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A THEORETICAL ANALYSIS OF THE AGING RESPONSE OF ORDER HARDENING ALLOYS
by

Judith Glazer

ABSTRACT

Most precipitation—hardened aluminum alloys are used in specified
aging conditions. An understanding of the sources of strength and

yielding behavior is fundamental to defining desirable microstructures

~and designing processing steps to achieve them. In this paper, a model

of aging behavior of alloys hardened by coherent, ordered precipitates
with relatively low misfit strains is developed and some of its conse-
quences explored. The model is based on the Hanson and Morris solution
for the critical resolved shear stress for dislocation glide through a
random array of obstacles. The model is applied to the specific case
of &' precipitates in binary aluminum-lithium alloys and found to be in
good quantitative agreement with measured aging behavior. The effects
of precipitate size, size distributions and shape on the critical
resolved_shear stress are explored via the model and predictions for

more optimized microstructures presented.
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. I. Introduction.
I.1 Summary.

Most precipitation-hardened aluminum alloys are used in specifiéd
aging conditions., An understanding of the sources of strength and
yielding behavior is fundamental to defining desirable microstructures
and designing processing steps to achieve them. In this paper, a model
.of aging behavior of alloys hardened by coherent, ordered precipitates
with relatively low misfit strains is developed and some of its conse-
quences explored. The model is applied to the specific case of &'
precipitates in binary aluminum-lithium alloys and found to be in good
quantitﬁtive agreement with measured aging behavior. The effects of
" precipitate size, size distributions and shape on the critical resolved
shear stress are explored via the model and predictions for more opti—
mized microstructures presented. The approach used to.develop the

model and the implications of the model are summarized below.

The yield strength of order-hardened alloys is gemnerally modelled
in terms of the behavior of single crystals. The property that defines
yielding in single crystals is the critical resolved shear stress, the

stress at which dislocations glide freely through the crystal.

It is simplest to define the important parameters of a theory of
the critical resolved shear stress in the context of a model and its
solution. The model selected here is common to many investigators. It
considers the glide of a dislocation of constant line tension through a
random array of point obstacles. The solution chosen was developed by
Hanson and Morris (1975).

To place the Hanson and Morris model in proper context, the evolu-—
tion of solutions to the random array model of the critical resolved
shear stress is traced. A clear distiﬁction can be made between models
that describe the average Behavior of a dislocation segment in the
obstacle array and those that focus on the extrema of the dislocation’s
interaction with the array. The latter theories, termed strong line
solutions, incorporate the concept that the critical resolved shear
stress-is controlled by the strongest line in the array, rather than

the average configuration of the dislocation. New solutions and poten-



tial modifications of existing solutions may be assessed on the basis

of this fundamental distinction.

In order to apply the strong line solution of Hanson and Morris

quantitatively, a number of its assumptions must be reconsidered. To-

study the aging behavior of order—hardened allioys these include:

% the way in which the effects of obstacles of differing strengths
sum;

®* the variability of the line tension with dislocation character;

* the character of the dislocations that control glide;

¢ the coarsening behavior of precipita;es; _

* the relative energies lassociated with particle shear and looping;
and, ' _

* the formation of superdislocations and their effect on the deforma-

tion process.

The Hanson and Morris solution can be modified to incorporate
these aspects of the behavior of real materials., It is then possible
to use to model to do computer experiments that examine the effect of
various possible microstructural changes on strengthening behavior.
For example, the solution predicts that plate—like precipitates
strengthen more efficiently than spherical precipitates and that a
narrow precipitate size distribution strengthens more effectively than

a wide one.

Finally, the model is used to make quantitative ﬁredictionsvabont
the aging behavior of binary aluminum-lithium alloys. Aluminum-lithium
alloys are an ideal model system from two perspectives.. First, they
have received considerable attention'recegtly as consequence of indus-
trial interest in more complex aluminum-lithium based alloys. Second-
ly, the strengthening precipitate, 5’, has an extremely low misfit
strain, As a result, strengthening is dominated by order hardening,

the mechanism the solution given here was designed to model,

¥



I.2 Sources of hardening.

The strength of a crystalline material is determined by its resis-
tance to shear. In a perfect crystal, which does not contain disloca-
tions, the theoretical shear strength is determined by the intrinsic
lattice resistance to the shear of one atomic plane past another. This
stress is extremely high in comparison to the strengths gemerally ob-
served in engineering materials and has only been approached in single
crystal whiskers of high purity. However, dislocations usually are
present in crystalline materials, and when they are, it is dislocation
glide that controls the shear strength of the crystal. If the crystal
is otherwise perfectly homogeneous and dislocations are so few in
number that their interaction is mnegligible, the shear strengfh corre-
sponds to the force required to overcome the lattice resistance to
dislocation motion. In general, this strength is relatively low com-—
pared to that measured in practice. The increase in shear strength
comes from the fact that crystals gemerally contain various types of
defects, including dislocations, that interact with the gliding dislo—
cation. It is this interaction that causes the phenomenon termed har-

dening.

A crystalline material is hardened by any inhomogeneity that inte-—
racts with disloéations. A dislocation is am elastic and a crystallo-
graphic defect. Accordingly, it interacts with any other elastic or-
crystallographic defect. The defects that harden crystals may be clas-

sified according to type:

"~ ® point defects —— broadly, defined this category includes all
types of solute hardening including that by vacancies or electronic

defects.

¢ line defects —— other dislocations. This type of interaction is

also responsible for work hardening.
* surface defects —— grain boundaries and interfaces.

* vyolume defects -- long and short range ordering, second-phase

inclusions and dispersoids, and precipitates.

These hardening mechanisms may either éuperimpose or interact.



The obstacles to glide can be classified into two admittedly
nebulous categories according to whether they are local or diffuse in

their nature. Localized, or discrete, obstacles are those whose ranges

-of interaction do not overlap. Misfit—free precipitates fit into this

category since the boundaries of the precipitate can be precisely de-
fined and the precipitates cannot overlap one another. If the range of
interaction of the obstacles is not bounded and the elastic interaction
between the obstacles is not negligible then the obstacles are termed
diffuse. Short range orderiﬁg provides obstacles of this type. The
ambiguity in these definitions is best illustrated by the case of
solute atoms. The strain field of a solute atom extends significantly
beyond its physical size, so if the concentration of solute atoms is
high, tﬁe strain fields overlap and the solute atoms must be éonsidered
as diffuse obstacles. Howeier. if the concentration of solute atoms is
low enough, the strain field caused by the solutes is negligible in
most of the crystal., In this case, the solute atoms may be validly

treated as localized obstacles.

Ardel]l makes a useful differentiation between the diffuse and
localized obstacle models in his recent review (1985). He suggests that
the statistics of diffuse obstacles (sometimes referred to as Mott
statistics) govern those situations in which the dislocation’s motion
is controlled by its reliease from obstacles it interacts with at zero
stress, whereas'local obstacle statistics (Friedel statistics) govern
those cases in which the flow stress is controlled by obstacles which

the dislocation interacts with and must bypass at finite stress.

Dislocation glide can only be impelled by the shear stress in the
glide plane of the dislocation, i.e. the resolved shear stress. The
resolved shear stress at which macroscopic deformation takes place is
termed the critical resolved shear stress. It is this quantity that
correlates to the yield strength of a polycrystalline material,

I.3. Precipitation hardening.
This work will focus on the critical resolved shear stress of

alloys hardened.by coherent precipitates. For the purposes of this

paper, the term "precipitates" is used to refer to coherent precipi-
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tates. Precipitates generally behave as localized defects. Since they
are coherent with the matrix, they may be sheared by a matrix disloca-
tion under some circumstances. The models applicable to this problem
are applicable to hardening by other types of localized obstacles such
as incoherent precipitates amnd dispersoids and dislocations intersec-

ting the glide plane as well.

Models of precipitation hardening were developed to explain the
experimentally bbserved hardening behavior illustrated in figure I.1
exhibited by certain materials when they are aged (often at elevated
temperatures) after homogenization. The discovery that this phenomenon
corresponds to the appearance and coarsening of precipitates led to a
major theoretical effort that culminated in the development of theories
that could ﬁt least approximate a quantitative explahation for both the

rise and fall in strength.

Theories of the flow stress can be divided into two categories:
those in which deformation is controlled by the liberation of disloca-
tions that then glide easily (multiplication controlled), and those in
which the deformation is controlled by the propagation of available
dislocations (Gil Sevillano, van Houtte and Aernoudt, 1981). If the
dislocation sources are consideted»to be dislocations pinned by the
strongest obstacles in the microstructure, for instance in subgrain
‘boundaries, then these two mechanisms are not fundamentally different.
The microstrocture of most precipitation-hardened materials early in
the deformatioh process does not contain a subgrain or cellular sub-
" structure or a high density of dislocations. In addition, if the
strength is controlled by dislocation sources in the microstructure,
then age hardening should not be observed. Consequently, it is rea-
sonable to expect that the critical resolved shear stress in precipita-
tion—hardened materials is controlled by the propagation of disloca-

tions through the array of precipitates.

The strength imparted to the material by the precipitate is deter-
mined by the interaction of the obstacle with the dislocation, which is
in turn determined by the emnergy input required for the dislocation to
shear or bypass the precipitate. A number of types of interaction have
been suggested that may pfovide the source of the precipitate’s resis-

tance to shear. They are:



- modulus —— If the modulus of the precipitate- and the matrix are
different, the line temnsion of the dislocation is different inside and
outside the precipitate. An obstacle strain field generally represents

a modulus defect.

~ coherency —— The interaction of the dislocation stress field
with the stress field around a misfitting precipitate resists the

motion of the dislocation.

- chemical -— The total surface energy of the precipitate is

increased due to the creation of a new interface between the precipi-

tate and the matrix in the glide plane of the dislocation.

~ stacking fault — If the matrix dislocation has dissociated into
partial dislocations and the stacking fault energies of the precipitate
and the matrix are significantly different the passage of the disloca-

tion is impeded.

- order —— The passage of a matrix dislocation creates aii anti-
phase boundary in an ordered precipitate., This boundary has an energy
associated with it that must be supplied by the dislocation.

Of these mechanisms, order and coherency hardening are by far the
strongest. However, in most real systems several of these mechanisms
are operative., For instance, the increase in precipitate-matrix
interface responsible for chemical strengthening always occurs when a
precipitate is sheated. and the elastic constants of the precipitate
and the matrix are almost never identical, so modulus hardening must
also always occur. However, if other, more potent, strengthening
effects also exist, these energies may be irrelevant to the strengthe-
ning provided by the precipitate. When several mechsnisms providé
significant strengthening, their effects are interactive so that expe-
rimental analysis of the strengthening due to each mechanism is compli-

cated,

In general, the interaction of the dislocation with the precipi-

tate may be characterized by a force—-distance curve, even when more

- than one mechanism is operative. The obstacle strength is the deter—

mined by the maximum interaction force. The maximum forces due to the

mechanisms listed above are spatially displaced from one another, so



that the maximum interaction force for the precipitate is not the sum
of the maximum interaction forces for each mechanism, An additional
complication is that theoretical calculation of the force-distance
curve requires the input of thermodynamic quantities such as the
stacking fault energy, various surface energies, the antiphase boundary
energy, etc. depending on the operative mechanisms. It is not easy to
determine precise values of these energies, and the scatter is often
large. As a consequence it is difficult to check the results of
strengthening theories experimentally.

The interaction of strengthening effects means that it is diffi-
cult to definitively determine which strengthening mechanism or mecha-
nisms is dominant. Most of the experimental studies have been done on
a few systems in which a single hardening mechanism is believed to
largely explain the observed strength and deformation behavior. Ardell
(1985) lists a number of examples in his review, for instance, binary
Al-Zn (chemical), Al-Ag (stacking fault), Fe-Cu, Cu-Co precipitates and
Al-Zn-Mg GP zones (modulus), Cu-Co, CuzAu—Co (coherency) and AlzLi and
Ni3A1 (order). Even in these cases, at least one other mechanism

probably makes a measurable contribution to the strength.

L X3



ITI. The Critical Resolved Shear Stress of a Random Array of Point
Obstacles.

II.1 The Problem.

The goal of much of the theoretical work in this area has been to
solve the problem posed earlier of explaining the rise and fall of
strength caused by precipitate coarsening. To approach this problem
theoretically it is necessary to phrase it in terms of an idealized
model whose consequences can be explored by mathematical or computer

simulation approaches.

The first model that contained enough of the essential elements of
the physical situation to predict age-hardening was proposed by Friedel
(1956) and Fleischer and Hibbard (1963). This model, with only slight

modifications, is still in use today.

The durability of this model perhaps lies in its'simplicity. It

may be stated as four premises,

(1) The material is modelled in terms of its glide plane, a hypotheti-
cal plane between two atomic planes, along which the dislocation is

allowed to move.

This premise contains the implicit assumption that the dislocation may

not leave its glide plane, i.e. cross-slip is neglected.

(2) The precipitates (or other obstacles) are idealized as point
obstacles whose mathematical properties are adjusted so that they have
the same properties as the physical precipitates. The obstacles resist

the motion of the dislocation.

The point obstacle representation is a reasonable idealization if the

obstacles are localized.

(3) The distribution of these point obstacles within the glide plane

is assumed to be random.

The distribution of preéipitates or other obstacles to glide in a cry-
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stal is almost never truly random; however, the array is more random

than it is regular.

(4) The dislocation is treated as a flexible, extensible string of

constant line tension.

It has been known for years that the line tension of the dislocation
varies with its character; however, the mechanics of the problem are

considerably simplified by assuming that it is constant.

I1.2 The Solution

Many workers have investigated the consequences of this qodel;
The difficulties have revolved around the problem of formnlating'a
suitable mathematical description of the model which does not involve
major approximations that have qualitative consequences., The analyti-
cal efforts were guided by a number of computer simulation experiments,
most notably by Foreman and Makin (1966 and 1967) and Morris and cowor-
kers (Morris and Klahn (1974), Hanson (1975), Hanson, Altintas and
Morris (1976), Altintas (1978) and Altintas and Morris (1986a)). This
section describes the results of the most mathematically accurate
formulations of the model, In the interests of clarity, discussion of

the evolution of thought in this area will be deferred to Section III,

I1.2.1 The "Physical" Picture

If the glide plane is acted upon by a resolved shear stress, a
force is exerted on the dislocation. Under the action of this force,
the dislocation moves forward until it is prevented from doing so by
‘the obstacles in the array. The dislocation is restrained by the
obstacles and bows out in elliptical arcs between them. If the force
exerted by the dislocation on an obstacle is great enough, the disloca-
tion may mechanically bypass it either by cutting it or by looping
around it. The critical resolved shear stress is the stress at which

the dislocation moves freely through the array.
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I7.2.2 The Strong Line Solution

The results described here are the product of the computer simunla-
tion experiments described above and the analytical work of Morris and
Klahn (1973) and Hanson and Morris (1975a, 1975b). These studies led
to important qualitative changes in our understanding of the critical

resolved shear stress,
I1.2.2.1 Qualitative Results,
To make the model mathematically traétable, several approximations

are introduced. Only athermal glide is considered, that is, thermal

activation of the dislocation is not permitted. The difference between.

~edge and screw dislocations is neglected by setting Poisson’s ratio v

to zero. The effects of elastic anisotropy and elastic self-interac-—

tions are also neglected.

First, the problem may be simplified by treating the dislocation
in terms of its configuration, the unique set of pinning points with
which it interacts. Since yielding requires the entire dislocation to
move through the array, this approach is superior to the alternative of
treating the interactions of the dislocation at each point along its.
line individually, The assumption of isotropic elasticity in conjunc?
tion with thevassdmption that Poisson’s ratio is zero means that the
dislocation will bow out in circular arcs between the obstacles that

define the configuration.

This simplification made possible the most important result of

this work, the strong line concept. The strong line is defined as the

configuration which offers the greatest resistance to dislocation glide
in the array. The computer experiments and the analytical approaches
to the problem both led to the conclusion that the ¢ritical resolved
shear stress is fixed by the strong 1line in the array and not by some
average value of the resistance to dislocation motion. Furthermore, it
is clear that the critical resolved shear stress will be controlled by
the weakest point on the strdng line. The strong line configuration
for a given array is unaffected by the initial stress, the initial

dislocation configuration and, for the case of athermal glide, the
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order in which the dislocation bypassés the obstacles.

The computer experiments also indicated that the randomness of the

array lowers the critical resolved shear stress with respect to an

ordered array of obstacles. This result was considered surprising at

the time, but is a logical consequence of the strong line concept,
The randomness of the array has the consequence that some regions of
the array will be considerably weaker than a regular square array and
some much stronger. Since the critical resolved shear stress is
controlled by the weakest point on the strong line, the weak areas are

much more important than the strong omes and result in lower strength.

The effect of a distribution of obstacle strengths was investi-
gated by computer simulation and an&lytically. The strengths were
found to be quadratically rather than linearly additive, i.e. they sum
according to the relation

(v)? = 5, x%(cH?2 | (IL.1)

where x_ is the fraction of obstacles of type a, tv2 is the critical

a c
resolved shear stress of the array if all obstacles are of type a, and

Te is the critical resolved shear stress for the artay.

11.2.2.2 Analytical solutions

The assumptions and basic equations used below are generalizations
of those in Morris and Klaha (1973) and Hanson and Morris (1975a,

1975b) and are summarized here only briefly.

The glide plane of the dislocation is taken to be a square con-—
taining a random (Poisson) distribution of point obstacles whose densi-
ty is given by the mean area, k, per obstacle or equivalently by the

a1/2. The obstacle properties are randomly

characteristic length ls =
selected from a population of e distinct types with fractions Xgo These
point obstacles may represent intersections with the glide plane of
precipitates, gliding dislocations, forest dislocation;, or dislocation
loops. The properties of the point obstacles are adjusted so that the
interaction of the dislocation with the obstacle is mathematically

equivalent to its interaction with the physical obstacle (Morris and

-
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Syn, 1974).

The dislocation is modeled as a flexible extensible string of
constant line tension, T, with a Burgers vector of magnitude b in the
glide plane. The resolved shear stress impelling glide may be written

in dimensionless form:
. .
t = tlsb/ZT. (I11.2)

The configuration of the dislocation-is described by a unique sét of
pinning points. As shown in figure II.1, if the dislocation under the
applied stress <t encounters a configuration (i) of obstacles, it will
take the form of a circular arc of dimehsionless radius R‘ between
adjacent obstacles, where R* may be dimensionalized with ls. The value

of R* is given by the relation

R® = 1/(22%) (I1.3)

which is derived in Appendix A. .If the distance between any two obsta-—
cles along configuration (i) exceeds 2R'. then the configuration is
transparent to the dislocation and will be mechanically bypassed. If

configuration (i) is not transparent then its mechanical stability is

governed by the geometry of the configuration and the distribution of

obstacle types along it.

The dimensionless force on the kth obstacle in configuration (i)

is given.by -

X = FE/2T = cost(¥£/2) (11.4)

where F is the force the dislocation exerts on the obstacle, ¥ is the
asymptotic  angle included by the dislocation at the obstacle and
0{PC1l. The geometry of the situation is shown in figure II.2. If the
maximum force that an obstacle (k,i) of type @ can withstand is Bd‘
then the dislocation is locally stable at (k,i) if B% is less than B,
that is if

1

ik = pk/p, < 1. \ (IL.5)

The condition of stability for the configuration (i) is that



RANDOMLY DISTRIBUTED
OBSTACLES

{k-1, 1) - - P /

XBL 862-7508

Figure II1,1 Sample dislocatiom configuration in a random array of

point obstacles,
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Figure 11.2 Relationship between the force exerted on the obstacle,
the dislocation line tension and the included angle of

dislbc:tion bow out.
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B; ¢ 1 ’ (11.6)
where B; is the maximum of the szo

The applied stress r..un{Quely fixes the nontransparent configura-
tion in the array and the forces B? exerted on the obstacles, If <t is
low enough that there is at least one stable configuration in the
array, then the dislocation will be mechanically pinned and unable to
glide unless thermally activated. The critical resolved shear stress
for athermal glide, t;, is hence the minimum value of <t for which all
configurations of the dislocation are mechanically unstable and repre- -
sents an upper limit on the critical resolved shear stress at finite
temperature. At finite temperatures, the critical resolved shear
stress is lower than this limit because the dislocation may be ther-

mally activated past obstacles it could not otherwise bypass.

Hanson and Morris (1975a, 1975b) consider the statistics of the
dislocation configurations described above to derive the critical re-
solved shear stress as a function of the obstacle stremngths. The

approach is sketched here.

Hanson and Morris were the first to generate stable configurations
of the dislocation by a circle rolling process illustrated in the
figure. Each obstacle which extends the line in a stable fashion is the
parent of a new branch. The geometry of circle-rolling is illustrated
in figure IX.3. A stable configuration ;eQuires that there is an
obstacle k+1 in the area swept out by the rotating.the circle of radius

R‘ counterclockwise about an obstacle k through the angle

8, = n - ¥, = 2sin”1p, (I1.7)
where Ba is the strength of the kth obstacle, The angle of rotation is
limited by the breaking angle of the last obstacle in the configura-
tion. When all the obstacles are the same strength, the breaking angle
ec defines the critical resolved shear stress t:.The circle~-rolling
process restricts the search so that when the applied stress t; is

. . .
greater than T.. then there is no stable configuration.
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Figure 1II.3 Relationship between the angle ¥ included by the arms of

the bowing dislocation and its complement O,
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»
The value of T, can be determined analytically using the statis-

tics of branching theories under two constraints. The first constraint
n> > 1 (11.8)

requires that the line does not become extinct (i.e. that the expected
number of stable line descendants is greater than one). The second
requirement is that the configuration must go across the array. This
condition is phrased in-terms of the angle ¢ defined in figure II.4,
which provides a meaéure'of the straightness of the dislocation, A
necessary, but not sufficient, condition for the configuration to go

across the array is
P> = 0. ' A _ (I1.9)

The constraints on <{(n)> and (G)Vcanvbe phrased in terms of the

search area of the dislocation, a The search area is defined in

o.
terms of the angles & and ¢ as shown in figure II.5, To maximize the
critical resolved shear stress, a lower cutoff on the angle @, 00, is
introduced. It can be shown that if all the obstacles have the same

strength, the critical resolved shear stress is given by
< = (1/2)a}/2,  (I1.10)

Since t‘ is uniquely determined by the search geometry via the circle
radius R., the value of t‘ can be maximized within these constraints by
a variational analysis of the geometry, The mathematics of this process
are given in Hanson and Morris 1975a. The resulting critical resolved
shear stress as a function of obstacle strength is shown in figure
I1.6. For values of B £ 0.7, the result may be approximated

x2 = 0.887183/2, ' (I1.11)

0

.
This result may be inverted to give B, for a fixed value of v . The
inverted form is often used in computer simulation. The analysis also
gives a distribution of segment lengths along the strong line configu-

ration.

The effect of a distribution of obstacle strengths is also addres—

sed by Hanson and Morris (1975b). The critical resolved shear stress is



Figure II.4
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Illustration of the meaning of the angle @ that defines
the straightness condition for the dislocation. The t are

vthe tangents to the dislocation line at the obstacle.

61
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Figure II.S The search area of the dislocation a, defined in terms

of the angles  sad 6.
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Figure II.6 Comparison of computer simulation results for the Hanson
and Morris model to results from the analytical solution

(after Altintas, 1978).
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found by adding up separately the probability that extending the line
from an obstacle a will add an obstacle of type B. On this basis the

branches that are considered are given by the sum over all obstacle

types

% faByB | (I1.12)

where faB is the fraction of obstacles in the search area used to

extend the line and xB is the fraction of obstacles of type B. This
' ; .

line of reasoning eventually leads to an expression for v in terms of

the search area to achieve a stable line composed of only one type of

obstacle

th = 17205, %2112, - (I1.13)

where a  is the search area of the dislocation line. Comparison with
the parallel equation for the identical obstacle case (equation II.10)
shows that each term in the sum contains the search area of the dislo-
cation if all the obstacles were of that size. It follows that the
critical resolved shear stress for a mixture of distinct obstacles is
given by the quadratic sum (equation IX.1). The distribution of obsta-
‘cle strengths along the strong line may also be determined analyti-

cally.
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III. Evolution .of the theory of the critical resolved shear stress for

a random array of point obstacles.

Section II.,2 introduces most of the important concepts in the
theory of the critical resolved shear stress in the context of a single
solution to the model posed in Section II.1., To this point in the
paper no justification has been provided for either the choice of the
model or its solution. The description of the evolution of the theory
contained in this section has three major aims. The first is to pro—
vide some backgronna for the choice of the model and a justification
for the selection of the solution of Section II over other solutioms in
the literature, The second is to place the model and its solution in
their proper historical context through a ct1t1ca1 rev1ew of the lite-
rature, The emphasis here will be on the development of the key con-
cepts and heavily-debated issues that thread through much of the pub-
lished work. Finally, this review will provide the basis for using the
literature to assist in resolving the issues discussed in Section IV
concerning the application of the theory to real problems. The ideas
in the literature are often transferable to the strong line solution,

although much of the discussion is in the framework of other solutions.

Accordingli. this section will begin with a general discussion of
the elements of a theory of the critical resolved shear stress that
must be contained either in the model or its solution., The various
theories of precipitation hardeﬁing that have been proposed at one time
or another will then be discussed systeratically. The organization is
not strictiy chronological since the solutions have been classified

according to whether or not they include the'strong line concept.
III.1 Elements of a theory of the critical resolved shear stress

This discussion considers the assamptions that any solution of a
model for the critical resolved shear stress must contain and the
mathematical approximations that must be specified in order to solve

the model.

a. Temperature
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Athermal glide must be specified, or a statistical description of

thermal activation processes must be included.
b. Glide plane

If the dislocation is constrained to move in the glide plane, the

possibility of cross-slip is eliminated.
¢. Dislocation parameters

The line tension T of the dislocation as it bows may be taken as
constant or allowed to vary with the character of the dislocation (and

therefore the bow-out radius of the dislocation).
d. Obstacle parameters

d.1 Spatial distribution. The spatial distribution of the obsta-
cles to glide must either be a random or ordered array since these are
the only types of arfays whose statistics are well defined. The density

-1/2

of the array may be characterized in either case by 1s = ng , where

o is the number of obstacles per unit area and ls is the mean square

obstacle spacing.

d.2 Strength. The force-distance interaction curve of the loca-
lized physical obstacles such as precipitates or other dislocations
must be specified. In general this requires representing the physical
obstacle by an idealized obstacle “Whose mathematical interaction with
the dislocation is identical to that of the physical obstacle, It may
also be necessary to account for the finite size of the obstacle. The
strength of the obstacle is defined by the maximum in the force-
distance curve, Its physical expression is the critical bow~out radius
of the dislocation before it bypasses the dislocation, The obstacLe

strength - B may be defined as before for the geometry of figure II.2
B = F/2T = cos (¥/2). ~ (IILD)
e. Matrix parameters

The matrix may be taken to be elastically isotropic or anisotro-

pic. Lattice resistance to motion of the dislocation must be specified
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or taken to be zero.
f. Statistics of the obstacle-dislocation interaction

The various models in the literature differ most dramatically
here. The dislocation may be treated by considering its overall confi-
guration or by considering each link separately, The mathematical
solution to the model must define the dislocation ;earch path through

the obstacle array.
g. Definition of critical resolved shear stress.

The critical resolved shear stress is the lowest stress at which
the dislocation glides freelj through the array; A consequence of the
mathematical solution to the model is a condition for the critical
resolved shear stress stated in terms of the obstacle strength and
distribution, This criterion is generally some type of average over the
force to required to bypass the obstaéle in the array or some kind of
estimate of the strongest configuratioa of obstacles in the array., It

is convenient to define a dimensionless critical resolved shear stress

et = 1 b/2T. (III1.2)

The evolution of the various current models of the critical re-
solved shear stress is discussed id the following sections. In spite
of the inctéasing sophistication of the statistics ﬁsed to determine
the value of the critical resolved shear stress as a function of obsta-
cle density, distribution and strength, all of these solutions, which
include increasingly better approximations to the actual model, lead to

relations for the critical resolved shear stress of the form
<* = qp3/2 (I11.3)
where Q is between 0.8 and 1.2 for an infinite array.

It is worth noting that real arrays are nbt infinite. There have
been extensive efforts to derive critical resolved shear stress results
for infinite arrays and equally extensive efforts to appfoximaté infi-
nite array solutions by computer simulation. The purpose of the

efforts is to provide a point of comparison between the analytical and
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computer simulation results., It is not clear that the value of Q for
infinite arrays is a particularly good choice for analyzing experimen-
tal data for polycrystalline materials with small or even moderate
grain size, However, it may nét be worth trying to chose a correct
value of Q for each case-since there are other large errors in any
comparison with experimental data. What a good theoretical value of Q
for an infinite array does do is vindicate the assumptions used in its

calculation,

II1.2 Early theories of precipitation hardening.

Cottrell (1953) has summarized the development of the first preci-
pitate strengthening theories, developed principally by Mott and Nabar-
ro. These theories were designed to explain the observed phenomenon of
strengthening followed by softening as the precipitate distribution
coarsened. Mott and Nabarro (1940, 1948) postulated that the precipi-
tates could be modelled by an internal stress field that resists the
motion of the dislocation. This assumption reduces the problem of
determining the critical resolved shear stress to one of determining an

appropriate average of the internal stress field in the crystal.

The problem of finding the correct average of the internal stress
field was a formidable oﬁe at the time. An average of the arithmetic
magnitude of the stress leads to a‘yield strength proportional to the
concentration of particles but independent of their spacing. This
relationship does not lead to age haidening and softening during preci-
pitate coarsening. On the other hand, the algebraic average of the

stresses on a rigid, straight dislocation is zero, which leads to the

conclusion that the précipitates have no hardening effect at all. The

key to the problem is that the dislocation is not rigid, but flexible,
so that different sections of the line move independently., This flexi-
bility has the consequence that the random forces acting on the dislo—
‘cation line do not cancel one another out, The scaling of the strength
with the obstacle spacing comes from the fact that the length of the
independently moving segments of the dislocation is determined by the
separation of the obstacles. Each segment takes on a radius of curva-
ture dependent on the applied stress and the obstacle spacing. If the
dislocation is modelled in this fashion, the observed behavior can be

qualitatively explained.
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III.3 Average configuration theories.

The solutions to the random array model of the critical resolved
shear stress may be divided into two broad categories: those that find
the critical resolved shear stress in terms of the average configura-
tion of the dislocation and those that determine it in terms of the
strong line configuration. The average configuration solutions pre-
ceded the strong line solutions in part because they are mathematically
simpler and in part because computer simulation data was not available
until the late 1960°'s.

The average line solutions are lineally descended from the early
papers by Mott and Nabarro. Thevrealization that the dislocation must
be flexible rather than rigid led to a somewhat misplaced emphasis on
the spacing bf_dbstacles along the dislocation line and the way in
which this spacing is altered by the flexibility of the dislocation and
the applied stress. As described in the discussion of the strong line
solution in Section II, the focus on the behavior of individual seg-
‘ments of the dislocation obscures the fact that the critical resolved
shear stress is determined by the stromngest overall configuration of
the dislocation and not by isolated interactions. Nonetheless, many of
the solutions mentioned below are formulated by considering the dislo-
cation segment interaction with the obstacles in various limits that

lead to straightforward mathematical solutions.
IIT.3.1 The Friedel solution

The simplest model was proposed by Friedel (1956) to explain ther-
mally activated creep but was later applied by Fleischer and Hibbard
(1963) and Brown and Ham (1971) to athermal glide. The model assumes a
random array of point obstacles, The strength of the obstacles is de-
fined by the bow-out radius of the dislocation at the time when it
bypasses the obstacle. However, the theory is restricted to the case
when_the obstacles are Weak and all have the same strength. The dislo-

cation is assumed to have a constant line tension.

The critical resolved shear stress is defined to be the stress at

which "steady state unzipping" can occur. This process is illustrated
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in figure III.1., Each time the dislocation bypasses an obstacle and
sweeps forward it encounters exactly one obstacle. This condition

specifies T, since at a stress ¢ greater than T, the dislocation will

c
"not encounter an obstacle and will move unencumbered through the array.
This criterion is clearly based on the average dislocation-obstacle
configuration within the array. The statistics of the process are

contained entirely within the steady state unzipping condition
Segn, = 1 (I11.4)

where Sf is the area swept out by the dislocation as it moves forward

to a new configuration and n_ is the number of obstacles per unit area,

s
The steady-state unzipping criterion is a rather gross approximation to
the random array model described in Section II., It is not put forward
as an accurate solution to the model; its virtue is that it leads to a

simple mathematical solution.

This theory leads to relation III.3 with Q = 1 (derived in Appen-—
dix A) i.e, et = B3/2° The value of the obstacle strength B in terms
of the array depends on the effective spacing of obstacles that
applies. The derivation leading to the expression for the critical
resolved shear stress includes the implicit assumption that the obsta- .
cles on the dislocation line are collinear. This assumption essen—

tially negates the effect of the randomness of the array!

Given that computer simulation results of Foreman and Makin (1966
and 1967), Altintas (1978) and Altintas and Morris (1986a) discussed
lafet suggest that Q = 0.96 one might.question the need for a more
sophisticated, albeit physically more realistic, theory. However, the
computer simulations also showed fhat the solution did not even quali-
tatively describe the motion of the dislocation through the ariay.
Furthermore, attempts to extend the Friedel solution to random arrays
of obstacles of different strengths have been unsuccessful (Brown and
Ham, 1971).

I1I.3.2 Modern adaptations of the Friedel solution.

Much of the work that tries to fit the theory of the critical

resolved shear stress to experimental data is based on average configu-
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XBL 862-7506

Figure III.1 The area Sf swept by the dislocation when it bypasses
the central obstacle as it is defined in the Friedel

model.
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ration solutions to the random array model., The computer simulation
results of Foreman and Makin, discussed briefly in Section II and again
later in this section, have been incorporated into this work in spite
of the fact that the simulation results clearly showed that the criti-
cal resolved shear stress was determined by the strong line and not the
average configuration (see, for example, Brown and Ham, 1911).;'Gene—
rally, the results of Friedel were adapted by changing the constant Q
.in equation III.3 from 1.0 to 0.8 and adding an additive constant in
the particle shearing region, and sometimes by adding a second regime
in which Orowan looping predominates in which the critical resolved
shear stress is proportional to B. In an effort to make the theory
applicable to real systems, a number of investigators have modified the
solution to include other effects on the critical resolved shear stress
(see Section IV)., These adaptations generally attempt to describe

these effects in terms of the average configuration,

I11.3.3 The Kocks solution.

Rocks (1966, 1967) was the first to attempt to simulate the motion
of the dislocation through the array. Because he did a geometrical
rather than a computer simulation, his solution contains many unsub-
stantiated assumptions. Nonetheless, his solutions were the first
attempt at a mathematical solution that might be more realistic than

the Friedél solution described above.

Kocks’s development uses a combination of probgbility theory and
geomefrical.atguments. His probabilistic argument is more sophisticated
than Friedel’s in that he does not restrict the distribution of obsta-
cles in any way. The major conceptual advance is that Kocks treats the
motion of the dislocation past an obstacle as coupled to the motion of
the dislocation at adjacent points in the array. The next step in the
logical development is to treat the dislocation .as fully coupled, that
is in terms of its overall configuration, rather than in terms of its
segments. The configuration is one of the important concepts that
distinguishes the strong line theories discussed in Section III.4.
Because Kocks does not use the dislocation configuration, his theory is
again formulated in terms of the average dislocation line. His funda-
mental equation incorporates segment coupling by relating the increase

in the area swept by the dislocation to the increase in the probability

o
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that an obstacle pair is penetrable. The full development of these -
assumptions leads to a theory of the critical resolved shear stress for

both infinitely strong (Kocks, 1966) and penetrable (Kocks, 1967)

obstacles,
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I1I.4 Strong line statistical solutions

The second class of solutions to the random array problem was
suggested by the results of computer simulations by Foreman and Makin
(1966, 1967), Morris and Klahn (1974), Hanson (1975) and Hanson, Altin-
tas and Morris (1976). The computer simulation results led to a search
for an analytical solution that incorporated the concept that the

passage of a dislocation by an obstacle is dependent on the interaction

of the dislocation with other nearby obstacles. The realization that .

the motion of the dislocation past an individual obstacle is coupled to
its motion everywhere along the line eventuallf'led to the strong line
concept embodied in the analytical Solution of Hanson and Morris
(1975a, 1975B). This concept is also incorporated in later work, for

example in the computer simulations of Schwarz and Labusch (1978).

I11.4.1 Computer simulations
I1I1.4.1.1 Foreman and Makin

Foreman and Makin’s work (1966 and 1967) represents the first use

of a computer to simulate the motion of a dislocation through a large

array of obstacles. Their greatest contribution may have been the
realization that the random array model for the critical shear stress
described in Section II lends itself to computer simulation if the

assumptions are properly chosen,
Foreman and Makin made the following simplifying assumptions: .-

(1) Thermal activation is not permitted. This assumption corrésponds

physically to either very low temperatures or very high strain rates,

(2) The difference between edge and screw dislocations, elastic aniso-

tropy, and elastic self-interactions are all negligible.

(3) The line tension of the dislocation is comstant. This statement
has the mechanical cbnsequeﬁce that the dislocation bows outward from
the obstacles restraining it in a circular arc, The line tension is

fixed at the value

»
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T = Gb2/2 ‘ (II1.5)
where G is the shear strength of the material,

(4) The strength of a point obstacle is characterized by its breaking
angle ¥, The force to bypass the obstacle is given by

F = 2Tcos(¥/2)
(I11.6)
or B = F/2T = cos(¥/2).
where the angles are defined as they were in figure II.2, This

assertion, combined with the assumption that the line tension is con-
stant, converts the determination of the critical resolved shear stress
- of a particular array by computer simulation to a purely geometric

problem,

The basic algorithm involves bowing the dislocation outward using
a circle-rolling procedure until it reaches a stable configuration,
then increasing the applied stress slightly and bowing the dislocation .
outward while allowing it to bypass obstacles as necessary until it
reaches a new stable configuration, The stress at which no stable
. configuration could be found is the critical resolved shear stress for

‘the array.

An important contribution of Foreman and Makin to later work is
the coﬁcept that the critical resolved shear stress for an array is
.determined by a unique dislocation configuration within the array,
later referred to as the strong line. Foreman and Makin realized and
verified by computer experiment that this configuration is unaffected
by the initial stress, the initial dislocation configuration, and the
order of release of the dislocation from unstable points after an

increase in stress.

Foreman and Makin also characterized qualitatively the motion of a
dislocation through a random array of identical obstacles, For very
strong obstacles, long fingers of the dislocation move forward along
paths of easy movement eventually encircling groups of obstacles. How-

ever, this regime is 0.7 ( B < 1.0 which is probably rarely never
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reached in practice (Bacon, Kocks and Scattergood, 1973). This point
is discussed in more detail in Section IV.2, For obstacles of medium
strength (B approx 0.7) the dislocation is not straight, but it cannot
easily encircle difficult groups of obstacles. For weak obstacles the
dislocation remains quasi-straight at all times. Clearly, the disloca-
tion may never be mathematically straight, because if it were, it could
only intersect two point obstacles. The critical resolved shear stress

of the array would then be zero.

Foreman and Makin found empirically that the critical resolved
shear stress was a function of obstacle strengfh and spacing., They fit

their results to the Friedel-type relation
t = (6b/1)lcos(¥/2)13/2, | (I1L.7)
where 1s is the mean square obstacle spacing.

To get a better fit to their simulation data for obstacles of low
and intermediate strengths, they replace 1s with the Friedel effective

obs;acle spacing
1, = (ub/No)1/3, | . (IIL8®)

The agreement is excellent until B is nearly 0.7. At higher values of B
the fit is not as good. Equation III.7 is probably the better choice
since it can be shown that the circle rolling procedure must lead to an
equation of the form

< = qpd/2, . (II1.3)

Using the Ftiedel'spacing, which depends on v, wrongly alters the pro-
portionality. Reasonably good agreement is obtained by retaining the
mean square obstacle spacing 1s and inserting the Hanson and Morris
value of Q, 0.8871.

Foreman and Makin also point out that the randomness of the array
lowers the critical resolved shear stress versus a regular square

array, which was not commonly realized at the time.

Foreman and Makin investigated the effect onm the critical resolved
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shear stress of a range of obstacle strengths., This problem is central
since in a real material there will always be a distribution of obsta-—
cle strengths. They determined by'computer experiment that the quadra-—
tic sum rule for two kinds of obstacles (mentioned in Section 11,2.2.2
and discussed at more length in Section IV.1) worked reasonably well

for values of B less than about 0.7.

I111.4.1.2 Morris and coworkers

A large amount of additional computer simulation work was done by
Morris and coworkers at Berkeley on this problem. The developmeht of
an extremely rapid algorithm made it possible for them to simulate many
more cases. than Foreman and Makin were able to examine, in additiomn to
confirming their results. The formulation of the computer model made
it possible to examine a wide variety of situations within a single
framework, These included simulations of thermal activation (Morris
and Klahn, 1973), multiple barrier types (Hanson, 1975; Hanson, Altin-
tas and Morris,‘1976; Altintas, 1978; and Altintas and Morris, .1986b),
multiple dislocations (Hanson and Morris, 1978) and inhomogeneities in

plastic glide (Altintas, Hanson and Morris, 1976a and 1976b),

II1.4.2 Analytical strong line solutions

Two analyfical strong line solutions for the critical resolved
shear stress of a random array of point obstacles exist., The first was
derived by Hansdn and Morris (1975a, 1975b). The Hanson and Morris
solution, with a few changes, has been used by Melander and Persson
(1978a, 1978b, 1978¢c) to predict experimentally determined aging.
curves. The second solution, a modification of the Hanson and Morris

approach, was proposed by Labusch (1977) a few years later.

It is perhaps appropriate here to reiterate a point made at the
beginning of this section. The value of Q obtained by analytical solu-
tion for an infinite array represénts an important, if imperfect, point
of contact between the analytical and computer simulation solutions.
In addition, the solution may be characterized by other properties of
the strong line. Much space in the literature has been devoted to

discussions over the superiority of one analytical solution over ano-—
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ther on the basis of how these parameters compare to the computer
‘simulation results. Unfortunately, this type of comparison is inhe-
rently limited, since it ignores the important issue of whether or not
the solution contains the esséntial qualitative elements of a good
description of the critical resolved shear stress in favor of quantita—

tive measures.

However, for what it is worth, the historical benchmark for the
analytical solutions is the value of Q obtained by Altintas (1978) for
very large arrays; Q = 0.96.

I111.4.2.1 The Har;son and Morris solution

Hanson and Morris derived the first analytical solution ;hat

incorporated the assumptions and circle-rolling procedures of the com-
puter simulation work. The derivation is included in Section II and

will not be repeated here.

The key contributions of the solution (also discussed in Section

II) are worth hentioning again. The most important conceptual advance

is that the unit process in dislocation motion is not the progress of a

single segment of the dislocation, but the bypassing of a configu-
ration., Given the concept of the configuration, it is possible to see
that the critical resolved shear stress is determined by the strongest
configuration the dislocation must bypass, a result foreshadowed by the
computer simulation work described above. However, it is not at all
obvious that there should be a strongest line in an infinite array, and
therefore a critical resolved shear stress. The Hanson and Morris
solution contains the first analytic proof that such a line exists. By
deriving the solution using the statistics of a process known from
computer simulation to generate stable dislocation lines, the circle-
rolling process, Hanson and Morris ensured that their solution would
approximate the model reasonably well, This solution was the first
analytical solution to the critical resolved shear stress of a random
array of point obstacles to do so. Finally, Hanson and Morris (1975b),
were the first to derive a procedure for summing the effects of obsta-

cles of different strengths.

As illustrated in figure II1.6, the value of Q that results from

the approximate mathematical solauation to the final equations in the

W
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Hanson and Morris analysis (0.8871) leads to lower values of the criti-
cal resolved shear stress than either the computer simulation results

or the numerical solution of the equations.

I1I1.4.2.2 The Labusch modification

Labusch (1977) has revised the Hanson and Morris solution to re-
flect the statistics of a somewhat different strategy of selecting the
strongest configuration in the array. His rationale for dding so is
that the Hanson and Morris value of Q, 0.8871, is significantly below
the result of 0.96 from computer simulation for large arrays.
Labusch’s final answer, 0.95, is closer to the simulation results (see
figure III.2). Although the spread between these results is only a few
percent, the difference is relevant if it has implicit physicai conse-—
quences. Since there is a greater spread between the other parameters
used to characterize the solution, it seems likely that there are
important differences between the models. Despite the apparently good
agreement of the Labusch solution with the computer simulation data, it~
is not obvioﬁs that it is the superior theory. The following discus-—

sion considers the differences between the two solutiqns.

Hanson and Morris find the strength of the strong line by fixing
the expectation values of vafidns parameters of the array on the strong
line, The theory is a prescription for finding a strong line whose
strength is within & of thé strength of the strongest line in the
array. For an infinite array{ there are infinitely many distinguishable
lines which meet this criterion; the solution does not necessarily
identify all of them. Consequently, the solution should accurately
predict the expectation values of parameters'on the strong line, but

not the actual distribution of those parameters.

The most important parameters of the strong line are the distribu~-
tion aléng it of obstacle strengths p(f), of segment lengths p(l‘) and
of directional change p(@). ‘These distributions may be obtained both
by conputer simulation and by analytic solution, The solutions
obtained by computer simulation (Altintas and Morris, 1986b) are com-
pared with the results of Hanson and Morris and Labusch in figures
IIT.3, III.4 and III.S.
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Comparison of the analytic solutions to computer simulation
results indicates that the Hanson and Morris solution does a good job
of predicting <1*> and p(B) but not of p(1%) or p(@). The value of <@>
is fixed in the solution. The failure of the theory to predict p(@) is
not surprising since a lower cutoff on ¢ is also employed in the
solution. The distribution~p(f‘) has an upper cutoff not found in
computer simulation. Since 1‘ and ¢ are related, the upper cutoff is
probably tied to the cutoff on @. The rather good-match for the distri-
bution of forces along the strong line p(B) seems rather surprising;
however, it may be a direct consequence of the fact that the theory is
formulated to ensure that the strength of the line is arbitrarily close
to the strong line, This condition may imply a reasonably accurate

distribution of forces.

Labusch’s approach is to begin by counting all possible stable
lines at a given stress level. In theory all the lines with strength'
within ¢ of the strong line are examined. This comprehensiveness may
explain why the Labusch solution leads to distributions of 1* and ¢
that are more similar to the computer simulation results than those
derived by Hanson and Morris, These distributiops are determined rela-
tively early in the solution, before Labusch :ses two questionable
argumenfs that together bring his value of Q close to that found in

computer simulation.

Labusch’s first calculation gives Q = 1.1862, which is much larger
than the computer simulation results for large arrays. He corrects this
value downward by arguing that some of the lines he has counted are
degenerate because they can be generated by more than one potential
parent line., On this basis he adjusts his value of Q to 0.949, which is
very close to the computer simulation results, It is odd that an argu-
ment about degeneracy should change the value of Q since the strength
of the strong line should not be affected by the number of times it is
counted. The flaw in the mathematics may be that in calculating W in
terms of his partition function Z (Labusch, 1977, p. 4551), Labusch
argues that the integral may be simply evaluated because it is zero
almost everywhere. This simplification may be equivalent to looking
only at the most probable string of parents of the strong line. If

this is the case, any degeneracy in the solution is eliminated.

Labusch also finds an upper limit on the the value of Q that is
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lower than his original value, His essential ﬁoint seems to be that
‘the strongest line may not be accessible to the dislocation as it moves
ﬁhrough the array since the direction of dislocation motion is prede-
termined. However, it seems obvious by definition that the strong line
must be reached as the dislocation moves through the array., It is
possible that Labusch description of a stable line allows some totally
impossible linés; Conseqnehtly, it is possible that this correction
may apply to his original solution. However, Labusch also applies this
correction to the Hanson and Morris solution. Since the Hanson and
Morris solution includes a prescription for finding stable lines,
these lines must be accessible, and the dislocation must reach the

strong line; the correction cannot apply.

In conclusion, although the Labusch solution may be a good way of
examining p(l‘) when this distribution is relevant, it is not an im-
provement on the Hanson and Morris solution. The overestimate of Q in
the original Labusch solution may indicate more serious flaws in the
derivation; for example, Labusch does not prove fhat,the line he
describes exists. It is also not clear whether the Labusch solution
leads to a simple rule for summing the effects of obstacles of various
strengths like the éuadratic sum approximation derived by Hanson and
Morris. Barring a new approach to the statistics of the problem, the
Hanson and Morris strong line solution would seem to the best strong
line solution available, despite the fact that it leads to a value of Q

slightly below that obtained by computer simulation.
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I11.4.3 Haasen and.Labusch theory of precipitation hardening.

The most receant theory of precipitation hardening is an adaptation
by Haasen and Labusch (1979) of work by Schwarz and Labusch (1978) on
solution hardening. In his review, Ardell (1985) argues that the
extension to precipitation hardening ié not valid. He claims that the
"successes" of the theory in the analysis of experimental data for
order hardening are achieved only with unreasonable choices of adjusta-
ble parameters such as the line tension and the antiphase bonhdary
energy. However, the approach cannot be entirely ignoréd since it has
become a popular way to analyze experimental data for precipitation
hardening (Haasen and Labusch, 1979; Nembach, 1981; Reppich, Schepp and
Wehner, 1982; Thompson and Brooks, 1982;.Groh1ich. Haasen and From~
meyer, 1982). Accordingly, the theory will be summarizéd herq;

The Schwarz and Labnsdh solution is based on an empirical fit to
computer simulation results, The simulation is intended to address a
variety of situations encountered in solid solution hardening. The
solution considers both localized and diffuse obstacles and cases for
which the inertial effects range from negligible to dominant. The only
case that will be examined here is that of dislocation motion ob-
structed by péint obstacles when inertial effects are negligible (i.e.
overdamped motion), These conditions correspond to those assumed in

the other theories discussed in this section. .

Schwarz and Labusch seek a strong line soluticm for the critical
resolved shear stress of a random array of obstacles. “In common with
the strong line solutions discussed above, the Schwarz and Labusch
simulationlassumes that the strength of the obstacles is determined by
the maximum in the force—-distance curve for the dislocation-obstacle
interaction and that the dislocation has a constant line tension. The
~major addition in this simulation is the inclusion of 7, a dimension-
less parameter that describes the range of the dislocation-obstacle
interaction. Schwarz and Labusch do not provide an analytical solution
that takes this parameter into account. For the non—inertial case, the
critical resolved shear stress as a function of n is determined empiri-
cally by fitting the computer simulation -data. The result is

= = 0.9483/2(1 + qm) (111.9)



45

where m is a constant determined by a least squares analysis of the
data. The value of m depends on the shape of the force-distance pro-—-
file of the obstacle. '

The limitation of the Schwarz and Labusch solution is that early
in the derivation (1978, p. 5175) the calculations are restricted "to
the case of weak obstacles (F<(CT) in which case the dislocation remains
almost straight."” This restriction is not severe for solid solution
hardening, which the simulation is intended to address, but it is
clearly inappropriate to consideration of preéipitation hardening. This
point appears to have escaped those who have applied the theory to
precipitation hardening. The restriction on the results is much
stronger than weak restriction contained in the Hanson and Morris
solution that f be less than 0.7 (or equivalently F < 1.4T), As Ardell
(1985) points out, the reqnitement that B be small allows the radius of
curvature of the dislocation to be given simply by

Rl = 42y/4x2 h (I1I1.10)

'
which is only a good approximation for the exact equation

a2y/ax? .
Rl = ——- (II1.11)
[1 + (dy/dx)213/2

if the dislocation is nearly straight. As a result, Ardell suggests
that a practical limit on the validity of the Schwarz and Labusch

computer simulation results is B < 0.3,

The first paper to apply the Schwarz~Labusch theory of solid solu-
tion hardening to precipitation hardening is Haasen and Labusch (1979).
The first equation in the paper for the additional flow stress due to
precipitate particles at small volume fractions is attributed to Flei-
scher (1964) although it is nowhere to be found in that paper. A
‘derivation similar to that given by Nabarro in his reviews of solid
_solution hardening (1972, 1977, 1985) is given in Appendix B. A deri-
vation of the second equation (for large volume fractions of precipi-
tates) can be found in Labusch (1970, 1972) or in the review papers by

Nabarro and is also included in Appendix B.
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Haasen and Labusch (1979) use equations 1 and 2 of their papef to
describe the critical resolved shear stress associated with a continuum
of values of Ny, & parameter proportional to n that describes the range
of the dislocation-obstacle interaction. They use the formulas of
Schwarz and Labusch to interpolate between the limiting cases of equa-
tions 1 and 2, Unfortunately, for B>0.3, the restrictions on the

Schwarz and Labusch derivation make this approach invalid.

There are several other objections to the methods used by Haasen
and Labusch and their successors. Haasenm and Labusch convert the solu-
tion hardening results of Schwarz and Labusch to the case of precipita—

tion hardening by replacing ¢, the number of solute atoms per unit

area, with c¢’, the areal density of particles in the slip plane (ls_ZL
They define the areal density in terms of particle size by
¢’ = v/r2 , (111.12)

where v is the volume fraction of particles, and r is chosen so that c’
is the areal density; The value of r is related to the size of the par-
ticle, but is not necessarily the particle radius. For example, in an
earlier paper Kocks, Labusch and Schwarz (1976) vary r to account for
the diffuseness of the obstacle in additiom to varying ny. This proce-

dure adds another adjustable parameter to the solution.

Haasen and Labusch further argue when the volume fraction of
precipitates is relitiVely hiéi, diffuse obstaclz statistics should
apply, since the dislocation will see many obstacles at once. This
point is not all obvious, nor is it clearly confirmed by experimental
data (Munjal and Ardell, 1975; Ardell, Munjal and Chellman, 1976). As
Ardell (1985) points out, a point obstacle (or collection of point
obstacles) with a diffuse range of interaction and a finite obstacle
with a range of ihteraction_essentially localized to the obstacle are
not the same thing. In the case of a non-misfitting ordered precipi-
tate, the range of interaction is entirely localized to the particle
and the dislocation is influenced by this force only when it is within

the precipitate.

A final point is that the critical resolved shear stress is con-

trolled by the maximum force each obstacle can exert on the disloca-
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tion. The question of whether much smaller attractive or repulsive
forces such as those due to the stress field of a misfitting precipi-
tate can significantly alter the motion of a dislocation which has
already bypassed the particle by acting as a weaker pinning site ‘at a
new location remains unanswered. To answer this question requifes
reexamining the original definition of a point obstacle and whether it

applies to this type of physical situation.
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IV. Application of the CRSS model to real systems

The Hanson and Morris solution and the various other solutions
described.in Section III are limited by the idealizations contained in
the model of the critical resolved shear stress described in Section
I1. Each solution includes additional assumptions needed to simplify
the mathematics or computer simulation, The choice of assumptions is
restricted by the desire to keep the solution as simple and general as
possible. However, if these solutions are to be applied to real sys-—
tems, they must be reassessed. First, the parameters of the imaginary
model system must be related to properties of the physical system.
Second, the assumptions and idealizations in the model and its solution

must be considered with respect to specific systems.

In tiis section, a series of issues will be discussed which relate
to the application of the model to real systems., Although most Aof
these issues must be considered to apply any of the solutions described
in Section III, the focus im this section and throughout the remainder
of this paper is on the Hanson and Morris strong line solution outlined
in Section II. The emphasis is on the problem of predicting the age
hardeiing behavior of a material strengthened by coherent ordered
precipitates. The applications topics are discussed in order of in-
creasing specialization, beginning with those relevant to all types of
obstacle-controlled hardening and finishing with those specific to

alloys hardened by coherent ordered precipitates.

The following is a brief summary of the issues discussed in this

section.

IV.1 Obstacle strength sums, The effect of obstacles of various
strengths must be accounted for. For comparison with experimental
single crystal data, the matrix contribution must be included. For

polycrystals, grain boundary strengthening must also be considered.

IV.2 Line tension, The line tension of the dislocation varies with
the degree of screw or edge character., The effect of finite obstacles
on the dislocation bow-out and elastic self-interaction of the disloca-

tion is considered.
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IV.3 Dislocation character. Since macroscopic deformation requires
the glide of both edge and screw dislocations, the critical resolved
shear stress will be controlled by the type of dislocation that is most

difficult to move through the obstacle array.

‘IV.4 Precipitate distribution. To predict the.age hardening behavior

of a precipitation-hardened material the precipitate size distribution

and its coarsening behavior must be understood.

IV.S Obstacle Strength. The strength of the obgtacles to glide pro-

vided by the ordered precipitates must be quantified.

Iv.6. Superdisloéations. Deformation in materials hardened by ordered
precipitates occurs by the motion of coupled dislocations that magnify

the applied stress at the obstacle.
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IV.1 Summing of strengthening mechanisms,
IV.1.1 The need for superposition laws,

Because dislocations interact with an& and all crystallographic or
elastic defects present in a material, it is clear that predicting the
strength of any real material requires an understanding of how various
types of strengthening mechanisms superimpose. The debate on the gene—-
ral problem has been somewhat confused by the fact that several dis-
tinct cases must be considered, all of which generally are discussed
under the heading of superposition. The superposition problems may be
divided into three distinct areas according to the type of strengthe-
ning mechanism: obstacle~controlled, friction—-controlled, and
interface—controlled. The goal in each case is to determine the ‘incre-
ment in strength due to the particular microstrncturai feature in

question.

IV.1.2 Superposition of obstacle-controlled stremgthening mechanisms.

An obstacle—-controlled strengthening mechanisi: is one whose source
is 'a distinct, relatively localized microstructural feature that may be
modelled as a point obstacle. The model for the critical resolved
shear stress discussed in Séction II and the Hanson and Morris strong
line solution both consider the effect of such obstacles. There are
actually three different kinds of superposition effects that must be
_ considcted. Some of these have been discussed previously; however, it

seems appropriate to consider all three cases in a single discussion.

The first of‘these is the superposition of_several strengthening
mechanisms for a single physical obstacle. The summation ‘is done in
the course of computing the force—-distance curve for the interaction of
the dislocation with the physical obstacle., The problem here is much
simplified by considering only athermal glide, since in that case the
strength of the obstacle is determined only by the peak in the férce—
distance curve. (If thermal activation is considered, then the entire
force-distance curve is relevant (Morris and Klahn, 1973).) A schema-
tic plot of the summation of two interaction forces (for instance, the
misfit and order interactions for the first dislocation to shear a

misfitting, ordered precipitate) is shown in figure IV.1. For this
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particular precipitate cross—section, the force F, (e.g. from the
misfit strain) contributes very little to the total strength of the
precipitate because the peaks in the interactions are spatially dis-
placed. One of the consequences of this displacement is that experi-
ments designed to measure the effect of increasing misfit strain, for
example, can be misleading. Because two mechanisms are operating that
have spatially displaced peaks in the force—-distance curve, a large
change in the interaction force due to one mechanism may result in only
a small change in the total strengthening from the precipitate. This
point is often relevant for particles that strengthen by misfit and
order hardening (Ardell, Chellman and Munjal, 1976; Lee and Ardell,
1979).

The other two types of obstacle-controlled superposition cases
pertain to the effect of obstacles of the same type, but different
strengths and the effect of obstacles of different types. On the as-
sumption that all classes of obstacles are randomly dispersed, these
may be handled together. In both cases the obstacles to glide are
represented as point obstacles whose chief characteristic is their
breaking strength, fixed by the peak in the force-distance curve. The
new element of the problem is that the obstacles along the dislocation

line are no longer identical,.

No léss than five possible techniques for handling the superposi-
tion of distinct obstacles have been seriously proposed at omne time or
another (Ardell, 1985). The various formulae are listed in Table 1. Of
these possibilitieﬁ, several can be quickly eliminated. The law of
mixtures does not seem to fit any of fhe experimental data particularly
well, Labusch’s formulation (Labusch, 1970) was proposed for the sum-—
ming of diffuse obstacles, not at issue here. Most of the attention has
focussed on the linear and quadratic sum rules. The Buttner and Nembach
(1983) and Nembach and Neite (1985) suggestion is intermediate to the
linear and quadratic sums, and leaves q as an adjustable parameter thit
lies between one (1) and two (2). The authors show good agreement with
experimental data using this formula, but the since the theory always
has a multiplicative constant as well, agreement may be a foregone
conclusion. There is other evidence that for mixtures of very strong
and very wéak obstacles a summing rule of this type may be necessary
(Huang and Ardell, 1986) to explain the experimental data. However, the

remainder of this discussion will focus on the linear and quadratic sum



Table 1. Proposed obstacle-controlled strengthening superposition mechanisms

mechanism

Jincar

quadratic

adjustuble

law of mixtures

diffuse

equation
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Hanson and Morris (1975b)

Koppenaal and Kublmann-Wilsdorf (1964)

Buttner and Nembach (1983)

Nembach and Neite (1985)

Brown and Ham (1971)

Labusch (1970)
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rules both of which have at least some theoretical foundation and seem

to agree with'experimental results in certain regimes.

For random arrays of point obstacles, both theoretical analyses
and computer simulation point toward the quadratic sum. Hanson and
Morris (1975b) provide a theoretical argument for the quadratic summing
rule in their derivation of the statistics of the critical resolved
shear stress for a mixture of distinct point obstacles. The proof, in
the limit of small B, is outlined in Section II. This solution is the
only one in which a superposition rule has been derived as a conse-
quence of a mathematical solution of the random array point obstacle
model. An additional argument in favor of the quadratic sum is that as
dt/dxg goes to zero (where x, is the fraction of strong obstacles) the
linear sum becomes infinite, whereas the quadratic sum remains finite
(Altintas, 1978; Ardell, 1985). Any summing rule with an exponent q
less than two will also have an infinite derivative as the number of

strong obstacles goes to zero.

Bota Foreman and Makin (1967) and Altintas (1978) have attempted
to delineate the regimes in which the linear and quadratic sums apply
by computer simulation, The linear sum is expected to apply (by its
proponents) for mixtures of very weak obstacles and for mixtures of
weak obstacles containingfé few strong obstacles. Foreman and Makin
considered three mixtures of varying composition (Bl = 0,42, By = 0.77;.
B1 = 0.42, B, = 0.997; By = 0.77, By = 0.997). However, as will be
discussed at some length in Section IV.2, dislocation self-interactions
generally cause Orowan looping to occur at values of B closer to 0.7
(see Section IV.2). The latter two cases, for which the quadratic sum
does not seem to apply, are unphysical., The data are in good agreement
with the quadratic sum rule for the first case, where both of the B are

of reasonable size.

Altintas considered a much more extensive set of cases. Unfortu-
nately, after reproducing Foreman and Makin’s results for g < 0.7, all
of the other cases he includes are for fairly weak obstacles (§ ¢ 0.1),
In particular, he considers the case ﬁs = 0.1 and By = 0.01 for frac—
tions of strong obstacles from 0.1 to 0.001. These cases should provide
the best simulation of the argument for the linear sum described below,
since the numerous small obstacles provide an almost continous fric-

tional stress. The quadratic sum is a good fit to all the computer -
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simulation data; however, the simulations also show that the difference
s << x, and Bs » Bw is

extremely small (see figure IV.2 for an example). Since there is no

between the linear and quadratic sums for x

compelling theoretical reason to suggest the use of the linear sum,
these results would seem be a sufficient basis to justify the use of

the quadratic sum for all obstacle—controlled cases.

There is a limited amount of experimental eviaence that provides
empirical support for the quadratic sum rule. Nembach and Martin
(1980) compared the predictions of a linear and a quadratic summing
rule for the superposition of solution and particle strengthening in
(Cu-Au)-Co single crystals. They found that the predictions of the
quadratic sum rule are much closer to the experimentally observed
strength than those of the linear sum. However, the reliability of
these results is limited by the accuracy of the theory of coherency
hardening on which they are based. On the other hand, Ebeling and
Ashby (1966), who also examined the superposition of solid solution and
particle hardening, but in the (Cu—-Au)-Si system found that the linear

sum represented the data well,

If the array of obstacles is regular .vith respect to the distribu-
tion of each distinct type of obstacle, then a linear summing rule may
apply. Kocks, Argon and Ashby (1975, pl161) provide a justification of
the linear sum rule for regular arrays that applies in cases in which
one type of obstacles is so weak that it provides essentially a fric-
tional stress. Their argument works if the the average curvature of the
dislocation is essentially unchanged by the presence of the weak obsta-
"cles. The situation is illustrated in figure IV.3, The geoﬁetty in
the figure is representative of the situnation only if the array is
regular (so that what Kocks et al., call the line glide resistance is
equivalent to the plane glide resistance or critical resolved shear
stress). Although xocks et al. extrapolate their results to the random
array case, the extension is not valid for point obstacles. The argd;

ment runs as follows.
Froh the geometry of figure IV.3, we have
T - F1/bL1 = [2Tcos (\Il/2)]/bL2 (Iv.1)

where Ll is the spacing between the weak obstacles, L2 is the spacing
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Figure 1V.3
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Geometry used by Kocks, Argon and Ashby (1975) to derive
a linear snmmiﬁg law for very weak obstacles (strength
Fl).in-the presence of a few strong obstacles (strength

F,).
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between the strong obstaclés and Fl/bLI may be considered as thereffec-
tive constant back stress due to small obstacles. (Note that for a
regular array <* = B rather than 33/2 (Kocks, et al, 1975, p. 43)) If
_the average curvature is the same as the curvature if only strong

obstacles are present, then
2Tcos (¥/2) = F, (IV.2)

where Fy is the strength of the strong obstacles. Combining equations
IV.1 and IV,2 gfves

or ’ T = tl + tz : (IV.4)

which is a linear superposition rule for a regular array of obstacles.

IV,1.3 Superposition of friction-controlled strengthening

The only type of frictional strengthening that will be discussed
here is the effect of the matrix on the motion of the dislocation,
Although neither Hanson and Morris, Foreman and Makin, Altintas or
Kocks, Argon and Ashby provide a sound basis for a linear superposition
rule for randomly arrayed obstacles, the linear sum rule does seem to
be the appropriate way to include frictional contributions to the
strength, which are not obstacle controlled.

If the mafrix is relatively pure, the motion of the dislocation is
not obstacle—controlled. Consequently, the argument described above
for the rejuldt array by Kocks, Argon and Ashby applies strictly to the
strengthening effect of the matrix if the back stress is considered to

come from the matrix rather than small obstacles.
IV.1.4 Superposition of interface-controlled strengthening
The only case of interface~controlled strengthening of interest

here is the grain size strengthening effect., Grain size strengthening

is classified here as a special case because despite its obvious com—-
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.mercial importance, the origin of the strengthening effect is not well
understood at this time. An understanding of the appropriate summing
technique is significant from a theoretical viewpoint because the addi-
tive effect of grain size strengthening is generally assumed implicitly
when predictions of the critical resolved shear stress are compared to

yield strength results for polycrystalline materials,
The empirical Hall-Petch relation may be stated

= -1/2.
oy = O + kppd (IV.5)
where ay is the stress at which slip which has started in the most

suitably oriented grains propagates to other grains, ¢, and kHP is a

c
constant, and d is the average grain diameter (Friedel, 1964; pp266-

268). It is generally assumed that it is legitimate to write
Aay = MAvc

where M is the Taylor factor and v, is the critical resolved shear
stress for the single crystal. .This relationship requires that the
single crystal strength be included in the o, term. It is also known
that kg, varies with precipitate size (e.g. Hansen and Bromsted, 1980).

Thererare three radically different types of models that can be
used to provide a theoretical basis for the Hall-Petch relation. It is
probably unlikely that any of them is applicable in all materials. At
this writing it is not yet clear which of these models is correct. The
oldest model is based on the idea that dislocations will pileup at the
grain boundary, concentrating the applied stress. The second model
assumes that the dislocation density in the interior of the graimn will
vary with the grain size. The suggestions are discussed in a recent
review by Hansen (1985). The third model is based on the strong line
solution for thé critical resolved shear stress and suggests that the
Hall-Petch relation is the result of array size effécts. All three

models are discussed below.
IV.1.4.1 Stress concentration model

The oldest derivations of the Hall-Petch relation are contained in
the original papers by Hall (1951) and Petch (1953). The chief assump—
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tion is that the grain boundary acts as an important barrier to dislo-

cation motion., The derivation runs as follows,

If the grain boundary limits the passage of gliding dislocations
or the activation of quiescent ones, then the dislocations will pile up
"at the grain boundary. If we make the further assumption that the
"stress applied to the dislocation pileup at the graim boundary is

actually oy ~ O where oy is the yield stress of the material and o, is
an internal back stress caused by the obstacle—controlled resistance to
dislocition motion in the grain interior, them the relationship between
the applied stress and the grain size can be determined. Since the
generation or unpinning of the dislocation must be the result of a
shear stress, it makes sense to rewrite this condition in terms of the

shear stresses in the grain as
=< - t . ’ (IV.6)
where tgb is the stress at the grain boundary.,

The number of dislocations in the pileup, n, is a function of the

applied stress and is given by
n = nLtgbg/Gb . (IV.7)

where L is the length of the pileup and g is a constant on the order of
unity. When the internal stress caused by the pileup reaches the value

T4 required to nucleate or unpin dislocations in the adjacent grain

Tg = nTgy (IV.8a)

= nL(tsb)zg/Gb. “(IV.8b)

A proof for equation IV.8a is given in Appendix C. If L is on the
order of half the grain diameter, d, then equation IV.8 leads to

Tyh [2v,Gb/ng1/2a71/2 - (IV.9)

C_ -1/2
or | Ty = T + kppd . (1V.10)

Cottrell (1964) provides a rationalization for the Hall-Petch
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relationship based on equation IV.6 above. Cottrell makes an analogy
to the stress concentration ahead of a shear crack, and defines the

stress in the next grainm as

T(r) = (z, - T )@/nl/? (IV.11)

where r is the distance from the grain boundary. If yielding occurs
when the stress reaches some constant and finite value T4 then IV.11

can be rewritten

= 1/2,-1/2
Ty = Tt Tgr d - (IV42)
Multiplying through by the Taylor factor M, leads to the usual form of
the Hall-Petch relation given in equation IV.5 if Mt is identified
with T, and kgp with Mrdrllz. This equation does not provide a ration-—

alization for the strong dependence Of-kHP on temper,

IV.1.4.2 Dislocation density model

The dislocation density mod.l was first proposed by Li (1963), who
noted that dislocation pileups were rarely observed in pure metals.
The model assumes that the grain boundaries are the principal source of
dislocations in the grain interior. Since the ratio of grain boundary
area to grain volume is much higher for small grains than large ones,
"Li proposed that the dislocation density in small grains would tend to
be much higher than for'larger grains. If this model is correct, then
grain size strengthening is actually obstacle-controlled, since the

strengthening effect would arise from the presence of the dislocations.

In general, the critical resolved shear stress is proportional to
the square root of the number density of the point obstacles to glide.
This suggests that if the matrix were pure, except for an array of
dislocations of density p, the critical resolved shear stress would be
given by

T =< + kp1/2. _ (Iv.13)

matrix

If the grain size and the dislocation density are inverﬁely propor-

tional, then the critical resolved shear stress is
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T = + xa1/2 (IV.14)

matrix
which has the form of the Hall-Petch relation. However, since the
grain size contribution in this formulation is obstacle-controlled, if
the matrix contains other types of obstacles, then the effect of these
obstacles should be quadratically summed with the effect of the dislo-—
cation distribution., This type of sum does not lead to the simple form
of the Hall-Petch relation given in equation IV.5, but it may be con-—
sistent with the variation of kpp with temper. It is not entirely'

clear if the experimental data do or do not support this prediction,

IV.1.4.3 Strong line distribution model.

It is an interesting, but little known, fact that even if grain
boundaries merely define the crystallography and do not represent
major barriers to dislocation propagation, a Hall-Petch type relation
is still be predicted. In general, deformation must be dominated by
either the stress to propagate yielding fiom ome grain to the next or
the stress to move the dislocation through the array. The previous two
sections lead to a Hall-Petch relation for yielding dominated by graih—
to-grain propagation of slip. This section will show that a Hall-Petch
relation still arises, even if the glide through the grain interior

dominates yielding,

It has been known for some time from computer simulations that the
critical resolved shear stress is strongly dependent on the array size
and shape., There have been questions for some time about how results
from arrays of increasing size converge toward solutions for infinite
arrays (Labusch, 1977; Altintas, 1978). This issue is physical as
well as academic since the arrays in real crystals and grains are not
infinite, The value of Q determined for infinite arrays is an underes-—

timate of the values of Q that apply in grains of finite size,

Altintas (1978, p65) considered the effect of array size on the
critical resolved shear stress. He was able to predict the variation
in the value of Q as a function of array size by assuming that the
chance that certain obstacles would lie on the strong line of an infi-

nite array decreased as the array size decreased. The smaller sampling
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of all possible obstacle confignrations along a given dislocation line
in the small array makes it likely that the weakest point on the strong
line-will be stronger thanm it would be in an infinite array. As a
consequence, & small array is stronger than a larger ome, since it has

a larger value of Q associated with it.

Figure IV.4 illustrates the technique wused by Altinfas to predict
the strength of arrays of finite size. The probability that the stron-
gest line will contain an obstacle of strength less than some particu-
lar value of B may be determined statistica11y~f;bm the probability of
finding obstacles of particular strengths along the strong line. Thus
the étrength of the finite array is predetermined in a statistical
sense by the distribution of obstacle strengths along the strong line

for an infinite array.

In the light of these comments, one can look at the data for the
critical resolved shear stress as a function of array size in a new
way. Figures IV.5 and IV.6 are replotted from figures 13 and 25,
respectively, in Altintas (1978). As can be seen in the figures, the
simulated critical resolved shear stress is proportional to (w‘)°1/2.
where w' is the dimensionless array size,‘w/ls. As will be shown below,
these compnter simulation results predict an additive effect of grain

size on strength.

The addifivity of grain size and intragranular hardening may be
shown simply by comparing the empirical Hall-Petch relation to the
equation describing the variation in the critical resolved shear stress

with array size., The empirical Hall-Petch relation is

- - -1/2 '
ty = fc + kHPd B (IV.IO)
s _ L -1/2
or T.'y = fc + knp(lsblzT)d °

The results of computer simulation for finite arrays (and the

.
theoretical analysis) lead to an equation for v

"_ e -1/2, -1/2

where Tinf 1S the critical resolved shear stress of an infinite array,
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XBL784-4904

Schematic of the technique used to analyze the effect of
array size on the stremgth of the strongest line in the
array. The‘probability that an obstacle with strength

B; < B < B, will lie on the line is denoted by S°.
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square root of the array width for a mixture of obstacle

strengths (data from Altintas, 1978).
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and KB is a function of the distribution of obstacle strengths on the

strong line. Equating these two relations gives

“iag = o = 8%/ . (IV.16a)
and kgp = 2KgT/b1 1/2, (IV.16b)

Substituting into the Hall-Petch relation, we have

T = T

ing + [2KgT/b1 1/2147/2, (Iv.17)

Labusch (1977) has also considered the relationship between the
critical resolved shear stress of a finite array and an infinite array
in the context of his version of the Hanson and Morris statistical

theory. He derives the formula

Te T Te-inf

[1 + (1/(2v2WB)} {1n HZ/Wv2vpl] - (IV.18)
where H and W are the height and width of the array respectively. As
shown in figure IV.7 (after Altintas, 1986a), this formula leads to

" similar results to those of Altintas described above.

Eqﬁation IV.17 is a Hall-Petch type relation for situations in
which strength is dominated by obstacle-controlled yielding in the
grain interior rather than bypassing the grain boundary. This equation
has a number of consequences, some of which will be discussed below.
If the equation in fact describes an experimentally significant case,
then these predictions should explain at least some of the exiSting
experimental data. The following'discnssion is intended to provide a

focus for future research, not a definitive analysis.
(1) Age-hardening at constant grain size,

_As the particles coarsen, the value of 1s increases, causing the
value of <t . to increase. The variation of the grain size term as 1g
increases is uncettainAsince the variation of KB with particle strength
has not been analyzed. However, if the dependence is weak, it would be
an excellent approximation at constant grain size to comnsider the grain
size term as a constant matrix contribution that is indépendent of the

hardening particles and linearly additive. This relationship is usunal-
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ly assumed without justification,

(2) Effect of grain size for constant particle strength distribu-

tion.

If the distribution of particle strengths is constant, then Tinf’

KB, T and 1, are all constant as well. Then the grain size term

d-1/2

reduces to a constant multiplier of and equation IV.18 reduces to

the Hall-Petch relation, equation IV.10,
(3) Variation of kgp with 1.

Noting that the line tension is proportional to In(1;), the Hall-

Petch coefficient varies with 1s as
- 1/2
kHP ln(ls)/ls °

Hansen and Brondsted (1980) have measured the variation of kgp with 1
"in Cu hardened by A1203 particles, They determined that kpp was pro-—
portional to 1/1s rather than the proportionality above. However, the
experimental error is large enough that the data do not allow an unam-
biguous differentiation between the two relationships. Precise mea-
surements are difficult since KB is a strong function of the precipi-

tate size distribution as well as the average precipitate radius.
(4) Use of mean grain size.

All experimental verifications of the Hall-Petch relation use the
mean grain size. From the discussion above, it seems that the extrema.
of the distribution of grain sizes rather than the mean grain size
should control the grain boundary effect. However, self-similarity
during grain coarsening has been predicted theoretically (Mahin, Hanson
and Morris, 1980). For a particular material, processed to achieve
various grain sizes, the mean grain size probably describes the entire
distribution of grain sizes. The effect of the distribution is to
modify the value of the Hall-Petch coefficient. The magnitude of this

variation has not béen estimated.
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IV.2 Geometric corrections to the model

The purpose of this section is to consider the consequences of
some of the assumptions made in either the point obstacle model or the
strong line solution to simplify the geometry. The effects of three
deviations of real materials from the basic assumptions will be discus-
sed in detail: variable line tension, finite sized obstacles, and self-
interaction of the dislocation. Isotropic elasticity is still assumed,
although the introduction of Qnisotropy also has important geometric
consequences, FEach of the effects mentioned above will be comnsidered
separately. Following this treatment is a discussion of a model pro-
posed by Bacon, Kocks and Scattergood (1973) that attempts to model all
three of these factors, Finally a method of adapting fheir results to

the strong line solution is suggested.

IV.2.1 Dislocation line tension

The basic model for prediction of the critical resolved shear
stress of an array described in Section II makes the idealization that
the dislocation line tension is constant. For v = 0 and isotropic
elasticity, this assnmptidn simplifies the geometry considerably
because it ensures that the dislocation will bow out between obstacles
in a circular arc. However, it is generally recognized that the line
tension is not constant in real materials. The variation of the line
tension with the angle & betweeﬁ the dislocation line and the Burgers
vector may be approximated by the De Wit-Koehler formula (De Wit and
Koehler, 1959)

T = (6b2/4m)((1 + v - 3vsin2g)/(1 - V) I1Ia@A/r))  (IV.19)

where v is Poisson’s ratio and A and r, are the outer and inner cutoff

‘radii, respectively, of the strain field of the dislocation.

_ Equation IV.19 has the consequence that the line tension varies
along the line of a bowing dislocation., It also implies that edge
dislocations (¢ = n/2) have a lower line tension than dislocations that
are initially pure screw in character (& = 0). The chief difficulty
with applying equation IV.19 is that the values assigned to the cut—off

radii are somewhat arbitrary.
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Neither an extensive computer simulation study nor an analytical
model of the critical resolved shear stress‘for glide of a dislocation
of variable line temsion exists, Including variable line tension in a
statistical model of the Hanson and Morris vafiety appears to be com-
plicated since both the shape and size of the search area become confi-
guration dependent. In view of this difficulty, several attempts have

~been made to incorporate the qualitative effects of variable line

tension into existing theories that assume a constant line tension.

Melander (1978a) and Ardell (1985) both suggest assigning the
value of the average line tension of the bdwed dislocation to the
constant line tension. Melander nse§ equation IV.19 by assigning values
to the unspecified variables from the properties of the strong line.
In particular, he equates A to (1>, the average segment length on the
strong line, and [1 - (w'<B>)2] or [m‘<B>)2] to sin2§ for edge and
screw dislocations, respectively. ® is an adjustable fitting parameter
c¢lose to one (1) that describes how fast the dislocation acquires mixed
character. The inclusion of <8)>, the average obstacle strength along
the strong line, makes the solution for the critical resolved shear

stress iterative.

Melander and Ardell both assume implicitly that the change in the
shaﬁe of the bowed out dislocation has negligible consequences. The
-average line tension may be calculated using the average value of the
obstacle strengfh. but should be improved if the average value of the
strengths of the obstacles actually lying on the strong line are used
instead, as Melander does. However, given the inaccuracies in the
dislocation search area, it is not obvions that this iterative solution

is significantly more accurate.

Foreman and Makin (1966) considered the effect of the altered bow-
out shape of the dislocation in a random a}ray of obstacles. They
argue that since a random array is still random if it is sheared,
whether the dislocation bows out in an ellipse or a circle is irrele-
vant. The statistics of the process are essentially unchanged. Howe-
ver, this argument no longer applies if dislocation self—interactiqns

are considered (Bacon et al., 1973).
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IV.2,.2, Finite obstacle size

It is clear that the existence of finite—-sized obstacles to glide
in real materials will result in differences between the behavior of
the solution to the point obstacle model and real materials, The
differences between point obstacles and finite obstacles emter through
various factors, chiefly the bowed—out shape of the dislocation and the
self-interaction of the dislocation arms where they wrap around the

obstacle.

The effect of dislocation self—interaction will be discussed in
greater detail below; at this point it is sufficient to note that the
finite size of the obstacle holds the arms of the bowing dislocation

apart, thus reducing their interaction (Bacon, et al.,, 1973).

Melander (1977) attempted to account for the effect of finite
obstacle size on the dislocation séatch algorithm used in the Hanson
and Morris strong line solution (1975a and 1975b). Ardell (1985) also
discusses this question in the context of an average line solution.
His argument is less rigorous in the sense that it uses an average line
theory, but should nonmetheless be qualitatively correct. Howe?er. his
results are opposite to those of Melander., The reason for this discre-

pancy is not clear,

I1V.2.3 Dislocation self-interactions

The term dislocation self-interaction is used to describe the
elastic interaction between different barts of the same dislocation
that occurs if the dislocation is bowed or bent on a scale that brings
segments of the dislocation into close proximity relative to the range
of the elastic strain field associated with the dislocation. ~As shown
schematically in figure IV.8, if the dislocation bends around an obsta-
cle, components of the dislocation line vector perpendicular to the
original straight dislocation cancel. Since the total line energy of
the dislocation is reduced, this interaction is energetically favora-
ble. Consequently, dislocation self-interactions act to pull the arms
of the bowing dislocation together near the obstacles. The force due

“to the self-interaction of the dislocation thus adds to the force from

the applied shear stress and assists the dislocation in looping or
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Schematic illustration of cancellation of line tenmsion
components perpendicular to the dislocation line ] as

the dislocation bends.
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shearing the particle.

The effect is similar for shearing and Orowan looping of the
precipitaté, but it is perhaps simpler to consider the looping case.
Orowan looping occurs when the stress is so high that a stable configun--
ration of the bowing dislocation can no longer be found. In practice,
the Orowan stress is reached when neighboring dislocation arms are
approximately antiparallel (i.e the tangent angle to particle is ¥ =0
and the neighboring arms of the dislocation have opposite line vectors
1.)

Self—-interactions pull the arms together around the particle so
that the force to bow—out the dislocation in an eglliptical arc until
the arms are antiparallel is much less than the force to bow-out the
dislocation in a circular arc until the arms are antiparallel (B =
1.0). It follows that if the elliptically bowed dislocation is approxi-
mated by a circular arc, then looping occurs long before the arms of

the circular arc dislocation are antiparallel (see figure IV.9). This
result implies that Orowan looping occirs at value of B (calculated for

circular bow-out) that may be comsiderably less than 1.0.

IV.2.4 The Bacon, Kocks and Scattergood model. -

Bacon, Kocks and Scattergood (1973) consider the effect of dislo—
catijon self-interaction on the shape of a dislocation bowed between two
obstacles and the effect of.this shape distortion on the stress for
Orowan looping. The equilibrium configuration of the'dislocation is
calculated by dropping the constant line tension approximation and
assuming a lower cutoff radius T, for the dislocation-dislocation inte-
raction and then relaxing the dislocation into a stable configuration.
Finite obstacles of various sizes are considered. (The problem is
solvable only for finite obstacles.) The results indicate that array
strength is increased by finite sized obstacles. Finally, they propose
a modification for constant line tension point obstacle models that
accounts for the dislocation self-interaction as a function of particle

size and spacing.

Bacon et al. begin by considering only dislocations initially

screw or edge in character since in all cases one or the other of these
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~——— ACTUAL SHAPE
—=—— LINE TENSION SHAPE

AFTER BACON, KOCXS and SCATTERGOOQD, 1973

XBL 863-7539

Figure 1IV.9 Comparison of the actual shape‘of the dislocation at the
| Orowan stress when elastic self-interactions are comsi-
dered to the sﬁape in the consfant line tension model at

the same stress (after Bacon, Kocks and Scattergood,

1973).
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will control yielding (see Section IV.3). In the discussion that fol-
lows isotropic elasticity is assumed, although this assumption was

dropped in a later paper (Scattergood and Bacon, - 1975).

The effect of the self-interaction can be modeled by treating the
impenetrable obstacles as pemetrable (or equivalently, point) obstac1e§
in the constant line temsion (circular bow-out) model. The effects of"
this correction on the constant line tenmsion point qbstacle treatment
are two. Most importantly, Orowan looping occufs at § < 1.0, Im
addition, the area sampled by the dislocation as it bows out will be
underestimated causing the strength of the array to be slightly under-
estimated, The dislocation shapes calculated by Bacon et al. (1973)
are quite similar to the de Wit-Koehler shapes except in the region

near the obstacle,

This penetrable obstacle model works best when the ratio D/L (par-—
ticle diameter/particle spacing) is small (i.e. when the shape of the
dislocation is not strongly perturbed by the actual particle which the
dislocation must wrap around.) In this case, it is possible to define
an effective strength F of the particle assuming that it behaves as a

penetrable obstacle:
F = cos(¥/2) (Gr2/2aK)1aL (IV.20)

where r is again the inner cutoff radius of the dislocation and K is 1

for an edge dislocation and 1 - v for a screw dislocation.

Equating the force on the dislocation reroz (ro for units) to the
effective strength of the obstacle we can solve for the critical cusp

angle. Bacon et al. start with

v = (Gb/L)A[1nD + B] , (Iv.21)
where | b=+ 1)1 | (Iv.22)
because this equation is the simplest one with the right proportionali-.
ties. They find A and B by empirical data fitting to be 1/2nK and 0.7,

respectively., Plugging in gives the critical cusp angle

cos(¥/2) =(1aD +0.7)/1n L. (1v.23)
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Bacon ef al, use this solution for the critical cusp anglevfor
Orowan looping to correct empirical solutions for random arrays of
point obstacles for the effect of dislocation self-interactions and
finite obstacle size. The empirical result of Kocks (1967) and Foreman
and Makin (1966) for the motion of a dislocation through a random array

of point obstacles is
= (cos ¥/2)3/2(6b/L)[(1n L)/2K]. (1V.24)

For this case D~D and 0.7 << 1n D are reasonable assumptions (small but
finite obstacles at moderate to large spacings, volume fraction not too
big). Then the critical cusp angle is approximately (1n D/1n L) and

the corrected value of t is
= (1n D/ 12 1)3/2(Gb/L) [ (1n L)/27K]. (1V.25)

The origins of the terms in this equation ate‘as follows: Gb/L, the
classical Orowan looping value; 1n L/2n, the interactions over one
bowing loop; and (1an D/1n L)3/2, the self-interactions in a random

array.

Equating L, the particle spacing, to ls[ro’ the dimensionless
mean square obstacle spacing in these units, in equation IV.25 and
compar1ng the resulting equation for the critical resolved shear stress

to t = QB3/2 leads to a lxne tension of the form
T = (6b2/4xK)1n(1 /1 ). | (1V.26)

The value of the inmer cutoff radius of the dislocation, r,, is usﬁally
taken to be between b and 4b, where b is the Burgers vector. The most
physically reasonable choice is r, = b. Ardell (1985) suggests that
a good approximation for the line tension is k/ro ~ 55, which leads to
average radii of about 10 nm at peak strength, The choices suggested
here lead to larger values of the logarithmic term. Since the average
radius at looping can be somewhat larger (see section VI.3.9JJ. the
values from this equation may not be unreasonable. Ardell (1985) lists
computed values of the line tension for various materials. For pure
screw dislocations a constant line tension value of Gb2/2 seems to be

the best approximation for the obstacle strength and spacing dependent
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form,
IV.2.5 Application of the self-interaction to the strong line solution

To apply the model of Bacon et al, (1973) in the context of the’
strong line solution of the point-obstacle model, several issues must

be resolved. Some of these are discussed briefly below,.

1. g% = 0.7

max
C

than 0.7 in practice comes from, although 0.7 is the value recommended

It is not clear exactly where the idea that § is rarely bigger
by the authors to Hanson and Morris. Bacon et al. do comment that ¥/2 )
40° which implies $=0.77 for the range D<L/10 and L>1000 (which is a
very dilute solution), These are the same constraints that lead to the
simplification to (In D/1n L) in equation IV.25 above. However, the

general solution for the critical cusp angle is
cos (¥/2) = (1n D + 0.7)/1n L. (1Iv.27)

From this equation B may be greater than 0,7. The value of B increases
as the the ratio D/L increases. Physically, the separation of the arms
of the dislocation increases as the obstacle size increases. The
strength of the interaction between the arms is correspondingly
lowered. In the context.of the strong line solution, decreasing the
‘self-interaction has the effect of increasing the values of $§ and ﬂmax

appropriate to the particle.

Bacon et al. also show that when the obstacles are non-collinear
the flow stress will be lowered. In fact, if the angles are sharp
enough, the force from the self-interaction can cause obstacles to be

bypassed at zero stress.

There is a somewhat cryptic plot of the Orowan stress as a func-—
tion of various assumptions about Orowan looping in the Bacon et al.
paper that indicates that for Q = 0.8871, B, may be about 0.7 to make
Orowan looping continuous with the point obstacle solution of Hanson

and Morris (1975a), but the origin of the plot is umnclear.
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The actual value of Bc is important only to the numerical accuracy
of the calculation, What is important is whether its value changes
significantly over the range of precipitate radii of interest. An
additional question is the validity of extending this line teasion ap-
proximation for impenetrable particles to fairly weak, penetrable

obstacles that the dislocation will eventually shear.

2. Variation of B™®% with obstacle size and spacing

Use of equation IV.27 to find p™2*

particle size and spacing. The only feasible way to do the calculation

requires B to be a function of

is to use the average particle size and spacing, in spite of the fact
‘that this assumption is somewhat contradictory in the context of a

strong line solution for the critical resolved shear stress,
3. Experimental values of Bc‘

The looping radius and the value of Bc in the constant line ten-
sion approximation can only both be determined from experimental data
if the strength of the array and the strengthening theory are assumed.

It is simplest to assume the value of Bc is fizxed at 0.7.
4, Line tension.
Note that the line-tensiop that results from the Bacon, et al.

analysis (equation IV.26) differs from that calculated by De Wit and
Koehler (equation IV.19),
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IV.3 Dislocation Character

It is generally agreed that macroscopic yielding requires the
motion of screw, edge, and mixed dislocations. The force required to
move each type of dislocation is not equivalent, since the interactiomn
of the dislocation with the matrix and the va:ioﬁs obstacles it con-
tains depends on the character of the dislocation. Yielding is con-
trolled by whichever of type of dislocation is most difficult to propa-
gate through the crystal -- dislocations that are initially either pure
screw or pure edge. This dislocation type will be the one visible in
transmission electron microscopic studies of deformed crystals since
dislocations that move at lower stress will tend to glide out of the

crystal.

From equation IV.19, in an isotfobic material the line tension of
an initially screw dislocation is jreater than the line tension of an
edge dislocation by a factor of (1+v)/(1-2v). This difference in line
tension is responsible for the difference in the required stress for
edge and screw dislocation glide. Althongh this line of reasoning
seems straightforward, the predictions of the analysié below do not

always correspond well .to experiment.

There are two classes of dislocation-obstacle interactions of
interest: those in which the resistance to dislocation glide is. deter-—
mined by the force required to shear the obstacle, and those in which
the resistance is controlled by the value of B (i.e. ca#es in which the
force to bypass the obstacle is proportional to the line tension)
(Kocks, Argon, and Ashby, 1975; pp. 62-63). In both casgz, whether the
critical resolved shear stress is bigger for screw or edge dislocations
is determined by (a) whether the maximum resistance to dislocation
glide depends on dislocation character and (b) the relative magnitude

of the line tension for each dislocation type.

IV.3.1 Force-controlled glide.

The fully dimensional form of the critical resolved shear stress

is

v = aF¥/2/11 02D 172, (1V.28)
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The line tension of a screw dislocation is greater than the line ten-
sion of an edge dislocation. If the force of interaction between the
dislocation and the obstacle is equal for edge and screw dislocations
or if the interaction force is greater for edge dislocations then the
critical resolved shear stress is controlled by the edge dislocations,
If the force of interaction is greatér for screw dislocations then
whether yield is edge or screw controlled depends on the magnitude of

that difference.

On this basis, order hardening, for which the interaction force is
" equivalent for screw and edge dislocations, is expected to be edge-
controlled. 1In the case of coherency hardening, the edge dislocation
has a stronger interaction with the precipitate since there is a volume
distortion ﬁssociated with an edge dislocation, but not with a screw
dislocation, Consequently, yielding in a coherency-hardened material

should also be edge-controlled.

Edge-cortrolled yielding has been observed in- alloys hardemed by
Ni3A1. which provides both misfit and order strengthening (Ardell,
Munjal and Chellman, 1976). Screw—controlled deformation in underaged
material has been observed in the aluminum-lithium system (Miura,
Matsui, Furnkawa and Nemoto, 1985)., Humphreys (1985) suggests that if
cross—slip occurs, yielding in alloys hardened by misfitting, coherent
precipitates will be screw-controlled, However, if cross-slip is an
important factor, the pinning of the dislocation by a jog is an impor—'
tant obstacle td glide that should be simulated by including additional
strong obstacles in the model, This poiﬁt deserves further investiga-l

tion.
IV.3.2 B-controlled glide.

If the force of interaction between the dislocation and the obsta—.
cle is proportional to the line tension, then the equation for the
critical resolved shear»stress in terms of independent variables is

x = 2083/21/1 . (1v.29)

If B for the interaction is equal for edge and screw dislocations, - the
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critical resolved shear stress is greater for glide of screw disloca-
tions. This result also holds if the interaction is stronger for screw
dislocations. If the {nteraction is stronger for edge dislocations
then the magnitude of the difference determines which dislocation type

controls yielding.

Orowan looping is an exahple of a hardening mechanism for which
the force of interaction is proportional to the line tension. Since
the resistance is independent of dislocation character, yielding in
materials principally hardened by non—shearable precipitates should be
screw controlled (Melander, 1978). Melander and Persson (1978a) make
this argument for modulus hardening on the basis of the relation
suggested by Russell and Brown (1972)

/T X5 VN (1V.30)

p = a-(T particle

matrix
The line tension ratio is approximately independent of dislocation
character. Transmission electron microscopy indicates that screw dislo-
cations are present in the deformed material when it is hardened
primarily by GP zones, which Melander and Persson argue strengthen

primarily by modulus hardening.
IV.3.3 1Implications.

- In alloys hardened by ordered precipitates that are shearable at
small sizes, there is a transition in deformation mode near peak
strength when the precipitates become large enough that dislocation
looping is preferred over shear. This transition impliessthat in mate-
rials in which the yielding is edge—controlled in the underaged condi-
tion will exhibit screw-controlled yielding in the overaged condition
and some mixture in the vicinity of peak strength, This suggestion has
not been experimentally verified. In particular, observatioms of
screw—controlled deformation in underaged aluminum—-lithiom alloys sug—

gest that the entire analysis may be flawed.
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IV.4 Precipitate coarsening
I1V.4.1 Experimental parameters.

A model of tﬁe critical resolved shear stress should predict the
aging curve of a precipitation hardened material as the precipitates
coarsen and account for the experimentally observed hardening and sof-
.tening. A general model of the effect of precipitate coarsening on
yield strength would ideally incorporate the volume fraction of preci-
pitate present, a description of the shape of the precipitate size
distribution and the evolufion of the precipitate size distribution and
volume fraction as a function of time, temperature and/or average
precipitate radius., Unfortunately, a material-independent general
expression of this sorf does not exist. In lieu of an exact expres—
sion, the simplest assumption is that the precipitate size distribution
coarsens at constant volume fraction in a self-similar fashion, so that
the shape of the distribution as a function of r/{r> does not evolve

with time. The viability of this assumption is discussed below.

IV.4.2 Models of precipitate coarsening.

A number of theoretical models of diffusion—controlled coarsening
~exist (Lifshitz and Slyozov, 1961; Wagner, 1961; Ardell, 1972; Brails-
ford and Wynblatt, 1979; Davies, Nash and Stevens, 1980; Voorhees and
Glicksman, 1984a, 1984b). All of these apptoaches give rise to the

Lifshitz~Slyozov-Wagner (LSW) coarsening relation

3 -3 =kt (IV.31)
However, the models differ with regard to the predicted shape of the
asymptotic precipitate size distribution. The Lifshitz-Slyozov model
predicts a strfct cutoff at r/<r> = 1.5 in the limit of zero volume
fraction., Because larger radii are observed experimentally, other
investigators attempted to eliminate the upper limit by accounting
. properly for the finite volume fraction of precipitates (Ardell,
Brailsford and Wynblatt) and the possibility of encounters (Davies, et
al.). The Davies, Nash, and Stevens model leads to a more symmetric
distribution than the others that may better reflect reality. However,

none of these models is in perfect agreemeﬁt with the limited amount of
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precise experimental data..

IV.4.3 Evolution of the shﬁpe of the precipitate size distribution.

Precipitate size distributions of various shapes can be created by
appropriate thermal treatments. This point is illustrated by the sample
distributions for binary aluminum-lithium alloys shown in figure IV.10
(data from Gu, Liedl, Sanders and Welpmann, 1985a and Baumann, 1984;
see also Jensrud and Ryum, 1984), At least some of these are almost
certainly non—-equilibrium distributions; their coarsening behavior is
not known, (The Voorhees and Glicksman model (1984a) can be used to
consider the evolution of a distribution, but thé.computation is diffi-
cult.) None of the theoretical predictions for the shape of the preci-
pitate size distributions fit the experimentally measured distributions
exactly., The Davies model is probably most satisfactory because it

leads to the most symmetrical diﬁtribution.

Gu et al. have done an extensive study of the behavior of the
precipitate size distribution during coarsening in binary aluminum-—
lithium alloys (Gu. Liedl, Kulwicki and Sanders, 1985b; Gu, Liedl,
Mahalingam and Sanders, 1986). These alloys provide an excellent model
system for coarsening studies because the precipitates are spherical in
shape (an assumption of all coarsening theories that is not always
fulfilled) and almost exclusively of one type (8’). The precipitate
size distributions were found to coarsen self-similarly over the range
of compositions exarined. Gu, et al, (1986) found that it was possible
to specify the precipitate size distribution as a function of lithium
content by the two parameters of a Weibull distribution, The distri-
butions were essentiaily independent of aging temperature and time.
They have a symﬁetrical shape better approximated by a normal curve
than by the skewed curves suggested by all the theories except Davies
et al.,; however, Gu et al (1985b) could not find evidence for the

encounters assumed by that model.

The work of Gu, et al. suggests that it maf eventually be possible
to describe experimental precipitate size.distributions by a small
number of easily determined parameters. It also suggests that for a
given distribution, the¢assumption of self-similar coarsening is pro-

bably a rather good one, This assumption has the advantage of not
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adding an additional parameter to the model. If the initial precipi-
tate size distribution is far from fhe asymptotic shape and coarsens
toward it, then there may be an error associated with this assumption.
However, even in this case, the approximation should improve as the
. alloy approaches peak strength, the region of greatest engineering

interest.

IV.4.4 Volume fraction effects during coarsening

The change in volume fractionm durzng precipitate coarsen1ng can be
estxmated on thermodynamic grounds (Porter and Easterling, 1981). The
impetus for the change is the fact that the presence of the precipi-
tate-matrix interface alters the equilibrium between the matrix and
precipitate phases, The requirement of mechanical equiiibrium across

the curved interface leads to a pressure difference
AP = 27a5/r (1v.32)

where Yap is the surface energy of the interface. The pressure diffe-—
rence decreases the magnitude of the free energy change for the reac-

tion by the amount

AG‘Y = VAP, . (1v.33)
As the precipitate radius increases during coarsening, the free energy
change due to th: interface decreases in magnitude, resulting in fur-
ther precipitation of the second phase and decreased solubility of the

-solute species.

The concentration of solute in the matrix may be expressed as a

function of particle radius:

where Xt and Xo are the concentrations corresponding to precipitates of
average radius r and infinity (i.e. at equilibrium), respectively, Ydﬁ
is the interfacial free energy, Q is the atomic volume in the precipi-
tate and kp is Boltzmann's constant. Brailsford and Wynblatt (1979)

use this equation in their cbarsening theory to predict a change in’
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precipitate volume fraction given approximately by
g(r) = 0'(ri) + [1—-0(ti)](ZYaBQXO./kBT)(lKri) - 1/<e>) (IV.35)

where @(r) is the volume fraction when the average particle radius is

{r>, and ry

volume fractionm, respectively.

and U(r,) are the initial precipitate radius and initjal

Figure IV.11 shows the cumulative change in precipitate volume
fraction during coarsening for the specific example'of A13Li (') in
aluminum. As can be seen from the figure, the increase is most pro-
nounced when the volume fraction of precipitates is low and most of the
increase occurs while the brecipitates are less than 20b in diameter.
~ Peak strength generally occurs at radii greater than 40b. At that
,Size, the rate of change of the volume fraétion with precipitate radius

is extremely low, Not surprisingly, the larger the surface energy of
the precipitate—matrix interface, the greatér the effect. Since the
critical resolved shear stress is proportional to the square root of
the volume fraction of precipitates, the maximum effect on the critical
resolved shear stress is a factor of [0(inf)/ﬂ(0)}1/2. For aluminum-
lithium the increase is unlikely to ever be greater thin 2%, Only when
the precipitates have a high interfacial energy or when the volume
fraction is extremely low is the effect significant enough to require

its inclusion in the computation of aging curves.
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IV.5 Obstacle strength in order-hardened alloys

In theory, the determination of the strength of an obstacle to
dislocation glide is straightforward; it is given by the peak force in
the force-distance curve that describes the dislocation—obstacle inter-
action. In practiée, obstacle strength must be quantified by computing
the maximum interaction force in some fashion. Since the details of
the interaction are not always known, this procedure is not always
trivial. The following discussion will consider ways of Quantifying
the interaction force for the particular case of alloys hardened by

coherent, ordered precipitates with relativel& low misfit strains.,

In alloys that are primarily order-hardened, the principal deter-
minant of stremgth is the antiphase boundary energy y of the precipi-
tated phase. Considerable effort.has‘been expended to determine its
value by a variety of techniques in various model systems. First
principles calculations of the strengthening due to ordering generally
depend on khowledge of the antiphase boundary energy as do predictions
of superdislocation spacings and activation energies for cross-slip,

etc.

Correct snpetposition of sévetal stfengthening mecuanisms for the
same obstacle (discussed in Iv.1.2) is impoftaﬁt for determinations of
obstacle strength, Since the objective here is to quantify the
strength of.the precipitate, even if the strengthening is dominated by
order hardening, other contfibutions must be considered. There are
three distinct methods commonly used to find the antiphase boundary
energy: (1) theoretical calculation of disordering energy, (2) measure-
ment of minimum Orowan loop size, and (3) measurement of snperdisloﬁa—
tion pair spacing. The theoretical calculation is the simplest tech—
niéue. but it gives a value for the antiphase boundary energy that is
independeht of the_misfit strain, which must then be accounted for
separately. In the other two methods, it is possible to include the
effect of a small misfit strain in the order strengthening term. The
" three methods are discussed below,  Unfortunately, each has its disad-
vantages and the value of this critical experimental parameter is

always somewhat uncertain.
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IV.5.1 Theoretical calculations of the antiphase boundary energy.

. Calculation of the energy associated with an order-disorder trans-
formation at a given temperature is a problem that has been much stu-
died by materials scientists and solid state physicists who wish to
‘calculate phase diagrams. The simplest model, termed the Ising model,
considers the energy change om ordering due to first nearest neighbor

interactions only
¢ = AF ='vab - 1/2(vaa + vbb) (IV.36)

where a and b represent two types of atoms. Using a model of this
type, Flinn (1960) derives the energy of an antiphase boundary of the
type ao/2(110> in the L1, crystal., For this case he gets

y = 2nV/N/252 (IV.37)

where h 2> k, a is the lattice parameter of the disordered phase, and N
= h2+k2+12. The above formula assumes that the long range order of the
phase is perfect. If it is not, the energy must be multiplied by Sz,
where S is the longz-range order parameter, in order to givevthe correct

answer.

The real sticking point is the value of the ordering potential V.

A Bragg—Williams type approximation gives a value of the form
V = kBTCIZFanZ ' . (1Iv.38)

where Tc is the critical order-disorder temperature (determined from
the phase diagram), kg is Boltzmann’s constant, Fa and Fb are the
atomic fractions of a and b atoms, and Z is the number of first nearest
neighbors (Muto and Takagi, 1955).

For the L12 structure, quasichemical calculations that describe

atomic interactions in more detail give (Marcinkowski, 1963)
vV = kBTc/0.82 | (IV.39)

which gives considerably larger answers. Quasichemical calculations

are probably more accurate, so equation IV.39 is the preferred form for
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the ordering potential. Combining with equation IV.37 gives
¥ = 2.42 bkpT /N'/242 (IV.40)
for the L12 crystal structure.

The calculations above are intended to determine the aﬁtiphase
boundary energy in bulk material, not precipitates., The simplest adap-—
tation to the precipitate case (admittedly without theoretical basis)
is to use the Tc for the bulk phase, If the Tc is not known the
highest temperature at which the precipitate is stable is often substi-
tuted. This substitution gives a lower limit (sometimes very low) om

the antiphase boundary energy.

Unfortunately, many of the papers in which these calculations are
done for A13Livand Ni3A1 quote these formulas incorrectly. The confu-
sion propagates forward into later papers that use these papers as
sources. Copley and Kear (1967), Furukawa, Miura and Nemoto (1985) and
Jensrud (1985) all have erromeouns equations. Sample calculations for

bixiary aluminum-lithium alloys are included in section VI.9.3.2.1,

IV.5.2 Minimum precipitate size for Orowan looping.

The minimum precipitate size for Orowan looping is an easily
measurable experimental quantity that has a reiatively precise value,
As such it is a good descriptor of strength., If tks-exact criterion
for Orowan looping in a particular system were known, then y and the
looping radius would be redundant information since they would depend
on one another directly in a known way. Orowan looping begins when the
ptecipitate.size reaches the point of equality in the force balance
between the stress for Orowan looping and the stress for particle
shear, In the simplest case, when the particle strength comes entirely
from the formation of the antiphase boundary (i.e. when misfit is

"negligible), the looping condition is
2T = 2r 0.7 | (IV.41)

In order to make numerical comparisons with the results of others

possible, it is assumed in this equation that Orowan looping occurs
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when B is equal to one (1) rather than the value of 0.7 suggested by
Bacon et al, (1973). Substituting the de Wit-Koehler form of the line
tension given in equation IV.19 gives an expression for the antiphase

boundary energy in terms of the minimum looping radius
v = (6% /4y o I (1 + v - 3usin?E)/(1 - VIUa (1 /b)), (IV.42)
For screw dislocations, tﬁis equation. reduces to |
Y = (Gb2/4mzy o0 ) ((1 + 0)/(1 - v} (1a (1,/5). (IV.43)

Note that the antiphase boundary energy calculated from this equation
is larger than the omne that would be obtained from the results of Bacon
et al. (1973) by a factor of (1 + v)/(0.7) or approximately a factor of
two (2). These factors have been omitted so that literature results
for the antiphase boundary energy as determined by various techniques

can be compared.

Similar calculations exist in the literature for other definitions
of the Orowan stress. Kelly and Nicholson (1963) use v = Gb/L, Raynor
and Silcock (1970) use

v = 662/8nr; (2 - v)/(1 - v)]la (8ry, /b) (IV.44)

and Cﬁaturvedi, Lloyd and Chung (1976) use a more sophisticated version

that includes two additional terms to account for the effect of cohe-

rency strains and the applied stress on the energy to form an Orowan
el .

loop.

’

IV.5.3 Dislocation pair spacing calculations.

Dislocations that shear ordered precipitates are weakly coupled
sincé later dislocations restore the order of the precipitate removed
by the first dislocation. For the L12 structure, the superlattiée
dislocation has twice the Burgers vector of matrix dislocation, so the

dislocations travel in pairs,

The spacing of the second dislocation from the first and its

effect on the strength of the material depend on its interaction with
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the precipitates. If the sheared obstacles are either attractive or
transparent to the second dislocation, then the pair spacing is a mea-—
ningful descriptor and may be simply calculated. If the sheared preci-—
pitates repel the second dislocation (for instance in the case of a
misfitting ordered particle), then the second dislocation assumes a
local strong line configuration and the dislocation spacing varies
significahtly along the dislocation line. In this case the dislocation

pair spacing is some type of average of the various spacings observed.

Despite the problem of finding a suitable average dislocation pair
spacing, the pair spacing is often calculated in terms of the antiphase
bbundary energy of the precipitate from the repulsive force between two

dislocations. This repulsive force is
R' = Gb2/(27K8) (1 ~ vcos2g) (1V.45)

where £ is the angle between the Bufgefs vector and the dislocation
line and & is the dislocation spacing (Raynor and Silcock, 1970)., If
the trailing dislocation is reasonably straight, the force due to the

applied stress that is opposed by the precipitates is
F o= 1/2(¢3/2.1/261/2,71/2 | ¢y (1V.46)

where the yf term comes from the attractive force from the antiphase
boundary area between the two dislocations. (This equation again
negiects dislocation self-interactions.) Eqnatiné IV.45 and IV.46 and
solving for the dislocation pair spacing (sinéelsolving for y is com-

plicated aithough possible) we have
§ = (6b2/n)(1-veos28/1-v)/ (322612 712 4 4y, (v

Ardell et al.(i976) also calculate the dislocation pair spacing
for the case when the second dislocation does not lie within the preci-
pitates. Using a model which considers the aree swept out by the
dislocation when it is released by the precipitate, they get the equa-

tion
8 = Gb2/nu(l-v)y - (Iv.48)

where
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u = {(4B + B2/3)1/2 _ By;2(1-B/6) (IV.49) -

3n2y£<r>/32T. (1V.50)

and ' B

This equation is considerably simplified if either f£f or {r> is small
since u reduces to 81/2 when B<<1. The simplified equation is almost
the same as equation IV.49, but omits the factor of (l—vcosz§). - If the
dislocation is .straight, u should be replaced by (u_+ f). Ardell et al.
get reasonable agreement with the spacings observed experimentally in

Ni3A1 if they measure <r> and f, and assume T and 7.

IV.5.4 Discussion of methods for determining strength of ordered

precipitates.

It should be clear from the above discussion that in an alloy
hardened by ordered precipitates with low misfit strains the disloca-
tion pair spacing, the minimum radius for Orowan ldoping, and the
antiphase boundary energy are closely related quantities., If our
theories of dislocation—-dislocation and dislocation-precipitate inter-

_actidns‘were exact and our measurements of experimental parameters and .
'material properties accurate, these quantities would be entirely redun—
dant; any two could be calculated if the third were known. The theory
could then be written using these properties interchangeably as conve-
nient. Then it would only be necessary to determine one of these
properties for a particulﬁr material in order to use the theory to
predict strengthening behavior. However, each of the equations above
that relates these parameters contains approximations. It ié obviousiy'
relevant to assess which methéd contains the most realistic approxima-

" tions on a case by case basis,

Some experimental input is reﬁuired no matter what method is used.
This input may be the dislocation pair spacing, the minimum observable
loop size, the strength at some point on the aging curve (Melander and
Persson, 1978a) or the y that makes the theory fit the experimental
data best (Munjal and Ardell, 1975). A problem common to all these
methods is that the antiphase boundary energy may change with precipi-

_tate radius, composition and/or temperature.

The first principles calculation of the antiphase boundary energy
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from the T, is the most commonly used method of determining the anti-
phase boundary energy. It is an appealing choice since knowledge of
the crystal structure of the ordered phase and the Tc from the phase
diagram is all that is required. However, it is hard to get something
for nothing, and the assumption that y is dominated by first neafest
neighbor interactions probably means that the calculation is at best
somewhat qualitative, While the accuracy is probably better than an
order of magnitude, quoting antiphase boundary emergies to better than
10% accuracy is clearly unreasonable. The calculation is best used to
examine the qualitative effects on the antiphase boundary energy of the

Tc‘ the dominant glide plane and the degree of long-range order,

An additional problem with the theoretical calculation is that
while most investigators have assumed that the long range order parame-
ter S is unity, logic and the little available experimental data sug-
gest that this is rarely the case. Since the miscibility gap in which
the ordered precipitate is stable has finite width at any temperature
Beloy the critical temperature, the precipitate is not expected to be
stoichiometric. The long range order parameter must then be less than
one, "Since y is proportional to the square of S, even a small devia-
tion from perfect order can cause an additional ten or twenty percent

error in the calculated valne of the antiphase boundary energy.

The dislocation pair spacihg is a commonly used technique for
determining the antiphase boundary energy. The contouring of the
dislocations means that some type of average spacing must be used. A
perhaps more important issue boncerns the magnitude of aﬁy relaxation

that might occur in the thin foil. Nembach, Suzuki, Ichihara and

Takeuchi (1985) have shown that qualitatively different.results are -

obtained for thick specimens that resemble bulk material and thin
specimens that do not provide sufficient constraint on the disloca-
" tions. Other investigators feel that the method is reliable and that
any effects of relaxation on the dislocation pair spacing are probably
minimal (Ardell, 1986).

The chief source of relaxation is the repulsion between the two
dislocations. In particular, the trailing dislocation will relax away
from the bowed out first dislocation, The first dislocation is ex-
pected to remain bowed even if relaxation is .important because the bow-

out increases the separation of the dislocations. Relaxation is op-
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. posed by the frictional stress imposed by the matfix and by the preci-
pitates most recently sheared by the second dislocation. It seems
unlikely that the second dislocation will shear any precipitates as it
moves backward (reintroducing an antiphase boundary), so the magnifude
of the relaxation effect should be determined by the relative sizes of
the dislocation pair spacing & and the mean square obstacle spacing_ls.
When the obstacles are far apart, the second dislocation may relax
backwards for some distance before it prevented from doing so by preci-
pitates. When the obstacles are closely spacing; the backward relaxa-

tion is immediately arrested.

The minimum precipitate size for Orowan looping is the other quan-—
tity that measures obstacle strength. This method has the drawback
that it also requires careful transmission electron microscopy to
determine either the minimum looped radius or the maximum sheared
precipitae radius. The looping radius can only be related to the other
two quantities by a theory of strengthening that includes all operative
mechanisms and cofrectly accounts for the effects of obstacle spacing
and size. Therefore, the values for y and & are only as good as the
strengthening theory used to calculate them. However, this wmethod has
the advantage that the strengthening theory can be formulated directly
in terms of the looping radius. This technique is in effect a first
order perturbation correction to the theory, since the misfit strain is
implicitly included in the value of the antiphase boundary energy,
" although it is not explicitly considered. (Using the dislocation pair
spacing would also be a first order perturbation solution, but a much
more awkward one.) The improved accuracy of this approach stems from
the fact that it accounts for the influence on the strength of effects
that are neglected in the theory, at least for the lead dislocation.
It has the second advantage that it provides a blind fit to thé data;
no critical resolved shear stress data are used as input to the theory
that is supposed to predict it. On the basis of these arguments, the
looping radius would seem to be a highly desirable choice for a measure

of precipitate strength.
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IV.6 Effect of superdislocations on the critical resolved shear

stress. o
IV.6.1 Calculation of superdislocation coupling,

In alloys hardened by shearable ordered particles, two or more
dislocations may become coupled since the passage of the first disloca-
tion destroys the order of the particle and the passage of some number
of subsequent dislocations restores it. Since these diélocations are
close together, their effect on the critical résolved'shear stress is
similar to the uncoupled pileup of dislocations considered in Appendix
C. The equations which describe the situation are slightly different
since the dislocations are coupled by the antiphase boundary area be-

tween them. For the case of a dislocation pair, the force balance is

given by
1 _ APP _ i _
T Te T, =0 (IV.51)
2 _ - _APP i_
Te T + Te = 0

where tg is the critical resolved shear stress for glide of the nth
dislocation, tgpp is the applied resolved shear stress and Té is the
interaction shear stress. The interaction stress can be broken into
two terms, one of which describes the dislocation repulsion important
above and the second of which describes the effect of the antiphase

boundary area between the two dislocations,

Brown and Ham (1971) (and Gleiter and Hornbogen, 1965) specify
the values of the shear stresses above for the force balance at the
point when the first dislocation breaks through the particle. For
volume fractions less than 0.2, using the average obstacle spacings L
and particle sizes d along each dislocation and an applied stress tAPP

they find
_ APP - -
dyy - bTL; - RL; = 0 (Iv.52)
~dyy - beAPPL, 4+ RL, = 0

where R is the repulsive interaction force per unit length of disloca-

tion. The d;,y and RL; terms in equation IV.52 correspond to the tg and
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11

c terms, respectively, in equation IV.51. Eliminating R gives

<APP = (y/20)(a,/L - 4,/L,). (IV.53)

For this equation to be at all useful, we have to make assumptions
about the term in parentheses. For instance, letting d2/L2 =0 gives

the simple pileup case.

Both Brown and Ham and Gleiter and Hornbogen find that if the
first dislocation is near looping, the two dislocations will act essen—
tially as simple pileup of two dislocations (i.e. the effect of the
antiphase boundary area can be neglected). If the second dislocation
is nearly straight,vthe common case, then the stress on the first

dislocation is given by
vl = 2cAPP oy e

where f is the volume fraction of ordered phase. In this case the
stress on the first dislocation is greater than for a simple pileup of

two dislocations.
Gleiter and Hornbogen (1968) show a plot of decreasing critical
resolved shear stress as a function of particle radius due to this

effect; however, their illustration exaggerates the magnitude of the

effect.

IV.6.2 Experimental Observations

Nembach et al., 1985 show high-voltage electron microscope (HVEM)

-pictures of superdislocations in a Ni3A1 superalloy. The second dislo-

cation is essentially straight even though the first one is strongly
bowed. This observation contradicts suggestions by other workers that
the second dislocation is pulled forward by the attraction of the anti-
phase boundary area between the dislocations. De Hosson, Huis in't
Veld, Tamler and Kanert (1984) show HVEM pictures of A13Li hardened

alloys. They also show an essentially straight second dislocation.
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IV.6.3 Strong line approximation

The average line calculations described in IV.6.1 are not really
satisfactory fof a strong line theory. Fortunately, in some cases the
situation is actually simplified by a strong line approximation. If
the obstacles are attractive to the second dislocation (e.g. misfit-
free ordered precipitates), then in general the stress on the lead
dislocation should be greater than 2tAPP. Since the critical resolved
shear stress is controlled by the strongest line, it should also be
controlled by the line on which the applied stress is magnified least.
This rationalization justifies the simple solution of taking the stress
on the lead dislocation to be precisely double the applied stress (i.e.
ignoring the coupling of the dislocations). However, if the obstacles
are fepulsive to the second dislocation (e.g. precipitates with non-
negligible misfit. strains), then the second dislocation will take on a
local strong line configuration. The stress on the lead dislocation is
then some indeterminate amount less than ZtAPP. The strength of the
joint strong configuration for the two dislocations has not been ana-

lyzed statistically.

Anothér question that remains unsolved is what hapbens after peak
strength when the coupling between dislocations weakens because an
increasing number of precipitates are looped rather than sheared. The
uncoupling should cause the critical resolved shear stress to drop off
after peak strength much more slowly than it would otherwise. However,

no theory for this situation currently exists.
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V. Theoretical analysis of the precipitate size distribution effect.

It has been recognized for some time that obstac1e$ to dislocation
glide in real systehs almost always have a range of strengths. It has
generally been assumed that the average particle describes the distri-
bution reasonably well. For many purposes, this is.in fact the case.
However, there have been a few investigations of tﬁe effect of this
precipitate size distribution on strength that indicate there is an
effect. The strong line solution for the critical resolved shear
stress described in Section II combined with the analysis of Section IV
“provides the basic tools for an analysis. of the effect of the precipi-

tate size distribution on the aging curve.

The concept of investigating the aging behavior of real ailoys
" with the strong line solution is not new. Melander and coworkers have
published a series of papers on the age hardening behavior of various
precipitation and dispersion hardened alloys. They use a formalism
based on the Hanson and Morris theory that is similar but not identi-
cal 'to the one described here, Melander uses series expansions of the
basic formulae (see Altintas, 1978) and a variable line tension
(described in Section. IV.2)., On the basis of these assumptions, compu-
tations of the force-distance relation for the dislocation interaction
with the precipitates, and one forced match in the strengthening pro-
file, Melander is able to achieve good agreement for the aging curve
for oxide~dispersion-hardened copper (1978), underaged and peakaged
Al1ZnMg (Melander and Persson, 1978a and 1978b), and Al-Ag (Jansson and
Melander, 1979).

Melander and Persson (1978c) also examine hardqning in a v’
hardened nickel alloy. The dislocation-particle intefaction is calcu-
lated for the superposition of the misfit and ordéring-related interac-
tions on the assumption that each dislocation of the pair is decomposed
into partials. Edge control of deformation is assumed. The antiphase
boundary energy is used as a fitting parameter., Again good agreement
is obtained up to peak strength, Melander does not discuss the alloy
design implications of his results., This work is reviewed in an

article by Melander and Jansson (1979).

This section contains a full derivation using assumptions based on

the discussion of Section IV, A discussion of the results comprises
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Section VI. The application of the theory to bimary aluminuh—lithium

alloys is discussed in Section VII.
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V.1 Assumptions of Model

The random array solution for the critical resolved shear stress
for dislocation glide is based on a simple idealization bf the general
problem., It has been used with reasonable sucess to model a number of
experimental situations. The chief assumptions, along with the sec—

tions in which they have been discussed, are as follows:

(1) The dislocation is a flexible line of constant line tension T

‘for a given mean square obstacle spacing l;. (Section II)

(2) The obstacles to dislocation glide are modelled as a random
array of immobile point barriers. The propertiés of the point obstacle
are adjusted so that the interaction of the dislocation with the obsta-
cle is mathematically eduivalent to its interaction in the glide plane

with the physical obstacle. (Section II)

(3) The configuration of the dislocation is described by a unique
set of pinning points. The critical resolved shear stress of the array
is reached when the dislocation bypasses the weakest point in the

strongest configuration, (Section II)
(4) For a random array of identical obstacles the problem may be
solved analytically using standard statistical techniques. It is con-
venient to define a dimensionless critical resolved shear stress

t* =t /2T (v.1)

where b is the Burgers’ vector in the glide plane. The analytic solu—

tion is then given by
<* = 0.8871(p)3/2 | (v.2)
where f is a dimensionless obstacle strength given by

B = F/2T | (V.3)

‘and F is the force to bypass the obstacle. (Section II)
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(5) The critical resolved shear stress for a mixture of obstacle

types is a quadratic sum
2 _ 32
¢ = T xa(ta) : (V.4)

where x, is the fraction of obstacles of type a and Ta is the CRSS for

an array containing obstacles of type a only. (Sections II and IV.1)

In order to study the effect of the precipitate size distribution
on the yield strength of an alloy hardened by coherent, ordered preci-

pitates the following additional assumptions were made:

(6) The precipitates coarsen according to the LSW rate law and at

constant volume fraction (in the interior of a grain). (Section IV.4)

(7) The shape of the precipitate size distribution as a function

of r/t does not evolve during coarsening. (Section IV.4)

(8) Each spherical precipitate may be reduced to a set of point
obstacles whose strengths correspond to the effective radii of the
precipitate in the glide planes it intersects. Therefore, even if all
" precipitates are the same size, there will be a distribution of obsta-—

cle sizes in the glide plane.

(9) The strength of the obstacles is assumed to be a functiom of
the radius of the sheared ordered precipitate only. This is equivalent

to neglecting the misfit of the precipitate. (Section IV.5)

(10) The strength of the obstacle may be related to the maximum
obstacle strength, which corresponds to the looping radius. At the
looping radius Orowan looping is first preferred over shearing of the
precipitate. The Orowan condition puts an upper limit on the strength
of the obstacle whatever its physical size. The antiphase boundary
energy is not required to compute the obstacle strengths. (Section

1V.5)

(11) There is considerable confusion in the literature over the
appropriate form of the line tension. Following the approach of Bacon,
et al. (1973), we have adopted equation IV.26. The outer and inner

cutoff radii are equated with ls and b respectively. The line tension
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for a screw dislocation is then
T = [6b2/4x(1 - »)11n(1 /D). (v.5)

We have also adopted the upper limit on B of 0.7 suggested by
Bacon, et al. (Sections IV.2 and IV.3)

(12) The dislocations move as superdislocation pairs. The
effect of the pair is that the actual stress at the obstacle is twice
the applied stress. Therefore, the applied shear stress at yielding is
half the value it would be if the dislocations moved separately. This
factor is not included in the formulae given in this section, but is
included in the numerical calculatioﬁs for Al-Li alloys in Section VI
(Section IV.6)

(13) The calculated critical resolved shear stress due to the
obstacle distribution represents the increment in the total strength of
the alloy due to precipitate hardening only and should properly be
denoted At. (Section IV.1)

s

V.2 Critical resolved shear stress for precipitates of uniform size.
V.2.1 Obstacle strength distribution.

Using the formalism described above, the critical resolved
shear stress as a function of.precigitate radius may be calculated for
a random distribution of precipitates coarsening at constant volume
fraction. This approach lends itself to the prediction of the shape of
an aging curve. Initially, the precipitates are faken to be of uniform
size, which is equivalent to shrinking the distribution of precxpxtate
sizes down to a delta function of the same volume fraction. It is both
convenient and physically realistic to define a dimensionless precipi-

tate radius

' = r/b. . | (V.6)

.
where r is generally rounded to the nearest integer. For notational
ease, the integer value is denoted I when it appears as the index of a

sum.
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Each spherical precipitate of radius e may be reduced to a set of
point obstacles generated by the intetsegtion of the precipitate with a
series of parallel glide planeé. The effective radius of the precipi-
tate within the glide plane is assumed to be the radius of the circle
defined by the intersection of the précipitate with the glide plane.
Since the glide plane lies between two atomic planes, the radius of the
precipitate in the glide plane is defined to be the larger of the radii

in the two adjacent atomic planes to avoid ambiguity. The inter-
. ,

o
. L. * * e
set of effective radii [ro. T1s oo rI} where

sections of a precipitate of radius r_  with the glide planes forms the

r; = [(r;)2 - a2]1/2. . (v.7)
Note that each precipitate contributes two obstacles of each effective
radius, one on either side of the central plane (see figure V.1). Each
of these effective radii of interaction may be reduced to a point
obstacle with strength Ba determined by a force relition that depends
on the physical properties of th: precipitate as well as on the effec-
tive radius. If the precipitates are randomly distributed within a
volume, then the obstacle types will be randomly distributed with
respect to strength and location within the glide plane. The fraction
of obstacles with each strength corresponds to thé fraction of obsta-
cles with each effective radius generated by the ptecipitate. " The

obstacle strength distribution for this case is shown in figure V.2.

The fraction of obstacles of a given strength is given by the
number of obstacles possessing that strength divided by the total
number of pbstacles.-N. Let x, be the fraction of obstacles with
strength B . When all the precipitates are the same size, the frac-
tions of all obstacles with radii r; are the same and equal to X The
total number of obstacles is given by

<l -1 (V.8)

where the index a begins at 0. It follows that the fraction of obsta-

cles with strength Ba is given by

x = 1/I = 1/:". ' (V.9)
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Figure V.1 Generation of effective radii of point obstacles from a
single physical precipitate intersected by several glide

planes.
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107

The dimensionless éritical resolved shear stress for the dis-
tribution of obstacles created by precipitates of a single size may now
be determined. From equations V.2 and V.4, the critical resolved shear

stress for the multiple obstacle type case is
2 _ I 3
(rc) = O.7870x03a=0 Ba o (v.10)

where the maximum value of Ba is Bc‘ the strength at which Orowan
looping occurs. N

To complete the solution, the equation must be rewritten so that
it contains only independent, measurable variables. The variables used
to make the problem dimensionless must also be constant with precipi-

tate radius. Any dependence of the variables B, fB T, t., T and 1s on

c’
the particle radius must be made explicit.

V.2.2 Mean Square Obstacle Spacing.

If the precipitates are coarsening at constant volume fraction,
the value of ls‘ the‘characteristic lepgth.-increases with the precipi-
tate radius (or, equivalently, time). The value of 1 is related to
the dimensionless bbstacle spacing L‘ = n1/2. Let p represent the
number of precipitates in a unit volume at some time t‘; n the cor-
responding number of obstacles, and let Po and n, bq their initial.

values. Then the constant volume fraction condition requires

BN

'p = po(rolr)3. (v.11)
The total number of obstacles is givén-by
»
n = 2pr . (v.12)
= ng(ry/)?
so the dimensionless obstacle spacing is
L* = al/2 = al/2¢:3/c%), (v.13)

The characteristic length 1s is related to the dimensionless spacing by
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1, = a2 = (a/ml/2 = 41/2/1* (V.14)
where A is the area of the glide plane. Therefore the change in the

value of 1s as the precipitates coarsen is given by

1

* * L ] *
s, t = IS,O(LO/Lt) = Is'-o(r /ro) (Va].S)

* : :
where 1 and L, are the characteristic length and dimensionless

s,t
* *
spacing at time t and 1s 0 and LO are their initial values.

Using relation V.15, the dimensionless critical resolved

shear stress may be conveniently redefined so that it is proportional
os

to the actual critical resolved shear stress at all times, Let.t ,

the proportional critical resolved shear stress be defined so that

o

T = tls,OblzT - (V.16)
&, %, %
=T (Ltl Lo).

If the line tension is taken tn be constant, all the variables on the

righthand side of this equation except T are constant with time,

The nﬁmetical value of'ls 0’ the initial characteristic length,
may be determined in terms of experimental parameters: § the volume

fraction of the precipitate, r the initial radius of the precipitate

o)
at time t=0, and the Burgers ventor for the dislocation in the matrix,
From equation V.14, the characteristic length is

1,2 = A/n = V/bn = 1/bn, (v.17)

where n, is the number of obstacles per unit volume. The number of

precipitates per unit volume, Py is related to the volume fraction @
by
p,[(4/3)n:3] = 9 (V.18)

or,'using equation V.12,

20, (c/b)[(4/3)nc3) = 0. (V.19)
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From equation V.17, the value of ls,O is given by

1]

150 = [{(4/3)nx3)/ (202 31172 (V.20)

[2n/3ﬂ]1/2r°

]

which is the result quoted by Ardell (1985). The value of r, is gene-
rally taken as proportional to b, For lack of a good argument for a

equal to b,

particular value, it is simplest to set Ty

This form of 1s makes the dependence of the critical resolved
shear stress on the volume fraction of precipitates explicit. The
critical resolved shear stress is proportional to the square root of

the volume fraction, a standard result.

V.2.3 Obstacle strength,
¥

v.2.3.1 Constant line tension case.

The random array model derived by Hanson and Morris (1975a and
1975b) and mény other models of strengthening consider the line tension
to be constant, Therefore, it is of interest to determine the varia-
tion of the critical resolved shear stress with precipitate radius for
constant line tension and then to compare that result to that for

variable line tension. "

The dimensionless obstacle strength is determined by the force F
that the dislocation must exert on the obstacle to bypass it. For
ordered precipitates whose strength comes mainly from the antiphase
boundary created when they are sheared, the force is linear with the
precipitate radins. However, at large precipitate sizes, the precipi-
tate will no longer be sheared, Instead, the dislocation will bypass
the precipitate by Orowan looping. The force required for Orowan
looping israpfroximately constant with precipitate size and is related
to the minimum precipitate radius rloop at which Orowan looping occurs.
When the precipitate is reduced to point obstacles, its strengthening
characteristics are retained, and the dimensionless obstacle strength

is given by
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* * * ,
Bg = Fg/2T = Br, /2T T £ Tioop (V.21a)
Be = F /2T = Brj,, /2T To > Tloop (V.21b)

where r;oop is the minimum dimensionless radius at which Orowan looping
occurs and Bc is the largest value of p observed. The shear strength
of the precipitate given in equation V.21la may be rewritten in terms of
equation V.21b so that it is expressed in terms of experimentally

observable_ variables

' *, * ‘ |
By = Bc(ta/rloop)' (V.22)
The numerical constant B in equations V.21la and V.21b contains the

antiphase boundary energy. The value of ﬁc has been set at 0.7.

The relationship between B and c’ (equation V.22) makes it pos-—
sible to rewrite relation V.10 in terms of r‘. viz:
.2 _ » 3,1 , ¢, * 3 :
(rc) = (0.7870/«r )(Bc) [Ea (ra/rloop) )| (V.23)
where r; has been redefined 't.o be the effective dimensionless radius

.
and cannot be greater than T o0p® The proportional critical resolved

shear stress is defined as before,
v.2.3.2 Variable line temsion.

As discussed in section IV.2, the line tension is not generally
constant in physical systems. The model can be reformulated in terms
of the line tension of equation IV.26 taken from the results of Bacon
et al. (1973) so that

T = [6b2/4x(1 - v)1{1a (1,/B)] (V.24)
for a screw dislocation., In a system coarsening at constant volume,
this equation impliés that the line tension is an increasing function

of time since the value of ls increases.

The obstacle strength is now given by an analogous pair of equa-
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tions to vV.21:

. ] ® -

By = Fo/2T; = Br /2T; Ty £ To0 (V.25a)
L J - * ]

Bc = Fc/ZTII = Brloop/ZTII ra 7 rl.oop (V.25b)

where Ty is the line tension for the configuration of which B, is a
part and TII is the line tension of the configuration for which rIoop
was determined. The shear strength of the precipitate given in equa-
tion V;22 may be rewritten in terms of equation V.25 so that it is

expressed in terms of experimentally observable variables
s, = : v
Bﬂ = ﬁc(raltloop)(TII/TI). (V.26)

Since the line tension T is defined for the entire configurationm,
the critical resolved shear stréss'for the distribution of obstacles

created by the identical precipitates is

Ctegp? = 0810/ B3T3l (@lyef 03 v

The ratio of line tensionms may be simplified to

Typ/Tp = (1n 1 /b}/{1n 1 ,/b}. o (va2e)

s,loop

 The variable line temnsion also affects the answer through the

.
factor of T in the definition of t <(equation V.1). Again a new
proportional critical resolved shear stress which is constant with time

may again be defined

rro‘ = tlg ¢b/2T, _ B v (v.29)
= tp(L{ /L) ((1n 1 ,/b)/(1n 1 /b))

where Ty is the line tension at t = 0, The final equation, in terms of

precipitate radius is
(xop? = 0.7870/: M) (8 )3 (T /T3 /LD (Un 1 /6)/(Un 1 o/}

S § *, 3 : i
Tq (ra/rloop) (v.30)
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= M1/:M3 (a1 /) /(n 1, /b + 1a (2" /2 )3 *

s,loop

(1 + [1a (*/2)/Un 1, g/00112 » 5L (3727, 07

where M includes some of the constant terms. Diffefent precipitate
size distributions in the same material generally have different values
of 1s 0° To isolate the effect of coarsening, the critical resolved

. The new

shear stress may be normalized by dividing out the value ls.o

. A . o%s
normalized critical resolved shear stress is denoted TT -

V.2.4 ‘Aging curves.

Analyzing equation V.30 for its r-dependence, we find that,

ﬁeglecting the log terms,
01 ~ (N2 <L (331/2, (v.31)

At very small values of r, the sum is dominated by its largest term and

t ~1, If the sum is replaced by r terms which are proportiomal to rs,

172

then © is proportional to . The actual dependence, which includes

the logﬁrithmic terms as well, should be somewhere in between. If we
ignore any dislocation uncoupling effects that might occur after
looping (possibly a rather poor assumption), the critical resolved
shear stress is approxihateiy proportional to 1/r after precipitate

looping begins.

The precipitate radius and the aging time are equivalent variables
if the precipitate .coarsening rate is known. Consequently, the equa-
tions can be reformulated in terms of time so that they represent an

aging curve.

Coherent, spherical precipitates generally coarsen according to

the Lifshitz—-Slyozov—-Wagner rate law
-3 = ke (V.32)
where r, is the initial precipitate radius, r is the radius of the

precipitate at time t and k is a rate constant which is a function of

the diffusivity and the interfacial surface tension. It is convenient
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to write the time in the dimensionless form

t* = kt/c (v.33)

so that the dimensionless coarsening law is given by
("3 = e3a + . (V.34)

At long times this equation reduces to

PAPMENCOLIES | (v.35)

The critical resolved shear stress may then be rewritten in terms
of the time using equation V.34, Rather than substituting in, we can
refer to the dimensional analysis of t(r'). The critical resolved
shear stress should then increase with time proportional to (t‘)1/6.
After looping begins, the critical resolved shear stress is propor—

tional to (t.)—llz.

V.3 Critical resolved shear stress for an arbitrary distribution of

.precipitate sizes.

In real materials, precipitate sizes are always.distributed over
some finite range. Consequently, the critical resolved shear stress
for an arbitrary distribution of precipitate sizes is the.qnantity-of
practical interest. The critichl resolved shear stress for multiple
precipitate sizes may be obtained by a straightforward extension of the
theory for a single precipitate size. The contributions of each preci-
pitate size are summed quadratically in thé same way as the contribu-

tions of each obstacle type were summed above.

The precipitate size distribution is described by a finite number
of elements yq, Y9 eos Vg =+ YE» where E is the total number of ele-
ments in the distribution. Each element is associated with a preci-
pitate radius such that ) > rp_q. €te. Let the fraction of the total
number of precipitates included in element e be denoted by fe' Then

the total number of obstacles is given by

.
“1 %0,efe = 1 (v.36)
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where x and r. have their previbus definitions, but now represent the
precipitates belonging to element e of the distribution. The fraction
of obstacles that would have strength BO,e if only obstacles belonging
to element e were present is denoted Xq- The fraction of obstacles
with radius X9.e is just the fraction of precipitates in element e
times x;. Rewriting equation V.9 for the distribution gives an

expression for )
- r<E * -1
xO = [—e=1 fere ] ° (V937)

The distribution of obstacle sizes created by a Gaussian distribution

of precipitate sizes is shown in figure V.3,

Writing a quadratic sum over the elements of the distribution
leads to an expression for the dimensionless critical resolved shear
stress over the elements of the distribution analogous to that in equa-
tion V.10

“2 _ <Ie o 3
(c5)2 = 0.7870x,T8_, £, % B, 1. ~(V.38)

This equation may be expanded using the expression for Xy in equation
- V.37 and the equations for B given in equatiom V.21 or V.25. As

| *
before, T, vcnnnot be greater than T1o0p*

The dimensionless critical resolved shear stress may be related to
the proportional critical resolved shear stress as before by requiring
the volume fraction of precipitates to be constant., The constant

volume fraction condition for a distribution of precipitate sizes is

33 =<E_ p ()3 (V.39)

<E
~e=1 Po,e(‘o,e -e=1 Pe

where Pe refers to the number of precipitates with radius r Defining

er
. P to be the total number of precipitates allows equation V.39 to be
rewritten in a more convenient form

PoTEoy fg.e(rg ¢)> = Ty f(rg)d (V.40)
"Using this notation the total number of point obstacleé-created by

these precipitates is given by
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- E _ . '
a=cxE o, =pE | ofel (v.41)
Equations V.13, V.15, V.19 and V.41 lead to the dimensionless obstacle
spacing and then to the characteristic leagth 1s £ given by
£ ¢ 3. <E *
e

5 e=1 fef0,e , _
(1 )% = (1 )2 - (V.42)

3 . «E *
“e=1 fe(rO,e) Te=1 feTe
The value of the proportional critical résolved shear stress with con-
stant and variable line tension is defined by this ratio in equationmns

V.16 and V.29, respectively.

The equations above for the critical resolved shear stress asso-—
ciated with distribution of precipitate sizes are thus far independent
of the coarsening law chosen. However, they cannot be evaluated for a
precipitate size distribution unless both the coﬁrsening rate and the

evolution of the shape of the distribution are specified.

If self-similar coarseniiig is dssnmed, the critical resolved shear
stress may be calculated for an arbitrary distribution of precipitate
sizes. The velue of v may be calculated using equations V.29, V.30,
V.38 and V.42, The equation for v is complex, but the overall propor-
tionalities of t to the experimental parameters are the same as those

for the uniform precipitate case,

The value of 1s 0° the initial characteristic length may be deter-
mined in a fashion analogous to the way 1s 0 was determined for the
single precipitate case. By analogy to equation V.20, we have

(14,02 = (@/3nsg ) £or, 3) 1 (0630 26,5, D). (V.43)

The equation for the proportional resolved shear stress may be dimen-

sionalized using this equation,

@
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V.4 Discussion.’

This section considers the implications of the model for age-
hardening behavior and prediction of microstructures optimized for
strength. The discussion focusses on three topics: the effect of
precipitate shape, the effect of the dislocation line tension, and
finally, the effect of the width of the precipitate size distribution
"on the strengthening., Results on the latter topic are compared and

contrasted with those of other investigators.
V.4.1 Strength of plate—like precipitates,

. Plate-like precipitates are usually observed when the misfit
strain in the habit plane is relatively high, while spherical precipi-
tates are generally observed when it is low., High-strength alloys are
usually hardened by plate-like precipitates. The increase in strength
is partially due to the high misfit strain and its localization at the
perimeter of the plate, but it can also be shown that increased

strengthening should be observed on purely geometric grounds.

Because the plate distributes the precipitated material more effi-
ciently, a higher streﬁgth is predicted even if the misfit strain is
ignored. Figure V.4 shows a spherical precipitate and a plate—like
(disc-shaped) precipitate of equal volume. Since strengthening in'
athermal glide is determined entirely by the maximum in the force-
distance relation for the precipitate-dislocation interaction, the
plate strengthens much more efficiently. It provides both more obsta-
cles, because it intersects more glide planes, and stronger obstacles
because the width of the plate face is larger than the diameter of the
sphere of equivalent volume. The increase in strength could be quanti-
fied for a specific plate aspect ratio and habit plane. The misfit
strain around the plate could be included in the model by considering

the effective size of the plate to be increased.
V.4.2 Adﬁantages of uniform precipitate size

The general form of an aging curve for an order—hardened alloy
that obeys Lifshitz-Slyozov-Wagner coarsening is discussed in Section '
V.2.4. Peak strength occurs because precipitate strength no longer

increases with size beyond the looping radius. Since the precipitates
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are coarsening at constant volume fraction, the largest precipitates
are growing at the expense of smaller ones. Consequently, the total
number of precipitates is constantly decreasing. When enough of the
precipitates have radii greater than the looping radius, the number of
precipitates decreases faster than the strength of the iemaining preci-

pitates increases. The critical resolved shear stress then begins to

decrease.

The value of the critical resolved shear stress depends more
strongly on precipitate radius after looping begins than before. Con-
sequently, when a distribution of precipitate sizes éxists. this solu-
tion predicts that peak strength occurs almost immediately after the
largest of the precipitates reaches the loopinj radius, not when the
average—sized precipitate reaches the looping radius. This will be
true whether the line tension is assumed to be constant or to vary
according to equation V.24, By contrast, the amount of strengthening
provided by the precipitates is most closely related to the average
precipitate radius or the average obstacle strength., As a result, the
maximum achievable strength increases as the precipitate size dis~
tribution narrows. As illustrated in figure V.5, when the largest
precipitates reach the looping radius, the average precipitate radius
of a narrow distribution is greater than the average radius for a broad
distribution. The strength of the narrow distribution is correspon-
dingly higher. Figure V.6 shows the same effect quantitatively in
aging curves for Gaussian precipitate size distributions of various-
widths illustrated in figure V.7. The magnitude of this effect for
experimentally measured precipitate size distributions in binary alumi-

num-lithium alloys is considered in Section Vi.4.
V.4.3 Effect of line tension assumption.

The variable line tension in the Bacon, et al formulation is given

by equation V.26, For a screw dislocation, the line tension is
T = [6b2/(4n)(1 - »)1[1n (1  ,/B)]. (V.44)

Figure V.8 illustrates the magnitude of the effect of the variatiom in
line tension on the critical resolved shear stress as a function of
radius and time for a uniform precipitate size distribution coarsening

at constant volume fraction. The strength is decreased by a factor of
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roughly [1n (ls,t/b)]—llz. The constant line tension is taken as
T = Gb2/2 ‘ (V.45)

The constant line tension underestimates the line tension at small
radii and overestimates it later on. The effect on the aging curve for
a precipitates of uniform size is illustrated in figure V.9. The value
of the constant line tension was chosen so that the peak strengths are
equal. The choices of the constant line tension and of the inner and
outer cutoff radiivin the variable line tension are of qualitative
importance. However, the shape of the aging éurve is not changed

dramatically.

V.4.4 Comments on the effect of the width of the precipitate size

distribution.

The possible effects of the width of the precipitate size distri-
bution on the critical resolved shear stress have been investigated by
computer simulation (Foreman and Makin, 1967; Altintas, 1978), theore-
tical analysis (Altintas, 1978; Glazer, Edgecumbe and Morris, 1985;
Glazer and Morris, 1986) and experimental studies (Munjal and Ardell,
1976). The purpose of this section is to reconcile the results of

these authors..

Foreman and Makin considered the effect of distribution width for
two types of obstacle &istributions in their computer simulations:
square breaking angle spectra and square obstacle strength spectra.
The square breaking aﬁgle spectrum is biased toward strong obstacles.
Their results indicate that the wider distribution weakens the array in
some regimes and strengthens it in others. Altintas (1978) considered
the same cases analytically using the theory of Hanson and Morris
(1975a, 1975b). His solutions agree closely with computer simulation
results. The results for the square angle distribution from Foreman
and Makin and Altintas are reproduced in figure V.10, The excellent
agreement between theory and computer simulation suggests that the
Hanson and Morris theory and its extensions can be used with confidence
to address the effects of distribution width on the critical resolved

shear stress.
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Munjal and Ardell (1976) describe the only attempt to measure
experimentally the effect of the width of the precipitate size distri-
bution on the critical resolved shear stress, They studied a Ni-Al
alloy aged to near peak strength. A 30% increase in the width of the
precipitate size distribution was found to result in an 8% decrease in
the strengthening increment due tb precipitation. "Munjal and Ardell
compare this result to computer simulation results of Foreman and
Makin, Their analysis suggests that Foreman and Makin predict a much
smaller effect from the width of the distribution. .Since the simula-
tion was performed using point obstacles, Munjal and Ardell suggest

. that the finite size of the physical obstacles may'be responsible for

the difference. -

Munjal and Ardell make several éssumptions to compare their data
-with Foreman and Makin'’s results. Foreman and Makin considered square
distributions of breaking angles. Although a square distribution of
obstacles is unlikely to arise in a real material, Munjal and Ardell
argue that the effect of other distributions with the same standard
deviation should be similar. Accordingly, they compute a breaking
angle histogram for comparison; however, they do so from the distribu-
tion of precipitate radii rather than from the distribution of obstacle
radii (precipitate radii on glide planes). This choice causes their
histograms to be both narrower and strongly biased toward strong obsta-—
cles. Both of these errors lessen the size of the distribution width
effect predicted by Foreman and Makin. As a consequence, the 8%
decrease in strength measured by Munjal and Ardell is not obviously

inconsistent with the results of Foreman and Makin.

The results of Munjal and Ardell are consistent with the predic-
tions of the Hanson and Morris theory and the extemsion to precipitate
size distributions given here. Munjal and Ardell compare the critical
resolved shear stresses at a fixed average particle radius that corre-
sponds to peak stréngth for the narrower distribution. Since widening
the distribution has the effect of shifting peak strength to smaller
average radii, the wider distribution is overaged at this average
radius. Consequently, the observed decrease in strength due to the
widened distribution is greater than the difference between the respec-—
tive peak strengths., The change in the critical resolved shear stress
is a strong function of the average radius in this regime. If Munjal

and Ardell had chosen to fix the average particle radius at the radius
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for peak strength of the wider distribution, they might have even
concluded that widening the distribution increased the critical

resolved shear stress.
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VI. Applications of the model to the aluminum-lithium alloy system
VI.1 Importance of the Al-Li system

The properties of binary aluminum-lithium alloys alloys have
received a great deal of attention in the last tem years. This
research is a consequence of intense industrial interest in commer-
cializing more complex aluminum alloys containing lithium. The driving

forces behind the development effort are summarized briefly below,

The duﬁl objectives of minimizing operating costs and maximizing
perfo;mance of aircraft and aerospace systems provide a powerful incen-
tive to reduce aircraft empty weight. Recent design studies indicate
that structural weight is more effectively lowered by reducing the
density of structural materials than by improving their mechanical
properties (Quist, Narayanan and Wingert, 1981), This conclusion has
provided the impetus for the development and application of resin
composites. However, the highly aﬁisotropic properties of composites
make their application difficult, and it seems likely that at least
commercial aircraft will remain primarily aluminum. As a consequence,
there is a strong impetus to develop advanced high strength aluminum
alloys. This challenge is responsible for a renewed interest in produ- .
cing low density aluminum alloys to replace current alloys.vA promising
series of alioys has been developed which coitain additions of lithium

to reduce their density.

Intensive research and development in the last several years have
led to the registration of several aluminum-lithium alloy§ intended to
replace at lower density'standard commercial aluminum alloys such as
2024, an Al-Cu-Mg-Si alloy and 7075, an Al-Zn-Mg alloy. One of the new
alloys is 2090, designed to have properties similar to those of 7075-
T651. In addition to having a significantly lower density, 2090 is
superior to 7075 in many respects; in fact, although low toughness “has
been a problem of aluminum-lithium alloys in the past, the room tempe-
rature strength—~toughness relationship of 2090 is better that of any
other standard aerospace alloy, at least in the longitudinal and trans-—
verse directions (Sawtell, Bretz, Petit and Vasudevan, 1984). Its
cryogenic properties are also superibr to aluminum alloys currently
employed for cryogenic tankage, space systems and high—-field magnets

(Glazer, Verzasconi, Dalder, Yu, Emigh, Ritchie and Morris, 1985).



130

Aluminum-lithium alloys are expected to be incorporated into commercial

aircraft within the next few years.

In the course of the alloy development effort for the high-
strength, low density alloys described above, the properties of the
binary aluminum~-lithium system have received considerable attention.
Although the commercial and near-commercial alloys all contain other
alloying additions for high strength and toughness, an understanding of
the unique properties of the binary system is.fundamental to under-

standing these more complex alloys.

VI.2 Al-Li system as a model system.

The aluminum-lithium system is an excellent model system for the
modified strong line solution of the critical resolved shear stress
model (Section V). The solution in Section V is designed to predict
the aging curve of an alloy strengthened by an ordered precipitate. In
the following section, the assumptions of the solution are compared
with the actual behavior of the binary aluminum-lithium system. Sec—
tion VI.3 contains a detailed discussion of the properties of the

aluminum-lithium system relevant to each point in this summary.
The assumptions of the solution are:

(1) The bina:y Al-Li system is hardened by an ordered precipitate
~1A13Li, denoted ',

The 8’ precipitate is the only type of obstacle that contributes
significantly to the stremgth of the alloy.

(2) Each spherical precipitate may be reduced to a set of point
obstacles whose strengths correspond to the effective radii of

the precipitate in the glide planes it intersects.

The &' ﬁrecipitates are spherical and remain so even at very

large sizes.

(3) The strength of the obstacles is assumed to be a function of the -

radius of the sheared_ordéred precipitate only. This is equiva-
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(5)

(6)

(7

(8)
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lent to neglecting the misfit of the precipitate.

The misfit of the 8’ precipitate is extremely low, so neglecting

its effect is a good assuhption.

The precipitates coarsen according to the Lifshitz-Slyozov-Wagner
(LSW) rate law.

The precipitates appear to coarsen according to LSW from very

small sizes.

The shape of the precipitate size distribution as a function of

r/T does not change during c¢oarsening.

Precipitate size distributions have been measured and found to

coarsen in a self-similar fashion.

The precipitates coarsen at approximately constant volume frac—

tion.

The interfacial energy of the &’ precipitate in the aluminum
matrix is small, Therefore, volume fraction increases during
coarsening are small for ptécipitatcs of reasonable size and

volume fraction.
Thq line tension for screw dislocations is used.

Line tension considerations suggest that edge dislocations should
control deformation because it is more difficult for an edge
dislocation to shear an ordered precipitate. However, screw

dislocations are observed experimentally to control deformation.

The dislocations move as superdislocation pairs. The effect of
this pairing is that the actual stress at the obstacle is twice

the applied stress.

Superdislocation pairs are observed and their properties as a

function of precipitate distribution have been studied.
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(9) The strength of an obstacle may be related to the maximum obstacle
strength. An obstacle of maximum strength corresponds to a preci-
pitate of radius greater than or equal to the looping radius, the
size at which Orowan looping is first preferred over shearing of

the precipitate.

The looping radius has been determined by transmission electron

microscopy.

(10) The calculated critical resolved shear stress due to the obstacle
distribution represents the increment in the total strength of
the alloy due to precipitate hardening only and should properly
be denoted Ar.

Several investigators have tried to address the contribution of
the matrix to the strength and to examine the effect of solid

solution hardening and variations in grain size.

VI.3 Properties of the aluminum-lithium alloy system.

Each of the items in the previous sectiomn will now be discussed in
more detail. The discussion will again be limited to binary or near—

binary aluminum-lithium alloys.
VI.3.1 The precipitate.

The strengthening precipitate in the binary Al-Li system is A13Li
(6'), which has the face~centered cubic based L12 ordered crystal
structure (Silcock, 1960; Noble and Thompson, 1971). Precise values
for the solubility of 1lithium in aluminum are difficult to determine
because of the difficulty in detecting lithium with most analytical
techniques., However, considerable progress has been made. The data on
the Al-rich portion of the phase diagram including the region in which
the 8’ precipitate is observed have been summarized by Williams
(1981). A binary phase diagram for the Al-rich portion of the phase
diagram is included as figure VI.1 (Sanders and Starke, 1983). A more
complete phase diagram for the Al-Li system is given by McAllister
(1982).
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As suggested in the solution of Section V, the Burgers vector-is
the natural unit of length for precipitate dimensions. The Burgers
vector b of the {111} planes in aluminum is the length (a°/2)<110>,
which has magnitude b = 0.29 nm.

VI.3.2 Precipitate shape.

Precipitates of 3’ are almost always very close to spherical in
shape (Kulwicki and Sanders, 1983) although other shapes (Baumann and
Williams, 1985a) and discontinuously precipitated material (Williams
and Edington, 1976; Makin and Ralph, 1984) are sometimes observed. Gu
et al. (1985b) have measured the aspect ratio of nearly spherical &'
precipitates. At small sizes some ellipsoidal precipitates are obser—
ved (possibly products of precipitate coalescence), but at longer aging
times, the precipitates are increasingly spherical. Unlike the analo-
gous L12 precipitate y’ found in superalloys, which becomes cuboidal at
large sizes, the 8’ precipitates are neither observed nor expected to
change shape as they coarsen (Glazer, et al, 1985; Muller, Bubeck and
Gerold, 1985). The precipitate shape is in excellent correspondence
wiih the spherical precipitate assumption used to generate the obstacle

strength distribution in Section V.
VI.3.3 Degree of order strengthening.

The lattice mismatch between the &' precipitate and the matrix is
extremely small. Estimates range from -0.0018 to -0.0008 (Noble and
Thompson, 1971;Williams and Edington, 1975; Sainfort and Guyot, 1985;
Tamura, Mori and Nakamura, 1970; Baumann and Williams, 1983). The
actual value is probably at the lower end of this range. Because the
mismatch is so small, it is reasonable to make the simplifying assump-
tion that coherency strengthening can be entirely neglected in favor of

order hardening.
Vi.3.4 Precipitate coarsening behavior.

The coarsening behavior of 8’ is discussed in numerous papers
(Noble and Thompson, 1971; Williams and Edington, 1974; Kulwicki and
~Sanders, 1983; Baumann and Williams, 1984; Jensrud and Ryum, 1984).
The &' precipitates coarsen according to Lifshitz-Slyozov-Wagner kine-

tics, The LSW rate constant is.tequired if the solution for the criti-
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cal resolved shear stress is to be interconvertible between precipi-
tate radius and aging time. It has been determined for a variety of

lithium contents and temperatures by the above-mentioned investigators.

It is not clear at this time if the &' precipitates form by
nucleation and growth, from GP zone precursors or because the solid
solution is unstable with respect to decomposition followed by
ordering. Plots of precipitate coarsening behavior as a function of
time suggest an initial radius very near zero. There have been two
attempts to determine a critical radius for homdgeneous nucleation,
Baumann and Williams (1984) measured a critical radius of 2 nm (~ 7b)
at 473 K for an alloy containing 7.9 a/o Li in a reversion experi-
ment, Livet and Bloch (1985) determined the critical radius by small
angle x-ray scattering to be 0.6 nm (~2b) at 423 K for an alloy con-
taining 7.5 a/o Li. However, there is some evidence for a precursor
to the &' precipitate (Ceresara, Giarda and Sanchez, 1977; Nozato and
Nakai, 1977). '

VI.3.5 Precipitate size distributions.

Precipitate size distributions of various shapes can be created by
appropriate thermal treatments. This point is illustrated by the sample
distributions for bihary aluminum~lithium alloys. shown in figure IV,10
(Gu et al.,, 1985ai Baumann, 1984; see also Jensrud and Ryum, 1983), At
least some of these are almost certainly non-equilibrium distributions;
their coarsening behavior is not known.

The element Zr is often added to aluminum alloys because it forms
the compound A132r, which inhibits recrystallization. The &' phase may
precipitate on the A13Zr particles forming composite spheroids (Makin
and Ralph, 1984; Gayle and Vandersande, 1985). The 8’ on these parti-
cles coarsens at the same rate as the isolated &’. If these particles
are not distinguished from &' particles that do not have an Al3Zr core,
the 8’ precipitate size distribution will be improperly biased toward
large particles (Gu et al., 1985a). The strengthening behavior of

these composite particles is not understood.

Gu et al. (1985b, 1986) have done an extensive study of the beha-
vior of the precipitate size distribution in binary aluminum-lithium

alloys. The precipitate size distribution coarsened self-similarly
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over the range of compositions examined. They found that it was possi-
ble to specify the precipitate size distribution as a function of
lithium content by the two parameters of a Weibull distribution. These
distributions were essentially independent of aging temperature and
time. The distributions had a symmetrical shape better approximated by
a normal curve than by the skewed curves suggested by most of the
‘theories discussed in section IV.4; however, Gu et al. could not find
evidence for the encounters assumed by the Davies et al. model, which

does predict a normal curve.
VI.3.6 Volume fraction effects during coarsening.

As discussed in Section IV.4, the equilibrium solubility in the
matrix decreases as the precipitates coarsen due to the decreasing
importance of the surface energy of the precipitate. As a consequence,
the precipitate volume fraction increases during coarsening. In this
section, the magnitude of the effect in the aluminum-lithium system is

estimated.

Numerous investigators have attempted to measure the interfacial
surface energy between the §' precipitate and the matrix. Some
measured values and techniques by which they were determined are given
in Table 2. Most of the measurements of the surface energy are made by
determining the diffusivity, D, and the LSW coarsening constant K
(denoted D,K in the table). These parameters are related by the equa-

tion
K = syaﬁxovmzo/mr (VII.1)

where Vn is the molar volume. Both D and K are strong functions of
temperature; yaB varies much less. The interfacial surface energy
almost certainly varies with temperature since the solubility of
lithium in the matrix changes; however, the range of measured values

far exceeds the expected variation.

Kulwiéki and Sanders (1983) note that in other systems containing
coherent precipitates, the interfacial energy is always less than 250
mI/mz, For precipitates with misfits less than 1% (¢cf &' ~ 0.2%), the
interfacial surface energy is generally less than 20 mJ/mz. -On this

basis, the lower values in Table 2 seem more reliable. The D,K method



Table 2. Measuvrements of Al-Al3Li surface energy.

Investigator Alloy Method® | Surface Energy (nJ /m?)
Tamura, Mori and Nakamura (1570) ? ? 180

Noble and Thompson (1971) f a/o D,k 240
Williams and Edington (1975) n/a misfit vs other L1, mat'ls 25
Jensrud and Ryum (1984) 3 w/o D,K 50
Baumann and Williams (1984) 8 a/o critical radius 14

Livet and Bloch (1985) 7.5 alo D,k 14
Sainfort and Guyot (1985) 2-3 vw/o D,K

Lifshitz-Slyozov—Wagner coarsening constant K,

<30

- D,K refers to calculations based on the relationship between the diffusivity D and

the

LET
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is suospect since both of these parameters vary strongly with tempera-
ture and precipitate volume fraction. The value of 14 mJ/m2 obtained
by Baumann and Williams (1984) is used here to calculate the change in

equilibrium precipitate volume fraction during coarsening

The effect on the equilibrium volume fraction is illustrated for
binary aluminum~-lithium elloys in figure IV.11. The effect is large
only for extremely small precipitates or very small volume fractioms
(and even then only a few percent for this alloy system). Most investi-
gations seem to agree with this finding (e.g. Baumann and Williams,
1985b); however, Miura, Matsui, Furukawa and Nemoto (1985) found that
the volume fraction increased substantially throughout the aging pro- -
cess and did not stabilize until after peak strength was reached for an
Al-3w/o Li alloy.

Vi.3.7 Dislocation line temsion.

. Line tension considerations suggest that edge dislocations should
control yielding at least until Orowan looping begins at or near peak
strength. However, Miura, et al. (1985) observed long straight screw
dislocations in the underaged material, iudicating that screw disloca-
tions may actually control the yield strength. Cross—slip of screw
dislocations is known to be an important factor controlling the varia-
tion of yield strength with temperature inlez ordered alloys. The
applicability of this theory to alloys hardened by relatively small
volume fractions of L12 precipitates is still in question, but it is
possible that cross—slip prevents the screw dislocations from gliding
out. However, Minra, et al. did not observe any slip on {010} planes

even in favorably oriented single crystals.

The numerical value of the line tension may be calculated as func-—
tion of 1s if the shear modulus is known. A good estimate is 3/8 the
value of the elastic modulus, which is easily measured in uniaxial
tension. A representative value for the shear modulus is 30 GPa. There
is a subtlety here that Ardell (1985) points out. The relevant shear
modulus is the shear modulus in the glide plane. In anisotropic crys-—
tals, the modulus will be different along each plane. Since aluminum
is very close to isotropic, the error in ignoring this correction is
small (from 25.9 to 24.9 GPa (Ardell, 1985)). The shear modulus of
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aluminum—-lithium has been measufed by a number of investigators (Miura
et al, (1985) suggests 30.2.GP£; Jensrud (1985) suggests 27.6 or 28.6
GPa for the matrix and 30.6 for the precipitate; Muller et al (1985)
found 26-28.5 for an Al-AljLi mixture containing 0-4 a/o Li at room

temperature).

V1.3.8 Superdislocations.

Deformation in aluminum~lithium alloys occurs by the motion of
dislocations along {111} planes, the close—packed planes in the face-
centered cubic structure. In underaged and peak—aged alloys, in which
8' precipitates are sheared, dislocations occur in pairs since the

Burgers' vector of the &' precipitate is twice that of the matrix.

As mentioned earlier, the Burgers vector of the {111} planes in
the aluminum matrix is the length (a,/2)<110>, which is approximately
0.29 nm, A

As expected, the dislocations are not coupled in the overaged
condition when Orowan looping is dominant (Sainfort and Guyot, 1985;
Miura, et al., 1985). The uncoupling is reflected in a rapid increase
in the dislocation pair spacing as a function of aging time when the

 precipitates are large (Tamura, Mori and Nakamura, 1972).

VI.3.9 Obstacle strength,.

The preferfed method for gquantifying the obstacle strength is
experimental measurement of the looping radius (see Sectiom IV.5). The
needed experimental data is available for the aluminam—lithium system
and is discussed in Section VI.3.9.1. The obstacle strength may also

be calculated; the computation is included as Section VI.3.9.2,
VI.3.9.1 Direct measurements of the looping radius,

The minimum size at which the Orowan condition is observed puts an
upper limit on the strength of the obstacle, whatever its phy51031
size. Miura, et al, (1985) have determined that dislocation loops do

not stand away from 8’ precipitates by a measurable distance. This
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means that measuring the minimum dislocation loop size is equivalent to
measuring the minimum size of looped precipitates. Only upper and
lower limits on the looping radius can be determined from photographic
observafions,_since only precipitate sizes clearly visible in the
micrographs can be considered. In addition it is not ‘always possible
~to ascertain if the observed loop lies on a glide plane that is also a
precipitate diameter. Transmission electron micrographs from de Hos-
son, et al. (1984) suggest an upper limit on the looping radius in a
2.2 w/o Li alloy of approximately 25 nm for a mean square particle
spacing of about 0.9 pum. Sainfort and Guyot (1985) measured a looping
radius of 18 nm for an Al-3w/o Li with a volume fraction of 25 percent.
Miura, et al. (1985) measured a looping radius of approximately 30 nm

in a similar alloy. Furukawa, et al. (1985) quote 25 nm.
VI.3.9.2 Calculations of the antiphase boundary energy.

Calculations of the sort described in Section IV.5 that quantify
the strength of the particle may be performed for the aluminum—lithium

system,
vi.3.9.2.1 Calculations of y for A13L1.

Two investigators have calculated the antiphase boundary enekgy
for the &' precipitate to date; unfortunately, neither calculation is

done correctly.

Recall from Section IV.5.1 that the energy of an antiphasé_boun-
dary of type ao/2(110> in the L1, crystal structure may be calculated

from the formula
y = 2.42 hkgT /NY/242 (IV.40)

‘where h 2 k, a is the lattice parameter of the disordered phase, Tc is
the critical order—-disorder temperature (determined from the phase dia—

gram), kg is Boltzmann's constant, and N = h2+k2+12e

The first calculation is done by Furukawa, et al (1985). There
apparently is a misprint in the paper and "a" should be "ago" In
addition, the formula is missing the multiplicative factor 1/0.82.

Their calculation is done using a critical ordering temperature of 548
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K, which is lower than the peak temperature at which &' is observed.
The second calculation is dome by Jensrud (1985) ostensibly using the
same theory for the calculation. However, the formula he quotes is
completely wrong, causing him to get‘an unreasonably high value for the

antiphase boundary energy and distorting his other calculations,

A lower limit on the antiphase boundary energy can be estimated by
using tﬁe peak temperature at which the &' phase is experimentally
observed. The valunes in the literature range from 573 K (Noble and
Thompson, 1971) to 613 K (Williams and Edington 1975). From these
temperatures, a lower limit on the antiphase bbundary energy is approx-

imately 70 mJ/mz. The actual antiphase boundary energy is expected to

“be greater,

VI.3.9.2.2 Snperdislocaﬁion spacings.

A number of investigators have attempted to determine the anti-
phase boundary energy from dislocation pair spacings (Sainfort and -
Guyot, 1985; Tamura et al, 1972; de Hosson et &1, 1984; Huang and
Ardell, 1986). The values of the antiphase boundary energy measured in
this way range from 130 to 195 nl/m2.

VIJ.QJ.3 Calculation from minimum looped particle size for Al-Li.

No calculations of this sort exist in the literature, However,
sufficient data exist for one case in de Hosson et al, (1984). For
Tloop = 25-30 nm and L = 1, = 0.9 x 103 nm, the antiphase boundary
energy from the equation IV.42 is 110—135.mJ/m2. A looping radius of

‘25 nm is in the middle of the range of”the reported values. The choice

fortuitonsly leads to exactly the antiphase boundary energy calculated
by de Hosson et al. from superdislocation pair spacings. Assuming a
looping radius of 20 nm for the same mean square precipitate spacing
leads to an antiphase boundary energy of about 170 mJ/mZ. All of these
values are in reasonable agreement with values determined from super-

dislocation pair spacings.
VI.3.10 Total strength,

Several investigators have attempted to determine the relative

contributions of all the hardening mechanisms that impart strength to
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binary alu@inum-lithium alloys (Miura et al,, 1985; Jensrud and Ryum,
1985). While it is generally agreed that order hardening dominates the
strength; the superpositiion techniques used to determine the influence

of other factors are questionable.

Jensrud and Ryum (1984) meassured the variation in the critical
resoived shear stress with grain size, The alloys obey a Hall-Petch
relationship in all aging conditions. The Hall-Petch coefficient k is
approximately 0.1 MPavm in the as—quenched material, about 0.82 in
underaged material and 0.90 in overaged material. These.tesults con~
tradict results of Hansen and Bronsted (1985) that kﬂp decreases during

aging.

VI.4 Predictions of the critical résolved shear stress in Al-Li

alloys.

Using the solution for the critical resolved shear stress in Sec—
tion V and numerical values from Section VI.3, the critical resolved
shear stress can be determined. Calculated 'aging curves’ for the
_experimentally obtained precipitate size distributions measured by Gu’
et al. (1985a) and Baumann (1984) (shown in figure IV.10) are given in
figure VI.2. The results of Section V for uniform precipitate size are
shown for cohparison. These calculations assume a looping radius of 30
nm for ls = 0.9 ph and an initial radius of 1b. The distributions were
normalized to a volume fraction of 0.2. As can be seen from the fi-
gures, the more sharply peaked the distribﬁtion, the more effectively
it strengthens. The theoretical increment in Atc is large enough to
have alloy design implications., It should be noted that the effect of
grain size is assumed to be consfant along the aging curve and is

therefore included in the matrix strength (see Section IV.1.4.3),

Direct comparison of the theoretical and experimental strengthe—
ning increment from the coarsening of &' is possible for the precipi-
tate size distribution shown in figure VI.3 from Gu et al. (1985b) for
A1—2.78Li-0.3Mn,aged‘at 200°C. Theoretical aging curves were calcu-—
lated for a looping radius of 25 nm, which is an intermediat§ choice
from the currently available data. The experihental and theoretical
aging curves are shown in figure VI.4, (It should be noted that this
plqt‘differs from the ome in Glazer; et al. (1985) and Glazer and

Morris (1986) both in the choice of looping radius and in the proper
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incorporation of the fact that much of the lithium remains in solu-
tion.) The theoretical coarsening rate has been fixed using the experi-
mentally determined LSW rate constant. Since the quenched alloy undoub
tedly contains some atom clusters, the theoretical aging curve has been
shifted to slightly shorter times to obtain the best fit, The streagth
increment for both yield strength curves is the increase over the
‘lowest measured strength. To convert theoretical critical resolved
shear stress values to yield strengths, a Taylor factor of 3 has been
assumed. The figure shows that the theoretical and experimental aging
curves are in excellent agreement up to peak strength, Beyond peak
strength, the model is no longer valid since it does not account for
the uncoupling of paired dislocations after Orowan looping begins. This
uncoupling would cause the strength to drop off more gradually after

the peak.
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VII. Conclusion.

This paper outlines the development of a model of the age-—
hardening behavior of alloys strengthened by coherent, ordered precipi-
tates. The model is then used to consider the effect of the precipi~-
tate size distribution on the critical resolved shear stress and final-
ly, to obtain quantitative predictions for strengthening in binary
aluminum—lithium alloys hardened by &' precipitates.

The problem considered here is a special case of the general
problem of modeling the strengthening of a crystalline material by
inhomogeneities that interact with gliding dislocations. A model of
precipitate hardening must also account for the observed rise and fall
in strength as the precipitates coarsen. The random array model has
been most useful in modeling this behavior, This model has four basic
premises:' 4
(1) The materiai is modelled in terms of a dislocation glide plane, a

hypothetical plane between two atomic planes,

(2) The.obstacles to dislocation glide are idealized as point obstacles
which interact similarly with the dislocatioa.

(3) The obstacles are randomly distributed in the glide plane,

(4) The dislocation is treated as a flexible, extemsible string with a
definite line tension.

The random array model was first proposed in the late 1950's.
There‘have been many attempts to solve it mathematically since then,
.This paper has focussed on one of the more accurate solutions to the
model for relatively strong obstacles, the Hanson and Morris strong
line model. The distinguishing feature of this model is its focus on
the interaction of the dislocation configuration with the arrﬁy rather
than on fhe interaction of isolated dislocation segments with particu-—
lar obstacles. This view makes it possible to equate the critical
resolved shear stress with the stress required to bypass the strongest
line in the array, a powerful concept. The Hanson and Morris solution
also led to a quadratic summing rule to describe the effects of obsta-
cles of various strengths.

The Banson and Morris solution contains the elements of the age—
hardening problem; however, there are a large number of problems that
must be addressed to make it apply quantitatively or, in some cases,
- qualitatively, to real systems, These include the variability of the
line tension with dislocation character, the relative energies asso-

ciated with particle shear and looping, the actual strengths of the
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obstacles, and the effect of superdislocations on order hardening, to
name a few. Not all of these problems have been solved satisfactorily,
but it is possible to account for their effects at least partially, It
is probable that at least their qualitative consequences can be pro-
‘perly included. _

Probably the single most important problem that remains is the
proper incorporation of the results of Bacon et al. on the effects of
dislocation self-interactions on particle shear and looping. The
initial steps here do not fully consider the effects of dislocation
self-interactions on the effective line temsion and,rtherefore, on the
consequences of self-interactions for quantitative determinations of
particle strength. The impact of these reéults on summing rules for
combinations of obstacles that include some very stromng obstacles is
also as yet unknown. _

The solution for the critical resolved shear stress derived in
Section V is a modified version of the Hanson and Morris solution for a
random array of point obstacles. This solution leads to predictions of
aging behavior that are in reasonably good quantitative agreement with
measured behavior in binary aluminum-lithium alloys hardened by &'
precipitates. These results are a vindication, to some extent, of the
assumptions incorporated in the model. They suggest that the solution
may be used with confidence to do theoretical "experiments" that lead to
predictions of more optimized microstructures., The precipitate shape
and precipitate size distribution are two microstructural features whose
consequences can be explored using this solution. In both cases, it can
be concluded that strengthening is most efficient for a particular
microstructure (e.g. plate—like precipitates and uniform precipitate

size distribution)., Undoubtedly, there are other important microstruc-—
toral characteristics whose consequences can be considered in a similar

fashion,
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Appendix A. Derivation of Friedel relation.

The Friedel relation may be simply derived using geometrical argu-—
ments for the case in which all obstacles are randomly distributed and
have the same strength. The line tensiom of the dislocation is assumed
to be constant. The argument depends on two assumptions; the disloca-
tion must bow-out in a circular shape with a large radius (so that the
angles involved are small) and a steady state'nnzipping condition must
hold.

A.l1 Circular bow-out of the dislocation

The first of these assumptions makes it possible to write a force
balance for an infinitesimal length of the dislocation such as that

shown in figure A.l, The force on the dislocation, given by
tb(&lf) = F (A.1)

is balanced by a restoring force due to the line temsion of the dislo-

cation of
2Tsin(d6¥/2) = T(dV¥) : , (A.2)

where the equality holds if the angle ¥ is small. Equating A.1 and A.2

gives a relation between Tt and the bow—out radius

t = T/bR. (A.3)

EN
The value of R may be found in terms of the effective obstacle spacing
lf(as distinct from the mean square obstacle spacing ls). The proof
depends on the rarely stated assumption that the obstacles along the
dislocation line are collinear. For figure A.2, recalling that B is

defined to be sin(¥/2), the relationship is

Rsin(¥/2) = lf/Z
(A.4)
R = lf/Zﬂ
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XBL 863-7536

Figure A.1 Geometry iilnsttating the force balance between the bow—
out of the dislocation of constant line tension under an
applied stross t and the restraining force imposed by

the dislocation line tension.
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Figure A.2 Dislocation—obstacle geometry from which the Friedel

relation is deri\red.
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Substituting A4 into A.3 we get the relation

T = 2TB/bl, ' (A.5)

A.2 The Friedel relation

The problem now is to find the effective obstacle spacing. 1, in
terms of the mean square obstacle spacing 1., a known parameter of the
array. The proof is based on the steady state unzipping condition for
the geometry of figure A.2., As shown in the figure, the steady state
unzipping condition requires that when the dislocation bypasses an
obstacle and bows outward it will be pinned by exactly ome new obsta-

cle. The mathematical expression of this condition is

where Sf is the area the dislocation sweeps out as it moves forward and
-1/2
n »

n_ is the number of obstacles per unit area. Since 1s = ng

S
Se = 1.2 = 1,h (A7)
f s f ,

when the bow-out radius is large. The height h can be eliminated from

the equation by relating it to lf and R since

1.2 + (R-0)2 = §?

(A.8)

2 _,

wheie the second equality is true because h is small compared to R.-
Eliminating h from equations A,7 and A.8 and substituting for r using
equation A.4 gives the desired relation between 1 and 1,

12 = 1.2/ (A.9)
Substituting into A.5 gives

x = 2183/2/b1 (A.10)



Defining ©° = vl b/2T gives

<* = 32

which is the Friedel relation.
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(A.11)
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Appendix B. Derivation of eqns 1 and 2 of Haasen and Labusch (1979).

For the purpose of calculating the critical resolved shear stress,
Nabarro (1972, 1977, 1985) distinguishes between localized and diffuse
obstacles on the basis of the size of the parameter ¥k (which he and
Labusch call B). It pertinent to give this parameter a physical signi-

ficance before continuing.
B.1 Rationale for the Labusch «.

Labusch chooses k¥ as a convenient parameter in his statistical
solution for solid solution hardening. He then concludes that the value
of x describes regimes of behavior in which obstacles behave in a loca-
lized or a diffuse manner. He does not attempt to provide a physical
rationalization for his choice of parameter. According to the scheme
for differentiating localized and diffuse obstacles in Section I,
solute atoms may act as either type of obstacle depending on their
concentration., Consequently, it makes sense that there should be a
parameter like x that defines points along the continuum between
localized and dif.use obstacles. It can be shown that the Schwarz and
Labusch n is directly proportional to Labusch’s x, Nabarro illustrates
the relationship between « and the obstacle concentration and spacing
as part of a series of review papers on solid solution hardening (1972,
1977, 1985). |

The value of « may be used to arbitrarily define the regimes in
which localized and diffuse obstacle statistics apply. Nabarro's
papers (1972, 1975, 1985) are inconsistent abouf whether the point of
division is at x = 1 or «k = 1/2, The reasons for the confusion are

highlighted in the following discussion.

The parameter k is defined in terms of the characteristics of the

dislocation and the obstacles it encounters:
k = F/4Tcw?  (B.A)

where 2w is the range of interaction of the obstacle and ¢ is the

concentration of solute atoms per unit area.
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To rationalize this choice for the diffuseness parameter, Nabarro

begins by defining an effective obstacle spacing
L =1/2cw. ' (B.2)

The reasoning behind eqﬁation B.2 is worthy of comment since there is
some confusion in the literature on this point. The geometry of the
gituation is shown in figure B.1 (after Kocks, Argon and Ashby, 1975).
At zero stress the dislocation lies in a pipe of width 2w, the range of
interaction. The concentration of obstacles per unit area is given by
¢, so the number of obstacles per unit length in a pipe of width 2w is
2wc. It follows that the average spacing between obstacles along the
the dislocation linme is L = 1/2cw. In some papers the diameter of the
range of interaction of the obstacles is given as w’' rather than 2w,

which leads to a spacing of L = 1/cw’.

There is an additional inconsistency in the derivation that re-—
lates to whether the dislocation must be bowed through the radius or
the diameter of the obstacle’s range of interaction.to bypass it. Since
the solute atom restrains the motion of the disloéation either as it
approaches or as it leaves, but not both, it seems reasonable to consij;

der the halfwidth of the interaction range (as in Nabarro, 1972).

With these comments in mind, the derivation of the critical points
of k is most easily accomplished using the derivation of Nabarro 1977
or 1985, The geometry is shown in Figure B.2., If the dislocation
bypasses the obstacle it must bé turned through an angle 0/2 given by

sin (8/2) = w/L = 2cw?, (B.3)

The restoring force opposing the forward motion of the dislocation is

given by
sin (8/2) = F/2T. _ (B.4)

If the restoring force is greater than the forward force then the
dislocation is stable and the perturbation theory used by Labusch for
diffuse obstacles is justified. The inequality that defines the diffuse

obstacle regime is
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XBL862-7303

Figure B.1 Defining geometry for the effective obstacle spacing L =
1/2cw for diffuse obstacles (after Kocks, Argon and

Ashby, 1975).
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Figure B.2 Geometry for derivation of the critical points of «, the

diffuseness parameter defined by Labusch.
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F/2T > 2cw?
or x = F/4Tew? > 1 (B.5)
for obstacles of effective diameter 2w.

In comparing this result to the parameter n used by Schwarz and
Labusch, another discrepancy appears., The equivalence between volume
fraction and areal fraction is generally invoked (Nabarro, 1972;
Schwarz and Labusch, 1978; Kocks, Ashby and Argom, 1975). However, the
glide plane of the dislocation lies between two planes of atoms (Syn,
1973; Nabarro, 1985). The dislocation sees the atoms in both planes,

so the effective concentration per unit area is
¢ = 2v/b> | (B.6)
-and not half of that. It follows that the value of 152 is given by

12 = 1/¢ = v¥/2v. (B.7)
Schwarz and Labusch’s definition is off by a factor of two, but if we
use it and define y,, the range of interaction, to be 2w, then we have
(for 8 xk = 1 criterion) that the critical value of n is ~2 rather than
1. If we define 1s correctly and use Yo = ¥, we get n = 1 as the
criterion corresponding to the x = 1/2 criterion in the papér they’
reference by Nabarro (1972). The correct value, using the x = 1 crite-
rion, is again11='V2.The relationship between the two variables is

therefore

n? = 2/x. ' ' (B.8)

B.2 Critical resolved shear stress equations.

Nabarro (1977) considers 3 distincf cases'(x=1. k<<1, «>>1). In

each case he starts from the common relation
~tbL = F (B.9)

where F is the maximum force exerted by the dislocation on the obstacle
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and defines an appropriate value of L for the case in question, The

effective spacings that Nabarro defines all represent average line

solutions. It is important to note that while Schwarz and Labusch use

a parameter like k¥ in their solution, they use an average obstacle

spacing only for dimensional purposes. Their solution is

strong line solution.
Case 1. For an almost straight dislocation, Nabarro takes
L=L,= 1/2cw.
Substituting in equation B.9 gives
T, = 2Fcw/b.
Cagse 2. For the Mott model (xk<<1, diffuse obstacles) he finds
L = Ly = (T/2Fc2m1/3 = 1 _/1/3

2

where x = F/4Tcw” which gives the result

ty = QFZw/DY 3/ = (130,

Letting ¢ = v/r2 where v is the volume fraction of solute

still a

(B.10)

(B.11)

(B.12)

(B.13)

is what

Haasen and Labusch calls ¢ and letting El' the line energy be equal to

T the line tension andvthe range of interaction w be equal to the

precipitate radius r, we have

1y = @FWZw/T3/m)
ey = QFZ/DY30/:m)
Ty = cF4/3¢2/3(2am) 1/ 3 1y

which is Haasen and Labusch’s equation 2.

(B.14)

Case 3. For the Friedel model (also called the Fleischer regime),

- (k>>1, discrete obstacles) Nabarro has

L=Lg= (2T/cH/2 = vaLy/el/6 = var /42’2

(B.15)



166
so that
wp = (F3e/2m/2(1/0). | (B.16)
Making the same substitutions aé before,

tp = CF3/21/2 7221121/ 1p) (B.17)

which is Haasen and Labusch’s equation 1.
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Appendix C. Force from a dislocation pileup.

Dislocations may be found in close proximity in a crystal for
various reasons. They always maintain a separation & fixed by the
repulsion between them. This repulsion is caused by the stress fields
associated with the dislocations which decay as 1/r. The repulsive
force between the disloéations can be simply calculated for simple
cases for which the dislocation stress field is known, such as pure

edge or pure screw dislocations that have the same Burgers vector.

The force on the lead dislocation- in a pileup of dislocations may

be calculated as follows. Let the critical resolved shear stress for
n
cl
and the applied resolved shear stress be <t

glide of the nth dislocation be < the interaction shear stress be T

APP

c ° Then the force balance

for the nth dislocation is
n _ _APP _ _ _
Te T, <. 0. | (Cc.1)

Solving n equations of this form simultaneously gives the equation

APP _

1 2 n
o Tot Tttt T (C.2)

nt
When t: is zero for all dislocations except the‘first(i.e.only the
first dislocation in the pileup is being restrained by a physical
obstacle), then the resolved shear stress on the lead dislocation is

given by
1 = peAPP (C.3)
Friedel (1964, pp. 260-261) obtains the same result by usihg a
trivial work argument. If the lead dislocation moves forward by an
amount dx, then the other dislocations in the pileup also can move

forward by dx and maintain the same spacing. The total work produced by

the shear stress must then be
V = (ad0)(APPppL = (zlbLrax - (C.4)

so the force on the lead dislocation is again given by equation C.3.
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Note that the dislocations are not coupled in any way. The in-
creased stress at the head of the pileup is often used to explain the
increase in yield strength with decreasing grain size; as the grain
size decreases the maximum pileup length and the force on the lead
dislocation on any given slip line decreases, This model of grain
boundary strengthening is discussed at more length in the section on

summing of strengthening mechanisms.
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