalized economy, a theoretical insight
first pioneered by McAfee and McMillan (1989). Our results indicate that low and uniform
prices can cut expenditures but lead to offshoring and potentially lower-quality products. Our
study provides unique insights into procurement policy within the large and growing medical
device industry. Most closely related, Clemens and Rogers (2020) find that low, fixed-price
payments for medical technologies lead to cost-cutting innovations. We find similar results by
analyzing quasi-exogenous reforms to procurement policy, holding fixed time-varying factors
rather than relying on comparisons across wartime eras. Our findings contribute to this research
by suggesting that stringent procurement policies steer innovators toward cost-cutting process
innovations and away from product innovation.

This paper is organized as follows: section 3.1 provides background, section 3.2 describes
our data, section 3.3 detail our empirical strategy, section 3.4 presents our results, and section

3.5 concludes.
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3.1 Setting
3.1.1 Medical Devices and Durable Medical Equipment

Medical devices are instruments or apparatuses intended for the diagnosis, treatment, or
prevention of disease. Unlike pharmaceutical drugs, medical devices do not achieve their function
through chemical action.* Medical devices cover a wide range of products. These include
diagnostic devices, such as X-ray machines and electrocardiography (ECG) machines, therapeutic
devices like infusion pumps, prosthetics such as prosthetic limbs and dentures, implants like
pacemakers and stents, and assistive devices like mobility scooters and communication aids.

Medical devices are regulated by the US Food and Drug Administration (FDA) through
both pre-market approval processes and post-market surveillance. In general, medical devices
are classified into one of three categories based on their level of risk: Class I (low-risk), Class
II (moderate-risk), and Class III (high-risk). Most Class III devices are subject to pre-market
approval (PMA), which requires the manufacturer to provide data demonstrating the device’s
safety and effectiveness. Most Class II devices are subject to either PMA or pre-market notifi-
cation, known as 510(k), which requires the manufacturer to demonstrate that a new device is
substantially equivalent to a previously approved device. Class I devices are generally exempt
from either PMA or 510(k), but must be registered with the FDA.?

Durable medical equipment (DME) is a category of medical devices designed for home
use. These items aid in the recovery process after inpatient hospitalization or facilitate the
management of ongoing illnesses. Examples of DME include wheelchairs, glucose monitors,

oxygen concentrators, and nebulizers. DME can be Class I, 11, or III.

“https://www.fda.gov/media/131268/download
Shttps://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/overview-device-
regulation
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3.1.2 Medicare Reform of Payments for Durable Medical Equipment

Medicare, the federal health insurance program for patients aged 65 and above, covers
DME under Part B of the program. Historically, Medicare reimbursed for DME based on fee
schedules set by CMS, which were largely tied to list prices from the late-1980s and inflation-
adjusted over time. In 2006, due to concerns about high prices in the DME sector, Medicare
announced a reform that would replace these fee schedules with prices determined through
supplier auctions. The reform was initially implemented in nine metropolitan statistical areas
(MSAs5) in January 2011 and later expanded to an additional 91 MSAs in July 2013, covering
approximately half of total DME spending in these areas.® Ji (2023) finds that the reform led to
an average reduction of 45% in prices, with price reductions observed in all affected product
categories. In 2016, the remaining MSAs also began lowering their prices based on prices
generated by auctions in the first 100 MSAs. As of 2019, 13 product categories were covered by
the price reform, while the remaining 43 product categories continued to follow the existing fee
schedules. Figure 3.1 plots the total Medicare DME payments separately for product categories
that were and were not subject to the price reform. Both sets of products had similar spending
trends up to 2009, but spending in the affected categories declined sharply after that. By the end
of 2019, annual Medicare spending in the affected categories decreased from approximately $4.5
billion to $2 billion, while spending in the unaffected categories continued to increase from $4.5

billion to $6 billion.

3.2 Data and Summary Statistics

We describe the data sets we use, the construction of our baseline sample, and report our

baseline summary statistics.

The original implementation date was January 2009, but CMS postponed the implementation by two years and
instead imposed a one-time 9.5% price reduction for all treatment products in 2009.
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3.2.1 Data
FDA Device Submissions (PMA and 510(k) Databases)

We use two FDA databases on device approvals: the pre-market approval (PMA) database
and the 510(k) database. The PMA database contains information about medical devices that
have undergone a rigorous review process, which typically involves clinical trials and other
extensive testing, to demonstrate their safety and effectiveness. Most Class III devices must
go through the PMA process before they can be sold in the US market. The 510(k) database
contains information about devices that have been deemed substantially equivalent to devices
already on the market, and therefore require a less lengthy review process. Most Class II devices
are required to complete the 510(k) process. Together, the PMA and 510(k) databases capture the
majority of late-stage innovative activity in these device categories. In both data sets, we observe
the universe of FDA device submissions including the submitting company name, device brand
name, product codes and descriptions, and submission and approval dates. For both databases,

we include all submissions between 1996 and 2018.

Dimensions Patent Grants Extract

Dimensions is a comprehensive database that provides detailed information on patents
issued by the United States Patent and Trademark Office (USPTO) and global patent offices
across 100 countries. This database includes essential patent information such as the patent title,
abstract, description, claims, filing date, and approval date, where applicable. To ensure that
we observe close to the universe of patents in our sample years, we restrict our analysis to data
between 1996 and 2016, as the patent submissions can take up to three years or more before they

are publicly posted.

FDA Registration Database
The FDA requires all products sold in the US to be registered in this database. The
variables include the name of the registering establishment, proprietary name of the product,

product code, device classification (I, II or III), establishment type (e.g. manufacturer, contract
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manufacturer, exporter) and the location of the establishment (US state or foreign country). In
principle, these data cover the universe of medical devices (including DME) available for sale in
the US. In practice, the database has two important limitations. First, the data are reported at the
registration event level; for establishments that registered multiple brand names across different
product codes, there was not straightforward way to establish one-to-one correspondence between
the registered brand name and the associated product code. Second, the data do not include
inactive registrations; for example, a firm that registered a given product in 2005 that stopped
selling the product (thus stopped registering in subsequent years) would not be captured in later
years’ data. We address these data issues in two ways. First, we use yearly snapshots from
WayBackMachine for 2009, 2010, 2011, 2013, and 2020 to enhance our sample by capturing
currently inactive registrations. Second, we focus on firm-level events, which we can identify in
the data, rather than device-related events, which we cannot. We record whether the contractors
are US-based or foreign. Nonetheless, due to these data limitations, we restrict the use of the

registration data only to our analysis of firm contracting behavior.

Medicare Data

We use the 100% Traditional Medicare enrollment and claims data from 2009 to 2019,
which encompassed health care claims for all beneficiaries under Traditional Medicare. For
each DME claim, we observe the date of the claim, the HCPCS code, the Medicare price, and
the quantity purchased. We supplement these data with publicly available Medicare DME fee
schedules. We obtained supplier-reported, quarterly data on the manufacturer, model, and make
of DME products sold to Medicare beneficiaries between 2011 and 2019 through a Freedom of

Information Act (FOIA) request.

FDA Adverse Event Reports (MAUDE).
The FDA’s Manufacturer and User Facility Device Experience (MAUDE) database
enables us to measure the safety of medical devices based on adverse event reports from 1992 to

2019. These reports include events such as deaths, hospitalizations, and life-threatening incidents,
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as well as minor events like product breaks, across FDA device types. Following Ensign and

Cohen (2017), we address data and coding issues in the MAUDE database.

3.2.2 Sample and Variable Definitions
DME Category-Level Baseline Sample

We define the set of treatment and control DME product categories based on whether
a product category was ever subject to Medicare price reform during our sample period. We
assigned all FDA device submissions and registrations to either the treatment or control group by
matching the FDA product codes to Medicare DME categories (the level of the treatment). The
match was completed by comparing HCPCS code descriptions within each DME category, DME
category descriptions, and FDA product code descriptions. We construct a data set of unique
device brand names within a device type using text analysis and aggregate them at the DME
category-year level. Using the same method, we also construct a data set of unique manufacturer
names listed in the FDA device submission database within device types and aggregate them
at the DME category-year level to measure firm entry. Our baseline sample includes device
submissions across 18 control DME categories and 8 treated DME categories, with over 3,738
unique device submissions spanning 1996 to 2016. Note that the sample does not include all
DME categories as not all DME requires FDA approval (e.g. Class I devices generally only
require registration), therefore, this measure captures changes in innovation among medium and
high-risk devices.

To complement our FDA submissions measure, we also use patents as an indicator of
DME innovation. Unlike with pharmaceutical drugs, there is no official database that links
devices with their patents, so we create our own using a three-step procedure. First, we compile
a list of keywords and patent classification codes (CPC) that correspond to each DME category
description. Second, we use Digital Science’s Dimensions platform (Hook et al. 2018) to collect
all global patents granted that match those keywords and CPC codes in their text. Third, we

count the annual number of patents filed within each DME category based on the the filing date.
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The result is a panel of yearly patent counts for 51 DME categories from 1996 to 2016, using
a collection of 236,656 global patents related to DME categories, of which over 100,000 are
granted in the US. Patents are a useful complement to FDA device data for several reasons. First,
they capture innovation for Class I devices, which do not need FDA approval and are missing
from our FDA submission data. Second, they enable a straightforward analysis of the quality of
new innovation, using rich textual and citation information. Lastly, an analysis of two different
measures of innovation provides corroborative evidence.

We supplement the patent data with measures of process and product claims made within
a patent document created by Bena and Simintzi (2022) (B&S). To identify process-oriented
innovation, B&S exploit a US patent-specific policy that requires inventors to indicate process-
related claims by beginning the claim with the words “A method for” or “A process for.” B&S
then tag the claims that begin with these words as “process” claims and those that do not as
“non-process.” We consider a patent as primarily process-oriented if it has an above-median share
of process claims.

We measure changes in contractor relationships by identifying the number contractors
registered within a product code in a given year. We then use the crosswalk described above
to aggregate the data at the DME level. Our panel measures the establishment of over 1,500
US-based and 4,100 foreign contractor relationships across 36 control and 13 treated DME
categories.

We measure changes in product quality using Medicare claims and FDA adverse event
data. Using the 100% Medicare claims data for DME, we define a “repair” event as unique claim
lines with repair modifiers (“RT”, “LT”, or “RB”). We define repair rates in each year at the
product category level by dividing the number of repair events with the number of claims for
each product category. Using the FDA MAUDE data, we also count the number of adverse event
reports submitted to the FDA each year within each device type. We then use the crosswalk

above to aggregate adverse event report counts at the DME level.
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Manufacturer-Level Baseline Sample

We focus on firms that manufacture equipment in DME categories affected by price
reform, defined as manufacturers that have either been listed by a Medicare supplier as selling in
one of the affected categories or have registered themselves in an FDA product code correspond-
ing to a DME category before price reform. All firms also must have filed a patent in one of the
affected categories prior to the price reform. We match their names to global patent assignees
using Dimensions. We keep only patents with high similarity scores to firm names, resulting in
486 firms that have patented at least once. We then calculate the share of patents for each firm in
a treated DME category, based on our DME-level patent database constructed above. Figure C1
shows the distribution of the share of patents subject to price reform across firms. We define a
firm as treated if its share is above the median, and assign the year of treatment as the first year
a DME category with the firm’s patent was subject to price reform. We count the number of

patents filed by each firm from 1996 to 2016 to form our firm-level innovation measure.

3.2.3 Summary Statistics

Tables 3.1 and 3.2 provide an overview of the product categories and DME manufacturers
in our study. Table 3.1 presents summary statistics of product innovation and utilization for all
DME categories, categories impacted by the price reform, and categories not impacted by the
reform. We report summary statistics across groups in 2005, a year before the first announcement
of the price reform, and across all sample years from 1996 to 2016. Notably, we observe that
the number of affected categories is roughly one-third of the number of unaffected categories.
However, despite this, Medicare expenditures, users, and FDA device submissions were similar
or higher in affected categories than those of unaffected ones, consistent with Medicare’s intent
to choose the largest markets for price reform.

Table 3.2 presents summary statistics for patent portfolios of DME manufacturers, both
for the year 2005 and the entire sample period. The table shows that the average portfolio

exposure to price reform was 24% for firms filing at least one patent in the affected DME
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categories. Additionally, the distribution of manufacturer patent filings is highly skewed to the
left, with the top quartile of firms filing only one patent per year. As a result of this skewness, the
analysis for our firm-level study mainly focuses on the extensive margin of patenting outcomes,

namely, whether a firm innovates at all in a given year.

3.3 Empirical Strategy

3.3.1 DME Category Analysis

We estimate the effect of the price reform by comparing outcomes for product categories
that were subject to the reform with those that were not subject to the reform during our study
period.

Figure C2 plots the raw trends for our two measures of innovation. Figure C2 (a) shows
the number of PMA and 510(k) over time separately for product categories subject to the price
reform and other product categories. While the former has higher levels of PMA and 510(k)
filing prior to 2010, the gap largely shrinks thereafter. Figure C2 (b) shows analogous trends
for the number of patents filed. Annual patent counts steadily increased for the two groups
at comparable rates up to the early 2010s, when the rate of patent filing plateaus for product
categories affected by the reform.

To empirically quantify the impact of the price reform on our measures of innovation,
we use an event study specification with a stacked regression design. This approach assembles
event-specific panel data for each of the DME categories subject to the reform and all control
DME categories (i.e. categories not subject to the reform). All event-specific panels are then
stacked while allowing unique time and product category fixed effects for each panel. We

estimate the following event study specification:

Yiek = Yik+ Yik+ Z ﬁrl{Reform}Lk X L)+ Eiy k- (3.3.1)
r(if)#—1

where i denotes DME categories, ¢ denotes calendar years, and k denotes price reform
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events. ¥; x and ¥ x denote event-by-DME category fixed effects and event-by-calendar year fixed
effects, respectively. 1{Reform}, is an indicator for whether DME category i in event panel k
is subject to the price reform. I,(; ;) are indicators for years relative to the announcement of the
reform, which are normalized to zero for DME categories not subject to the reform. We define
r(i,t) = 0 as the year Medicare price reforms were announced, since investors and manufacturers
can already respond to the change in expected revenue following the announcement, before the
formal implementation of the reform. The coefficients of interest, 3,’s, quantify the impact of
the price reform on the outcome of interest Y;, ;. Since we have a small number of treated DME
categories (N ' = 13), to achieve reliable inference, we follow Conley and Taber (2011) and use
control group residuals to compute standard errors. The relatively larger size of our control
groups (NY = 38) allows us to reliably estimate standard errors in the presence of relatively few
treated groups.

To summarize the impact over the post-period, we also estimate a pre-post version of the
same specification where we replace the relative year indicators with an indicator for the period
after the price reform has taken place: 1{Post},. Also, since we are estimating the effect over
the entire post-period, we only estimate one reform coefficient 3. The estimating equation is

given by

Yiok = Yik+ Yo+ Pr1{Reform}; , x 1{Post}, ; + & - (3.3.2)
3.3.2 Manufacturer Portfolio Analysis

To explore heterogeneity in impact across manufacturers, we estimate the specifications
analogous to equations (3.3.1) and (3.3.2) at the firm level. That is, we assemble event-specific
panel data for each DME manufacturer subject to the reform and all admissible controls. Specifi-

cally, we estimate the following specification
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Yk ="Yik+YVk+ Z B-1{Above Median Exposure}j’k X Lo(jr) tE€jke (3.3.3)
r(n)#—1
where j denotes manufacturers, ¢ denotes calendar years, and k denotes price reform
events. 1{Above Median Exposure} jx 1s an indicator that the manufacturer’s exposure to the
price reform is above median among all device manufacturers. We define exposure as the share
of a firm’s patent portfolio during the pre-period that is affected by the reform. Other variables
are defined analogously. We define r(i,¢) = 0 as the first year Medicare price reforms were
announced for a DME category that falls into the firm’s portfolio. Our coefficient of interest, f3,’s,
estimate the differential change in the outcome between firms with above- and below- median
exposure.

We also report a pre-post version of the same specification, as shown in equation 3.3.4:

Yj k= 7Yjk+ Yi+ Bi1{Above Median Exposure}jjk X 1{Post},7k + €1 k- (3.3.4)

As with every non-experimental research design, selection into treatment is a primary
concern. Medicare selects DME categories for price reform based on baseline yearly pre-reform
expenditures, which may result in differences between treated and untreated categories. However,
we do not find significant divergent pre-existing trends in the outcomes of interest. Additionally,
we find consistent reductions in innovation following price reform, which, to the extent that
higher expenditure categories have a more rapid innovation trajectory, may lead to upward bias
and more conservative estimates of the treatment effect. Moreover, our firm portfolio analysis
provides additional evidence for the impacts of price reform on innovation, market dynamics,

and product safety using variation at the firm level.
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3.4 Results

In this section, we present our results of estimating equations (3.3.1), (3.3.2), (3.3.3), and
(3.3.4), which capture the static and dynamic effects of price reform at the DME and firm level.
Subsection 3.4.1 details the effects of price reform on innovation, subsection 3.4.2 presents the
effects on supply chain structure and the direction of innovation, and subsection 3.4.3 provides

effects on product safety.

3.4.1 Changes in Innovation

Figure 3.2 displays our event-study estimates of changes in FDA submissions and patent
filings. Panel (a) exhibits a sharp and immediate decline in FDA submissions one year after the
price reform announcement. These effects persist over time and can amount to a statistically
significant 47% decrease in FDA submissions in some years, relative to pre-reform means. Panel
(b) illustrates a slower and steadier decrease in global patenting rates in affected DME categories
relative to those in unaffected categories. As the time progresses, the effects of price reform
become more significant, with estimates five years after the reform announcement growing in
magnitude and significance. The long-run estimates suggest that price reforms lead to 100 fewer
patents per year, representing a 50% reduction relative to the pre-reform mean, although the point
estimates are not statistically significant. We find no significant pre-existing trends in treated
groups relative to control groups.

The differential short-run impact of the price reform on patenting rates and FDA sub-
missions can be explained by the cost structure of developing and commercializing early versus
late-stage technologies. Patents primarily reflect progress in earlier-stage R&D, where firms
incur marginal costs incrementally developing their products. In contrast, FDA submissions
capture products that have been developed but must undergo a costly approval process before
commercialization, with an average cost of $24-$75 million, depending on the approval method

(Makower et al. 2010). As a result, firms may continue to develop existing projects in their
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pipeline and patent them due to the relatively low marginal cost and the potential for profits
outside the US, while finding it unprofitable to clear products with the FDA in the US. Therefore,
panel (b) shows firms continuing to develop existing projects in the short run, which may not
have been profitable to start after the price reform, before these types of projects are eventually
exhausted. Panel (a), on the other hand, reflects firms abandoning existing and potential products
within the US due to the high fixed costs of the approval process, which may outweigh their
potential profits.

Figure 3.3 replicates Figure 3.2 (b) separately for US and foreign firms. Panel (a)
illustrates that the long-run estimates for foreign patent filings are only marginally significant at
times, representing a 42% decrease in patenting. In contrast, Panel (b) shows that the long-run
estimates for patents filed in the US are all significant or marginally significant, indicating a
decline of 50 filings a year, or a 66% decrease relative to the pre-reform mean. This disparity is
consistent with two observations. First, US health policy has substantial implications for global
R&D activity. Second, while both foreign and domestic markets are affected, domestic R&D 1is
more significantly impacted by domestic policy.

Table 3.3 displays our static difference-in-differences estimates. In Panel (a), we observe
a statistically significant 22% drop in FDA submissions across all post-reform periods and firms,
while patent filings decreased by 29%, though not statistically significant. It is worth noting that
these estimates do not account for the likely lag in response time between the implementation
of the policy and its effect on patenting rates due to the lengthy nature of the R&D process, as
described above. Therefore, it is important to examine the impact on patent filing over a longer
horizon.”

Although patenting and FDA submissions are both decreasing in aggregate, we find a
divergence between the number of FDA submissions from US firms and foreign firms. Table 3.3

Panel (a) suggests that the number of FDA submissions from US firms alone decreases by 49%,

"To address this limitation, we plan to estimate short and long-run effects separately in future iterations of this
paper.
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while the number of FDA submissions from foreign firms increases by 54%, both changes are
statistically significant. We also find suggestive evidence that patent filing decreased more for
US firms than for foreign firms, although the estimates are not statistically significant (see table
C38).

It is natural to ask why we observe a decrease in patenting rates among foreign and
domestic firms despite the increase in foreign firm FDA submissions. One possible explanation
is the distinction in what patents and FDA submissions represent. Patents capture changes in the
development of new products or processes, while FDA submissions measure changes in access
to either new or existing products. Foreign firms may not introduce new technologies; rather,
they may submit existing products for FDA approval to exploit their comparative cost advantages
and sell them to US suppliers looking to cut costs. Such incentives would be consistent with an
increase in FDA submissions from foreign firms but a decrease in foreign patenting rates.

Panel (b) of Table 3.3 reports the results of our firm-level analysis. We find that firms most
affected by the price reform experience a significant 10 percentage point drop in the likelihood
of filling a patent in an affected DME category, representing a 29% reduction relative to the less
affected firms. In contrast, these firms do not significantly change their patenting behavior in
unaffected DME categories, and may even slightly increase patenting in these areas (see Figure
C3 for related event studies). We highlight that our firm-level analysis yields similar results to
our DME-level analysis, both pointing to a 29% reduction in our measures of innovation.

In addition to an overall reduction in innovation, the price reform also altered the
direction of innovation. As shown in Table 3.4, companies that were most exposed to price
reform significantly increased their emphasis on process innovations by 32%, measured by a
rise in the share of patents with an above-median number of process claims. Such innovations
focus on new production methods known to reduce production costs (Bena and Simintzi 2022).
In contrast, these firms reduced the share of patents filed focused on product innovations. Our
findings suggest that price reform prompted firms to cut production costs by concentrating on

process innovations. We also find suggestive evidence that, after reform, patents filed by the most
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exposed firms receive 60% more citations than those filed by their less-exposed counterparts
(although this estimate is insignificant). This result suggests that, despite the decrease in patent
filings from exposed firms, they continued to undertake some high-value efforts to differentiate

themselves from their competitors.

3.4.2 Changes in Market Structure

Table 3.5 presents our estimates of the changes in manufacturer entry and outsourcing
resulting from equation (3.3.2). Panel (a) shows that there is a significant decrease in the rate
of new entrants per year into affected DME categories by 25% relative to unaffected ones (see
Figure C4 for the corresponding event study). This decrease is solely driven by a significant
47% drop in domestic entrants, while foreign firm entry rates did not significantly change and
may have even increased slightly by 8%. These results support our earlier results indicating that
foreign firms may capitalize on their cost advantages to compete in the US market by offering
lower-cost products.

As domestic firm entry rates decline and foreign firm entry rates slightly increase over
time, foreign-made products likely become more prevalent in the US DME market. However,
foreign firm and product entry are not the only factors influencing the dominance of foreign-
made products in the US market. Domestic firms may also adapt to price reform by outsourcing
production to low-cost foreign contractors to maintain their position in the market.

Table 3.5 shows that the number of contracted manufacturers increases by 54% in affected
DME categories relative to those unaffected, although not statistically significantly. However, we
observe a statistically significant increase of 65% in foreign contracted manufacturers relative to
the pre-reform mean (see Figure C5 for the corresponding event studies). Our results indicate
that companies operating in affected DME categories are increasing their global presence by
expanding their supply chains across different countries. Even domestic firms, which may face
cost disadvantages alone, utilize low-cost foreign production by contracting with foreign firms.

In summary, we observe an increase in the number of foreign firms entering the US

104



market to compete, possibly due to their comparative advantages. Simultaneously, domestic
firms outsource their production to foreign firms, potentially for the same reason. These results
are consistent with our finding that firms most affected by the price reform increasingly prioritize
process innovation over product innovation, which may further help manufacturers reduce
production costs and offset the effects of price reform. However, an important question is
whether these efforts to outsource production and prioritize process innovation may come at the

expense of product quality, which could have significant implications for consumer welfare.

3.4.3 Changes in Product Quality

To examine the changes in product quality, we analyze the repair rates of DME. Since it
takes time for new products to penetrate the consumer market, and the penetration is likely accel-
erated by the implementation (rather than just the announcement) of price cuts, we adopt later
reference points in our preferred specification. Specifically, in addition to using the announce-
ment dates as we do elsewhere in the paper, we also report results using the implementation date
of the first price cut for each product category to define relative years, which is our preferred
specification. Changes to repair rates likely take time to manifest as suppliers form new contracts
with manufacturers to purchase newer products, and consumers take time to adopt and use
them to the point where they might need repairs. Nonetheless, our results are robust to either
relative year definition. To ensure valid estimation of the changes in the repair rate outcome,
we employed a matching procedure to assign two control DME categories to each affected one.
This approach not only allowed a sufficient number of control groups for reliable inference
using Conley—Taber (i.e., two matched controls instead of one) but also enabled us to select
control groups that were sufficiently similar to the treated groups. Without matching, the average
pre-event repair rates among unaffected DME categories were 30 times higher than those in
affected DME categories, posing challenges for trend comparisons. We note that when we
naively scaled the outcomes of the entire sample of unaffected categories to the outcomes of the

affected categories, we obtained similar results to those generated using our matching procedure.
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We supplement our analysis of repair rates with adverse event rates. Our analysis of
adverse event rates is only suggestive, given contemporaneous changes in CMS surveillance of
DME categories, which may have influenced reporting rates.

Outcomes such as outsourcing, foreign firm entry, and a shift in focus to more cost-
cutting innovation could plausibly lead to poorer product quality. To examine changes in product
quality, we estimate changes in repair rates of DME equipment in affected categories relative to
unaffected ones using an event-study design. Figure 3.4 presents our results, showing a sharp
increase in repair rates after price reform, which persists and continues to rise over a longer
horizon. By the last sample year, repair rates have significantly increased by as much as two
percentage points, representing a 250% increase from pre-reform rates. Importantly, we do not
observe significant pre-existing trends in treated groups relative to controls.

Table 3.6 provides further insights into the impact of price reform on repair rates. Our
stacked difference-in-differences analysis reveals a significant 100-125% increase in repair rates
over the post-reform sample, suggesting a decline in product quality. We present estimates for
two reference periods: at the time of announcement and with a lead time to account for the time
it takes for changes to materialize after the announcement. The results are statistically significant
for both reference periods, though the lead-time reference is our preferred specification. A
125% increase in repair rates, representing a one-percentage-point increase, would result in an
additional 700,000 DME repairs annually.

We also investigate the impact of price reform on adverse event reports related to affected
DME categories and find suggestive evidence of a 157-233% increase, although the results are not
statistically significant. However, in an effort to explore the mechanisms behind these decreases
in product safety, we find substantial heterogeneity by firm type. Specifically, Table C39 shows
that products from foreign manufacturers experienced a significant 470% increase in adverse
events, with the largest increases observed in products made by foreign contractors, representing
a 3,136% increase in adverse events relative to the pre-reform mean. These findings suggest

that changes in product quality may be associated with increased contracting with foreign firms
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after price reform. However, we are unable to draw definitive conclusions because two plausible
explanations may account for this pattern. One possibility is that products made by foreign
contractors are of lower quality, resulting in higher adverse event rates. Alternatively, as firms are
increasingly outsourcing production to foreign manufacturers, the total number of products made
by foreign contractors consumed in US markets increases, which may mechanically increase the
number of adverse events due to increased utilization of those products, absent any differences
in quality.

There are several caveats to consider when interpreting the adverse event analysis results.
First, CMS increased surveillance of products within affected DME categories to assess the
impact of price reform on product quality, which might have encouraged more reporting of
adverse events, irrespective of changes in underlying safety. However, it is important to note
that the reports we analyze originate from manufacturers and not CMS or users, although
it is possible that manufacturers may have increased reporting in response to CMS’s closer
vigilance. Moreover, it is possible that CMS increasingly alerted manufacturers of adverse
events, increasing reporting rates. Second, FDA adverse event report rates are not normalized by
utilization, so changes in the number of adverse event reports could reflect changes in utilization
rather than changes in safety. However, we find that utilization of affected DME decreases after
price reform relative to unaffected DME, which suggests that such factors are unlikely to drive
our results, as we observe an increase in adverse event reports. Finally, we acknowledge that our

adverse event report analysis is suggestive, given these limitations.

3.5 Discussion and Conclusion

This paper examines the impact of health care price reform on innovation, market
structure, and product quality using rich data from administrative sources and machine learning
methods. We employ a stacked difference-in-differences estimator to compare outcomes of

affected DME categories to those unaffected, and supplement this strategy with a comparison
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of firms more exposed to price reform to those less exposed. Our analysis yields a set of three
results. First, price reform reduces innovation in affected categories, especially among the most
exposed firms. It also results in an increase of foreign-made products in the US market, possibly
due to the ability of foreign firms to deliver products at a lower cost. Text analysis of the patents
suggest a shift toward “process” innovation and away from “product” innovation, consistent with
greater emphasis on production costs in the market. Second, US firm entry into affected DME
categories decreases following the price reform, while foreign firm entry appears unaffected
or slightly increases. US firms outsource production to foreign manufacturers in response to
the cost-conscious US procurement environment. Lastly, we find evidence of reduced product
quality, as manifested by increased repair rates and adverse event reports in affected categories
relative to those unaffected, particularly among foreign firms and contractors.

The results of this study shed light on the long-term implications of government pro-
curement policy. Governments face a crucial trade-off when setting procurement prices: while
setting low prices can yield immediate savings, it risks altering the market structure, precipitating
production offshoring, disrupting the trajectory of technological advancements, and potentially
eroding product quality. These dynamic, long-term effects must be considered when designing
policies as they may diminish or even outweigh the immediate cost-savings. Thus, understanding
the interplay between price reforms and their far-reaching impacts is crucial for designing optimal
procurement policy and is increasingly important in light of recent interest in additional price
reforms, such as those proposed in the Inflation Reduction Act, and ongoing efforts to reduce
health care costs.

Our paper raises several important questions that remain unanswered. For example, are
there labor market responses to health care price reforms: does employment change among
DME suppliers and manufacturing plants? Furthermore, are there price or quantity responses
from private insurers following the Medicare price reform that may have either amplified or
dampened its overall impact? Lastly, could lower-quality products be associated with poorer

long-run health outcomes and increased expenditures that may offset some of the initial savings?
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Further research is needed to address these questions and gain a deeper understanding of the

implications of health care price reforms.
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Figure 3.1. Raw Trends of Total Medicare DME Payments. Note: The figure plots total Medicare DME
payments separately for DME in categories subject to the price reform and those that are not. The
sample includes all Traditional Medicare DME purchases each year. The y-axis values are given in
millions of US dollars.
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Figure 3.2. Event Study: Innovation. Note: The figure presents the coefficients obtained from estimating
equation (3.3.1) for our FDA submissions and patent count outcomes. It illustrates the temporal
evolution of outcomes in DME categories affected by the event, relative to those unaffected, with a
reference period at t = —1. Panel (a) presents our event-study estimates for changes in the number of
PMAs and 510(k)s submitted to the FDA and panel (b) provides the estimates for the changes in the
number of patents filed annually. 95% confidence intervals are provided.
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Figure 3.3. Event Study: Patent Count by Origin. Note: The figure presents the coefficients obtained
from estimating equation (3.3.1) for the patenting rate outcomes, separately for patents filed in the US
and abroad. It illustrates the temporal evolution of outcomes in DME categories affected by the event,
relative to those unaffected, with a reference period at r = —1. Panel (a) presents the event-study
estimates for changes in the patenting rate (per year) of patents filed abroad, while panel (b) presents
estimates for the changes in the patenting rate of patents filed in the US. 95% confidence intervals are
provided.
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Figure 3.4. Event Study: Change in Product Quality. Note: The figure presents the coefficients obtained
from estimating equation (3.3.1) for the repair rate outcome. It illustrates the temporal evolution
of outcomes in DME categories affected by the event, relative to those unaffected, with a reference
period at t = —1. 95% confidence intervals are provided.
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Table 3.1. Summary Statistics of Product Categories. Note: The table reports summary statistics from the
year before the announcement of the price reform (2005) and all sample years (1996-2016), separately
for all product categories, product categories that were subject to price reform, and product categories
that were not subject to the reform during the sample period. Panel (a) presents summary statistics for
our measures of innovation, and panel (b) presents those for our utilization measures.

All DME Categories Categories Affected Categories Unaffected
by Price Reform by Price Reform

2005  1996-2016 2005 1996-2016 2005 1996-2016
Panel (a) Product Innovation

Number of Patents 10,371 236,656 1,714 43,567 8,657 193,089
Number of PMA/510(k)’s 105 3,738 67 2,306 38 1,432
2005 2005 2005

Panel (b) Product Utilization

Number of Medicare Users (Millions) 104 59 45
Medicare Total Expenditures (Millions) $7,309.6 $3,416.3 $3,893.3
Number of Categories 56 13 43
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Table 3.2. Summary Statistics of DME Manufacturers. Note: The table reports summary statistics on the
number of patents filed of different types across the firms included in our firm-level analysis, separately
for 2005 and the full sample. P25 signifies firms in the 25th percentile, while P50 and P75 follow

accordingly.

2005 1996-2016
Mean S.D. P25 P50 P75 Mean S.D. P25 P50 P75
Number of Health-Related Patents 16.83 46.57 0 2 13 334.07 746.61 19 68 270

Number of DME Patents
Number of Affected DME Patents
Number of Unaffected DME Patents

Share of Portfolio Affected by Price Reform

2.83 848 0 0 2
093 283 0 0 1
1.89 7.18 0 0 1

024 031 0.03 0.10 0.34

5748 12502 4 14 50
22.65  62.77 2 5 15
34.84 8891 0 45 2975

Number of Manufacturers

486
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Table 3.3. Impact of Price Reform on Innovation. Note: The table presents results from estimating
equations (3.3.2) and (3.3.4) for our innovation outcomes. Column (1) reports the pre-event (before
price reform) mean across treated groups. Column (2) presents the estimates, with standard errors
reported in parentheses below the estimates. Column (3) shows the percent change in the outcome
relative to the pre-event mean. Panel (a) describes estimates from our DME category-level analysis,
with overall totals and differentiation between origins (i.e., US and foreign), and panel (b) presents
estimates from our firm-level analysis, measuring changes in the likelihood that a firm files at least one
patent in a given year. Statistical significance is denoted by +, *, **, and *** correspond to significance
levels of 0.10, 0.05, 0.01, and 0.001 levels, respectively.

Change with Price Reform

Pre-Event Mean  Estimate = % Change
1) (2) 3)
Panel (a) DME Category Level
Number of PMA/510(k)’s per Year 6.38 -1.40%%* -22%
(0.35)
From US Firms 5.0 —2.43]%%* -49%
(0.27)
From Foreign Firms 1.38 0.75% 54%
(0.31)
Number of Patents per Year 196.92 -55.73 -29%
(27.39)
Filed in the US 76.30 -20.64 -27%
(27.38)
Filed Elsewhere 120.62 -36.66 -30%
(43.63)
Panel (b) Firm Level
Pr of Filing Affected DME Patent 0.35 -0.107%** -29%
(0.03)
Pr of Filing Unaffected DME Patent 0.15 0.01 0.07%
(0.03)
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Table 3.4. Impact of Price Reform on Direction and Quality of Innovation. Note: The table presents
results from estimating equations (3.3.2) and (3.3.4) for our direction and quality of innovation
outcomes. Column (1) reports the pre-event (before price reform) mean across treated groups. Column
(2) presents the estimates, with standard errors reported in parentheses below the estimates. Column
(3) shows the percent change in the outcome relative to the pre-event mean. Table reports estimates of
the change in the direction of innovation or citations at the firm level. The quantity ¢t = O refers to the
reference period (i.e., the period we consider the policy enacted). Statistical significance is denoted by
+, ¥, **_ and *** correspond to significance levels of 0.10, 0.05, 0.01, and 0.001 levels, respectively.

Change with Price Reform

Pre-Event Mean Estimate % Change

(1) (2) (3)
Share of Patents on Process Innovation 0.31 0.10* 32%
(0.05)
Share of Patents on Product Innovation 0.69 -0.10%* -15%
(0.05)
Citations per Patent 12.95 8.00 60%
(6.77)
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Table 3.5. Impact of Price Reform on Manufacturer Entry and Outsourcing. Note: The table presents
results from estimating equation (3.3.2) for our entry and outsourcing outcomes. Column (1) reports
the pre-event (before price reform) mean across treated groups. Column (2) presents the estimates,
with standard errors reported in parentheses below the estimates. Column (3) shows the percent
change in the outcome relative to the pre-event mean. Panel (a) describes estimates of the number of
entrants at the DME-category level, with overall totals and differentiation between origins, and panel
(b) presents estimates of the number of new contractors at the DME-category level, with overall totals
and differentiation between origins. Statistical significance is denoted by +, *, **, and *** correspond
to significance levels of 0.10, 0.05, 0.01, and 0.001 levels, respectively.

Pre-Event Mean

Change with Price Reform

Estimate % Change

(1) (2 (3)
Panel (a) Number of Entrants
All Entrants 2.38 -0.59%* -25%
(0.20)
US Entrants 1.88 -0.88*** -47%
(0.14)
Foreign Entrants 0.50 0.04 8%
(0.09)
Panel (b) Number of New Contractors
All Contractors 4.00 2.15 54%
(1.63)
US Contractors 0.92 0.153 17%
(0.59)
Foreign Contractors 3.08 2.00%* 65%
(1.01)
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Table 3.6. Impact of Price Reform on Product Quality. Note: The table presents results from estimating
equations (3.3.2) and (3.3.4) for our product quality outcomes. Column (1) reports the pre-event
(before price reform) mean across treated groups. Column (2) presents the estimates, with standard
errors reported in parentheses below the estimates. Column (3) shows the percent change in the
outcome relative to the pre-event mean. Table reports estimates of changes in product quality measures
at the DME-category level. The quantity ¢+ = O refers to the reference period (i.e., the period we
consider the policy enacted). Statistical significance is denoted by +, *, **, and *** correspond to
significance levels of 0.10, 0.05, 0.01, and 0.001 levels, respectively.

Change with Price Reform

Pre-Event Mean Estimate % Change

(1) (2) (3)
Repair Rate
t = 0 at announcement 0.008 0.008%** 100%
(0.003)
t = 0 after lead time 0.008 0.0 #** 125%
(0.003)
Adverse Event Reports
t = 0 at announcement 927.7 2,163.9 233%
(1,340.6)
t = 0 after lead time 1,464.5 2,300.3 157%
(1,480.5)
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Appendix: Chapter 1

Al Bankruptcy Protection Model Extension

Following insights from the literature on the “judgment proof problem” (see Shavell
(1986), Boomhower (2019)), when damages exceed the value of a firm’s seizable assets, the
difference can be discharged through bankruptcy. To reflect the bankruptcy option, I augment
the model above to include expected damages that differ by firm assets K. I define the unspent
capital available to cover damages as uy. Unspent capital includes the capital not spent on
commercialization costs (K¢ — cy) and profits from the current period, given by uy = 7+ Ky —cy.
This term incorporates the simplifying assumption that net profits from the last period are
distributed as devidends.® The upper bound of legal damages is given by ¢.

Let v represent the total realized damages from product defects, with probability dis-
tribution function f (v;x*-,Z). In the presence of bankruptcy, the expected damages are given

by

u . ) .
Expected Damages = { | vitvieg2av+ | Kf(v;x;z,zwv] e, (ALD
0 u

In words, if the firm’s capital stock is at least as high as worst-case damages, the expected

81 could relax this assumption by letting u be equal to the unspent capital and the sum of all prior net profits up
to a given point in time. This would mean that firms would tend to grow larger and eventually be unable to file for
bankruptcy. However, the theoretical insights remain the same as initially smaller firms will face fewer expected
damages for some time.
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damages are the same as above, and the investment decision is unchanged. Smaller firms,
however, confront a truncated damages distribution, where all possible damages outcomes
higher than the firm’s unspent capital stock uy are fixed at uy. Thus, instead of paying these
outsized damages, the firm declares bankruptcy and contributes the value of its total assets
to partially cover its damages. Hence, expected damages DT(x};Z) are determined by the
probability-weighted sum of damages from O to uy, plus the probability-weighted sum of u for
all damages higher than u;. Assume that the marginal benefit of safety effort for small firms is
less than large firms at the same levels of safety effort, as there are fewer damages to abate (e.g.,
~Dly(xp3Z) < —D'(xp;Z) for all xy)

Bankruptcy protection changes the incentives to improve product safety for small firms.
Deregulation introduces firms to legal damages; however, bankruptcy protects small firms from
worst-case damages, lowering the marginal benefit of exerting safety effort. Thus, small firms

exert less safety effort than large firms. I state this formally as follows:

Proposition 1 (Deregulation introduces bankruptcy distortion) Assume firm A has less internal
capital than (i) firm B (i.e., K4 < Kp) and (ii) its worst-case damages outcomes (i.e., Ky < ¢).
Firms A and B are otherwise identical. If deregulation leads to an increase in safety effort (see
proposition 1 part ii), firm B will increase its safety efforts most (i.e., xg —x > x; —x). This
occurs if and only if x5 > x; (which can stack with proposition 4 part ii, if capital is also below

safety effort costs).

A2 Proofs
A2.1 Proof of Proposition 1

Assume that v+ Cx(yx — K) < — EL - D'(x). Assume, by way of contradiction, that

x}i < x. Since x’; is the optimal safety effort, this implies that

¥ +Ci(yx} —K) = — EL- D'(x}). (A2.1)
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However, since x} < x, we know that Cx(yx} — K) < Cx(x — K) as costs are strictly
increasing in x (given that K < x). We also know that D'(x}) < D'(x) as D'( ) is strictly
increasing in x. Thus, — EL - D’ (x}) >—EL- D'(x) . Together, these inequalities imply that

V+Ci(x—K) >—EL- D'(x). (A2.2)
A contradiction. Thus, x;i > x. See figure 1.2 for a graphical illustration of this proof.

A2.2 Proof of Proposition 2

Assume that deregulation leads to an increase in safety effort x; > x and x3 > x. I want to
show that x} —x < xj — x. It suffices to show that x; < x%. Note that safety effort for deregulated

firm B is chosen such that

v+ C(yxp—Kp) =— EL- D'(x}). (A2.3)

And for firm A:

Y +Co(yxy —Ka) =— EL - Drp(x}). (A2.4)

Since D’ (x) < D'(x) for all x, this means that

v+ C(yxy —Ky) <—EL- D'(x}). (A2.5)

Assume, by way of contradiction, that x} > xj. This implies that y + C(yx; — Ks) >
— EL - D'(x}), since y+ Cy(yx —Ka) > y+ Ce(wxj; — Kp) as Cy( ) is strictly increasing
in x and decreasing in K (K4 < Kp, which further strengthens the inequality if K4 < yx}, or

capital is less than safety effort costs). A contradiction. Thus x} < xj.
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A2.3 Proof of Proposition 3

Note that, under regulation R, Ty < Tg, thus tcomm,a > teomm ps thus, for firm A, commer-
cialization costs are strictly larger, financing costs are larger (if non-zero), and the effective life
of the invention is shorter. Thus, the returns to commercialization are strictly lower for firm A.

Under the litigation environment L, there are no complexity distortions, thus the returns

to commercialization are equal between firms A and B. We can formalize these insights as

Returnsy g — Returnsg g < 0 and Returnsy ; — Returnsg; = 0.

The difference in the change in the returns to commercialization from deregulation

between firm A and B is given by:

DiD = (Returnsy 1, — Returnss ) — (Returnsp j, — Returnsg ). (A2.6)

We WTS that this difference is positive or that the increase in returns is higher for firm A.

Rewriting equation A2.6, gives:

DiD = (Returnsa 1, — Returnsp 1) — (Returnsa g — Returnsg ). (A2.7)

From part equation A2.3 we get

DiD = —(Returnss g — Returnsg g) > 0. (A2.8)
Thus, the increases in returns to commercialization are greatest at firm A.

A2.4 Proof of Proposition 4

Note that under the given conditions, small firms face lower expected damages and
safety effort costs under deregulation than large firms (see proposition 1). Thus, deregulation

would lead to larger returns from commercialization for smaller firms than larger firms, all else
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equal. Therefore, showing that the returns from commercialization increase most for small firms
through the financing channel is sufficient, given that bankruptcy distortions would broaden
the conditions under which deregulation disproportionately benefits small firms. Hence, for
simplicity, I consider only the financing channel and the conditions that guarantee outsized
small-firm benefits.

Consider firm A’s profit function with external funds eg 4, given by:

REL - 7R — Xtcomm — WX — C(eR.,A)-

Note that firm A’s external capital is positive (i.e., eg 4 > 0) since its internal capital is less than
its non-financing commercialization costs (i.e., K4 < ¢); thus, due to nonzero capital frictions, its
financing costs are positive (i.e., C(eg o) > 0).

Firm B’s internal capital is greater than firm A’s; thus, its external capital is less than
firm A’s, and its financing costs are less than firm A’s. Firm A and firm B have identical profit
functions aside from financing costs; thus, firm B’s expected net profit is greater than that of firm
A. Thus, either firm A’s commercialization activity is the same as that of firm B (“non-marginal”)
or firm A’s commercialization activity is less than firm B’s.

Now for the litigation environment L, the returns to commercialization are given by:

Returns = EL - [my — D(x;?;Z)] —yx;—C(y =x"—Ky). (A2.9)

For a moment, think of x as not fixed. Since K4 < Kp, profits 7, and EL are the same
between the two firm types, at every value of x, the returns for firm A are strictly less than the
returns for firm B, due to increased financing costs. If we assume bankruptcy, firm A also has
lower expected damages than firm B and x7; < xj, which would further increase the Assume, by
way of contradiction, that exists an optimal safety effort for firm A x} such that returns to firm A
are larger than the returns to firm B at its maximum safety effort x3. Since the returns to firm

B are strictly larger than the returns to firm A at each value of x, there exists some x’ such that
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Returnsp(x’) > Returnsa(x*). However, this implies that Returnsg(x’) > Returnsg(x}), even
though xj is maximizes returns. A contradiction. Thus, firm A’s returns are lower than firm B’s.
Further, commercialization activity is lower than firm B’s. However, it could be the case that
returns are negative in the litigation environment for both firms. If so, then commercialization is
the same across both firms (“non-marginal”).

Thus, we have

Returnsy j, — Returnsp 1, < 0 and Returnss g — Returnsg g < 0. (A2.10)

I want to also show that the sign of the following difference-in-differences is am-
biguous: (Returnss  — Returnsy g) — (Returnsp; — Returnsp ). We have that (Returns  —
Returnsy g) — (Returnsp ; — Returnsp g) = (Returnsy | — Returnsg 1) — (Returnsa g — Returnsg g).
We know this difference could be positive or negative. The first and second differences are
both negative, thus the sign of the difference-in-differences depends on the relative changes
in profits, damages, and delay costs. However, note that if capital is greater than optimal
deregulated safety effort costs (i.e., K4 > yx}), despite being lower than non-financing costs
before deregulation, then (Returnsu ; — Returnsg 1) = 0 as there would be no financing costs to
differentiate the returns of the two firms; thus, the change in returns would be larger for firm
A. Note that if we also consider that damages for smaller firms are lower, due to bankruptcy,
then (ReturnsAL — Returns&L) > 0. Thus, in both cases, the larger change in returns for firm A
would translate into a larger increase in net profits if both firms A and B experience increases in

net profits from deregulation.

A3 Learning Curve Estimation and Simulations
A3.1 Estimation Framework for the Learning Curve Parameters

Medical device manufacturers that are inexperienced with regulation may face additional

costs when bringing a new medical device to market (Y Combinator 2016, Makower et al. 2010).
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As presented in section 1.2, I model the additional costs from approval delays using a learning
curve. I model the relationship between the approval delay of project N for firm f, fcommn,f

N—

(measured in days), and cumulative experience, Zs:ll tcomm,s,f> Dy the following equation:

- -
teommN,f = B(Re) NZ: teomm,s, f , where v > 0.
5=
Recall that B(R,) represents the baseline approval delay in medical device type ¢ under regulation
R (R can be Class III or II in practice), while Zivzl tcomm,s,f TEpresents the sum of approval delays
(in days) faced after having submitted N — 1 past projects.

More novel devices within a given medical device type may face longer approval delays
if the FDA is more careful with these devices to ensure that new scientific characteristics do
not lead to unexpected harm. However, the structure of Class III regulations helps distinguish
between more or less novel innovation. As mentioned in section A5.3, firms that have already
submitted an original PMA in a Class III medical device type may use PMA supplements for
follow-on innovation within that device type. PMA supplements experience shorter approval
delays and face fewer data requirements. On the other hand, the FDA requires original PMAs
when firms have not yet submitted a PMA in a given Class III medical device type or when an
incumbent firm invents a new device that is sufficiently novel. Thus, I include only approval
delays that firms encountered when submitting original PMA documents in my analysis to
condition on device novelty. This ensures that novelty is not driving approval delays.® For
Class II devices, I ensure consistent novelty across devices by only considering documentation
submissions for devices with unique brand names.

I log-linearize equation A3.1, to allow for OLS estimation of the parameter 7, and include

medical device type and firm-level fixed effects, resulting in the following specification,

°T focus only on firms that have spent at least one day navigating FDA regulation to avoid potential confounders
related to first-time innovators, including their tendency to swing-for-the-fence” when confronted with barriers to
entry (see Aghion et al. (2019)). This exclusion does not substantially change my results, with results remaining
significant. I also perform the same empirical exercise for Class II device manufacturers as the sample size is much
larger. For this exercise, I consider only 510(k) documents submitted for unique devices, finding significant, though
smaller, results even after including product-code-by-year and firm fixed effects.
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N—-1

ln(tcomm’Nj) =In(B(R.)) —7vIn ( twmm,svf> + 0+ 0p + & . (A3.1)

s=1
For Class III devices, I include device type and firm fixed effects. For Class II devices, |
include firm- and device type-by-year fixed effects, as I have enough observations within those
more granular fixed effects to estimate the coefficients. Standard errors are clustered at the
device-type-firm level. I exclude observations with no experience to avoid undefined outcomes
in the estimation
The estimates of the learning curve parameters are significant for both Class III and II

documentation submissions (see table A23).

A3.2 Simulation: Flattening the Learning Curve

As described in section 1.2, firm f’s decision to innovate under regulation is determined

by its return to commercialization

RELf © TR f _%tcomm,f —yYx— C(6R7f)> (A32)

where fcomm,f = P (Zzsvz_ll teomm,s, f) 7. For tractability, I assume that financing costs
take the form C(e) = max (0, Xtcomm s + WX — Kr). In addition, since I do not observe firm
expenditures on safety R&D, the distribution of damages, safety efforts, or worst-case damages,
I assume that damages and safety efforts are vanishingly small relative to profits and delay costs.
This assumption is likely not innocuous as these costs are substantial, but it allows me to draw
broader insights under my limitations by focusing on changes in delay costs that come from
reducing regulatory complexity.

The learning curve parameters y and f3(R.) are presented in table A23 for Class III and
Class II devices. I simulate the effect of flattening the learning curve on the rate of unique device
inventions from Class III device manufacturers to assess the counterfactual of less complex FDA

regulations. I calibrate ) to match the cost of approval delays found in Makower et al. (2010) at
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the daily level for both Class III and II devices.

To execute these simulations, I first generate distributions of expected profits, firm sizes,
and firm FDA regulatory experience. I proxy for expected discounted profits (i.e., RELs - Ttg 1)
using patent market valuations. This proxy requires the assumption that the market can adequately
identify the expected discounted lifetime payout that a given patented innovation will yield to
a firm and that this value is reflected in the change of the assignee’s stock market price upon
patent grant announcement. The device payout distribution is generated by fitting a gamma
distribution to the medical device patent market valuations for Class III devices. I then fit a
lognormal distribution to my firm size data to generate a distribution of asset values across firms.
Lastly, I fit a gamma distribution to my firm FDA experience data.

After sampling from these fitted distributions to form a set of representative firms, I
model how flattening the learning curve affects the rate of new device inventions across these
firms. To this end, I anchor the right tail of the learning curve to the approval delay of the firm
with the highest regulatory experience in my data and iteratively reduce the learning parameter
(y) while solving for a B(R.) value that allows the new curve to pass through the anchored value.
I then calculate the firms’ decisions to innovate, given the approval times corresponding to the
new learning curve, and calculate the difference between the ex-post investment decisions (i.e.,
after the learning curve is flattened) and the ex-ante investment decisions (i.e., at the baseline
values of y and f3). I then sum these differences across each firm and calculate the percentage
change in new device inventions relative to the baseline values. Figure A9 shows the iterative
flattening of the learning curve, and table A21 provides the calculations of the percentage change

in new device inventions.

A4 Patent Data Collection

In this appendix section, I describe the process for collecting patents by device type in

more detail. I also evaluate the accuracy of the procedure and demonstrate that my results are
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robust to intuitive restrictions to the generated patent sample.

A4.1 Procedure for Gathering Patents by Device Type

The patent collection process begins by gathering a set of FDA device type descriptions
for over 5,000 medical device types. These descriptions consist of both a broad FDA regulation
number description and a narrower FDA device name description. To prepare these descriptions
for keyword searches, I remove stop words, punctuation marks, and duplicate words. For
example, the regulation number description “Implantable pacemaker pulse generator” and device
type description “Leadless Pacemaker” would be transformed into the search string “implantable
pacemaker pulse generator leadless.” Next, I search the full text of the universe of US patent
documents and gather all patents that contain all of the keywords in the search string. This
process is repeated for all device types.

In some instances, patents are included in more than one device type. In such cases, I

drop the patent from all but one randomly chosen device type.

A4.2 Examining the Accuracy of the Procedure

Naturally, keyword searches that link patents to device types can sometimes lead to
false positive and false negative errors. For example, one of the most common inclusion errors
I encountered was when keyword searches mistakenly linked drug-related patents to medical
device types, according to the Cooperative Patent Classification (CPC) system. However, these
discrepancies between the CPC classifications and my linkages may not always be erroneous, as
some drug technologies may be complementary to certain device types. Therefore, using keyword
searches instead of the CPC system can be useful for capturing complementary technologies, but
using both can provide a way to validate my data. Below, I present a few examples of patents I
identified through random sampling of drug-related patents, which may or may not be inclusion
errors.

First, the patent “US-10428030-B2” describes a compound that can be used as a diag-

143



nostic tool in combination with Nuclear Magnetic Resonance Imaging (NMRI). According to
the Cooperative Patent Classification (CPC) system, this compound is classified as a drug rather
than a medical device. However, when I searched patent texts using the medical device type
keywords “nuclear magnetic resonance imaging diagnostic systems,” the patent was included in
my results. Even though the compound itself is not a device, it may be possible that innovation in
these types of compounds increases when NMRI diagnostic systems (complementary technolo-
gies) are deregulated. The patent “US-10314846-B2” is another example of this technological
complementarity. My keyword search technique includes these complementary technologies
while relying on patent classifications alone would not, as the compound is labeled as a drug
(i.e., A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements,
e.g., chorea, dyskinesia).

Another example of the benefits of using keyword searches is demonstrated when search-
ing for patent documents containing the keywords “cyclosporine test system.” In this case,
the patent “US-10011612-B2” is included in the results. According to the Cooperative Patent
Classification (CPC) system, this patent is classified as a drug (i.e., A61P1/16-Drugs for dis-
orders of the alimentary tract or the digestive system for liver or gallbladder disorders, such as
hepatoprotective agents, cholagogues, and lithophytic). As described in the patent, the drug is
administered in combination with other agents, such as an anti-inflammatory drug, antimicrobial
agent, anti-angiogenesis agent, immunosuppressant, antibody, steroid, an ocular antihypertensive
drug, or a combination of these agents. Examples of these agents include cyclosporine. The
administration of such drugs is typically monitored using cyclosporine tests to ensure that ap-
propriate levels of the drug are in a patient’s system. Therefore, it is plausible that increased
innovation in and cheaper acquisition of cyclosporine test systems could lead to increases in
innovation in cyclosporine immunosuppressants.

However, this type of sensitivity in keyword searches can also result in inclusion errors.
For example, when I searched patent texts for the device type “soft contact lens daily wear,” |

included a patent for a drug that treats corneal ulcers (eye ulcers). This patent was included in my
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results because it mentions that the drug can be administered as a contact lens or reservoir, among
other methods. While there may be some technological complementarities between contact
lenses and this type of drug, the connection is weaker. Nonetheless, this example demonstrates
how keyword searches can sometimes include patents that may seem only tangentially related.

Although there may be valid reasons to include drug-related technologies and other
non-medical-device technologies in my patent data, I also demonstrate that my results are not

sensitive to restricting my patent data only to medical devices in the following section.

A4.3 Robustness of Procedure

To validate the results of my main specification that analyzes patent data collected using
keyword searches, I use the CPC system to restrict my patent sample to only include medical
devices and find that my results are robust. To restrict the sample, I only keep collected patents
that fall under the “Medical or Veterinary Science Hygiene” CPC categories (i.e., include “A617),
but that exclude patents classified as drugs (i.e., not “A61P”). This restriction reduces the number
of included patents from 1,248,289 to 239,315 patents. In the CSV file linked here, I provide the
top three CPC labels for patents collected in each device type for all affected Class III devices
used in my analysis. In another CSV file linked here, I provide the top three CPC labels for
patents collected in each device type for all affected Class II devices used in my analysis. Notice
that the descriptions of most top CPC codes correspond with the descriptions of medical device
types.

Table A24 presents the estimates of equation 1.4.1 using the restricted patent sample for
my patenting rate outcomes. The table reveals that the estimates remain large in magnitude and
statistically significant. In fact, the percentage change in patenting rates relative to pre-event
means is larger for both Class III to II and Class II to I events. However, the magnitude of the
effects is reduced by approximately one third, signifying that approximately one-third of the
effect on patenting in my main specification may be due to positive spillovers into complementary

technologies. Figure A15 shows the estimates from an event-study analysis and suggests that the

145


https://parkerrogers.github.io/Data/3_to_2_PCS_w_CPCdesc.csv
https://parkerrogers.github.io/Data/2_to_1_PCS_w_CPCdesc.csv

results from my main specification are robust when using this restricted sample of patents.
Lastly, my estimates for the outcome defined as the number of new FDA device submis-
sions (i.e., the “Device Submission Rate”) also support my patenting results by showing similar

increases in innovation.

A5 Additional Details
AS5.1 FDA Decision Rule for Class II to I Events

All Class II to I down-classifications were determined using a “device priority score.”

These scores were calculated using the following linear combination of evaluation factors,

DPM = 0.38D 4-0.3S 4+ 0.12LS 4 .08U +- .08B + 0.04E. (AS.1)

In the model, D is the frequency of death, S is the frequency of serious injury, LS is
the frequency of less serious injury, U is the frequency of use, B is the health benefit, and E is
effectiveness. The FDA calculated the adverse event evaluation factor scores D, S, and LS with

the following rule,

;

100 if in “high” range,
Y = 4 50 if in “medium” range, (A5.2)

0 if in “low” range.

\

The FDA pre-determined the three different ranges and their respective cutoffs, given

annual counts of the outcome Y. The evaluation factor scores for U, B, and E are given by

(

0 if in “high” range,

Y = 4 50 if in “medium” range, (A5.3)

100 if in “low” range.
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Intuitively, this means that given two devices with the same annual incidence of deaths
and injuries, the device with the highest DPM score is the device that has the highest intrinsic
risk per use, the lowest health benefit, and the least effectiveness. The FDA uses the resulting
DPM score to flag marginal devices on the edge of their decision rule (see FDA (1995)). Other
conditions for down-classification are uniformly satisfied across all down-classified types and
would not affect the marginal decision.

I do not observe the pre-determined thresholds for D, S, and LS, and I do not observe
B, U, and E. I proxy for the decision rule by taking a linear combination of the average yearly

counts of deaths (D), serious events (S), and less-serious events (LS). This calculation is given by

DPM = 0.38D +0.3S + 0.12LS. (A5.4)

I then compare the DID estimates from the treated device types in the top decile of
calculated DPM scores against treated device types from the 0-90th percentile. In practice, U, B,
and E would not influence the ordering of calculated DPM scores as the average DPM score of
the top decile of medical device types is four times higher than the average DPM value of the
device type at the 89th percentile. Additionally, device types with a high D evaluation factor also
tend to have high S and LS evaluation factors; Thus, the stepwise construction of D, S, and LS in

the FDA’s decision rule would not substantially affect ordering.

AS5.2 FDA Decision Rule for Class III to II Events

Class III to II events are much less mechanical. When considering down-classifying a
Class III device, the FDA analyzes the health risks of the device and whether Class II regulations
will reasonably mitigate those risks. It makes these assessments by consulting the medical
literature, internal data (i.e., premarket approval applications, equipment problems in the past
resulting in recalls and adverse events), and clinical experiences with the device.

An illustrative example of a Class III to II event is the down-classification of daily-wear
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soft contact lenses in 1994. In the minutes of the 1994 ophthalmic panel meeting in which the
FDA announced this event, the FDA cites safety information contained in submitted PMAs as the
reason for deregulation. However, the timing of this event is “as good as random.” In this same
document, the FDA cites that it had been “dealing with [the down-classification event] for about
ten years” and that because “the data that were needed to support reclassification were contained
in PMAs and were not publicly available,” they could not act. Thus, bureaucratic hurdles make
these policies difficult to predict, making the timing of the events unlikely to be correlated with
changes in outcomes beyond the effects of deregulation. Upon reclassification, the number of
unique daily-wear soft contact lenses submitted for approval rose sharply, as the number of new

extended-wear contact lenses, which remained in Class III, remained steady (see figure A14).10

AS5.3 Class L, I1, and III Medical Device Regulations

Manufacturers of Class I devices (those perceived as low-risk) must simply abide by a
standard set of safe marketing practices called “general controls.”'! A newly marketed medical
device can be categorized as Class I if it is reasonably similar (i.e., same intended use and broad
characteristics) to another device categorized as Class I. However, if a new medical device has
distinct characteristics or intended use, the new device is given a new class ITI product code.!?

Manufacturers of Class II devices are required to follow specific guidelines, called special

controls, designed to mitigate device-specific risk and submit a 510(k) document, or “premarket

10Note that because I cannot observe the safety variables that drive Class III to II events, it is difficult for me to
extrapolate the product safety results I find in these events to other Class III devices that were not down-classified.
Because I do not observe these variables, I do not know what the “marginal” device type would be; thus, I cannot
determine whether the average effects differ from the marginal effects.

"'These devices are “low-risk” as they do not support or sustain human life and do not pose a potential unreason-
able risk of illness or injury (e.g., a tongue depressor). 41% of all medical device types, or “product codes,” fall
under Class I. Of these, 90% are exempt from filing any documentation (aside from facility registration with the
FDA).

2The FDA can then evaluate the safety and efficacy of new product codes and reclassify them, or a device
manufacturer can submit a “De Novo” petition for the formal classification of a new device type. A new device can
be classified as Class I or II if “the device has existing or reasonably foreseeable characteristics of commercially
distributed devices within that generic type or...[The device requires a 510(k) (even if its generic type is Class 1) if]
the device is intended for a use different from the intended use of a legally marketed device in that generic type of
device...[or if] the modified device operates using a different fundamental scientific technology” (FDA 2020a).
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notification.”!® Through the 510(k) process, a manufacturer must demonstrate that their device
is “substantially equivalent” to a previously marketed device for which a “premarket approval”
(PMA) is not required. A device is substantially equivalent if it has the same intended use and
technological characteristics as the predicate device. The 510(k) path is shorter and less costly
than the more intensive PMA process described below. However, the 510(k) process can be
expensive, with an average cost of $24 million (Makower et al. 2010). If the FDA finds that a
device is not sufficiently similar to a predicate device, the manufacturer must file a PMA, which
carries the most stringent requirements.

Manufacturers of Class III devices must perform clinical trials through the PMA process
to ensure their new device is safe and effective before commercialization.'* Class IIT device types
are perceived as high-risk since not enough information exists to establish special controls that
ensure safety and effectiveness (i.e., new device types) or if special controls do not adequately
mitigate device risk.!> The PMA process takes much longer than the 510(k) process, and costs,
on average, $75 million (Makower et al. 2010). After a manufacturer has submitted a PMA
document for their device, any small changes to their device that affect the device’s safety or
effectiveness require a PMA supplement submission. PMA supplements often do not require

premarket clinical data and experience shorter review timelines (Johnson 2012).16

1356% of medical device product codes fall under this category.

14pre-amendment class I1I devices (those existing before 1976) only have to submit a 510(k) if the FDA has
not issued a final order requiring PMA submission (Center for Devices and Radiological Health 2018). A small
percentage of 510(k)s also require a small amount of clinical data to support marketing clearance by the FDA.

ISRoughly 2% of product codes currently fall under this classification, although these product codes represent an
outsized portion of U.S. medical device spending (Meier 2009).

1oHowever, the requ