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Chapter one examines how FDA regulation affects innovation and market concentration.

I examine this question by exploiting FDA deregulation events that affected certain medical

device types but not others. I collect comprehensive data on medical device innovation, device

safety, firm entry, prices, and regulatory changes and enhance these data using text analysis

methods. My analysis of these data reveals three key findings. First, deregulation events

significantly increased the quantity and quality of new technologies in affected medical device

types relative to controls. These increases are particularly strong among small and inexperienced

firms. Second, these events increased firm entry and reduced prices for medical procedures that

xix



utilize affected medical device types. Finally, rates of serious injuries and deaths attributable to

defective devices did not significantly increase following these events. Interestingly, deregulating

certain device types was associated with reduced adverse event rates, possibly due to firms

increasing their emphasis on product safety in response to increased litigation risk.

In chapter two, we analyze wartime prosthetic device patents to investigate how demand

shocks and procurement environments can shape medical innovation. We use machine learning

tools to develop new data describing the aspects of medical and mechanical innovations that

are emphasized in patent documents. Our analysis of historical patents yields three primary

facts. First, we find that the U.S. Civil War and World War I led to substantial increases in the

quantity of prosthetic device patenting relative to patenting in other medical and mechanical

technology classes. Second, we find that the Civil War led inventors to increase their focus on

reducing cost, while World War I did not. The Civil War era emphasis on cost is consistent

with a role for that period’s cost-conscious procurement model. Third, we find that inventors

emphasized dimensions of product quality (e.g., a prosthetic limb’s comfort or facilitation of

employment) that aligned with differences in buyers’ preferences across wars. We conclude that

procurement environments can significantly shape the dimensions of the technical frontier with

which inventors engage.

In chapter three, we study how government price reforms affect innovation, market

structure, and product quality within the health care sector. We exploit a Medicare payment

reform that reduced expenditures on certain types of durable medical equipment (DME) by 66%

while leaving other types unaffected. We find that manufacturers filed 29% fewer patents and

introduced 22% fewer new models in DME types affected by the price reform relative to those

that were unaffected. Additionally, patents filed after the price reform increasingly focused

on “process” rather than “product” innovation, consistent with increased market demand for

lower-cost products. The market structure was also affected, with 25% fewer manufacturers

entering affected product markets and a 65% increase in outsourcing to foreign companies. The

shift towards cost-cutting, both in patenting and supply chain restructuring, was associated with

xx



increased device repair rates among Medicare beneficiaries and reported adverse events. Firms

that outsourced to foreign manufacturers experienced the highest increase in adverse events.

While the Medicare price reform generated substantial savings, these gains were dampened

by the adverse effects on innovation, market structure, and product quality in the long run.

Our findings highlight the importance of considering long-run impacts when designing policy

reforms.
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Chapter 1

Regulating the Innovators:
Approval Costs and Innovation in Medical
Technologies

While new technologies can improve consumer well-being, they can also cause harm.

One way to mitigate harm is through regulation that requires innovators to demonstrate the safety

of their products before commercialization, an ex-ante approach taken by the U.S. Food & Drug

Administration (FDA). Another strategy relies on the threat of ex-post litigation to deter harm.

A decades-long debate considers these alternatives. Critics of regulation claim that it chills

innovation and market competition by raising entry costs (Peltzman 1973) and that litigation is

more efficient (Coase 1960). Proponents counter that regulation increases public confidence in

products marketed by lesser-known firms, encouraging entry and innovation (Carpenter et al.

2010). Clear evidence testing these claims is important given the $2.8 trillion market size of

FDA-regulated products alone (FDA 2020b).

I advance this debate by measuring the impact of FDA regulation on innovation and

market structure. To study this relationship, I first consider a less stringent regime by examining

deregulation events that moved, or “down-classified,” certain higher-risk medical device types,

like spinal implants, from stringent (Class III) to moderate (Class II) testing requirements.

Second, I consider the litigation alternative by analyzing events that moved lower-risk device

types, like ventilator tubing, from moderate (Class II) to no testing requirements (Class I),
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exposing innovators to more litigation. Examining both of these types of events is valuable for

two reasons: First, it allows me to measure the impact of strict FDA regulation (i.e., clinical

trials) relative to the existing alternative policies. Second, it enables me to estimate local average

treatment effects among deregulated devices at different points in the distribution of safety risk

(low-to-moderate risk versus moderate-to-high risk devices).

I infer the causal effect of these events by comparing affected device types to a variety

of possible control groups. These groups include device types matched on pre-event means,

intuitively similar devices, later-deregulated devices, and a broad set of unaffected devices. I find

that my results are stable across these control groups. Further, comparing deregulated device

types to control groups reveals no divergent pre-existing trends in the outcomes of interest,

consistent with the ”unpredictable” characterization of these events by device manufacturers

(Makower et al. 2010, Powell 2018).

An important contribution of this paper is the assembly of novel data on the tradeoffs

of FDA regulation. Regulation affects many factors, and data on these factors are siloed,

unorganized, and unconnected to medical device types, limiting research on this topic. I use a

combination of programmatic online text extraction, text analysis algorithms, and hand linkages

to create, merge, and harmonize the required data. When unified, these data comprehensively

detail the effects of medical device regulation by device type. These data include all FDA device

type regulation changes over the last 40 years and multiple corroborative measures of device

innovation, innovator characteristics, innovation quality, market structure, prices, and device

safety.

My analysis of these data shows that down-classification events increase the quantity

and quality of new technologies. After moving from Class III (high regulation) to II (moderate),

device types exhibited a 200% increase in patenting and FDA submission rates relative to

control groups. Patents filed after these events were also of significantly higher quality, as

measured by a 200% increase in received citations and market valuations. These effects do not
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spill over into similar device types.1 For Class II to I deregulations, the rate of patent filings

increased by 50%, though insignificantly, and the quality of patent filings exhibited a significant

10-fold improvement, suggesting that litigation better promotes innovation. There is substantial

heterogeneity in how firms respond to deregulation as increases in innovation are strongest

among smaller firms and those with the least regulatory experience—the same subset of firms

found most likely to produce groundbreaking innovation (Wu et al. 2019).

Second, these events led to significant changes in market structure. Class III to II events

generated a ten-fold increase in new entry (i.e., firms with no approved devices) and a four-fold

increase in incumbent entry (i.e., firms with approved devices of another type) into treated device

types. Increased competition impacted health care prices: Using claims data from a university

hospital system, I find that these events were associated with a significant 40% drop in the

prices of medical procedures that use deregulated device types relative to controls.2 Class II to I

events led to a significant 200% increase in new entry into treated device types, with no effect on

incumbent entry, suggesting that litigation obstructs new firm entry less than regulation.

Down-classification yields considerable benefits, as the proponents of deregulation would

predict, but what of product safety? Perhaps counterintuitively, I find that deregulation can

improve product safety by exposing firms to more litigation. Despite some adverse event rates

increasing after Class III to II events (albeit insignificantly), Class II to I events are associated

with significantly lower adverse event rates.3 My analysis of patent texts also reveals that

inventors focus more on product safety after deregulation. These results suggest that litigation

encourages product safety more than regulation: Instead of meeting Class II requirements, which

the National Institute of Medicine deems as insufficient for product safety (IOM, 2011), inventors

must decrease the likelihood that their products injure consumers to prevent litigation. I identify

1These localized effects could be explained by extreme specialization: many device inventions originate from
practicing physicians or researchers acting within their medical specialty (NIM, 2010).

2This price drop could even be mechanically driven by the 68% reduction in testing costs from these events
(Makower et al. 2010), which may reduce markups intended to recover regulatory costs.

3“Rates” are counts per device type-year. I do not normalize by utilization, but I show that this normalization
would likely strengthen my adverse event estimates as deregulation increases utilization.
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litigation as a mechanism using variation in firms’ exposure to litigation after deregulation:

Smaller firms expect less liability as they can use bankruptcy to avoid liability that exceeds their

assets (Shavell 1986). I find that safety improvements are strongest at larger firms for which a

larger share of liability is unavoidable.

A back-of-the-envelope calculation suggests that the benefits of these events outweigh

the costs. Accounting for the cost of adverse events and the value of increased innovation and

decreased health care prices, the unmeasured costs of Class III to II events would need to be

larger than the measured costs to justify Class III regulation. For Class II to I events, there are

virtually no measurable costs of down-classifications as adverse events decline. By contrast,

the benefit of these events amounts to more than $22 million a year per device type. Although

these benefits are based on local average treatment effects among deregulated device types, I find

evidence that these benefits may generalize to current Class II device types: More dangerous,

marginal deregulated device types (according to the FDA’s decision rule) exhibit the largest

decreases in adverse events. If this relationship holds, the yearly forgone benefits could amount

to as much as $55 billion across 2,500 current Class II device types, or nearly 32% of the annual

value of medical devices consumed.

I build a model that illustrates the range of possible consequences of deregulation. The

model incorporates the central concerns of medical device innovators. First, regulation imposes

approval delays, but firms shorten delays as they gain more experience navigating approval

requirements through “learning by doing” (Arrow 1971). Firms also face financing costs if

approval costs exceed their assets (Buera and Shin 2013, Moll 2014). Lastly, when regulations

are lifted (Class I), firms are exposed to more litigation from product design flaws, but small firms

are exposed to less liability due to bankruptcy. This characterization of the firm’s decision shapes

the effects of deregulation: Deregulation can improve product safety and disproportionately

benefit small firms and those with less regulatory experience.

My findings contribute to several literatures. First, I add to the growing literature on
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the effects of public policy on medical innovation.4 Despite the significant size of the medical

device market, valued at around $500 billion and projected to reach nearly $1 trillion by 2030

(Stewart 2022), there is a lack of evidence on the impact of regulation on innovation in this sector.

Previous studies by Stern (2017) and Grennan and Town (2020a) use cross-group comparisons

to suggest that regulations affect investments in Class III cardiovascular technologies, but they

do not address the broader impact of FDA regulation on innovation. My research fills this gap by

examining the relationship between regulation and innovation using quasi-exogenous regulatory

shocks across a range of device types and at several levels of regulatory stringency. Additionally,

my study evaluates the safety benefits of device regulation, which has received little attention.

I also add to a longstanding literature on the tradeoffs between regulation and litigation.5

Regulation, a preventive strategy, sets a lower bar on product safety, whereas litigation, a

deterrence strategy, punishes those who violate standards through the courts (Kessler 2010). A

study by Philipson et al. (2010) finds that regulation and litigation together are less efficient than

regulation alone, but did not examine which approach is more efficient on its own. I find that

litigation can more effectively prevent adverse events while promoting innovation.

Lastly, my findings relate to the literature on endogenous growth (Romer 1990). Recent

work shows that labor regulations can influence innovation, the key determinant of economic

growth (Acharya et al. 2014; 2013, Aghion et al. 2019). Other work shows that regulation can

reduce market competition, creating long-run inefficiencies (Buettner 2006, Aghion et al. 2009;

2005, Djankov et al. 2006, Hahn and Hird 1991). I add to this literature by showing that product

regulation reduces innovation and market competition. My findings, however, depart from the

common presupposition that regulatory knowledge flows smoothly across firms: Deregulation

disproportionately benefits firms with less regulatory experience, suggesting that regulatory

proficiency stays with the firms that acquire it (akin to Azoulay et al. (2011)). These frictions

amplify the costs of regulation and may advantage experienced multiproduct firms across a wide

4See Mulligan (2021), Grennan and Town (2020a), Clemens and Rogers (2020), Stern (2017), Budish et al.
(2015), Acemoglu and Linn (2004b), Finkelstein (2004b).

5See Coase (1960), Ehrlich and Posner (1974), Kolstad et al. (1990), Glaeser et al. (2001), Shavell (1986; 2018).
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range of regulated products.

The tension between regulation and litigation affects a variety of everyday products.

These products range from those regulated similarly to Class III or II medical devices, like

pharmaceuticals and genetically modified foods, to broader categories like aircraft, automobiles,

pesticides, and over 15,000 consumer products regulated by the Consumer Product Safety Com-

mission (Schwartz and Appel 2020, Schauzu 2000, Pisani 2011). After regulatory compliance,

these products receive at least some protection from litigation, making my findings particularly

relevant.

This paper is organized as follows. Section 1.1 provides background on the FDA

regulatory process, section 1.2 provides the conceptual framework, section 3.2 discusses my data,

section 3.3 describes my empirical strategy, section 1.5 presents my empirical results, section

1.6 presents a back-of-the-envelope welfare calculation, and section 3.5 concludes.

1.1 Background

This section describes the structure and legal consequences of FDA medical device

regulations. Medical devices include products like COVID-19 tests, pacemakers, X-ray machines,

and spinal implants.

1.1.1 Enactment of Medical Device Regulations

In 1976, the Medical Device Amendments (MDA) expanded the FDA’s oversight to

include medical devices. According to these new laws, medical devices were grouped into

generic types to allow targeted regulation. “Daily-wear soft contact lenses,” for example, is a

device type regulated differently than “extended-wear soft contact lenses.” The policy variation I

study occurs at the level of these generic device types, and I refer to them as “device types.”

Device types are organized into a three-tier risk classification system. Manufacturers

of Class I low-risk devices must register their facility with the FDA, which carries a small fee

and takes less than one month to process. The FDA requires Class II, moderate risk device
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manufacturers to file a “510(k)” to prove their device is similar to an already marketed device.6

This process of proving “substantial equivalence” has been criticized by many, including the

National Institute of Medicine, as being insufficient for establishing safety (IOM, 2011) while

imposing substantial costs. The 510(k) process, on average, costs firms $24 million (Makower et

al. 2010) and delays commercialization by ten months. Class III, high-risk device manufacturers

must conduct clinical trials via the “premarket approval” (PMA) process to ensure their new

device is safe and effective before commercialization. The PMA process is much longer than the

510(k) process and costs, on average, $75 million (Makower et al. 2010). The average costs of

these different levels of regulation are shown in figure 1.1. Appendix A5.3 provides more details.

1.1.2 Deregulation of Medical Device Types

The FDA can lower the class of a medical device type after observing the safety outcomes

of marketed devices. Without any safety information, the FDA regulates new, markedly novel

devices in Class III to ensure safety in the presence of unknown risks.7 Surveillance data from

marketed devices clarify these risks and inform the FDA’s choice to move a device type into

Class II, or “down-classify” (see figure 1.1).8 These events are described by manufacturers as

“unpredictable,” suggesting the difficulty of anticipating such policy changes (Powell 2018). My

empirical analysis supports this assessment as I do not find evidence of divergent pre-existing

trends when comparing down-classified device types to control groups.

By contrast, the Class II to I down-classifications I study are systematic. In 1995, the

FDA scored all Class II devices based on average yearly adverse event counts and down-classified

those that fell below a previously unknown threshold (FDA 1995). Although this policy change

6Manufacturers must also follow best-practice protocols (called “special controls”).
7In 1997, the FDA began allowing manufacturers of markedly novel devices to petition for a direct Class II

or I classification under the “De Novo” process by showing that best practices assure the safety and efficacy of
their device. However, all the device types I consider existed before 1997 and thus were either automatically or
intentionally classified into Class III.

8Additionally, manufacturers can file a petition for down-classification, bringing the FDA’s attention to particular
device types for further investigation. My analysis, however, focuses on down-classification events explicitly enacted
by the FDA’s initiative (rather than a petition).
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appears to justify using a regression discontinuity design, the sparseness of device types at the

threshold does not permit this approach. Instead, a series of unaffected Class I device types that

would have received similar scores as treated device types serve as appropriate controls. These

types include previously deregulated and always Class I device types. Importantly, scores were

not contingent on potential changes in adverse events or trends.9 My event-study results reaffirm

these assessments.

It is worth noting that deregulation only occurs in established medical device types. Thus,

rather than measuring the effect of regulation on radical innovation, this paper measures how

regulation affects the development and improvement of existing medical device types. Improving

medical devices may require fundamental scientific advances and bring substantial health benefits

through increased efficacy or reduced side effects and adverse events.

1.1.3 Regulation versus Litigation: Federal Preemption

In the US, medical device firms incur damages from tort claims amounting to as much as

3.8% of annual revenues (Fuhr et al. 2018). Galasso and Luo (2018) show that this liability risk

chills innovation and can bankrupt smaller firms. Compared to Europe, the US is particularly

litigious, with class-action lawsuits, high punitive damage payouts, and few damage caps

(Guendling 2016). These conditions make liability risk a powerful incentive for ensuring the

safety of products marketed in the US.

However, FDA approval shields medical device manufacturers from product liability,

creating a stark tradeoff between regulation and litigation. This protection, called “federal

preemption,” is upheld by Riegel v. Medtronic Inc. (2008), a supreme court case establishing that

Class III device approvals bar legal claims against device manufacturers. The Class II devices I

analyze are also often protected from litigation as they are FDA-approved and subject to “special

controls” requirements that ensure safety and efficacy (Costello and Pham 2016).10 Class I

9See appendix A5.1 for more details and for an example of Class III to II events.
10The recent court case Kelsey v. Alcon Laboratories Inc. (2019) offers an example of a Class II approval barring

legal claims through preemption. In this case, the plaintiff claimed that Alcon’s contact lens disinfectant did not
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devices are not FDA-approved, exposing manufacturers to litigation.

1.2 Conceptual Framework

In this section, I model R&D as a two-stage process: development and commercialization.

First, firms invent and patent a new product, improve its safety profile, and raise capital to cover

commercialization. Second, firms bring their products to market by attaining regulatory approval,

forming distribution networks, etc. The model builds on that of Budish et al. (2015), who

formalize the impacts of commercialization lags on innovation. For comparability, I follow

their notation closely wherever possible. I introduce into their framework two alternative policy

regimes (i.e., regulation and litigation), which include differences in commercialization lags,

liability risk, and financing costs.

The model’s purpose is to illustrate the range of possible consequences of deregulation,

to connect these to underlying fundamentals, and, in particular, to relate these effects to firm

traits. In turn, the insights from this model will be helpful for interpreting my empirical results.

My model considers the medical device industry, though its implications may apply to other

regulated products.

1.2.1 Model Preliminaries

Undirected R&D yields stochastic inventions to a representative, profit-maximizing firm.

Upon realizing the new technology, the firm decides if it will allocate capital for directed R&D to

(i) improve the product’s safety profile during the development phase and (ii) commercialize the

invention. The firm makes this decision in one of two environments: regulation “R” or litigation

“L.” The model is characterized by the following parameters:

prevent a severe eye infection due to a product flaw. However, the disinfectant was approved as a Class II regulated
device and was subject to special controls. The district court handling the case deemed that the FDA’s approval
adequately tested the product’s safety, preventing legal liability. This is just one of many recent instances where
Class II medical devices have been protected from design defect claims through preemption. Other examples
include cases involving latex gloves, contact lenses, tampons, condoms, angioplasty catheters, wound dressing,
tissue adhesive with wound closure device, a hemorrhoid prevention pressure wedge, and electrical stimulation
devices (Munford 2018).
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Timing Parameters.—The year a firm realizes and develops an invention is given by

tinvent , which I normalize to zero. The years it takes to commercialize the product is tcomm, f .

In the medical device industry, FDA approval plays a key role in delaying commercialization

(Makower et al. 2010, Pietzsch et al. 2012).11 Thus, for concreteness, think of tcomm, f as the

approval delay. Under litigation L, there are no approval delays (i.e., tcomm, f ,L = 0). In the

regulated environment, approval delays are positive but decrease with regulatory experience

(Olson 1997, Carpenter 2004b, Makower et al. 2010).12 Following Arrow (1971), I model this

relationship by equating the present delay tcomm, f to the learning curve β T−γ

f , where Tf is prior

experience, β is the delay with no prior experience (i.e., T = 1) and γ > 0. Delay costs are given

by χtcomm, f , where χ is the yearly cost of approval delays.13

Financing Costs.—Smaller firms must raise external capital to cover the costs of develop-

ment and commercialization at time tinvent .14 Fundraising can be difficult: 56% of small medical

device firms claim funding as a central challenge (Emergo 2019). Following Stein (2003), I

capture these financing frictions by assuming deadweight costs given by C(e f ), where C( ) is

an increasing convex function of external funds e f (similar to the R&D model of Stern (2017)).

External funds e f are equal to the difference between the non-financing costs and internal capital

K f . I omit other costs of commercialization for simplicity.

Regulated and Deregulated Effective Lives.—A successfully commercialized product

becomes less relevant over time. For expositional ease, I describe the neoclassical risk-adjusted

discount factor of the R&D project as δ , which includes obsolescence and commercialization

11Approval delays in other areas of health care, like delays in securing medical procedure reimbursement codes,
have also been shown to play a key role in innovation (Dranove et al. 2022).

12Two factors may explain this pattern, both of which are driven by the complexity of the regulatory process. First,
inexperienced firms report difficulty benefiting from hired regulatory experts and must instead learn the process
independently (Y Combinator 2016). From the regulator’s perspective, having prior experience with a firm reduces
the uncertainty about the quality of its products, which may merit shorter review times (Olson 1997, Carpenter
2004b).

13Makower et al. (2010) find an average monthly cost of $1.3 million for Class III approval delays (e.g., clinical
trial costs, etc.). I assume tcomm, f and several other parameters below are deterministic for simplicity.

14For simplicity, I assume firms finance their project instantaneously. Although fundraising could prolong
commercialization delays, removing this assumption does not change my theoretical results.

10



risk.15,16 Firms enjoy longer or shorter effective product lives depending on the regulatory

environment. Under regulation, I define an invention’s Regulated Effective Life (REL) as the

expected years it will be commercialized and non-obsolete in present value terms as discounted

by the regulated firm. The effective life of the regulated product begins at time tcomm, f , yielding

an effective life of REL f = ∑
∞
tcomm, f

δ t = δ tcomm, f /(1− δ ). By contrast, in a deregulated

environment N, I define an invention’s Effective Life (EL) similar to REL, except the lifespan of

the product starts at tinvent , given by EL = ∑
∞
t=0 δ t = 1/(1−δ ). Notice that REL f < EL by

definition, as regulated profit flows are delayed.

Expected Damages and Safety Effort Costs.—Borrowing from Shavell (1986) and

Boomhower (2019), if a firm chooses to commercialize its product, it exerts x f effort to improve

product safety, costing ψ per unit, at tinvent .17 Under litigation L, a commercialized product

generates stochastic adverse events that yield φ(x f ;~Z) legal damages per year, a random variable

with expected value D(x f ;~Z) and vector ~Z containing other factors that influence damages in

expectation (e.g., firm seizable assets K f , the litigation environment, damage caps). The expected

damages function D( ) is a positive decreasing convex function of safety effort x f . The firm

exerts effort to maximize the returns to commercialization by equating the marginal cost of effort

ψ +Cx(ψx∗f −K f ) to the present value of its marginal benefits −EL·D′(x∗f ;~Z) (i.e., marginal

abatement of expected damages). By contrast, under regulation R, the firm is exposed to no legal

damages due to federal preemption. Thus, firms exert the mandated level of safety effort x, as

any further effort yields no return.

Profits.—If the product is successfully commercialized and non-obsolete, it generates

15A product may also face a probability of successful commercialization p, which may be appropriately modeled
as a function of safety effort; however, the FDA approves 80%–90% of all medical device submissions (GAO,
2009). Thus, for simplicity, I assume that approval is certain given a firm achieves the mandated safety effort,
and I abstract away from other non-approval-related commercialization uncertainty. Including product denial and
commercialization risks does not meaningfully change my theoretical insights.

16Although obsolescence risk is more appropriately modeled as endogenous to R&D investments, I follow the
patent literature and take it as exogenous (Budish et al. 2015).

17For simplicity, I assume firms exert safety effort instantaneously. Alternatively, safety efforts could prolong
commercialization delays. Modeling such delays, however, would not change the model implications.
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profits π per year for the innovating firm. Although regulation can affect profits by altering market

structure, I do not model this relationship, focusing instead on motivating my firm composition

and product safety results. Thus, for simplicity, I assume that deregulation increases the aggregate

level of R&D, consistent with my empirical findings, which implies that deregulation does not

cut profits enough to outweigh declines in commercialization costs.18 I assume only expert

regulators can perceive safety effort (i.e., asymmetric information); hence, safety effort does not

affect profits once a product is approved.

1.2.2 Characterization of the Investment Decision

In the regulated environment R, firm f expects to receive profits from commercializing

a device for REL f years. The firm will develop and commercialize its invention if and only if

these expected profits exceed the combined delay, safety effort, and financing costs:19

Regulated Firm Invests ⇐⇒ REL f︸ ︷︷ ︸
Regulated

effective life

· πR︸︷︷︸
Profits

≥ χtcomm, f︸ ︷︷ ︸
Delay costs

+ ψx︸︷︷︸
Mandated safety

effort costs

+C(e f ,R)︸ ︷︷ ︸
Financing

costs

. (1.2.1)

The amount of external capital e f ,R needed to finance the project is given by the difference

between the non-financing commercialization costs and the firm’s internal capital K f (i.e.,

e f ,R = χtcomm, f +ψx−K f if e f ,R ≥ 0, and 0 otherwise).

In the litigation environment L, firm f will choose to commercialize if and only if the

net expected profits (less expected damages) are greater than the combined safety effort and

18Note that this assumption also places an upper bound on the value of legal damages and safety effort costs after
deregulation.

19Notice the implicit assumption that firms do not consider the future benefits of regulatory experience (i.e.,
learning by doing) in their investment decisions. This assumption is consistent with a large literature documenting
that managers maximize short-term rather than long-term firm value (Budish et al. 2015).
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financing costs:20

Deregulated Firm Invests ⇐⇒ EL︸︷︷︸
Effective

life

· [ πL︸︷︷︸
Profits

−D(x∗f ;~Z)︸ ︷︷ ︸
Expected
damages

] ≥ ψx∗f︸︷︷︸
Optimal safety

effort costs

+C(e f ,L)︸ ︷︷ ︸
Financing

costs

. (1.2.2)

The amount of external capital e f ,L needed to finance the project is given by the difference

between safety effort costs ψx∗f and the firm’s internal capital K f .

Notice the key differences between the investment incentives in environments R and L:

firms that commercialize in L (i) expect legal damages, (ii) choose and pay for an optimal level

of safety effort, (iii) enjoy a longer effective life of their products, and (iv) do not incur delay

costs.21

1.2.3 Distortions from Regulation

I focus on model implications related to distortions in firm participation and safety efforts

resulting from regulation. Throughout, I assume that deregulation increases the level of R&D

activity. This assumption is supported by my empirical results and allows me to more clearly

motivate the less intuitive results I find in my analysis.

First, I explore how deregulation can improve product safety. If mandated levels of safety

effort are low enough, deregulation can improve safety by increasing the net incentives for safety

improvements. I state this formally as follows:

Proposition 1 (Deregulation can increase firm safety efforts) If the marginal cost of regulated

effort is less than the ex-post marginal benefit of that effort (i.e., ψ +Cx(x)<−EL ·D′(x)), then

deregulation will increase firm safety effort.

Figure 1.2 helps clarify the necessary conditions for proposition 1. The figure shows that

the ex-ante-mandated safety effort is sufficiently low, leading the deregulated firm to exert more
20Note that financing frictions do not affect the payment of damages since they can be financed with profits (i.e.,

in expectation, damages will always be less than profits if a firm chooses to commercialize).
21Profits and financing costs also differ across these environments; however, the direction of the difference is

ambiguous (e.g., if expected damages are large, safety effort costs could increase financing costs).
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effort. This proposition implies that ineffective regulations could make products less safe. I show

in section 1.5 that Class II regulations may lead to such an outcome. These insights, however,

may be specific to the litigious US environment. For example, if a country aggressively caps

damages (represented in ~Z), firms would face lower expected damages, and safety effort could

drop relative to regulated levels.

Another factor influencing a firm’s expected damages is the value of its seizable assets.

Following insights on the “judgment proof problem” (Shavell 1986), when damages exceed the

value of a firm’s seizable assets, the difference can be discharged through bankruptcy. This option

protects small firms from worst-case damages, lowering expected damages and the marginal

benefit of exerting safety effort. Thus, if deregulation increases safety efforts, it will do so most

for large firms. I state this as follows (and more formally in appendix A1):

Proposition 2 (Deregulation introduces bankruptcy distortion) Assume firm A has fewer assets

than firm B (i.e., KA < KB) and has too few assets to cover its worst-case damages. Firms A and

B are otherwise identical. If deregulation increases firms’ safety effort (see Proposition 1), then

firm B will increase its safety efforts the most.

The next distortion I detail arises from regulatory complexity (i.e., the delays from com-

plex regulatory requirements). Complexity distorts the composition of firms that commercialize

as inexperienced firms reap lower returns from commercialization. Deregulation removes these

distortions and disproportionately increases the returns to commercialization for inexperienced

firms. To formalize this claim, I present the following proposition:22

Proposition 3 (Deregulation disproportionately benefits inexperienced firms) If firm A has less

regulatory experience than firm B (i.e., TA < TB; all else equal), then deregulation increases the

returns to commercialization most for firm A.

An example helps illustrate the potentially dramatic implications of proposition 3. Con-

sider firm A has no prior experience, and firm B has one previously commercialized project that
22Proofs are presented in appendix A2.
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was delayed for two years. Consistent with the values of the learning curve parameters γ and β

estimated in section A3.1, firm A must wait out a two-year delay. By contrast, firm B waits out a

one-year delay, incurring 50% lower delay costs than firm A and enjoying a longer effective life

of its product. Although deregulation removes delay-related costs for both firms, the increase in

returns to commercialization is at least twice as large for firm A.

Lastly, I discuss distortions that arise from financing frictions and regulation. Small

firms incur deadweight costs when raising capital to commercialize their products (Gaglani

2014, Emergo 2019). Deregulation can decrease commercialization costs and financing costs,

especially for small firms. I state this claim formally as follows:

Proposition 4 (Deregulation can disproportionately benefit smaller firms) Assume firm A is

smaller than firm B and has non-zero financing costs when regulated (i.e., KA < KB and

KA < χtcomm,A +ψx). Firms A and B are otherwise identical. If deregulation does not in-

crease financing costs for firm A (i.e., ψx∗A < χtcomm,A + ψx), then deregulation increases

commercialization returns most for firm A.

However, deregulation could lead to lower returns to commercialization for small firms

if financing costs increase after deregulation. For example, if deregulation induces enough

additional safety effort costs to outweigh the decrease in approval delay costs, financing costs

could increase for smaller firms. By contrast, if the assumptions hold, Proposition 2 will amplify

Proposition 4 as small firms face lower expected damages and lower safety effort costs after

deregulation and, thus, even lower financing costs.

1.3 Data

To conduct my empirical analysis, I compile data from eight sources to provide an

expansive view of the costs and benefits of medical device regulations. Summary statistics for

these data are provided in table 1.1 and a data catalog is presented in figure A1.

FDA Device Submissions (PMA and 510(k) Databases). The primary dataset used in this
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study is derived from FDA administrative data on the universe of medical devices submitted for

FDA approval. These data combine the FDA’s PMA and 510(k) databases to cover both Class III

and II devices. Submissions include the submitting company name, device brand name, medical

device type, and submission and approval dates. I use fuzzy matching to form three measures of

market dynamics and innovation. First, I measure “new entry” by identifying firms submitting

approval documents for the first time. Second, I also form a measure of “incumbent entry,” by

locating firms that have filed prior approval documents but are starting to submit for approval in

a given device type. Third, I isolate the first occurrence of unique device brand names within a

device type to form the “unique devices submitted” measure. These variables are aggregated to

the device type-year level. To measure each firm’s regulatory proficiency, I calculate the total

approval delays (in days) the submitting firm has experienced up to the given point in time.

FDA Deregulation Events. To provide a comprehensive analysis of FDA deregulation

events, I collect all down-classifications from 1980 to 2015. For Class III to II events, I also

indicate whether the event was motivated by the FDA’s “own initiative” or by an industry petition.

This distinction is empirically important. Figure A2 shows that device types that experience a

petitioned down-classification exhibit divergent pre-trends in patenting rates in the five years

before the event. The Class III to II events I consider are those enacted by the FDA’s own initiative

and for which down-classified device types experienced at least one PMA document submission

beforehand.23 For Class II to I events, I consider affected device types that experienced at least

one 510(k) document submission beforehand.

FDA Adverse Event Reports (MAUDE). The FDA’s Manufacturer and User Facility

Device Experience (MAUDE) database contains adverse event reports related to medical devices.

Using this data, I create measures of device safety using reported deaths, hospitalizations, and

life-threatening events for each device type from 1992–2019. I follow Ensign and Cohen (2017)

to account for data and coding idiosyncrasies in the MAUDE data. Adverse events are aggregated

to the device-type-year level. Adverse event rates (e.g., deaths per year) of down-classified

23Many Class III “preamendment” devices were never officially required to submit PMA documentation.
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device types are similar to those of device types in the prospective class (see figure A3). For

the top 300 manufacturers by adverse event volume, I hand-linked firm names listed on adverse

event reports to data on firm assets. Asset totals are derived for public firms using data from

CRSP/Compustat. This linkage allows heterogeneity analyses of device safety by firm size.

USPTO Patent Grants Extract. Patents offer an additional measure of innovation to

support my “unique devices approved” measure. However, there is no standard dataset linking

medical devices with their associated patents (similar to the “Orange Book” data for drugs). To

address this, I follow a three-step procedure to create a patent-based measure of innovation for

each device type. First, I compile a list of keywords from each FDA device type description.

Second, I use a computer program to collect all patents granted by the USPTO that contain those

keywords in their text. Third, I calculate the annual number of patents filed within each device

type based on the date the patent was first filed. The resulting dataset is a panel of yearly patent

counts across 5,000 FDA-defined medical device types from 1976 to 2019. Patents are a useful

complement to FDA device data for several reasons. First, patents allow me to analyze how

Class II to I events affect innovation, as I only observe my “unique devices approved” measure

for Class III and II devices. For this same reason, patents also enable comparisons of effect sizes

across down-classification types. Lastly, an analysis of two different measures of innovation

provides corroborative evidence. In section 1.5, I show that the estimates of changes in patent

filing rates and device submission rates are quite similar for Class III to II events. Appendix A4

provides more details on the patent collection process.

Patent and Patent Applicant Characteristics. I enrich the patent data with measures

of innovation quality and applicant characteristics. A patent’s quality is measured using the

number of citations it received from other patents and its market value.24 Patent market values

(in millions USD) are derived from Kogan et al. (2017). These values are based on the increase

in the patent assignee’s stock price resulting from a USPTO announcement of patent issuance

24I omit examiner citations and set patent citations and market values to zero when no patents were filed in a
given device-type-year.
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and are only available for publicly traded firms. I also generate a quality-related measure of

device safety using patent texts. Following a procedure used in Clemens and Rogers (2020),

I calculate the annual share of patents within a device type that mention keywords related

to safety.25 This variable allows me to directly analyze how deregulation affects inventors’

emphases on improving device safety, corroborating adverse event analyses. Lastly, to analyze

how deregulation affects innovation from firms of different sizes, I link total firm asset holdings

from the CRSP/Compustat database to patent applicants.

UCSD Health Insurance Claims Extract. Insurance claims data from UCSD Health

provide information on how healthcare prices respond to deregulation. To my knowledge, no

available data, including ECRI PriceGuide, reliably measures the direct prices that providers

pay for medical devices before 2011. As another option, device prices could also be reflected

in insurance claims data, provided that device costs comprise a substantial share of procedure

costs. However, insurance claims databases before 2011 do not measure exact paid amounts

at the procedure level, the granularity necessary for attributing costs to device usage. Thus,

I acquire claims data from UC San Diego Health that detail prices at the Current Procedural

Terminology (CPT) level. I then identify claims with procedures that use medical device types

that were down-classified since 2006.26 To form control groups, I collect a set of procedures

that use matched control device types and randomly select 100 procedures. Together, these data

contain nearly 500,000 unique patient claims from 2005–2020. I then take the average amount

paid for a given procedure in a given year, forming a panel of procedure-year prices.27

25To construct a comprehensive list of keywords related to medical device safety, I use Word2Vec, an algorithm
that maps text to a vector space, with proximity indicating semantic similarity. After gathering semantically similar
keywords, I search patent claims to identify whether a patent contained any of the keywords of interest and calculate
the fraction of patents that mention these keywords in a given device-type-year. If no patents were filed in a given
year, I set the fraction of patents mentioning safety to zero (i.e., no scientific advancements in product safety). See
table A10 for a list of keywords used.

26In total, five Class III to II down-classified medical device types fit this criterion. All Class II to I down-
classifications that I analyze are outside the time coverage of the claims database.

27Although the average UCSDH procedure amount paid is close to the average procedure amount paid by
Medicare, using only UCSDH claims data is a limitation of my study.
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1.4 Empirical Strategy

My strategy for estimating the effects of deregulation includes “stacked” difference-in-

differences and event-study designs. After describing each design, I underscore how I address

potential issues when generating causal estimates in my context.

The first regression specification uses a staggered difference-in-differences design. I

use a “stacked” regression, similar to Cengiz et al. (2019), which avoids potential biases from

using staggered treatment designs in the presence of heterogeneous treatment effects within-unit

over time (Goodman-Bacon 2018, de Chaisemartin and d’Haultfoeuille 2019).28 This approach

assembles event-specific panel data using each treated group r ∈ {1, . . . ,N1} and all admissible

controls. Then, all event-specific panels are stacked while allowing unique time and group fixed

effects for each panel. Thus, the estimating equation is given by

Yt,c,r = γc,r + γt,r +β11{reclass}t,c,r + εt,c,r. (1.4.1)

In equation 1.4.1, c denotes the medical device type, t denotes time, r denotes the event,

and 1{reclass}t,c,r is an indicator equal to one when down-classification has occurred in device

type c. The outcomes of interest are denoted by Yt,c,r. Event-by-time fixed effects (γt,r) and

event-by-device type fixed effects (γc,r) are included. The coefficient of interest, β1, estimates

the differential change in the outcome variable for treated device types relative to control device

types after down-classification. I estimate equation 1.4.1 separately for Class III to II events and

Class II to I events.

The number of FDA-initiated Class III to II events is relatively low (N1 = 13). Thus,

I follow Conley and Taber (2011), who provide a method of constructing reliable confidence

intervals for differences-in-differences estimates in the presence of a small number of policy

changes. This approach uses information from control group residuals to form confidence

28I find that my results do not change meaningfully when I consider another estimator in the heterogeneous
treatment effects literature from Borusyak et al. (2021) (see tables A11, A12, and A13).
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intervals.

Like all difference-in-differences designs, my specification relies on the assumption that

differential trends in the outcomes of interest do not pre-date the down-classification events. To

test this assumption, I estimate a stacked event-study design using OLS, given by

Yt,c,r = γc,r + γt,r + ∑
t 6=0

βt1{Treated}c,r×1{Years from Reclass}t,r + εt,c,r. (1.4.2)

In equation 1.4.2, the omitted interaction between the treated group indicators (i.e.,

1{Treated}c,r) and the time dummy variables (i.e., 1{Years from Reclass}t,r) aligns with the

year the event occurred. Thus, each parameter βt represents the difference-in-differences estimate

of the change in the outcome in a given period relative to that reference period. Standard errors

for each βt are calculated using Conley and Taber (2011).

Down-classification rulings are typically announced a year before enactment. Since

innovators could respond to a down-classification announcement, 1{reclass}t,c is equal to one

for all device-type-years after an announcement occurs in device type c. However, FDA adminis-

trative data will not reflect changes until the year of enactment since firms cannot market devices

under new regulations before enactment. Thus, for FDA-derived outcome data, the indicator

1{reclass}t,c is equal to one for all device-type-years after a down-classification is enacted in

device type c. For the event-study, the event-time t = 0 follows accordingly.

Identifying control device types that track the counterfactual development of the outcome

variables is a central challenge in my empirical context. Controls could be unsuitable for several

reasons. Control device types, for example, could be affected by unique scientific developments,

have lower scientific potential, or face different market forces. Alternatively, some device types

could be affected by spillovers from treated device types. Lastly, the FDA selects device types for

down-classification based on inherent risk. Thus, down-classified devices may be less dangerous

than those not chosen.
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I provide four control groups, each addressing aspects of these concerns, and find that

my results are robust across these groups. The first control group broadly comprises all Class

III and II devices (for III to II events) and all Class II and I devices (for II to I events) that

have not been down-classified. This group provides baseline DID estimates. The second group

includes “later-treated” control device types that were down-classified after treated device types

and after the latest sample year.29 This “later-treated” group allows me to compare only device

types that the FDA deemed appropriate for the same kind of down-classification. If later-treated

device types are different from those treated earlier, the later-treated group may produce biased

estimates. To ensure comparability, I form the third control group, a data-driven matched control

group computed using nearest neighbor matching on baseline adverse events and innovation

rates. Although I do not find evidence for spillovers in my context, I ensure that matched control

device types do not treat the same medical ailments as treated device types.30

Finally, I provide a set of “intuitive” controls. This fourth set of controls includes

medical device types that target similar diseases. I also ensure that device risk is intuitively and

empirically comparable. For example, I avoid inappropriate comparisons between external-use

devices and implantable or life-sustaining devices (e.g., contact lenses versus pacemakers), as

these devices would have drastically different safety profiles. Instead, I compare like with like

(e.g., daily- vs. extended-wear soft contact lenses). Profiles of the treatment and intuitive control

groups are given in table A15 for Class III to II down-classifications, and in tables A16 and A17

for Class II to I down-classifications. Although the estimates are similar across control groups,

the matched control groups constitute my preferred specification.

Additionally, some medical device types may never exhibit adverse events or innovative

activity and thus would be incomparable to those that do. Thus, I also provide results from

29Specifically, for Class III to II events, I gather controls from all Class III to II events that occurred after 2015,
censoring the outcome data after 2015. For Class II to I events, all device types moved from Class II to I in late
2019 constitute the control group. The 21st Century Cures Act drove this Class II to I event and was the first
time FDA-initiated down-classifications of Class II devices occurred since 1998 (the year of the event I analyze).
Importantly, the FDA used the same explicit down-classification criteria in both events.

30See table A14 for spillover estimates.
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analyses that consider only treated and control device types with positive counts of a given

outcome in the appendix tables A18, A19, and A20. My findings are robust to these restrictions.

As with every non-experimental research design, selection into treatment is a primary

concern. Since the FDA selects medical device types to down-classify based on baseline yearly

adverse event rates, down-classification may be endogenous to changes in adverse event rates.31

Thus, I cannot ascertain how deregulation would affect the adverse event rates for a randomly

chosen device type. However, I can speak to the optimality of the FDA’s decisions on the margin

of their rule (i.e., the most dangerous down-classified devices).

1.5 Results

This section presents estimates of equations 1.4.1 and 1.4.2, which capture the effect of

deregulation on various outcomes of interest. Subsection 1.5.1 presents the effects on the flow

and quality of innovation. Subsection 1.5.2 provides the effects on market structure. Subsection

1.5.3 details how the effects of deregulation on innovation and market structure differ by firm

characteristics. Subsection 1.5.4 presents the effects on device safety.

1.5.1 Changes in Innovation

Table 1.2 reports estimates of equation 1.4.1 for my innovation outcomes.32 Panel A

provides estimates for Class III to II events, and panel B provides estimates for Class II to I

events. Column (1) reports a 5-year pre-treatment mean of the outcomes for treated groups.

Columns (2)–(5) report the estimates of equation 1.4.1 when comparing treated groups to a

matched control group, intuitive controls, “later-treated” device types, and all untreated device

types, respectively. Conley-Taber standard errors are reported below the estimates.

Table 1.2, panel A indicates that Class III to II events led to statistically significant

increases in patenting rates, unique device submissions, mean citations-per-patent, and mean

31See appendix A5.1 for more details.
32Table A18 presents the results from only including device types with some positive outcome counts.
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patent values across control group comparisons (columns 2–5). Depending on the control

group, the results reveal that these events generated 189%–470% more patents and new device

submissions per year per affected device type (pre-means: 8 patents/yr; 0.5 devices/yr). Patents

filed after these events received 180% more citations and exhibited similar increases in market

values. Panel B of table 1.2 shows that patents filed after Class II to I events (i.e., complete

deregulation) received 330%–1,070% more citations and yielded 10%–50% higher market values,

suggesting a divergence between scientific and private value. These results are robust across

comparison groups (columns 2–5). Although economically significant, the increase in patenting

rates from Class II to I events was not statistically significant under my preferred specification.

I examine the dynamics of the innovation responses by estimating the event-study equa-

tion 1.4.2. The top subpanels of figures 1.3 and 1.4 plot the innovation responses (i.e., βt

coefficients) for Class III to II and II to I events, respectively, when using the “matched” control

groups.33 The results of this analysis provide several insights for interpreting my findings. First,

trends in all outcomes were similar in treatment and control groups for ten years before deregu-

lation; trends were also similar for other control groups (not shown). This insight strengthens

the identifying assumptions that (i) treatment and control groups would have exhibited similar

trends in outcomes absent the policy change, (ii) policies were not anticipated, and (iii) policies

were not endogenous to increases in innovative activity. Second, figures 1.3 and 1.4 indicate

a persistent increase in the flow of innovation, suggesting that these events led to investments

in new technologies that would not otherwise have occurred, rather than a forward shift in the

timing of those investments.

Lastly, the event-study estimates for Class III to II events suggest that the increase in

new technologies (i.e., patents) was slow, whereas the upsurge in access to new and existing

technologies (i.e., unique devices submitted) was fast. This distinction, thus, is driven by rapid

changes in the availability of existing technologies. First, firms may have “on-the-shelf” ideas

and products that they have not commercialized due to the expensive approval process. Second,

33Figures A4 and A5 show event-study estimates for the innovation quality variables.
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firms may promptly repurpose existing technologies for new indications. Third, deregulation

accelerates the approval pipeline, leading to a sudden influx of products at different ex-ante

stages of approval. Lastly, since, until recently, E.U. regulations were more lenient, firms may

have introduced their E.U.-approved devices to U.S. markets after deregulation (Grennan and

Town 2020a). By contrast, patenting rates increase gradually after deregulation, consistent with

the time-intensive R&D process. U.S. patenting rates, unlike device submissions, are not affected

by sudden influxes of existing technologies as these technologies are either already patented or

are not patentable. In particular, if a firm files a patent in one country, it must file patents in other

countries where it desires protection within one year to receive protection in those countries

(Popp 2005). Applying for patents in multiple countries is inexpensive as firms can concurrently

file patents in up to 153 countries through the Patent Cooperation Treaty (WIPO 2020).

1.5.2 Changes in Market Structure (Firm Entrants and Prices)

To investigate the effect of deregulation on market structure, I reestimate equation

1.4.1 for five different outcomes: new and incumbent firm entry measured separately by each

data source and prices for procedures that use device types of interest. Table 1.3 presents the

estimates.34 The structure of table 1.3 is similar to that of table 1.2, with the exception of an

additional comparison group matched on pre-event prices (column 2). Panel A reveals that Class

III to II events led to statistically significant increases in incumbent and new firm entry across

control groups (columns 3–6) and data sources (patents and FDA devices). Strikingly, these

events increased the rate of new firm entry by 840%–1,000% (pre-mean: 0.1 firms/yr) when

measured by FDA data and by 150%–420% when measured by patent data.35 The discrepancy

between the magnitudes of these two estimates suggests a strong increase in the availability

of existing technologies. Regarding the effects on incumbent firms, these events increased

34Table A19 presents results from including only device types with some positive outcome counts.
35Supply-side factors may not be the sole driver of these dramatic changes in market structure. As shown in

figure A6, there were considerable equilibrium forces at play: After the number of suppliers of treated device types
increased, demand increased for procedures that use treated devices three years after deregulation, plausibly driven
by lower prices. No significant pre-trends are measured.
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incumbent entry by 400% when measured by FDA data and by 130%–240% when measured by

patent data.

The procedure price estimates are reported in the first row of table 1.3. The results show

that Class III to II events are associated with a statistically significant decrease in the prices of

procedures that use treated device types when using two out of three control groups (columns 2

and 3). The estimates translate to a 33–40% drop in prices, plausibly driven by the increase in

firm entry and competition (Busso and Galiani 2019).36 There are several reasons why these

price results should be interpreted with some caution. First, my price data is only available

after 2004, restricting the number of treated device types I study to five. Second, the estimate

generated using the entire sample of procedures as controls (column 6) is quite noisy, indicating

that the results are less robust. Lastly, UCSD healthcare claims data only cover one regional

hospital system.

Table 1.3, panel B shows the effect of Class II to I events on new and incumbent firm

entry as measured by patent data (device data is unavailable for Class I). The results indicate that

these events increased new firm patenting by 50%–145%, though the estimate under my preferred

specification is only marginally significant. By contrast, incumbent firm entry is statistically and

economically insignificant under my preferred specification. The distinction between the new

and incumbent results suggests that litigation may obstruct new entry less than regulation, but

both environments similarly impact incumbent firms.

To help interpret these findings, I present event-study estimates of equation 1.4.2 for my

market structure outcomes. The βt coefficients are shown in the bottom subfigures of figures

1.3 and 1.4 for Class III to II and Class II to I events, respectively.37 The figures suggest that

36The example of spinal implant deregulation highlights the plausibility of these price estimates. There are several
margins along which a drop in the price of spinal implants could affect the overall costs of spinal fusion procedures.
First, spinal implants account for roughly 40% of the costs of spinal fusion procedures (Beckerman et al. 2020).
Thus, the direct effect of a drop in the prices paid for spinal implants could measurably change the procedure price.
Moreover, new technology could be labor-saving, reducing the costs of labor required to perform the procedure.
Lastly, a lower price for spinal implants could attract more providers to offer the procedure, potentially driving
down prices further.

37Figure A7 plots these coefficients for the Class III to II price outcome, and figure A8 plots these coefficients for
the Class III to II market structure outcomes measured using patent data.
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identifying assumptions (i)–(iii) (listed above) are satisfied and that, when present, the estimated

effects are persistent. For similar reasons given above, figures A8 and 1.4 illustrate a gradual

increase in the rate of new firms patenting (slow R&D), while FDA device data reveals a sharp

increase in device submissions from new firms (includes existing technologies). Figure A7

reveals that procedure prices dropped two years after the events, despite sharp increases in firm

entry. This lagged response is consistent with the contractual nature of healthcare markets; prices

are “sticky” as hospitals periodically renegotiate contracts with suppliers and insurers (Reinhardt

2006, Grennan and Swanson 2020).

1.5.3 Heterogeneity in Firm Proficiency and Size

The average treatment effects estimated in the last two sections overlook heterogeneity in

firm size and regulatory proficiency. In this subsection, I separately estimate equation 1.4.1 across

firm size and proficiency quantiles for the outcomes of interest. I link this heterogeneity analysis

to the propositions in section 1.2 to gain further insight into the mechanisms that drive the overall

results. The identified mechanisms highlight design elements that may make regulation more

amenable to small and inexperienced firms.

Firm Proficiency. To examine how regulation affects firms with different regulatory

proficiencies, I estimate equation 1.4.1 for the device submission outcome across proficiency

quartiles. I center this analysis on FDA data, allowing a cleaner linkage between firms, profi-

ciency, and innovation. Panel A of figure 1.5 presents the results expressed as percent changes

relative to pre-event averages. Class III to II events generated statistically significant increases

in new device submissions across proficiency quartiles. However, the events were associated

with much higher increases among inexperienced firms. Firms in the first proficiency quartile

exhibited a 1,000% increase in new device submissions compared to a 50% increase from firms

in the top quartile.38 These results indicate a quickly diminishing response while moving up the

38Strategic judgment proofing is not driving these results. In other words, these effects are not driven by larger
firms forming small subsidiaries to shield themselves from liability. For example, only 1 out of 20 new spinal
implant manufacturers entering the market after deregulation were subsidiaries.
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proficiency distribution. This pattern is consistent with the estimated learning curves presented in

figure 1.5, panel B as firms in the lowest proficiency quartile benefit from the highest reduction

in approval delays. This reduction translates into outsized decreases in commercialization costs

for inexperienced firms and, thus, higher increases in commercialization activity (as claimed in

proposition 3).

Designing regulation that is simpler and standardized could help less regulation-proficient

firms.39 For example, Stern (2017) shows that when the FDA sets approval expectations by

publishing guidance documents, approvals times of new firms drop by roughly 40 percent. To

simulate the impact of these types of efforts on innovation, I iteratively shrink the gap in delays

between inexperienced and proficient firms by lowering the learning rate γ while measuring R&D

response from a hypothetical distribution of firms (see figure A9 and appendix A3.2 for more

details). Table A21 presents the results of this simulation. The results suggest that flattening the

learning curve could increase the number of unique devices approved up to 63%, with the least

proficient firms exhibiting the largest gains.

Firm Size. To assess how regulation impacts firms with different levels of internal capital,

I estimate equation 1.4.1 across capital terciles for the patenting rate outcome. I perform this

analysis for both down-classification types. Figure 1.6, panels A and B present the results.40

Both event types are associated with larger increases in patenting rates among firms in the bottom

tercile of asset holdings.

Interpreting the heterogeneous effects of regulation through the lens of my conceptual

framework indicates that profits increase after deregulation and that small firms face lower

financing costs after deregulation, despite incurring potentially higher safety effort costs. These

results confirm aspects of the propositions in section 1.2 and suggest that small and inexperienced

firms face relatively high regulatory costs to innovate.

39In multiple interviews, inventors described to me the FDA approval process as “byzantine” and “too much for
us to navigate alone.”

40I focus on patents for two reasons. First, they can be linked easily to patent applicants and capital holdings.
Second, patents allow comparisons across down-classification types.
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The results of this subsection should be interpreted with some caution. Other factors

may be correlated with firm size and proficiency that also contribute to these R&D responses.

However, in addition to the striking similarity between the empirical results and the predictions

made in section 1.2, device manufacturers express that regulatory proficiency and financing costs

are key factors that influence R&D decisions.41

1.5.4 Changes in Device Safety

I examine whether deregulation is associated with decreased device safety by reestimating

equation 1.4.1 for two different outcomes: the rate of adverse events and the rate at which

inventors emphasize safety. Table 1.4 details the results and is structured like table 1.2.42 Table

1.4, panel A reveals that Class III to II events are not associated with statistically significant

changes in adverse event rates and inventor emphasis across control groups. However, these

events are associated with economically significant increases in hospitalization rates under my

preferred specification.

Table 1.4, panel B shows that Class II to I events are associated with statistically sig-

nificant reductions in the rates of hospitalizations and deaths across three out of four control

groups. In contrast to Panel A, all but two estimates are significant at the 10% level, and all

suggest improvements in device safety. The results indicate an associated 93–97% reduction in

hospitalizations and a 49–69% reduction in deaths per year per treated device type (pre-mean:

0.3 deaths/yr). Panel B reveals that these events are also associated with a statistically signif-

icant 100% increase in the share of patents that emphasize an advancement in product safety,

corroborating the results generated by the FDA adverse event report outcomes.

How could deregulation improve device safety? A compelling answer is that deregulation

exposes firms to more litigation, which may increase the net incentives to improve device safety.43

41Firm size, the most obvious potential confounder, is uncorrelated with firm FDA experience (see table A22).
This lack of correlation may result from publicly traded companies having high baseline assets relative to the
average MedTech firm.

42Table A20 presents the results from including only device types with some positive outcome counts.
43Several other potential mechanisms may contribute to improved product safety after Class II to I down-
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To shed further light on liability as the mechanism for this change, I use variation in ex-post

exposure to legal liability by firm size. Small firms can avoid worst-case damages through

bankruptcy, while large firms cannot. If liability risk plays a central role, deregulation should

lead to disproportionate increases in device safety among larger firms. Indeed, the top subfigure

of figure 1.7 shows that larger firms in the top tercile of asset holdings exhibit a significant 100%

increase in the likelihood of demonstrating at least one safety innovation per year per treated

device type. By contrast, smaller firms respond much less dramatically. The bottom subfigure

of figure 1.7 mirrors this finding and shows a more significant drop in the likelihood of serious

adverse events among larger firms.

Figures A10, A11, and A12 illustrate the dynamics of my device safety findings. These

figures plot the βt coefficients estimated from event-study equation 1.4.2. Figure A10 shows that

Class III to II events are associated with a gradual increase in hospitalization rates and serious

event rates as new devices are invented and marketed within treated device types. Figure A11

shows that Class II to I events are associated with a persistent and gradual decrease in adverse

events as inventors increase their emphasis on safer technologies (see also figure A12).

A few caveats accompany my device safety analysis. First, the FDA explicitly down-

classifies device types for which prospective regulation adequately mitigates harm. Thus, the

insignificant adverse event results associated with Class III to II events should be interpreted as

a local average treatment effect. For Class II to I events, however, I use the FDA decision rule

described in appendix A5.1 to assess whether the FDA’s decisions are optimal on the margin

(i.e., at higher “DPM scores”). Accordingly, I separately estimate equation 1.4.1 for each treated

device type relative to a matched control (matched based on DPM score) and plot the relationship

between the effect size and the score value. Figure A13 shows that marginal device types are

classifications. For example, deregulation may increase competition among firms, which may encourage them
to focus more on product safety as a means of differentiation. Additionally, deregulation can lead to increased
innovation, which may result in more product safety innovations. However, I do not observe similar safety
improvements after Class III to II down-classifications, where innovation and market competition tend to increase
more significantly. It is also possible that, after deregulation, firms are no longer constrained by regulatory parameters
such as substantial equivalence, allowing them to more freely innovate in the realm of product safety.
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associated with fewer deaths when compared to control groups, relative to less dangerous treated

device types. This pattern may generalize to most current Class II device types, of which 95%

exhibit fewer adverse events than the most marginal deregulated device type.

Second, the FDA does not normalize adverse event rates by device utilization due to

data limitations. Growth in utilization would increase the likelihood of adverse events. Thus,

fluctuations in adverse event rates reflect changes in product safety and utilization. Hence, using

adverse event rates as a signal of product safety provides a conservative estimate of the net

benefit of deregulation as deregulation increases utilization. Figure A6 shows that, although

no pre-trends are present, utilization rates of treated medical device types significantly increase

three years after Class III to II deregulations, plausibly due to increased supply. Although I

do not have similar utilization data for Class II to I events, treated device types also exhibit

increased supply after deregulation. All else equal, if the demand curve is not perfectly inelastic,

an outward shift in the supply curve would increase utilization.

Lastly, media and regulatory decisions may influence adverse event reports. Manufactur-

ers, for example, could be less likely to report adverse events if they are subject to less regulatory

scrutiny or if reports are more likely to make news after deregulation. However, I focus on

mandatory reports of deaths or severe injuries from hospitals and device manufacturers, which

are less sensitive to these factors than voluntary reports of less severe injuries (FDA 2020c). The

FDA enforces the reporting of serious events using financial penalties and criminal resolution

(Bragg et al. 2018, Emergo 2022).44 Lastly, when the FDA announced the largest Class II to I

down-classification event in 1995, it created new authorities that enabled closer monitoring of

the affected devices to “take appropriate remedial action, if necessary” (FDA 1995), suggesting

that adverse event reports would be more challenging to conceal.

44Both user facilities (i.e., hospitals) and manufacturers are required to report serious adverse events to the FDA.
Thus, if either entity fails to report an event, but the FDA is notified by the other (or other sources like end users),
then it is implicated in incompliance. Additionally, the FDA increased its monitoring of deregulated device types to
take appropriate remedial action if products had become less safe, which would make it it more difficult for firms
marketing affected devices to hide adverse events relative to those marketing unaffected devices (FDA 1995).
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1.6 Back-of-the-Envelope Calculation: Costs & Benefits

This section presents the costs and benefits of deregulation, which are measured by the

three core results derived in section 1.5. First, deregulation increases patenting rates. The value

of this increase is determined by the sum of each additional patent’s market value, accounting

for creative destruction and increases in value from deregulation. Second, deregulation decreases

market concentration and healthcare prices. To value lower healthcare prices, I convert price

changes to changes in expenditures by assuming constant utilization. Lastly, complete deregula-

tion reduced adverse event rates. The resulting drop in deaths is appraised at the statistical value

of all lives saved, while prevented hospitalizations are valued according to Moses et al. (2019).

The assumptions and math underlying these calculations are detailed in table 1.5.

Table 1.5 presents the measured costs and benefits of down-classification decisions. To

justify the FDA’s decision rule for Class III to II down-classifications, the unmeasured costs (e.g.,

political risks) associated with these events would have to be larger than the measured costs.

Class II to I down-classifications do not exhibit any measurable costs as they are associated with

fewer adverse events and more innovative activity. The benefits of these down-classifications,

including fewer adverse events, amount to roughly $24 million per year per treated device type,

even at the margin of the most dangerous treated devices ex-ante. Since there are 2,500 Class II

devices, the yearly forgone net benefits from stalling deregulation could amount to as much as

$60 billion, or nearly 34% of the value of medical devices consumed each year.

I do not include all costs and benefits of deregulation in these calculations. For costs, I

do not measure the value of efficacy assurances provided by the FDA, which are lost after down-

classification (see Grennan and Town (2020a)). However, one criterion for down-classification is

whether device efficacy is easily verifiable and maintained after deregulation, so these costs are

likely small. Second, waiting to deregulate to learn more about a device type’s inherent risk is

valuable if deregulation could lead to increased adverse events (i.e., the option value of waiting).

However, Class II regulations are associated with increased adverse event rates relative to Class
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I, so waiting to deregulate may not provide value. Lastly, there are potential political costs of

misguided deregulation that I do not measure.

The unmeasured benefits of deregulation include reductions in FDA administrative costs,

price reductions from Class II to I events, the value of new jobs created with firm entry, the

benefits of innovation from private firms, and the scientific value of innovation.

1.7 Discussion and Conclusion

This paper analyzes the effect of regulation on medical device innovation, market struc-

ture, and adverse events. My theoretical model clarifies how “learning by doing” and financing

costs make regulation especially burdensome for small and inexperienced firms investing in

the development of new technologies. In turn, the model shows that deregulation increases

the profitability of innovation most for these types of firms and may raise the net incentives

to improve product safety by exposing firms to greater liability risk. I then investigate these

insights, and my broader questions, empirically in the context of the medical device industry,

where complex regulations prevent litigation. For my empirical analysis, I develop a data set that

combines eight underlying sources on innovation, market dynamics, firm characteristics, and

product safety. I find that deregulation disproportionately benefits small and inexperienced firms

and broadly accelerates technological progress and firm entry. This change in market structure

reduces related healthcare prices. Lastly, Class II to I down-classifications are associated with a

significant decrease in adverse events, providing evidence that legal liability risk creates strong

incentives to improve product safety relative to the requirements of medical device regulation.

Increases in product safety are highest among devices originating from large firms that have the

most assets at risk in liability proceedings, providing additional evidence supporting liability as

the driver of this result.

A back-of-the-envelope calculation suggests that deregulation exhibited higher measured

benefits than costs. Class II to I events are associated with net benefits amounting to $24 million
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per year per treated device type. These benefits are higher for marginal, higher-risk device

types, suggesting my results may generalize to other Class II devices.45 These results align

with sentiments from the National Institute of Medicine and physician commentators, which

have criticized the effectiveness of Class II regulations and have advocated for alternatives that

ensure quality and encourage innovation. My results suggest that deregulating Class II devices,

relying instead on the deterrent effects of litigation, is one such alternative: litigation can improve

product safety, hasten innovation, and lower administrative costs.

Class III to II events, however, are difficult to evaluate. On the one hand, I find that the

benefits of deregulation, namely a 470% increase in the availability of new technologies, are quite

large. In the short run, the magnitude of this increase is consistent with deregulation removing

the wedge between the available technologies in the E.U. and the U.S. For example, over 80%

of cardiac stents marketed in the E.U. are unavailable in the U.S., a potential byproduct of

regulation (Grennan and Town 2020a). In the long run, the increase in access to new technologies

is persistent. In practice, however, these events present the FDA with asymmetric costs and

benefits; an increase in salient device-related deaths could degrade the regulator’s reputation

and undermine its more cost-effective efforts elsewhere (Carpenter 2004a;b). In contrast, the

technological benefits that come from deregulation are more abstract. Thus, the FDA’s optimal

strategy may be “too conservative” (Isakov et al. 2019) relative to the social optimum to uphold

its reputation at the expense of innovation. This asymmetry is evident in FDA documents

outlining the criteria for down-classification as the value of forgone innovation is not considered.

This study seeks to clarify these forgone benefits. However, more empirical research is needed

to assess the costs of regulatory mistakes and the value of regulator reputation.

My study focuses on the large and growing medical device market, but the results may

also be relevant to other settings with similar regulations. For instance, FDA regulations for

Class III devices are similar to those in the EU, and requirements for these devices resemble

45Moreover, 95% of current Class II devices have lower adverse event rates than the most dangerous deregulated
device type before deregulation.
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those for brand-name drugs in the US and other countries (Van Norman 2016).46 Additionally,

Class II device regulations are similar to those used abroad and resemble those for generic

drugs—which are also protected from product design tort claims after FDA approval—and

genetically modified (GM) foods (Schwartz and Appel 2020, Schauzu 2000). These similarities

suggest that medical technology and food regulations may slow innovation and increase market

concentration worldwide. Lastly, my analysis highlights the potential issues that arise when

regulators use imperfect proxies or heuristics to evaluate product quality, such as the “substantial

equivalence” heuristic used for Class II devices, generic drugs, tobacco products, and GM foods.

These heuristics may be particularly pervasive when product quality is hard to verify or when

regulators are under-resourced. In such situations, a robust legal system with impartial judges

and high damage caps may better incentivize product safety through litigation.

46Tabarrok (2000) offers some evidence that FDA pharmaceutical regulations are too stringent.
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Figure 1.1. Background on Medical Device Regulations. Note: This figure presents background
on FDA Medical device regulations and the deregulation policy changes I leverage in my analysis.
Device types are placed into one of three classes, each corresponding to a level of perceived risk.
Higher perceived risk requires a longer approval process and additional costs to conduct testing and
maintain business operations before a product is approved. The time and cost values are averages
within the given class and are derived from Makower et al. (2010). While learning about a device
type’s underlying risk, the FDA can deregulate a device type by moving it from a higher-risk class to
a lower-risk class (called “down-classification”). This decision dramatically reduces the approval
delays and costs that device manufacturers confront. The FDA rarely reclassifies device types
into a higher-risk class. The last column includes examples of Class III, II, and I devices, namely,
pacemakers, x-ray machines, and tongue depressors, respectively. *Medical devices with attendant
“special controls” requirements (Class II devices) are often protected from product liability (Costello
and Pham 2016). However, there is no supreme court precedent that guarantees preemption; thus,
courts exercise some discretion in their interpretation of federal preemption with Class II devices.
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Figure 1.2. Theoretical Change in Safety Effort after Deregulation. Note: This figure presents
a possible change in the level of safety effort after deregulation. This scenario is one in which
deregulation could lead to an increase in safety effort, given a sufficient increase in damages, as
described in section 1.1. The x-axis indicates the level of safety effort exerted. The y-axis denotes
the monetary value. The marginal cost of effort curve indicates a marginal cost of psi at initial values
of safety effort before financing costs are incurred, at which point marginal costs increase with effort.
The marginal abatement of damages curve under regulation is always equal to zero due to federal
preemption. The counterfactual dotted section of the marginal abatement curve under regulation
represents the marginal abatement of damages from exerting effort below mandated levels while still
achieving FDA approval. Deregulation shifts the marginal abatement curve as legal damages are no
longer prevented by federal preemption. The value x-star represents the optimal level of safety effort
after deregulation (i.e., where the marginal cost of safety effort is equal to the marginal abatement of
expected damages). The value x-underbar represents the mandated level of safety effort. The vector
Z contains other factors that affect a firm’s legal damages in expectation, which might be specific to
the given legal system, like damage caps.
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Figure 1.3. Effects of Class III to II Events (High to Moderate Regulation). Note: This figure presents the estimates of the coefficients from the
event-study equation 1.4.2 for some innovation and market structure outcomes. Only Class III to II down-classification events are considered.
Controls are device types matched on baseline averages of the outcome. Data are analyzed at an annual frequency. The top-left subfigure illustrates
the evolution of patents filed per year in treated device types relative to matched control groups. The top-right subfigure describes the evolution
of unique devices approved per year by the FDA for treated device types relative to control groups. The bottom-left subfigure illustrates the
evolution of the rate of new firm entry (counts per year), calculated using device submission data relative to matched control groups. New firm
entry represents firms that have never before submitted FDA documentation. The bottom-right subfigure illustrates the evolution of the rate of
incumbent firm entry (counts per year of firms that have previously submitted FDA documents) in treated device type relative to controls. Standard
errors are calculated following Conley and Taber (2011).
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Figure 1.7. Change in Emphasis on Safety by Firm Asset Terciles (II to I). Note: This figure presents
separate DID estimates of equation 1.4.1 for the change in the likelihood of device types exhibiting
at least one annual occurrence of the given outcome variable by firm asset terciles. I set all outcomes
greater than zero to one (LPM) as safety mentions and serious events are rare. The baseline outcome
values across asset terciles are roughly equal and do not drive these disparate effects. The top figure
presents the change in the likelihood of safety-related innovations, and the bottom figure illustrates
this change for serious adverse events (death, hospitalization, or life-threatening event). Terciles are
formed using the asset totals from firms that are publicly traded. The x-axis describes the tercile:
first, second, or third, and the y-axis conveys the percent change in the likelihood. 95% confidence
interval bars are provided.
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Table 1.1. Summary Statistics. Note: Tables A7, A8, and A9 provide summary statistics for each class
independently. See Kogan et al. (2017) for more information on the patent market valuation data,
which was merged into my patent dataset. The CRSP/Compustat database was used to derive the
total assets of the firms applying for patent protection and is a proxy for firm size. Market values
and applicant assets are only available for patents filed by publicly traded firms, representing roughly
25% of the total sample of patents. Missing observations account for the discrepancies between (i)
the number of total FDA device types (5,542) and the number of device types represented in device
submissions, adverse event reports, and patents (many device types have no associated patents), (ii) the
total number of patents and the number of patents with market valuations and applicant assets, and (iii)
the total number of claims and claims containing amounts paid. *“Regulatory proficiency” indicates
the total number of days a firm has experienced approval delays across all its submitted devices.

N Mean SD Range

FDA Admin. Data—Device Submissions (PMA and 510(k) Databases)
Total 168,880 - - -
per Device Type 4,710 (Types) 35.5 110.8 [1, 2,457]
Total Submitting Firms 20,343 - - -
Firms per Device Type 4,710 (Types) 15.7 39.5 [1, 1,048]
Firm Regulatory Proficiency 4,660 (Types) 19.5yrs 65.4yrs [0, 686.2yrs]*

FDA Admin. Data—Adverse Event Reports (MAUDE)
Total 9,238,733 - - -
per Device Type 4,111 (Types) 2,353.3 18,939.9 [1, 0.6M]
Serious Events per Dev. type 2,400 (Types) 571.7 5186.8 [1, 0.15M]
Assets of Offending Firm 7,139,727 $3.76B $5.77B [$0, $0.79T]

USPTO Device Patents
Total 1,248,292 - - -
per Device Type 2,113 (Types) 590.8 2077.4 [1, 23,056]
Citations 1,248,292 14.6 88.8 [1, 5,817]
Market Valuation 377,465 $13.1M $30.7M [$45, $1.9B]
Applicant Assets 377,465 $26.7B $54.8B [$0.07M, $1.1T]

UCSD Healthcare Claims Extract
Total 495,519 - - -
per Procedure Code 528 (Codes) 880.4 2397.5 [1, 18,915]
Unique Patients 55,621 - - -
Price 453,079 $135.7 $389.0 [$0, $0.01M]
Price per Proc. Code 528 (Codes) $354.8 $576.1 [$0, $5,401]
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Table 1.2. Effect of Down-Classifications on Innovation. Note: The table presents estimates of equation
1.4.1, which is a difference-in-differences (DID) style OLS regression model. Outcomes are derived
from USPTO patent databases, FDA administrative data, and Kogan et al. (2017). Column (1) presents
the 5-year baseline average of treated device types for the outcomes listed on the left-hand side.
Columns (2)–(5) present DID estimates for the listed outcomes using different control groups: namely,
a matched control group, intuitively similar device types (treat similar diseases), “later-treated” device
types (treated after sample window), and the full sample, respectively. Device submissions are derived
from FDA data and are not available for Class I devices. For column (4), Class III to II, control device
types are treated after 2015; thus, all observations after 2015 are dropped. Confidence intervals are
calculated using Conley–Taber test statistics. +, *, **, and *** correspond with statistical significance
at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Patenting Rate 7.95 14.99** 25.61** 26.65* 18.14
(9.27) (5.57) (8.98) (10.36) (20.58)

Device Submission Rate 0.47 2.69*** 2.36** 2.26** 2.22***
(1.03) (0.59) (0.77) (0.73) (0.33)

Citations-Per-Patent Rate 9.06 16.59* 21.86* 19.43** 26.24***
(20.65) (7.48) (9.81) (6.41) (5.62)

Average Patent Value 4.36 8.24*** 11.29*** 11.58*** 10.50***
(6.12) (1.81) (2.91) (2.96) (1.59)

Sample Size 1540 1056 920 60456

B. Class II to I:

Patenting Rate 16.32 7.34 7.06 13.32** 29.17***
(37.11) (4.86) (6.77) (5.01) (7.18)

Citations-Per-Patent Rate 0.64 6.85** 2.12* 3.98*** 6.00***
(0.48) (2.30) (1.08) (0.84) (1.43)

Average Patent Value 6.49 3.37*** 0.90+ 2.04*** 6.13***
(14.19) (0.67) (0.47) (0.46) (0.56)

Sample Size 15180 20592 27764 32472
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Table 1.3. Effect of Down-Classifications on Market Structure. Note: The table presents estimates of
equation 1.4.1, which is a difference-in-differences (DID) style OLS regression model. Column (1)
presents the 5-year baseline average of treated device types for the outcomes listed on the left-hand
side. Columns (2)–(6) present DID estimates for a given outcome using different control groups.
These groups are (2) matched on baseline prices, (3) matched on baseline innovation and adverse
event levels, (4) an intuitively comparable group, (5) a later-treated group, and (6) the full sample
of controls, respectively. Column (5) of Panel A uses control device types treated after 2015, so all
observations after 2015 are dropped. Procedure prices were only available after 2004, restricting
sample size. There are no price estimates in columns (4) and (5) due to data limitations. Confidence
intervals are calculated using Conley–Taber test statistics. +, *, **, and *** correspond with statistical
significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Price Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5) (6)

A. Class III to II:

Procedure Price 95.31 -58.25** -43.54** - - -27.50
(123.95) (21.16) (15.66) - - (144.11)

Sample Size 160 176 - - 36240

Incumb. Entry (dev.) 0.40 - 1.58*** 1.48** 1.46** 1.44***
(0.91) - (0.36) (0.54) (0.52) (0.22)

New Entry (dev.) 0.07 - 0.67*** 0.70** 0.59** 0.63***
(0.31) - (0.19) (0.22) (0.19) (0.13)

Incumb. Entry (pat.) 1.47 - 1.91** 2.78** 3.56** 2.98*
(1.78) - (0.59) (1.01) (1.34) (1.48)

New Entry (pat.) 3.78 - 5.63*** 11.19** 11.94** 8.88
(4.76) - (1.61) (3.75) (4.31) (6.32)

Sample Size - 1364 1056 920 60456

B. Class II to I:

Incumb. Entry (pat.) 2.26 - 0.04 0.32 0.61* 1.36**
(4.33) - (0.45) (0.36) (0.29) (0.42)

New Entry (pat.) 7.27 - 3.85+ 2.60 4.87** 10.55***
(16.87) - (1.99) (2.10) (1.57) (2.07)

Sample Size - 13552 20592 27764 32472
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Table 1.4. Effect of Down-Classifications on Adverse Events. Note: The table presents estimates of
equation 1.4.1, which is a difference-in-differences (DID) style OLS regression model. Column (1)
presents the 5-year baseline average of treated device types for the outcomes listed on the left-hand
side. Adverse event outcomes are derived from the FDA MAUDE database. Columns (2)–(5) present
DID estimates for the listed outcomes using different control groups: namely, a matched control
group, intuitively similar device types (treat similar diseases), “later-treated” device types (treated
after sample window), and the full sample, respectively. For column (4), Class III to II, control device
types are treated after 2015; thus, all observations after 2015 are dropped. Confidence intervals are
calculated using Conley–Taber test statistics. +, *, **, and *** correspond with statistical significance
at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Emphasis on Safety 0.16 0.073+ - - -
(0.21) (0.039) - - -

Life-Threatening Event Rate 0.07 0.65 0.89 -0.92 -2.40
(0.31) (0.55) (0.83) (0.64) (1.83)

Hospitalization Rate 0.25 2.38+ 3.07 1.39 -3.48
(0.84) (1.27) (1.94) (1.16) (3.72)

Mortality Rate 0.08 -1.21 1.08 -0.07 0.26
(0.46) (2.21) (0.68) (0.59) (2.53)

Sample Size 616 672 552 38472

B. Class II to I:

Emphasis on Safety 0.065 0.05*** - - -
(0.218) (0.012) - - -

Life-Threatening Event Rate 0.07 -2.18 -0.36+ -3.24* -3.18*
(0.43) (2.02) (0.19) (1.63) (1.56)

Hospitalization Rate 0.17 -2.05*** -3.04+ -4.87* -5.44*
(0.94) (0.60) (1.56) (2.35) (2.54)

Mortality Rate 0.26 -0.43** -0.27 -0.46+ -0.57*
(2.13) (0.14) (0.20) (0.26) (0.27)

Sample Size 10332 13104 17668 20664
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Table 1.5. Costs and Benefits of Down-Classification. Note: This table provides the back-of-the-envelope
calculations of the costs and benefits of Class III to II and Class II to I down-classification events.
Assumptions are detailed at the header of the table. Patent estimates are calculated using only publicly
traded companies for which I can obtain patent values as calculated in Kogan et al. (2017). I provide
95% confidence intervals for the costs and benefits. Costs and benefits are annualized and averaged at
the device type level (as defined by the FDA). The column “Value” is the value per unit of the estimate.
In my data, procedures using treated medical device types generate, on average, $26,849 a year of
health expenditures. Scaling this total to a national level ($26,849/ 0.0008, where .0008 is the share
that UCSDH executes) gives roughly $33 million a year spent per treated procedure, on average. This
total is similar to the average yearly cost of medical procedures seen when Medicare data is scaled
to national expenditures, at $34.7 million a year per procedure. Since I find that costs, as measured
by paid amounts, decrease by 44–62% a year, I use these percentage decreases in prices to calculate
annual national expenditure changes per treated medical device type. These calculations are presented
in the “Prices” row for Class III to II down-classifications. “Patented Inn.” represents innovation that
is patented by public firms, and “Hospital.” represents hospitalizations.

A
ss

um
pt

io
ns

-Cost of mortality is EPA’s VSL of $10 million.
-Average inpatient hospital stay costs $22,000. No other costs.
-Creative destruction of 4/5 from value of patents.
-Do not consider private firm patent values.
-Do not consider scientific value of innovation.
-No value of efficacy information from regulations.
-No value from firm entry (e.g., not considering value of new jobs).
-UCSDH performs .08% of total U.S. procedures (calculated from data).

Outcome Estimate 95% C.I. Value Total 95% C.I.

C
la

ss
II

It
o

II C
os

ts

Mortality 1.08 [-0.3,2.4] $10m $10.8m [-$3m, $24m]
Hospital. 2.38 [-0.1,4.9] $.02m $.05m [$0m, $0.1m]

$10.9m [-$3m, $24m]

B
en

efi
ts Patented Inn. 5 [3.2,8.1] $13m/5 $13m [$8.2m, $21.1m]

Prices -$14.7m [-$2.6,-$26.8] -1 $14.7m [$2.6m, $26.8m]

$24.7m [$11m, $48m]

C
la

ss
II

to
I C
os

ts

Mortality -0.43 [-0.7, -0.16] $10m -$4.3m [-$7m, -$1.6m]
Hospital. -2.1 [-3.3, -0.9] $0.02m -$0.04m [-$0.06m, $0]

-$4.3m [-$7m, -$1.6m]

B
en

efi
ts Patented Inn. 9 [3.1, 14.9] $10m/5 $18m [$6m, $30m]

$18m [$6m, $30m]
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Chapter 2

Demand Shocks, Procurement Policies,
and the Nature of Medical Innovation: Ev-
idence from Wartime Prosthetic Device
Patents

From 1960 to 2019, U.S. health spending rose from 5 to nearly 18 percent of GDP.

Research has documented that the advance of medical innovation underlies a substantial share

of this cost growth (Smith et al. 2009, Cutler 2004), which raises a variety of questions. First,

what factors drive the volume of medical innovation? Second, what leads inventors to focus

on reducing costs (e.g., by streamlining production processes) versus improving quality? More

generally, what factors shape the specific problems with which medical innovators choose to

engage?

Wars and pandemics, among other events, can create acute needs for medical innovation.

The COVID-19 pandemic, for example, generated demand for new vaccines, new diagnostic

tests, testing infrastructure, and personal protective equipment. The value of new vaccines is

widely recognized. Improvements in medical equipment, reductions in production costs, and

expansions in productive capacity can also have substantial value when demand rises sharply.

This motivates us to study how demand shocks and procurement environments shape the volume

of medical innovation, its emphasis on the production process, and its emphasis on dimensions

of product quality.
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We analyze the effects of demand shocks and procurement environments on the quantity

of medical innovation and the product and production process attributes it emphasizes. Our

empirical analysis considers two important periods in the history of prosthetic device innovation:

the U.S. Civil War and World War I. We begin by presenting key details of these historical

contexts, including differences in demand, differences in procurement incentives, and differences

in the stated goals of the public procurers. We show that both the Civil War and World War I

led to substantial increases in prosthetic device patenting. A point of contrast is that the Civil

War led to a much greater focus on cost-conscious innovation while World War I did not. To the

best of our knowledge, this analysis provides the first evidence that cost-conscious procurement

environments can indeed steer medical innovation in a cost-conscious direction.

Empirically assessing how incentives shape the emphases of inventors requires over-

coming two primary challenges. First, existing data sources that categorize patents or clinical

trials do not provide information on an invention’s detailed economic attributes. Extracting

this information requires going deeper into an invention’s details. Second, linking procurement

environments to the specific attributes on which inventors focus requires analyzing settings

across which those environments exhibit variation.

To gain insight into how inventors advanced the frontier of prosthetic device technology,

we use machine learning tools to construct a novel data set. We begin by closely reading 1,200

patents from the periods surrounding the U.S. Civil War and World War I. Our selection comprises

prosthetic device patents and patents from other medical and mechanical technology classes.

Based on these close readings, we code variables describing the economic traits emphasized in

each patent. These variables include three traits that we interpret as production-process attributes,

three traits that capture distinctive dimensions of product quality, and two additional traits that

are less clearly defined as quality or production process traits. We then use machine learning

tools to extend our data set to include a much larger set of patents.

The U.S. Civil War and World War I generated dramatic increases in demand for ar-

tificial limbs, as amputations were remarkably common. The associated public procurement
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environments created incentives that differed across the two wars. Our empirical analysis of

these episodes includes a combination of time series and difference-in-differences methods.

In the time series analysis, we directly examine changes in prosthetic device patents. In the

difference-in-differences analyses, we use patents from other medical and mechanical technology

classes to construct control groups.

Our first result quantifies the effects of the Civil War and World War I on the quantity

of prosthetic device innovation. For several years during these historical episodes, prosthetic

device patenting rose by nearly 100 log points relative to patenting in our control groups. Despite

analyzing only two events, the relative increases in prosthetic device patenting are strongly

statistically distinguishable from zero. Our evidence from patents filed with the U.S. Patent and

Trademark Office (USPTO) is supplemented by patents from the short-lived Confederate patent

office, as well as from the British and Spanish patent authorities.1

For the Civil War period, we have sufficient information to infer an elasticity of innovation

with respect to potential revenues. We estimate an elasticity on the order of one for both patenting

and firm entry; this is higher than typical estimates of long-run elasticities of medical innovation

with respect to long-run changes in market size (Dubois et al. 2015). Innovation may respond

more rapidly to crisis-driven shocks than to standard changes in market size, as Agarwal and

Gaule (2021) have observed in the context of the COVID-19 pandemic.

Second, we find that the demand shock associated with the Civil War generated substantial

effort to reduce the cost of producing prosthetic devices. During the Civil War, the average

prevalence of production process traits doubled in prosthetic device patents but was essentially

flat within other technology classes. There was a far more modest shift towards production

process traits during World War I. The Civil War era shift towards cost-oriented innovation is

consistent with an important role for procurement incentives. As discussed in section 2.1, the

U.S. government’s Civil War era procurement program involved modest, fixed-price payments

1In the British patent data, we see a large increase in prosthetic device patenting during World War I and no
increase during the U.S. Civil War. Spain participated in neither conflict and the Spanish data exhibit no increase in
prosthetic device patenting.
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to artificial limb manufacturers, which can create strong incentives for innovation to reduce

production costs.2 As further suggestive evidence for the role of procurement incentives, we

show that patents for artificial arms, for which profit margins were lower than for artificial legs,

exhibit a more substantial shift in emphasis towards cost reduction during the Civil War.

Third, the prosthetic device patents of the Civil War and World War I diverged with

respect to dimensions of quality. Civil War-era prosthetic device patents exhibit a substantial

increase in emphasis on comfort. By contrast, World War I-era prosthetic device patents

de-emphasize comfort and place greater emphasis on occupation-oriented “appliances.” The

latter shift connects quite directly to the historical narrative, which highlights an emphasis of

governments and medical professionals on the re-employment of veterans with amputated limbs.

Civil War and World War I-era differences in emphasis on comfort are plausibly linked to a World

War I-era shift in choice away from veterans and toward medical professionals. As detailed

below, the historical narrative provides validation for the channels through which the Civil War

and World War I-era procurement environments may have altered these dimensions of inventor

effort.

Our analysis adds to a broad line of research on the effects of potential profits on

innovation. This includes labor economics applications (Acemoglu 1998, Hémous and Olsen

2022) as well as a substantial environmental economics literature summarized by Popp (2010;

2019). In the context of health care, research on the effects of potential profits on innovation has

focused primarily on pharmaceutical innovation (Finkelstein 2004a, Acemoglu and Linn 2004b,

Budish et al. 2015).3 Exceptions include analyses of medical equipment and device patenting

2With fixed prices set moderately below baseline costs, for example, sales are not profitable until manufacturers
find ways to reduce production costs. More generally, even when the fixed price exceeds cost, a lower baseline profit
per unit increases the returns to innovating to reduce cost relative to the returns to innovating to increase market
share by increasing quality.

3Additional papers include Blume-Kohout and Sood (2013a), who find that research on drugs with high Medicare
market shares rose following the introduction of Medicare Part D, Yin (2008), who finds positive effects of the
Orphan Drug Act, Dubois et al. (2015), who find that potential profits affect the number of new molecular entities
that come to market, and Agarwal and Gaule (2021) who study medical innovation in the context of the COVID-19
pandemic.
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by Clemens (2013) and by Galasso and Luo (2017; 2022).4 We contribute to this literature by

providing novel evidence on the effects of large demand shocks on prosthetic device innovation.

We additionally provide evidence that innovation may respond more aggressively to crisis-driven

shocks than one would infer on the basis of long-run elasticity estimates.

We also contribute to the literature on medical innovation by applying text analysis

methods to gain insight into innovators’ emphases on cost versus dimensions of product quality.

Analyses of patent texts have become increasingly common in the innovation literature.5 We

apply text analysis methods to develop the novel data required to make progress in understanding

whether procurement environments can shape the particular dimensions of the technical frontier

on which inventors focus. Methodologically, we develop several practical insights into best

practice methods for this class of machine learning applications. The substance of our findings

provides evidence that cost-conscious procurement environments can indeed steer medical

innovation in a cost-conscious direction.

The paper proceeds as follows. Section 2.1 provides historical background and section

2.2 summarizes the hypotheses that are motivated by our historical settings. Section 2.3 discusses

our novel data set and section 2.4 our empirical strategy. Section 3.4 presents our results and

section 2.6 concludes.

2.1 Civil War and World War I Demand for Artificial
Limbs

The U.S. Civil War and World War I were both associated with dramatic increases in

demand for prosthetic devices. In this section, we begin by describing the size of these demand

shocks. We then provide background on the relevant systems for rehabilitating veterans and

procuring artificial limbs.

4Clemens (2013) studies medical equipment patenting surrounding the introduction of Medicare. Galasso and
Luo (2017) study the effects of tort reform on medical equipment and device innovation, while Galasso and Luo
(2022) study the effects of liability risks faced by the suppliers of medical implants.

5See, for example, Khoury and Bekkerman (2016), Bergeaud et al. (2017), Iaria et al. (2018), Watzinger and
Schnitzer (2019), Arts et al. (2018), Cockburn et al. (2018).
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2.1.1 The Magnitude of Wartime Demand Shocks

The U.S. Civil War was contested between the armies of the Union and the Confederacy

from April 1861 to May 1865. An estimated 35,000 veterans with amputated limbs survived

the war on the Union side alone (Linker 2011; p. 98). Because the government had not formed

a permanent bureaucracy for addressing veteran health care needs prior to the war, both the

Union and Confederacy implemented ad hoc artificial limb procurement systems as the scope of

need became clear. Wartime production levels (Barnes and Stanton 1866, Hasegawa 2012) far

exceeded pre-war production as documented in the 1860 Census of Manufacturing. In developing

our evidence of the effects of Civil War-era demand on innovation, we draw primarily on patents

filed with the USPTO, but also consider patents filed with the short-lived Confederate patent

office.

World War I produced an estimated 300,000 veterans with amputated limbs worldwide.

Relative to the Civil War, demand associated with 4,000 U.S. veterans was relatively modest.

Because production capacity was low among the European powers and high in the United States,

the U.S.-based artificial limb industry played an important role in satisfying global demand.

Great Britain, for example, which was home to an estimated 41,000 surviving veterans with

amputated limbs (Guyatt 2001; p. 98), invited the largest American prosthetic companies “to set

up workshops at the main amputee center” (Linker 2011; p. 99). In developing our evidence of

the effects of World War I-era demand on innovation, we study patents from both the United

States and Great Britain.

2.1.2 Background on Civil War and WWI-Era Procurement

During the Civil War, the manufacturers of artificial limbs faced a competitive environ-

ment in which they were reimbursed on a “fixed-price” basis. To become eligible for purchase

through the Union’s limb allowance program, artificial limb models had to be certified by a board
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of physicians.6 If the board deemed a prototype to be “serviceable,” its manufacturer entered

the list of manufacturers from which soldiers could select the provider of their artificial limb.

Fixed-price reimbursements were set at modest levels relative to manufacturers’ stated costs

from the pre-war period, and balance billing was prohibited (Hasegawa 2012; p. 37-38).7

By World War I, the U.S. had substantively formalized the treatment of veterans with

amputated limbs. This occurred within a broader effort to formalize veterans’ health care. In

addition to being formalized, care for veterans with amputated limbs was mostly centralized at

large facilities, including the recently built Walter Reed Hospital.8

Progressive Era policymakers worried that veterans with amputated limbs would, like

many of their Civil War predecessors, fail to return to gainful employment. A perception of

limbless Civil War veterans “pocketing” their allowances and opting out of the labor force

impacted World War I-era views regarding care and rehabilitation (Linker 2011). As Linker

(2011; p. 13) writes, ”The veterans of America’s First World War were expected to become

citizen-workers once their military service was over; they were to make useful lives, not to

languish at the expense of the US Treasury.”

Between the Civil War and World War I, discretion in the choice of artificial limb shifted

from veteran to government. During World War I, veterans underwent extensive rehabilitation

prior to their return to civilian life, including obligatory use of standard-issue prosthetic limbs.

Linker (2011; p. 101) writes that “the OSG [Office of the Surgeon General] forcefully mandated

artificial limb wear, creating legislation that made it virtually impossible for US amputee soldiers

6As Hasegawa (2012) documents, General William Hammond convened a panel of physicians to, in Hammond’s
words, “determine what kind of Artificial Limbs should be adopted for the use of mutilated soldiers.”

7During the latter half of the war, the price for artificial legs was set at $75 (roughly $1,500 in 2018 dollars)
and the price for artificial arms was set at $50. A small number of products were authorized for sale at higher rates
(Hasegawa 2012; p. 40). In such cases, the veteran was responsible for the difference between the approved price
and the government’s allowance of $75 per leg or $50 per arm. These products were meant to be sold at the approved
prices on a fixed rate basis with no balance billing. Hasegawa (2012) documents that a leading manufacturer told
the government his costs were $150 per artificial leg.

8Treatment of veterans with amputated limbs also took place at Letterman hospital in San Francisco. As
Linker (2011; p. 80) writes, “Surgeon General Gorgas designated two general hospitals to become permanent
installations for rehabilitative care: Letterman General Hospital in San Francisco and Walter Reed General Hospital
in Washington. Later in the war, the list of military rehabilitation hospitals would grow to 14, but Letterman and
Walter Reed remained the flagship facilities during and after the war.”
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to be discharged from military service without months of rehabilitation and daily routine artificial

limb wear.” In contrast with the Civil War, demand for artificial limbs was thus shaped to a

significant degree by the veterans’ medical bureaucracy and to a lesser degree by wounded

veterans.

The incentives facing artificial limb manufacturers were shaped by the preferences of

World War I-era medical bureaucracies in both the U.S. and Europe. While we cannot know

the precise criteria each bureaucracy used in their procurement of artificial limbs, the historical

record provides clues regarding approaches to rehabilitation. Medical professionals of the World

War I-era de-emphasized comfort in favor of a strict rehabilitation program. Linker (2011;

p. 109-114) writes, for example:

Once surgical healing had been attained... the ‘toughening’ of the stump by
‘pounding it on a firm surface’ should be ’vigorously pursued’... Following stump
pounding exercises, ‘patients usually complained of discomfort’... Another report
stated that when amputees were forced to wear artificial limbs soon after surgery,
they often ‘expressed gratitude when the artificial limb [was] removed.’

In addition to driving a relatively severe program of physical rehabilitation, the desire for social

reintegration spurred an emphasis on re-employment. The British government had similar views

on the importance of rehabilitation and re-employment.9 The historical record thus suggests that

World War I-era procurers placed substantial emphasis on artificial limbs’ capacity to restore an

individual’s employability.

2.2 Implications of Wartime Demand Shocks for Innovation

We draw on the historical narrative regarding Civil War and World War I-era demand

shocks and procurement environments to develop hypotheses regarding the potential effects of

these events on prosthetic device innovation. The hypotheses motivated by the historical record

are as follows:
9See, for example, the discussions of British World War I-era rehabilitation and artificial limb manufacturing in

Novotny (2017) and Guyatt (2001).
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First, the large demand shocks associated with both the Civil War and World War I

increased incentives for developing novel prosthetic devices. The hypothesis that these demand

shocks would increase flows of innovation is perhaps the most standard hypothesis in the

literature on demand-driven innovation.

Second, the Civil War-era procurement environment featured a low, fixed-price reim-

bursement regime. We hypothesize that this regime may have generated an increase in inventor

emphasis on cost-conscious innovation. This hypothesis is linked in part to the fact that produc-

tion costs must be driven below the reimbursement level before sales become profitable.

Third, we hypothesize that the emphasis of World War I-era procurers on the re-

employment prospects of wounded veterans may have increased inventor emphasis on the

capacity for artificial limbs to enhance their wearer’s social reintegration and employability.

Social reintegration could be facilitated by limbs that more faithfully mimicked the appearance

of a natural limb. Employability could be facilitated by a line of artificial limb technology we

call “appliances.” In this context, the word “appliances” refers to interchangeable artificial limb

attachments which serve functions that connect directly to occupational tasks.

Fourth, we hypothesize that the Civil War-era procurement environment may have

increased inventors’ emphasis on characteristics demanded by veterans, who could choose across

products, while the more centralized World War I-era procurement environment prioritized the

preferences of the veterans’ medical bureaucracy. This final hypothesis has less precise empirical

content than hypotheses one through three. It may be relevant to such traits as an artificial limb’s

comfort and appearance.

2.3 Patent Data and Text Analysis Methods

We begin this section with a discussion of the historical patent data we use to estimate

the effects of wartime demand shocks on overall patent flows. We then discuss the new data we

generated through text analysis (or natural language processing) using a combination of close
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readings and machine learning techniques.

2.3.1 Historical Patent Data

The first question we attempt to answer is if wartime increases in demand for prosthetic

devices increased the rate of prosthetic device patenting. This analysis requires information on

19th and early 20th century patents by technology class. Until relatively recently, the patent data

sets analyzed by economists did not facilitate this type of historical analysis. The groundbreaking

NBER patent database (Hall et al. 2001), for example, begins with patents granted in 1963.

Economists have recently developed databases extending to the earliest surviving records of

the U.S. Patent and Trademark Office (USPTO). To identify historical patents based on their

technology classes, we use the database assembled by Berkes (2018).10 We supplement these

data with additional data on Confederate patents, British patents, and Spanish patents.11

One shortcoming of the Civil War era patent data is that, before 1873, patents reported

the date the patent was issued, but not the date it was filed (Berkes 2018). Consequently, we

organize patents according to their date of issuance throughout our analysis. Patents from 1873

onward allow us to gauge the typical lag between patent filing and issuance during the period we

analyze. From 1873 through the end of our World War I sample, the average lag between filing

and issuance was 1.2 years for the full set of technologies we analyze and just over 0.9 years for

prosthetic devices.12 We test whether indexing by patent issuance dates changes our findings

relative to indexing by filing dates using data from the World War I era. We find that the time

series for both our treatment and control classes are shifted forward by roughly one year when

indexed by patent filing year, as shown in panels A and B of Figure B26. This has little influence

10In a comparison of several recent efforts to compile data sets on the universe of U.S. patents, Andrews (2019)
concludes that the database laid out in Berkes (2018) is “currently the gold standard.” Additional analyses of 19th
and early 20th century patents, including those by Berkes and Nencka (2019) and Berkes et al. (2019) have been
made possible by these data.

11Sáiz (2000) and Sáiz et al. (2008) generously provided Spanish patent data.
12In the technology classes we analyze, the average lag between filing and issuance has exceeded three years

during the 21st century. Lags between filing and issuance have thus been much longer in recent years than during
our sample.
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on our reading of the evidence.

Figure 2.1 provides an initial look at time series on prosthetic device patents and other

broad categories of patents during the historical episodes we analyze. The dashed vertical lines in

each panel encompass the years we subsequently associate with war-induced booms in prosthetic

device patenting. It is quite clear from the panels of Figure 2.1 that both the Civil War and

World War I were associated with substantial increases in the rate of prosthetic device patenting

among combatant nations (i.e., the United States during the Civil War and World War I, the

Confederacy during the Civil War, and the United Kingdom during World War I), but not among

non-combatant nations (i.e., the United Kingdom during the U.S. Civil War and Spain during

both the U.S. Civil War and World War I). However, quantifying the causal effect of wartime

demand shocks requires constructing counterfactuals, which we discuss in section 2.4.

There are limitations when using patent counts to measure innovation. Primarily, patent

counts do not necessarily measure changes in meaningful innovation. Thus, during the period

surrounding World War I, we follow standard practice in the literature by using citations as a

proxy for patent quality. As shown in Panel B of Figure B24, the average number of citations

per patent was fairly stable during World War I, suggesting that the prosthetic device patent

boom was associated with patents of similar impact as the pre-war patents. Citation measures

of quality for Civil War patents are less reliable. As described by Berkes (2018), 19th-century

patents have less complete and noisier citation data. Panel A shows that, during the Civil War

period, the sparsity of citation data likely renders this exercise uninformative. To validate the

quality of Civil War era patents, we look to information reported in Tables 2.1 and 2.2, which we

describe below in detail.

Several features of the Civil War period allow us to establish that changes in patenting

connect to real industry responses. The most striking point is that we directly observe the entry

of new manufacturers. Further, as reported in Table 2.1, we are able to establish links from

patents to manufacturers, from manufacturers to sales through May 1866, and from both sales
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and manufacturers to expert assessments of quality.13 Twelve out of the thirteen most notable

manufacturers of artificial legs and eight out of the nine most notable manufacturers of artificial

arms from the Civil War period can be linked to at least one patent. Through May 1866, these

patent-holding manufacturers accounted for nearly all of the artificial legs and nearly 90 percent

of the artificial arms furnished to Union Army veterans. As shown in Table 2.2, contemporaneous

sources reveal a dramatic increase in the number of artificial limb manufacturers, artificial limbs

produced, and the total value of artificial limb output during the U.S. Civil War. Finally, medical

histories document that these episodes were, in fact, episodes of substantial advance in artificial

limb technologies.14

2.3.2 Coding Patent Attributes

Beyond measuring patent flows, our analysis aims to understand the economic attributes

that are emphasized in each patent. We pursue this to understand how inventors distributed

their efforts across improving aspects of production processes and/or particular dimensions of

each product’s quality. Because the data required for this analysis did not previously exist, we

developed a novel data set.

Our data set contains information that quantifies the economic attributes emphasized in

historical patent documents. To generate this information, we first created a program to scrape

historical patent documents from Google Patents. Using the text of each patent document, we then

coded a set of product and/or production process attributes on which the patent places emphasis.

We describe three of these attributes, namely cost, simplicity, and adjustability, as cost-oriented

13A limitation of this analysis is that we can only estimate market shares for the 6,075 artificial limbs documented
in Barnes and Stanton (1866). Because this memorandum was submitted on May 11, 1866, it cannot document
market shares for artificial limbs delivered after that time.

14Post- and late-war rankings of artificial limbs by quality further support a link between quality and market share
(Barnes 1865, Houston et al. 1866). The top three rated artificial legs accounted for just under 60 percent of sales
through May 1866, while the top four rated artificial arms accounted for just over 60 percent of sales through May
1866. The highly-rated limbs with low market shares were those developed relatively late during the war, namely
the artificial arms of John Condell and the National Arm and Leg Company. The low market shares we observe for
these limbs in sales through May of 1866 are thus largely mechanical, as they were not on the market when most
of the limb purchases for which we have documentation occurred. Low-rated limbs with non-trivial market share
tended to be either unpatented or to involve pre-war patents, suggesting an incumbency advantage.
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production process traits. That is, these traits involve aspects of a product’s production. We use

the term “adjustability,” for example, to describe patents that emphasize uniform production of

outputs that can subsequently be fitted (or “adjusted”) to the needs of a specific consumer. Three

traits, namely comfort, appearance, and occupation-oriented appliances, are quality-oriented

attributes. We also code two additional traits, namely materials and durability, that we have not

explicitly labeled as either product or production-process traits.

Table 2.3 presents a concise verbal definition of each economic attribute. The table also

summarizes three important aspects of each attribute related to the quality of the information

we capture with each variable. The first aspect, summarized in column 3, is the strength of

the linkage between each trait and the hypotheses we have generated based on the historical

record (i.e., the hypotheses laid out in section 2.2). The second aspect, summarized in column 4,

is our assessment of the extent to which our text analysis procedure generated a variable that

successfully captures the economic content we sought to capture. The third aspect, summarized in

column 5, is our assessment of the challenges associated with identifying comparison technology

classes to construct control groups for our analysis of a given trait.

How successfully can the variables we generate capture the intended economic content

of patents? A key point regarding this important methodological question is that the difficulty

of identifying economic concepts in text can vary substantially from concept to concept. In the

remainder of this section, we illustrate the underlying issues with a small number of examples.

Appendices B1 and B2 provide substantially more detail.

Some economic concepts are straightforwardly conveyed in text. We found this to be true,

for example, of the traits cost and simplicity. One patent, for example, describes the mechanism

underlying an artificial knee joint as having “great simplicity, and therefore cheapness.” A second

states “The object of my invention is to imitate this eccentric motion of the knee-joint in the

simplest manner.” For both simplicity and cost, there is little difference between the performance

of our close readings, our fully refined machine learning model, and a straightforward keyword

search.
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Other concepts are more inherently difficult to track in text than cost or simplicity.

Tracking the use of new materials, for example, proved difficult because establishing a set of

keywords requires knowing what materials are common and what materials are newly introduced

in manufacturing products in a given technological class. These difficulties are sufficiently severe

that we place little emphasis on our findings for the “materials” trait.

Other traits can capture clear and distinctive technological developments despite being

very specific to a particular technological class. The trait we term “appliances” exemplifies this

third scenario. As illustrated through a set of examples, occupation-oriented “appliances” were

a critical, clearly defined dimension of prosthetic device innovation during World War I. This

dimension of prosthetic devices, however, does not have a strong analogy in other technology

classes. This fact casts doubt on the potential utility of constructing a control group for analyses

of such a trait, as conveyed by our designation of appliances as “weak” in column 5 of Table

2.3. For a trait like “appliances,” evidence from simple time series differences may be more

informative than analyses that incorporate counterfactuals based on other technology classes.

2.3.3 Text Analysis

This section provides an overview of the text analysis tools we developed and imple-

mented. Appendix B2 describes these tools in greater detail and underscores several best practices

to consider when generating variables with machine learning algorithms.

Our text analysis methods can be concisely described as the output of a keyword search

that has been informed by domain-specific knowledge and enhanced by machine learning tools.

We developed domain-specific knowledge by closely reading just over 1,200 patent documents.

While reading these patents, we completed two tasks. First, we form the data set to train our

machine learning model by indicating whether each patent has specific attributes. Second, we

construct the initial sets of keywords that we associate with each of the attributes.

The set of closely-read patents (i.e., the “training set”) covers the domains relevant to

our analysis. That is, our training set includes patents from both the prosthetic device class and
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candidate control classes, as well as from both the Civil War and World War I-eras. To achieve

this coverage, we randomly selected our sample of closely-read patents after stratifying across

technology classes and war episodes. As summarized in Table B31, the manually coded data set

contains 195 prosthetic device patents and 399 other medical or mechanical patents from the

Civil War period, as well as 302 prosthetic device patents and 305 other medical or mechanical

patents from the World War I period.15

Our text analysis task faces a common problem of dimensionality. With just over 1,200

patents in our training set, algorithms will perform poorly if we attempt to use every word from

every patent document as an input. We thus implement an approach to limit the algorithm’s

attention to the most relevant words, or “features,” in each patent document’s text.16 The features

we selected are a set of keywords, synonyms, and a small neighborhood of textual context

surrounding the keywords and synonyms (see appendix B2 for more details). We developed

our initial lists of keywords based on our 1,200 closely read patents. We next augment these

keywords with synonyms that appear in similar linguistic contexts, which we selected using

the“Word2Vec” algorithm (Mikolov et al. 2013). Finally, to aid our algorithm in identifying

context-specific word meanings, we gather a “spread” of contextual words surrounding the

appearance of each keyword. Our augmented set of keywords and their accompanying contextual

“spread” are the features from each patent that we use as inputs into our machine learning model.

After training and validating our model, we use the model to extend our encodings to roughly

750,000 patent texts that span our treatment and control groups.

15The attribute “appliances” is an exception. The relevance of occupation-oriented appliances was drawn to our
attention by a referee in August 2021, which was several years after we completed the close readings underlying
the coding of other traits. Our coding of appliances is thus based on a keyword search that is informed by close
readings of a smaller number of patents.

16This approach, which is called “feature selection,” has been shown to improve the efficiency of predictive
models (Guyon and Elisseeff 2003). The familiar Lasso procedure, for example, limits the number of features in the
model by applying a penalty factor within its objective function.
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2.3.4 Novel Data Set on Patent Attributes

Our final data set, produced by our machine learning approach, describes the economic

attributes of 745,558 patents, with the earliest coming from 1840 and the latest from 1940. There

are 814 prosthetic device patents, 19,666 other medical patents, and 725,078 mechanical patents.

Our regression analyses focus on samples of our 745,558 patents for which the patent year is in

relatively close proximity to each conflict. These samples extend from 1855 to 1867 and from

1910 to 1922.

Across this large set of patents, appendix Table B33 shows that the economic traits we

coded are only modestly correlated with one another. The primary exceptions are cost and

simplicity. Among prosthetic device patents, cost and simplicity share a correlation of 0.378

with an associated r-squared of 0.142. Similarly, across all patents in our data set these traits

share a correlation of .303 with an associated r-squared of 0.092. Correlations across all other

trait pairs are between -0.12 and 0.13, highlighting that the traits capture independent dimensions

of innovation.

2.4 Empirical Strategy

We now present our specifications for analyzing changes in patenting rates and in the

economic characteristics emphasized in patent documents. After presenting each estimation

framework, we highlight the key challenges we face when attempting to generate causal estimates

of the effects of wartime demand shocks.

2.4.1 Analyzing Patent Counts

We begin by estimating the effects of the Civil War and World War I on patent counts

using the regression equations below. The first is specified as an Ordinary Least Squares model

for predicting the log of patents per year:
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ln(Nt,c) = αc,w(t)+αt +β11{War}t×1{Prosthetic}c + εc,t . (2.4.1)

The second is specified as a Poisson model of patent counts:

E[Nt,c|Xt ] = exp(γc,w(t)+ γt +β11{War}t×1{Prosthetic}c + εc,t). (2.4.2)

In both equation (2.4.1) and equation (2.4.2), c denotes patent classes, t denotes time (multi-year

time periods for these specifications), and w(t) denotes war episodes (Civil War and World War

I). Nt,c denotes the number of patents in class c at time t. The specifications include time fixed

effects (αt or γt) and episode-by-patent class fixed effects (αc,w(t) or γc,w(t)). The coefficient of

interest is β1, which is an estimate of the differential change in the patenting rate for prosthetic

devices relative to the control classes during war episodes relative to pre-war periods. The

periods over which the wars influenced prosthetic device patenting are defined to extend from

1862 to 1866 for the Civil War and from 1916 to 1922 for World War I.

The key challenge in developing causal estimates is to construct control groups that

approximate the counterfactual development of patenting rates for prosthetic devices. Technology

classes might generate inappropriate counterfactuals for a variety of reasons. They might, for

example, be affected by very different sets of scientific developments (e.g., nuclear technology vs.

prosthesis). Alternatively, a plausibly comparable technology class will be a poor control class

if it is directly affected by wars (e.g., firearms) or if it is shaped by spillovers from prosthetic

device innovation.

Our selection of a complementary set of control groups follows the logic of Finkelstein

(2004a), whose analysis of vaccine clinical trials is analogous to our setting in some key respects.

The patents we use to construct control groups come from broad categories of medical and

mechanical innovations. In all analyses, we exclude technology classes for which there was one

or fewer patents per year within the time periods into which we divide the data. Our largest

control group incorporates all medical and mechanical technology classes that meet this criterion.
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We also consider sub-groups chosen to either increase comparability or reduce the likelihood

that the control group contains patent classes that could be directly affected by the wars. Like

Finkelstein (2004a), we also consider data-driven control groups. For our analysis of patent

flows, the data-driven approach selects the control group to match baseline flows of prosthetic

device patents in levels.

2.4.2 Analyzing Patent Traits

Our analysis of the traits emphasized by wartime prosthetic device patents confronts

challenges that differ from the challenges facing our analysis of patent counts. The variables of

interest in this analysis describe the share of patents within a given technology class and time

period that emphasize the characteristic of interest:

Category Trait Shareperiod =
# Category Patents with a Traitperiod

# Category Patentsperiod
.

For our analysis of patent traits, it is less clear what might constitute a reasonable control

group. It may simply be less relevant, for example, to worry that the traits emphasized by

prosthetic device patents will shift markedly for reasons unrelated to the wartime demand shocks

on which our analysis focuses. As an initial estimator, this leads us to consider simple time series

changes among prosthetic device patents:

β
T S = [Prosth. Trait Sharewartime−Prosth. Trait Shareprewar] (2.4.3)

This is captured by β T S from equation (2.4.3).

We also consider difference-in-differences estimates, which net out changes in the

emphasis on a given trait among the patents within a control group. For analyses of this sort,
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selecting control groups is non-trivial because some traits of interest are only relevant to a small

set of the technology classes within our broadest control group. As shown in Table B32, for

example, this is true of traits including “appearance” and “comfort.” This leads us to select

control groups using several complementary approaches, which include the construction of

synthetic control groups as well as a simple matching procedure.17 We discuss additional aspects

of our application of the synthetic control procedure in Appendix B3. The resulting estimator

takes the form below:

β
DD = [Prosth. Trait Sharewartime−Prosth. Trait Shareprewar]

− [Other Trait Sharewartime−Other Trait Shareprewar], (2.4.4)

We interpret our findings as being robust if we obtain similar results whether we rely on the

time series variation, as in equation (2.4.3), or any of several plausible difference-in-differences

strategies, as in equation (2.4.4).

2.5 Results

This section presents estimates of equations (2.4.1), (2.4.2), (2.4.3), and (2.4.4). Subsec-

tion 2.5.1 presents estimates of the effects of the Civil War and World War I demand shocks

on flows of prosthetic device patents. Subsection 2.5.2 discusses the magnitudes of our esti-

mates. Subsections 2.5.3 and 2.5.4 present estimates of changes in the attributes emphasized in

prosthetic device patents during the wartime patent booms relative to the pre-war periods.

17When implementing the synthetic control approach for our Civil War sample, patent flows for many technology
classes were limited, including prosthetic devices. In each of 1858 and 1861, for example, there was a single
prosthetic device patent. The maximum across the pre-Civil War years was seven, which occurred in 1859. The
share of patents emphasizing a given trait is thus highly volatile across the Civil War baseline when expressed at an
annual frequency. Matching year-to-year trends would amount to matching noise. For our baseline method, we thus
match levels and trends in four-year moving averages. As a natural robustness check, we have confirmed that our
results are little changed by matching levels and trends on either three-year moving averages or five-year moving
averages.
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2.5.1 Overall Patent Flows

Table 2.4 presents estimates of equation (2.4.1). The estimates presented across the

columns differ exclusively with respect to the patent classes used as controls. The estimate in

column 1 reveals that wartime changes in prosthetic device patenting were roughly 95 log points

larger than changes in patenting in all other medical or mechanical patent classes. Columns 2

through 7 reveal that this estimate is only moderately sensitive to using subsets of the broader

set of controls. The subsets include other categories matched based on baseline patenting rates

(column 2), other medical categories only (column 3), the “miscellaneous” mechanical classes

(column 4), metalworking mechanical classes (column 5), materials processing mechanical

classes (column 6), and all classes except those that would be plausibly affected by wartime

demand shocks (column 7).18 The estimates range from 85 log points to 102 log points. Panels

B and C reveal substantial increases in prosthetic device patenting during each war episode, with

economically larger increases occurring during the Civil War than during World War I.

Appendix B4 provides additional evidence relevant for interpreting these findings. First,

Table B30 presents estimates of the Poisson model described by equation (2.4.2). Second, Figure

B21 presents an “event study” analysis, which provides evidence against the concern that wartime

increases in prosthetic device patenting were driven by pre-existing trends. Third, Figure B22

illustrates why, despite having only two class-by-time period treatment events, the wartime

increases in prosthetic device patenting are nonetheless strongly statistically distinguishable

from zero when we conduct inference using “randomization tests” (Imbens and Rosenbaum

2005). Each observation underlying Figure B22’s histograms represents the change in patenting

18Our restriction of the control group to other medical technology classes (column 3), is similar to the approach
taken by Moser et al. (2014) in their analysis of chemicals patenting. We obtain similar, though modestly smaller,
results when further narrowing our control group to the sub-category “Miscellaneous-Drugs and Medicine,” which
also contains Prosthesis innovation. This sub-category is quite small during these periods, however, as it comprises
only two other classes, namely “Optics: Eye Examining, Vision Testing and Correcting” and “Dentistry.” A further
issue facing this approach to selecting control classes is that optics and dentistry are medical categories for which it
is plausible that the Civil War and World War I may have had a direct effect. This may contribute to why we obtain
moderately smaller point estimates when using these control classes rather than a broader control group. For details,
we refer readers to the descriptions of the technology classes that are available on the website for the NBER patent
database: http://www.nber.org/patents/.
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in a patent class in our broadest control group. The dashed vertical lines are placed at the

value of the change for prosthetic devices. In the Civil War histogram (Panel A), the change in

prosthetic device patenting is the rightmost point in the distribution; this underlies the uniformly

low p-values in Panel B of Table 2.4. The change during World War I is quite close to the right

end of the distribution (Panel B). Figure B23 presents the results of the randomization inference

procedures we implement, which are described in greater detail in the appendix.

2.5.2 Interpreting Magnitudes

The estimates in Tables 2.4 and B30 capture the short-run responsiveness of patent flows

to large shocks to market size. The magnitudes of both the shock and industry response are more

readily translated into elasticities in the context of the Civil War than in the context of World War

I.19 Between data from Barnes and Stanton (1866), Hasegawa (2012), and the 1860 Census of

Manufacturers, we can infer that the Civil War elevated annual revenues across the artificial limb

industry by an average of roughly 100 log points over four years.20 The estimates in Panel B of

Table 2.4 thus suggest that, during the Civil War, the elasticity of short-to-medium run patenting

with respect to the short-to-medium run shock to potential revenues was slightly greater than

1. We can similarly infer an elasticity of firm entry with respect to the Civil War era demand

shock. As reported in Table 2.2, there were five artificial limb manufacturers in the 1860 Census

of Manufacturing, and at least 17 manufacturers in 1865, implying an increase of at least 120

log points. This implies an elasticity of firm entry of greater than 1. These elasticity estimates

19It is less feasible to infer elasticities for the World War I period due to a combination of conceptual hurdles
and data limitations. The key conceptual hurdle is that the conflict’s global nature makes it difficult to infer the
precise markets to which the firms who were patenting with the USPTO were responding. The key data limitation is
that we lack sources on the number of manufacturers either during or preceding the war. In the 1910 Census of
Manufacturing, for example, artificial limb manufacturers have been merged with a broader category including
surgical appliances.

20From the 1860 census of manufacturers, we know that the value of the industry’s output was roughly $53,000
in 1859. From Barnes and Stanton (1866), we know that over the first four years of the Union Army’s artificial
limb program, an average of roughly $91,000 in artificial limbs were procured. Viewing this as an increase over
baseline demand from causes outside of the war, we estimate a 100 log point increase by comparing ln(53,000)
to ln(53,000+91,000). The increase in units sold exceeded the increase in revenues because the Civil War limb
allowances were substantially lower than pre-war prices.
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are larger than typical estimates of the long-run effects of potential market size on innovation,

as discussed by Dubois et al. (2015). Consistent with recent findings from Agarwal and Gaule

(2021), who analyze the COVID-19 context, we find relatively sharp short-run responses of

innovation to crisis-driven demand shocks.

Interestingly, wartime booms in prosthetic device patenting were not sustained over

the long run. This might initially seem puzzling, given that the government’s commitment to

providing limbs was ongoing. Historical context provides evidence, however, that sustained

demand for U.S.-manufactured prosthetic limbs was short-lived during both episodes. Following

World War I, demand for U.S.-manufactured devices was short-lived because the European

powers made conscious efforts to develop their own prosthetic device industries. By 1920,

moreover, veterans with amputated limbs in Germany, Canada, and the United States were

documented to prefer adapting to life without a prosthetic (Linker 2011; p. 114,118). The same

was true following the Civil War; an overwhelming majority of Union veterans chose cash

over replacement artificial limbs when they were given that choice during the post-war years.21

Substantial demand for replacement limbs thus may not have materialized. In both settings,

the preference for cash over replacement limbs is suggestive that, contemporaneous innovation

notwithstanding, quality remained low in an absolute sense.

2.5.3 Traits of Wartime Prosthetic Device Patents

We now turn to estimating the effects of wartime procurement on the economic character-

istics of prosthetic device patents. Our estimates of equations (2.4.3) and (2.4.4) are presented in

Table 2.5, while the underlying time series are presented in Figures 2.2 and 2.3, with additional

21Over the decades immediately following the Civil War, the U.S. government provided allowances for the regular
replacement of artificial limbs. Notably, veterans were allowed to choose between a replacement limb and cash,
which was referred to as a commutation payment (Hasegawa 2012; p. 76). Statistics from annual reports of the
army’s Surgeon General reveal that veterans overwhelmingly preferred cash; from 1870 to 1891, “arm amputees
chose a new device over commutation only 1.4 percent of the time, and leg amputees selected a new leg 21.9 percent
of the time” (Hasegawa 2012; p. 76). This suggests, perhaps unsurprisingly, that quality was low in an absolute
sense. The shock to artificial limb purchases was thus a pronounced shock spanning a period of four to five years.
Our estimates will thus tend to capture the short-to-medium response of industry to a large but temporary shock to
demand.
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detail in Appendix Figures B27, B28, B29, B30, and B31. Several facts of interest emerge from

this analysis.

We find that the Civil War was associated with across-the-board increases in emphasis

on our cost-oriented production process traits. The average across these traits (namely “cost,”

“simplicity,” and “adjustability”) more than doubled from a base of 0.16, as shown in Figure 2.2.

This estimate is statistically distinguishable from zero at the 0.01 level using either the simple

time series or synthetic control estimator, as it is a true outlier relative to the distribution of

randomization test outcomes. In contrast, the average across cost-oriented production process

traits moved quite modestly during World War I. While both periods ushered in substantial

increases in emphasis on adjustability, Civil War-era prosthetic device patents also exhibit

economically substantial shifts towards emphases on “cost,” and “simplicity” as shown in Figure

2.3. Changes in the latter two traits were relatively modest during the World War I episode, as

can be seen in Appendix Figure B28. This contrast is plausibly linked to procurement incentives,

as the low, fixed-price reimbursements of the Civil War period created strong incentives for

innovation to reduce costs. While we do not know the precise details of World War I procurement

arrangements for artificial limbs, cost-plus contracts, which blunt incentives for innovation to

reduce costs, were “the most common type of contract” during that period (Graske 1941; p. 17).22

A comparison between patents for artificial arms and legs provides an additional, sugges-

tive piece of evidence that the emphasis of Civil War era prosthetic device patents on production

processes can be linked to the Union’s procurement policy. The government’s procurement

arrangement, namely fixed-price reimbursement of $50 per arm and $75 per leg (roughly $1,000

and $1,500 in 2018 dollars), created a strong incentive for cost-oriented production process

innovation because these payments were modest relative to manufacturers’ costs. Cost data

from the 1860 manufacturing census indicates that payments for artificial arms implied a lower

charge-to-cost ratio than for artificial legs (roughly 2/3 vs. 3/4), creating an even greater incentive

22Withrow Jr (1942) links the predominance of cost-plus contracts during the World War I-era to the reluctance
of firms to submit bids on a fixed-price basis given the risks associated with rapidly rising prices for raw materials.
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for cost-reducing innovation. As shown in Figure B25, patents for artificial arms did indeed

exhibit a more dramatic increase in their emphasis on production process improvements, and in

particular on cost reduction, in comparison with patents for artificial legs.

An alternative possibility is that the emphasis of Civil War era artificial limb patents on

the production process might simply have reflected the industry’s natural trajectory. That is, if

artificial limbs were a “new” technology during the pre-war period, a surge in production-process

innovation might naturally be expected. This is not plausible, however, as the pre-war state-of-

the-art technology had existed for quite some time. Patents held by Benjamin Franklin Palmer,

the pre-war artificial limb industry’s leading manufacturer, extended back to 1846. Throughout

the 1850s, the rate of production process innovation evolved quite smoothly for artificial limb

patents as well as for patents in our control groups. The early-1860s spike in production process

innovation for artificial limbs is a distinctive break from this pattern.

We next consider dimensions of quality, for which two findings are both empirically

robust and connect directly to historical narratives. First, both our simple time series and

synthetic control estimators provide evidence that World War I-era patents exhibit an increase

in emphasis on occupation-oriented appliances (see Table 2.5 and Figure 2.3). This finding

has a strong connection to the historical records regarding both the intentions of World War

I-era artificial limb procurement and the specific technologies to which this period’s patents

gave rise. Regarding the specific technologies, these “appliances” involved interchangeable,

occupation-oriented attachments like the hammer, welding, and woodwork oriented attachments

shown in Figures B4, B5, and B6 in appendix B1. Notably, as shown in column 5 of Table

2.5, British World War I-era patents offer a strong piece of supplemental evidence that the

demand associated with employment-oriented rehabilitation programs generated increases in

emphasis on occupation-oriented appliances. This is relevant in part because the shift towards

occupation-oriented appliances in the U.S. patents is, despite representing a substantial increase

in percent terms, not an outlier within the relevant placebo distribution and is thus on the margins

of statistical significance.
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Second, both our simple time series and synthetic control estimators yield strong evidence

that Civil War-era prosthetic device patents exhibit a substantial increase in emphasis on comfort

(see Table 2.5 and Figure 2.3). By contrast, World War I-era prosthetic device patents de-

emphasized comfort (see Table 2.5 and Figure 2.3). These findings are plausibly linked to shifts

in demand, which came directly from veterans during the Civil War and from the veterans’

medical bureaucracy during World War I. Of course, such a difference in innovation across wars

may reflect a variety of factors aside from those that we identify. The historical record, however,

as discussed in section 2.1, suggests that the World War I-era medical bureaucracy played a heavy

hand. Our findings for this period are very much in line with the bureaucracy’s de-emphasis

on the veteran’s comfort and emphasis on social and labor market reintegration. As with our

evidence on occupation-oriented appliances, British patents offer supplemental evidence on the

decrease in emphasis on comfort during the World War I period.

2.5.4 Robustness of Analysis of Patent Traits

In section 2.4, we discussed the challenges underlying the construction of control groups

in our analysis of the product and production process traits emphasized in patent documents.

These challenges motivated our presentation of both a simple time series estimator and a synthetic

control estimator in Table 2.5. In this section, we present an additional robustness analysis in

which we deploy a range of alternative procedures for constructing control groups. Tables B34,

B35, B36, and B37 present difference-in-differences estimates using the following approaches:

Table B34 relies exclusively on our full sample of 1,200 manually coded patents; Table B35 uses

the full sample of patents as coded using our machine learning model; Table B36 restricts the

control group to medical patent classes; finally, Table B37 selects control groups using a simple

“caliper” matching procedure.23

23In yet another robustness check, we have constructed synthetic controls from a sample of medical and
mechanical technology classes that excludes all classes that might be directly affected by wars. In addition to classes
involving firearms and ammunition, we exclude surgery, classes with plausible linkages to military uniforms (e.g.,
boot and shoe making, buckles, etc.) camp equipment (e.g., tents), and several others. Excluding these technology
classes from the set of potential “donors” to our synthetic control groups has very little effect on our estimates.
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The results we have emphasized throughout are findings that are robust to deploying this

full set of strategies for constructing control groups, as well as to relying exclusively on the time

series change in the emphases of prosthetic device patents as in equation (2.4.3). These include

our findings on the Civil War-era increase in emphasis on production process innovation, the

Civil War-era increase in emphasis on comfort, the World War I-era decrease in emphasis on

comfort, and the World War I-era increase in emphasis on occupation-oriented appliances. In

each of these cases, our estimates are robust across the full range of strategies for constructing

control groups and imply large percent changes in emphasis on the trait in percent terms.

In contrast with the robust evidence on the findings discussed above, our evidence on

appearance and durability illustrate methodological challenges in the analysis of patent texts.

The estimates in Tables 2.5, B34, B35, B36, and B37 reveal that our estimates for appearance

and durability, and to a lesser extent materials, are sensitive to whether we look to the simple

time series change, use the full set of candidate controls, or use a data-driven control group. As

we discuss in greater detail in appendices B1 and B2, these traits pose challenges with respect

to both the construction of control groups and the implementation of text analysis methods.

Consequently, we interpret our evidence on appearance, durability, and materials as weak. Our

conclusions thus emphasize the traits for which our evidence is robust and for which we have

greatest confidence in the output from our text analysis methods.

2.6 Discussion and Conclusion

Our analysis of Civil War and World War I-era prosthetic device patenting yields several

findings of potential interest. First, we find that wartime procurement programs were associated

with large increases in the volume of prosthetic device patents. We thus add to an existing body

of evidence that finds that innovation can respond quite strongly to changes in demand.

Second, we find that cost-conscious production process innovation increased substantially

during the Civil War. This highlights the potential relevance of the Civil War period’s procurement
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model, which involved fixed-price reimbursement at modest rates. Experts observe that modern

medical innovations have tended to bring costly enhancements to quality rather than cost-

conscious improvements in productivity (Chandra and Skinner 2012, Skinner 2013). Our findings

provide a useful counter-example to this tendency. Demand shocks coupled with cost-conscious

payment models can steer innovation in a cost-conscious direction.

Third, we find that the prosthetic device patents of the Civil War and World War I episodes

diverged with respect to dimensions of quality. Civil War-era prosthetic device patents exhibited

an increase in emphasis on comfort. By contrast, World War I-era prosthetic device patents

de-emphasized comfort and emphasized occupation-oriented “appliances.” These differences

are plausibly linked to a World War I-era shift in choice away from veterans and towards

medical professionals. This shift was associated, in turn, with a heightened emphasis on veteran

rehabilitation and re-employment. As a caveat, we note these differences between Civil War

and World War I-era prosthetic device innovations may stem from several factors that would be

difficult to empirically disentangle.

A caveat accompanying our analysis relates to the limitations of text analysis. As

discussed in appendix B2, seemingly modest reductions in the accuracy of our text analysis

models can substantially attenuate our estimates of the effects of wartime procurement on the

direction of prosthetic device innovation. While the accuracy of our models is generally quite

high, it varies across the variables we construct. Moderately lower accuracy warrants caution,

for example, in interpreting our analysis of the traits we term “materials” and “durability.”

Further, we highlight a key difference between dimensions of product quality and aspects of the

production process. Dimensions of product quality can be highly context-specific, which makes

it difficult to select control groups. Consequently, we have more confidence in our analyses

of attributes that relate to the production process than in our analyses of attributes that capture

dimensions of quality. For researchers who desire to apply similar text analysis tools in other

settings, we provide a set of best-practice insights to help guide the development and evaluation

of text analysis models.
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Readers may also wonder about the rapid pace with which both the patent counts and

their emphases evolved during the historical episodes we analyze. An anecdote may help to

confirm that the responses we track are real. James Hanger, a renowned prosthetic limb inventor,

is documented to have invented and produced a prosthetic limb within six months of being

injured during the Civil War’s initial skirmishes. Hanger’s invention entailed improvements to

both function and comfort. Hanger, Inc., the company he subsequently founded, remains in

operation today. Beyond this anecdote, the tendency for large shocks to generate rapid innovative

responses has been observed elsewhere. Hanlon (2015) finds, for example, that the British textile

industry responded quite rapidly to the Civil War’s impact on its supply chains. More recently,

Agarwal and Gaule (2021) find that the COVID-19 pandemic has had a much greater and more

rapid impact on innovation than long-run elasticity estimates would lead one to predict.

We conclude by reflecting on the role of innovation in enabling individuals and societies

to respond to large and negative health shocks. Both wars and pandemics can have dramatic

effects on the need and demand for medical innovations. Our analysis adds to a body of research

on how innovation responds to these societal needs. While the overall consequences of wars and

pandemics are devastating, the evidence reveals how their adverse effects can be blunted by the

ingenuity of inventors and entrepreneurs.
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Table 2.2. Facts on Industry Response Surrounding the Civil War. Note: Data for 1865 come from
Barnes and Stanton (1866) and Hasegawa (2012). Other years come from Census of Manufacturing
tabulations. Patent dates come from Berkes (2018).

(1859) (1865) (1869)
Manufacturing Establishments 5 ≥ 17 24
Artificial Limb Output ≈ 350 ≥ 3,461 ≈ 1,000-2,000
Value of Output $53,000 ≥ $223,550 $160,416
Patents in Surrounding 5 Years 15 87 27
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Table 2.5. Changes in the Nature of Prosthetic Device Patents. Note: The table presents estimates of
the effect of wartime procurement arrangements on the fraction of prosthetic device patents that
emphasize a given economic trait. Estimates in columns labeled “Simple Diffs” are of beta-TS from
equation (3), while estimates in columns labeled “Synth Estimate” are estimates of beta-DD from
equation (2.4.4), where the control group is constructed separately for each trait using the synthetic
control procedure described in greater detail in the main text. One-sided p-values are presented in
parentheses beneath each point estimate, and two-sided p-values are presented in brackets. In several
instances (including Civil War era production process innovation, WWI era de-emphasis on comfort,
and WWI era emphasis on employment-enhancing “appliances”), the historical narrative delivers
strong one-sided predictions for the evolution of prosthetic device patents. All p-values are generated
using randomization inference (Imbens and Rosenbaum 2005), which in this application involves
straightforwardly ranking the point estimate for the prosthetic device technology class against the
“placebo” point estimates associated with the other technology classes in our sample.

(1) (2) (3) (4) (5) (6)
US Civil War US WWI GB WWI Notes

Simple Synth Simple Synth Simple
Diffs Estimate Diffs Estimate Diffs

Panel A: Aggregated Traits
Production Average 0.187 0.190 0.074 0.038 0.124 Strong Civil War

(0.000) (0.000) (0.008) (0.049) Narrative (+)
[0.000] [0.000] [0.016] [0.098]

User Average 0.006 0.036 -0.007 0.019 -0.109
(0.330) (0.054) (0.139) (0.115)
[0.660] [0.108] [0.279] [0.230]

Panel B: Individual Traits
Cost 0.152 0.141 0.079 0.050 0.028 Strong Civil War

(0.032) (0.054) (0.074) (0.066) Narrative (+)
[0.064] [0.109] [0.148] [0.131]

Simplicity 0.238 0.195 0.043 -0.001 0.226 Strong Civil War
(0.032) (0.011) (0.254) (0.557) Narrative (+)
[0.064] [0.022] [0.508] [0.990]

Adjustability 0.171 0.076 0.099 0.116 0.118
(0.000) (0.143) (0.016) (0.008)
[0.000] [0.286] [0.033] [0.017]

Appliances 0.049 NA 0.065 0.038 0.112 Strong WWI
(0.106) (0.049) (0.066) Narrative (+)
[0.213] [0.098] [0.131]

Comfort 0.150 0.303 -0.119 -0.116 -0.230 Strong WWI (-)
(0.032) (0.016) (0.000) (0.000) and Civil War (+)
[0.064] [0.033] [0.000] [0.000] Narratives

Appearance -0.182 0.078 0.033 0.068 -0.209
(0.043) (0.037) (0.107) (0.008)
[0.085] [0.074] [0.213] [0.016]

Durability 0.016 0.149 0.064 0.025 0.102
(0.372) (0.083) (0.041) (0.172)
[0.745] [0.167] [0.082] [0.344]

Materials 0.026 0.035 0.008 -0.005 -0.050
(0.138) (0.104) (0.328) (0.496)
[0.277] [0.209] [0.656] [0.990]
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Chapter 3

The Dynamics of Health Care Price Re-
form

Governments play a significant role in health care markets. The US government’s

Medicare health insurance program is a key example, accounting for 21% of national health care

spending (Cubanski and Neuman 2023). However, the program’s high and rising expenses have

prompted policymakers to focus on identifying measures to control costs (Arad and McClellan

2022, Navathe et al. 2020). Among the prominent solutions is price reform, which aims to

lower health care prices through price ceilings, negotiations, or competitive bidding (Frank and

Nichols 2019, Ji 2023). While these reforms can reduce government expenditures in the short

run (Ji 2023), there is limited evidence of their long-term consequences, which are important

to understand given the government’s significant role in these markets. For instance, price

regulation could change the profitability of innovating in affected markets, influence the direction

of innovation, alter how firms structure supply chains, and affect the quality of products being

produced. These potential consequences pose a critical challenge in designing health insurance

programs and broader procurement policies: how can we strike a balance between cost savings

for patients and taxpayers while mitigating potential adverse impacts on innovation, product

quality, and market structure?

In this study, we explore the impact of price regulation on innovation, product quality,

and market structure. We focus on the medical device sector, characterized by substantial
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research and development (R&D) activity, a wide range of differentiated products, and intricate

global supply chains, allowing us to study the effects of price reform on a diverse range of

outcomes. Specifically, we focus on durable medical equipment (DME), which are medical

devices prescribed for home use, such as insulin pumps, oxygen tanks, and wheelchairs. We

investigate the impact of price regulation by leveraging a series of price reforms enacted by the

Centers for Medicare and Medicaid Services (CMS). These reforms lowered the Medicare prices

paid by 45% for certain DME categories in the largest metropolitan statistical areas (MSAs).

By 2019, these reforms cut the total Medicare expenditures for these categories by two-thirds

compared to unaffected categories.1

To identify the impact of price reform policies, we compared outcomes in DME categories

affected by the reform to those that remained unaffected. We employed a stacked difference-

in-differences strategy to account for the reforms affecting additional categories over time. As

a potential source of endogeneity, CMS chose categories for reform based primarily on pre-

reform Medicare expenditures. Despite expenditure differences between affected and unaffected

categories, there were no divergent pre-existing trends in the outcomes studied among affected

categories relative to unaffected ones. Further, we also leverage within-category variation in

the extent to which firms were exposed to price reform by comparing firms with a larger share

of their product portfolio within treated categories to those with smaller shares. The firm-level

results were consistent with those at the category level, providing further support for our findings.

Our analysis makes use of multiple administrative data sets to capture the multifaceted

effects of price reform on various outcomes. These data sources include global patent data,

FDA device submissions, FDA adverse events reports, Medicare fee schedules, Medicare claims,

and novel data on Medicare-contracted device suppliers and manufacturers. By combining

these diverse data sets, we construct three sets of outcomes to examine the long-run market

dynamics following the price reform: quantity and direction of innovation, market structure and

supply-chain reactions, and product quality.

1Authors’ analysis of the Medicare claims data.
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Our first set of results shows a decrease in innovation and a shift in the direction of

innovation following the DME price reform. We define two measures of innovation: the number

of new device submissions to the FDA for approval and the number of (US and foreign) patents

filed in DME categories. We estimate a statistically significant decline in FDA submissions by

22% in DME categories affected by the reform, with a similar, albeit not statistically significant,

decrease of 29% in the number of patents filed. Focusing on firms whose existing product

portfolios were affected by the reform, we find that those with above-median exposure to the

price reform were 29% less likely to file for new patents in the affected categories, a statistically

significant reduction. In contrast, patenting activity in unaffected categories remained unchanged.

The results also show that firms most affected by the price reform increased their emphasis

on cost-cutting innovations following reform. Specifically, we define patents as “product” and

“process” innovations following Bena and Simintzi (2022). Following the price reform, we

find that firms shifted towards “process” innovations, which involve pioneering new methods to

improve the production process and reduce production costs, as opposed to “product” innovations

like introducing a new product feature. We find a statistically significant 32% increase in the

share of patents focusing on process innovations and a statistically significant 15% decrease in

the share of patents focusing on product innovation among these most-affected firms relative to

those less affected.

Our second set of results reveals a reduced rate of entry by manufacturers and an

increase in offshoring the production process following the price reform. Specifically, we find a

statistically significant 25% reduction in the number of new entrants into the affected product

categories, driven by a 47% reduction in entry by US manufacturers, and a smaller (albeit

statistically insignificant) 8% increase in entry by foreign manufacturers. The diverging trends in

entry between US and foreign manufacturers may reflect their differential comparative advantages

in production, with the latter being more favored in an increasingly cost-conscious environment

created by the price reform. Furthermore, manufacturers responded to the price reform by

shifting their production overseas. Among manufacturers still operating in affected markets, the

88



number of firms outsourcing manufacturing to other companies increased by 50%, although the

estimate is not statistically significant. However, there was a statistically significant increase of

65% in the number of firms outsourcing production to foreign manufacturers, suggesting that

firms adapted to lower prices by leveraging foreign supply chains to cut production costs. These

results suggest a shift towards global supply chains and a change in the composition of products

sold in the US, with an increasing proportion manufactured by foreign firms.

Our third set of outcomes explores changes in product quality following price reform. We

find that these cost-cutting strategies are associated with a decline in product quality, evidenced

by increased device repairs and reported adverse events. Our analysis of Medicare claims data

suggests a 100% increase in the repair rate for affected DME among Medicare beneficiaries,

resulting in an estimated additional 700,000 repairs per year for Medicare. Furthermore, our

analysis of FDA adverse event reports2 suggests a 233% increase in adverse events reported for

affected DME categories, despite decreasing utilization (Ji 2023). Notably, adverse event reports

increased most significantly for products manufactured by foreign companies and contractors,

suggesting that either the utilization of foreign-made DME increased to such an extent that

it resulted in a substantial rise in adverse events or that foreign-made DME, especially DME

outsourced to foreign manufacturers, was more prone to quality issues.

Our paper contributes to several literatures. First, we add to research on the relationship

between market profitability and medical innovation, which has largely focused on the pharma-

ceutical sector. Although previous studies have shown that expansions in market size lead to

large increases in R&D (Acemoglu and Linn 2004a, Blume-Kohout and Sood 2013b, Finkelstein

2004a), there is limited empirical evidence on the effects of price reform.3 Our research aims

to fill this gap, which has been made especially important by recent provisions in the Inflation

2CMS increased its surveillance of affected DME categories after price reform, which may have affected the
reporting rate of adverse events. Thus, the adverse event outcomes are suggestive. However, results from our
claims-based repair rates – which are not directly monitored by CMS – corroborate our adverse event results,
strengthening our conclusions drawn from this data.

3Existing evidence is limited to theoretical (Filson 2012), simulation-based (Abbott and Vernon 2007, and
correlational (Giaccotto et al. 2005, Civan and Maloney 2009) studies. See Philipson and Durie (2021) for a
comprehensive review.
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Reduction Act that allow CMS to set price ceilings on certain types of drugs by 2026. To our

knowledge, our study is the first to measure the effects of health care price reform on innovation

using quasi-exogenous variation in price reform policy and the first to examine its effects on

product quality, the direction of innovation, and market structure.

Furthermore, our paper contributes to the literature on regulatory tools that affect inno-

vation. Prior research has examined the impact of patent protection (Budish et al. 2015), entry

regulation (Rogers 2023, Grennan and Town 2020b), and tort reforms (Galasso and Luo 2017)

on innovation. We extend this work by examining the effects of price regulation on innovation

and related outcomes.

Lastly, our paper also adds to the literature on procurement policy and innovation (Che et

al. 2021, Slavtchev and Wiederhold 2016, Cozzi and Impullitti 2010). We show that procurement

price can influence innovation and the flow of trade in a globalized economy, a theoretical insight

first pioneered by McAfee and McMillan (1989). Our results indicate that low and uniform

prices can cut expenditures but lead to offshoring and potentially lower-quality products. Our

study provides unique insights into procurement policy within the large and growing medical

device industry. Most closely related, Clemens and Rogers (2020) find that low, fixed-price

payments for medical technologies lead to cost-cutting innovations. We find similar results by

analyzing quasi-exogenous reforms to procurement policy, holding fixed time-varying factors

rather than relying on comparisons across wartime eras. Our findings contribute to this research

by suggesting that stringent procurement policies steer innovators toward cost-cutting process

innovations and away from product innovation.

This paper is organized as follows: section 3.1 provides background, section 3.2 describes

our data, section 3.3 detail our empirical strategy, section 3.4 presents our results, and section

3.5 concludes.
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3.1 Setting

3.1.1 Medical Devices and Durable Medical Equipment

Medical devices are instruments or apparatuses intended for the diagnosis, treatment, or

prevention of disease. Unlike pharmaceutical drugs, medical devices do not achieve their function

through chemical action.4 Medical devices cover a wide range of products. These include

diagnostic devices, such as X-ray machines and electrocardiography (ECG) machines, therapeutic

devices like infusion pumps, prosthetics such as prosthetic limbs and dentures, implants like

pacemakers and stents, and assistive devices like mobility scooters and communication aids.

Medical devices are regulated by the US Food and Drug Administration (FDA) through

both pre-market approval processes and post-market surveillance. In general, medical devices

are classified into one of three categories based on their level of risk: Class I (low-risk), Class

II (moderate-risk), and Class III (high-risk). Most Class III devices are subject to pre-market

approval (PMA), which requires the manufacturer to provide data demonstrating the device’s

safety and effectiveness. Most Class II devices are subject to either PMA or pre-market notifi-

cation, known as 510(k), which requires the manufacturer to demonstrate that a new device is

substantially equivalent to a previously approved device. Class I devices are generally exempt

from either PMA or 510(k), but must be registered with the FDA.5

Durable medical equipment (DME) is a category of medical devices designed for home

use. These items aid in the recovery process after inpatient hospitalization or facilitate the

management of ongoing illnesses. Examples of DME include wheelchairs, glucose monitors,

oxygen concentrators, and nebulizers. DME can be Class I, II, or III.

4https://www.fda.gov/media/131268/download
5https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/overview-device-

regulation
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3.1.2 Medicare Reform of Payments for Durable Medical Equipment

Medicare, the federal health insurance program for patients aged 65 and above, covers

DME under Part B of the program. Historically, Medicare reimbursed for DME based on fee

schedules set by CMS, which were largely tied to list prices from the late-1980s and inflation-

adjusted over time. In 2006, due to concerns about high prices in the DME sector, Medicare

announced a reform that would replace these fee schedules with prices determined through

supplier auctions. The reform was initially implemented in nine metropolitan statistical areas

(MSAs) in January 2011 and later expanded to an additional 91 MSAs in July 2013, covering

approximately half of total DME spending in these areas.6 Ji (2023) finds that the reform led to

an average reduction of 45% in prices, with price reductions observed in all affected product

categories. In 2016, the remaining MSAs also began lowering their prices based on prices

generated by auctions in the first 100 MSAs. As of 2019, 13 product categories were covered by

the price reform, while the remaining 43 product categories continued to follow the existing fee

schedules. Figure 3.1 plots the total Medicare DME payments separately for product categories

that were and were not subject to the price reform. Both sets of products had similar spending

trends up to 2009, but spending in the affected categories declined sharply after that. By the end

of 2019, annual Medicare spending in the affected categories decreased from approximately $4.5

billion to $2 billion, while spending in the unaffected categories continued to increase from $4.5

billion to $6 billion.

3.2 Data and Summary Statistics

We describe the data sets we use, the construction of our baseline sample, and report our

baseline summary statistics.

6The original implementation date was January 2009, but CMS postponed the implementation by two years and
instead imposed a one-time 9.5% price reduction for all treatment products in 2009.
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3.2.1 Data

FDA Device Submissions (PMA and 510(k) Databases)

We use two FDA databases on device approvals: the pre-market approval (PMA) database

and the 510(k) database. The PMA database contains information about medical devices that

have undergone a rigorous review process, which typically involves clinical trials and other

extensive testing, to demonstrate their safety and effectiveness. Most Class III devices must

go through the PMA process before they can be sold in the US market. The 510(k) database

contains information about devices that have been deemed substantially equivalent to devices

already on the market, and therefore require a less lengthy review process. Most Class II devices

are required to complete the 510(k) process. Together, the PMA and 510(k) databases capture the

majority of late-stage innovative activity in these device categories. In both data sets, we observe

the universe of FDA device submissions including the submitting company name, device brand

name, product codes and descriptions, and submission and approval dates. For both databases,

we include all submissions between 1996 and 2018.

Dimensions Patent Grants Extract

Dimensions is a comprehensive database that provides detailed information on patents

issued by the United States Patent and Trademark Office (USPTO) and global patent offices

across 100 countries. This database includes essential patent information such as the patent title,

abstract, description, claims, filing date, and approval date, where applicable. To ensure that

we observe close to the universe of patents in our sample years, we restrict our analysis to data

between 1996 and 2016, as the patent submissions can take up to three years or more before they

are publicly posted.

FDA Registration Database

The FDA requires all products sold in the US to be registered in this database. The

variables include the name of the registering establishment, proprietary name of the product,

product code, device classification (I, II or III), establishment type (e.g. manufacturer, contract
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manufacturer, exporter) and the location of the establishment (US state or foreign country). In

principle, these data cover the universe of medical devices (including DME) available for sale in

the US. In practice, the database has two important limitations. First, the data are reported at the

registration event level; for establishments that registered multiple brand names across different

product codes, there was not straightforward way to establish one-to-one correspondence between

the registered brand name and the associated product code. Second, the data do not include

inactive registrations; for example, a firm that registered a given product in 2005 that stopped

selling the product (thus stopped registering in subsequent years) would not be captured in later

years’ data. We address these data issues in two ways. First, we use yearly snapshots from

WayBackMachine for 2009, 2010, 2011, 2013, and 2020 to enhance our sample by capturing

currently inactive registrations. Second, we focus on firm-level events, which we can identify in

the data, rather than device-related events, which we cannot. We record whether the contractors

are US-based or foreign. Nonetheless, due to these data limitations, we restrict the use of the

registration data only to our analysis of firm contracting behavior.

Medicare Data

We use the 100% Traditional Medicare enrollment and claims data from 2009 to 2019,

which encompassed health care claims for all beneficiaries under Traditional Medicare. For

each DME claim, we observe the date of the claim, the HCPCS code, the Medicare price, and

the quantity purchased. We supplement these data with publicly available Medicare DME fee

schedules. We obtained supplier-reported, quarterly data on the manufacturer, model, and make

of DME products sold to Medicare beneficiaries between 2011 and 2019 through a Freedom of

Information Act (FOIA) request.

FDA Adverse Event Reports (MAUDE).

The FDA’s Manufacturer and User Facility Device Experience (MAUDE) database

enables us to measure the safety of medical devices based on adverse event reports from 1992 to

2019. These reports include events such as deaths, hospitalizations, and life-threatening incidents,
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as well as minor events like product breaks, across FDA device types. Following Ensign and

Cohen (2017), we address data and coding issues in the MAUDE database.

3.2.2 Sample and Variable Definitions

DME Category-Level Baseline Sample

We define the set of treatment and control DME product categories based on whether

a product category was ever subject to Medicare price reform during our sample period. We

assigned all FDA device submissions and registrations to either the treatment or control group by

matching the FDA product codes to Medicare DME categories (the level of the treatment). The

match was completed by comparing HCPCS code descriptions within each DME category, DME

category descriptions, and FDA product code descriptions. We construct a data set of unique

device brand names within a device type using text analysis and aggregate them at the DME

category-year level. Using the same method, we also construct a data set of unique manufacturer

names listed in the FDA device submission database within device types and aggregate them

at the DME category-year level to measure firm entry. Our baseline sample includes device

submissions across 18 control DME categories and 8 treated DME categories, with over 3,738

unique device submissions spanning 1996 to 2016. Note that the sample does not include all

DME categories as not all DME requires FDA approval (e.g. Class I devices generally only

require registration), therefore, this measure captures changes in innovation among medium and

high-risk devices.

To complement our FDA submissions measure, we also use patents as an indicator of

DME innovation. Unlike with pharmaceutical drugs, there is no official database that links

devices with their patents, so we create our own using a three-step procedure. First, we compile

a list of keywords and patent classification codes (CPC) that correspond to each DME category

description. Second, we use Digital Science’s Dimensions platform (Hook et al. 2018) to collect

all global patents granted that match those keywords and CPC codes in their text. Third, we

count the annual number of patents filed within each DME category based on the the filing date.
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The result is a panel of yearly patent counts for 51 DME categories from 1996 to 2016, using

a collection of 236,656 global patents related to DME categories, of which over 100,000 are

granted in the US. Patents are a useful complement to FDA device data for several reasons. First,

they capture innovation for Class I devices, which do not need FDA approval and are missing

from our FDA submission data. Second, they enable a straightforward analysis of the quality of

new innovation, using rich textual and citation information. Lastly, an analysis of two different

measures of innovation provides corroborative evidence.

We supplement the patent data with measures of process and product claims made within

a patent document created by Bena and Simintzi (2022) (B&S). To identify process-oriented

innovation, B&S exploit a US patent-specific policy that requires inventors to indicate process-

related claims by beginning the claim with the words “A method for” or “A process for.” B&S

then tag the claims that begin with these words as “process” claims and those that do not as

“non-process.” We consider a patent as primarily process-oriented if it has an above-median share

of process claims.

We measure changes in contractor relationships by identifying the number contractors

registered within a product code in a given year. We then use the crosswalk described above

to aggregate the data at the DME level. Our panel measures the establishment of over 1,500

US-based and 4,100 foreign contractor relationships across 36 control and 13 treated DME

categories.

We measure changes in product quality using Medicare claims and FDA adverse event

data. Using the 100% Medicare claims data for DME, we define a “repair” event as unique claim

lines with repair modifiers (“RT”, “LT”, or “RB”). We define repair rates in each year at the

product category level by dividing the number of repair events with the number of claims for

each product category. Using the FDA MAUDE data, we also count the number of adverse event

reports submitted to the FDA each year within each device type. We then use the crosswalk

above to aggregate adverse event report counts at the DME level.
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Manufacturer-Level Baseline Sample

We focus on firms that manufacture equipment in DME categories affected by price

reform, defined as manufacturers that have either been listed by a Medicare supplier as selling in

one of the affected categories or have registered themselves in an FDA product code correspond-

ing to a DME category before price reform. All firms also must have filed a patent in one of the

affected categories prior to the price reform. We match their names to global patent assignees

using Dimensions. We keep only patents with high similarity scores to firm names, resulting in

486 firms that have patented at least once. We then calculate the share of patents for each firm in

a treated DME category, based on our DME-level patent database constructed above. Figure C1

shows the distribution of the share of patents subject to price reform across firms. We define a

firm as treated if its share is above the median, and assign the year of treatment as the first year

a DME category with the firm’s patent was subject to price reform. We count the number of

patents filed by each firm from 1996 to 2016 to form our firm-level innovation measure.

3.2.3 Summary Statistics

Tables 3.1 and 3.2 provide an overview of the product categories and DME manufacturers

in our study. Table 3.1 presents summary statistics of product innovation and utilization for all

DME categories, categories impacted by the price reform, and categories not impacted by the

reform. We report summary statistics across groups in 2005, a year before the first announcement

of the price reform, and across all sample years from 1996 to 2016. Notably, we observe that

the number of affected categories is roughly one-third of the number of unaffected categories.

However, despite this, Medicare expenditures, users, and FDA device submissions were similar

or higher in affected categories than those of unaffected ones, consistent with Medicare’s intent

to choose the largest markets for price reform.

Table 3.2 presents summary statistics for patent portfolios of DME manufacturers, both

for the year 2005 and the entire sample period. The table shows that the average portfolio

exposure to price reform was 24% for firms filing at least one patent in the affected DME
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categories. Additionally, the distribution of manufacturer patent filings is highly skewed to the

left, with the top quartile of firms filing only one patent per year. As a result of this skewness, the

analysis for our firm-level study mainly focuses on the extensive margin of patenting outcomes,

namely, whether a firm innovates at all in a given year.

3.3 Empirical Strategy

3.3.1 DME Category Analysis

We estimate the effect of the price reform by comparing outcomes for product categories

that were subject to the reform with those that were not subject to the reform during our study

period.

Figure C2 plots the raw trends for our two measures of innovation. Figure C2 (a) shows

the number of PMA and 510(k) over time separately for product categories subject to the price

reform and other product categories. While the former has higher levels of PMA and 510(k)

filing prior to 2010, the gap largely shrinks thereafter. Figure C2 (b) shows analogous trends

for the number of patents filed. Annual patent counts steadily increased for the two groups

at comparable rates up to the early 2010s, when the rate of patent filing plateaus for product

categories affected by the reform.

To empirically quantify the impact of the price reform on our measures of innovation,

we use an event study specification with a stacked regression design. This approach assembles

event-specific panel data for each of the DME categories subject to the reform and all control

DME categories (i.e. categories not subject to the reform). All event-specific panels are then

stacked while allowing unique time and product category fixed effects for each panel. We

estimate the following event study specification:

Yi,t,k = γi,k + γt,k + ∑
r(i,t)6=−1

βr1{Reform}i,k× Ir(i,t)+ εi,t,k. (3.3.1)

where i denotes DME categories, t denotes calendar years, and k denotes price reform
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events. γi,k and γt,k denote event-by-DME category fixed effects and event-by-calendar year fixed

effects, respectively. 1{Reform}i is an indicator for whether DME category i in event panel k

is subject to the price reform. Ir(i,t) are indicators for years relative to the announcement of the

reform, which are normalized to zero for DME categories not subject to the reform. We define

r(i, t) = 0 as the year Medicare price reforms were announced, since investors and manufacturers

can already respond to the change in expected revenue following the announcement, before the

formal implementation of the reform. The coefficients of interest, βr’s, quantify the impact of

the price reform on the outcome of interest Yi,t,k. Since we have a small number of treated DME

categories (N1 = 13), to achieve reliable inference, we follow Conley and Taber (2011) and use

control group residuals to compute standard errors. The relatively larger size of our control

groups (N0 = 38) allows us to reliably estimate standard errors in the presence of relatively few

treated groups.

To summarize the impact over the post-period, we also estimate a pre-post version of the

same specification where we replace the relative year indicators with an indicator for the period

after the price reform has taken place: 1{Post}t . Also, since we are estimating the effect over

the entire post-period, we only estimate one reform coefficient β1. The estimating equation is

given by

Yi,t,k = γi,k + γt,k +β11{Reform}i,k×1{Post}t,k + εi,t,k. (3.3.2)

3.3.2 Manufacturer Portfolio Analysis

To explore heterogeneity in impact across manufacturers, we estimate the specifications

analogous to equations (3.3.1) and (3.3.2) at the firm level. That is, we assemble event-specific

panel data for each DME manufacturer subject to the reform and all admissible controls. Specifi-

cally, we estimate the following specification
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Yj,t,k = γ j,k + γt,k + ∑
r( j,t)6=−1

βr1{Above Median Exposure} j,k× Ir( j,t)+ ε j,t,k. (3.3.3)

where j denotes manufacturers, t denotes calendar years, and k denotes price reform

events. 1{Above Median Exposure} j,k is an indicator that the manufacturer’s exposure to the

price reform is above median among all device manufacturers. We define exposure as the share

of a firm’s patent portfolio during the pre-period that is affected by the reform. Other variables

are defined analogously. We define r(i, t) = 0 as the first year Medicare price reforms were

announced for a DME category that falls into the firm’s portfolio. Our coefficient of interest, βr’s,

estimate the differential change in the outcome between firms with above- and below- median

exposure.

We also report a pre-post version of the same specification, as shown in equation 3.3.4:

Yj,t,k = γ j,k + γt,k +β11{Above Median Exposure} j,k×1{Post}t,k + ε j,t,k. (3.3.4)

As with every non-experimental research design, selection into treatment is a primary

concern. Medicare selects DME categories for price reform based on baseline yearly pre-reform

expenditures, which may result in differences between treated and untreated categories. However,

we do not find significant divergent pre-existing trends in the outcomes of interest. Additionally,

we find consistent reductions in innovation following price reform, which, to the extent that

higher expenditure categories have a more rapid innovation trajectory, may lead to upward bias

and more conservative estimates of the treatment effect. Moreover, our firm portfolio analysis

provides additional evidence for the impacts of price reform on innovation, market dynamics,

and product safety using variation at the firm level.
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3.4 Results

In this section, we present our results of estimating equations (3.3.1), (3.3.2), (3.3.3), and

(3.3.4), which capture the static and dynamic effects of price reform at the DME and firm level.

Subsection 3.4.1 details the effects of price reform on innovation, subsection 3.4.2 presents the

effects on supply chain structure and the direction of innovation, and subsection 3.4.3 provides

effects on product safety.

3.4.1 Changes in Innovation

Figure 3.2 displays our event-study estimates of changes in FDA submissions and patent

filings. Panel (a) exhibits a sharp and immediate decline in FDA submissions one year after the

price reform announcement. These effects persist over time and can amount to a statistically

significant 47% decrease in FDA submissions in some years, relative to pre-reform means. Panel

(b) illustrates a slower and steadier decrease in global patenting rates in affected DME categories

relative to those in unaffected categories. As the time progresses, the effects of price reform

become more significant, with estimates five years after the reform announcement growing in

magnitude and significance. The long-run estimates suggest that price reforms lead to 100 fewer

patents per year, representing a 50% reduction relative to the pre-reform mean, although the point

estimates are not statistically significant. We find no significant pre-existing trends in treated

groups relative to control groups.

The differential short-run impact of the price reform on patenting rates and FDA sub-

missions can be explained by the cost structure of developing and commercializing early versus

late-stage technologies. Patents primarily reflect progress in earlier-stage R&D, where firms

incur marginal costs incrementally developing their products. In contrast, FDA submissions

capture products that have been developed but must undergo a costly approval process before

commercialization, with an average cost of $24–$75 million, depending on the approval method

(Makower et al. 2010). As a result, firms may continue to develop existing projects in their
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pipeline and patent them due to the relatively low marginal cost and the potential for profits

outside the US, while finding it unprofitable to clear products with the FDA in the US. Therefore,

panel (b) shows firms continuing to develop existing projects in the short run, which may not

have been profitable to start after the price reform, before these types of projects are eventually

exhausted. Panel (a), on the other hand, reflects firms abandoning existing and potential products

within the US due to the high fixed costs of the approval process, which may outweigh their

potential profits.

Figure 3.3 replicates Figure 3.2 (b) separately for US and foreign firms. Panel (a)

illustrates that the long-run estimates for foreign patent filings are only marginally significant at

times, representing a 42% decrease in patenting. In contrast, Panel (b) shows that the long-run

estimates for patents filed in the US are all significant or marginally significant, indicating a

decline of 50 filings a year, or a 66% decrease relative to the pre-reform mean. This disparity is

consistent with two observations. First, US health policy has substantial implications for global

R&D activity. Second, while both foreign and domestic markets are affected, domestic R&D is

more significantly impacted by domestic policy.

Table 3.3 displays our static difference-in-differences estimates. In Panel (a), we observe

a statistically significant 22% drop in FDA submissions across all post-reform periods and firms,

while patent filings decreased by 29%, though not statistically significant. It is worth noting that

these estimates do not account for the likely lag in response time between the implementation

of the policy and its effect on patenting rates due to the lengthy nature of the R&D process, as

described above. Therefore, it is important to examine the impact on patent filing over a longer

horizon.7

Although patenting and FDA submissions are both decreasing in aggregate, we find a

divergence between the number of FDA submissions from US firms and foreign firms. Table 3.3

Panel (a) suggests that the number of FDA submissions from US firms alone decreases by 49%,

7To address this limitation, we plan to estimate short and long-run effects separately in future iterations of this
paper.
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while the number of FDA submissions from foreign firms increases by 54%, both changes are

statistically significant. We also find suggestive evidence that patent filing decreased more for

US firms than for foreign firms, although the estimates are not statistically significant (see table

C38).

It is natural to ask why we observe a decrease in patenting rates among foreign and

domestic firms despite the increase in foreign firm FDA submissions. One possible explanation

is the distinction in what patents and FDA submissions represent. Patents capture changes in the

development of new products or processes, while FDA submissions measure changes in access

to either new or existing products. Foreign firms may not introduce new technologies; rather,

they may submit existing products for FDA approval to exploit their comparative cost advantages

and sell them to US suppliers looking to cut costs. Such incentives would be consistent with an

increase in FDA submissions from foreign firms but a decrease in foreign patenting rates.

Panel (b) of Table 3.3 reports the results of our firm-level analysis. We find that firms most

affected by the price reform experience a significant 10 percentage point drop in the likelihood

of filling a patent in an affected DME category, representing a 29% reduction relative to the less

affected firms. In contrast, these firms do not significantly change their patenting behavior in

unaffected DME categories, and may even slightly increase patenting in these areas (see Figure

C3 for related event studies). We highlight that our firm-level analysis yields similar results to

our DME-level analysis, both pointing to a 29% reduction in our measures of innovation.

In addition to an overall reduction in innovation, the price reform also altered the

direction of innovation. As shown in Table 3.4, companies that were most exposed to price

reform significantly increased their emphasis on process innovations by 32%, measured by a

rise in the share of patents with an above-median number of process claims. Such innovations

focus on new production methods known to reduce production costs (Bena and Simintzi 2022).

In contrast, these firms reduced the share of patents filed focused on product innovations. Our

findings suggest that price reform prompted firms to cut production costs by concentrating on

process innovations. We also find suggestive evidence that, after reform, patents filed by the most
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exposed firms receive 60% more citations than those filed by their less-exposed counterparts

(although this estimate is insignificant). This result suggests that, despite the decrease in patent

filings from exposed firms, they continued to undertake some high-value efforts to differentiate

themselves from their competitors.

3.4.2 Changes in Market Structure

Table 3.5 presents our estimates of the changes in manufacturer entry and outsourcing

resulting from equation (3.3.2). Panel (a) shows that there is a significant decrease in the rate

of new entrants per year into affected DME categories by 25% relative to unaffected ones (see

Figure C4 for the corresponding event study). This decrease is solely driven by a significant

47% drop in domestic entrants, while foreign firm entry rates did not significantly change and

may have even increased slightly by 8%. These results support our earlier results indicating that

foreign firms may capitalize on their cost advantages to compete in the US market by offering

lower-cost products.

As domestic firm entry rates decline and foreign firm entry rates slightly increase over

time, foreign-made products likely become more prevalent in the US DME market. However,

foreign firm and product entry are not the only factors influencing the dominance of foreign-

made products in the US market. Domestic firms may also adapt to price reform by outsourcing

production to low-cost foreign contractors to maintain their position in the market.

Table 3.5 shows that the number of contracted manufacturers increases by 54% in affected

DME categories relative to those unaffected, although not statistically significantly. However, we

observe a statistically significant increase of 65% in foreign contracted manufacturers relative to

the pre-reform mean (see Figure C5 for the corresponding event studies). Our results indicate

that companies operating in affected DME categories are increasing their global presence by

expanding their supply chains across different countries. Even domestic firms, which may face

cost disadvantages alone, utilize low-cost foreign production by contracting with foreign firms.

In summary, we observe an increase in the number of foreign firms entering the US

104



market to compete, possibly due to their comparative advantages. Simultaneously, domestic

firms outsource their production to foreign firms, potentially for the same reason. These results

are consistent with our finding that firms most affected by the price reform increasingly prioritize

process innovation over product innovation, which may further help manufacturers reduce

production costs and offset the effects of price reform. However, an important question is

whether these efforts to outsource production and prioritize process innovation may come at the

expense of product quality, which could have significant implications for consumer welfare.

3.4.3 Changes in Product Quality

To examine the changes in product quality, we analyze the repair rates of DME. Since it

takes time for new products to penetrate the consumer market, and the penetration is likely accel-

erated by the implementation (rather than just the announcement) of price cuts, we adopt later

reference points in our preferred specification. Specifically, in addition to using the announce-

ment dates as we do elsewhere in the paper, we also report results using the implementation date

of the first price cut for each product category to define relative years, which is our preferred

specification. Changes to repair rates likely take time to manifest as suppliers form new contracts

with manufacturers to purchase newer products, and consumers take time to adopt and use

them to the point where they might need repairs. Nonetheless, our results are robust to either

relative year definition. To ensure valid estimation of the changes in the repair rate outcome,

we employed a matching procedure to assign two control DME categories to each affected one.

This approach not only allowed a sufficient number of control groups for reliable inference

using Conley–Taber (i.e., two matched controls instead of one) but also enabled us to select

control groups that were sufficiently similar to the treated groups. Without matching, the average

pre-event repair rates among unaffected DME categories were 30 times higher than those in

affected DME categories, posing challenges for trend comparisons. We note that when we

naively scaled the outcomes of the entire sample of unaffected categories to the outcomes of the

affected categories, we obtained similar results to those generated using our matching procedure.
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We supplement our analysis of repair rates with adverse event rates. Our analysis of

adverse event rates is only suggestive, given contemporaneous changes in CMS surveillance of

DME categories, which may have influenced reporting rates.

Outcomes such as outsourcing, foreign firm entry, and a shift in focus to more cost-

cutting innovation could plausibly lead to poorer product quality. To examine changes in product

quality, we estimate changes in repair rates of DME equipment in affected categories relative to

unaffected ones using an event-study design. Figure 3.4 presents our results, showing a sharp

increase in repair rates after price reform, which persists and continues to rise over a longer

horizon. By the last sample year, repair rates have significantly increased by as much as two

percentage points, representing a 250% increase from pre-reform rates. Importantly, we do not

observe significant pre-existing trends in treated groups relative to controls.

Table 3.6 provides further insights into the impact of price reform on repair rates. Our

stacked difference-in-differences analysis reveals a significant 100–125% increase in repair rates

over the post-reform sample, suggesting a decline in product quality. We present estimates for

two reference periods: at the time of announcement and with a lead time to account for the time

it takes for changes to materialize after the announcement. The results are statistically significant

for both reference periods, though the lead-time reference is our preferred specification. A

125% increase in repair rates, representing a one-percentage-point increase, would result in an

additional 700,000 DME repairs annually.

We also investigate the impact of price reform on adverse event reports related to affected

DME categories and find suggestive evidence of a 157–233% increase, although the results are not

statistically significant. However, in an effort to explore the mechanisms behind these decreases

in product safety, we find substantial heterogeneity by firm type. Specifically, Table C39 shows

that products from foreign manufacturers experienced a significant 470% increase in adverse

events, with the largest increases observed in products made by foreign contractors, representing

a 3,136% increase in adverse events relative to the pre-reform mean. These findings suggest

that changes in product quality may be associated with increased contracting with foreign firms
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after price reform. However, we are unable to draw definitive conclusions because two plausible

explanations may account for this pattern. One possibility is that products made by foreign

contractors are of lower quality, resulting in higher adverse event rates. Alternatively, as firms are

increasingly outsourcing production to foreign manufacturers, the total number of products made

by foreign contractors consumed in US markets increases, which may mechanically increase the

number of adverse events due to increased utilization of those products, absent any differences

in quality.

There are several caveats to consider when interpreting the adverse event analysis results.

First, CMS increased surveillance of products within affected DME categories to assess the

impact of price reform on product quality, which might have encouraged more reporting of

adverse events, irrespective of changes in underlying safety. However, it is important to note

that the reports we analyze originate from manufacturers and not CMS or users, although

it is possible that manufacturers may have increased reporting in response to CMS’s closer

vigilance. Moreover, it is possible that CMS increasingly alerted manufacturers of adverse

events, increasing reporting rates. Second, FDA adverse event report rates are not normalized by

utilization, so changes in the number of adverse event reports could reflect changes in utilization

rather than changes in safety. However, we find that utilization of affected DME decreases after

price reform relative to unaffected DME, which suggests that such factors are unlikely to drive

our results, as we observe an increase in adverse event reports. Finally, we acknowledge that our

adverse event report analysis is suggestive, given these limitations.

3.5 Discussion and Conclusion

This paper examines the impact of health care price reform on innovation, market

structure, and product quality using rich data from administrative sources and machine learning

methods. We employ a stacked difference-in-differences estimator to compare outcomes of

affected DME categories to those unaffected, and supplement this strategy with a comparison
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of firms more exposed to price reform to those less exposed. Our analysis yields a set of three

results. First, price reform reduces innovation in affected categories, especially among the most

exposed firms. It also results in an increase of foreign-made products in the US market, possibly

due to the ability of foreign firms to deliver products at a lower cost. Text analysis of the patents

suggest a shift toward “process” innovation and away from “product” innovation, consistent with

greater emphasis on production costs in the market. Second, US firm entry into affected DME

categories decreases following the price reform, while foreign firm entry appears unaffected

or slightly increases. US firms outsource production to foreign manufacturers in response to

the cost-conscious US procurement environment. Lastly, we find evidence of reduced product

quality, as manifested by increased repair rates and adverse event reports in affected categories

relative to those unaffected, particularly among foreign firms and contractors.

The results of this study shed light on the long-term implications of government pro-

curement policy. Governments face a crucial trade-off when setting procurement prices: while

setting low prices can yield immediate savings, it risks altering the market structure, precipitating

production offshoring, disrupting the trajectory of technological advancements, and potentially

eroding product quality. These dynamic, long-term effects must be considered when designing

policies as they may diminish or even outweigh the immediate cost-savings. Thus, understanding

the interplay between price reforms and their far-reaching impacts is crucial for designing optimal

procurement policy and is increasingly important in light of recent interest in additional price

reforms, such as those proposed in the Inflation Reduction Act, and ongoing efforts to reduce

health care costs.

Our paper raises several important questions that remain unanswered. For example, are

there labor market responses to health care price reforms: does employment change among

DME suppliers and manufacturing plants? Furthermore, are there price or quantity responses

from private insurers following the Medicare price reform that may have either amplified or

dampened its overall impact? Lastly, could lower-quality products be associated with poorer

long-run health outcomes and increased expenditures that may offset some of the initial savings?
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Further research is needed to address these questions and gain a deeper understanding of the

implications of health care price reforms.
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Figure 3.1. Raw Trends of Total Medicare DME Payments. Note: The figure plots total Medicare DME
payments separately for DME in categories subject to the price reform and those that are not. The
sample includes all Traditional Medicare DME purchases each year. The y-axis values are given in
millions of US dollars.
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(a) Pre-Market Approval and 510(k) Count

(b) Patent Count

Figure 3.2. Event Study: Innovation. Note: The figure presents the coefficients obtained from estimating
equation (3.3.1) for our FDA submissions and patent count outcomes. It illustrates the temporal
evolution of outcomes in DME categories affected by the event, relative to those unaffected, with a
reference period at t =−1. Panel (a) presents our event-study estimates for changes in the number of
PMAs and 510(k)s submitted to the FDA and panel (b) provides the estimates for the changes in the
number of patents filed annually. 95% confidence intervals are provided.
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(a) Foreign Patent Count

(b) US Patent Count

Figure 3.3. Event Study: Patent Count by Origin. Note: The figure presents the coefficients obtained
from estimating equation (3.3.1) for the patenting rate outcomes, separately for patents filed in the US
and abroad. It illustrates the temporal evolution of outcomes in DME categories affected by the event,
relative to those unaffected, with a reference period at t = −1. Panel (a) presents the event-study
estimates for changes in the patenting rate (per year) of patents filed abroad, while panel (b) presents
estimates for the changes in the patenting rate of patents filed in the US. 95% confidence intervals are
provided.
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Figure 3.4. Event Study: Change in Product Quality. Note: The figure presents the coefficients obtained
from estimating equation (3.3.1) for the repair rate outcome. It illustrates the temporal evolution
of outcomes in DME categories affected by the event, relative to those unaffected, with a reference
period at t =−1. 95% confidence intervals are provided.
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Table 3.1. Summary Statistics of Product Categories. Note: The table reports summary statistics from the
year before the announcement of the price reform (2005) and all sample years (1996-2016), separately
for all product categories, product categories that were subject to price reform, and product categories
that were not subject to the reform during the sample period. Panel (a) presents summary statistics for
our measures of innovation, and panel (b) presents those for our utilization measures.

All DME Categories Categories Affected Categories Unaffected
by Price Reform by Price Reform

2005 1996-2016 2005 1996-2016 2005 1996-2016
Panel (a) Product Innovation

Number of Patents 10,371 236,656 1,714 43,567 8,657 193,089

Number of PMA/510(k)’s 105 3,738 67 2,306 38 1,432

2005 2005 2005

Panel (b) Product Utilization

Number of Medicare Users (Millions) 104 59 45

Medicare Total Expenditures (Millions) $7,309.6 $3,416.3 $3,893.3

Number of Categories 56 13 43

114



Table 3.2. Summary Statistics of DME Manufacturers. Note: The table reports summary statistics on the
number of patents filed of different types across the firms included in our firm-level analysis, separately
for 2005 and the full sample. P25 signifies firms in the 25th percentile, while P50 and P75 follow
accordingly.

2005 1996-2016

Mean S.D. P25 P50 P75 Mean S.D. P25 P50 P75

Number of Health-Related Patents 16.83 46.57 0 2 13 334.07 746.61 19 68 270

Number of DME Patents 2.83 8.48 0 0 2 57.48 125.02 4 14 50

Number of Affected DME Patents 0.93 2.83 0 0 1 22.65 62.77 2 5 15

Number of Unaffected DME Patents 1.89 7.18 0 0 1 34.84 88.91 0 4.5 29.75

Share of Portfolio Affected by Price Reform 0.24 0.31 0.03 0.10 0.34 - - - - -

Number of Manufacturers 486
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Table 3.3. Impact of Price Reform on Innovation. Note: The table presents results from estimating
equations (3.3.2) and (3.3.4) for our innovation outcomes. Column (1) reports the pre-event (before
price reform) mean across treated groups. Column (2) presents the estimates, with standard errors
reported in parentheses below the estimates. Column (3) shows the percent change in the outcome
relative to the pre-event mean. Panel (a) describes estimates from our DME category-level analysis,
with overall totals and differentiation between origins (i.e., US and foreign), and panel (b) presents
estimates from our firm-level analysis, measuring changes in the likelihood that a firm files at least one
patent in a given year. Statistical significance is denoted by +, *, **, and *** correspond to significance
levels of 0.10, 0.05, 0.01, and 0.001 levels, respectively.

Change with Price Reform

Pre-Event Mean Estimate % Change
(1) (2) (3)

Panel (a) DME Category Level

Number of PMA/510(k)’s per Year 6.38 -1.40*** -22%
(0.35)

From US Firms 5.0 –2.431*** -49%
(0.27)

From Foreign Firms 1.38 0.75* 54%
(0.31)

Number of Patents per Year 196.92 -55.73 -29%
(27.39)

Filed in the US 76.30 -20.64 -27%
(27.38)

Filed Elsewhere 120.62 -36.66 -30%
(43.63)

Panel (b) Firm Level

Pr of Filing Affected DME Patent 0.35 -0.10*** -29%
(0.03)

Pr of Filing Unaffected DME Patent 0.15 0.01 0.07%
(0.03)
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Table 3.4. Impact of Price Reform on Direction and Quality of Innovation. Note: The table presents
results from estimating equations (3.3.2) and (3.3.4) for our direction and quality of innovation
outcomes. Column (1) reports the pre-event (before price reform) mean across treated groups. Column
(2) presents the estimates, with standard errors reported in parentheses below the estimates. Column
(3) shows the percent change in the outcome relative to the pre-event mean. Table reports estimates of
the change in the direction of innovation or citations at the firm level. The quantity t = 0 refers to the
reference period (i.e., the period we consider the policy enacted). Statistical significance is denoted by
+, *, **, and *** correspond to significance levels of 0.10, 0.05, 0.01, and 0.001 levels, respectively.

Change with Price Reform

Pre-Event Mean Estimate % Change
(1) (2) (3)

Share of Patents on Process Innovation 0.31 0.10* 32%
(0.05)

Share of Patents on Product Innovation 0.69 -0.10* -15%
(0.05)

Citations per Patent 12.95 8.00 60%
(6.77)
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Table 3.5. Impact of Price Reform on Manufacturer Entry and Outsourcing. Note: The table presents
results from estimating equation (3.3.2) for our entry and outsourcing outcomes. Column (1) reports
the pre-event (before price reform) mean across treated groups. Column (2) presents the estimates,
with standard errors reported in parentheses below the estimates. Column (3) shows the percent
change in the outcome relative to the pre-event mean. Panel (a) describes estimates of the number of
entrants at the DME-category level, with overall totals and differentiation between origins, and panel
(b) presents estimates of the number of new contractors at the DME-category level, with overall totals
and differentiation between origins. Statistical significance is denoted by +, *, **, and *** correspond
to significance levels of 0.10, 0.05, 0.01, and 0.001 levels, respectively.

Change with Price Reform

Pre-Event Mean Estimate % Change
(1) (2) (3)

Panel (a) Number of Entrants

All Entrants 2.38 -0.59** -25%
(0.20)

US Entrants 1.88 -0.88*** -47%
(0.14)

Foreign Entrants 0.50 0.04 8%
(0.09)

Panel (b) Number of New Contractors

All Contractors 4.00 2.15 54%
(1.63)

US Contractors 0.92 0.153 17%
(0.59)

Foreign Contractors 3.08 2.00* 65%
(1.01)
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Table 3.6. Impact of Price Reform on Product Quality. Note: The table presents results from estimating
equations (3.3.2) and (3.3.4) for our product quality outcomes. Column (1) reports the pre-event
(before price reform) mean across treated groups. Column (2) presents the estimates, with standard
errors reported in parentheses below the estimates. Column (3) shows the percent change in the
outcome relative to the pre-event mean. Table reports estimates of changes in product quality measures
at the DME-category level. The quantity t = 0 refers to the reference period (i.e., the period we
consider the policy enacted). Statistical significance is denoted by +, *, **, and *** correspond to
significance levels of 0.10, 0.05, 0.01, and 0.001 levels, respectively.

Change with Price Reform

Pre-Event Mean Estimate % Change
(1) (2) (3)

Repair Rate

t = 0 at announcement 0.008 0.008** 100%
(0.003)

t = 0 after lead time 0.008 0.01*** 125%
(0.003)

Adverse Event Reports

t = 0 at announcement 927.7 2,163.9 233%
(1,340.6)

t = 0 after lead time 1,464.5 2,300.3 157%
(1,480.5)
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Appendix: Chapter 1

A1 Bankruptcy Protection Model Extension

Following insights from the literature on the “judgment proof problem” (see Shavell

(1986), Boomhower (2019)), when damages exceed the value of a firm’s seizable assets, the

difference can be discharged through bankruptcy. To reflect the bankruptcy option, I augment

the model above to include expected damages that differ by firm assets K f . I define the unspent

capital available to cover damages as u f . Unspent capital includes the capital not spent on

commercialization costs (K f −c f ) and profits from the current period, given by u f = π +K f −c f .

This term incorporates the simplifying assumption that net profits from the last period are

distributed as devidends.8 The upper bound of legal damages is given by φ̄ .

Let ν represent the total realized damages from product defects, with probability dis-

tribution function f (ν ;x∗f ,~Z). In the presence of bankruptcy, the expected damages are given

by

Expected Damages =


D(x∗f ;~Z) if u≥ φ̄ ,[∫ u

0
ν f (ν ;x∗f ,~Z)dν +

∫
φ̄

u
K f (ν ;x∗f ,~Z)dν

]
︸ ︷︷ ︸

DT (x∗f ;~Z)

else. (A1.1)

In words, if the firm’s capital stock is at least as high as worst-case damages, the expected

8I could relax this assumption by letting u be equal to the unspent capital and the sum of all prior net profits up
to a given point in time. This would mean that firms would tend to grow larger and eventually be unable to file for
bankruptcy. However, the theoretical insights remain the same as initially smaller firms will face fewer expected
damages for some time.
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damages are the same as above, and the investment decision is unchanged. Smaller firms,

however, confront a truncated damages distribution, where all possible damages outcomes

higher than the firm’s unspent capital stock u f are fixed at u f . Thus, instead of paying these

outsized damages, the firm declares bankruptcy and contributes the value of its total assets

to partially cover its damages. Hence, expected damages DT (x∗f ;~Z) are determined by the

probability-weighted sum of damages from 0 to u f , plus the probability-weighted sum of u f for

all damages higher than u f . Assume that the marginal benefit of safety effort for small firms is

less than large firms at the same levels of safety effort, as there are fewer damages to abate (e.g.,

−D′T (x f ;~Z)<−D′(x f ;~Z) for all x f )

Bankruptcy protection changes the incentives to improve product safety for small firms.

Deregulation introduces firms to legal damages; however, bankruptcy protects small firms from

worst-case damages, lowering the marginal benefit of exerting safety effort. Thus, small firms

exert less safety effort than large firms. I state this formally as follows:

Proposition 1 (Deregulation introduces bankruptcy distortion) Assume firm A has less internal

capital than (i) firm B (i.e., KA < KB) and (ii) its worst-case damages outcomes (i.e., KA < φ̄ ).

Firms A and B are otherwise identical. If deregulation leads to an increase in safety effort (see

proposition 1 part ii), firm B will increase its safety efforts most (i.e., x∗B− x > x∗A− x). This

occurs if and only if x∗B > x∗A (which can stack with proposition 4 part ii, if capital is also below

safety effort costs).

A2 Proofs

A2.1 Proof of Proposition 1

Assume that ψ +Cx(ψx−K) <− EL · D′(x). Assume, by way of contradiction, that

x∗f < x. Since x∗f is the optimal safety effort, this implies that

ψ +Cx(ψx∗f −K) =− EL · D′(x∗f ). (A2.1)
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However, since x∗f < x, we know that Cx(ψx∗f −K) ≤ Cx(x−K) as costs are strictly

increasing in x (given that K ≤ x). We also know that D′(x∗f ) < D′(x) as D′( ) is strictly

increasing in x. Thus, − EL · D′(x∗f )>− EL · D′(x) . Together, these inequalities imply that

ψ +Cx(x−K) >− EL · D′(x). (A2.2)

A contradiction. Thus, x∗f > x. See figure 1.2 for a graphical illustration of this proof.

A2.2 Proof of Proposition 2

Assume that deregulation leads to an increase in safety effort x∗A > x and x∗B > x. I want to

show that x∗A−x < x∗B−x. It suffices to show that x∗A < x∗B. Note that safety effort for deregulated

firm B is chosen such that

ψ +Cx(ψx∗B−KB) =− EL · D′(x∗B). (A2.3)

And for firm A:

ψ +Cx(ψx∗A−KA) =− EL · D′T (x
∗
A). (A2.4)

Since D′T (x)< D′(x) for all x, this means that

ψ +Cx(ψx∗A−KA) <− EL · D′(x∗B). (A2.5)

Assume, by way of contradiction, that x∗A > x∗B. This implies that ψ +Cx(ψx∗A −KA) >

− EL · D′(x∗B), since ψ +Cx(ψx∗A−KA) > ψ +Cx(ψx∗B−KB) as Cx( ) is strictly increasing

in x and decreasing in K (KA < KB, which further strengthens the inequality if KA < ψx∗A, or

capital is less than safety effort costs). A contradiction. Thus x∗A < x∗B.
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A2.3 Proof of Proposition 3

Note that, under regulation R, TA < TB, thus tcomm,a > tcomm,b; thus, for firm A, commer-

cialization costs are strictly larger, financing costs are larger (if non-zero), and the effective life

of the invention is shorter. Thus, the returns to commercialization are strictly lower for firm A.

Under the litigation environment L, there are no complexity distortions, thus the returns

to commercialization are equal between firms A and B. We can formalize these insights as

ReturnsA,R−ReturnsB,R < 0 and ReturnsA,L−ReturnsB,L = 0.

The difference in the change in the returns to commercialization from deregulation

between firm A and B is given by:

DiD = (ReturnsA,L−ReturnsA,R)− (ReturnsB,L−ReturnsB,R). (A2.6)

We WTS that this difference is positive or that the increase in returns is higher for firm A.

Rewriting equation A2.6, gives:

DiD = (ReturnsA,L−ReturnsB,L)− (ReturnsA,R−ReturnsB,R). (A2.7)

From part equation A2.3 we get

DiD =−(ReturnsA,R−ReturnsB,R)> 0. (A2.8)

Thus, the increases in returns to commercialization are greatest at firm A.

A2.4 Proof of Proposition 4

Note that under the given conditions, small firms face lower expected damages and

safety effort costs under deregulation than large firms (see proposition 1). Thus, deregulation

would lead to larger returns from commercialization for smaller firms than larger firms, all else
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equal. Therefore, showing that the returns from commercialization increase most for small firms

through the financing channel is sufficient, given that bankruptcy distortions would broaden

the conditions under which deregulation disproportionately benefits small firms. Hence, for

simplicity, I consider only the financing channel and the conditions that guarantee outsized

small-firm benefits.

Consider firm A’s profit function with external funds eR,A, given by:

REL · πR−χtcomm−ψx−C(eR,A).

Note that firm A’s external capital is positive (i.e., eR,A > 0) since its internal capital is less than

its non-financing commercialization costs (i.e., KA < c); thus, due to nonzero capital frictions, its

financing costs are positive (i.e., C(eR,A)> 0).

Firm B’s internal capital is greater than firm A’s; thus, its external capital is less than

firm A’s, and its financing costs are less than firm A’s. Firm A and firm B have identical profit

functions aside from financing costs; thus, firm B’s expected net profit is greater than that of firm

A. Thus, either firm A’s commercialization activity is the same as that of firm B (“non-marginal”)

or firm A’s commercialization activity is less than firm B’s.

Now for the litigation environment L, the returns to commercialization are given by:

Returns = EL · [πN−D(x∗f ;~Z)]−ψx∗f −C(ψ = x∗−K f ). (A2.9)

For a moment, think of x as not fixed. Since KA < KB, profits π , and EL are the same

between the two firm types, at every value of x, the returns for firm A are strictly less than the

returns for firm B, due to increased financing costs. If we assume bankruptcy, firm A also has

lower expected damages than firm B and x∗A < x∗B, which would further increase the Assume, by

way of contradiction, that exists an optimal safety effort for firm A x∗A such that returns to firm A

are larger than the returns to firm B at its maximum safety effort x∗B. Since the returns to firm

B are strictly larger than the returns to firm A at each value of x, there exists some x′ such that
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ReturnsB(x′) > ReturnsA(x∗). However, this implies that ReturnsB(x′) > ReturnsB(x∗B), even

though x∗B is maximizes returns. A contradiction. Thus, firm A’s returns are lower than firm B’s.

Further, commercialization activity is lower than firm B’s. However, it could be the case that

returns are negative in the litigation environment for both firms. If so, then commercialization is

the same across both firms (“non-marginal”).

Thus, we have

ReturnsA,L−ReturnsB,L < 0 and ReturnsA,R−ReturnsB,R < 0. (A2.10)

I want to also show that the sign of the following difference-in-differences is am-

biguous: (ReturnsA,L−ReturnsA,R)− (ReturnsB,L−ReturnsB,R). We have that (ReturnsA,L−

ReturnsA,R)−(ReturnsB,L−ReturnsB,R)= (ReturnsA,L−ReturnsB,L)−(ReturnsA,R−ReturnsB,R).

We know this difference could be positive or negative. The first and second differences are

both negative, thus the sign of the difference-in-differences depends on the relative changes

in profits, damages, and delay costs. However, note that if capital is greater than optimal

deregulated safety effort costs (i.e., KA ≥ ψx∗A), despite being lower than non-financing costs

before deregulation, then (ReturnsA,L−ReturnsB,L) = 0 as there would be no financing costs to

differentiate the returns of the two firms; thus, the change in returns would be larger for firm

A. Note that if we also consider that damages for smaller firms are lower, due to bankruptcy,

then (ReturnsA,L−ReturnsB,L)> 0. Thus, in both cases, the larger change in returns for firm A

would translate into a larger increase in net profits if both firms A and B experience increases in

net profits from deregulation.

A3 Learning Curve Estimation and Simulations

A3.1 Estimation Framework for the Learning Curve Parameters

Medical device manufacturers that are inexperienced with regulation may face additional

costs when bringing a new medical device to market (Y Combinator 2016, Makower et al. 2010).
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As presented in section 1.2, I model the additional costs from approval delays using a learning

curve. I model the relationship between the approval delay of project N for firm f , tcomm,N, f

(measured in days), and cumulative experience, ∑
N−1
s=1 tcomm,s, f , by the following equation:

tcomm,N, f = β (Rc)

(
N−1

∑
s=1

tcomm,s, f

)−γ

, where γ > 0.

Recall that β (Rc) represents the baseline approval delay in medical device type c under regulation

R (R can be Class III or II in practice), while ∑
N
s=1 tcomm,s, f represents the sum of approval delays

(in days) faced after having submitted N−1 past projects.

More novel devices within a given medical device type may face longer approval delays

if the FDA is more careful with these devices to ensure that new scientific characteristics do

not lead to unexpected harm. However, the structure of Class III regulations helps distinguish

between more or less novel innovation. As mentioned in section A5.3, firms that have already

submitted an original PMA in a Class III medical device type may use PMA supplements for

follow-on innovation within that device type. PMA supplements experience shorter approval

delays and face fewer data requirements. On the other hand, the FDA requires original PMAs

when firms have not yet submitted a PMA in a given Class III medical device type or when an

incumbent firm invents a new device that is sufficiently novel. Thus, I include only approval

delays that firms encountered when submitting original PMA documents in my analysis to

condition on device novelty. This ensures that novelty is not driving approval delays.9 For

Class II devices, I ensure consistent novelty across devices by only considering documentation

submissions for devices with unique brand names.

I log-linearize equation A3.1, to allow for OLS estimation of the parameter γ , and include

medical device type and firm-level fixed effects, resulting in the following specification,

9I focus only on firms that have spent at least one day navigating FDA regulation to avoid potential confounders
related to first-time innovators, including their tendency to ”swing-for-the-fence” when confronted with barriers to
entry (see Aghion et al. (2019)). This exclusion does not substantially change my results, with results remaining
significant. I also perform the same empirical exercise for Class II device manufacturers as the sample size is much
larger. For this exercise, I consider only 510(k) documents submitted for unique devices, finding significant, though
smaller, results even after including product-code-by-year and firm fixed effects.

140



ln(tcomm,N, f ) = ln(β (Rc))− γln

(
N−1

∑
s=1

tcomm,s, f

)
+αc +α f + εc, f . (A3.1)

For Class III devices, I include device type and firm fixed effects. For Class II devices, I

include firm- and device type-by-year fixed effects, as I have enough observations within those

more granular fixed effects to estimate the coefficients. Standard errors are clustered at the

device-type-firm level. I exclude observations with no experience to avoid undefined outcomes

in the estimation

The estimates of the learning curve parameters are significant for both Class III and II

documentation submissions (see table A23).

A3.2 Simulation: Flattening the Learning Curve

As described in section 1.2, firm f ’s decision to innovate under regulation is determined

by its return to commercialization

REL f · πR, f −χtcomm, f −ψx−C(eR, f ), (A3.2)

where tcomm, f = β
(
∑

N−1
s=1 tcomm,s, f

)−γ
. For tractability, I assume that financing costs

take the form C(e) = max(0,χ jtcomm, f +ψx−K f ). In addition, since I do not observe firm

expenditures on safety R&D, the distribution of damages, safety efforts, or worst-case damages,

I assume that damages and safety efforts are vanishingly small relative to profits and delay costs.

This assumption is likely not innocuous as these costs are substantial, but it allows me to draw

broader insights under my limitations by focusing on changes in delay costs that come from

reducing regulatory complexity.

The learning curve parameters γ and β (Rc) are presented in table A23 for Class III and

Class II devices. I simulate the effect of flattening the learning curve on the rate of unique device

inventions from Class III device manufacturers to assess the counterfactual of less complex FDA

regulations. I calibrate χ to match the cost of approval delays found in Makower et al. (2010) at
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the daily level for both Class III and II devices.

To execute these simulations, I first generate distributions of expected profits, firm sizes,

and firm FDA regulatory experience. I proxy for expected discounted profits (i.e., REL f · πR, f )

using patent market valuations. This proxy requires the assumption that the market can adequately

identify the expected discounted lifetime payout that a given patented innovation will yield to

a firm and that this value is reflected in the change of the assignee’s stock market price upon

patent grant announcement. The device payout distribution is generated by fitting a gamma

distribution to the medical device patent market valuations for Class III devices. I then fit a

lognormal distribution to my firm size data to generate a distribution of asset values across firms.

Lastly, I fit a gamma distribution to my firm FDA experience data.

After sampling from these fitted distributions to form a set of representative firms, I

model how flattening the learning curve affects the rate of new device inventions across these

firms. To this end, I anchor the right tail of the learning curve to the approval delay of the firm

with the highest regulatory experience in my data and iteratively reduce the learning parameter

(γ) while solving for a β (Rc) value that allows the new curve to pass through the anchored value.

I then calculate the firms’ decisions to innovate, given the approval times corresponding to the

new learning curve, and calculate the difference between the ex-post investment decisions (i.e.,

after the learning curve is flattened) and the ex-ante investment decisions (i.e., at the baseline

values of γ and β ). I then sum these differences across each firm and calculate the percentage

change in new device inventions relative to the baseline values. Figure A9 shows the iterative

flattening of the learning curve, and table A21 provides the calculations of the percentage change

in new device inventions.

A4 Patent Data Collection

In this appendix section, I describe the process for collecting patents by device type in

more detail. I also evaluate the accuracy of the procedure and demonstrate that my results are
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robust to intuitive restrictions to the generated patent sample.

A4.1 Procedure for Gathering Patents by Device Type

The patent collection process begins by gathering a set of FDA device type descriptions

for over 5,000 medical device types. These descriptions consist of both a broad FDA regulation

number description and a narrower FDA device name description. To prepare these descriptions

for keyword searches, I remove stop words, punctuation marks, and duplicate words. For

example, the regulation number description “Implantable pacemaker pulse generator” and device

type description “Leadless Pacemaker” would be transformed into the search string “implantable

pacemaker pulse generator leadless.” Next, I search the full text of the universe of US patent

documents and gather all patents that contain all of the keywords in the search string. This

process is repeated for all device types.

In some instances, patents are included in more than one device type. In such cases, I

drop the patent from all but one randomly chosen device type.

A4.2 Examining the Accuracy of the Procedure

Naturally, keyword searches that link patents to device types can sometimes lead to

false positive and false negative errors. For example, one of the most common inclusion errors

I encountered was when keyword searches mistakenly linked drug-related patents to medical

device types, according to the Cooperative Patent Classification (CPC) system. However, these

discrepancies between the CPC classifications and my linkages may not always be erroneous, as

some drug technologies may be complementary to certain device types. Therefore, using keyword

searches instead of the CPC system can be useful for capturing complementary technologies, but

using both can provide a way to validate my data. Below, I present a few examples of patents I

identified through random sampling of drug-related patents, which may or may not be inclusion

errors.

First, the patent “US-10428030-B2” describes a compound that can be used as a diag-
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nostic tool in combination with Nuclear Magnetic Resonance Imaging (NMRI). According to

the Cooperative Patent Classification (CPC) system, this compound is classified as a drug rather

than a medical device. However, when I searched patent texts using the medical device type

keywords “nuclear magnetic resonance imaging diagnostic systems,” the patent was included in

my results. Even though the compound itself is not a device, it may be possible that innovation in

these types of compounds increases when NMRI diagnostic systems (complementary technolo-

gies) are deregulated. The patent “US-10314846-B2” is another example of this technological

complementarity. My keyword search technique includes these complementary technologies

while relying on patent classifications alone would not, as the compound is labeled as a drug

(i.e., A61P25/14–Drugs for disorders of the nervous system for treating abnormal movements,

e.g., chorea, dyskinesia).

Another example of the benefits of using keyword searches is demonstrated when search-

ing for patent documents containing the keywords “cyclosporine test system.” In this case,

the patent “US-10011612-B2” is included in the results. According to the Cooperative Patent

Classification (CPC) system, this patent is classified as a drug (i.e., A61P1/16–Drugs for dis-

orders of the alimentary tract or the digestive system for liver or gallbladder disorders, such as

hepatoprotective agents, cholagogues, and lithophytic). As described in the patent, the drug is

administered in combination with other agents, such as an anti-inflammatory drug, antimicrobial

agent, anti-angiogenesis agent, immunosuppressant, antibody, steroid, an ocular antihypertensive

drug, or a combination of these agents. Examples of these agents include cyclosporine. The

administration of such drugs is typically monitored using cyclosporine tests to ensure that ap-

propriate levels of the drug are in a patient’s system. Therefore, it is plausible that increased

innovation in and cheaper acquisition of cyclosporine test systems could lead to increases in

innovation in cyclosporine immunosuppressants.

However, this type of sensitivity in keyword searches can also result in inclusion errors.

For example, when I searched patent texts for the device type “soft contact lens daily wear,” I

included a patent for a drug that treats corneal ulcers (eye ulcers). This patent was included in my
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results because it mentions that the drug can be administered as a contact lens or reservoir, among

other methods. While there may be some technological complementarities between contact

lenses and this type of drug, the connection is weaker. Nonetheless, this example demonstrates

how keyword searches can sometimes include patents that may seem only tangentially related.

Although there may be valid reasons to include drug-related technologies and other

non-medical-device technologies in my patent data, I also demonstrate that my results are not

sensitive to restricting my patent data only to medical devices in the following section.

A4.3 Robustness of Procedure

To validate the results of my main specification that analyzes patent data collected using

keyword searches, I use the CPC system to restrict my patent sample to only include medical

devices and find that my results are robust. To restrict the sample, I only keep collected patents

that fall under the “Medical or Veterinary Science Hygiene” CPC categories (i.e., include “A61”),

but that exclude patents classified as drugs (i.e., not “A61P”). This restriction reduces the number

of included patents from 1,248,289 to 239,315 patents. In the CSV file linked here, I provide the

top three CPC labels for patents collected in each device type for all affected Class III devices

used in my analysis. In another CSV file linked here, I provide the top three CPC labels for

patents collected in each device type for all affected Class II devices used in my analysis. Notice

that the descriptions of most top CPC codes correspond with the descriptions of medical device

types.

Table A24 presents the estimates of equation 1.4.1 using the restricted patent sample for

my patenting rate outcomes. The table reveals that the estimates remain large in magnitude and

statistically significant. In fact, the percentage change in patenting rates relative to pre-event

means is larger for both Class III to II and Class II to I events. However, the magnitude of the

effects is reduced by approximately one third, signifying that approximately one-third of the

effect on patenting in my main specification may be due to positive spillovers into complementary

technologies. Figure A15 shows the estimates from an event-study analysis and suggests that the
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results from my main specification are robust when using this restricted sample of patents.

Lastly, my estimates for the outcome defined as the number of new FDA device submis-

sions (i.e., the “Device Submission Rate”) also support my patenting results by showing similar

increases in innovation.

A5 Additional Details

A5.1 FDA Decision Rule for Class II to I Events

All Class II to I down-classifications were determined using a “device priority score.”

These scores were calculated using the following linear combination of evaluation factors,

DPM = 0.38D+0.3S+0.12LS+ .08U+ .08B+0.04E. (A5.1)

In the model, D is the frequency of death, S is the frequency of serious injury, LS is

the frequency of less serious injury, U is the frequency of use, B is the health benefit, and E is

effectiveness. The FDA calculated the adverse event evaluation factor scores D, S, and LS with

the following rule,

Y =


100 if in “high” range,

50 if in “medium” range,

0 if in “low” range.

(A5.2)

The FDA pre-determined the three different ranges and their respective cutoffs, given

annual counts of the outcome Y. The evaluation factor scores for U, B, and E are given by

Y =


0 if in “high” range,

50 if in “medium” range,

100 if in “low” range.

(A5.3)
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Intuitively, this means that given two devices with the same annual incidence of deaths

and injuries, the device with the highest DPM score is the device that has the highest intrinsic

risk per use, the lowest health benefit, and the least effectiveness. The FDA uses the resulting

DPM score to flag marginal devices on the edge of their decision rule (see FDA (1995)). Other

conditions for down-classification are uniformly satisfied across all down-classified types and

would not affect the marginal decision.

I do not observe the pre-determined thresholds for D, S, and LS, and I do not observe

B, U, and E. I proxy for the decision rule by taking a linear combination of the average yearly

counts of deaths (D), serious events (S), and less-serious events (LS). This calculation is given by

DPM = 0.38D+0.3S+0.12LS. (A5.4)

I then compare the DID estimates from the treated device types in the top decile of

calculated DPM scores against treated device types from the 0–90th percentile. In practice, U, B,

and E would not influence the ordering of calculated DPM scores as the average DPM score of

the top decile of medical device types is four times higher than the average DPM value of the

device type at the 89th percentile. Additionally, device types with a high D evaluation factor also

tend to have high S and LS evaluation factors; Thus, the stepwise construction of D, S, and LS in

the FDA’s decision rule would not substantially affect ordering.

A5.2 FDA Decision Rule for Class III to II Events

Class III to II events are much less mechanical. When considering down-classifying a

Class III device, the FDA analyzes the health risks of the device and whether Class II regulations

will reasonably mitigate those risks. It makes these assessments by consulting the medical

literature, internal data (i.e., premarket approval applications, equipment problems in the past

resulting in recalls and adverse events), and clinical experiences with the device.

An illustrative example of a Class III to II event is the down-classification of daily-wear
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soft contact lenses in 1994. In the minutes of the 1994 ophthalmic panel meeting in which the

FDA announced this event, the FDA cites safety information contained in submitted PMAs as the

reason for deregulation. However, the timing of this event is “as good as random.” In this same

document, the FDA cites that it had been “dealing with [the down-classification event] for about

ten years” and that because “the data that were needed to support reclassification were contained

in PMAs and were not publicly available,” they could not act. Thus, bureaucratic hurdles make

these policies difficult to predict, making the timing of the events unlikely to be correlated with

changes in outcomes beyond the effects of deregulation. Upon reclassification, the number of

unique daily-wear soft contact lenses submitted for approval rose sharply, as the number of new

extended-wear contact lenses, which remained in Class III, remained steady (see figure A14).10

A5.3 Class I, II, and III Medical Device Regulations

Manufacturers of Class I devices (those perceived as low-risk) must simply abide by a

standard set of safe marketing practices called “general controls.”11 A newly marketed medical

device can be categorized as Class I if it is reasonably similar (i.e., same intended use and broad

characteristics) to another device categorized as Class I. However, if a new medical device has

distinct characteristics or intended use, the new device is given a new class III product code.12

Manufacturers of Class II devices are required to follow specific guidelines, called special

controls, designed to mitigate device-specific risk and submit a 510(k) document, or “premarket

10Note that because I cannot observe the safety variables that drive Class III to II events, it is difficult for me to
extrapolate the product safety results I find in these events to other Class III devices that were not down-classified.
Because I do not observe these variables, I do not know what the “marginal” device type would be; thus, I cannot
determine whether the average effects differ from the marginal effects.

11These devices are “low-risk” as they do not support or sustain human life and do not pose a potential unreason-
able risk of illness or injury (e.g., a tongue depressor). 41% of all medical device types, or “product codes,” fall
under Class I. Of these, 90% are exempt from filing any documentation (aside from facility registration with the
FDA).

12The FDA can then evaluate the safety and efficacy of new product codes and reclassify them, or a device
manufacturer can submit a “De Novo” petition for the formal classification of a new device type. A new device can
be classified as Class I or II if “the device has existing or reasonably foreseeable characteristics of commercially
distributed devices within that generic type or...[The device requires a 510(k) (even if its generic type is Class I) if]
the device is intended for a use different from the intended use of a legally marketed device in that generic type of
device...[or if] the modified device operates using a different fundamental scientific technology” (FDA 2020a).
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notification.”13 Through the 510(k) process, a manufacturer must demonstrate that their device

is “substantially equivalent” to a previously marketed device for which a “premarket approval”

(PMA) is not required. A device is substantially equivalent if it has the same intended use and

technological characteristics as the predicate device. The 510(k) path is shorter and less costly

than the more intensive PMA process described below. However, the 510(k) process can be

expensive, with an average cost of $24 million (Makower et al. 2010). If the FDA finds that a

device is not sufficiently similar to a predicate device, the manufacturer must file a PMA, which

carries the most stringent requirements.

Manufacturers of Class III devices must perform clinical trials through the PMA process

to ensure their new device is safe and effective before commercialization.14 Class III device types

are perceived as high-risk since not enough information exists to establish special controls that

ensure safety and effectiveness (i.e., new device types) or if special controls do not adequately

mitigate device risk.15 The PMA process takes much longer than the 510(k) process, and costs,

on average, $75 million (Makower et al. 2010). After a manufacturer has submitted a PMA

document for their device, any small changes to their device that affect the device’s safety or

effectiveness require a PMA supplement submission. PMA supplements often do not require

premarket clinical data and experience shorter review timelines (Johnson 2012).16

1356% of medical device product codes fall under this category.
14Pre-amendment class III devices (those existing before 1976) only have to submit a 510(k) if the FDA has

not issued a final order requiring PMA submission (Center for Devices and Radiological Health 2018). A small
percentage of 510(k)s also require a small amount of clinical data to support marketing clearance by the FDA.

15Roughly 2% of product codes currently fall under this classification, although these product codes represent an
outsized portion of U.S. medical device spending (Meier 2009).

16However, the requirements associated with PMA supplements are dependent on the degree to which the new
device has changed, with small changes (like labeling changes) requiring no fee and design changes requiring
preclinical testing. Most submitted class III documentation is from PMA supplements.
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A6 Supplemental Figures and Tables
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Figure A2. Petitioned Down-Classification Events (Not FDA-Initated). Note: This figure presents the
estimates of the coefficients from event-study equation 1.4.2 for the patent filing rate measure and
illustrates the potential biases that stem from industry petition of down-classification. Outcome
data are derived from USPTO patent data. Only Class III to II down-classification events petitioned
by industry (not by the FDA’s own initiative) are considered. Controls are device types matched
on baseline averages of the outcome. Data are analyzed at an annual frequency. 95% confidence
intervals are calculated following Conley and Taber (2011).
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Figure A3. Mean Yearly Adverse Event Counts by Device Type Class. Note: This figure presents
the annualized average counts of the specified adverse events for medical device types within the
respective classification. The x-axis indicates the device type Class. The x-axis includes down-
classified devices from Class III to II and Class II to I events separately. The y-axis details the
average annualized count for a given class and adverse event type. The red bar represents the average
number of yearly deaths across device types and years. The orange bar calculates a similar average
for life-threatening events, and the blue bar calculates the average number of hospitalizations. These
three variables are derived from the FDA MAUDE adverse event data. Standard error bands also
overlay the average estimates.
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Figure A6. Utilization Rates Event Study. Note: This figure presents the estimates of the coefficients from
event-study equation 1.4.2 for the utilization rates of procedures that use treated or control medical
device types. I do not have claims data before 2005; Thus, I only consider post-2005 Class III to
II down-classification events. Controls are device types matched on baseline average innovation
rates. Data are analyzed at an annual frequency. Utilization is measured by the yearly number of paid
claims for a given procedure. Claims data come from the UCSD healthcare system. Conley–Taber
95% confidence intervals are provided.
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Figure A7. Procedure Price Event Study Class III to II. Note: This figure presents the estimates of the
coefficients from event-study equation 1.4.2 for the price component of my market structure measures.
Controls are device types matched on baseline outcome averages. I do not have UCSDH claims data
before 2005; Thus, I only consider post-2005 Class III to II down-classification events. Data are
analyzed at an annual frequency. The price is determined by the amount insurers paid for a given
procedure. The figure describes the evolution of the prices of procedures that use treated device types
relative to control groups matched using pre-event price averages. Conley–Taber 95% confidence
intervals are provided.
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Figure A9. Flattening the Learning Curve Simulation. Note: This figure presents the simulation exercise
of flattening the Class III learning curve estimated in equation A3.1. I flatten the learning curve
relative to the most experienced firm. The results of this simulation are provided in table A21. Above,
gamma begins at its initial starting point estimated in equation A3.1. Subsequent lines show the
change in the learning curve as gamma is reduced while maintaining the approval time of the top
quartile of experienced firms.
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Figure A12. Safety Emphasis Event Study Class II to I. Note: This figure presents the estimates of the
coefficients from event-study equation 1.4.2 for inventors’ emphases on safety. Only Class II to
I down-classification events are estimated. Data are analyzed at an annual frequency. Controls
are device types matched on baseline outcome averages. The figure describes the evolution of the
proportion of patents that emphasize safety within patent texts. The volatility in the four years prior
to the down-classification represents the congressional whiplash that occurred regarding whether to
abolish the FDA. 95% confidence intervals are provided.
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Figure A14. Contact Lens Use Case—III to II Down-Classification. Note: This figure presents an
example of a Class III to II down-classification event. In 1994, the FDA down-classified daily-wear
soft contact lenses to Class II but kept extended-wear soft contact lenses in Class III. The x-axis
measures the year, and the y-axis measures the number of unique contact lens devices submitted to
the FDA for approval in a given year. The green line represents daily-wear contact lenses submitted
for approval (deregulated), and the blue line represents extended-wear soft contact lenses submitted
for approval (remained in Class III). The vertical black line represents the year of reclassification.
The left-imposed picture shows an example of a soft contact lens invented before reclassification.
The right-imposed picture shows an example of a soft contact lens invented after reclassification.
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Figure A15. Effects of Class III to II Events on Patenting Rates: Restricted Patent Sample. Note:
This figure presents the estimates of the coefficients from event-study equation 1.4.2 for patenting
rates using the restricted patent sample described in appendix A4. Compare to the top-left subfigure
of figure 1.3. Controls are device types matched on baseline average innovation rates. Data are
analyzed at an annual frequency. The patenting rate is measured by the yearly number of patents
filed in a given device type. Patent data comes from the USPTO patent database. Conley–Taber
95% confidence intervals are provided.
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Table A7. Summary Statistics – Class I. Note: This table presents summary statistics only for Class I devices.
See Kogan et al. (2017) for more information on the patent market valuation data, which was merged
into my patent dataset. The CRSP/Compustat database was used to derive the total assets of the firms
applying for patent protection and is a proxy for firm size. Market values and applicant assets are only
available for patents filed by publicly traded firms, representing roughly 25% of the total sample of
patents. *“Regulatory proficiency” indicates the total number of days a firm has experienced approval
delays across all its submitted devices.

N Mean SD Range

FDA Admin. Data—Device Submissions (PMA and 510(k) Databases)
Total 30,797 - - -
per Device Type 1,560 (Types) 19.7 78.1 [1, 1,927]
Total Submitting Firms 5,253 - - -
Firms per Device Type 1,560 (Types) 11.3 36.7 [1, 1,048]
Firm Regulatory Proficiency 1,554 (Types) 6.1yrs 18.2yrs [0, 603.7yrs]*

FDA Admin. Data—Adverse Event Reports (MAUDE)
Total 475,782 - - -
per Device Type 1,264 (Types) 376.4 2550.8 [1, 52,526]
Serious Events per Dev. type 612 (Types) 25.6 107.3 [1.0, 1,547]
Assets of Offending Firm 271,715 $3.2B $12.7B [0, $0.7T]

USPTO Device Patents
Total 671,665 - - -
per Device Type 961 (Types) 698.9 2453.4 [1, 23,056]
Citations 671,665 10.6 56.4 [1, 5,067]
Market Valuation 201,638 $12.5M $30M [$40, $1.7B]
Applicant Assets 192,619 $26.1B $53.5B [$0.07M, $0.79T]
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Table A8. Summary Statistics – Class II. Note: This table presents summary statistics only for Class II
devices. See Kogan et al. (2017) for more information on the patent market valuation data, which was
merged into my patent dataset. The CRSP/Compustat database was used to derive the total assets of
the firms applying for patent protection and is a proxy for firm size. Market values and applicant assets
are only available for patents filed by publicly traded firms, representing roughly 25% of the total
sample of patents. *“Regulatory proficiency” indicates the total number of days a firm has experienced
approval delays across all its submitted devices.

N Mean SD Range

FDA Admin. Data—Device Submissions (PMA and 510(k) Databases)
Total 118,820 - - -
per Device Type 2,496 (Types) 47.6 131.2 [1, 2,457]
Total Submitting Firms 13,657 - - -
Firms per Device Type 2496 (Types) 20.7 44.2 [1, 747]
Firm Regulatory Proficiency 2,466 (Types) 11.9yrs 38.3yrs [0, 669.3 yrs]*

FDA Admin. Data—Adverse Event Reports (MAUDE)
Total 4,510,435 - - -
per Device Type 1,975 (Types) 2,283.8 162,560 [1, 0.41M]
Serious Events per Dev. type 1,238 (Types) 344.3 2,402 [1, 46,502]
Assets of Offending Firm 2,818,635 $3.3B $6.3B [$0, $0.7T]

USPTO Device Patents
Total 567,204 - - -
per Device Type 1,100 (Types) 515.6 1,732.6 [1, 17,559]
Citations 567,213 19.2 115.8 [1, 5817]
Market Valuation 173,194 $13.8M $31.5M [0, $1.9B]
Applicant Assets 164,686 $27.5B $56.6B [$0.2M, $0.7T]
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Table A9. Summary Statistics – Class III. Note: This table presents summary statistics only for Class III
devices. See Kogan et al. (2017) for more information on the patent market valuation data, which was
merged into my patent dataset. The CRSP/Compustat database was used to derive the total assets of
the firms applying for patent protection and is a proxy for firm size. Market values and applicant assets
are only available for patents filed by publicly traded firms, representing roughly 25% of the total
sample of patents. *“Regulatory proficiency” indicates the total number of days a firm has experienced
approval delays across all its submitted devices.

N Mean SD Range

FDA Admin. Data—Device Submissions (PMA and 510(k) Databases)
Total 3,395 - - -
per Device Type 59 (Types) 57.5 148.1 [1, 795]
Total Submitting Firms 109 - - -
Firms per Device Type 59 (Types) 7.3 12.3 [1, 57]
Firm Regulatory Proficiency 3,184 (Types) 49.8yrs 74.7yrs [0, 667.4yrs]*

FDA Admin. Data—Adverse Event Reports (MAUDE)
Total 976,693 - - -
per Device Type 101 (Types) 9,670.2 32,432.6 [1, 0.2M]
Serious Events per Dev. type 78 (Types) 2,871 13,442.2 [1, 0.1M]
Assets of Offending Firm 786,010 $4.6B $6.2B [$0.6M, $0.7T]

USPTO Device Patents
Total 9,423 - - -
per Device Type 52 (Types) 181.2 453.7 [1, 2536]
Citations 9,424 21.6 97.7 [1, 4265]
Market Valuation 2,633 $16.7M $30.5M [$0, $440M]
Applicant Assets 2,500 $15.5B $33.6B [$1.1M , $0.9T]
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Table A10. Keywords Used in Text Analysis of Patent Claims. Note: The table presents the keywords
related to product safety that were extracted using the Word2Vec algorithm. I label a patent as
advancing safety if any of the above words are included in its claims section. Importantly, patent
examiners heavily scrutinize the patent claims text for accuracy as the text codifies the right to singular
ownership of the claimed advancement. Interestingly, some keywords indicate safety advancements in
what the product is not: some inventors claim advancements in product safety by moving away from
constructions that are “hazardous,” “unsafe,” or “dangerous.” It is important to note that inventors
would not reasonably claim a product advancement that would lead to more injuries. Thus, one can
assume that these negative mentions can still be attributable to safety improvements.

Safety Advancement Keywords

safety hazard

safe danger

safer dangerous

endangering harming

precautions injuring

unsafe injury

hazardous jeopardizing

failsafe risk

safely complication

dangerous jeopardizing
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Table A11. Effect of Down-Classifications on Innovation (Using Borusyak et al. (2021) Estimator).
Note: The table presents estimates of equation 1.4.1, which is a difference-in-differences (DID)
style OLS regression model. In this analysis, I drop all device types that do not exhibit any positive
quantity of the given outcome. Column (1) presents the 5-year baseline average of treated device
types for the outcomes listed on the left-hand side. Columns (2)–(5) present DID estimates for the
listed outcomes using different control groups: namely, a matched control group, intuitively similar
device types (treat similar diseases), “later-treated” device types (treated after sample window), and
the full sample, respectively. Confidence intervals are calculated using Conley–Taber test statistics.
+, *, **, and *** correspond with statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels,
respectively.

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Patenting Rate 7.95 19.73* 27.70** 28.48** 22.11*
(9.27) (9.96) (8.80) (10.29) (8.85)

Device Submission Rate 0.47 2.11*** 1.85*** 1.71*** 1.76***
(1.03) (0.32) (0.29) (0.33) (0.27)

Citations-Per-Patent Rate 9.06 17.60* 21.86* 17.07*** 27.46***
(20.65) (7.61) (8.76) (4.90) (7.15)

Average Patent Value 4.36 9.37*** 11.72*** 11.61*** 11.82***
(6.12) (1.65) (1.59) (1.75) (1.44)

Sample Size 1540 1056 920 60456

B. Class II to I:

Patenting Rate 16.32 8.15 7.77 14.16** 31.04**
(37.11) (13.00) (6.64) (5.16) (10.46)

Citations-Per-Patent Rate 0.64 6.84** 2.07+ 4.01*** 6.03***
(0.48) (2.09) (1.18) (0.94) (1.42)

Average Patent Value 6.49 3.46*** 0.86+ 2.00*** 5.00***
(14.19) (0.95) (0.50) (0.44) (0.71)

Sample Size 15180 20592 27764 32472
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Table A12. Effect of Down-Classifications on Market Structure (Using Borusyak et al. (2021) Es-
timator). Note: The table presents estimates of equation 1.4.1, which is a difference-in-differences
(DID) style OLS regression model. In this analysis, I drop all device types that do not exhibit any
positive quantity of the given outcome. Column (1) presents the 5-year baseline average of treated
device types for the outcomes listed on the left-hand side. Columns (2)–(6) present DID estimates
for a given outcome using different control groups: namely, a group matched on baseline prices, a
group matched on baseline innovation and adverse event levels, an intuitively comparable group, a
later-treated group, and the full sample of controls, respectively. Confidence intervals are calculated
using Conley–Taber test statistics. +, *, **, and *** correspond with statistical significance at the
0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Price Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5) (6)

A. Class III to II:

Amount Paid 95.68 -89.73*** -75.84* - - -51.99***
(123.78) (25.35) (34.42) - - (10.85)

Sample Size 480 176 - - 36240

Incumb. Entry (dev.) 0.40 - 1.17*** 1.09*** 1.02*** 1.08***
(0.91) - (0.11) (0.11) (0.12) (0.09)

New Entry (dev.) 0.07 - 0.60*** 0.61*** 0.52** 0.55**
(0.31) - (0.17) (0.17) (0.19) (0.17)

Incumb. Entry (pat.) 1.47 - 2.36*** 3.01*** 3.69*** 2.82***
(1.78) - (0.59) (0.56) (0.69) (0.53)

New Entry (pat.) 3.78 - 7.29+ 11.54** 12.02** 10.04**
(4.76) - (4.33) (3.85) (4.60) (3.86)

Sample Size - 1364 1056 920 60456

B. Class II to I:

Incumb. Entry (pat.) 2.26 - 0.08 0.35 0.65* 1.43**
(4.33) - (0.68) (0.36) (0.29) (0.49)

New Entry (pat.) 7.27 - 4.24 2.82 5.11** 11.10***
(16.87) - (3.87) (2.05) (1.61) (3.07)

Sample Size - 13552 20592 27764 32472
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Table A13. Effect of Down-Classifications on Adverse Events (Using Borusyak et al. (2021) Esti-
mator). Note: The table presents estimates of equation 1.4.1, which is a difference-in-differences
(DID) style OLS regression model. In this analysis, I drop all device types that do not exhibit
any positive quantity of the given outcome. Column (1) presents the 5-year baseline average of
treated device types for the outcomes listed on the left-hand side. Columns (2)–(5) present DID
estimates for the listed outcomes using different control groups: namely, a matched control group,
intuitively similar device types (treat similar diseases), “later-treated” device types (treated after
sample window), and the full sample, respectively. For column (4), Class III to II, control device
types are treated after 2015; thus, all observations after 2015 are dropped. Confidence intervals are
calculated using Conley–Taber test statistics. +, *, **, and *** correspond with statistical significance
at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Matched Intuitive Later Full Sample
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Emphasis on Safety 0.16 0.074+ - - -
(0.21) (0.038) - - -

Life-Threatening Event Rate 0.07 0.59 0.81+ -0.58 -1.93
(0.31) (0.44) (0.43) (0.78) (1.35)

Hospitalization Rate 0.25 3.36** 3.44** 2.27* -2.21
(0.84) (1.14) (1.14) (0.93) (1.97)

Mortality Rate 0.08 -0.50 1.08* 0.29 0.33
(0.46) (1.34) (0.47) (0.53) (0.49)

Sample Size 588 644 528 38444

B. Class II to I:

Emphasis on Safety 0.065 0.056*** - - -
(0.218) (0.012) - - -

Life-Threatening Event Rate 0.07 -2.57 -0.36 -3.21 -3.16+
(0.41) (1.96) (0.26) (2.73) (1.71)

Hospitalization Rate 0.15 -1.93** -3.04 -4.84+ -5.44*
(0.88) (0.63) (2.71) (2.64) (2.51)

Mortality Rate 0.23 -0.44* -0.29 -0.47 -0.60***
(1.98) (0.17) (0.29) (0.29) (0.17)

Sample Size 10332 13104 17668 20664
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Table A14. Down-Classification Spillovers (Innovation). Note: The table presents estimates of equation
1.4.1, which is a difference-in-differences (DID) style OLS regression model for device types that
are closely related to treated medical device types. Column (1) presents the 5-year baseline average
of closely related device types for the outcomes listed on the left-hand side. Columns (2) and (3)
present my OLS estimates of down-classifications on device types closely related to treated device
types using different control criteria. Confidence intervals for my estimates in columns (2) and (3)
are calculated using Conley–Taber test statistics. Column (2) presents the estimates when closely
related groups are compared to matched control groups, whereas column (3) presents results from
comparing against full sample controls. Standard errors allow for clusters at the PC level. +, *, **,
and *** correspond with statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Matched Full Sample
Down-Classification (1) (2) (3)

A. Class III to II:

Patenting Rate 7.95 1.67 -3.91
(9.27) (2.56) (3.89)

Device Approval Rate 0.47 0.06 -0.01
(1.03) (0.14) (0.29)

Sample Size 792 179520

B. Class II to I:

Patenting Rate 19.12 -1.49 1.72
(39.50) (3.41) (4.63)

Sample Size 7656 179872
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Table A15. Class III to II Device Types by Broad Device Category: Treated Group versus Intuitive
Control Group. Note: The table presents the broad device types used in the treatment and intuitive
control groups. No life-sustaining devices are considered in the treatment and control groups. When
“Treatment” is 0, the description counts refer to the control group and refer to the treated group
otherwise. The column“Implant” indicates the counts of device types that are implantable in the
given broad device category.

Treatment Category Description Count Implant

0 Anesthesiology devices—monitoring devices 1 0
Cardiovascular devices—cardiovascular prosthetic devices 2 2
Clinical chemistry—test systems 1 0
Dental devices—therapeutic devices 1 0
Gastroenterology-urology devices—therapeutic devices 1 0
Immunology and microbiology devices—serological reagents 1 0
Ophthalmic devices—therapeutic devices 2 0
Orthopedic devices—prosthetic devices 1 1
Radiology devices—diagnostic devices 2 0

1 Anesthesiology devices—monitoring devices 1 0
Cardiovascular devices—cardiovascular prosthetic devices 2 2
Clinical chemistry—test systems 1 0
Dental devices—therapeutic devices 1 0
Gastroenterology-urology devices—therapeutic devices 1 0
Immunology and microbiology devices—serological reagents 1 0
Ophthalmic devices—therapeutic devices 2 0
Orthopedic devices—prosthetic devices 1 1
Radiology devices—diagnostic devices 2 0

174



Table A16. Class II to I Treated Device Types by Broad Category. Note: The table presents the counts
of broad device types used in the treatment group. No life-sustaining devices are considered. Implant
counts are also provided.

Treatment Category Description Count Implant

1 Anesthesiology devices—diagnostic devices 3 0
Anesthesiology devices—miscellaneous 3 0
Anesthesiology devices—monitoring devices 11 0
Anesthesiology devices—therapeutic devices 23 0
Cardiovascular devices—monitoring devices 5 0
Cardiovascular devices—prosthetic devices 4 1
Clinical chemistry—clinical chemistry test systems 6 0
Clinical chemistry—clinical laboratory instruments 3 0
Dental devices—diagnostic devices 2 0
Dental devices—miscellaneous devices 1 0
Dental devices—surgical devices 2 0
Ear, nose, and throat devices—diagnostic devices 2 0
Ear, nose, and throat devices—surgical devices 6 0
Gastroenterology-urology devices—diagnostic devices 20 0
Gastroenterology-urology devices—monitoring devices 1 0
Gastroenterology-urology devices—surgical devices 10 0
Gastroenterology-urology devices—therapeutic devices 19 1
General and plastic surgery devices—surgical devices 1 0
General hospital and personal use devices—miscellaneous devices 14 0
General hospital and personal use devices—monitoring devices 5 0
General hospital and personal use devices—therapeutic devices 7 0
Hematology and pathology devices—manual hematology devices 4 0
Hematology and pathology devices—used by blood manufacturer 4 0
Immunology and microbiology devices—immunological test systems 14 0
Immunology and microbiology devices—microbiology devices 1 0
Immunology and microbiology devices—serological reagents 47 0
Neurological devices—diagnostic devices 1 0
Neurological devices—therapeutic devices 1 0
Obstetrical and gynecological devices—diagnostic devices 1 0
Obstetrical and gynecological devices—surgical devices 6 0
Obstetrical and gynecological devices—therapeutic devices 2 0
Ophthalmic devices—diagnostic devices 4 0
Ophthalmic devices—prosthetic devices 7 4
Orthopedic devices—diagnostic devices 1 0
Orthopedic devices—surgical devices 1 0
Physical medicine devices—diagnostic devices 5 0
Physical medicine devices—prosthetic devices 6 0
Physical medicine devices— 19 0
Radiology devices—diagnostic devices 9 0
Radiology devices—miscellaneous devices 11 0
Radiology devices—therapeutic devices 1 0
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Table A17. Class II to I Intuitive Control Device Types by Category. Note: The table presents the
counts of broad device types used in the control group. No life-sustaining devices are considered.
Implant counts are also provided.

Treatment Category Description Count Implant

0 Anesthesiology devices—diagnostic devices 3 0
Anesthesiology devices—miscellaneous 3 0
Anesthesiology devices—monitoring devices 11 0
Anesthesiology devices—therapeutic devices 23 0
Cardiovascular devices—cardiovascular monitoring devices 5 0
Cardiovascular devices—cardiovascular prosthetic devices 2 1
Cardiovascular devices—cardiovascular surgical devices 2 0
Clinical chemistry—clinical chemistry test systems 6 0
Clinical chemistry—clinical laboratory instruments 3 0
Dental devices—diagnostic devices 2 0
Dental devices—miscellaneous devices 1 0
Dental devices—surgical devices 2 0
Ear, nose, and throat devices—diagnostic devices 2 0
Ear, nose, and throat devices—surgical devices 6 0
Gastroenterology-urology devices—diagnostic devices 20 0
Gastroenterology-urology devices—monitoring devices 1 0
Gastroenterology-urology devices—surgical devices 10 0
Gastroenterology-urology devices—therapeutic devices 19 1
General and plastic surgery devices—surgical devices 1 0
General hospital and personal use devices—miscellaneous devices 14 0
General hospital and personal use devices—monitoring devices 5 0
General hospital and personal use devices—therapeutic devices 7 0
Hematology and pathology devices—manual devices 4 0
Hematology and pathology devices—used by blood manufacturer 4 0
Immunology and microbiology devices—immunological test systems 14 0
Immunology and microbiology devices—microbiology devices 1 0
Immunology and microbiology devices—serological reagents 47 0
Neurological devices—diagnostic devices 1 0
Neurological devices—therapeutic devices 1 0
Obstetrical and gynecological devices—diagnostic devices 1 0
Obstetrical and gynecological devices—surgical devices 6 0
Obstetrical and gynecological devices—therapeutic devices 2 0
Ophthalmic devices—diagnostic devices 4 0
Ophthalmic devices—prosthetic devices 4 4
Ophthalmic devices—surgical devices 3 0
Orthopedic devices—diagnostic devices 1 0
Orthopedic devices—surgical devices 1 0
Physical medicine devices—diagnostic devices 5 0
Physical medicine devices—prosthetic devices 6 0
Physical medicine devices—therapeutic devices 19 0
Radiology devices—diagnostic devices 9 0
Radiology devices—therapeutic devices 12 0
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Table A18. Effect of Down-Classifications on Innovation (Drop No Counts). Note: The table presents
estimates of equation 1.4.1, which is a difference-in-differences (DID) style OLS regression model.
In this analysis, I drop all device types that do not exhibit any positive quantity of the given outcome.
Column (1) presents the 5-year baseline average of treated device types for the outcomes listed on
the left-hand side. Columns (2)–(5) present DID estimates for the listed outcomes using different
control groups: namely, a matched control group, intuitively similar device types (treat similar
diseases), “later-treated” device types (treated after sample window), and the full sample, respectively.
Confidence intervals are calculated using Conley–Taber test statistics. +, *, **, and *** correspond
with statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Patenting Rate 7.95 15.31** 23.68* 24.64* 7.77
(9.27) (5.58) (10.20) (10.94) (25.79)

Device Submission Rate 0.47 2.69*** 2.36** 2.27** 2.22***
(1.03) (0.59) (0.76) (0.72) (0.34)

Citations-Per-Patent Rate 9.06 16.87* -5.61 15.91* 20.13**
(20.65) (7.57) (13.90) (6.22) (7.58)

Average Patent Value 4.36 8.56*** 9.88** 10.45** 8.14***
(6.12) (1.67) (3.49) (3.41) (2.32)

Sample Size 1452 660 680 21340

B. Class II to I:

Patenting Rate 16.32 7.34 13.72 25.22** 29.17***
(37.11) (4.87) (12.54) (9.61) (7.19)

Citations-Per-Patent Rate 0.64 6.85** 4.13* 7.52*** 6.00***
(0.48) (2.28) (1.84) (1.49) (1.38)

Average Patent Value 6.49 3.58*** 2.06* 4.35*** 4.47***
(14.19) (0.72) (0.93) (1.03) (0.77)

Sample Size 14740 9328 9768 25784
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Table A19. Effect of Down-Classifications on Market Structure (Drop No Counts). Note: The table
presents estimates of equation 1.4.1, which is a difference-in-differences (DID) style OLS regression
model. In this analysis, I drop all device types that do not exhibit any positive quantity of the given
outcome. Column (1) presents the 5-year baseline average of treated device types for the outcomes
listed on the left-hand side. Columns (2)–(6) present DID estimates for a given outcome using
different control groups: namely, a group matched on baseline prices, a group matched on baseline
innovation and adverse event levels, an intuitively comparable group, a later-treated group, and the
full sample of controls, respectively. Confidence intervals are calculated using Conley–Taber test
statistics. +, *, **, and *** correspond with statistical significance at the 0.10, 0.05, 0.01, and 0.001
levels, respectively.

DID Estimates

Pre-mean Price Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5) (6)

A. Class III to II:

Procedure Price 95.31 -58.25** -43.54** - - -27.50
(123.95) (21.16) (15.66) - - (144.11)

Sample Size 160 176 - - 36240

Incumb. Entry (dev.) 0.40 - 1.58*** 1.50** 1.49** 1.44***
(0.91) - (0.35) (0.54) (0.54) (0.21)

New Entry (dev.) 0.07 - 0.94*** 0.98** 0.79** 0.88***
(0.31) - (0.23) (0.31) (0.26) (0.20)

Incumb. Entry (pat.) 1.47 - 1.96*** 2.19+ 3.33* 1.28
(1.78) - (0.59) (1.12) (1.52) (1.40)

New Entry (pat.) 3.78 - 6.14*** 11.75* 12.65** 6.10
(4.76) - (1.65) (4.57) (4.79) (9.19)

Sample Size - 1276 616 680 23848

B. Class II to I:

Incumb. Entry (pat.) 2.26 - 0.02 0.59 1.09+ 1.33**
(4.33) - (0.47) (0.69) (0.59) (0.44)

New Entry (pat.) 7.27 - 4.00+ 5.18 9.26** 10.11***
(16.87) - (2.07) (4.17) (3.29) (2.26)

Sample Size - 13288 9988 12672 28952
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Table A20. Effect of Down-Classifications on Adverse Events (Drop No Counts). Note: The table
presents estimates of equation 1.4.1, which is a difference-in-differences (DID) style OLS regression
model. In this analysis, I drop all device types that do not exhibit any positive quantity of the given
outcome. Column (1) presents the 5-year baseline average of treated device types for the outcomes
listed on the left-hand side. Columns (2)–(5) present DID estimates for the listed outcomes using
different control groups: namely, a matched control group, intuitively similar device types (treat
similar diseases), “later-treated” device types (treated after sample window), and the full sample,
respectively. For column (4), Class III to II, control device types are treated after 2015; thus, all
observations after 2015 are dropped. Confidence intervals are calculated using Conley–Taber test
statistics. +, *, **, and *** correspond with statistical significance at the 0.10, 0.05, 0.01, and 0.001
levels, respectively.

DID Estimates

Pre-mean Matched Intuitive Later Full Sample
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Emphasis on Safety 0.16 0.073+ - - -
(0.21) (0.039) - - -

Life-Threatening Event Rate 0.07 1.31 1.64 -1.96 -8.57
(0.31) (0.82) (1.11) (1.26) (5.72)

Hospitalization Rate 0.25 4.30** 5.32* 2.38 -9.43
(0.84) (1.62) (2.38) (1.96) (8.09)

Mortality Rate 0.08 -3.28 2.78* -0.09 0.16
(0.46) (4.72) (1.40) (1.23) (7.50)

Sample Size 336 196 216 11452

B. Class II to I:

Emphasis on Safety 0.065 0.05*** - - -
(0.218) (0.012) - - -

Life-Threatening Event Rate 0.07 -8.07 -1.51+ -15.92* -9.17*
(0.43) (5.07) (0.78) (7.85) (4.38)

Hospitalization Rate 0.17 -6.25*** -7.80+ -16.76* -11.63*
(0.94) (1.24) (3.98) (7.62) (5.32)

Mortality Rate 0.26 -1.72*** -1.03 -2.60+ -1.70*
(2.13) (0.39) (0.77) (1.37) (0.75)

Sample Size 3612 3276 3752 7168
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Table A21. Flattening the Learning Curve Simulation—Unique Devices Approved. Note: This table
presents the results of the simulation exercise described in appendix A3.2, which simulates the effect
of flattening the learning curve on the rate of unique devices approved at an annual frequency by
asset quartiles. Figure A9 illustrates this flattening exercise. Standard errors generated from a Monte
Carlo procedure are presented in parenthesis below the estimates. This procedure produces estimates
across repeated random draws from the empirical distribution of firm characteristics to calculate
confidence intervals. I express changes as percent changes relative to the gamma at a 0.075 baseline.
I flatten the learning curve relative to the firm with the highest experience in the data. In the table,
gamma begins at its initial starting point estimated in equation A3.1. Subsequent rows in the table
show the percent change in the rate of unique device submissions as gamma, the learning rate, is
reduced. These changes are presented for each experience quartile for Class III device manufacturers.
The far-right column presents the total percent change in unique devices approved from a flattening
of the learning curve relative to the baseline frequency of unique device submissions.

Percent Changes

γ TSum,25 TSum,50 TSum,75 TSum,100 Total %∆

0.075 0.0 0.0 0.0 0.0 0.0
(0.0) (0.0) (0.0) (0.0) (0.0)

0.067 13.3 10.2 4.8 2.49 6.19
(10.17) (8.12) (3.84) (2.95) (5.29)

0.058 29.67 16.49 8.94 3.75 11.57
(16.78) (9.57) (5.78) (2.98) (7.92)

0.05 59.0 25.64 14.07 6.47 19.32
(26.66) (12.88) (6.0) (4.82) (11.38)

0.042 68.55 35.46 21.07 8.86 25.98
(24.77) (16.03) (9.65) (4.17) (13.94)

0.033 85.34 46.38 23.74 9.35 31.75
(31.51) (20.97) (10.22) (4.66) (17.95)

0.025 110.02 54.42 25.24 12.35 38.46
(41.96) (25.91) (8.47) (6.22) (21.76)

0.017 150.65 64.74 36.93 14.69 48.77
(61.78) (22.15) (12.04) (7.11) (25.41)

0.008 151.55 75.92 34.03 15.58 51.9
(48.99) (25.45) (11.69) (7.45) (27.68)

0.0 186.41 88.62 43.45 19.13 63.32
(74.03) (29.59) (11.61) (7.67) (33.3)
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Table A22. Cross-Correlation Between Firm Size and FDA Experience. Note: The table presents the
correlation coefficients between firm assets (size) and firm cumulative FDA experience. Data includes
firms in the FDA database that were fuzzy matched to publicly traded firms in the CRSP database.

Variables Cumulative FDA Experience Firm Assets
Cumulative FDA Experience 1.00

Firm Assets -0.00 1.00
(1.00)
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Table A23. Estimation of Learning Curve Parameters (in Days). Note: The table presents the estimates
of equation A3.1, which estimates the learning coefficient gamma and the baseline time requirement,
beta(Rc), for both Class III original PMA approvals (column 1) and Class II 510(k) approvals (column
2) of unique devices via OLS. The estimates for Class III devices are calculated by only considering
the approval times of filed original PMAs by firms with at least one day of prior experience navigating
FDA regulations. The estimates for Class II devices are calculated by only considering the approval
times of 510(k) documents for unique devices that were submitted by firms with at least one day of
prior experience navigating FDA regulations. Prior experience is calculated using approval times
when filing any prior documentation type (510(k) or PMAs). Standard errors are clustered at the firm
level. +, *, **, and *** correspond with statistical significance at the 0.10, 0.05, 0.01, and 0.001
levels, respectively.

Class III Class II
Coeff./SE Coeff./SE

γ 0.075* 0.032***
(0.033) (0.004)

log(β (Rc)) 6.678*** 4.481***
(0.326) (0.031)

N 631 84,909
Clusters 94 9,067
Device Type Effects Yes No
Firm Effects Yes Yes
Device Type by Year Effects No Yes
SEs in Parentheses Clustered Clustered
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Table A24. Effect of Down-Classifications on Innovation: Restricted Patent Sample Note: The table
presents estimates of equation 1.4.1, which is a difference-in-differences (DID) style OLS regression
model. This table differs from table 1.2 in that it presents estimates from an estimation that uses
a restricted patent sample described in appendix A4, and only presents the patenting rate outcome.
Simply put, patents in this analysis include only those labeled as health-related and non-drug by
patent examiners. Patents are derived from the USPTO patent database. Column (1) presents the
5-year baseline average of treated device types for the outcomes listed on the left-hand side. Columns
(2)–(5) present DID estimates for the listed outcomes using different control groups: namely, a
matched control group, intuitively similar device types (treat similar diseases), “later-treated” device
types (treated after sample window), and the full sample, respectively. For column (4), Class III to II,
control device types are treated after 2015; thus, all observations after 2015 are dropped. Confidence
intervals are calculated using Conley–Taber test statistics. +, *, **, and *** correspond with statistical
significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Patenting Rate 4.6 10.8** 15.81** 15.79* 14.07*
(6.18) (3.3) (5.9) (6.88) (6.68)

Sample Size 1628 1056 920 60456

B. Class II to I:

Patenting Rate 3.99 4.8* 1.91 3.01* 6.97**
(13.74) (2.26) (1.61) (1.48) (2.5)

Sample Size 12540 20592 27764 32472
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Appendix: Chapter 2

B1 Patent Trait Appendix: Examples, Illustrations, and
Historical Narratives

This appendix provides descriptions and examples of patents that emphasize the traits

used in our analysis. These traits include “cost,” “simplicity,” “adjustability,” “appliances,”

“materials,” “durability,” “appearance,” and “comfort.” We connect these traits to specific

instances of concrete technological change. We also detail the relative ease or difficulty of

identifying each traits using a set of keywords.

B1.1 Cost

Technological advancements related to our “cost” trait led to a cheaper production process.

One artificial limb patent emphasizing costs, for example, claims an advancement that improves

the modularity of the device, allowing for uniform construction, by letting the manufacturer

“replace or modify any one portion of [the limb] without altering the other portions and at very

small expense” (U.S. 35,686; 1862). Another patent describes a new limb that facilitates cheaper,

uniform construction by using parts that are adjustable to different users. It reads, “adjustment of

the parts of an artificial limb...to adapt it to the length of the natural limb and conformation of

the foot of the intending wearer, by which means the necessity of making a limb to suit each

particular case is to a great extent obviated, and in consequence, the cost of manufacture is

considerably reduced” (U.S. 37,282; 1863). These patents describe a more modular, uniform

artificial limb design that leads to a cheaper production process.
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Straightforward cost-oriented innovations are also present in other technological cate-

gories that form our control groups. A patent for a Civil War-era carriage cover, for example,

emphasizes a “cheap, light and convenient covering from storms or the heat of the sun” (U.S.

32,477; 1861). Examples such as this, from technology classes other than prosthetic devices,

lead us to designate “cost” as a trait for which control groups can reasonably be identified.

See Figure B1 for keywords we used to identify “cost” innovations, including words like

“cheap” and “economical.” We identify “cost” as a trait for which text analysis methods can be

implemented effectively.

B1.2 Adjustability

New technologies that allow a product to be adjusted to user specifications are labeled as

having the “adjustability” trait. Adjustable products enhance mass producibility by bypassing

the need to tailor-make a product to accommodate the needs of a specific individual.

An example of an artificial limb patent that describes this type of advancement reads,

“The improved artificial leg ... is so constructed that its length may be easily and nicely adjusted

to suit the wearer” (U.S. 35,937; 1862). As mentioned above, U.S. patent 37,282 (1863) also

advances mass producibility through the use of adjustable parts to adapt the limb “to the length

of the natural limb...of the intending wearer...by which means the necessity of making a limb

to suit each particular case is to a great extent obviated” (U.S. 37,282; 1863). These examples

highlight advancements in artificial limbs that allow for uniform construction by enabling limbs

to fit the user through adjustable parts.

Adjustability is broadly applicable to many types of technologies. For example, this trait

is relevant when describing advancements in machinery that eliminate the need for additional

parts to adapt to user specifications. These advancements simplify the production process by

shedding extraneous components. One such patent describes a machine that can be “made

adjustable in inclination” to suit the needs of multiple users (US 10,687; 1854). Although this

trait is straightforward for wearable products, it is slightly more difficult to identify in machinery
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technologies using simple keyword searches. This leads us to identify “adjustability” as a trait for

which control groups can reasonably be constructed using other technological classes. However,

it is not quite as straightforward as the “cost” trait.

See Figure B1 for keywords we used to identify “adjustability” innovations, including

words like “adjust” and “adjustability.” We note, however, that the concept of “adjustability”

that we have in mind is more cleanly identified through close readings than through keywords.

The keywords alone, for example, sometimes captured patents simply referring to the process

of “adjusting” a screw to build the product. This instruction is obviously not an advancement in

mass production. Thus, close readings can better identify patents for which the emphasis is on

the product’s mass producibility. This leads us to identify “adjustability” as a trait for which we

rate the trait’s ease of interpretability as weak, despite the clarity of its economic content.

B1.3 Simplicity

The trait “simplicity,” as used in 19th-century artificial limb and mechanical patents,

describes advancements that simplify the design and fabrication of new technologies. For

example, one artificial limb patent states the use of a knee joint that mimics the natural simplicity

of the human knee joint, avoiding unnecessary parts and ensuring “great simplicity, and therefore

cheapness” (U.S. 37,087; 1862). Figure B12 shows a diagram of the knee joint with comparisons

to the simplicity of the natural human knee joint. This patent emphasizes an advancement that

leads to simple construction and lower production costs.

Like the previous two traits, the language that connects “simplicity” to a streamlined

production process is not unique to artificial limbs. For example, a mechanical patent from the

same era describes an advancement in a water pump as being “simple and cheap” (U.S. 15,221;

1856). Together, these examples illustrate the consistency of the language linked to “simplicity”

across technology classes and highlight a trait whose meaning is easily derived in text analysis.

This leads us to identify “simplicity” as a trait for which the control groups can reasonably be

constructed using other technological classes.
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Figure B1 provides the list of keywords we used to identify technological advancements in

“simplicity.” The keywords used include “simple,” “difficult,” and “complex.” The straightforward

meanings of the relevant keywords help illustrate why we identify “simplicity” as a trait for

which text analysis methods can be implemented effectively.

B1.4 Appliances

Patents emphasizing improvements in tool attachments for artificial limbs are deemed

as having the “appliances” trait. Such tools allow artificial limb wearers to operate machinery

and perform a trade or skill, facilitating integration into the post-war workforce. “Appliances” is

an example of a trait that is highly specific to artificial limbs as an applied technology. We thus

identify “appliances” as a trait for which it is not particularly useful to construct control groups

using other technological classes.

Despite being highly-specific, the associated economic content of our “appliances” trait

is clearly defined. An example of an “appliances” innovation from a U.S. inventor during the

World War I era states, “other appliances may be readily fastened in the arm end and tightly

gripped there-by” (U.S. 1,213,222; 1917). A similar emphasis on attachable tools was seen in

British patents during WWI. One such patent emphasizes that, “the invention has for its object to

provide a mechanically worked elbow joint to which may be fitted a lower forearm member with

or without a hand or an extension piece for appliances and other fitments” (GB113329A; 1917).

Figures B3, B4, B5, and B6 show examples of these new appliance technologies, including a

hand for writing, for soldering, and for hammering.

See Figure B1 for keywords we used to identify “appliances” innovations, including

words like “appliances” and “fittings.” This terminology highlights that “appliances” is a trait

for which domain-specific knowledge is essential for connecting text to the relevant economic

concept. Once that domain-specific knowledge has been obtained, however, the nature of the

technological advance is very clear, as illustrated in Figures B3, B4, B5, and B6.
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B1.5 Materials

Technological advancements in “materials” signify new materials, substances, com-

pounds, or compositions used in the production process. Such advancements may lead to more

efficient production processes and increased functionality.

An artificial limb patent describes one such advancement stating, “The socket...is com-

posed of hard or vulcanized India-rubber...the rubber socket is simply tightened down upon the

stump by means of the leather straps, and a perfect fit is secured at all times” (U.S. 38,550; 1863).

The new use of vulcanized rubber improved the fit of artificial limbs. Another patent emphasizes

a material advancement that leads to a more efficient production process, saying, “the foot and

hand...[are] a composition of ‘sponge rubber’...by this means I avoid the use of springs, pivots,

joints... and also avoid the great expense and wear, making the limbs cheaper and more durable”

(US 40,763; 1863). This trait can be complicated to encode as certain materials may only be

relevant for a given technological class and may only be “innovative” for a limited time.

See Figure B1 for keywords we used to identify “materials” innovations, including words

like “vulcanized” and “duralumin,” both of which were new materials in the 19th and 20th

centuries, respectively. These keywords help to illustrate that highly specialized knowledge

may thus be necessary to capture materials innovations using text. Additionally, the materials

associated with innovative designs will vary across technological classes, which complicates

the construction of control groups. We thus identify “materials” as a trait for which it is not

particularly useful to construct control groups using other technological classes.

B1.6 Durability

Improvements in “durability” signify inventions that aim to prevent the deterioration of

an artificial limb over time. These improvements often utilized new materials or methods to

create artificial limbs that lasted longer and required less-frequent replacement or repair.

An artificial limb inventor during the Civil War describes the new design of an artificial
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leg by which “a strong and durable leg can be made” (U.S. 46,687; 1865). To achieve this level

of durability, the inventor utilizes an innovative pear-shaped button to secure the movement of

the artificial leg even when bent. Durability is fairly encodable in control classes as well. In one

example, an inventor emphasizes a sounder construction of a wood boring machine for which

the cogwheels within the frame “are arranged in a convenient and durable manner” (U.S. 3,645;

1844).

See Figure B1 for keywords we used to identify “durability” innovations, including

words like “rot” and “burst.” As with our materials trait, these keywords help to illustrate that

specialized knowledge may be necessary to capture durability innovations using text. These

keywords are mostly related to durability innovations for technologies made of wood, a central

material of Civil War limb manufacturing. Additionally, the durability associated with innovative

designs may vary across technological classes, which includes aspects of unique materials used

during construction to improve durability. These insights complicate the construction of control

groups. We thus identify “durability” as a trait for which it is difficult to encode in prosthetic

limbs and control technological classes.

B1.7 Appearance

Artificial limb patents emphasizing a natural, life-like, tasteful, and neat appearance are

labeled as having our “appearance” trait. These limbs are more discrete and make the artificial

limb less obvious.

One such patent emphasizing “appearance” illustrates that “[this construction]...gives the

limb a more natural appearance” (US55,645; 1866). Another patent describes the construction

of an artificial hand and emphasizes its “most natural appearance” due to a “substantially smooth

and continuous surface” (US 1,173,219; 1915). The top panel of Figure B7 illustrates this new

technology with a more natural appearance relative to the predominant “Carnes hand” in the

lower panel (US 999,484; 1910). Notice the continuous and smooth surface of the natural hand,

especially at the joints, when compared to the more mechanical and rigid joints of The Carne’s
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Hand.

Appearance is also relevant for certain user-oriented mechanical innovations. For exam-

ple, an advancement in cotton gins aims “ to produce the finest sample or make the best and most

presentable appearance ” (U.S. 418,084; 1889). In this case, the quality of the output (cotton)

depends on its presentability. For some mechanical innovations, however, appearance is not as

relevant. This is an example of a trait for which control technologies must be selected carefully

to ensure the trait’s relevance, and where estimation using a simple time series changes may be

preferable to using other classes of technologies to construct a control group.

See Figure B1 for keywords we used to identify “appearance” innovations, including

words like “neat” and “tasteful.” We identify “appearance” as a trait for which ease of inter-

pretability is relatively strong.

B1.8 Comfort

Many 19th-century artificial limbs were quite uncomfortable, noisy, and smelly. Ad-

vancements to improve circulation and make limbs more comfortable are labeled as having the

“comfort” trait.

An example of a patent that claims an artificial limb that is more comfortable is given

in U.S. patent 53,206 (1866). The inventor emphasizes a novel way of constructing the inner

lining of artificial limbs using cork sheets instead of traditional hard leather or rubber materials.

He describes the invention as having a “smooth, soft surface, that is not materially affected [by]

perspiration, because the pores in the cork allow said perspiration to escape, and said cork affords

a pleasant, smooth surface to the tender stump.” Figure B16 illustrates the construction of this

cork lining. Some mechanical patents also emphasize comfort by, for example, suggesting that

the sitting apparatus in the machine is made more comfortable for the user (U.S. 44,198; 1864).

Although some mechanical patents emphasize comfort, this trait stands in contrast with

“simplicity” as a relatively complex trait. Difficulties arose as the language used to indicate a

product’s “comfort” was often ambiguous. For example, the word “disturbing” often connotes
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bodily discomfort in prosthetic device patents. In mechanical classes, by contrast, the word

“disturbing” tends to have meanings connected to the device’s functionality (e.g., “disconnecting

or disturbing the pump”). Thus, machine learning algorithms helped improve the accuracy of

our “comfort” labels in the control group by overcoming these ambiguities. However, “comfort”

is another example of a trait for which care should be taken when selecting control technologies,

and where estimation using a simple time series methods may be preferable.

See Figure B1 for keywords we used to identify “comfort” innovations, including words

like “circulation” and “pain.” We identify “comfort” as a trait for which the ease of interpretability

is moderate. Despite the clarity of the economic content itself, the semantic complexity of the

trait is non-trivial, in part because of variations in how comfort might be described across

technology classes.

B1.9 How Traits Relate to Technologies Influenced by Procurement

In this section, we detail how the traits we analyze capture technological changes as

influenced by the desires of wartime procurers. First, we describe a set of traits related to the

reintegration of veterans with amputated limbs into the workforce. We supplement this discussion

with historical evidence on the demands of World War I era procurers. Then, we highlight traits

related to advancements in mass production driven by the need to provide an unprecedented

demand for artificial limbs associated with both the Civil War and World War I. Lastly, we detail

how competitive pressures from consumer-directed limb purchases steered inventors to entice

veterans with more desirable limbs.

Technologies for Employment and Social Reintegration (Appliances, Appearance)

Before World War I, the cost of the U.S. Civil War pension system outpaced the cost

of the Civil War itself. In response, the U.S. government implemented a rehabilitation system

focused on reintegrating veterans with amputated limbs into the workplace. These veterans

“were expected to become citizen-workers...not to languish at the expense of the U.S. Treasury.
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In a real sense, they were expected to be the opposite of the Civil War veteran” Linker (2011;

p. 13). The British, too, learned from the American Civil War experience and focused on

providing limbs geared to improve the employment prospects of veterans with amputated limbs.

To accomplish this, both governments launched new initiatives to train veterans with amputated

limbs to use artificial limbs in a new skill or trade before returning home. They contracted with

limb manufacturers to compete against one another to invent artificial limb attachments for these

trades (Kowalsky 2007).

Together, these forces led inventors to focus on technologies that improved the utility

of artificial limbs (see Figure 2.3 and Table 2.5), with the increase being particularly strong

in Britain. We measure changes in these technologies using the trait “appliances.” Figures

B3, B4, B5, and B6 show improvements in the utility of artificial limbs during World War I.

Figure B3 illustrates a case of a soldier fitted with artificial arms that facilitate writing. Figure

B4, taken from Linker (2011), shows a veteran with an amputated arm using a “utility arm”

with a welding attachment. Figure B5 shows a diagram from U.S. patent 1,213,222 (1917),

which illustrates a new artificial arm with an attachable hammer. Figure B6 displays a photo

taken at Roehampton (a British army-training facility during World War I) that shows soldiers

using various interchangeable terminal devices designed for specific trades. These artificial limb

innovations facilitated reintegration into employment upon returning home.

The emphasis on the utility of limbs was coupled with a focus on improving limb

appearance (see the bottom-right panel of Figure B2). Institutions strove to disguise the disability

of veterans with amputated limbs. A War Risk Insurance Bureau chief noted that ”one of the

most useful and necessary duties of this department will be to prescribe and furnish medical

and surgical treatment in order that disabilities may be reduced or caused to disappear entirely”

(Linker 2011; p. 100).

Inventors responded to these desires by creating more life-like artificial limbs. These

technologies are captured by our “appearance” trait. Figure B7 illustrates a new technology

displayed in U.S. patent 1,173,219 (1915), which emphasizes a more natural-looking hand
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through the use of continuous and smooth surfaces.

Mass Production During War

The Civil War brought an unprecedented demand shock to the U.S. artificial limb indus-

try. The surge in demand led manufacturers to increase the mass producibility of their limbs.

Manufacturers brought new materials advancements that made artificial limbs cheaper, simpler,

and adjustable to user specifications (see Figure B27). For example, Amasa Marks, a prominent

limb manufacturer whose firm persisted into World War I, filed U.S. patent 40,763 (1863), which

details the construction of limb appendages using one such new material. The patent reads,

“making the wearing parts of the limbs...of a composition of ‘Sponge rubber’... [giving] the

requisite degree of elasticity...making the limbs cheaper and more durable.” Marks’ use of

vulcanized rubber allowed his limbs to be mass-producible through cheaper components that

adjust to different stump sizes (elastic). Figure B8 shows a diagram from the patent illustrating

the new materials technology.

Inventors also emphasized adjustability as a way to mass-produce limbs to meet pressing

demand. U.S. patent 66,728 (1867) emphasizes an adjustable lacer for artificial limbs allowing

a close fit to knee joints of different sizes. Figure B10 shows a diagram of this invention. U.S.

patent 35,937 (1862) highlights the use of a spindle in the knee joint that allows the limb to

adjust to the height of any wearer. Figure B11 shows the construction of this limb, with part D

showing the adjustable spindle at the knee joint.

Simpler limbs also made for a quicker and less labor-intensive production process. U.S.

patent 37,087 (1862) states the use of an artificial knee joint that mimics the natural simplicity of

the human knee joint, avoiding unnecessary parts and ensuring “great simplicity, and therefore

cheapness.” The inventor describes a hinge joint of the artificial knee as one constructed of only

“two principal parts, the upper part, representing the femur...and the lower part, representing the

tibia.” In contrast to Figure B13, which shows a more complex knee joint, Figure B12 shows a

diagram of the described knee joint, illustrating the simplicity of the invention.
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Although a strong domestic manufacturing presence was established during the Civil

War, U.S. manufacturers were enlisted to meet global artificial limb needs during WWI. This led

U.S. artificial limb manufacturers to invest further in standardization (Guyatt 2001; p. 313).

Inventors during World War I used modular construction to keep up with global demand.

The “E-Z limb” was a standard-issue, temporary limb for acclimating veterans with amputated

limbs to the use of an artificial limb before being discharged from military service. These

limbs were modular and lightweight to facilitate mass production and showcased a smooth

flesh-colored exterior that resembled the “shape of a real-life human leg” (Linker 2011; p. 109).

Figure B9 illustrates the features of “E-Z limb.” An increased emphasis on adjustability was thus

common to prosthetic device patents during both World War I and the Civil War (see Table 2.5

and Figures B27 and B28). By contrast, inventors exhibited a much smaller increase in their

emphasis on cost and simplicity during World War I than during the Civil War (again, see Table

2.5 and Figures B27 and B28).

Cost and Comfort Oriented Innovation During the Civil War

Lastly, two features of Civil War-era procurement contributed to increases in inventors’

emphasis on cost and comfort. With respect to cost, the government’s modest, fixed price

reimbursement rates gave Civil War-era limb manufacturers a strong incentive to reduce pro-

duction costs. Civil War-era inventors responded by increasing their emphasis on making limbs

inexpensive (see Figure B27). One such artificial limb patent detailing a cost innovation states,

“[The artificial limb] is simple, cheap...” (U.S. 37,637; 1863). To achieve cheapness, the inventor

sheds “the use of straps around the waist or shoulder” and obviates “tedious fitting” by using a

“bucket or socket to receive the stump of the amputated limb,” which can secure the limb to the

stump. This new technology is shown in Figure B14. Another inventor claims a new artificial

arm design constructed entirely out of metal, “avoiding the use of catgut, whalebone, wood, or

any other organic substance” and thus leading to “cheapness” (U.S. 40,397; 1863). Figure B15

shows the design of this metallic artificial arm.

194



With respect to comfort, Civil War veterans with amputated limbs received government

limb allowances to finance the purchase of an artificial limb of their choosing. In addition, limb

purchase was not required. This appears, in practice, to have led at least some manufacturers

to strive to produce more comfortable artificial limbs (see the top-left panel of Figure B2). In

one example, an inventor details a new way to construct the inner lining of artificial limbs by

using cork sheets. This construction is described as having a “smooth, soft surface, that is not

materially affected [by] perspiration, because the pores in the cork allow said perspiration to

escape, and said cork affords a pleasant, smooth surface to the tender stump”(U.S 53,206; 1866).

Figure B16 illustrates the construction of this cork lining.

By contrast, during World War I, the U.S. government de-emphasized the comfort of

veterans with amputated limbs in favor of a strict rehabilitation program. Indeed, this program

incorporated regiments of intentionally inflicting pain out of fear that a less severe approach

would hinder rehabilitation. One source notes, “By eliciting pain from disabled soldiers, then,

physiotherapists complied with the greater vision of the rehabilitation project...a vision fueled by

the fear that overly sympathetic women would ruin a man’s prospect of successful rehabilitation”

(Linker 2011; p. 75). Soldiers often complained that government-provided limbs were painful

(Linker 2011; p. 114). In the prosthetic device patents, we see this reflected in our analysis of the

“comfort” trait, with inventors de-emphasizing comfort during World War I (see the top-right

panel of Figure B2).
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Figure B1. Trait Keyword List. Note: The figure presents the keywords we used to define our traits of interest.
The accronymn“I/W” means “in word”, which denotes that we use all words that contain the given
keyword. The letter “E” means we exclude any word containing that keyword. The letter “P” means
that the machine learning algorithm learned to avoid using these keywords beyond the context of
prosthetic limbs.
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Figure B3. Regaining Writing Ability. Note: The diagram was taken from the article “Enabling the Great
War: Ex-Servicemen, the Mixed Economy of Welfare and the Social Construction of Disability,
1899-1930” by Meaghan Melissa Marie Kowalsky. The figure shows an example of a prosthetic arm
appliance attachment for writing.
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Figure B4. Rehabilitated to Work. Note: The figure shows an example of a prosthetic arm appliance
attachment for welding. Source: The United States Army Surgeon General’s Office, The Medical
Department of the United States Army in the World War, Washington, DC: GPO, 1927, volume 13,
page 107.
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Figure B5. Rehabilitated to Work (Part II). Note: The diagram was taken from U.S. patent 1,213,222
(1917). The figure shows a limb with attachable appliances for use in various trades. This diagram
presents an attachable hammer called the “hammer arm.” Source: United States Patent and Trademark
Office.
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Figure B6. Rehabilitated to Work (Part III). Note: The figure shows interchangeable appliances that equip
wearers to perform various trades. Image included with permission from Elsevier: Marshall CJ.
Modern artificial limbs: The work of the arm-training centre at Roehampton. Lancet. 25 June 1921.
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(a) The Natural Hand

(b) The Carnes Hand

Figure B7. The Natural Hand vs Predominant “Carnes Hand” Note: The top diagram was taken from
U.S. patent 1,173,219 (1915), and the bottom diagram was taken from U.S. patent 999,484 (1910).
The figure contrasts a more naturally designed hand emphasizing “appearance” (top subfigure) against
a more mechanical and modular hand (bottom subfigure). Source: United States Patent and Trademark
Office.
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Figure B8. New Cheap Material. Note: The diagram was taken from U.S. patent 40,763 (1863). The figure
shows a series of limb pieces constructed from a new, cheap material called vulcanized rubber. This
allowed for the cheap construction of a variety of limb components. Source: United States Patent and
Trademark Office.
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Figure B9. Cheap, Modular, and Life-Like Material. Note: This figure presents the “liberty limb,” an
artificial leg constructed with a fleshy-colored material and was modular in nature. Source: The
United States Army Surgeon General’s Office, The Medical Department of the United States Army in
the World War, Washington, DC: GPO, 1927, volume 11, page 741.
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Figure B10. Adjustable Limb. Note: The diagram was taken from U.S. patent 366,728 (1867). The figure
shows a lacer device that allows users to adjust knee braces to their unique specifications, lending to
cheaper, uniform limb construction. Source: United States Patent and Trademark Office.
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Figure B11. Adjustable Limb II. Note: The diagram was taken from U.S. patent 35,937 (1862). The figure
shows an artificial leg with an adjustable height, which relies on an extending spindle in the knee
joint. Such a design allows cheaper, uniform construction of limbs, avoiding more expensive,
tailored construction. Source: United States Patent and Trademark Office.

206



Figure B12. Naturally Simple Limb. Note: The diagram was taken from U.S. patent 37,087 (1862). The
figure shows a knee joint constructed of only two primary components, with a simple hinge
component at the knee. More complex knee joints, such as the one shown in figure B13, use more
intricate mechanisms. Such simplicity allowed for ease of mass production. Source: United States
Patent and Trademark Office.
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Figure B13. More Complex Knee Joint. Note: The diagram was taken from U.S. patent 38,549 (1863).
The figure shows the internal workings of a more complex knee joint invention that emphasized
appearance and comfort. Source: United States Patent and Trademark Office.
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Figure B14. Cheap Bucket Limb. Note: This diagram was taken from U.S. patent 37,637 (1863). The
figure shows a unique bucket design for the apparatus into which the stump is inserted. The bucket
construction allowed the limb to be adjusted to different user specifications allowing for cheap,
uniform construction. Source: United States Patent and Trademark Office.

209



Figure B15. Cheap Metallic Limb. Note: This diagram was taken from U.S. patent 40,397 (1863). The
figure shows the use of metal materials when constructing the forearm section of the prosthetic arm
in an effort to reduce production costs. Source: United States Patent and Trademark Office.
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Figure B16. Comfortable Limb Casing. Note: This diagram was taken from U.S. patent 53,206 (1866). The
figure shows the construction of a cork limb casing designed to wick away moisture and perspiration.
Source: United States Patent and Trademark Office.
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B2 Text Analysis Appendix

In this appendix we discuss our approach to designing, evaluating, and selecting our

preferred machine learning algorithm for analyzing the texts of patent documents. We begin by

describing our objective and comparing our setting with other uses of text analysis in economics

research. We then define key terms and discuss examples of the key threats to successful text

analysis, along with our approach to addressing them. Finally, we discuss several dimensions of

best practice text analysis.

B2.1 Generating Economic Data through Text Analysis

Our goal in conducting text analysis is to create variables that describe the economic

content of patent texts. Specifically, we analyze the texts of prosthetic device patents, other

medical patents, and mechanical patents to determine whether they emphasize traits we term

simplicity, cost, adjustability, materials, comfort, and appearance. We code these traits as binary

variables, which are our text analysis outputs.

Our text analysis task shares several key commonalities with recent “sentiment” and

“partisanship” analyses, where the objective is to rate the sentiment or the degree of partisanship

of a publication, writer, or speaker (Shapiro et al. 2018, Shapiro and Wilson 2019, Garcia 2013,

Gentzkow et al. 2019, Gentzkow and Shapiro 2010).17 Key commonalities are as follows. First,

the researcher must either obtain or create a data set containing a set of outputs (the “true values”

for the variables of interest) corresponding to a set of text inputs (a subset of the texts of interest).

A machine learning algorithm then learns a function, or model, that relates these input-output

pairs. Cross-validation is used to evaluate the model’s performance by splitting the manually

coded input-output pairs into two sets: one on which the model will be trained and another on

which the model’s performance will be tested. The train-test split is crucial for reliably evaluating

17Similarly motivated text analysis exercises have also been used quite recently to study patents. Dechezlepretre et
al. (2019), for example, use a keyword search approach to code patents based on whether they relate to “automation.”
Cockburn et al. (2018) similarly use a keyword search approach to track the advance of artificial intelligence through
references within patent texts and journal articles.
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performance, as testing on the same data used for training will tend to produce overly optimistic

results due to over-fitting.18 The selected predictive model is then used to assign values for the

output variables of interest to the full set of text inputs. Note that these methods are typically

used because resource limitations prevent researchers from closely reading and manually coding

true values for the broader set of texts. In our case, for example, the broader set of texts consists

of more than 700,000 patent documents.

Our preferred algorithm can be described as a modified supervised machine learning

algorithm. Our algorithm is somewhat analogous to algorithms used for sentiment analysis by

Shapiro et al. (2018). Straightforward algorithms for sentiment analyses make use of “lexicons”

that assign positive and negative values to the sentiment associated with extensive lists of words.

A simple “Lexical Methodology,” for example, is to assign a document a sentiment score based

on the sum or mean of the values assigned to the words in its text by the lexicon. In our setting,

this is analogous to determining that a patent emphasizes a particular economic trait if its text

contains a keyword with which we associate that trait. Shapiro et al. (2018) discuss how this

basic approach can be improved upon through tools that account for context (e.g., “negation

rules”). While the word “happy” conveys positive sentiment, for example, the phrase “not happy”

conveys the opposite. A similar concern motivates the tool we design, which incorporates a

neighborhood of contextual clues to root out false-positive errors.

B2.2 The Central Problems of “Polysemy” and “Synonymy”

When using algorithms to extract economic information from text, researchers must

overcome errors driven by the complexity of language. In particular, errors can be generated

by variations in a word’s meanings across contexts and by similarities in the meanings of

multiple words. These issues are commonly termed “polysemy” and “synonymy,” respectively

(Scott Deerwester 1990, Magerman et al. 2011).

18Testing on the left-out data gives insight regarding how generalizable a model will be to new data. Further,
repeating cross-validation using randomized train-test splits decreases the likelihood that high performance is simply
a result of an opportunistic split.
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Synonymy (multiple words having the same meaning) can lead to false negatives, as an

algorithm may fail to account for words that are similar in meaning to an attribute’s most intuitive

keywords. By contrast, polysemy (when words have multiple, context-dependent meanings)

elicits false positives. If an algorithm does not detect a word’s distinct contextual meaning, it

may falsely connect a text input with the concept of interest (Turney and Pantel 2010). Polysemy

can take multiple forms. In some cases, a word’s meaning is straightforwardly negated by the

words around it (e.g., the aforementioned difference between “happy” and “not happy”). In

other cases, a word’s meaning may differ with the subject matter contained in the full text or

in a particular sentence (e.g., the meaning of “fork” in the phrases “fork in the road” versus

“knife and fork”). The difficulties posed by polysemy and synonymy can be closely related, as a

keyword’s contextual meaning cannot be learned if the keyword itself is not initially detected.

B2.3 Illustrative Examples from Patent Texts

The attributes we analyze exhibit varying degrees of “polysemy” and “synonymy.” The

attribute we term “simplicity,” for example, was relatively straightforward. This is because

the language linked to “simplicity” is relatively common across texts; it is unlikely to have

ambiguous meaning or numerous synonyms. One prosthetic device patent, for example, quite

explicitly stated that “The object of my invention is to imitate this eccentric motion of the

knee-joint in the simplest manner.” Another states, “The advantages of my invention are as

follows: . . . great simplicity, and therefore cheapness.” The meaning of simplicity extended

quite well to patents in our control classes. One such patent highlights, for example, “that the

machinery which we use, as hereinafter described, is simple in construction.” The relative ease of

classifying simplicity is shown in the high performance, which we define more precisely below,

we obtain when training the models we consider. Notably, our preferred model performed quite

well in predicting “simplicity” even when the training set contained as few as 100 observations.

By contrast, the attribute we term “comfort” was relatively difficult to work with. Dif-

ficulties arose because the language used to indicate a product’s “comfort” regularly suffered
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from ambiguity. Sometimes, the meaning of comfort was quite clear. A straightforward example

from prosthetics states “My present invention has for its object the production of an artificial

leg constructed on such principles that it will give more strength and durability to the limb, and

also ease and comfort to the wearer.” A straightforward true positive from a different mechanical

class states that “Until the external pressure becomes too great... air [is] allowed to enter the box

A, until the person sitting in it feels comfortable.” Difficulties arose, however, from polysemous

words used to describe discomfort. For example, the word “disturbing” often connotes bodily

discomfort in prosthetic device patents. In mechanical classes, by contrast, the word “disturbing”

tends to have meanings connected to the device’s functionality (e.g., “disconnecting or disturbing

the pump”). The difficulties created by such cases translated into poor predictive accuracy when

we attempted to train our preferred model on relatively small training sets.19

B2.4 Assessing a Model’s Accuracy

A model’s accuracy in a binary classification problem can be well described by the

evaluation metrics of “sensitivity” and “specificity.” Sensitivity refers to the rate of true positives

as a share of all positives, while specificity refers to the rate of true negatives as a share of all

negatives. These metrics were particularly well suited for our study as they directly ascertain an

algorithm’s ability to confront the issues of polysemy and synonymy.

Sensitivity and specificity are related. When specificity is reasonably high, sensitivity

measures how well an algorithm addresses synonymy by directly revealing the algorithm’s ability

to correctly detect the desired characteristics: If included keywords inadequately detect patent

characteristics due to excluded synonymous keywords, sensitivity would be low. Whereas, when

sensitivity is reasonably high, specificity measures the algorithm’s ability to ascertain a keyword’s

context-specific meaning: If the algorithm correctly detects the absence of a given characteristic

in the presence of a keyword, it is identifying contextual cues that nullify a keyword’s relevance,

19As discussed below, comfort is a trait for which accuracy experienced substantial gains as the size of our
training data set increased.
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causing specificity to increase. If either sensitivity or specificity is very low, however, then the

algorithm may arbitrarily assign positive or negative outcomes depending on which outcome

occurs most frequently in the training data.

The simple average of sensitivity and specificity is commonly termed the “balanced accu-

racy score.” The balanced accuracy score, averaged across “repeated 10-fold cross-validations,”

is the criterion we use for model evaluation. We used balanced accuracy, as opposed to other

evaluation metrics, as it accounts for class imbalance in the dependent variable—a potential

issue common in binary classification tasks.20 As a rough rule of thumb, we targeted balanced

accuracy scores of at least 90 percent.21 As shown below, however, incremental improvements

in an algorithm’s accuracy can have meaningful implications for a research project’s estimates of

primary interest.

We contrast the performance of our preferred model with models generated by a variety

of alternative algorithmic techniques. In cases where text classification is well defined by a set

of important words, a natural benchmark for assessing alternative tools is a keyword search.

A keyword search algorithm codes patents as emphasizing a particular trait if the document

contains any words that are strong markers for the trait. As highlighted below, a keyword search

is highly effective at identifying positive outcomes for tasks like ours. It may produce false

positives, however, by ignoring contextual cues that nullify a keyword’s relevance. Whether this

shortcoming outweighs a keyword search’s ability to detect positive outcomes depends on the

degree of polysemy in a researcher’s particular task.

20In the context of a binary classification problem, class “imbalance” means that there are more/fewer negative
outcomes compared to positive outcomes. See Brodersen et al. (2010) for a widely cited discussion of the balanced
accuracy score’s attractive properties in settings where this holds.

21Another common measure of model performance in binary classification tasks is AUC, the area under the
receiver operating characteristic curve. For our “comfort” trait we achieve an AUC score of 0.92 and for our
“simplicity” variable we attain an AUC score of 0.95. These scores are quite high, suggesting that positive and
negative outcomes are quite distinctly separated as the majority of outcomes are simply determined by the presence
of a keyword.
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B2.5 Our Preferred Algorithm: A Novel Modified ML Approach

We considered several classes of algorithms as potential tools for constructing our

data set. These included “unsupervised” machine learning algorithms, “supervised” machine

learning algorithms, modified supervised learning algorithms, and simple keyword searches.

Our preferred algorithm can be described as a modified supervised learning algorithm. The key

modification, which involves constraining the feature space from which the algorithm learns,

generated advantages with respect to both accuracy and computing requirements.

Unsupervised learning tools are meant to form meaningful groupings of input data based

on some predefined metric (Athey 2018). In our context, we found that such tools struggled

to form groupings that coalesced around the economic attributes we sought to analyze. This

problem cannot be resolved through the analysis of larger samples.

Standard supervised machine learning tools take as inputs a feature space generated

from the entirety of each document’s text. We find that these tools struggled to overcome the

problems of synonymy and polysemy.22 For supervised machine learning tools, we find that the

performance of existing algorithms improved, to varying degrees, as we expanded the size of our

training set. It is thus possible that these algorithms would reach tolerable accuracy thresholds

on training samples of sufficient size. Our analysis is suggestive, however, that generating

training samples of sufficient size may be beyond many research projects’ scope. Closely reading

thousands of patent texts or other context-relevant documents is a resource-intensive process.

We find that simple keyword searches performed quite well in our setting. Notably, the

development of our lists of keywords benefited from our experimentation with machine learning.

In our project’s early stages, we attempted keyword searches based on a combination of intuition

22This may stem from the fact that even after processing the text data (removing stop words, word fragments,
etc.), the full sample of patent texts contained over 18,000 features. In a simulation analysis using synthetic data,
Hua et al. (2004) simulate error rates across alternative feature space sizes, sample sizes, and algorithms. In their
context, they find that the optimal feature size is N−1 for uncorrelated features (where N is the sample size) and
that the optimal feature size becomes proportional to

√
N for highly correlated features. Although these findings are

not necessarily generalizable, in our case the number of features (when using the full processed patent texts) was
15N, suggesting that the relatively high number of features is plausibly linked to suboptimal performance.
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and close readings of a small set of patents. This “procedure” performed poorly. The accuracy

of our keyword searches increased substantially as we learned more about our domain through

close readings of 1,200 patent documents in total. Success with either keyword searches or our

modified machine learning approach will tend to require substantial knowledge of the domain

one is attempting to analyze.23 Both sets of approaches provide ample evidence of the idiom

“garbage in, garbage out.”

Although keyword searches ultimately performed quite well for our task, their general

limitations are worth emphasizing. A keyword search does not, by construction, allow context to

inform a word’s meaning. This can lead to false-positive errors. In general, it should thus be

possible to improve upon keyword searches by allowing contextual clues to inform a word’s true

meaning within each text.

Our preferred, modified approach connects the knowledge we obtained reading patent

documents to the Gradient Boosted Machines algorithm (Friedman 2001).24 When constructing

this model we directly targeted the issues of synonymy and polysemy. First, while reading

1,200 patent documents, we compiled a non-comprehensive list of keywords that indicate each

characteristic. To gather each keyword’s synonyms, we mapped all our considered patent text

corpora to a vector space.25 This allows us to model the degree of contextual similarity between

words using spatial word proximity, resulting in spatial groupings of keywords and their most

relevant synonyms. After adding keywords and their synonyms into the feature space, we then

include a flexible neighborhood of text surrounding these words to provide contextualization.26

23The success of our modified machine learning tool depended on a combination of manually gathered keywords
through close readings and data-driven synonym determination. Although this form of feature selection required
extensive domain knowledge, feature selection can be effectively executed using entirely data-driven algorithms (see
Guyon et al. (2002) and Guyon and Elisseeff (2003)). In our case, however, these purely data-driven approaches
selected features that induced worse performance than simply using the full patent text. Accuracy gains only
occurred when we used a combination of hand-picked and data-driven feature selection.

24This is a “boosted” version of Random Forests (Breiman 2001) where error terms from previous decision tree
predictions inform the construction of subsequent trees.

25We use Word2Vec (Mikolov et al. 2013) to construct these word embeddings. Word2vec uses shallow neural
networks to map words within text documents to a vector space that captures word relationships through a distance
metric. Words within this space are mapped as being close together if they occur in similar contexts in the text
corpora.

26These steps are well described as a type of “feature selection.” Feature selection has been shown to help at
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We then train the machine learning algorithm with this reduced feature space to obtain more

accurate and efficient results.27

Relative to alternative machine learning methods, our modified approach generated

accuracy gains when predicting each of our economic characteristics. Improvements relative to

machine learning approaches that attempt to learn from the entirety of each patent’s text were

quite large. The relative success of our modified approach, when compared to other pure machine

learning methods, is driven by the amount of extraneous information in patents’ full texts, figure

descriptions, and detailed claims. The presence of extraneous features reduced these algorithms’

ability to pinpoint specific, economically relevant patent characteristics. Constraining the feature

space to include only keywords, their synonyms, and neighboring contexts allows the machine

learning algorithm to learn more efficiently.

Relative to a keyword search, our algorithm’s greatest improvements in accuracy were

gains of three percentage points for the quality-oriented traits we term “comfort” and “appear-

ance.” The improvement in accuracy comes entirely from gains in specificity: The modified

approach learns to discriminate keywords whose context nullifies their meaning. Although a

three percentage point gain in accuracy is modest, researchers will tend to realize larger gains for

text analysis problems with greater degrees of polysemy.

B2.6 Lessons for Implementing Best Practice Text Analysis

In this section, we illustrate several key inputs to best practice text analysis. While text

analysis tasks necessarily confront many setting-specific challenges, the dimensions of best

practice we discuss should apply quite generally. They include an approach for assessing the

optimal size of a training set, the importance of generating a training set that covers all contexts

that a researcher targets, and an approach for assessing the implications of inaccurate predictions

“improving the prediction performance of the predictors, providing faster and more cost-effective predictors, and
providing a better understanding of the underlying process that generated the data” (Guyon and Elisseeff 2003),

27Computation time was dramatically reduced using our approach when compared to other machine learning
algorithms. This stems from the reduced feature space, allowing quicker model training.
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for the estimates in which a study is ultimately interested.

Determining Optimal Sample Size

We conducted a systematic analysis of how the performance of various algorithms evolved

as we expanded the size of our training data set. Text analysis tasks may differ substantially with

respect to the complexity of each piece of text and with respect to the severity of setting-specific

sources of polysemy and synonymy. Consequently, it is not possible to prescribe a “rule-of-

thumb” size for a training set. One can nonetheless use the relationship between accuracy and

sample size to make inferences regarding the returns to further expansions of the training set.

Using our preferred modified approach, the size of the training set required to reach

tolerable balanced accuracy scores varied across traits. For the trait we term simplicity, for

example, our balanced accuracy score exceeded 90 percent with training sets containing fewer

than 200 observations. For the trait we term comfort, by contrast, the accuracy score approached

90 percent as training sets contained roughly 700 observations. For the trait we term materials,

the accuracy score remained below 90 percent even on our full training set of 1,200 observations.

On what basis should the size of the training set be determined? Expanding a training

set requires project resources. On the margin, the key question is whether increases in the

size of the training set yield non-trivial returns. As a way to gauge the relevant returns, we

recommend constructing “learning curves,” like those displayed in Figure B19. We constructed

these figures by evaluating our model’s accuracy when trained and tested on samples of varying

sizes. More specifically, we executed a bootstrap estimation of our model’s balanced accuracy

score when trained on different sample sizes from our manually coded data, with the remaining

un-sampled data forming the test set. The solid green line in each panel traces the mean of the

balanced accuracy score across 400 iterations of this procedure at ascending sample sizes. The

shaded green area extends from the 10th to the 90th percentiles of the distribution of results.

The bootstrap approach assures that our estimate for any given sample size is not skewed by

particularly “favorable” or “unfavorable” draws, meaning draws on which the algorithm happens
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to have a particularly easy or difficult time with its prediction task.

Panel A of Figure B19 shows that the balanced accuracy score for “comfort” is relatively

low with small samples. Further, the score for comfort exhibits non-trivial improvement as the

training set expands to include as many as 1,000 patents. The band extending from the 10th to

the 90th percentiles of the distribution is quite large in comparison with the band presented in

panel B, for the trait we term simplicity.

Panel B of Figure B19 shows that the balanced accuracy score for “simplicity” is high

with small samples. Further, the score asymptotes quickly. It exhibits no further improvement

once the training set includes 400 observations. Notably, the band extending from the 10th to

the 90th percentiles of the distribution is relatively tight. This further supports the point that the

performance of the algorithm is not particularly dependent on the patent documents used to train

it.

Our analysis of alternative machine learning algorithms provides additional evidence

that performance can depend crucially on sample size. On samples of the sizes we consider, we

found that non-neural network machine learning algorithms perform better than deep learning

algorithms and that our modified machine learning approach performs better than both deep

learning and non-neural network machine learning models trained on the entire text of each

patent.28

Assessing the Stability of Economic Estimates

What constitutes an acceptable accuracy threshold? Alternatively, how can one gauge

the implications of incremental changes in model accuracy for the primary estimates of an

analysis? We shed light on this question through a simulation of how our estimates evolve as we

systematically reduce the accuracy of our preferred algorithm’s estimates.

28These results are fairly consistent across the economic traits we analyze. All machine learning hyper-parameters
are tuned using randomized grid-search methods (Bergstra and Bengio 2012). Deep learning models we considered
were Bidirectional Encoder Representations from Transformers (Devlin et al. 2018), Convolutional Neural Networks
(Kim 2014), Recurrent Neural Networks with long short-term memory (Hochreiter and Schmidhuber 1997), and
Multi-Layer Perceptrons (Rosenblatt 1961).
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The procedure we conduct is straightforward. Starting with the data generated by our

preferred modified approach, we inject noise by altering the coding of a given fraction of the

observations for an outcome variable of interest. We do this for fractions ranging from 1 percent

to 50 percent. We select the observations we miscode at random, then estimate β1 from equation

(2.4.4). As in our analysis of “learning curves,” we implement a bootstrap-style procedure. That

is, for each degree of noise, we repeat the basic procedure 40 times to generate a range of new

estimates. Figure B20 reports the resulting means and distributions.29

Panel A of Figure B20 presents estimates for the trait we term “comfort” during the

World War I period. Our baseline estimate for comfort is -0.14, indicating that wartime prosthetic

device patents were 14 percentage points less likely than pre-war prosthetic device patents (net

of the equivalent change for the synthetic control group) to emphasize comfort. As we reduce

the accuracy of our comfort variable’s coding, this estimate quite rapidly converges towards

zero. The magnitude of the estimate for comfort was halved before we had reduced accuracy by

10%.30

Panel B of Figure B20 presents the sensitivity of estimates of β1 from equation (2.4.4)

for “simplicity.” Our baseline estimate for simplicity is 0.13, indicating that wartime prosthetic

device patents were 13 percentage points more likely than pre-war prosthetic device patents (net

of the equivalent change for the synthetic control group) to emphasize simplicity. Interestingly,

the rate of convergence to zero differs non-trivially when comparing the estimates for comfort

and simplicity. Estimates for simplicity converge more slowly, as the magnitude of the estimate

is halved when we had reduced accuracy by roughly 20%.

Coding accuracy is clearly important for generating unbiased estimates in analyses of

both comfort and simplicity. In both cases, 20% reductions in accuracy would render the

29Note that the estimate we produce using the data generated from our preferred model serves as the benchmark.
Since our modified approach does not predict with perfect accuracy, the current observations already have a small
amount of measurement error corresponding to the error associated with the model’s performance in predicting
“comfort.”

30As the accuracy of the data approaches 50%, the estimate converges to zero. As the algorithm’s accuracy dips
below 50% the estimate will begin to converge to the opposite sign of the true estimate. To see why note that altering
the coding of 100% of the observations would yield a variable that is the inverse of the original variable.
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estimates from our analyses much smaller economically. In addition to being economically

smaller, the attenuated estimates are less likely to be statistically distinguishable from zero.

Differences in the rate of convergence towards zero suggest that the tolerability of error may

be higher in the case of simplicity than in the case of comfort. It is not obvious why this is the

case. A natural hypothesis, into which more research is needed, is that estimates’ sensitivity

to reductions in accuracy may depend in part on a trait’s baseline prevalence within both the

treatment and control groups.

Context Specificity

The performance of a trained model may be limited outside the context of its training

data. We term this concept “context specificity.” Limitations on a model’s validity outside of its

training set can result from variations in word meanings and usage across domains and across

time. In our case, a model trained to recognize the traits in artificial limb patents may perform

poorly when applied to patents from classes we use as controls. A model’s performance might

be impaired if the training set lacks sufficient data from all considered domains.

To illustrate this point, we conduct the following exercise. Our data can be described

as consisting of four contexts, namely Civil War-era prosthetic devices, Civil War-era control

categories, World War I-era prosthetic devices, and World War I-era control categories. We train

our model on a single context, then asses its accuracy in all four contexts. Doing this for each

of the contexts separately generates a total of sixteen balanced accuracy scores, four of which

involve applying the model to the context on which it was trained. To ensure that differences in

accuracy scores across contexts are not driven by differences in sample size, we constrain the

size of the training set to be equal in all cases.

The results of conducting this exercise for our “comfort” and “simplicity” traits can be

found in Table B25. In each panel, the main diagonal of the matrix of balanced accuracy scores

corresponds to our model being applied to the context on which it is trained. This is done using

cross-validation within the given domain and time period. The antidiagonal entries correspond
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to our model being trained on a different patent class (prosthetic devices vs. the control classes)

and historical episode (Civil War vs. World War I) than the corresponding left-out test data set.

Differences in the average value of the balanced accuracy scores along the main diagonal relative

to the antidiagonal provide information on the relevance of context-specificity.

Consistent with our priors, we find that context-specificity is more important for traits for

which the problems of polysemy and synonymy are relatively severe. In the examples presented

in Table B25, we find that the difference in accuracy scores when comparing the main diagonal

to the antidiagonal is greater for “comfort” than it is for “simplicity.” The differences in accuracy

scores for comfort are non-trivial. On average, the score along the main diagonal is 92.5 percent,

while the average score along the antidiagonal is 86.5. The difference of 7 percentage points

is non-trivial when put in the context of our analysis from the previous section. For comfort,

injecting a 7 percentage point reduction in accuracy led our estimate of β1 from equation (2.4.4)

to decline by nearly half.

More generally, we find that it is important to account for context specificity when

predicting attributes whose meaning is domain- and time-dependent. In our setting, attributes that

exhibited this time- and domain-dependence include “appearance”, “materials”, and “comfort.”

By contrast, accuracy scores were relatively insensitive to the training set’s context for the traits

we term “cost,” “simplicity,” and “adjustability.”

Acknowledging Limitations

In some cases, even a well-chosen algorithm trained using a large data set may yield low

accuracy scores. Even with our preferred algorithm, for example, we obtained an accuracy score

of 87 percent when predicting the trait we term materials. What drives this result and how should

it shape our presentation of the evidence?

“Materials” was a difficult trait to predict because keywords that describe the introduction

of novel materials tend to have no previous mentions. When few observations contain a keyword,

an algorithm’s opportunities to learn how best to classify out-of-sample observations with that
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keyword are limited. Keywords that were consistently used to describe new materials—like

material, alloy, chemical, composition, or mixture—also tended to be used in the description of a

device’s construction whether or not the associated materials were new. Further, new material

innovations were relatively rare. They occurred in only six percent of the observations in our

sample, resulting in a small number of reliable positive observations.

As shown earlier, reductions in model accuracy tend to attenuate our estimates. Properly

interpreting our estimates thus requires knowing the accuracy of the model used to generate the

dependent variable. We recommend presenting two key pieces of information. First, analyses

of this sort should present readers with an accuracy metric that is appropriate to the setting.31

In Table B26, for example, we present the full set of balanced accuracy scores along with the

underlying sensitivity and specificity scores. Second, “stability curves” of the sort we present

in section B2.6 provide valuable information for inferring the biases associated with inaccurate

predictions. We thus recommend coupling these key pieces of information within a discussion of

the implications of prediction errors.

In some cases, predictive accuracy may be sufficiently low that the resulting biases will

lead point estimates to be highly misleading. In such cases, we recommend that readers be

directly warned to interpret the estimates “with caution.” In some cases, it may be possible

to pair this caution with the best estimate of the potential magnitude of the associated bias. If

the only bias is a straightforward form of attenuation bias, then interpretable estimates can be

recovered by applying a correction factor. If a correction factor cannot be estimated, the best

approach may be to describe estimates as being useful for “illustrative purposes” only.

31While the balanced accuracy score is a sensible metric for our setting, alternative metrics might be more suitable
elsewhere.

225



D
oc 1 2 3

Te
xt

ap
pa

ra
tu

s 
im

pr
ov

ed
 re

ga
rd

in
g 

fu
nc

tio
n 

pr
os

th
et

ic
 h

an
d

fin
ge

rs
 a

dj
us

t d
iff

er
en

t o
bj

ec
ts

 fa
ci

lit
at

e 
gr

ea
te

r f
un

ct
io

n

in
ve

nt
io

n 
re

la
te

s 
ad

ju
st

ab
ilit

y 
pr

os
th

et
ic

 le
g 

us
er

s 
di

ffe
re

nt
 h

ei
gh

ts
 fa

ci
lit

at
e 

ea
se

 p
ro

du
ct

io
n

Pa
te

nt
 D

oc
um

en
t 1

Th
is

 in
ve

nt
io

n 
re

la
te

s 
to

 th
e 

ad
ju

st
ab

ilit
y

of
 th

e 
pr

os
th

et
ic

 le
g 

to
 u

se
rs

 o
f d

iff
er

en
t 

he
ig

ht
s 

to
 fa

ci
lit

at
e 

ea
se

 in
 p

ro
du

ct
io

n.
 

Pa
te

nt
 D

oc
um

en
t 2

M
y 

ap
pa

ra
tu

s 
is

 im
pr

ov
ed

 re
ga

rd
in

g 
its

fu
nc

tio
n.

 T
hi

s 
pr

os
th

et
ic

 h
an

d 
ha

s 
fin

ge
rs

th
at

 c
an

 a
dj

us
t t

o 
di

ffe
re

nt
 o

bj
ec

ts
 to

fa
ci

lit
at

e 
gr

ea
te

r f
un

ct
io

n.

Pa
te

nt
 D

oc
um

en
t 3

Th
is

 m
ac

hi
ne

 h
as

 a
n 

ad
ju

st
ab

le
 le

ve
r,

al
lo

w
in

g 
it 

to
 a

cc
om

m
od

at
e 

its
 s

et
tin

gs
to

 u
se

rs
 o

f d
iff

er
en

t s
iz

es
.

Preproccessing

m
ac

hi
ne

 a
dj

us
ta

bl
e 

le
ve

r a
llo

w
in

g 
ac

co
m

m
od

at
e 

se
tti

ng
s 

us
er

s 
di

ffe
re

nt
 s

iz
es

Fe
at

ur
e 

Se
le

ct
io

n
Sp

re
ad

 =
 3

D
oc 1 2 3

St
rin

g 
Li

st
s

[h
an

d,
 fi

ng
er

s,
 a

dj
us

t, 
di

ffe
re

nt
, o

bj
ec

ts
]

[in
ve

nt
io

n,
 re

la
te

s,
 a

dj
us

ta
bi

lit
y,

 p
ro

st
he

tic
,le

g]

[m
ac

hi
ne

, a
dj

us
ta

bl
e,

 le
ve

r, 
al

lo
w

in
g]

D
oc

-te
rm

 m
at

rix
 +

tf-
id

f w
ei

gh
tin

g
D

oc 1 2 3

0ad
ju

st
ad

ju
st

ab
ilit

y
ad

ju
st

ab
le

... ... ... ...

m
ac

hi
ne

re
la

te
s

C
od

ed
 L

ab
el

pr
os

th
et

ic

0
.4

47
2

0

.4
47

2

.5
.5

0
0

0
0

0

0
0

1
0

.4
47

2
.4

47
2

1

0

0

In
pu

t f
or

 T
ra

in
in

g

M
ac

hi
ne

 L
ea

rn
in

g 
A

lg
or

ith
m

Fi
gu

re
B

17
.F

lo
w

ch
ar

to
fM

od
ifi

ed
A

pp
ro

ac
h

fo
r

A
dj

us
ta

bi
lit

y
C

ha
ra

ct
er

is
tic

.N
ot

e:
T

he
fig

ur
e

pr
es

en
ts

a
flo

w
ch

ar
to

f
ou

r
m

od
ifi

ed
ap

pr
oa

ch
.

Fi
rs

t,
th

e
te

xt
do

cu
m

en
ts

ar
e

pr
ep

ro
ce

ss
ed

by
co

rr
ec

tin
g

sp
el

lin
g

er
ro

rs
,s

et
tin

g
ch

ar
ac

te
rs

to
lo

w
er

ca
se

,r
em

ov
in

g
st

op
w

or
ds

,p
un

ct
ua

tio
n,

w
or

d
fr

ag
m

en
ts

,n
um

be
rs

,a
nd

ex
tre

m
el

y
fr

eq
ue

nt
or

ra
re

w
or

ds
.T

he
n

w
e

se
le

ct
ke

yw
or

ds
an

d
th

ei
rs

ur
ro

un
di

ng
co

nt
ex

ta
s

fe
at

ur
es

.A
fte

r,
w

e
cr

ea
te

a
do

c-
te

rm
m

at
ri

x
w

ith
ea

ch
en

tr
y

re
pr

es
en

tin
g

th
e

tf
-i

df
w

ei
gh

tin
g

of
re

la
tiv

e
im

po
rt

an
ce

.L
as

tly
,t

hi
s

do
c-

te
rm

m
at

ri
x

is
fe

d
in

to
th

e
m

ac
hi

ne
le

ar
ni

ng
al

go
ri

th
m

fo
rt

ra
in

in
g.

226



UNITED	STATES	PATENT	OFFICE. 

v	i	GEORGE	B.	'I'.IEVETT,	OF	SALEM,	MASSACHUSETTS. 

IMPROVEMENT	IN	ARTIFICIAL	LEGS. 

Speciiication	forming	part	of	Letters	Patent	N0.	35,937,	dated	July	22,	1862. 

erence	being	had	to	the	accompanying	draw-	Y	ing,	making	part	of	this	specication,	in	which	is
represented	my	improved	artificial	leg,	the	parts	from	the	knee-joint	down	being	shown	in	section.	Y 

The	improved	artificial	leg	which	is	the	subject	of	my	present	invention	is	intended	to	be	applied	in
cases	of	amputation	above	the	kneejoint,	and	is	so	constructed	that	its	length	may	be	easily	and	nicely
adj	usted	to	suit	the	wearer,	it	being	foun'd	in	practice	to	be	almost	impos-l	sible	to	make	an	artificial	leg
by	measurement	to	be	comfortable.	In	all	other	artiiicial	legs	with	which	I	am	acquainted	the	spring
which	is	applied	at	the	knee-joint	to	straighten	the	leg	when	bent	continues	to	exert	its	full	strength
when	the	wearer	is	sitting	down	and	the	thigh	and	lower	leg	are	at	right	angles	to	each	other.	This	is

inconvenient,	as	the	wearer	is	compelled	to	extend	the	leg	instead	of	holdingit	bent	in	a	natural	position.
This	I	have	remedied	by	my	improved	construction	of	knee-joint	and	the	manner	of	applying	the	spring

thereto. 

That	others	skilled	in	the	art	may	understand	and	use	my	invention,	I	will	proceed	to	describe	the
manner	in	which	I	have	carried	it	out. 

In	the	said	drawing,	A	is	a	straightslick	of	some	strong	wood,	(which	represents	the	tibia	ofthe	human
leg,)	to	the	lower	end	of	which	is	hinged	the	foot-piece	B,	to	which	a	certain	amount	of	motion	is

allowed,	as	follows:	the	foot-piece	B	has	attached	to	its	top	an	iron	plate,	a,	to	which	is	hinged	at	b	two
metal	straps,	o,	(shown	detatched	in	Fig.	2,)	which	are	attached	by	suitable	bolts	or	screws,	one	on

each	side	of	the	piece	A.	A	spring,	C,	is	placed	behind	the	piece	A	and	presses	against	the	heel	of	the
foot	and	against	a	stop,	d.	As 

the	weight	is	thrown	upon	the	heel,this	spring	iscompressed,	and	as	the	step	is	completed	a	shoulder,	e,
on	the	front	side	of	the	piece	A	comes	down	onto	an	elastic	pad,	t',	secured	to	the	top	of	the	foot-piece
B,	and	limits	the	vibration	of	the	foot	on	its	pivot	b.	The	thickness	of	this	pad	t	may	be	varied	to	suit	the

length	of	step	or	stride	of	the	wearer. 

To	the	upper	end	of	the	piece	A	is	attached,	by	bolts	or	screws,	two	metal	straps,	f,	one	on	each	side,
(shown	dotted,)	to	which	is	pivoted	a	metal	spindle,	D,	on	one	end	of	which	is	cut	a	screw	to	receive	a
nut,	g,	and	from	the	other	end	of	which	projects	a	plate,	h,	which,	when	the	leg	is	straightened	out,

comes	in	contact	with	and	rests	on	a	pad,	m,	of	leather	or	other	yielding	material,	attached	to	the	top	of
the	piece	A,	which	limits	the	motion	of	thejoint	in	one	direction.	This	pad	may	be	varied	in	thickness,	so

as	to	give	a	proper	and	natural	movement	to	the	leg.	A	block	of	wood,	E,	is 

attached	to	thespindle	D,which	passes	through	v	Its	outer	side	is	circular	and	has	a	band	It	is	also	it.	of
metal,	l,	secured	to	it	by	screws.	screwed	to	the	plate	h.	pad,	n,	at	the	back	of	the	piece	A,	against	which

a	shoulder	on	theblock	E	strikes	when	the	leg	is	brought	into	the	position	shown	in	the	drawings.	A
spring,	F,	of	elastic	web	bing	or	other	suitable	material,is	connected	at	one	end	by	a	strap,	o,	of	leather,

to	the	metal	wearer	may	sit	down	with	his	leg	bent	in	a	natural	position	without	an	effort	being
necessary	to	resist	the	power	ofthe	spring.	The	socket	H,	into	which	the	stump	is	inserted,	is	connected

with	the	spindle	in	the	following	manner:	A	circular	block,	G,	of	wood,is' 

slipped	over	the	spindle	D,	and	a	metal	sleeve	or	cap,	r,	with	a	nut,	g,	in	its	'topfrits	over	the	block	and
screws	down	onto	it-,the	screw	on	the	the	spindle	turning	in	this	nut.	From	this	sleeve	braces	s	(shown
dotted)	are	connected	with	the	metal	shell	or	socket	H.	Two	locknuts,	5	and	6,	secure	the	parts	when

screwed	down. 

The	block	G	may	be	changed	for	one	of	a	different	length,	or	a	piece	may	be	eut	oft'	from	it	to	adjust	the
leg	to	the	proper	length.........

Figure B18. Patent Document Example for “Comfort” with Spread at 3. Note: The figure presents a
patent document example. We focus the machine learning algorithm’s attention to the keywords
(blue) and the surrounding context (red). In this case spread is 3 and the trait of interest is “comfort”.
We correct spelling errors using a preprocessing procedure.
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Panel A: Comfort

Panel B: Simplicity

Figure B19. Learning Curve Balanced Accuracy Score. Note: The figure presents the “learning curves”
for our preferred modified approach using a GBM algorithm when predicting the presence of our
traits in patent documents. Panel A shows the learning curve for “comfort,” and panel B shows the
learning curve for “simplicity.” The solid green line in each panel traces the mean of the balanced
accuracy score across 400 iterations of a bootstrap cross-validation procedure at ascending sample
sizes. Each bootstrap iteration randomly selects a training set of the “training examples” size to train
the model, and the model’s accuracy is then tested on the remaining un-sampled data. The shaded
green area extends from the 10th to the 90th percentiles of the distribution of results. Balanced
accuracy is reported in decimals (0.9 = 90% correctly predicted).
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Panel A: Comfort

Panel B: Simplicity

Figure B20. Estimate Stability To Reductions in the Accuracy Score. Note: The figure shows the
simulated stability of our economic estimates as we reduce the accuracy of our preferred algorithm.
Panel A shows the simulated stability for our “comfort” variable, and panel B shows the simulated
stability of our “simplicity” variable. Using all the data generated by our preferred modified
approach, we inject noise at random by altering the coding of a given percentage of the observations
for our estimates of interest. We then re-estimate beta-one from equation (2.4.4) using a synthetic
control procedure. We do this 40 times, sampling with replacement for each percent mislabeled.
The red line in each panel traces the mean of the estimates of beta-one from equation (2.4.4) at each
percent mislabeled. The shaded grey area shows one standard deviation above and below the mean.
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Table B25. Balanced Accuracy Scores Across Training and Test Set Contexts. Note: The table shows
the ability of our preferred modified approach applied to a GBM model to predict our traits within
and outside the context of the model’s training data. We present balanced accuracy scores across
wars and broad patent technological classes. Panel A shows the balanced accuracy scores when
predicting “comfort,” and panel B shows the balanced accuracy scores when predicting “simplicity”.
Balanced accuracy is reported in percentage terms (78.4 = 78.4% correctly predicted). The main
diagonal presents the balanced accuracy means that are obtained through repeated 10-fold cross-
validation, using the same context for training and testing. Off-diagonal entries present the model’s
once-calculated balanced accuracy on the given left-out test set of a different context. The i, j entry
corresponds to using the data from row header context i in GBM training to predict the left-out data
from column header context j. CWP uses Civil War prosthesis patents, CWC uses Civil War control
patents, WWP uses WWI prosthesis patents, and WWC uses the WWI control patents. To ensure that
differences between balanced accuracy scores across contexts are not driven by differences in sample
size, we constrain the size of the training set to be equal in all cases.

Panel A: Comfort
Test Data

CWP CWC WWP WWC
CWP 93.9 84.4 91.8 78.4

Training CWC 93.1 91.6 91.8 75.8
Data WWP 93.6 84.4 92.7 78.4

WWC 91.3 84.0 90.0 91.6

Panel B: Simplicity
Test Data

CWP CWC WWP WWC
CWP 97.0 86.0 94.8 89.1

Training CWC 96.7 94.8 93.8 93.0
Data WWP 95.8 86.0 94.8 89.1

WWC 98.4 92.7 95.4 93.5
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Table B26. Performance of Algorithm Across Attributes Using All Patents. Note: The table shows the
performance of our modified approach applied to a GBM algorithm across our traits of interest. We
present the sensitivity (true-positive rate), specificity (true-negative rate), and the balanced accuracy
(simple average of mean sensitivity and specificity). Sensitivity and specificity means are taken across
repeated 10-fold cross-validation, and the corresponding standard errors are reported below each point
estimate in parenthesis. All evaluation metrics and standard errors are reported in percentage terms
(94.8 = 94.8% correctly predicted). All manually coded observations are used in the cross-validation
procedure.

Characteristic Sensitivity Specificity Balanced Accuracy
adjustability 94.8 91.0 92.9

(3.2) (3.3)
comfort 91.8 96.3 94.0

(5.6) (2.3)
simplicity 92.7 94.3 93.5

(5.3) (2.6)
materials 81.6 92.4 87.0

(15.7) (2.6)
appearance 91.8 96.1 93.9

(7.1) (1.7)
cost 94.7 98.9 96.8

(4.3) (1.1)
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B3 Additional Discussion of the Synthetic Control Strategy
for Analyzing Patent Traits

Table B27 presents data on the baseline means for our patent trait variables for prosthetic

devices, for the full sample of other medical and mechanical control classes, and the synthetic

control group for each trait. The synthetic control procedure successfully brings the baseline

means for the control groups much closer to the means for prosthetic devices. Notably, although

the mean for appearance is matched quite closely for the World War I sample, the mean for the

Civil War control group remains moderately below the mean for prosthetic devices. This reflects

both the difficulty of matching quality-oriented traits and the moderate size of our samples of

Civil War-era patents relative to World War I-era patents. Consequently, results for our analysis

of appearance during the Civil War period ought to be interpreted with caution.

Tables B28 and B29 present the weights our synthetic control procedure assigns to the

classes that contribute to each synthetic control group. We make several observations regarding

the synthetic control weights. First, the synthetic control groups for our production process traits

strike us as being reasonable. At the same time, they are not particularly illuminating. This

is reassuring since, as noted above, improvements in the production process can be described

using language that is common across mechanical and medical technologies, making the choice

of control group relatively inconsequential. Second, the classes that form a synthetic control

for “comfort” are quite intuitive. These classes include surgical categories, dentistry, and land

vehicles. Third, the classes that form our Civil War synthetic control for “appearance” are

superficially counterintuitive, as they include the category “Ammunition and explosive-charge

making.” An inspection of the underlying patents, however, reveals that the relevant ammunition

patents devote attention to the “finishing” process, which indeed denote improvements in product

appearance. Nonetheless, we take this as illustrative of the challenges of selecting control groups

for a technology’s quality-oriented attributes.
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Table B27. Baseline Summary Statistics for Prosthetic Devices, All Control Classes, and Re-
Weighted Synthetic Control Classes. Note: This table presents baseline means for three
samples, namely prosthetics, the “all controls” sample, and the “synthetic controls” sample. Panel
A presents baseline means for the Civil War period, for which the baseline extends from 1855 to
1861. Panel B presents baseline means for the World War I period, for which the baseline extends
from 1910 to 1915. The “all controls” sample consists of patents from all mechanical classes and
all medical classes other than prosthetics. The “synthetic controls” sample was selected to match
baseline prosthetics on their values across each year from 1855 to 1861 in panel A and across each
year from 1910 to 1915 in panel B.

Panel A: Civil War Prosthetics All Controls Synthetic Controls
production 0.188 0.227 0.189
usertraits 0.255 0.0694 0.245
cost 0.117 0.193 0.118
simplicity 0.102 0.185 0.11
adjustability 0.346 0.303 0.35
appliances 0 0.0445
comfort 0.350 0.0685 0.346
appearance 0.415 0.0952 0.352
durability 0.730 0.622 0.729
materials 0.0327 0.0550 0.0328

Panel B: World War I Prosthetics All Controls Synthetic Controls
production 0.318 0.355 0.318
usertraits 0.241 0.0778 0.241
cost 0.156 0.263 0.158
simplicity 0.363 0.391 0.362
adjustability 0.436 0.411 0.436
appliances 0.0744 0.0932 0.0744
comfort 0.426 0.0693 0.426
appearance 0.223 0.0708 0.222
durability 0.750 0.750 0.742
materials 0.0385 0.0585 0.0386
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Table B28. Civil War Synthetic Control Classes by Trait. Note: The table presents sets of synthetic
control “donor” classes for each trait from our Civil War sample. Class numbers are from the United
States Patent Classification (USPC) system. A synthetic control weight for each donor class is
provided for each trait.

Trait Class Title Class Weight

Adjustability Traversing Hoists 212 0.31
Rotary Shafts, Gudgeons, Housings... 464 0.27
Lubrication 184 0.19
Optical: Systems And Elements 359 0.19
Vehicle Fenders 293 0.04

Appearance Land Vehicles: Bodies And Tops 296 0.56
Ammunition And Explosive-Charge Making 86 0.36
Severing By Tearing Or Breaking 225 0.08

Comfort Advancing Material Of Indeterminate Length 226 0.5
Ventilation 454 0.28
Land Vehicles 280 0.09
Surgery: Light, Thermal, And Electrical Application 607 0.07
Dentistry 433 0.06

Cost Elevator, Industrial Lift Truck, Or Stationary Lift... 187 0.49
Ammunition And Explosive-Charge Making 86 0.26
Abrading 451 0.22
... ... ...

Durability Metal Working 29 0.23
Winding, Tensioning, Or Guiding 242 0.21
Wireworking 140 0.2
... ... ...

Materials Railway Wheels And Axles 295 0.09
Fluid Sprinkling, Spraying, And Diffusing 239 0.08
Wood Turning 142 0.07
Coopering 147 0.07
... ... ...

Production Fasteners (Expanded, Threaded, Driven, etc.) 411 0.36
Surgery: Light, Thermal, And Electrical Application 607 0.29
Endless Belt Power Transmission Systems... 474 0.11
... ... ...

Simplicity Optical: Systems And Elements 359 0.32
Ammunition And Explosive-Charge Making 86 0.29
Railway Rolling Stock 105 0.17
... ... ...

User Ventilation 454 0.85
Cutters, For Shaping 407 0.15
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B4 Supplemental Analysis, Figures, and Tables

This appendix presents additional evidence on the effects of wartime demand on counts

of medical innovation. First, Table B30 presents estimates of equation (2.4.2). The estimates

in table B30 differ from the estimates in table 2.4 exclusively by model choice. That is, they

are estimates of the Poisson model described by equation (2.4.2) rather than the OLS model

described by equation (1.4.1). All estimates are between 0.54 and 0.88, suggesting that wartime

demand shocks led to large increases in flows of prosthetic device patents. As in table 2.4, the

estimates in panels B and C reveal economically larger increases during the Civil War than

during World War I.

Second, figure B21 presents estimates of the following event-study model:

E[Nt,c|Xt ] = exp(γc,w + γt,w + ∑
t 6=0

βt1{Prosthetic}c×1{Year of War}t + εc,t). (B4.1)

In contrast with our estimates of equations (1.4.1) and (2.4.2), for which we collapsed the data

into multi-year time periods, we estimate equation (B4.1) using data that are collapsed at an

annual frequency. In the summation, the omitted interaction between the prosthetic device

indicator variable and the time dummy variables corresponds with the first full year of either

the Civil War or World War I (i.e., the year for which t = 0 is the first full year of either war).

Each βt can thus be described as a difference-in-differences style estimate of the change in the

prosthetic device patenting rate relative to patenting rates in the control categories from year

t relative to the first full year of each war. In panel A, the control patent classes consist of all

classes other than prosthetic devices that are either medical or mechanical classes. In panel B, the

control patent classes are restricted to other medical classes. Standard errors are clustered at the

patent class-by-war episode level. For reasons discussed in the main text, these standard errors

are likely to be insufficiently conservative, which motivates our use of randomization methods

for inference when we assess the statistical significance of our primary estimates of interest.

235



The estimates trace out the differential changes one can observe through careful inspection

of the time series in figure 2.1. Crucially, the point estimates associated with years prior to

each war (i.e., t < 0) exhibit no discernable pattern that might be suggestive of a worrisome

pre-existing trend. The point estimate for year t =−1 is fairly close to 0, is moderately smaller

than the estimates for year t =−2 through t =−5, is moderately larger than the estimates for

t =−8 through t =−6 and is economically indistinguishable from the estimate for years t =−9

through t =−12. Prosthetic device patenting exhibits a strong increase relative to the control

categories across years t = 1 through t = 7. There is a notable peak in years t = 3 and t = 4,

which correspond with the 4th and 5th full calendar years following the onset of each war.

Third, note that the standard errors are presented in parenthesis below the estimates in

panel A of table 2.4 and table B30 are conventional cluster-robust standard errors. Due to the

small number of “treated patent class episodes” in our sample, however, conventional cluster-

robust standard errors may result in insufficiently conservative inference (Bertrand et al. 2004,

Cameron et al. 2008). In such settings, randomization inference has been found to generate p-

values that confer appropriate degrees of statistical significance (Cameron et al. 2008, Imbens and

Rosenbaum 2005). Figure B23 displays our prosthesis point estimates (dashed vertical lines) in

the context of distributions generated from three distinct randomization inference procedures.32

In each case, the “true point estimate” is larger in magnitude than nearly the entirety of the

“placebo distribution.” One of the 500 estimates exceeds the true estimate when using assignment

algorithm A, two when using algorithm B, and zero when using algorithm C. The implication, in

each case, is that our estimates are statistically distinguishable from zero at the p <.01 level.

32We use three distinct procedures for assigning placebo treatment status. In each case, we assign placebo
treatment status to two patent class-by-episode observations. The sample from which these are drawn includes
mechanical and medical patent classes other than prosthetic devices. For the first procedure (presented in panel
A of figure B23), we assign placebo treatment status at random across both treatment episodes. For the second
(presented in panel B of figure B23), we assign treatment at random to one patent class from each of the treatment
episodes. For the third, we restrict the sample to patent classes that appear in both the Civil War and World War I
sub-samples, then assign treatment at random to a single patent class. The dispersion of the distributions of placebo
point estimates is only modestly affected by these alternative assignment mechanisms.
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Table B29. World War I Synthetic Control Classes by Trait. Note: The table presents sets of synthetic
control “donor” classes for each trait from our World War I sample. Class numbers are from the
United States Patent Classification (USPC) system. A synthetic control weight for each donor class
is provided for each trait.

Trait Class Title Class Weight

Adjustability Photocopying 355 0.28
Surgery 600 0.28
Compound Tools 7 0.22
Abrasive Tool Making Process... 51 0.22

Appearance Plastic And Nonmetallic Article Shaping Or Treating 264 0.43
Roll Or Roller 492 0.22
Solid Anti-Friction Devices... 508 0.17
Surgery: Light, Thermal, And Electrical Application 607 0.1
Needle And Pin Making 163 0.08

Appliances Optics: Motion Pictures 352 0.48
Wood Turning 142 0.16
Optics: Image Projectors 353 0.13
Alloys Or Metallic Compositions 420 0.11

Comfort Surgery 128 0.67
Ventilation 454 0.26
Surgery: Light, Thermal, And Electrical Application 607 0.07

Cost Selective Cutting (E.G., Punching) 234 0.55
Sheet Feeding Or Delivering 271 0.35
Surgery: Light, Thermal, And Electrical Application 607 0.08
Roll Or Roller 492 0.02

Durability Surgery: Light, Thermal, And Electrical Application 607 0.7
Rotary Kinetic Fluid Motors Or Pumps 415 0.3

Materials Cutters, For Shaping 407 0.56
Railway Wheels And Axles 295 0.23
Conveyors, Chutes, Skids, Guides, And Ways 193 0.17
Solid Anti-Friction Devices... 508 0.04

Production Selective Cutting (E.G., Punching) 234 0.29
Motors: Spring, Weight, Or Animal Powered 185 0.24
Roll Or Roller 492 0.16
... ... ...

Simplicity Sheet-Material Associating 270 0.6
Needle And Pin Making 163 0.18
Lubrication 184 0.12
... ... ...

User Surgery: Light, Thermal, And Electrical Application 607 0.34
Ventilation 454 0.29
Surgery: Splint, Brace, Or Bandage 602 0.27
Compound Tools 7 0.09

237



Panel A

-2
-1

0.
0

1
2

C
ha

ng
e 

in
 P

at
en

tin
g 

R
at

e

-12 -6 0 6 12

Prosthetic Patenting Rate Trend through Baseline Estimates

Broadest Set of Controls

Panel B

-2
-1

0.
0

1
2

C
ha

ng
e 

in
 P

at
en

tin
g 

R
at

e

-12 -6 0 6 12

Prosthetic Patenting Rate Trend through Baseline Estimates

Other Medical Controls

Figure B21. Event Study Estimates of Changes in Prosthetic Device Patenting Rates During the
Civil War and World War I. Note: The figure presents estimates of the βt coefficients from
equation (B4.1). Data are analyzed at an annual frequency. The omitted year corresponds with
the first full year of either the Civil War or World War I, such that each βt can be described as a
difference-in-differences style estimate of the change in the prosthetic device patenting rate relative
to patenting rates in the control categories from year t relative to the first full year of each war. In
panel A, the control patent classes consist of all classes other than prosthetic devices that are either
medical or mechanical classes. In panel B, the control patent classes are restricted to other medical
classes. Standard errors are clustered at the patent class-by-war episode level. For reasons discussed
in the main text, these standard errors are likely to be insufficiently conservative, which motivates
the use of randomization methods for inference when we assess the statistical significance of our
primary estimates of interest.
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Figure B22. Patents in Prosthetic Devices and Mechanical Classes. Note: This figure presents distribu-
tions of changes in the log of patents per year. Each data point in each distribution corresponds
with a change for an individual USPTO class. The changes in panel A are calculated from a “base”
period extending from 1855 to 1861 to a “war” period extending from 1862 to 1866. The changes
in panel B are calculated from a “base” period extending from 1910 to 1915 to a “war” period
extending from 1916 to 1922. The vertical dashed line in each panel corresponds with the change
that occurred in USPTO class 623 “Prosthesis.”

239



0.02.04.06.08.1
Fraction

-1
.5

00
-1

.0
00

-0
.5

00
0.

00
0

0.
50

0
1.

00
0

1.
50

0
Es

tim
at

e 
on

 R
an

do
m

ly
 A

ss
ig

ne
d 

Tr
ea

tm
en

t I
nd

ic
at

or

D
is

tri
bu

tio
n 

fo
r A

ss
ig

nm
en

t A
lg

or
ith

m
 A

0.02.04.06.08.1
Fraction

-1
.5

00
-1

.0
00

-0
.5

00
0.

00
0

0.
50

0
1.

00
0

1.
50

0
Es

tim
at

e 
on

 R
an

do
m

ly
 A

ss
ig

ne
d 

Tr
ea

tm
en

t I
nd

ic
at

or

D
is

tri
bu

tio
n 

fo
r A

ss
ig

nm
en

t A
lg

or
ith

m
 B

0.05.1.15
Fraction

-1
.5

00
-1

.0
00

-0
.5

00
0.

00
0

0.
50

0
1.

00
0

1.
50

0
Es

tim
at

e 
on

 R
an

do
m

ly
 A

ss
ig

ne
d 

Tr
ea

tm
en

t I
nd

ic
at

or

D
is

tri
bu

tio
n 

fo
r A

ss
ig

nm
en

t A
lg

or
ith

m
 C

Pl
ac

eb
o 

Po
in

t E
st

im
at

e 
D

is
tri

bu
tio

ns
 a

cr
os

s 
Th

re
e 

Al
go

rit
hm

s

Fi
gu

re
B

23
.P

la
ce

bo
Po

in
tE

st
im

at
e

D
is

tr
ib

ut
io

ns
ac

ro
ss

T
hr

ee
A

lg
or

ith
m

s.
N

ot
e:

T
he

fig
ur

e
pr

es
en

ts
di

st
ri

bu
tio

ns
of

pl
ac

eb
o

po
in

te
st

im
at

es
ge

ne
ra

te
d

th
ro

ug
h

th
e

ap
pl

ic
at

io
n

of
a

ra
nd

om
iz

at
io

n
in

fe
re

nc
e

pr
oc

ed
ur

e
(I

m
be

ns
an

d
R

os
en

ba
um

20
05

).
T

he
di

st
ri

bu
tio

n
in

ea
ch

pa
ne

l
co

rr
es

po
nd

s
w

ith
a

di
ff

er
en

ta
lg

or
ith

m
fo

ra
ss

ig
ni

ng
pl

ac
eb

o
tr

ea
tm

en
ts

ta
tu

s.
In

ea
ch

ca
se

,w
e

as
si

gn
pl

ac
eb

o
tr

ea
tm

en
ts

ta
tu

s
to

tw
o

pa
te

nt
cl

as
s-

by
-e

pi
so

de
ob

se
rv

at
io

ns
.F

or
ob

se
rv

at
io

ns
as

so
ci

at
ed

w
ith

th
e

C
iv

il
W

ar
,t

he
pr

e-
w

ar
pe

ri
od

ex
te

nd
s

fr
om

18
55

to
18

61
,w

hi
le

th
e

pe
ri

od
ov

er
w

hi
ch

th
e

w
ar

in
flu

en
ce

d
pr

os
th

et
ic

de
vi

ce
pa

te
nt

in
g

is
de

fin
ed

to
ex

te
nd

fr
om

18
62

to
18

66
.F

or
ob

se
rv

at
io

ns
as

so
ci

at
ed

w
ith

W
or

ld
W

ar
I,

th
e

pr
e-

w
ar

pe
ri

od
ex

te
nd

s
fr

om
19

10
to

19
15

,w
hi

le
th

e
pe

ri
od

ov
er

w
hi

ch
th

e
w

ar
in

flu
en

ce
d

pr
os

th
et

ic
de

vi
ce

pa
te

nt
in

g
is

de
fin

ed
to

ex
te

nd
fr

om
19

16
to

19
22

.T
he

sa
m

pl
e

fr
om

w
hi

ch
th

es
e

ar
e

dr
aw

n
in

cl
ud

es
al

lm
ec

ha
ni

ca
la

nd
m

ed
ic

al
pa

te
nt

cl
as

se
s

ot
he

rt
ha

n
pr

os
th

et
ic

de
vi

ce
s.

Fo
r

Pa
ne

lA
,w

e
as

si
gn

pl
ac

eb
o

tr
ea

tm
en

ts
ta

tu
s

at
ra

nd
om

ac
ro

ss
th

is
fu

ll
se

to
fe

pi
so

de
s.

Fo
rP

an
el

B
,w

e
as

si
gn

tr
ea

tm
en

ta
tr

an
do

m
to

on
e

pa
te

nt
cl

as
s

fr
om

ea
ch

of
th

e
w

ar
ep

is
od

es
.

Fo
r

Pa
ne

lC
,w

e
re

st
ri

ct
th

e
sa

m
pl

e
to

pa
te

nt
cl

as
se

s
th

at
ap

pe
ar

in
bo

th
th

e
C

iv
il

W
ar

an
d

W
or

ld
W

ar
I

su
b-

sa
m

pl
es

,t
he

n
as

si
gn

tre
at

m
en

ta
tr

an
do

m
to

a
si

ng
le

pa
te

nt
cl

as
s.

In
ea

ch
pa

ne
l,

th
e

tru
e

es
tim

at
e

as
so

ci
at

ed
w

ith
as

si
gn

in
g

tre
at

m
en

ts
ta

tu
s

to
“P

ro
st

he
si

s”
is

pr
es

en
te

d
by

th
e

da
sh

ed
ve

rt
ic

al
lin

es
.

240



Panel A

0
.2

5
.5

.7
5

1
Al

l O
th

er
 P

at
en

ts

0
.2

5
.5

.7
5

1
Pr

os
th

et
ic

 P
at

en
ts

1855 1860 1865 1870 1875
year

Prosthetics All Other

Mean Citations To Civil War Era Patents

Panel B

0
1

2
3

4
5

Al
l O

th
er

 P
at

en
ts

0
1

2
3

4
5

Pr
os

th
et

ic
 P

at
en

ts

1910 1915 1920 1925 1930
year

Prosthetics All Other

Mean Citations Per Patent During the World War I Era

Figure B24. Mean Citations Per Patent. Note: This figure presents time series on mean citations per patent.
The data come from the citation files associated with comprehensive patent data from Berkes (2018).
Citation data from the Civil War period are sparse because, as discussed by Berkes (2018), citations
in patent documents, and by extension in the database, became more systematic and comprehensive
over time. Dashed vertical lines indicate the periods we associate with wartime prosthetic device
patenting, namely 1862 to 1866 during the Civil War and 1916 to 1922 during World War I.
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Figure B26. Patent Time Series. Note: This figure presents annual time series on patents, using USPTO
categories as reported in Berkes (2018). In both panels, the solid blue line corresponds with patents
from USPTO class 623 “Prosthesis.” In the top panel, the patents are organized in accordance with
the year in which the patent was issued, while in the bottom panel, the patents are organized in
accordance with the year in which the patent was filed.
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C1 Additional Tables and Figures

Figure C1. Percent of Manufacturers’ Patent Portfolios Affected by Price Reform. Note: The figure
presents a histogram depicting the distribution of firms based on different values of patent portfolio
exposure to price reform. The figure includes the 486 firms in our firm-level analysis. No firms have
zero exposure since all firms must have had at least one affected DME patent pre-reform. A share
value of one corresponds to a 100% exposure to price reform, indicating that all of the patents held
by the firm were in affected DME categories.
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(a) Pre-Market Approval and 510(k) Counts per Year

(b) Patent Counts per Year

Figure C2. Raw Trends in Innovation. Note: The figure plots the number of pre-market approvals and
510(k)s submitted per year in panel (a) and the number of patents filed per year in panel (b),
separately for DME subject to the price reform and those that are not.
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(a) Affected DME

(b) Unaffected DME

Figure C3. Event Study: Patents, Firm Level. Note: The figure presents the coefficients obtained from
estimating equation (3.3.3) for our patenting likelihood outcome, which represents the extensive
margin or the probability that a firm filed any patent in a given year. It illustrates the temporal
evolution of outcomes from firms more exposed to price reform relative to those less exposed, with a
reference period at t =−1. Panel (a) presents our event-study estimates for changes in firm patenting
likelihood within affected DME categories, and panel (b) provides these estimates within unaffected
categories. 95% confidence intervals are provided.
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Figure C4. Event Study: Entry, DME Level. Note: The figure presents the coefficients obtained from
estimating equation (3.3.1) for our firm entry results derived from FDA submissions. It illustrates the
temporal evolution of entry in DME categories affected by the event, relative to those unaffected,
with a reference period at t =−1. 95% confidence intervals are provided.
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(a) Outsourcing to Foreign Contractors

(b) Outsourcing to US Contractors

Figure C5. Event Study: Outsourcing, DME Level. Note: The figure presents the coefficients obtained
from estimating equation (3.3.1) for the outsourcing outcomes, separately for foreign and US
contractors. It illustrates the temporal evolution of contracting rates (per year) in DME categories
affected by the event, relative to those unaffected, with a reference period at t = −1. Panel (a)
presents the event-study estimates for changes in contracting with foreign manufacturers, while panel
(b) presents estimates for changes in contracting with domestic manufacturers. 95% confidence
intervals are provided.
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Figure C6. Event Study: Change in Product Quality – Adverse Events. Note: The figure presents the
coefficients obtained from estimating equation (3.3.1) for our adverse event outcomes derived from
FDA reports. It illustrates the temporal evolution of adverse event reports in DME categories affected
by the event, relative to those unaffected, with a reference period at t =−1. 95% confidence intervals
are provided.
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Table C38. Impact of Price Reform on Patents Filed in US by Country of Origin. Note: The table
presents results from estimating equation (3.3.2) for patents filed in the US by firm type. Column
(1) reports the pre-event (before price reform) mean across treated groups. Column (2) presents the
estimates, with standard errors reported in parentheses below the estimates. Column (3) shows the
percent change in the outcome relative to the pre-event mean. Described are changes in patenting
rates (per year) within affected DME categories relative to unaffected ones, differentiated by firm
origin (i.e., US or foreign). Statistical significance is denoted by +, *, **, and *** correspond to
significance levels of 0.10, 0.05, 0.01, and 0.001 levels, respectively.

Change with Price Reform

Pre-Event Mean Estimate % Change

(1) (2) (3)

Number of Patents Filed by US Firms 48.08 -15.62 -32%

(19.89)

Number of Patents Filed by Foreign Firms 28.23 -5.02 -18%

(8.10)

264



Table C39. Impact of Price Reform on Adverse Events by Firm Type. Note: The table presents results
from estimating equation (3.3.2) for our adverse event outcomes by firm type. Column (1) reports the
pre-event (before price reform) mean across treated groups. Column (2) presents the estimates, with
standard errors reported in parentheses below the estimates. Column (3) shows the percent change
in the outcome relative to the pre-event mean. Described are changes in adverse event rates within
affected DME categories relative to unaffected ones from foreign and domestic manufacturers, with
overall changes and differentiation between contractors and non-contractors. Statistical significance
is denoted by +, *, **, and *** correspond to significance levels of 0.10, 0.05, 0.01, and 0.001 levels,
respectively.

Change with Price Reform

Pre-Period Mean Estimate % Change
(1) (2) (3)

Adverse Events from Foreign Manufacturers

All Events 27.5 129.3* 470%
(57.76)

Contractors 5.69 178.6* 3,136%
(84.0)

Non-Contractors 22.9 70.2 306%
(50.1)

Adverse Events from Domestic Manufacturers

All Events 515.3 2034.6 395%
(1329.9)

Contractors 3.88 8.9 228%
(71.1)

Non-Contractors 510.3 1906.3 374%
(1313.5)
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