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A THEORETICAL ANALYSIS OF THE AGING RESPONSE OF ORDER HARDENING ALLOYS 

by 

Judith Glazer 

ABSTRACT 

Most precipitation-hardened aluminum alloys are used in specified 

aging conditions. An understanding of the sources of strength and 

yielding behavior is fundamental to defining desirable microstructures 

and designing processing steps to achieve them. In this paper, a model 

of aging behavior of alloys hardened by coherent, ordered precipitates 

with relatively low misfit strains is developed and some of its conse­

quences explored. The model is based on the Hanson and Morris solution 

for the critical resolved shear stress for dislocation glide through a 

random array of obstacles. The model is applied to the specific case 

of o' precipitates in binary aluminum-lithium alloys and found to be in 

good quantitative agreement with measured aging behavior. The effects 

of precipitate size. size distributions and shape on the critical 

resolved shear stress are explored via the model and predictions for 

more optimized microstructures presented~ 
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I. Introduction. 

I.l Summary. 

Most precipitation-hardened aluminum alloys are used in specified 

aging conditions. An understanding of the sources of strength and 

yielding behavior is fundamental to defining desirable microstructures 

and designing processing steps to achieve them. In this paper, a model 

of aging behavior of alloys hardened by coherent, ordered precipitates 

with relatively low misfit &trains is developed and some of its conse­

quences explored. The model is applied to the specific case of &' 
precipitates in binary aluminum-lithium alloys and found to be in good 

quantitative agreement with measured aging behavior. The effects of 

precipitate size, size distributions and shape on the critical resolved 

shear stress are explored via the model and predictions for more opti­

mized microstructures presented. The approach used to.develop the 

model and the implications of the model are summarized below. 

The yield strength of order-hardened alloys is generally modelled 

in terms of the behavior of single crystals. The property that defines 

yielding in single crystals is the critical resolved shear stress, the 

stress at which dislocations glide freely through the crystal. 

It is simplest to define the important parameters of a theory of 

the critical resolved shear stress in the context of a model and its 

solution. The model selected here is common to many investigators. It 

considers tho glide of a dislocation of constant line tension through a 

random array of point obstacles. The solution chosen was developed by 

Hanson and Morris (1975). 

To place tho Hanson and Morris model in proper context, the evolu­

tion of solutions to the random array model of the critical resolved 

shear stress is traced. A clear distinction can be made between models 

that describe the average behavior of a dislocation segment in the 

obstacle array and those that focus on the extrema of the dislocation's 

interaction with the array. The latter theories, termed strong line 

solutions, incorporate the concept that the critical resolved shear 

stress is controlled by the strongest line in the array, rather than 

the average configuration of the dislocation. New solutions and poten-
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tial modifications of existing solutions may be assessed on the basis 

of this fundamental distinction. 

In order to apply the strong line solution of Hanson and Morris 

quantitatively, a number of its assumptions must be reconsidered. To 

study the aging behavior of order-hardened alloys these include: 

• the way in which the effects of obstacles of differing strengths 

sum; 

• the variability of the line tension with dislocation character; 

• the character of the dislocations that control glide; 

• the coarsening behavior of precipitates; 

• the relative energies .associated with particle shear and looping; 

and, 

• the formation of superdislocations and their effect on the deforma­

tion process. 

The Hanson and Morris solution can be modified to incorporate 

these aspects of the behavior of real materials. It is then possible 

to use to model to do computer experiments that examine the effect of 

various possible microstructural changes on strengthening behavior. 

For example, the solution predicts that plate-like precipitates 

strengthen more efficiently than spherical precipitates and that a 

narrow precipitate size distribution strengthens more effectively than 

a wide one. 

Finally, the model is used to make quantitative predictions about 

the aging behavior of binary aluminum-lithium alloys. Aluminum-lithium 

alloys are an ideal model system from two perspectives. First, they 

have received considerable attention recently as consequence of indus­

trial interest in more complex aluminum-lithium based alloys. Second­

ly, the strengthening precipitate, &', has an extremely low misfit 

strain. As a result, strengthening is dominated by order hardening, 

the mechanism the solution given here was designed to model. 

.. 

.. 

.. 
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I.2 Sources of hardening; 

Tho strength of a crystalline material is determined by its resis­

tance to shear. In a perfect crystal, which does not contain disloca­

tions, the theoretical shear strength is determined by the intrinsic 

lattice resistance to the shear of one atomic plane past another. This 

stress is extremely high in comparison to the strengths generally ob­

served in engineering materials and has only been approached in single 

crystal whiskers of high purity. However, dislocations usually are 

present in crystalline materials, and when they are, it is dislocation 

glide that controls the shear strength of the crystal. If the crystal 

is otherwise perfectly homogeneous and dislocations are so few in 

number that their interaction is negligible, tho shear strength corre­

sponds to the force required to overcome the lattice resistance to 

dislocation motion. In general, this strength is relatively low com­

pared to that measured in practice. The increase in shear strength 

comes from tho fact that crystals generally contain various types of 

defects, including dislocations, that interact with the gliding dislo­

cation. It is this interaction that causes the phenomenon termed har­

dening. 

A crystalline material is hardened by any inhomogeneity that inte­

racts with dislocations. A dislocation is an elastic and a crystallo­

graphic defect. Accordingly, it interacts with any other elastic or 

crystallographic defect. Tho defects that harden crystals may be clas­

sified according to type: 

• point defects -- broadly, defined this category includes all 

types of solute hardening including that by vacancies or electronic 

defects. 

• line defects -- other dislocations. This type of interaction is 

also responsible for work hardening. 

• surface defects -- grain boundaries and interfaces • 

• volume defects -- long and short range ordering, second-phase 

inclusions and disporsoids, and precipitates. 

These hardening mechanisms may either superimpose or interact. 
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The obstacles to glide can be classified into two admittedly 

nebulous categories according to whether they are local or diffuse in 

their nature. Localized, or discrete, obstacles are those whose ranges 

·of interaction do not overlap. Misfit-free precipitates fit into this 

category since the boundaries of the precipitate can be precisely de­

fined and the precipitates cannot overlap one another. If the range of 

interaction of the obstacles is not bounded and the elastic interaction 

between the obstacles is not negligible then the obstacles are termed 

diffuse. Short range ordering provides obstacles of this type. The 

ambiguity in these definitions is best illustrated by the case of 

solute atoms. The strain field of a solute atom extends significantly 

beyond its physical size, so if the concentration of solute atoms is 

high, the strain fields overlap and the solute atoms must be considered 

as diffuse obstacles. However, if the concentration of solute atoms is 

low enough, the strain field caused by the solutes is negligible in 

most of the crystal. In this case, the solute atoms may be validly 

treated as localized obstacles. 

Ardell makes a useful differentiation between the diffuse and 

localized obstacle models in his recent review (1985). He suggests that 

the statistics of diffuse obstacles (sometimes referred to as Mott 

statistics) govern those situations in which the dislocation's motion 

is controlled by its release from obstacles it interacts with at zero 

stress, whereas local obstacle statistics (Friedel statistics) govern 

those cases in which the flow stress is controlled by obstacles which 

the dislocation interacts with and must bypass at finite stress. 

Dislocation glide can only be impelled by the shear stress in the 

glide plane of the dislocation, i.e. the resolved shear stress. The 

resolved shear stress at which macroscopic deformation takes place is 

termed tho critical resolved shear stress. It is this quantity that 

correlates to the yield strength of a polycrystalline material. 

1.3. Precipitation hardening. 

This work will focus on the critical resolved shear stress of 

alloys hardened by coherent precipitates. For the purposes of this 

paper. the term "precipitates" is used to refer to coherent p·recipi-
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tates. Precipitates generally behave as localized defects. Since they 

are coherent with the matrix, they may be sheared by a matrix disloca­

tion under some circumstances. The models applicable to this problem 

are applicable to hardening by other types of localized obstacles such 

as incoherent precipitates and dispersoids and dislocations intersec­

ting the glide plane as well. 

Models of precipitation hardening were developed to explain the 

experimentally observed hardening behavior illustrated in figure I.1 

exhibited by certain materials when they are aged (often at elevated 

temperatures) after homogenization. The discovery that this phenomenon 

corresponds to the appearance and coarsening of precipitates led to a 

major theoretical effort that culminated in the development of theories 

that could at least approximate a quantitative explanation for both the 

rise and fall in strength. 

Theories of the flow stress can be divided into two categories: 

those in which deformation is controlled by the liberation of disloca­

tions that then glide easily (mul t !plication controlled), and those in 

which the deformation is controlled by the propagation of available 

dislocations (Gil Sevillano, van Boutte and Aernoudt, 1981). If the 

dislocation sources are considered to be dislocations pinned by the 

strongest obstacles in the microstructure, for instance in subgrain 

boundaries, then these two mechanisms are not fundamentally different. 

The microstructure of most precipitation-hardened materials early in 

the deformation process does not contain a subgrain or cellular sub­

structure or a high density of dislocations. In addition, if the 

strength is controlled by dislocation sources in the microstructure, 

then age hardening should not be observed.. Consequently, it is rea­

sonable to expect that the critical resolved shear stress in precipita­

tion-hardened materials is controlled by the propagation of disloca­

tions through the array of precipitates. 

The strength imparted to the material by -the precipitate is deter­

mined by the interaction of the obstacle with the dislocation, which is 

in turn determined by the energy input required for the dislocation to 

shear or bypass the precipitate. A number of types of interaction have 

been suggested that may provide the source of the precipitate's resis­

tance to shear. They are: 
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- modulus -- If the modulus of the precipitate· and the matrix are 

different, the line tension of the dislocation is different inside and 

outside _the precipitate. An obstacle strain field generally represents 

a modulus defect. 

- coherency-- The interaction of the dislocation stress field 

with the stress field around a misfitting precipitate resists the 

motion of the dislocation. 

-chemical -- The total surface ~nergy of the precipitate is 

increased due to the creation of a new interface between the precipi­

tate and the matrix in the glide plane of the dislocation. 

- stacking fault -- If the matrix dislocation has dissociated into 

partial dislocations and the stacking fault energies of the precipitate 

and the matrix are significantly different the passage of the disloca­

tion is impeded. 

order -- Tho passage of a matrix dislocation creates an anti­

phase boundary in an ordered precipitate. This boundary has an energy 

associated with it that must be supplied by the dislocation. 

Of these mechanisms, order and coherency hardening are by far the 

strongest. However, in most real systems several of these mechanisms 

are operative. For instance, the increase in precipitate~matrix 

interface responsible for chemical strengthening always occurs when a 

precipitate is sheared, and the elastic constants of the prec;.pitate 

and the matrix are almost never identical, so modulus hardeni:'lg must 

also always occur. However, if other, more potent, strengthening 

effects also exist, these energies may be irrelevant to the strengthe­

ning provided by the precipitate. When several mechanisms provide 

significant strengthening, their effects are interactive so that expe­

rimental analysis of the strengthening due to each mechanism is compli­

cated • 

In general, the interaction of tho dislocation with the precipi~ 

tate may be characterized by a force-distance curve, even when more 

than one mechanism is operative. The obstacle strength is the deter­

mined by the maximum interaction force. Tho maximum forces due to the 

mechanisms listed above are spatially displaced from one another, so 
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that the maximum interaction force for the precipitate is not the sum 

of the maximum interaction forces for each mechanism. An additional 

complication is that theoretical calculation of the force-distance 

curve requires the input of thermodynamic quantities such as the 

stacking fault energy, various surface energies. the antiphase boundary 

energy, etc. depending on the operative mechanisms. It is not easy to 

determine precise values of these energies. and the scatter is often 

large. As a consequence it is difficult to check the results of 

strengthening theories experimentally. 

The interaction of strengthening effects means that it is diffi­

cult to definitively determine which strengthening mechanism or mecha­

nisms is dominant. Most of the experimental studies have been done on 

a few systems in which a single hardening mechanism is believed to 

largely explain the observed strength and deformation behavior. Ardell 

(1985) lists a number of examples in his review, for instance, binary 

Al-Zn (chemical), Al-Ag (stacking fault), Fe-Cu, Cu-Co precipitates and 

Al-Zn-Mg GP zones (modulus), Cu-Co, Cu3Au-Co (coherency) and Al 3Li and 

Ni 3Al (order). Even in these cases, at least one other mechanism 

probably makes a measurable contribution to the strength. 
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II. The Critical Resolved Shear Stress of a Random Array of Point 

Obstacles. 

II.l The Problem. 

The goal of much of the theoretical work in this area has been to 

solve the problem posed earlier of explaining the rise and fall of 

strength caused by precipitate coarsening. To approach this problem 

theoretically it is necessary to phrase it in terms of an idealized 

model whose consequences can be explored by mathematical or computer 

simulation approaches. 

The first model that contained enough of the essential elements of 

the physical situation to predict age-hardening was proposed by Friedel 

(1956) and Fleischer and Hibbard (1963). This model, with only slight 

modifications, is still in use today. 

The durability of this model perhaps lies in its simplicity. It 

may be stated as four premises. 

(1) The material is modelled in terms of its glide plane, a hypotheti­

cal plane between two atomic planes, along which the dislocation is 

allowed to move. 

This premise contains the implicit assumption that the dislocation may 

not leave its glide plane, i.e. cross-slip is neglected. 

(2) The precipitates (or other obstacles) are idealized as point 

obstacles whose mathematical properties are adjusted so that they have 

the same properties as the physical precipitates. The obstacles resist 

the motion of the dislocation. 

The point obstacle representation is a reasonable idealization if the 

obstacles are localized • 

(3) The distribution of these point obstacles within the glide plane 

is assumed to be random. 

The distribution of precipitates or other obstacles to glide in a cry-
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stal is almost never truly random; however, the array is more random 

than it is regular. 

(4) The dislocation is treated as a flexible, extensible string of 

constant line tension. 

It has been known for years that the line tension of the dislocation 

varies with its character; however, the mechanics of the problem are 

considerably simplified by assuming that it is constant. 

II.2 The Solution 

Many workers have investigated the consequences of this model. 

The difficulties have revolved around the problem of formulating a 

suitable mathematical description of the model which does not involve 

major approximations that have qualitative consequences. The analyti­

cal efforts were guided by a number of computer simulation experiments, 

most notably by Foreman and Makin (1966 and 1967) and Morris and cowor­

kers (Morris and Klahn (1974), Hanson (1975), Hanson, Altintas and 

Morris (1976), Altintas (1978) and Altintas and Morris (1986a)). This 

section describes the results of the most mathematically accurate 

formulations of the model. In the interests of clarity, discussion of 

the evolution of thought in this area will be deferred to Section III. 

II.2.l The "Physical" Picture 

If the glide plane· is acted upon by a resolved shear stress, a 

force is exerted on the dislocation. Under the action of this force, 

the dislocation moves forward until it is prevented from doing so by 

the obstacles in the a~ray. the dislocation is restrained by the 

obstacles and bows out in elliptical arcs between them. If the force 

exerted by the dislocation on an obstacle is great enough, the disloca­

tion may mechanically bypass it either by cutting it or by looping 

around it. The critical resolved shear stress is the stress at which 

the dislocation moves freely through the array. 
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II.l.l The Strong Line Solution 

The results described here· are the product of the computer simula­

tion experiments described above and the analytical work of Morris and 

Klahn (1973) and Hanson and Morris (197Sa, 197Sb). These studies led 

to important qualitative changes in our understanding of the critical 

resolved shear stress. 

!1.2.2.1 Qualitative Res.ults. 

To make the model mathematically tractable, several approximations 

are introduced. Only athermal glide is considered, that is, thermal 

activation of the dislocation is not permitted. The difference between 

edge and screw dislocations is neglected by setting Poisson's ratio u· 

to zero. The effects of elastic anisotropy and elastic self-interac­

tions are also neglected. 

First, the problem may be simplified by treating the dislocation 

in terms of its configuration, the unique set of pinning points with 

which it interacts. Since yielding requires the entire dislocation to 

move through the array. this approach is superior to the alternative of 

treating the interactions of the dislocation at each point along its 

line individually. The assumption of isotropic elasticity in conjunc­

tion with the assumption that Poisson's ratio is zero means that the 

dislocation will bow out in circular arcs between the obstacles that 

define the configuration. 

This simplification made possible the most important result of 

this work, the strong line concept. The strong line is defined as the 

configuration which offers the greatest resistance to dislocation glide 

in the array. The computer experiments and the analytical approaches 

to the problem both led to the conclusion that the critical resolved 

shear stress is fixed by the strong line in the array and not by some 

average value of the resistance to dislocation motion. Furthermore, it 

is clear that the critical resolved shear stress will be controlled by 

the weakest point on the strong line. The strong line configuration 

for a given array is unaffected by the initial stress, the initial 

dislocation configuration and, for the case of athermal glide, the 
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order in which the dislocation bypasses the obstacles. 

The computer experiments also indicated that the randomness of the 

array lowers the critical resolved shear stress with respect to an 

ordered array of obstacles. This result was considered surprising at 

the time. but is a logical consequence of the strong line concept. 

The randomness of the array has the consequence tliat some regions of 

the array will be considerably weaker than a regular square array and 

some much stronger. Since the ~ritical resolved shear stress is 

controlled by the weakest point on the strong line, the weak areas are 

much more important than the strong ones and result in lower strength. 

The effect of a distribution of obstacle strengths was investi­

gated by computer simulation and analytically. The strengths were 

found to be quadratically rather than linearly additive, i.e. they sum 

according to the relation 

(11.1) 

where xa is the fraction of obstacles of type a, 't~ is the critical 

resolved shear stress of the ~rray if all obstacles are of type a, and 

'tc is the critical resolved shear stress for the array. 

II.2.2.2 Analytical solutions 

The assumptions and basic equations used below are generalizations 

of those in Morris and Klahn (1973) and Hanson and Morris (197Sa, 

197Sb) and are summarized here only briefly. 

The glide plane of the dislocation is taken to be a square con­

taining a random (Poisson) distribution of point obstacles whose densi­

ty is given by the mean area, a, per obstacle or equivalently by the 

characteristic length ls = a112• The obstacle properties are randomly 

selected from a population of e distinct types with fractions xe. These 

point obstacles may represent intersections with the glide plane of 

precipitates, gliding dislocations, forest dislocations, or dislocation 

1 o o p s • The p r o p e r t i e s of the p o in t o b s t a c 1 e s a r e ad j us t e d so t h a t the 

interaction of the dislocation with the obstacle is mathematically 

equivalent to its interaction with the physical obstacle (Morris and 
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Syn, 197-4). 

The dislocation is modeled as a flexible extensible string of 

constant line tension, T, with a Burgers vector of magnitude bin the 

glide plane. The resolved shear stress impelling glide may be written 

in dimensionless form: 

(II.2) 

The configuration of the dislocation,is described by a unique set of 

pinning points. As shown i_n figure II.1, if the dislocation under the 

applied stress 't' encounters a configuration (i) of obstacles, it will 
• • take the form of a circular arc of dimensionless rad1us R between 

adjacent obstacles, where R* may be dimensionalized with ls. The value 
• of R is given by the relation 

R* = 1/(2't'*) (!!.3) 

which is derived in Appendix A. If the distance between any two obsta­

cles along configuration (i) exceeds 2R*, then the configuration is 

t~ansparent to the dislocation and will be mechanically bypassed. If 

configuration (i) is not transparent then its mechanical stability is 

governed by the geometry of the configuration and the distribution of 

obstacle types along it. 

The dimensionless force on the kth obstacle in configuration (i) 

i~ given by 

~~ = F~/2T = cosN~1./2) 1 1 
(!!.4) 

where F is the force the dislocation exerts on the obstacle, 'It is the 

asymptotic angle included by the dislocation at the obstacle and 

Oii}il. The geometry of the situation is shown in figure II.2. If the 

maximum force that an obstacle (k,i) of type a can withstand is f3a• 
then the dislocation is locally stable at (k,i) if l3t is less than fla• 
that is if 

The condition of stability for the configuration (i) is that 
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Figure 11.1 Sample dislocation configuration in a random array of 
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J3~ < 1 
1 

(!1.6) 

• . *k 
where J3i is the maximum of the J3i • . -

The applied stress ~ uniquely fixes the nontransparent configura-

tion in the array and the forces J3~ exerted on the obstacles. If~· is 

low enough that there is at least one stabie configuration in the 

array, then the dislocation will be mechanically pinned and unable to 

glide unless thermally activated. The critical resolved shear stress 
• • for athermal glide, ~c• is hence the minimum value of ~ for which all 

configurations of the dislocation are mechanically unstable and repre'­

sents an upper limit on the critical resolved shear stress at finite 

temperature. At finite temperatures, the critical resolved shear 

stress is lower than this limit because the dislocation may be ther­

mally activated past obstacles it could not otherwise bypass. 

Ranson and Morris (197Sa. 197Sb) consider the statistics of the 

dislocation configurations described above to derive the critical re­

solved shear stress as a function of the obstacle strengths. The 

approach is sketched here. 

Hanson and Morris were the first to generate stable configurations 

of the dislocation by a circle rolling process illustrated in the 

figure. Each obstacle which extends the line in a stable fashion is the 

parent of a new branch. The geometry of circle-rolling is illustrated 

in figure II.3. A stable configuration ~e4uires that there is an 

obstacle k+1 in the area swept out by the rotating the circle of radius 
• • R counterclockwtse about an obstacle k through the angle 

9 = n - \fr = 2sin-1J3 (!1.7) a a a 

where Pa is the strength of the kth obstacle. The angle of rotation is 

limited by the breaking angle of the last obstacle in the configura­

tion. When all the obstacles are the same strength, the breaking angle 

& c de f in e s the c r i t i c a 1 r e s o 1 v e d she a r s t r e s s ~ ~ • The c i r c 1 e- r o 11 in g 
• process restricts the search so that when the applied stress ~ 0 is 

• greater than "t"c' then there is no stable configuration. 
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The value of ~: can be determined analytically using the statis­

tics of branching theories under two constraints. The first constraint 

<n> 2. 1 (II.8) 

requires that the line does not become extinct (i.e. that the expected 

number of stable line descendants is greater than one>. The second 

requirement is that the configuration must go across the array. This 

condition is phrased in-terms of the ang 1 e G defined in figure II.4, 

which provides a measure of the straightness of the dislocation. A 

necessary, but not sufficient, condition for the configuration to go 

across the array is 

<0> = o. (II.9) 

The constraints on <n> and <a> can be phrased in terms of the 

search area of the dislocation, a
0

• The search area is defined in 

terms of the angles & and a as shown in figure II.S. To maximize the 

critical resolved shear stress, a lower cutoff on the angle a. ao. is 

introduced. It can be shown that if all the obstacles have the same 

strength, the critical resolred shear stress is given by 

(II.lO) 

• Since ~ is uniquely determined by the search geometry via the circle 

radius R*, the value of ~· can be maximized within these constraints by 

a variational analysis of the geometry. The mathematics of this process 

are given in Hanson and Morris 1975a. The resulting critical resolved 

shear stress as a function of obstacle strength is shown in figure 

II.6. For values of ~ i 0.7, the result may be approximated 

(II.ll) 

• This result may be inverted to give !J
0 

for a fixed value of 't'
0

• The 

inverted form is often used in computer simulation. The analysis also 

gives a distribution of segment lengths along the strong line configu-

ration. 

The effect of a distribution of obstacle strengths is also addres­

sed by Hanson and Morris (1975b). The critical resolved shear stress is 

.. 
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found by adding up separately the probability that extending the line 

from an obstacle a will add an obstacle of type~. On this basis the 

branches that are considered are given by the sum over all obstacle 

types 

(II.12) 

where fa~ is the fraction of obstacles in the search area used to 

extend the line and x~ is the fraction of obstacles of type ~. This 

line of reasoning eventually leads to an expression for ~· in terms of 

the search area to achieve a stable line composed of only one type of 

obstacle 

(II.13) 

where a
0 

is the search area of the dislocation line. Comparison with 

the parallel equation for the identical obstacle case (equation II.lO) 

shows that each term in the sum contains the search area of the dislo­

cation if all the obstacles were of that size. It follows that the 

critical resolved shear stress for a mixture of distinct obstacles is 

given by the quadratic sum (equation II.l). The distribution of obsta-

cle strengths along the strong line may also be determined analyti­

cally. 
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III. Evolution .of the theory of the critical resolved shear stress for 

a random array of point obstacles. 

Section II.2 introduces most of the important concepts in the 

theory of the critical resolved shear stress in the context of a single 

solution to the model posed in Section II.l. To this point in the 

paper no justification has been provided for either the choice of the 

model or its solution. The d~_scription of the evolution of the theory 

contained in this se·ction has three major aims. The first is to pro­

vide some background for the choice of the model and a justification 

for the selection of the solution of Section II over other solutions in 

the literature. The second is to place the model and its solution in 

their proper historical context through a critical review of the lite­

rature. The emphasis here will be on the development of the key con­

cepts and heavily-debated issues that thread through much of the pub­

lished work. Finally, this review will provide the basis for using the 

literature to assist in resolving the issues discussed in Section IV 

concerning the application of the theory to real problems. The ideas 

in the literature are often transferable to the strong line solution, 

although much of the discussion is in the framework of other solutions. 

Accordingly, this section will begin with a general discussion of 

the elements of a theory of the critical resolved shear stress that 

must be contained eith~r in the model or its solution. The various 

theories of precipitation hardening that have been proposed at one time 

or another will then be discussed syste~atically. The organization is 

not strictly chronological since the solutions have been classified 

according to whether or not they include the strong line concept. 

III.l Elements of a theory of the critical resolved shear stress 

This discussion considers the assumptions that any solution of a 

model for the critical resol~ed shear stress must contain and the 

mathematical approximations that must be specified in order to solve 

the model. 

a. Temperature 
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Athermal glide must be specifie~. or a statistical description of 

thermal activation processes must be included. 

b. Glide plane 

If the dislocation is constrained to move in the glide plane, the 

possibility of cross-slip is eliminated. 

c. Dislocation parameters 

The 1 in e t ens ion T of the d i s 1 o c at ion as it bow s may be t a ken a s 

constant or allowed to vary with the character of the dislocation (and 

therefore the bow-out radius of the dislocation). 

d. Obstacle parameters 

d.l Spatial distribution. The spatial distribution of the obsta­

cles to glide must either be a random or ordered array since these are 

tho only types of arrays whose statistics are well defined. The density 

of the array may be characterized in either case by ls = ns-l/2 , where 

ns is the number of obstacles per unit area and ls is the mean square 

obstacle spacing. 

d.2 Strength. The force-distance interaction curve of the loca­

lized physical olJStacles such as precipitates or other dislocations 

must be specified. In general this requires representing the physical 

obstacle by an idealized obstacle whose mathematical interaction with 

the dislocation is identical to fhat of the physical obstacle. It may 
I 

also be necessary to account for the finite size of the obstacle. The 

strength of the obstacle is defined by the maximum in the force­

distance curve. Its physical expression is the critical bow-out radius 

of the d i s 1 o c at i on be f o r e it b yp a s s e s the d i s 1 o c at i on. The o b s t a c 1 e 

itrength ~ may be defined as before for the geometry of figure II~ 

~ = F/2T = cos ('lt/2). (III.l) 

e. Matri~ parameters 

The matrix may be taken to be elastically isotropic or anisotro­

pic. Lattice resistance to motion of the dislocation must be specified 

.. 
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or taken to be zero. 

f. Statistics of the obstacle-dislocation interaction 

The various models in the literature differ most dramatically 

here. The dislocation may be treated by considering its overall confi­

guration or by considering each link separately. The mathematical 

solution to the model must define the dislocation search path through 

the obstacle array. 

g. Definition of critical resolved shear stress. 

The critical resolved shear stress is the lowest stress at which 

the dislocation glides freely through the array. A consequence of the 

mathematical solution to the model is a condition for the critical 

resolved shear stress stated in terms of the obstacle strength and 

distribution. This criterion is generally some type of average over the 

for c e t o r e q u i red to b yp a s s the o b s t a c 1 e in the array or s om e k in d o f 

estimate of the strongest configuration of obstacles in the array. It 

is convenient to define a dimensionless critical resolved shear stress 

• 't = 'tl sb/2T. (III.2) 

The e v o 1 u t ion of the v a r i o us c u r rent m ode 1 s of t he c r i t i c a 1 r e­

solved shear stress is discussed in the following sections. In spite 

of the increasing sophistication of the statistics used to determine 

the value of the critical· resolved shear stress as a function of obsta­

cle density, distribution and strength. all of these solutions, which 

include incre~singly better approximations to the actual model, lead to 

relations for the critical resolved shear stress of the form 

(III.3) 

where Q is between 0.8 and 1.2 for an infinite array. 

I t i s w o r t h not in g t h a t r e a 1 a r rays a r e no t in f in i t e • The r e have 

been extensive efforts to derive critical resolved shear stress results 

for infinite arrays and equally extensive efforts to approximate infi­

nite array solutions by computer simulation. The purpose of the 

efforts is to provide a point of comparison between the analytical and 
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computer simulation results. It is not clear that the value of Q for 

infinite arrays is a particularly good choice for analyzing experimen~ 

tal data for polycrystalline materials with small or even moderate 

grain size. However, it may not be worth trying to chose a correct 

value of Q for each case since there are other large errors in any 

comparison with experimental data. What a good theoretical value of Q 

for an infinite array does do is vindicate the assumptions used in its 

calculation. 

III.2 Early theories of precipitation hardening. 

Cottrell (1953) has summarized the development of the first preci­

pitate strengthening theories, developed principally by ~lott and Nabar­

ro. These theories were designed to explain the observed phenomenon of 

strengthening followed by softening as the precipitate distribution 

coarsened. Mott and Nabarro (1940, 1948) postulated that the precipi­

tates could be modelled by an internal stress field that resists the 

motion of the_dislocation. This assumption reduces the problem of 

determining the critical resolved shear stress to one of determining an 

appropriate average of the internal stress field in the crystal. 

The problem of finding the correct average of the internal stress 

field was a formidable one at the time. An average of the arithmetic 

magnitude of the sttess leads to a yield strength proportional to the 

concentration of particles but independent of their spacing. This 

relationship does not l~ad to age ha~dening and softening during preci­

pitate coarsening. On the other hand, the algebraic average of the 

stresses on a rigid, straight dislocation is zero, which leads to the 

conclusion that the precipitates have no hardening effect at all. The 

key to the problem is that the dislocation is not rigid, but flexible, 

so that different sections of the line move independently. This flexi­

bility has the consequence that the random forces acting on the dislo­

cation line do not cancel one another out. The scaling of the strength 

with the obstacle spacing comes from the fact that the length of the 

independently moving segments of the dislocation is determined by the 

separation of the obstacles. Each segment takes on a radius of curva-

ture dependent on the applied stress and the obstacle spacing. If the 

dislocation is modelled in this fashion, the observed behavior can be 

qualitatively explained. 

.. 
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III.3 Average configuration theories. 

The solutions to the random array model of the critical resolved 

shear stress may be divided into two broad categories: those th_at find 

the critical resolved shear stress in terms of the average configura­

tion.of the dislocation and those that determine it in terms of the 

strong line configuration. The average configuration solutions pre­

ceded the strong line solutions in part because they are mathematically 

simpler and in part because computer simulation data was not available 

until the late 1960's. 

The average line solutions are lineally descended from the early 

papers by ~lott and Nabarro. The realization that the dislocation must 

be flexibl~ rather than rigid led to a ~omewhat misplaced emphasis on 

the spacing of o·bstacles along the dislocation line and the way iD. 

which this spacing is altered by the flexibility of the dislocation and 

the applied stress. As described in the discussion of the strong line 

solution in Section II. the focus on the behavior of individual seg­

ments of the dislocation obscures the fact that the critical resolved 

shear stress is determined by the strongest overall configuration of 

the dislocation and not by isolated interactions. Nonetheless. many of 

the solutions mentioned below are formulated by considering the dislo­

cation segment interaction with the obstacles in various limits that 

lead to straightforward mathematical solutions. 

III.3.1 The Friedel solution 

The simplest model was proposed by Friedel (1956) to explain ther­

mally activated creep but was later applied by Fleischer and Hibbard 

(1963) and Brown and Ham (1971) to athermal glide. The model assumes a 

random array of point obstacles. The strength of the obstacles is de­

fined by the bow-out radius of the dislocation at the time when it 

bypasses the obstacle. However, the theory is restricted to the case 

when the obstacles are weak and all have the same strength. The dislo­

cation is assumed to have a constant line tension. 

The critical resolved shear stress is defined to be the stress at 

which "steady state unzipping" can. occur. This process is illustrated 
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in figure III.l. Each time the dislocation bypasses an obstacle and 

sweeps forward it encounters exactly one obstacle. This condition 

specifies ~c sin~e at a stress e greater than ~c the dislocation will 

not encounter an obstacle and will move unencumbered through the array. 

This criterion is clearly based on the averaae dislocation-obstacle 

configuration within the array. The statistics of the process are 

contained entirely within the steady state unzipping condition 

(III.4) 

where Sf is the area swept out by the dislocation as it moves forward 

to a new configuration and ns is the number of obstacles per unit area. 

The steady-state unzipping criterion is a rather gross approximation to 

the random array model described in Section II. It is not put forward 

as an accurate solution to the model; its virtue is that it leads to a 

simple mathematical solution. 

This theory leads to relation III.3 with Q = 1 (derived in Appen­

dix A) i.e. 't'• = ~ 3 1 2 • The value of the obstacle strength Ji in terms 

of the array depends on the effe~tive spacing of obstacles that 

applies. The derivation leading to the expression for the critical 

resolved shear stress includes the implicit assumption that the obsta­

cles on the dislocation line are collinear. This assumption essen­

tially negates the effect of the randomness of the array! 

Given that computer simulation results of Foreman and Makin (1966 

and 1967), Altintas (1978) and Altintas and Morris (1986a) discussed 

later suggest that Q = 0.96 one might question the need for a more 

sophisticated, albeit physically more realistic, theory. However, the 

computer simulations also showed that the solution did not even quali­

tatively describe the motion of the dislocation through the array. 

Furthermore, attempts to extend the Friedel solution to random arrays 

of obstacles of different strengths have been unsuccessful (Brown and 

Ham, 1971). 

III.3.2 Modern adaptations of the Friedel solution. 

Much of the work that tries to fit the theory of the critical 

resolved shear stress to experimental data is based on average configu-

... 

... 
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ration solutions to the random array model. The computer simulation 

results·of Foreman and Makin, discussed briefly in Section II and again 

later in this section, have been incorporated into this work in spite 

of the fact that the simulation results clearly showed that the criti­

cal resolved shear stress was determined by the strong line and not the 

average configuration (see, for example, Brown and Ham, 1971). Gene­

rally, the results of Friedel were adapted by changing the constant Q 

in equation III.3 from 1.0 to 0.8 and adding an additive constant in 

the particle shearing region, and sometimes by adding a second regime 

in which Orowan looping predominates in which the critical resolved 

shear str~ss is proportional to~. In an effort to make the theory 

applicable to real systems, a number of investigators have modified the 

solution to include other effects on the critical resolved shear stress 

(see Section IV). These adaptations generally attempt to describe 

these effects in terms of the average configuration. 

III.3.3 The Kocks solution. 

Kocks (1966. 1967) was the first to attempt to simulate the motion 

of the dislocation through the array. Because he did a geometrical 

rather than a computer simulation. his solution contains many unsub­

stantiated assumptions. Nonetheless. his solutions were the first 

attempt at. a mathematical solution that might be. more realistic than 

the Friedel solution described above. 

Kocks's development uses a combination of probability theory and 

geometrical arguments. His probabilistic argument is more sophisticated 

than Friedel's in that he does not restrict the distribution of obsta­

cles in any way. The major conceptual advance is that Kocks treats the 

motion of the -dislocation past an obstacle as coupled to the motion of 

the dislocation at adjacent points in the array. The next step in the 

logical development is to treat the dislocation as fully coupled, that 

is in terms of its overall configuration, rather than in terms of its 

segments. The configuration is one of the important concepts that 

distinguishes the strong line theories discussed in Section III.4. 

Because Kocks does not use the dislocation configuration, his theory is 

again formulated in terms of the average dislocation line. His funda­

mental equation incorporates segment coupling by relating the increase 

in the area swept by the dislocation to the increase in the probability 

... 

.. 
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that an obstacle pair is penetrable. The full development of these 

assumptions leads to a theory of the critical resolved shear stress for 

both infinitely strong (Kocks .• 1966) and penetrable (Kocks, 1967) 

obstacles. 
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111.4 Strong line statistical solutions 

The second class of solutions to the random array problem was 

suggested by the results of computer simulations by Foreman .and Makin 

(1966, 1967), Morris and Klahn (1974), Hanson (1975) and Hanson, Al tin­

tas and Morris (1976). The computer simulation results led to a search 

for an analytical solution that incorporated the concept that the 

passage of a dislocation by an obstacle is dependent on the interaction 

of the dislocation with other nearby obstacles. The realization that 

the motion of the dislocation past an individual obstacle i.s coupled to 

its motion everywhere along the line eventually led to the strong line 

concept embodied in the analytical solution of Hanso~ and Morris 

(1975a, 197Sb). This concept is also incorporated in later work, for 

example in the computer simulations of Schwarz and Labusch (1978). 

111.4.1 Computer simulations 

111.4.1.1 Foreman and Makin 

Foreman and Makin's work (1966 and 1967) represents the first use 

of a computer to simulate the motion o.f a dislocation through a large 

array of obstacles. Their greatest contribution may have been the 

realization that the random array model for the critical shear stress 

described in Section II lends itself to computer simulation if the 

assumptions are properly chosen. 

Foreman and Makin made the following simplifying assumptions: 

(1) Thermal activation is not permitted. This assumption corresponds 

physically to either very low temperatures or very high strain rates. 

(2) The difference between edge and screw dislocations, elastic aniso­

tropy. and elastic self-interactions are all negligible. 

(3) The line tension of the dislocation is constant. This statement 

has the mechanical consequence that the dislocation bows outward from 

the obstacles restraining it in a circular arc. The line tension is 

fixed at the value 

io/ 
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(III.S) 

where G is the shear strength of the material. 

(4) The strength of a point obstacle is characterized by its breaking 

angle IJ!. The force to bypass the obstacle is given by 

F = 2Tcos(IJ!/2) 

(III.6) 

or 13 = F/2T = cos(IJ!/2). 

where the angles are defined as they were in figure II.2. This 

assertion, combined with the assumption that the line tension is con­

stant, converts the determination of the critical resolved shear stress 

of a particular array by computer simulation to a purely geometric 

problem. 

The basic algorithm involves bowing the dislocation outward using 

a circle-rolling procedure until it reaches a stable configuration, 

then increasing the applied stress slightly and bowing the dislocation 

outward while allowing it to bypass obstacles as necessary until it 

reaches a new stable configuration. The stress at which no stable 

configuration could be found is the critical resolved shear stress for 

the array~ 

An important contribution of Foreman and Makin to late:r work is 

the concept that the critical resolved shear stress for an array is 

determined by a unique dislocation configuration within the array, 

later referred to as the strong line. Foreman and Makin realized and 

verified by computer experiment that this configuration is unaffected 

by the initial stress, the initial dislocation configuration, and the 

order of release of the dislocation from unstable p~ints after an 

increase in stress. 

Foreman and Makin also characterized qualitatively the motion of a 

dislocation through a random array of identical obstacles. For very 

strong obstacles, long fingers of the dislocation move forward along 

paths of easy movement eventually encircling groups of obstacles. How­

ever, this regime is 0.7 < 13 < 1.0 which is probably rarely never 
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reached in practice (Bacon, Kocks and Scattergood, 1973). This point 

is discussed in more detail in Section IV.2. For obstacles of medium 

strength (p approx 0.7) the dislocation is not straight, but it cannot 

easil-y encircle difficult groups of obstacles. For weak obstacles the 

dislocation remains quasi-straight at all times. Clearly, the disloca­

tion may never be mathematically straight, because if it were, it could 

only intersect two point obstacles. The critical resolved shear stress 

of the array would then be zero. 

Foreman and l.fakin found empirically that the critical resolved 

shear stress was a function of obstacle strength and spacing. They fit 

their results to the Friedel-type relation 

(III.7) 

where ls is the mean square obstacle spacing. 

To get a better fit to their simulation data for obstacles of low 

and iatermediate strengths, they replace ls with the Friedel effective 

obstacle spacing 

(III.8) 

The agreement is excellent until p is nearly 0.7. At higher values of ~ 

the fit is not as good. Equation III.7 is p.robably the better choice 

since it can be shown that the circle rolling procedure must lead to an 

equat~on of the form 

"t'. = QJ33/2. (III.3) 

Using the Friedel spacing, which depends on "t', wrongly alters the pro­

portionality. Reasonably good agreement is obtained by retaining the 

mean square obstacle spacing ls and inserting the Hanson and Morris 

value of Q, 0.8871. 

Foreman and Makin also point out that the randomness of the array 

!Q~~ the critical resolved shear stress versus a regular square 

array, which was not commonly realized at the time. 

Foreman and Makin investigated the effect on the critical resolved 

.. 
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shear stress of a range of obstacle strengths. This problem is central 

since in a real material there will always be a distribution of obsta­

cle strengths. They determined by computer experiment that the quadra­

tic sum rule for two kinds of obstacles (mentioned in Section II.2.2.2 

and discussed at more length in Section IV.1) worked reasonably well 

for values of p less than about 0.7. 

III.4.1.2 !forris and coworkers 

A large amount of additional computer simulation work was done by 

Morris and coworkers at Berkeley on this problem. The development of 

an extremely rapid algorithm made it possible for them to simulate many 

more cases than Foreman and Makin were able to examine, in addition to 

confirming their results. The formulation of the computer model made 

it possible to examine a wide variety of situations within a single 

framework. These included simulations of thermal activation (Morris 

and Klahn, 1973), multiple barrier types (Hanson, 1975; Hanson, Altin­

tas and Morris, 1976; Altintas, 1978; and Altintas and Morris, ~1986b), 

multiple dislocations (Hanson and Morris, 1978) and inhomogeneities in 

plastic glide (Altintas, Hanson and Morri•, 1976a and 1976b). 

III.4.2 Analytical strong 1 ine solutions 

Two analytical strong line solutions for the critical resolved 

shear stress of a random array of point obstacles exist. The first was 

derived by Hanson and Morris (1975a, 1975b). The Hanson and Morris 

solution, with a few changes, has been used by Melander ~nd Persson 

(1978a, 1978b, 1978c) to predict experimentally determined aging 

curves. The second solution, a modification of the Hanson and ~(orris 

approach, was proposed by Labusch (1977) a few years later. 

It is perhaps appropriate here to reiterate a point made at the 

beginning of this section. The value of Q obtained by analytical solu­

tion for an infinite array represents an important, if imperfect, point 

of contact between the analytical and computer simulation solutions. 

In addition, the solution may be characterized by other properties of 

the strong line. Much space in the literature has been devoted to 

discussions over the superiority of one analytical solution over ano-
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ther on the basis of how these parameters compare to the computer 

simulation results. Unfortunately. this type of comparison is inhe­

rently limited. since it ignores the important issue of whether or not 

the solution contains the essential qualitative elements of a good 

description of the critical resolved shear stress in favor of quantita­

tive measures. 

However. for what it is worth. the historical benchmark for the 

analytical solutions is the value of Q obtained by Altintas (1978) for 

very large arrays; Q = 0.96. 

III.4.2.1 The Hanson and Morris solution 

Hanson and Morris derived the first analytical solution that 

incorporated the assumptions and circle-rolling pr6cedures of the com­

puter simulation work. The derivation is included in Section II and 

will not be repeated here. 

Tho key contributions of the solution (also discussed in Section 

II) are worth mentioning again. The most important conceptual advance 

is that the unit process in dislocation motion is not the progress of a 

single segment of the dislocation. but the bypassing of a configu­

ration. Given the concept of the configuration. it is possible to see 

that ~he critical resolved shear stress is determined by the strongest 

configuration the dislocation must bypass, a result foreshadowed by the 

computer simulation work described above. However. it is not at all 

obvious that there should be a strongest line in an infinite array, and 

therefore a critical resolved shear stress. The Hanson and Morris 

solution contains the first analytic proof that such a line exists. By 

deriving the solution using the statistics of a process known from 

computer simulation to- generate stable dislocation lines~ the circle­

rolling process. Hanson and Morris ensured that their solution would 

a p p r ox i mat e the mode 1 r e a son a b 1 y we 11. Th i s so 1 u t ion w a s the f i r s t 

analytical solution to the critical resolved shear stress of a random 

array of point obstacles to do so. Finally, Hanson and Morris (1975b), 

were the first to derive a procedure for summing the effects of obsta­

cles of different strengths. 

As illustrated in figure II.6, the value of Q that results from 

the approximate mathematical solution to the final equations in the 
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Hanson and Morris analysis (0.8871) leads to lower values of the crit~­

cal resolved shear stress than either the computer simulation results 

or the numerical solution of the equations. 

III.4.2.2 The Labusch modification 

Labusch (1977) has revised the Hanson and Morris solution to re­

flect the statistics of a somewhat different strategy of select~ng the 

strongest configuration in the array. His rationale for doing so is 

that the Hanson and Morris value of Q, 0.8871, is significantly below 

the result of 0.96 from computer simulation for large arrays. 

Labusch's final answer, 0.95, is closer to the simulation results (see 

figure IIL2). Although the spread between these results is only a few 

percent, the difference is relevant if it has implicit physical conse­

quences. Since there is a greater spread between the other parameters 

used to characterize the solution, it seems likely that th~re are 

important differences between the models. Despite the apparently good 

agreement of the Labusch solution with the computer simulation data, it 

is not obvious that it is the superior theory. The following discus­

sion considers the differences between the two solutions. 

Hanson and Morris find the strength of the strong line by fixing 

the expectation values of various parameters of the array on the strong 

line. The theory is a prescription for finding a strong line whose 

strength is within e of th~ strength of the strongest line in the 

array. For an infinite array, there are infinitely many distinguishable 

lines which meet this criterion; the solution does not necessarily 

identify all of them. Consequently, the sol~tion should accurately 

predict the expectation values of parameters on the strong line, but 

not the actual distribution of those parameters. 

The most important parameters of the strong line are the distribu-
• tion along it of obstacle strengths p(j3), of segment lengths p(l ) and 

of directional change p(f). These distributions may be obtained both 

by conputer simulation and by analytic solution. The solutions 

obtained by computer simulation (Altintas and Morris, 1986b) are com­

pared with the results of Hanson and Morris and Labusch in figures 

III.3, III.4 and III.S. 
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Fiaure 111.3 Comparison between computer simulation results for the 

strong line solution and theoretical solutions for the 

distribution of segment lenaths alona the strong line 

(from Al t intas, 1978). 
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Figure 111.4 Comparison between computer simulation results for the 

strong line solution and theoretical solutions for the 

distribution of obstacle strengths along the strong line 

(from Altintas. 1978). 
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Comparison of the analytic solutions to computer simulation 

results indicates that the Hanson and Morris solution does a good job . - . 
of predicting <1 >and p(jJ) but not of p(l ) or p(Q). The value of <0> 
is fixed in the solution. The failure of the theory to predict p(0) is 

not surprising since a lower cutoff on Q is also employed in the -. solution. The distribution p(l ) has an upper cutoff not found in 

computer simulation. Since 1* and f1 are related, the upper cutoff is 

probably tied to the cutoff on 0. The rather good mate~ for the distri­

bution of forces along the strong line p(JJ) seems rather surprising; 

however, it may be a direct consequence of the fact that the theory is 

formulated to ensure that the strength of the line is arbitrarily close 

to the strong line. This condition may imply a reasonably accurate 

distribution of forces. 

Labusch's approach is to begin by counting all possible stable 

lines at a given stress level. In theory all the lines with strength 

within e of the strong line are examined. This comprehensiveness may 

explain why the Labusch solution leads to distributions of 1* and Q 

that are more similar to the computer simulation results than those 

derived by Hanson and Morris. These distributio~s are determined rela­

tively early in the solution, before Labusch ::.ses two questionable 

arguments that together bring his value of Q close to that found in 

computer simulation. 

Labusch's first calculation gives Q = 1.1862, which is much l~rger 

than the computer simulation results for large arrays. He corrects this 

value downward by arguing that some of the lines he has counted are 

degenerate because they can be generated by more than one potential 

parent line. On this basis he adjusts his value of Q to 0.949, which is 

very close to the computer simulation results. It is odd that an argu­

ment about degeneracy should change the value of Q since the strength 

of the strong line should not be affected by the number of times it is 

c o u n t e d. The f 1 a w in the m a the m a t i c s m a y be t h a t in c a 1 c u 1 a t in g W in 

terms of his partition function Z (Labusch, 1977. p. 4551), Labusch 

argues that the integral may be simply evaluated because it is zero 

almost everywhere. This simplification may be equivalent to looking 

only at the most probable string of parents of the strong line. If 

this is the case, any degeneracy in the solution is eliminated. 

Labusch also finds an upper limit on the the value of Q that is 

... 

.. 
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lower than his original value. His essential point seems to be that 

the strongest line may not be accessible to the dislocation as it moves 

through the array since the direction of dislocation motion is prede­

termined. However, it seems obvious by definition that the strong line 

must be reached as the dislocation moves through the a~ray. It is 

possible that Labusch description of a stable line allows some totally 

impossible lines;. Consequently, it is possible that thiS correction 

may apply to his original solution. However, Labusch also applies this 

correction to the Hanson and Morris solution. Since the Hanson and 

Morris solution includes a prescription for finding stable lines, 

these lines must be accessible, and the dislocation must reach the 

strong line; the correction cannot apply. 

In conclusion, although the Labusch solution may be a good way of 
• examining p(l ) when this distribution is relevant, it is not an im-

provement on the Hanson and Morris solution. The overestimate of Q in 

the original Labusch solution may indicate more serious flaws in the 

derivation; for example, Labusch does not prove that the line he 

describes exists. It is also not clear whether the Labusch solution 

leads to a simple rule for summing the effects of obstacles of various 

strengths Hke the quadratic sum approximation derived by Hanson and 

Morris. Barring a new approach to the statistics of the problem, the 

IIanson and Morris strong line solution would seem to the best strong 

line solution available, despite the fact that it leads to a value of Q 

slightly below that obtained by computer simulation • 
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III.4.3 Haasen and Labusch theory of precipitation hardening. 

The most recent theory of precipitation hardening is an adaptation 

by Haasen and Labusch (1979) of work by Schwarz and Labusch (1978) on 

solution hardening. In his review, Ardell (1985) argues that the 

extension to precipitation hardening is not valid. He claims that the 

"successes" of the theory in the analysis of experimental data for 

order hardening are achieved_~nly with unreasonable choices of adjusta­

ble parameters such as the line tension and the antiphase boundary 

energy. However, the approach cannot be entirely ignored since it has 

become a popular way to analyze experimental data for precipitation 

hardening (Haasen and Labusch, 1979; Nembach, 1981; Reppich, Schepp and 

Wehner, 1982; Thompson and Brooks, 1982; Grohlich, Haasen and From­

meyer, 1982). Accordingly, the theory will be summarized here. 

The Schwarz and Labusch solution is based on an empirical fit to 

computer simulation results. The simulation is intended to address a 

variety of situations encountered in solid solution hardening. The 

solution considers both localized and diffuse obstacles and cases for 

which the inertial effects range from negligible to dominant. TI.le only 

case that will be examined here is that of dislocation motion ob­

structed by point obstacles when inertial effects are negligible (i.e. 

overdamped motion). These conditions correspond to those assumed in 

the oth~r theories dis~ussed in this section. 

Schwarz and Labusch seek a strong line soluti~n for the critical 

resolved shear stress of a random array of obstacles. ~rn common with 

the strong line solutions discussed above, the Schwarz and Labusch 

simulation assumes that the strength of the obstacles is determined by 

the maximum in the force-distance curve for the dislocation-obstacle 

interaction and that the dislocation has a constant line tension. The 

major addition in this simulation is the inclusion of ~. a dimension­

less parameter that describes the range of the dislocation-obstacle 

interaction. Schwarz and Labusch do not provide an analytical solution 

that takes this parameter into account. For the non-inertial case, the 

critical resolved shear stress as a function of~ is determined empiri­

cally by fitting the computer simulation ·data. The result is 

• 't' (III.9) 

~· 

• 
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where m is a constant determined by a least squares analysis of the 

data. The value of m depends on the shape of the force-distance pro­

file of the obstacle. 

The limitation of the Schwarz and Labusch solution is that early 

in the derivation (1978. p. 5175) the calculations are restricted "to 

the case of weak obstacles (F<<T) in which case the dislocation remains 

almost straight." This resttiction is not severe for solid solution 

hardening. which the simulation is intended to address, but it is 

clearly inappropriate to consideration of precipitation hardening. This 

point appears to have escaped those who have applied the theory to 

precipitation hardening. The restriction on the results is much 

stronger than weak restriction contained in the Hanson and Morris 

solution that fJ be less than 0.7 (or equivalently F < 1.4T). As Ardell 

(1985) points out, the requirement that p be small allows the radius of 

curvature of the dislocation to be given simply by 

(1!1.10) 

which is only a good approximation for the exact equation 

(11!.11) 

if the dislocatign is nearly straight. As a result, Ardell ~uggests 

that a practical ~limit on the validity of the Schwarz and Labusch 

computer simulation results is P < 0.3. 

The first paper to apply the Schwarz-Labusch theory of solid solu­

tion hardening to precipitation hardening is Haasen and Labusch (1979). 

The first equation in the paper for_the additional flow stress due to 

precipitate particles at small volume fractions is attributed to Flei­

scher (1964) although it is nowhere to be found in that paper. A 

_derivation similar to that given by Nabarro in his reviews of solid 

solution hardening (1972. 1977. 1985) is given_ in Appendix B. A deri­

vation of the second equation (for large volume fractions of precipi­

tates) can be found in Labusch (1970, 1972) or in the review papers by 

Nabarro and is also included in Appendix B. 
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Haasen and Labusch (1979) use equations 1 and 2 of their paper to 

describe the critical resolved shear stress associated with a continuum 

of values of ~0 , a parameter proportional to ~ that describes the range 

of the dislocation-obstacle interaction. They use the formulas of 

Schwarz and Labusch to interpolate between the limiting cases of equa­

tions 1 and 2. Unfortunately, for JD0.3, the restrictions on the 

Schwarz and Labusch derivation make this approach i~valid. 

There are several other objections to the methods used by Haasen 

and Labusch and their successors. Haasen and Labusch convert the solu­

tion hardening results of Schwarz and Labusch to the case of precipita­

tion hardening by replacing c, the number of solute atoms per unit 

area, with c', the areal density of particles in the slip plane (ls-2 >. 
They define the areal density in terms of particle size by 

c' = v/ r 2 (Ili.12) 

where v is the volume fraction of particles, and r is chosen so that c' 

is the areal density. The value of r is related to the size of the par­

ticle, but is not necessarily the particle radius. For example, in an 

earlier paper Kocks, Labusch and Schwarz (1976) vary r to account for 

the diffuseness of the obstacle in addition to varying ~0 • This proce­

dure adds another adjustable parameter to the solution. 

Haasen and Labusch further argue when the volume fraction of 

precipitates is rela'tively hig-h, diffuse obstach statistics should 

apply, since the dislocation will see many obstacles at once. This 

point is not all obvious, nor is it clearly confirmed by experimental 

data (Munjal and Ardell, 1975; Ardell, Munjal and Chellman, 1976). As 

Ardell (1985) points out, a point obstacle (or collection of point 

obstacles) with a diffuse range of interaction and a finite obstacle 

with a range of interaction essentially localized to the obstacle are 

not the same thing. In the case of a non-misfitting ordered precipi­

tate, the range of interaction is entirely localized to the particle 

and the dislocation is influenced by this force only when it is within 

the precipitate. 

A final point is that the critical resolved shear stress is con­

trolled by the maximum force each obstacle can exert on the disloca-

.. 
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tion. The question of whether much smaller attractive or repulsive 

forces such as those due to the stress field of a misfitting precipi­

tate can significantly alter the motion of a dislocation which has 

already bypassed the particle by acting as a weaker pinning site at a 

new location remains unanswered. To answer this question requires 

reexamining the original definition of a point obstacle and whether it 

applies to this type of physical situation • 
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IV. Application of the CRSS model to real systems 

The Hanson and Morris solution arid the various other solutions 

described in Section III are limited by the idealizations contained in 

the model of the critical resolved shear stress described in Section 

II. Each solution includes additional assumptions needed to simplify 

the mathematics or computer simulation. The choice of assumptions is 

restricted by the desire to keep the solution as simple and general as 

possible. However, if these solutions are to be applied to real sys­

tems, they must be reassessed. First, the parameters of the imaginary 

model system must be related to properties of the physical system. 

Second, the assumptions and idealizations in the model and its solution 

must be considered with respect to specific syste~s. 

In this section, a series of issues will be discussed which relate 

to the application of the model to real systems. Although most of 

these issues must be considered to apply any of the solutions described 

in Section III, the focus in this section and throughout the remainder 

of this paper is on the Hanson and Morris strong line solution outlined 

in Section II. The emphasis is on the problem of predicting the age 

hardening behavior of a material strengthened by coherent ordered 

p r e c i p i t at e s • The a p p 1 i c at ions top i c s a r e d i s c us s e d in or de r of in­

creasing specialization. beginning with those relevant to all types of 

obstacle-controlled hardenirig and fi~ishing with those specific to 

alloys hardened by c~herent ordered precipitates. 

The following is a brief summary of the issues discussed in this 

section. 

IV.l Obstacle strength sums. The effect of obstacles of various 

strengths must be accounted for. For comparison with experimental 

single crystal data, the matrix contribution must be included. For 

polycrystals, grain boundary strengthening must also be considered. 

IV. 2 Line t en s i on. The 1 in e t ens ion of the d i s 1 o c a t i on v a r i e s w i t h 

the degree of screw or edge character. The effect of finite obstacles 

on the dislocation bow-out and elastic self~interaction of the disloca~ 

tion is considered. 

.. 

.. 
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IV.3 Dislocation character. Since macroscopic deformation requires 

the glide of both edge and screw dislocations, the critical resolved 

shear stress will be controlled by the type of dislocation that is most 

difficult to move through the obstacle array • 

IV.4 Precipitate distribution. To predict the age hardening behavior 

of a precipitation-hardened material the precipitate size distribution 

and its coarsening behavior must be understood. 

IV.S Obstacle Strength. The strength of the obstacles to glide pro­

vided by the ordered precipitates must be quantified. 

IV.6 Superdislocations. Deformation in materials hardened by ordered 

precipitates occurs by the motion of coupled dislocations that magnify 

the applied stress at the obstacle • 



so 

IV.l Summing of strengthening m-echanisms. 

IV.l.l The need for superposition laws. 

Because dislocations interact with any and all crystallographic or 

elastic defects present in a material, it is clear that predicting the 

strength of any real material requires an understanding of how various 

types of strengthening mechanisms superimpose. The debate on the gene­

ral problem has been somewhat confused by the fact that several dis­

tinct cases must be considered, all of which generally are discussed 

under the ·heading of superposition. The superposition problems may be 

divided into three distinct areas according to the type of strengthe­

ning mechanism: obstacle-controlled, friction-controlled, and 

interface-controlled. The goal in each case is to tl.etermine the incre­

ment in s~rength due to the particular ~icrostructural feature in 

question. 

IV.1.2 Superposition of obstacle-controlled strengthening mechanisms. 

An obstacle-controlled strengthening mechanis~·, is one whose source 

is a distinct, relatively localized microstructural feature that may be 

modelled as a point obstacle. The model for the critical resolved 

shear stress discussed in Section II arid the Hanson and Morris· strong 

line solution both consider the effect of such obstacles. There are 

actually three different kinds of superposition effects that must be 

considered. Some of these have been discussed pre~iously; however, it 

seems appropriate to consider all three cases in a single discussion. 

The first of these is the superposition of several strengthening 

mechanisms for a single physical obstacle. The summation is done in 

the course of computing the force-distance curve for the interaction of 

the dislocation with the physical obstacle. The problem here is much 

simplified by considering only athermal glide, since in that case the 

strength of the obstacle is determined only by the peak in the force­

distance curve. (If thermal activation is considered, then the entire 

force-distance curve is relevant (Morris and Klahn, 1973).) A schema­

tic plot of the summation of two interaction forces (for instance, the 

misfit and order interactions for the first dislocation to shear a 

misfitting, ordered precipitate) is shown in figure IV.l. For this 
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particular precipitate cross-section, the force F2 (e.g. from the 

misfit strain) contributes very little to ·the total strength of the 

precipitate because the peaks in the interactions are spatially dis­

placed. One of the consequences of this displacement is that experi­

ments designed to measure the effect of increasing misfit strain, for 

example, can be misleading. Because two mechanisms are operating that 

have spatially displaced peaks in the force-distance curve, a large 

change in the intera~tion force due to one mechanism may result in only 

a small change in the total strengthening from the precipitate. This 

point is often relevant for particles that strengthen by misfit and 

order hardening (Ardell, Chellman and Munjal, 1976; Lee and Ardell. 

1979). 

The other two types of obstacle-controlled superposition cases 

pertain to the effect of obstacles of the same type, but different 

strengths and the effect of obstacles of different types. On the as­

sumption that all classes of obstacles are randomly dispersed, these 

may be handled together. In both cases the obstacles to glide are 

represented as point obstacles whose chief characteristic is their 

breaking strength, fixed by the peak in the force-distance curve. The 

new element of the problem is that the obstacles along the dislocation 

line are no longer identical. 

No less than five possible techniques for handling the superposi­

tion of distinct obstacles have been seriously proposed at one time or 

another (Ardell. 198S). The various formulae are listed in Table 1. Of 

these possibilities, several can be q·uickly eliminated. The law of 

mixtures does not seem to fit any of the experimental data particularly 

well. Labusch's formulation (Labusch, 1970) was proposed for the sum­

ming of diffuse obstacles~ not at issue here. Most of the attention has 

focussed on the linear and quadratic sum rules. The Buttner and Nembach 

(1983) and Nembach and Neite (198S) suggestion is intermediate to the 

linear and quadratic sums, and leaves q as an adjustable parameter that 

lies between one (1) and two (2). The authors show good agreement with 

experimental data using this formula, but the since the theory always 

has a multiplicative constant as well, agreement may be a foregone 

conclusion. There is other evidence that for.mixtures of very strong 

and very weak obstacles a summing rule of this type may be necessary 

(Huang and Ardell. 1986) to explain the experimental data. However, the 

remainder of this discussion will focus on the linear and quadratic sum 
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rules both of which have at least some theoretical foundation and seem 

to agree with experimental results in certain regimes. 

For random arrays of point obstacles, both theoretical analyses 

and computer simulation point toward the quadratic sum. Hanson and 

Morris (197Sb) provide a theoretical argument for the quadratic summing 

rule in their derivation of the statistics of the critical resolved 

she a r s t r e s s f o r a m i x t u r e of d i s t inc t p o in t o b s t a c 1 e s • The proof • in 

the limit of small ~. is outlined in Section II. This solution is the 

only one in which a superposition rule has been derived as a conse­

quence of a mathematical solution of the random array point obstacle 

model. An additional argument in favor of the quadratic sum is that as 

d~/dxs goes to zero (where xs is the fraction 6f strong obstacles) the 

linear sum becomes infinite, whereas the quadratic sum remains finite 

(Altintas, 1978; Ardell. 1985). Any summing rule with an exponent q 

less than two will also have an infinite derivative as the number of 

strong obstacles goes to zero. 

Bot.a Foreman and Makin (1967) and Altihtas (1978) have attempted 

to delineate the regimes in which the linear and quadratic sums apply 

by computer simulation. The linear sum is expected to apply (by its 

proponents) for mixtures of very weak obstacles and for mixtures of 

weak obstacles containing.- a few strong obstacles. Foreman and Makin 

considered three mixtures of varying composition (~ 1 = 0.42. ~ 2 = 0.77; 

~ 1 = 0.42, ~ 2 = 0.997; tl 1 = 0.77, ~ 2 = 0.997). However, as will be 

discussed at some length in Section IV.2, dislocation self-interactions 

generaUy cause Orowan looping to occur at values of~ closer to 0.7 

(see Section IV.2). The latter two cases, for which the quadratic sum 

does not seem to apply, are unphysical. The data are in good agreement 

with the quadratic sum rule for the first case, where both of the tl are 

of reasonable size. 

Altintas considered a much more extensive set of cases. Unfortu­

nately, after reproducing Foreman and Makin's results for ~ < 0.7. all 

of the other cases he includes are for fairly weak obstacles (~ < 0.1) • 

In particular, he considers the case ~s =0.1 and llw = 0.01 for frac­

tions of strong obstacles from 0.1 to 0.001. These cases should provide 

the best simulation of the argument for the linear sum described below, 

since the numerous small obstacles provide an almost continous fric­

tional stress. The quadratic sum is a good fit to all the computer 
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simulation data; however. the simulations also show that the difference 

between the linear and quadratic sums for xs << xw and ~s >> ~w is 

extremely small.(see figure I.V.2 for an example). Since there is. no 

compelling theoretical reason to suggest the use of the linear sum, 

these results would seem be a sufficient basis to justify the use of 

the quadratic sum for all obstacle-controlled cases. 

There is a limited amount of experimental evidence that provides 

empirical support for the quadratic sum rule. Nembach and Martin 

(1980) compared the predictions of a linear and a quadratic summing 

rule for the superposition of solution and particle strengthening in 

(Cu-Au)~Co single crystals. They found that the predictions of the 

quadratic sum rule are much 4loser to the experimentally observed 

strength than those of the linear sum. However. the reliability of 

these results is limited by the accuracy of the theory of coherency 

hardening on which they are based. On the othe~ hand. Ebeling and 

Ashby (1966). who also examined the superposition of solid solution and 

particle hardening. but in the (Cu-Au)-Si system found that the linear 

sum represented the data well. 

If the array of obstacles is reaular .vith respect to the distribu­

tion of each distinct type of obstacle. then a linear summing rule may 

apply. Kocks. Argon and Ashby (1975. p161) provide a justification of 

the linear sum rule for regular arrays that applies in cases fn which 

one type of obstacles is so weak that it provides essentially a fric­

tional stress. Their argument works if the the average curvature of the 

dislocation is essentially unchanged by thG presence of the weak obsta­

cles. The situation is illustrated in figure IV.3. The geometry in 

the figure is representative of the situation only if the array is 

regular (so that what !Cocks et al. call the line glide resistance is 

equivalent to the plane glide resistance or critical resolved shear 

stress). Although Kocks et al. extrapolate their results to the random 

a r ray c a s e • the ext en s i on i s not v a 1 i d f o r p o in t o b s t a c 1 e s. The a r g u..::. 
ment runs as follows. 

From the geometry of figure IV.3, we have 

't - F1 /bL1 = [2Tcos {'II/2)] /bL2 (IV.l) 

where L1 is the spacing between the weak obstacles, L2 is the spacing 
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Geometry used by Kocks, Argon and Ashby (1975) to derive 
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between the strong obstacles and F1 /bL1 may be considered as the effec­

tive constant back stress due to small obstacles. (Note that for a 

regular array 't'• = Jl rather than p3 12 (Kocks. et al. 1975, p. 43)) If 

the average curvature is the same as the curvature if only strong 

obstacles are present, then 

2Tcos (\f!/2) = F2 (IV.2) 

where F2 is the strength of the strong obstacles. Combining equations 

IV.l and IV.2 gives 

(IV.3) 

or 't' = 't'l + 't'2 (IV.4) 

which is a linear superposition rule for a regular array of obstacles. 

IV.1.3 Superposition of friction-controlled strengthening 

Tho only type of frictional strengthening that will be discussed 

here is the effect of the matrix on the motion of the dislocation. 

Although neither Hanson and Morris, Foreman and Makin, Altintas or 

Kocks, Argon and Ashby provide a sound basis for a linear superposition 

rule for randomly arrayed obstacles, the linear sum rule does seem to 

be the appropriate way to include frictional contributions to the 

strength, which are not obstacle controlled. 

If the matrix is relatively pure, the motion of the dislocation is 

not obstacle-controlled. Consequently. the argume~t described above 

for the regular array by Kocks, Argon and Ashby applies strictly to the 

strengthening effect of the matrix if the back stress is considered to 

come from the matrix rather than small obstacles. 

IV.1.4 Superposition of interface-controlled strengthening 

The only case of interface-cdntrolled strengthening of interest 

here is the grain size strengthening effect. Grain size strengthening 

is classified here as a special case because despite its obvious com-
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mercia! importance, the or1g1n of the strengthening effect is not well 

understood at this time. An understanding of the appropriate summing 

technique is significant from a theoretical viewpoint because the addi­

tive effect of grain size strengthening is generally assumed implicitly 

when predictions of the critic•l resolved shear stress are compared to 

yield strength results for polycrystalline materials. 

The empirical Hall-Petch relation may be stated 

a = y 
a + k d-112 

c liP (IV.S) 

where ay is the stress at which slip which has started in the most 

s u it a b 1 y or i en t e d g r a ins prop a g a t e s to o the r g r a ins • a c and k HP i s a 

constant, and d is the average grain diameter (Friedel.. 1964; pp266-

268). It is generally assumed that it is legitimate to write 

where M is the Taylor factor and ~c is the critical resolved shear 

stress for the single crystal. Th~s relationship requires that the 

single crystal strength be included in the esc term. It is also known 

that kHP varies· with precipitate size (e.g. Hansen and Bronsted, ·1980). 

There are three radically different types of models that can be 

used to provide a theoretical basis for the Hall-Petch relation. It is 

probably unlikely that any of them is applicable in all materials. At 

this writing it is not yet clear which of these models is correct. The 

oldest model is based on the idea that dislocations will pileup at the 

grain boundary, concentrating the applied stress. The second model 

assumes that the dislocation density in the interior of the grain will 

vary with the grain size. The suggestions are discussed in a recent 

review by Hansen (1985). The third model is based on the strong line 

solution for the critical resolved shear stress and suggests that the 

Hall-Petch rela~ion is the result of array size effects. All three 

models are discussed below. 

IV.1.4.1 Stress concentration model 

The oldest derivations of the Hall-Petch relation are contained in 

the original papers by Hall (1951) and Petch (1953). The chief assump-
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tion is that the grain boundary acts as an important barrier to dislo­

cation motion. The derivation runs as follows. 

If the grain boundary limits the passage of gliding dislocations 

or the activation of quiescent ones. then the dislocations will pile up 

at the grain boundary. If we make the further assumption that the 

stress applied to the dislocation pileup at the grain boundary is 

actually ay - ac where ay is the yield stress of the material and ac is 

an internal back stress caused by the obstacle-controlled resistance to 

dislocation motion in the grain interior. then the relationship between 

the applied stress and the grain size can be determined. Since the 

generation or unpinning of the dislocation must be the result of a 

shear stress. it makes sense to rewrite this condition in terms of the 

shear stresses in the grain as 

· (IV.6) 

where ~gb is the stress at the grain boundary. 

The number of dislocations in the pileup. n. is a· function of the 

applied stress and is given by 

where L is the length of the pileup and g is a constant on the order of 

unity. When the internal stress caused by the pileup reaches the value 

~d required to nucleate or unpin dislocations in the adjacent grain 

(IV.Sa) 

. (IV.Sb) 

A proof for equation IV.Sa is given in Appendix C. If L is on the 

order of hdf the grain diameter. d. then equation IV.S leads to 

(IV.9) 

or (IV.lO) 

Cottrell (1964) provides a rationalization for the Hall-Petch 
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relationship based on equation IV.6 above. Cottrell makes an analogy 

to the stress concentration ahead of a shear crack, and defines the 

stress in the next grain as 

'C ( r) = ('t' - 't' )(d/r)l/2 y c (IV.ll) 

where r is the distance from the grain boundary. If yielding occurs 

when the stress reaches some constant and finite value 't'd' then IV.ll 

can be rewritten 

(IV.12) 

Multiplying through by the Taylor factor M, leads to the usual form of 

the Hall-Petch relation given in equation IV.S if M't'c is identified 

with 't'c and kHP with M't'dr112 This equation does not provide a ration­

alization for the strong dependence of kHP on temper. 

IV.1.4.2 Dislocation density model 

The dislocation density mod~l was first proposed by Li (1963), who 

noted that dislocation pileups were rarely observed in pure metals. 

The model assumes that the grain boundaries are the principal source of 

dislocations in the grain interior. Since the ratio of g~ain boundary 

area to grain volume is much higher for small grains than large ones, 

Li proposed that the dislocation density in small grains would tend to 

be much higher than for larger grains. If this model is correct, then 

grain size strengthening is actually obstacle-controlled, since the 

strengthening effect would arise from the presence of the dislocations. 

In general, the critical resolved shear stress is proportional to 

the square root of the number density of the point obstacles to glide. 

This suggests that if the matrix were pure, except for an array of 

dislocations of density p, the critical resolved shear stress would be 

given by 

't' = 't' + kpl/2 
matrix • (IV.13) 

If the grain size and the dislocation density are inversely propor­

tional, then the critical resolved shear stress is 

" 
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• - • + kd-1/2 • - "matrix (IV.14) 

which has the form of the Hall-Petch relation. However, since the 

grain size contribution in this formulation is obstacle-controlled, if 

the matrix contains other types of obstacles, then the effect of these 

obstacles should be quadratically summed with the effect of the dislo­

cation distribution. This type of sum does not lead to the simple form 

of the Hall-Petch relation given in equation IV.S, but it may be con­

sistent with the variation of kap with temper. It is not entirely 

clear if the experimental data do or do not support this prediction. 

IV.1.4.3 Strong line distribution model. 

It is an interesting, but little known, fact that even if grain 

boundaries merely define the crystallography and do not represent 

major barriers to dislocation propagation, a Hall-Petch type relation 

is still be predicted. In general, deformation must be dominated by 

either the stress to propagate yielding f1om one grain to the next or 

the stress to move the dislocation through the array. The previous two 

sections lead to a Hall-Petch relation for yielding dominated by grain­

to-grain propagation of slip. This section will show that a Rall-Petch 

relation still arises, even if the glide through the grain interior 

dominates yielding. 

It has been known for some time from computer simulations that the 

critical resolved shear stress is strongly dependent on the array size 

and shape. There have been questions for some time about how results 

from arrays of increasing size converge to~ard solutions for infinite 

arrays (Labusch, 1977; Altintas, 1978). This issue is physical as 

well as academic since the arrays in real crystals and grains ~re not 

infinite. The value of Q determined for infinite arrays is an underes­

timate of the values of Q that apply in grains of finite size. 

Altintas (1978, p6S) considered the effect of array size on the 

critical resolved shear stress. He· was able to predict the variation 

in the value of Q as a function of array size by assuming that the 

chance that certain obstacles would lie on the strong line of an infi­

nite array decreased as the array size decreased. The smaller sampling 
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of all possible obstacle configurations along a given dislocation line 

in the small array makes it likely that the weakest point on the strong 

line will be stronger than i~ would be in an infinite array. As a 

consequence. a small array is stronger than a larger one. since it has 

a larger value of Q associated with it. 

Figure IV.4 illustrates the technique used by Altintas to predict 

the strength of arrays of finite size. The probability that the stron­

gest line will contain an obstacle of strength less than some particu­

lar value of ~ may be determined statistically from the probability rif 

finding obstacles of particular strengths along the strong line. Thus 

the strength of the finite array is predetermined in a statistical 

sense by the distribution of obstacle strengths along the strong line 

for an infinite array. 

In the light of these comments. one can look at the data for the 

critical resolved shear stress as a function of array size in a new 

way. Figures IV.S and IV.6 are replotted from figures 13 and 25. 

respectively. in Alt intas (1978). As can be seen in the figures. the 

simulated critical resolved shear stress is proportional to (w*>-1 ' 2 • 
• where w is the dimensionless array size. w/ls. As will be shown below. 

these computer simulation results predict an additive effect of grain 

size on strength. 

The add i t i v it y o f g r a in s i z e and in t rag ran u 1 a r h a r den in g m ll y be 

shown simply by comparing the empirical Hall-Petch relation to the 

equation describing the variation in the critical resolved shear stress 

with array size. The empirical Hall-Petch relation is 

(IV.10) 

or 

The results of computer simulation for finite arrays (and the 

theoretical analysis) lead to an equation for ~· 

• ~ (IV.15) 

• where ~inf is the critical resolved shear stress of an infinite array, 
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Figure IV.4 Schematic of the technique used to analyze the effect of 

array size on the strength of the strongest line in the 

.. array. The probability that an obstacle with strength 

• • Pi < P < Pc will lie on the line 1s denoted by S • 
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and Kp is a function of the distribution of obstacle strengths on the 

strong line. Equating these two relations gives 

and 

• • 't'inf = 'tc = QIJ3/2 

Substituting into the Hall-Petch relation, we have 

't = 't· + [2K T/bl 1121d-112 
1nf J3 s • 

(IV.16a) 

(IV.16b) 

(IV.17) 

Labusch (1977) has also considered the relationship between the 

critical resolved shear stress of a finite array and an infinite array 

in the context of his version of the Hanson and Morris statistical 

theory. He derives the formula 

(IV.18) 

where Hand Ware the height and width of the array respectively. As 

shown in figure IV.7 (after Altintas, 1986a). this formula leads to 

similar results to those of Altintas described above. 

Equation IV.17 is a Hall-Petch type relation fot situations in 

which strength is dominated by obstacle-controlled yielding in the 

grain interior rather than bypassing the grain boundary. This equation 

has a number of consequences, some of which will be discussed below. 

If the equation in fact describes an experimentally significant case, 

then these predictions should explain at least some of the existing 

experimental data. The following discussion is intended to provide a 

focus for future research, not a definitive analysis. 

(1) Age-hardening at constant grain size • 

. As the particles coarsen, the value of ls increases, causing the 

value of 'tinf to increase. The variation of the grain size term as Is 

increases is uncertain since the variation of Kp with particle strength 

has not been analyzed. However, if the dependence is weak, it would be 

an excellent approximation at constant grain size to consider the grain 

size term as a constant matrix contribution that is independent of the 

hardening particles and linearly additive. This relationship is usual-
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li assumed without justification. 

(2) Effect of grain size for constant particle strength distribu-

tion. 

If the distribution of particle strengths is constant. then 'tinf• 

K~4 T and ls are all constant as well. Then the grain size term 

reduces to a constant multiplier of d-112 and equation IV.18 reduces to 

the Hall-Petch relation, equation IV.10. 

(3) Variation of kHP with ls. 

Noting that the line tension is proportional to ln(ls), the Hall­

Petch coefficient varies with ls as 

Hansen and Brondsted (1980) have measured the variation of kHP with ls 

·in Cu hardened by Al 2o3 particles, They determined that kHP was pro­

portional to 1/ls rather than the proportionality above. However, the 

experimental error is large enough that the data do not allow an unam­

biguous differentiation between the two relationships. Precise mea­

surements are difficult since K~ is a strong function of the precipi­

tate size distribution as well as the average precipitate radius. 

(4) Use of mean grain size. 

All experimental verifications of the Hall-Petch relation use the 

mean grain size. From the discussion above, it seems that the extrema· 

of the distribution of grain sizes· rather than the mean grain size 

should control the grain boundary effect. However, self-similarity 

during grain coarsening has been predicted theoretically (Mahin, Hanson 

and ~forris, 1980). For a particular material. processed to achieve 

various grain sizes, the mean grain size probably describes the entire 

distr~bution of grain sizes. The effect of the distribution is to 

modify the value of the Hall-Petch coefficient. The magnitude of this 

variation has not been estimated. 

.. 
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IV.2 Geometric corrections to the model 

The purpose of this section is to consider the consequences of 

some of the assumptions made in· either the point obstacle model or the 

strong line solution to simplify the geometry. The effects of three 

deviations of real materials from the basic assumptions will be discus­

sed in detail: variable line tension, finite sized obstacles, and self­

interaction of the dislocation. Isotropic elasticity is still assumed, 

although the introduction of anisotropy also has important geometric 

consequences. Each of the effects mentioned above will be considered 

separately. Foll~wing this treatment is a discussion of a model pro­

posed by Bacon, Kocks and Scattergood (1973) that attempts to model all 

three of these factors. Finally a method of adapting their results to 

the strong line solution is suggested. 

IV.2.1 Dislocation line tension 

The basic model for prediction of the critical resolved shear 

stress of an array described in Section II makes the idealization that 

the dislocation line tension is constant. For v = 0 and isotropic 

elasticity, this assumption simplifies the geometry considerably 

because it ensures that the dislocation will bow out between obstacles 

in a circular arc. However, it is generally recognized that the line 

tension is not constant in real materials. The variation of the line 

tension with the angle ~ between the dislocation line and the Burgers 

vector may be approximated by the De Wit-Koehler formula (De Wit and 

Koehler, 1959) 

(IV.19) 

where v is Poisson's ratio and A and r
0 

are the outer and inner cutoff 

radii, respectively, of the strain field of the dislocation. 

Equation IV.19 has the consequence that the line tension varies 

along the line of a bowing dislocation. It also implies that edge 

dislocations (~ = n/2) have a lower line tension than dislocations that 

a r e in i t i a 11 y pure s c r e w in c h a r a c t e r ( ~ = 0). The c h i e f d i f f i c u 1t y 

with applying equation IV.19 is that the values assigned to the cut-off 

radii are somewhat arbitrary. 
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Neither an extensive computer simulation study nor an analytical 

model of the critical resolved shear stress for glide of a dislocation 

of variable line tension exists. Including variable line tension in a 

statistical model of the Hanson and Morris variety appears to be com­

plicated since both the shape and size of the search area become confi­

guration dependent. In view of this difficulty, several attempt~ have 

been made to incorporate the qualitative effects of variable line 

tension into existing theories that assume a constant line tension. 

Melander (1978a) and Ardell (1985) both suggest assigning the 

value of the average line tension of the bowed dislocation to the 

constant line tension. Melander uses equation IV.19 by assigning values 

to the unspecified variables from the properties of the strong line. 

In particular, he equates A. to <1>, the average segment length on the 

strong line, and [1 - (w·<~>> 2 J or [w·<~>> 2 J to sin 2 ~ for edge and 

screw dislocations, respectively. w is an adjustable fitting parameter 

close to one (1) that describes how fast the dislocation acquires mixed 

character. The inclusion of <~>. the average obstacle strength along 

the strong line, makes the solution for the critical resolved shear 

stress iterative. 

Melander and Ardell both assume implicitly that the change in the 

shape of the bowed out dislocation has negligible consequences. The 

average line tension may be calculated using the average value of the 

obstacle strength, but should be improved if the average value of the 

strengths of th·e obstacles actually lying on the strong line are used 

instead, as ~felander does. However, given the inaccuracies in the 

dislocation search area, it is not obvious that this iterative solution 

is significantly more accurate. 

Foreman and Makin (1966) considered the effect of the altered bow­

out shape of the dislocation in a random array of obstacles. They 

argue that since a random array is still random if it is sheared, 

whether the dislocation bows out in an ellipse or a circle is irrele­

vant. The statistics of the process are essentially unchanged. Howe­

ver, this argument no longer applies if dislocation self-interactions 

are considered (Bacon et al., 1973). 
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IV.2.2. Finite obstacle size 

It is clear that the existence of finite-sized obstacles to glide 

in real materials will result in differences between the behavior of 

the solution to the point obstacle model and real materials. The 

differences between point obstacles and finite obstacles enter through 

various factors, chiefly the bowed-out shape of the dislocation and the 

self-interaction of the dislocation arms where they wrap around the 

obstacle. 

The effect of dislocation self-interaction will be discussed in 

greater detail below; at this point it is sufficient to note that the 

finite size of the obstacle holds the ar-ms of the bowing dislocation 

apart, thus reducing their interaction (Bacon, et al., 1973). 

Melander (1977) attempted to account for the effect of finite 

obstacle size on the dislocation se.arch algorithm used in the Hanson 

and Morris strong line solution (1975a and 1975b). Ardell (1985) also 

discusses this question in the context of an average line solution. 

His argument is less rigorous in the sense that it uses an average line 

theory, but should nonetheless be qualitatively correct. However, his 

results are opposite to those of Melander. The reason for this discre­

pancy is not clear. 

IV.2.3 Dislocation self-interactions 

The term dislocation self-interaction is used to describe the 

elastic interaction between different parts of the same dislocat,ion 

that occurs if the dislocation is bowed or bent on a scale that brings 

segments of the dislocation into close proximity relative to the range 

of the elastic strain field associated with the dislocation. As shown 

schematically in figure IV.8, if the dislocation bends around an obsta­

cle, components of the dislocation line vector perpendicular to the 

original straight dislocation cancel. Since the total line energy of 

the dislocation is reduced, this interact ion is energetically favora­

ble. Consequently, dislocation self-interactions act to pull the arms 

of the bowing dislocation together near the obstacles. The force due 

to the self-interaction of the dislocation thus adds to the force from 

the applied shear stress and assists the dislocation in looping or 
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shearing the particle. 

The effect is similar for shearing and Orowan looping of the 

precipitate, but it is perhaps simpler to consider the looping case. 

Orowan looping occurs when the stress is so high that a stable configu~ 

ration of the bowing dislocation can no longer be found. In practice, 

the Orowan stress is reached when neighboring dislocation arms are 

approximately antiparallel (i.e the tangent angle to particle is ~ = 0 

and the neighboring arms of the dislocation have opposite line vectors 

1.) 

Self-interactions pull the arms together around the particle so 

that the force to bow-out the dislocation in an elliptical arc until 

the arms are antiparallel is much less th·an the force to bow-out the 

dislocation in a circular arc un~il the arms are antiparallel (p = 

1.0). It follows that if the elliptically bowed dislocation is approxi­

!!!ated by a circular arc, then looping occurs long before the arms of 

t he c i r c u 1 a r a r c d i s 1 o c a t i on a r e ant i p a r a 11 e 1 ( s e e f i g u r e IV. 9 ) • Th i s 

result implies that Orowan looping occurs at value of P (calculated for 

circular bow-out) that may be considerably less than 1.0. 

IV.2.4 The Bacon, Kocks and Scattergood model. 

Bacon, Kocks and Scattergood (1973) consider the effect of dislo­

cation self-interaction on the shape of a dislocation bowed between two 

obstacles and the effect of this shape distortion on the stress for 

Orowan looping. The equilibrium configuration of the dislocation is 

calculated by dropping the constant lin~ tension approximation and 

assuming a lower cutoff radius r
0 

for the dislocation-dislocation inte­

raction and then relaxing the dislocation into a stable configuration. 

Finite obstacles of various sizes are considered. (The problem is 

solvable only for finite obstacles.) The results indicate that array 

strength is increased by finite sized obstacles. Finally, they propose 

a modification for constant line tension point obstacle models that 

accounts for the dislocation self-interaction as a function of particle 

size and spacing. 

Bacon et al. begin.by considering only dislocations initially 

screw or edge in character since in all cases one or the other of these 
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Comparison of the act~al shape of the dislocation at the 

Orowan stress when elastic self-interactions are consi-

dered to the shape in the constant line tension model at 

the same stress (after Bacon, Kocts and Scattergood, 

1973). 
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will control yielding (see Section IV.3). In the discussion that fol­

lows isotropic elasticity is assumed, although this assumption was 

dropped in a later paper (Scattergood and Bacon, -1975). 

The effect of the self-interaction can be modeled by treating the 

impenetrable obstacles as penetrable (or equivalently, point) obstacles 

in the constant line tension (circular bow-out) model. The effects of 

this correction on the constant line tension point obstacle treatment 

are two. Most importantly, Orowan looping occurs at ~ < 1.0. In 

addition, the area sampled by the dislocation as 1t bows out will be 

underestimated causing the strength of the array to be slightly under­

estimated. The dislocation shapes calculated by Bacon et al. (1973) 

are quite similar to the de Wit-Koehler shapes except in the region 

near the obstacle. 

This penetrable obstacle model works best when the ratio D/L (par­

ticle diameter/particle spacing) is small (i.e. when the shape of the 

dislocation is not strongly perturbed by the actual particle which the 

dislocation must wrap around.) In this case, it is possible to define 

an effective strength F of the particle assuming that it behaves as a 

penetrable obstacle: 

F = cos(lfr/2) (Gr~/2rrK)lnL (IV.20) 

where r
0 

is again the inner cutoff radius of the dislocation and K is 1 

for an edge dislocation and 1 - u for a screw dislocation. 

Equating the force on the dislocation ~bLr02 (r
0 

for units) to the 

effective strength of the obstacle we can solve for the critical cusp 

angle. Bacon et al. start with 

~ = (Gb/L)A[lnfi + B] (IV.21) 

where (IV.22) 

because this equation is the simplest one with the right proportionali-. 

ties. They find A and B by empirical data fitting to be 1/2nK and 0.7, 

respectively. Plugging in gives the critical cusp angle 

cos(lfr/2) =On D + 0.7)/ln L. (IV.23) 
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~aeon et al. use this solution for the critical cusp angle for 

Orowan looping to correct empirical solutions for random arrays of 

point obstacles for the effect of dislocation self-interactions and 

finite obstacle size. The empirical result of Kocks (1967) and Foreman 

and Makin (1966) for the motion of a dislocation through a random array 

of point obstacles is 

't' = (cos IJ!/2) 3 12 (Gb/L)[(ln L)/2nK]. (IV.24) 

For this case [)-f) and 0.7 « ln D are reasonable assumptions (small but 

finite obstacles at .moderate to large spacings, volume fraction not too 

b i g ) • Then the c r it i c a 1 cusp an g 1 e is appro x i mat e 1 y (1 n D /1 n L) and 

the corrected value of 't' is 

't' = (ln 0/ ln L) 3 12 (Gb/L)[(ln L)/2nK]. (IV.25) 

The or i g in s of t he t e r m s in t h i s e qua t ion a r e a s f o 11 ow s : Gb I L, the 

classical Orowan looping value; ln L/2n, the interactions over one 

bowing loop; and (ln D/ln L) 3 12 , the self-interactions in a random 

array. 

Equating L, the particle spacing, to ls/r
0

, the dimensionless 

mean square obstacle spacing in these units, in equation IV.25 and 

comparing the resulting equation for the critical resolved shear stress 

to 't'• = Q~3 1 2 leads to a line tension of the form 

(IV.26) 

The value of the inner cutoff radius of the dislocation, r
0

, is usually 

taken to be between b and 4b, where b is the Burgers vector. The most 

physically reasonable choice is r
0 

= b. Ardell (1985) suggests that 

a good approximation for the line tension is A/r
0 

55, which leads to 

ave rage r ad ii o f a b out 1 0 n m a t p e a k s t r eng t h. The c h o i c e s s u g g e s t e d 

here lead to larger values of the logarithmic term. Since the average 

radius at looping can be somewhat larger (see section VI.3.9.1), the 

values from this equation may not be unreasonable. Ardell (1985) 1 ists 

computed values of the line tension for various materials. For pure 

screw dislocations a constant line tension value of Gb 2/2 seems to be 

the best approximation for the obstacle strength and spacing Aependent 
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form. 

IV.2.S Application of the self-interaction to the strong line solution 

To apply the model of Bacon et al. (1973) in the context of the· 

strong line solution of the point-obstacle model, several issues must 

be resolved. Some of these are discussed briefly below • 

1 Amax=07 .... c • 

It is not clear exactly where the idea that fJ~ax is rarely bigger 

than 0.7 in practice comes from, although 0.7 is the value recommended 

by the authors to Hanson and Morris. Bacon et al. do comment that ~/2 > 
40° which implies J3=0.77 for the range D<L/10 and L>IOOO (which is a 

very dilute solution). These are the same constraints that lead to the 

simplification to On D/ln L) in equation IV..2S above. However, the 

general solution for the critical cusp angle is 

cos (~/2) = On D + 0.7)/ln L. (IV.27) 

From this equation fJ may be greater than 0.7. The villue of fi increases 

as the the ratio D/L increases. Physically, the separation of the arms 

of the dislocation increases as the obstacle size increases. The 

strength of the interaction between the arms is correspondingly 

lowered. In the context of the strong line solution, decreasing the 

self-interaction has the effect of increasing the values of fJ and fJmax 

appropriate to the particle. 

Bacon et al. also show that when the obstacles are non-collinear 

the flow stress will be lowered. In fact, if the angles are sharp 

enough, the force from the self-interaction can cause obstacles to be 

bypassed at zero stress • 

There is a somewhat cryptic plot of the Orowan stress as a func­

tion of various assumptions about Orowan looping in the Bacon et al. 

paper that indicates that for Q = 0.8871, fJc may be about 0.7 to make 

Orowan looping continuous with the point obstacle solution of Hanson 

and Morris (197Sa), but the origin of the plot is unclear. 
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The actual value of fJc is important only to the numerical accuracy 

of the calculation. What is important is whether its value changes· 

significantly over t.he range of precipitate radii of interest. An 

additional question is the validity of extending this line tension ap­

proximation for impenetrable particles to fairly weak, penetrable 

obstacles that the dislocation will eventually shear. 

2. Variation of fJmu: with obstacle size and spacing 

Use of equation IV.27 to find fJmax requires fJ to be a function of 

particle size and spacing. The only feasible way to do the calculation 

is to use the average particle size and spacing, in spite of the fact 

that this assumption is somewhat contradictory in the context of a 

strong line solution for the critical resolved shear stress. 

3. Experimental values of fJc• 

The looping radius and the value of fie in the constant line ten­

sion approximation can only both be determined from experimental data 

if the strength of the array and the strengthening theory are assumed. 

It is simp~est to assume the value of fJc is fixed at 0.7. 

4. Line tension. · 

Note that the line tension that results from the Bacon, et al. 

analysis (equation IV.26) differs from that calculated by De Wit and 

Koe h 1 e r ( e ~·a at ion IV.19). 
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IV.3 Dislocation Character 

It is generally agreed that macroscopic yielding requires the 

motion of screw, edge, and mi.J:ed dislocations. The force required to 

move each type of dislocation is not equivalent, since the interaction 

of the dislocation with the matrix and the various obstacles it con­

tains depends on the character of the dislocation. Yielding is con­

trolled by whichever of type of dislocation is most difficult to propa­

gate through the crystal -- dislocations that are initially either pure 

screw or pure edge. This dislocation type will be the one visible in 

transmission electron microscopic studies of deformed crystals since 

dislocations that move at lower stress will tend to glide out of the 

crystal. 

From equation IV.19, in an isotiopic material the line tension of 

an initially screw dislocation is greater than the line tension of an 

edge dislocation by a factor of (l+u)/(1-2u). This difference in line 

tension is responsible for the difference in the required stress for 

edge and screw dislocation glide. Although this li~e of reasoning 

seems straightforward, the predictions of the analysis below do not 

always correspond well to experiment. 

There are two classes of dislocation-obstacle interactions of 

interest: those in which the resistance to dislocation glide is. deter­

mined by the force required to shear the obstacle, and those in which 

the resistance is controlled by the value of ~ (i.e. cases in which the 

force to bypass the obstacle is proportional to the line tension) 
"'tt:,.,\ 

(Kocks, Argon, and Ashby, 1975; pp. 62-63). In both cases, whether the 

critical resolved shear stress is bigger for screw or edge dislocations 

is determined by (a) whether the maximum resistance to dislocation 

glide depends on dislocation character and (b) the relative magnitude 

of the line tension for each dislocation type. 

IV.3.1 Force-controlled glide. 

The fully dimensional form of the critical resolved shear stress 

is 

(IV.28) 
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The line tension of a screw dislocation is greater than the line ten­

sion of an edge dislocation. If the f~rce of interaction between the 

dislocation and the obstacle is equal for edge and screw dislocations 

or if the interaction force is greater for edge dislocations then the 

critical resolved shear stress is controlled by the edge dislocations. 

If the force of interaction is greater for screw dislocations then 

whether yield is edge or screw controlled depends on the magnitude of 

that difference. 

On this basis, order hardening, for which the interaction force is 

equivalent for screw and edge dislocations, is expected to be edge­

controlled. In the case of coherency hardening, the edge dislocation 

has a stronger interaction with the precipitate since there is a volume 

distortion associated with an edge dislocation, but not with a screw 

dislocation. Consequently, yielding in a coherency-hardened ma·terial 

should also be edge-controlled. 

Edge-cortrolled yielding has been observed in alloys hardened by 

Ni 3Al, which provides both misfit and order strengthening (Ardell, 

Munjal and ~bellman, 1976). Screw-controlled deformation in underaged 

material has been observed in the aluminum-lithium system (Miura, 

Matsui, Furukawa and Nemoto, 1985). Humphreys (1985) suggests that if 

cross-slip occurs, yielding in alloys hardened by misfitting, coherent 

precipitates will be screw-controlled. However, if cross-slip is an 

important factor, the pinning of the dislocation by a jog is an impor­

tant obstacle to glide that should be simulated by including additional 

strong obstar.les in the model. This point deserves further investiga-

tion. 

IV.3.2 p-controlled glide. 

If the force of interaction between the dislocation and the obsta­

cle is proportional to the line tension, then the equation for the 

critical resolved shear stress in terms of independent variables is 

(IV.29) 

If p for the interaction is equal for edge and screw dislocations.- the 
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critical resolved shear stress is greater for glide of screw disloca­

tions. ThiS result also holds if the interaction is stronger for screw 

dislocations. If the interaction is stronger for edge dislocations 

then the magnitude of the difference determines which dislocation type 

controls yielding. 

Orowan looping is an example of a' hardening mechanism for which 

the force of interaction is proportional to the line tension. Since 

the resistance is independent of dislocation character, yielding in 

materials principally hardened by non-shearable precipitates should be 

screw controlled (Melander, 1978). Melander and Persson (1978a) make 

this argument for modulus hardening on the basis of the relation 

suggested by Russell and Brown (1972) 

(IV.30) 

The line tension ratio is approximately independent of dislocation 

character. Transmission electron microscopy indicates that screw dislo­

cations are present in the deformed material when it is hardened 

primarily by GP zones, which Melander and Persson argue strengthen 

primarily by modulus hardening. 

IV.3 ,3 Implications. 

In alloys hardened by ordered precipitates that are shearable at 

small sizes, there is a transition in deformation mode near peak 

strength when the precipitates become large enough that dislocation 

looping is preferred over shear. This transition implies,. that in mate­

rials in which the yielding is edge-controlled in the underaged condi­

tion will exhibit screw-co.nt rolled yielding in the over aged condition 

and some mixture in the vicinity of peak strength. This suggestion has 

not been experimentally verified. In particular, observations of 

screw-controlled deformation in underaged aluminum-lithium alloys sug­

gest that the •ntire analysis may be flawed. 
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IV.4 Precipitate ~oarsening 

IV.4.1 Experimental parameters. 

A model of the critical resolved shear stress should predict the 

aging curve of a precipitation hardened material as the precipitates 

coarsen and account for the experime~tally observed hardening and sof-

.tening. A general model of the effect of precipitate coarsening on 

yield strength wouid ideally incorporate the volume fraction of preci­

pitate present, a description of the shape of the precipitate size 

distribution and the evolution of the precipitate size distribution and 

volume fraction as a function of time, temperature and/or average 

precipitate radius. Unfortunately~ a material-independent general 

expression of this sort does not exist. In lieu of an exact expres­

sion, the simplest assumption is that the precipitate size distribution 

coarsens at constant volume fraction in a self-si~ilar fashion, so that 

the shape of the distribution as a function of r/<r> does not evolve 

with time. The viability of this assumption is discussed below. 

IV.4.2 Models of precipitate coarsening. 

A number of theoretical models of diffusion-controlled coarsening 

exist (Lifshitz and Slyozov, 1961; Wagner, 1961; Ardell, 1972; Brails­

ford and Wynblatt, 1979; Davies, Nash and Stevens, 1980; Voorhees and 

Glicksman, 1984a, 1984b). All of these approaches give rise to the 

Lifshitz-Slyozov-Wagner (LSW) coarsening relation 

r 3 - r 3 = kt 0 • (IV.31) 

However, the models differ with regard to the predicted shape of the 

asymptotic precipitate size distribution. The Lifshitz-Slyozov mode 1 

predicts a strict cutoff at r/<r> = 1.5 in the limit of zero vol1ime 

fraction. Because larger radii are observed experimentally, other 

investigators attempted to eliminate the upper limit by accounting 

properly for the finite volume fraction of precipitates (Ardell, 

Brailsford and Wynblatt) and the possibility of encounters (Davies, et 

a 1.). The Davies, Nash, and Stevens mode 1 leads to a more symmetric 

distribution than the others that may better reflect reality. However, 

none of these models is in perfect agreement with the limited amount of 

.• 
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precise experimental data. 

IV.4.3 Evolution of the shape of the precipitate size distribution • 

Precipitate size distributions of various shapes can be created by 

appropriate thermal treatments. This point is illustrated by the sample 

distributions for binary aluminum-lithium alloys shown in figure IV.lO 

(data from Gu, Liedl, Sanders and Welpmann, 198Sa and Baumann, 1984; 

see also Jensrud and Ryum, 1984). At least some of these are almost 

certainly non-equilibrium distributions; their coarsening behavior is 

not known. (The Voorhees and Glicksman model (1984a) can be used to 

consider the evolution of a distribution, but the computation is diffi­

cult.) None of the theoretical predictions for the shape of the preci­

pitate size distributions fit the experimentally measured distributions 

exactly. The Davies model is probably most satisfactory because it 

leads to the most symmetrical distribution. 

Gu et al. have done an extensive study of the behavior of the 

precipitate size distribution during coarsening in binary aluminum­

lithium alloys (Gu~ Liedl, Kulwicki and Sanders, 198Sb; Gu, Liedl, 

Mahalingam and Sanders, 1986). These alloys provide an excellent model 

system for coarsening studies because the precipitates are spherical in 

shape (an assumption of all coarsening theories that is not always 

fulfilled) and almost exclusively of one type (&'). The precipitate 

size distributions were found to coarsen self-similarly ~ver the range 

of compositions examined. Gu, et at. (1986) found that it was possible 

to specify the precipitate size distribution as a function of lithium 

content. by the two parameters of a Weibull distribution. The distri­

butions were essentially independent of aging temperature and time. 

The·y have a symmetrical shape better approximated by a normal curve 

than by the skewed curves suggested by all the theories except Davies 

et al.; however, Gu et al (198Sb) could not find evidence for the 

encounters assumed by that model • 

The work of Gu, et al. suggests that it may eventually be possible 

to describe experimental precipitate size distributions by a small 

number of easily determined parameters. It also suggests that for a 

given distribution, the .assumption of self-similar coarsening is pro­

bably a rather good one. This assumption has the advantage of not 
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adding an additional parameter to the model. If the initial pre.cipi­

tate size distribution is far from the asymptotic shape and coarsens 

toward it, then t~ere may be an error associated with this assumption. 

However, even in this case, the approximation should improve as the 

alloy approaches peak strength, the region of greatest engineering 

intere.st. 

IV.4.4 Volume fraction effects during coarsening 

The change in volume fraction during precipitate coarsening can be 

estimated on thermodynamic grounds (Porter and Easterling, 1981). The 

impetus for the change is the fact that the presence of the precipi­

tate-matrix interface alters the equilibrium between the matrix and 

precipitate phases. The requirement of mechanical equilibrium across 

the curved interface·leads to a pressure difference 

(IV.32) 

where Ya~ is the surface energy of the interface. The pressure diffe­

rence decreases the magnitude of the free energy change for the reac­

tion by the amount 

4Gy = V4P. (IV.33) 

As the precipitate radius increases during coarsening, the free energy 

change due to th(> interface decreases in magnitude, resulting in fur­

ther precipitation of the second phase and decreased solubility of the 

solute species. 

The· concentration of solute in the matrix may be expressed as a 

function of particle radius: 

(IV.34) 

where Xr and X
0 

are the concentrations corresponding to precipitates of 

average radius r and infinity (i.e. at equilibrium), respectively, Ya~J 

is the interfacial free energy, 0 is the atomic volume in the precipi­

tate and kB is Boltzmann's constant. Brailsford and Wynblatt (1979) 

use this equation in their coarsening theory to predict a change in· 
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precipitate volume fraction given approximately by 

(IV.35) 

where 0(r) is the volume fraction when the average particle radius is 

<r>, and r 1 and G(ri) are the initial precipitate radius and initial 

volume fraction, respectively. 

Figure IV.ll shows the cumulative change in precipitate volume 

fraction during coarsening for the specific example of Al 3Li (&') in 

aluminum. As can be seen from the figure, the increase is most pro­

nounced wh~n the volume fraction of precipitates is .low ~nd most of the 

increase occurs while the precipitates are less than 20b in diameter. 

Peak strength generally occurs at radii greater than 40b. At that 

size, the rate of change of the volume fraction with precipitate radius 

is extremely low. Not surprisingly, the larger the surface energy of 

the precipitate-matrix interface, the greater the effect. Since the 

critical resolved shear stress is proportional to the square root of 

the volume fraction of precipitates, the maximum effect on the critical 

resolved shear stress is a factor of {0(inf)/0(0)} 1 12• For aluminum­

lithium the increase is unlikely to ever be greater th\n 2'. Only when 

the precipitates have a high interfacial energy or when the volume 

fraction is extremely low is the effect significant enough to require 

its inclusion in the computation of aging curves. 

.. 
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IV.S Obstacle strength in order-hardened alloys 

In theory. the determination of the strength of an obstacle to 

dislocation glide is straightforward; it is given by the peak force in 

the force-distance curve that describes the dislocation-obstacle inter­

action. In practice, obstacle strength must be quantified by computing 

the maximum interaction force in some fashion. Since the details of 

the interaction are not always known, this procedure is not always 

trivial. The following discussion will consider ways of quantifying 

the interac~ion force for the particular case of alloys hardened by 

coherent, ordered precipitates with relativeli low misfit strains. 

In alloys that are primarily order-hardened, the principal deter­

minant of strength is the antiphase boundary energy r of the precipi­

tated phase. Considerable effort has been expended to determine its 

value by a variety of techniques in various model systems. First 

principles calculations of the strengthening due to ordering generally 

depend on knowledge of the antiphase boundary energy as do predictions 

of superdisl~cation spacings and activation energies for cross-slip, 

etc. 

Correct superposition of several strengthening mecitanisms for the 

same obstacle (discussed in IV.1.2) is important for determinations of 

obstacle strength. Since the objective here is to quantify the 

strength of the precipitate, even if the strengthening is dominated by 

o r d e r h a r den in g , o t be r c on t r i but i on s m us t be c on s ide red. Tb e r e a r e 

three distinct methods commonly used to find the antiphase boundary 

energy: (1) theoretical calculat~on of disordering energy, (2) measure­

ment of minimum Orowan loop size, and (3) measurement of superdisloca­

t i on p a i r spa c in g • Tb e t be o r e t i c a 1 c a 1 c u 1 a t i on i s t be s imp 1 e s t t e c b­

nique, but it gives a value for the antiphase boundary energy that is 

independent of the misfit strain, which must then be accounted for 

separately. In the other two methods, it is possible to include the 

effect of a small misfit strain in the order strengthening term. The 

three methods are discussed below. Unfortunately, each bas its disad­

vantages and the value of this critical experimental parameter is 

always somewhat uncertain. 
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IV.S.1 Theoretical calculations of the antiphase boundary energy. 

Calculation of the energy associated with an order-disorder trans­

formation at a given temperature is a problem that has been much stu­

died by materials scientists and solid state physicists who wish to 

calculate phase diagrams. The simplest model. termed the Ising model. 

considers the energy change on ordering due to first nearest neighbor 

interaction~ only 

(IV.36) 

where a and b represent two types of atoms. Using a model of this 

type. Flinn (1960) derives the energy of an antiphase boundary of the 

type a
0

/2<110> in the L1 2 crystal. For this case he gets 

(IV.37) 

where h 2 k. a is the lattice parameter of the disordered phase. and N 

= h2+t2+1 2• The above formula assumes that the long range order of the 

phase is perfect. If it is not, th~ energy must be multiplied by s2 • 

where S is the lon0-range order parameter, in order to give the correct 

answer. 

The real sticking point is the value of 'the ordering potential V. 

A Bragg-Williams type approximation gives a value of the form 

(IV.38) 

where Tc is the critical order-disorder temperature (determined from 

the phase diagram), kB is Boltzmann's constant, Fa and Fb are the 

atomic fractions of a and b atoms, and Z is the number of first nearest 

neighbors (Muto and Takagi, 1955). 

For the L1 2 structure, quasichemical calculations that describe 

atomic interactions in more detail give (Marcinkowski, 1963) 

(IV.39) 

which gives considerably larger answers. Quasichemical calculations 

are probably more accurate. so equation IV.39 is the preferred form for 
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the ordering potential. Combining with equation IV.37 gives 

(IV.40) 

for the L12 crystal structure. 

The calculations above are intended to determine the antiphase 

boundary energy in bulk material. _not precipitates. The simplest adap­

tation to the precipitate case (admittedly without theoretical basis) 

is to use the Tc for the bulk phase. If the Tc is not known the 

highest temperature at which the precipitate is stable is often substi­

tuted. This substitution gives a lower limit (sometimes very low) on 

the antiphase boundary energy. 

Unfortunately. many of the papers in which these calculations are 

done for Al 3Li and Ni 3Al quote these formulas incorrectly. The confu­

sion propagates forward into later papers that use these papers as 

sources. Copley and Kear (1967). Furukawa, Miura and Nemoto (1985) and 

Jensrud (1985) all have erroneous equations. Sample calculations for 

binary aluminum-lithium alloys are included in section VI.9.3.2.1. 

IV.5.2 Minimum precipitate size for Orowan looping. 

The minimum precipitate size for Orowan looping is an easily 

measurable experimental quantity that has a relatively precise value. 

As such it is a good descriptor of strength. If tl::•.3c·exact criterion 

for Orowan looping in a particular system were known. then y and the 

looping radius would be redundant information since they would depend 

on one another directly in a known way. Orowan looping begins when the 

precipi~ate size reaches the point of equality in the force balance 

between the stress for Orowan looping and the stress for particle 

shear. In the simplest case, when the particle strength comes entirely 

from the formation of the antiphase boundary (i.e. when misfit is 

negligible), the looping condition is 

(IV.41) 

In order to make numerical comparisons with the results of others 

possible. it is assumed in this equation that Orowan looping occurs 

·• 
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when fl is equal to one (1) r~ther than the value of 0.7 suggested by 

Bacon et al. (1973). Substituting the de Wit-Koehler form of the line 

tension given in equation IV.19 gives an expression for the antiphase 

boundary energy in terms of the minimum looping radius 

r = (Gb 2 /4nrloop~{(1 + v- 3vsin2 ~)/(1- u)}(ln U/b)). (IV.42) 

For screw dislocations, this equation-reduces to 

(IV.43) 

Note that the antiphase boundary energy calculated from this _equation 

is larger than the one that would be obtained from the results of Bacon 

et al. (1973) by a factor of (1 + v)/(0.7) or approximately a factor of 

t w o ( 2 ) • The s e fa c tors have be en om it t e d so that 1 i t e r a t u r e r e s u 1 t s 

for the antiphase boundary energy as determined by various techniques 

can be compared. 

Simtlar calculations exist in the literature for other definitions . 
of the Orowan stress. Kelly and Nicholson (1963) use 't = Gb/L, Raynor 

and Silcock (1970) use 

(IV.44) 

and Chaturvedi, Lloyd and Chung (1976) use a more sophisticated version 

that includes two additional terms to account for the effect of cohe­

rency strains and the applied stress on the energy to form an Orowan 
~: 

loop. 

IV.S.3 Dislocation pair spacing calculations. 

Dislocations that shear ordered precipitates are weakly coupled 

since later dislocations restore the order of the precipitate removed 

by the first dislocation. For the L1 2 structure, the superlattice 

dislocation has twice the Burgers vector of matrix dislocation, so the 

dislocations travel in pairs. 

The spacing of the second dislocation from the first and its 

effect on the strength of the material depend on its interaction with 



the precipitates. If the shea.red obstacles are either attractive or 

transparent to the second dislocation, then the pair spacing is a mea­

ningful d~scriptor and may be simply calculated. If the sheared preci­

pitates repel the second dislocation (for instance in the case of a 

misfitting ordered particle), then the second dislocation assumes a 

local strong line configuration and the dislocation spacing varies 

significantly along the dislocation line. In this case the dislocation 

pair spacing is some type of average of the various spacings observed. 

Despite the problem of finding a suitable average dislocation pair 

spacing, the pair spacing is often calculated in terms of the antiphase 

boundary energy of the precipitate from the repulsive force between two 

dislocations. This repulsive force is 

UV.4S) 

where ~ is the angle between the Burgers vector and the dislocation 

line and 6 is the dislocation spacing (Raynor and Silcock, 1970). If 

the trailing dislocation is reasonably straight, the force due to the 

applied stress that is opposed by the precipitates is 

UV.46) 

where the yf term comes from the attractive force from the antiphase 

boundary area between the two dislocations. (This .equation again 

neglects dislocation self-interactions.) Equating IV.45 and IV.46 and 

solving for the dislocation pair spacing (since solving for y is com­

plicated although possible) we have 

(IV.47) 

Ardell et al. (1976) also calculate the dislocation pair spacing 

for the case when the second dislocation does not lie within the preci­

pitates. Using a model which considers the area swept out by the 

dislocation when it is released by the precipitate, they get the equa­

tion 

(IV.48) 

where 
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u = { (4B + a213 >1 12 - B} /2(1-B/6) (IV.49) . 

and (IV.SO) 

This equation is considerably simplified if either for <r> is small 

since u reduces to a112 when B<<l. The simplified equation is almost 

the same as equation IV.49, but omits the factor of (1-vcos2 ~). If the 

dislocation is .straight, u should be replaced by (u + f). Ardell et al. 

get reasonable agreement with the spacings observed experimentally in 

Ni3Al if they measure <r> and f, and assume T and y. 

IV.S.4 Discussion of methods for determining strength of ordered 

precipitates. 

It should be clear from the above discussion that in an alloy 

hardened by ordered precipitates with low misfit strains the disloca­

tion pair spacing, the minimum radius for Orowan looping, and the 

antiphase boundary energy are closely related quantities. If our 

theories of dislocation-dislocation and dislocation-precipitate inter­

actions were exact and our measurements of experimental par~meters and 

material properties accurate, these quantities would be entirely redun­

dant; any two could be calculated if the third were known. The theory 

could then be written using these properties interchangeably as conve­

nient. Then it would only be necessary to determine one of these 

properties for a particular material in order to use the theory to 

predict strengthening behavior. However, each of the. equations above 

that relates these parameters contains approximations. It is obviously· 

relevant to assess which method contains the most realistic approxima­

tions on a case by case basis. 

Some experimental input is required no matter what method is used. 

This input may be the dislocation pair spacing, the minimum observable 

loop size, the strength at some point on the aging curve (Melander and 

Persson, 1978a) or the y that makes the theory fit the experimental 

data best (Munjal and Ardell, 1975). A problem common to all these 

methods is that the antiphase boundary energy may change with precipi­

tate radius, composition and/or temperature. 

The first principles calculation of the antiphase boundary energy 
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from the Tc is the most commonly used method of determining the anti­

phase boundary energy. It is an appealing choice since knowledge of 

the crystal structure of the ordered phase and the Tc from the phase 

diagram is all that is required. However, it is hard to get something 

for nothing. and the assumption that y is dominated by first nearest 

neighbor interactions probably means that the calculation is at best 

somewhat qualitative. While the accuracy is probably better than an 

order of magnitude. quoting antiphase boundary energies to better than 

10' accuracy is clearly unreasonable. The calculation is best used to 

examine the qualitative effects on the antiphase boundary energy of the 

Tc• the dominant glide plane and the degree of long-range order. 

An additional problem with the theoretical calculation is that 

while most investigators have assumed that the long range order parame­

ter S is unity. logic and the little available experimental data stig­

gest that this is rarely the case. Since the miscibility gap in which 

the ordered precipitate is stable has finite width at any temperature 

below the critical temperature. the precipitate is not expected to be 

stoichiometric. The long range order parameter must then be less than 

one. ·Since y is proportional to the square of S. even a small devia­

tion from perfect order can cause an additional ten or twenty percent 

error in the calculated value of the antiphase boundary energy. 

The dislocation pair spacing is a commonly used technique for 

determining the antiphase boundary energy. The contouring of the 

dislocations means that some type of average spacing must be used. A 

perhaps more important issue concerns the magnitude of any relaxation 

that might occur in the thin foil. Nembach. Suzuki, Ichihara and 

Takeuchi (1985) have shown that qualitatively different-results are 

obtained for thick specimens that resemble bulk material and thin 

specimens that do not provide sufficient constraint on the disloca­

tions. Other investigators feel that the method is reliable and that 

any effect~ of relaxation on the dislocation pair spacing are probably 

minimal (Ardell. 1986). 

The c h i e f s our c e o f r e 1 ax a t ion i s the rep u 1 s i on be t w e en the t w o 

dislocations. In particular, the trailing dislocation will relax away 

from the bowed out first dislocation. The first dislocation is ex­

pected to remain bowed even if relaxation is.important because the bow­

out increases the separation of the dislocations. Relaxation is op-
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posed by the frictional stress imposed by the matrix and by the preci­

pitates most recently sheared by the second dislocation. It seems 

unlikely that the second dislocation will shear any precipitates as it 

moves backward (reintroducing an antiphase boundiry), so the magnitude 

of the relaxation effect should be determined by the relative sizes of 

the dislocation pair spacing 6 and the mean square obstacle spacing ls. 

When the obstacles are far apart, the second dislocation may relax 

backwards for some distance before it prevented from doing so by preci­

pitates. When the obstacles are closely spacing, the backward relaxa­

tion is immediately arrested. 

The minimum precipitate size for Orowan looping is the other quan­

tity that measures obstacle strength. This method has the drawback 

that it also requires careful transmission electron microscopy to 

determine either the minimum looped radius or the maximum sheared 

precipitae radius. The looping radius can only be related to the other 

two quantities by a theory of strengthening that includes all operative 

mechanisms and correctly accounts for the effects of obstacle spacing 

and size. Therefore, the values for y and 6 are only as good as the 

strengthening theory used to calculate them. However, this -uethod has 

the advantage that the strengthening theory can be formulated directly 

in terms of the looping radius. This technique is in effect: a first 

order perturbation correction to the theory, since the misfit strain is 

implicitly included in the value of the antiphase boundary energy, 

although it is not explicitly considered. (Using the dislocation pair 

spacing would also be a first order perturbation solution, but a much 

more awkward one.) The improved accuracy of this approach stems from 

the fact that it accounts for the influence on the strength of effects 

that are neglected in the theory, at least for the lead dislocation. 

It has the second advantage that it provides a blind fit to the data; 

no critical resolved shear stress data are used as input to the theory 

that is supposed to predict it. On the basis of these arguments, the 

looping radius would seem to be a highly desirable choice for • measur~ 

of prec ip ita te strength. 
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IV.6 Effect of superdislocations on the critical resolved shear 

stress. 

IV.6.1 Calculation of superdislocation coupling. 

In alloys hardened by shearable ordered particles, two or more 

dislocations may become coupled since the passage of the first disloca­

tion destroys the order of the particle and the passage of some number 

of subsequent dislocations restores it. Since these dislocations are 

close together. their effect on the critical resolved· shear stress is 

similar to the uncoupled pileup of dislocations considered in Appendix 

C. The equations which describe· the situation are slightly different 

since the dislocations are coupled by the antiphase boundary area be­

tween them. For the case of a dislocation pair, the force balance is 

given by 

'tAPP 
c 

'ti 
c 

'ti 
c 

= 0 (IV.Sl) 

= 0 

where 't~ is the critical resolved shear stress for glide of the nth 

dislocation. -r:PP is the applied resolved shear stress and -r: is the 

in t e r a c t i on she a r s t r e s s • The in t e r a c t ion s t r e s s c an be b r o ken in t o 

two terms, one of which describes the dislocation repulsion important 

above and the second of which describes the effect of the antiphase 

boundary area between the two dislocations. 

Brown and Ham (1971) (and Gle iter and Hornbogen, 1965) specify 

the values of the shear stresses above for the force balance at the 

point when the first dislocation breaks ~hrough the particle. For 

volume fractions less than 0.2, using the average obstacle spacings L 

and particle sizes d along each dislocation and an applied stress 'tAPP 

they find 

(IV.52) 

where R is the repulsive interaction force per unit length of disloca­

tion. The d (Y and RL1 terms in equation IV.S2 correspond to the 't~ and 

.. 
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~i terms, respectively, in equation IV.Sl. Eliminating R gives c 
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(IV.S3) 

For this equation to be at all useful, we have to make assumptions 

about the term in parentheses. For instance, letting d2 /L2 = 0 gives 

the simple pileup case. 

Both Brown and Ham and Gleiter and Hornbogen find that if the 

first dislocation is near looping, the two dislocations will .act essen­

tially as simple pileup of two dislocations (i.e. the effect of the 

antiphase boundary area can be neglected). If the second dislocation 

is nearly straight, the common case, then the stress on the first 

dislocation is given by 

where f is the volume fraction of ordered phase. In this case the 

stress on the first dislocation is greater than for a simple pileup of 

two dislocations. 

Gleiter and Hornbogen (1968) show a plot of decreasing critical 

resolved shear stress as a function of particle radius due to this 

effect; however, their illustration exaggerates the magnitude of the 

effect. 

IV.6.2 Experimental Observations 

Nembach et al., 1985 show high~voltage electron microscope (HVEM) 

pictures of superdislocations in a Ni 3Al superalloy. The second dislo­

cation is essentially straight even though the first one is strongly 

bowed. This observation contradicts suggestions by other workers that 

the second dislocation is pulled forward by the attra~tion of the anti­

phase boundary area between the dislocations. De Hosson, Huis in't 

Veld, Tamler and Kanert (1984) show HVEM pictures of Al 3Li hardened 

alloys. They also show an essentially straight second dislocation. 
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IV.6.3 Strong line approximation 

The average line calculations described in IV.6.1 are not really 

satisfactory for a strong line theory. Fortunately, in some cases the 

situation is actually simplified by a strong line approximation. If 

the obstacles are attractive to the second dislocation (e.g. misfit­

free ordered precipitates), then in general the stress on the lead 

dislocation should be greater than 2~APP. Since the critical resolved 

shear stress is controlled by the strongest line, it should also be 

controlled by the line on which the applied stress is magnified least. 

This rationalization justifies the simple solution of taking the stress 

on the lead dislocation to be precisely double the applied stress (i.e. 

ignoring the coupling of the dislocations). However, if the obstacles 

are repulsive to the second dislocation (e.g. precipitates with non­

negligible misfit strains), then the second dislocation will take on a 

local strong line configuration. The stress on the lead dislocation is 

then some indeterminate amount less than 2~APP. The strength of the 

joint strong configuration for the two dislocations has not been ana­

lyzed statistically. 

Another question that remains unsolved is what happens after peak 

strength when the coupling between dislocations weakens because an 

increasing number of precipitates are looped rather than sheared. The 

uncoupling should cause the critical resolved shear stress to drop off 

after peak strength much more slowly than it would otherwise. H~wever, 

no theory fo.r this situation currently exists. 

.. 
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V. Theoretical analysis of the precipitate size distribution effect. 

It has been recognized for some time that obstacles to dislocation 

glide in real systems almost always have a range of strengths. It has 

generally been assumed that the average particle describes the distri­

bution reasonably well. For many purposes, this is in fact the case. 

However, there have been a few investigations of the effect of this 

precipitate size distribution on strength that indicate there is an 

effect. The strong line solution for the critical resolved shear 

stress described in Section II combined with the analysis of Section IV 

provides the basic tools for an analysis. of the effect of the precipi­

tate size distribution on the aging curve. 

The concept of investigating the aging behavior of real alloys 

with the strong line solution is not new. Melander and coworkers have 

published a series of papers on the age hardening behavior of various 

precipitation and dispersion hardened alloys. They use a formalism 

based on the Hanson and Morris theory that is similar but not identi­

cal -to the one described here. Melan~er use• series expansions of the 

basic formulae (see Altintas, 1978) and a variable line tension 

(described in Section IV.2). On the basis of these assumptions, compu­

tations of the force-distance relation for the dislocation interaction 

with the precipitates, and one forced match in the strengthening pro­

file, Melander is able to achieve good agreement for the aging curve 

for oxide-dispersion-hardened copper (1978), underaged and peakaged 

AlZnMg (ltfelander and ~ersson, 1978a and 1978b), and Al-Ag (Jansson and 

Melander, 1979). 

Melander and Persson (1978c) ~lso examine hardening in a y' 

hardened nickel alloy. The dislocation-particle interaction is calcu­

lated for the superposition of the misfit and ordering-related interac­

tions on the assumption that each dislocation of the pair is decomposed 

into partials. Edge control of deformation is assumed. The antiphase 

boundary energy is used as a fitting parameter. Again good agreement 

is obtained up to peak strength. Melander does not discuss the alloy 

design implications of his results. This work is reviewed in an 

article by Melander and Jansson (1979). 

This section contains a full derivation using assumptions based on 

the discussion of Section IV. A discussion of the results comprises 
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Section VI. The application of the theory to binary aluminum-lithium 

alloys is discussed in Section VII. 



.. 

101 

V.1 Assumptions of Model 

The random array solution for the critical resolved shear stress 

for dislocation glide is based on a simple idealization of the general 

problem. It has been used with reasonable sucess to model a number of 

experimental situations. The chief assumptions, along with the sec­

tions in which they have been discussed, are as follows: 

(1) The dislocation is a flexible line of constant line tension T 

for a given mean square obstacle spacing Is. (Section II) 

(2) The obstacles to dislocation glide are modelled as a random 

array of immobile point barriers. The properties of the point obstacle 

are adjusted so that the interaction of the dislocation with the obsta­

cle is mathematically equivalent to its interaction in the glide plane 

with the physical obstacle. (Section II) 

(3) The configuration of the dislocation is described by a unique 

set of pinning points. The critical resolved shear stress of the array 

is reached when the dislocation bypasses the weakest point in the 

strongest configuration. (Section II) 

(4) For a random array of identical obstacles the problem may be 

solved analyticaily using standard statistical techniques. It· is con­

venient to define a dimensionless critical resolved shear stress 

• 't = d b/2T· s (V.l) 

w he r e b i s the Burgers' v e c tor in the g 1 ide p 1 an e. The an a 1 y t i c so 1 u­

tion is then given by 

• 't = 0.8871 <13> 3
'

2 

where ~ is a dimensionless obstacle strength given by 

(V.2) 

~ = F/2T (V.3) 

and F is the force to bypass the obstacle. (Sect ion II) 
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(5) The critical resolved shear stress for a mixture of obstacle 

types is a quadratic sum 

(V.4) 

where xa is the fraction of obstacles of type a and "a is the CRSS for 

an array containing obstacles of type a only. (Sections II and IV.l) 

In order to study the effect of the precipitate size distribution 

on the yield strength of an alloy hardened by coherent, ordered preci­

pitates the following additional assumptions were made: 

(6) The precipitates coarsen according to the LSW rate law and at 

constant volume fraction (in the interior of a grain). (Sect ion IV.4) 

(7) The shape of the precipitate size distribution as a function 

of r/r does not evolve during coarsening. (Section IV.4) 

(8) Each spherical precipitate may be reduced to a set of point 

obstacles whose strengths correspond to the effective radii of the 

precipitate in the glide planes it intersects. Therefore, even if all 

precipitates are the same size, there will be a distri~ution of obsta­

cle sizes in the glide plane. 

(9) The strength of the obstacles is assumed to be a function of 

the radius of the sheared ordered precipitate only, This is equivalent 

to neglecting the misfit of the. precipitate. (Section IV.S) 

(10) The strength of the ~bstacle may be related. to the maximum 

obstacle strength, which corresponds to the looping radius. At the 

looping radius Orowan looping is first preferred over shearing of the 

precipitate. The Orowan condition puts an upper limit on the strength 

of the obstacle whatever its physical size. The antiphase boundary 

en e r g y i s not r e q u i red to c om put e· t he o b s t a c 1 e s t r eng t h s • ( Sec t i on 

IV.S) 

(11) There is considerable confusion in the literature over the 

appropriate form of the line tension. Following the approach of Bacon, 

et al. (1973), we have adopted equation IV.26. The outer and inner 

cutoff radii are equated with ls and b respectively. The line tension 
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for a screw dislocation is then 

{V.S) 

We have also adopted the upper limit on ~ of 0.7 suggested by 

Bacon, et al. {Sections IV.2 and IV.3) 

{12) The dislocations move as superdislocation pairs. The 

effect of the pair is that the actual stress at the obstacle is twice 

the applied stress. Therefore~ the applied shear stress at yielding is 

half the value it would be if the dislocations moved separately. This 

factor is not included in the formulae given in this section, but is 

included in the numerical calculations for Al-Li alloys in Section VI 

{Sect ion IV.6) 

{13) The calculated critical resolved shear stress due to the 

obstacle distribution represents the increment in the- total strength of 

the alloy due to precipitate hardening only and should properly be 

denoted A't. (Section IV.l) 

V.2 Critical resolved shear stress for precipitates of uniform size. 

V.2.1 Obstacle strength distribution. 

Using the formalism described above, the critical resolved 

shear stress a~ a function of preciRitate radius may be calculated for 

a random distribution of precipitates coarsening at constant volume 

fraction. This approach lends itself to the prediction of the shape of 

an aging curve. Initially, the precipitates are taken to be of uniform 

size, which is equivalent to shrinking the distribution of precipitate 

sizes down to a delta function of the same volume fraction. It is both 

convenient and physically realistic to define a dimensionless precipi­

tate radius 

• r = r/b. (V.6) 

where • • r ts generally rounded to the nearest integer. For notational 

ease, the integer value is denoted I when it appears as the index of a 

sum. 
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• Each spherical precipitate of radius r may be reduced to a set of 

point obstacles generated by the intersection of the precipitate with a 

series of parallel glide planes. The effective radius of the precipi­

tate within the glide plane is assumed to be the radius of the circle 

defined by the intersection of the precipitate with the glide plane. 

Since the glide plane lies between two atomic planes, the radius of the 

precipitate in the glide plane is defined to be the larger of the radii 

in the two adjacent atomic planes to avoid ambiguity. The inter-
• sections of a precipitate of radius r
0 

with the glide planes forms the 

f ff . d. . • ( • • *J h set o e ect1ve ra 11 ra r
0

, r 1, ••• r 1 w ere 

(V.7) 

Note that each precipitate contributes two obstacles of each effective 

radius, one on either side of the central plane (see figure V.1). Each 

of these effective radii of interaction may be reduced to a point 

obstacle with strength ~a determined by a force relation that depends 

on the physical properties of th~ precipitate as well as on the effec­

tive radius. If the precipitates are randomly distributed within a 

volume, then the obstacle types will be randomly distributed with 

respect to strength and location within the glide plane. The fraction 

of obstacles with each strength corresponds to the fraction of obsta­

cles with each effective radius generated by the precipitate. The 

obstacle strength distribution for this case is shown in figure V.2. 

The fraction of obstacles of a given strength is given by the 

number of obstacles possessinb that strength divided by the total 

number o~ obstacles, N. Let x
0 

be the fraction of obstacles with 

strength ~a· When all the precipitates are the same size. the frac-
• tions of all obstacles with radii ra are the same and equal to x

0
• The 

total number of obstacles is given by 

~I X - 1 . a a (V.8) 

where the index a begins at 0. It follows that the fraction of obsta­

cles with strength ~a is given by 

. . 
xa = 1/I = 1/r . (V.9) 
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Generation of effective radii of point obstacles from a 
r:r 

single physical precipitate intersected by several glide 

planes. 
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Distribution of effective obstacle radii for precipi-

tates of uniform size. 
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The dimensionless critical resolved shear stress for the dis­

tribution of obstacles created by precipitates of a single size may now 

be determined. From equations V.2 and V.4, the critical resolved shear 

stress for the multiple obstacle type case is 

(V.lO) 

where the maximum value of Pa is ~c' the strength at which Orowan 

looping occurs. 

To complete the solution, the equation must be rewritten so that 

it contains only independent, measurable variables. The variables used 

to make the problem dimensionless must also be constant with precipi-• . 
tate radius. Any dependence of the variables ~. Pc' ~. ~ , T and ls on 

the particle radius must be made explicit. 

V.2.2 Mean Square Obstacle Spacing. 

If the precipitates are coarsening at constant volume fraction, 

the value of ls' the characteristic length, increases with the precipi­

tate radius (or, equivalently, time). The value of ls is related to 

the dimensionless obstacle spacing L* = n1 12 • Let p represent the 
• number of precipitates in a unit volume at some timet , n the cor-

responding number of obstacles, and let Po and n0 be their initial. 

values. Then the constant volume fraction condition requires 

The total number of obstacles is given by 

• n = 2pr 

so the dimensionless obstacle spacing is 

(V.ll) 

(V.12) 

(V.13) 

The characteristic length ls is related to the dimensionless spacing by 
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(V.14) 

where A is the area of the g 1 ide plan e. There fore the change in the 

value of Is as the precipitates coarsen is given by 

(V.15) 

where ls,t and L~ are the chara:teristic length and dimensionless 

spacing at time t and ls,O and L0 are their initial values. 

Using relation V.lS, the dimen•ionless critical resolved 

shear stress may be conveniently redefined so that it is proportional 

to the actual critical resolved shear stress at all times. o• Let "t 

the proportional critical resolved shear stress be defined so that 

• ( •. *> = -r Lt i Lo • 

(V.16) 

If the line tension is taken tn be constant. all the variables on the 

righthand side of this equation except "t are constant with time. 

The numerical value of 1 0 • the initial characteristic length, s. 
may be determined in terms of experimental parameters: Q the volume 

fraction of the precipitate, r
0

, the initial radius of the precipitate 

at time t=O, and the Burgers ve~,tor for the dislocation in the matrix .• 

From equation V.14, the characteristic length is 

(V.17) 

where nv is the number of obstacles per unit volume. The number of 

precipitates per unit v~lume, p~~ is related to the volume fraction 0 
by 

(V.18) 

or, using equation V.l2, 

<1. (V.19) 

.. 
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From equation V.17. the value of ls.O is given by 

(V.20) 

which is the result quoted by Ardell (1985). The value of r
0 

is gene­

rally taken as proportional to b. For lack of a good argument for a 

particular value. it is simplest to set r
0 

equal to b. 

This form of ls makes the dependence of the critical resolved 

shear stress on the volume fraction of precipitates explicit. The 

critical resolved shear stress is proportional to the square root of 

the volume fraction. a standard result. 

V.2.3 Obstacle strength. 

V.2.3.1 Constant line tension case. 

The random array model derived by Hanson and Morris (1975a and 

1975b) and many other models of strengthening consider the line tension 

t o be c on s t ant • The r e f o r e • i t i s of in t e r e s t t o de t e r m in e the v a r i a­

tion of the critical resolved shear.stress with precipitate radius for 

constant line tension and then to compare that result to that for 

variable line tension. 

The dimensionless obstacle strength is determined by the force F 

that the dislocation must exert on the obstacle to bypass it. For 

ordered precipitates whose strength comes mainly from the antiphase 

boundary created when they are sheared. the force is linear with the 

precipitate radius. However. at large precipitate sizes. the precipi­

tate will no longer be sheared. Instead. the dislocation will bypass 

the precipitate by Orowan looping. The force required for Orowan 

looping is approximately constant with precipitate size and is related 

to the minimum precipitate radius rloop at which Orowan looping occurs. 

When the precipitate is reduced to point obstacles. its strengthening 

characteristics are retained. and the dimensionless obstacle strength 

is given by 
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(V.21a) 

{Vo21b) 

• where rloop is the. minimum dimensionless radius at which Orowan looping 

o c curs and f3 c i s the 1 a r g e s t v a 1 u e of f3 o b s e r v e d. The she a r s t r eng t h 

of the precipitate given in equation V.21a may be rewritten in terms of 

equation V.21b so that it is expressed ia terms of experim~ntally 

observable variables 

(V.22) 

.-
The numerical constant B in equations V.21a and V.21b contains the 

antiphase boundary energy. The value of f3c has been set at Oo7 • 

• The relationship between 13 and r (equation V.22) makes it pos-

• sible to rewrite relation V.lO in terms of r , viz: 

where r: has been r-edefined to be the effective dimensionless radius 
• and cannot be greater than rloop" The proportional critical resolved 

shear stress is defined as before. 

V.2.3.2 Variable line tension~ 

As discussed in section IV.2, the line tension is not generally 

constant in physical systems. The model can be reformulated in terms 

of the line tension of equation IV.26 taken from the results of Bacon 

et al. (1973) so that 

T = [Gb 2 /4n(1- u)][ln (1/b)] (V.24) 

for a screw dislocation. In a system coarsening at constant volume, 

this equation implies that the line tension is an increasing function 

of time since the value of ls increases. 

The obstacle strength is now given by an analogous pair of equa-

.. 



.. 

111 

where T1 is the line tension for the configuration of which !3a is a 

* part and T11 is the line tension of the configuration for which rloop 

was determined. The shear strength of the precipitate given in equa­

tion V.22 may be rewritten in terms of equation V.25 so that it is 

expressed in terms of experimentally observable variables 

(V.26} 

Since the line tension T is defined for the entire configuration. 

the critical resolved shear stress for the distribution of obstacles 

created by the identical preci~itates is 

= (0 78701 *>< }3( I >3~I ( *1 * >3 • r Pc Trr Tr -a ra rloop • (V.27} 

The ratio of line tensions may be simplified to 

. The variable line tension also affects the answer through the 
• factor of T in the definition of 't' (equation V.l}. Again a new 

proportional critical resolved shear s,t.ress which is constant with time 

may again be defined 

(V.29} 

where To is the line tension at t = 0. The final equation. in terms of 

precipitate radius is 

( 0.} 2 
't'cT 

. ~r < • 1 • > 3 
·~a ra r loop (V.30} 
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where M includes some of the constant terms. Different precipitate 

size distributions in the same material generally have different values 

of ls,O• To isolate the effect of coarsening, the critical resolved 

shear stress may be normalized by dividing out the value ls 
0

• The new 
0 •• • 

normalized critical resolved shear stress is denoted ~T 

V.2.4 Aging curves. 

Analyzing equation V.30 for its r-dependence, we find that, 

neglecting the log terms, 

At very small values of r, the sum is dominated by its largest term and 

~ - 1. If the sum is replaced by r terms which are proportional to r 3 , 

then 't is proportional to ~1 1 2 • The actual dependence. which includes 

the logarithmic terms as well, should be somewhere in between. If we 

ignore any dislocation uncoupling effects that might occur after 

looping (possibly a rather poor assumption), the critical resolved 

shear stress is approximately proportional to 1/r after precipitate 

looping begins. 

The precipitate radius and the aging time are equivalent variables 

if the precipitate -coarsening rate is known. Consequently, the equa­

tions can be reformulated in terms of time so that they represent an 

aging curve. 

Coherent. spherical precipitates generally coarsen according to 

the Lifshitz-Slyozov-Wagner rate law 

(V.32) 

where r
0 

is the init.ial precipitate radius. r is the radius of the 

precipitate at time t and k is a rate constant which is a function of 

the diffusivity and the interfacial surface tension. It is convenient 

.. 
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to writ~ the time in the dimensionless form 

t * = kt/r3 
0 

so that the dimensionless coarsening law is given by 

At long times this equation reduces to 
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(V.33) 

(V.34) 

(V.35) 

The critical resolved shear stress may then be rewritten in te.rms 

of the time using equation V.34. Rather than substituting in. we can 

refer to the dimensional analysis of ~<r*>. The critical resolved 

shear stress should then increase with time proportional to (t*> 1 ' 6 • 

After looping begins. the critical resolved shear stress is propor­

tional to (t•)-l/ 2 • 

V.3 Critical resolved shear stress for an arbitrary distribution of 

precipitate sizes. 

In real materials. precipitate sizes are always distributed over 

some finite range. Consequently. the critical resolved shear stress 

for an arbitrary distribution of precipitate sizes is the quantity of 

practical interest. The critical resolved shear stress for multiple 

precipitate sizes may be obtained by a straightforward extension of the 

theory for a single precipitate size. The contributions of each preci­

pitate size are summed quadratically in the same way as the contribu­

tions of each obstacle type were summed above. 

The precipitate size distribution is described by a finite number 

of elements Yt• y 2 ••• Ye ••• YE• where E is the total number of ele­

ments in the distribution. Each element is associated with a preci­

pitate radius such that rE > rE-t• etc. Let the fraction of the total 

number of precipitates included in element e be denoted by fe. 

the total number of obstacles is given by 

Then 

(V.36) 
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• where x and r have their previous definitions, but now represent the 

precipitates belonging to element e of the distribution. The fraction 

of obstacles that would have strength ~O.e if only obstacles belonging 

t o e 1 e men t e we r e pre sent i s den o t e d x 0 • The f r a c t ion of o b s t a c 1 e s 

with radius xo,e is just the fraction of precipitates in element e 

times x0 • Rewriting equation V.9 for the distribution gives an 

expression for x0 

(V.37) 

The distribution of obstacle sizes created by a Gaussian distribution 

of precipitate sizes is shown in figure V.3. 

Writing a quadratic sum over the elements of the distribution 

leads to an expression for the dimensionless critical resolved shear 

stress over the elements of the distribution analogous to that in equa­

tion V.lO 

This equation may be expanded 

V.37 and the equations for 

before, • ra cannot be greater 

using the expression 

~ given in equation 
• than rloop• 

(V.38) 

for x0 in equation 

V.21 or V.2S. As 

The dimensionless critical resolved shear stress may be related to 

the proportional critical resolved shear stress as before by requiring 

the volume fraction of precipitates to be constant. The constant 

volume fraction condition for a distribution of precipitate sizes is 

~ ( )3 _ ..-E ( )3 
~e=l Po,e ro,e - -e=l Pe re (V .3 9) 

where p
0 

refers to the number of precipitates with radius r
0

• Defining 

. P to be the total number of precipitates allows equation V.39 to be 

rewritten in a more convenient form 

(V.40) 

Using this notation the total number of point obstacles created by 

these precipitates is given by 
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time. 
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(V.41) 

Equations V.13, V.lS, V.19 and V.41 lead to the dimensionless obstacle 

spacing and then to the characteristic length ls,t' given by 

(V.42) 

The value of the proportional critical resolved shear stress with con­

stant and variable line tension is defined by this ratio in equations 

V .16 and V .2 9 , r e spec t i v e 1 y. 

The equations above for the critical resolved shear stress asso­

ciated with distribution of precipitate sizes are thus far independent 

of the coarsening law chosen. However, they cannot be evaluated for a 

precipitate size distribution unless both the coarsening rate and the 

evolution of the shape of the distribution are specified. 

If self-similar coarseni:1g is assumed, the critical resolved shear 

stress ~ay be calculated for an arbitrary distribution of precipitate 

s i z e s • The v a 1 u e of 't may be c a 1 c u 1 a t e d us in g e qua t i on s V. 2 9 , V. 3 0 , 

V.38 and V.42. The equation for 'tis complex, but the overall propor­

tionalities of 't to the experimental parameters are the same as those 

for the uniform precipitate case. 

The value of ls,O' the initial characteristic length may be deter­

mined in a fashion an~logous to the way ls,O wa• determined for the 

single precipitate case. By analogy to equation V.;20, we have 

(V.43) 

The equation for the proportional resolved shear stress may be dimen­

sionalized using this equation. 

" 

" 
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V.4 Discussion.· 

This section considers the implications of the model for age­

hardening behavior and prediction of microstructures optimized for 

strength. The discussion focusses on three topics: the effect of 

precipitate shape. the effect of the dislocation line ·tension. and 

finally. the effect of the width of the prec.ipitate size distribution 

on the strengthening. Results on the latter topic are compared and 

contrasted with those of other investigators. 

V.4.1 Strength of plate-like precipitates. 

Plate-like precipitates are usually observed when the misfit 

strain in the habit plane is relatively high. while spherical precipi­

tates are generally observed when it is low. High-strength alloys are 

usually hardened by plate-like precipitates. The increase in strength 

is partially due to the high misfit strain and its localization at the 

perimeter of the plate. but it can also be shown that increased 

strengthening should be observed on purely geometric grounds. 

Because the plate distributes the precipitated material more effi-

ciently. a higher strength is predicted even if the misfit strain is 

ignored. Figure V.4 shows a spherical precipitate and a plate-like 

(disc-shaped) precipitate of equal volume. Since strengthening in 

athermal glide is determined entirely by the !!axim~!! in the force­

distance relation for the prectpitate-dislocation interaction. the 

plate strengthens much more efficiently. It provides both more obsta­

cles. because it intersects more glide planes. and stronger obstacles 

because the width of the plate face is larger than the diameter of the 

sphere of equivalent volume. The increase in strength could be quanti­

fied for a specific plate aspect ratio and habit plane. The misfit 

strain around the plate could be included in the model by considering 

the eff~ctive size of the plate to be increased. 

V.4.2 Advantages of uniform precipitate size 

The general form of an aging curve for an order-hardened alloy 

that obeys Lifshitz-Slyozov-Wagner coarsening is discussed in Section 

V.2.4. Peak strength occurs because precipitate strength no longer 

increases with size beyond the looping radius. Since the precipitates 

.. 
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are coarsening at constant volume fraction. the largest precipitates 

are growing at the expense of smaller ones. Consequently. the total 

number of precipitates is constantly decreasing. When enough of the. 

precipitates have radii greater than the looping radius. the number of 

precipitates decreases faster than the strength of the remaining preci­

pitates increases. The critical resolved shear stress then begins to 

decrease • 

The value of the critical resolved shear stress depends more 

strongly on precipitate radius after looping begins than before. Con­

sequently. when a distribution of precipitate sizes exists. this solu­

tion predicts that peak strength occurs almost immediately after the 

largest of the precipitates reaches the looping radius. not when the 

average-sized precipitate reaches the looping radius. This will be 

true whether the line tension is assumed to be constant or to vary 

according to .equation V.24. By contrast. the amount of strengthening 

provided by the precipitates is most closely related to the average 

precipitate radius or the average obstacle strength. As a result. the 

maximum achievable strength increases as the precipitate size dis­

tribution narrows. As illustrated in figure V.S. when the largest 

precipitates reach the looping radius. the average precipitate radius 

of a narrow distribution is greater than the average radius for a broad 

distribution. The strength of the narrow distribution is correspon­

dingly higher. Figure V.6 shows the same effect quantitatively in 

aging curves for Gaussian precipitate size distributions of various 

widths illustrated in figure V.7. The magnitude of this effect for 

experimentally measured precipitate size distributions in binary alumi­

num-lithium alloys is considered in Section VI.4. 

V.4.3 Effect of line tension assumption. 

The variable line tension in the Bacon. et al formulation is given 

by equation V.26. For a screw dislocation. the line tension is 

T = [Gb 2 /(4n)(l- u)][ln (ls.t/b)]. (V.44) 

Figure V.S illustrates the magnitude of the effect of the variation in 

line tension on the critical resolved shear stress as a function of 

radius and time for a uniform precipitate size distribution coarsening 

at constant volume fraction. The strength is decreased by a factor of 
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a narrow precipitate size distribution. 
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roughly [In (ls.t/b)]-1 12 • The constant line tension is taken as 

(V.45) 

The constant line tension underestimates the line tension at small 

radii and overestimates it later on. The effect on the aging curve for 

a precipitates of uniform size is illustrated in figure V.9. The value 

of the constant line tension was chosen so that the peak strengths are 

equal. The choices of the constant line tension and of the inner and 

outer cutoff radii in the variable line tension are· of qualitative 

importance. However, the shape of the aging curve is not changed 

dramatically. 

V.4.4 Comments on the effect of the width of the precipitate size 

distribution. 

The possible effects of the width of the precipitate size distri­

bution on the critical resolved shear stress have been investigated by 

co_mputer simulation (Foreman and Makin, 1967; Altintas, 1978). theore­

tical analysis (Altintas, 1978; Glazer, Edgecu1:1be and Morris, 1985; 

Glazer and ~lorris, 1986) and experimental studies (.Munjal and Ardell, 

1976). The purpose of this section is to reconcile the results of 

these authors. 

Foreman and Makin considered the effect of distribution width for 

two types of obstacle distributions in their computer simulations: 

square breaking angle spectra and square obstacle strength spectra. 

The square breaking angle spectrum is biased toward strong obstacles. 

Their results indicate that the wider distribution weakens the array in 

some regimes and strengthens it in others. Altintas (1978) considered 

the same cases analytically using the theory of Hanson and Morris 

(1975a, 1975b). His solutions agree closely with computer simulation 

results. The results for the square angle distribution from Foreman 

and Makin and Altintas are reproduced in figure V.lO. The excellent 

agreement between theory and computer simulation suggests that the 

Hanson and Morris theory and its extensions can be used with confidence 

to address the effects of distribution width on the critical resolved 

shear stress. 
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Munjal and Arde~l (1976) describe the only attempt to measure 

experimentally the effect of the width of the precipitate size distri­

bution on the critical resolved shear stress. They studied a Ni-Al 

alloy aged to near peak strength. A 30C!It increase in the width of the 

precipitate size distribution was found to result in an 8C!It decrease in 

the strengthening increment due to precipitation. Munjal and Ardell 

compare this result to computer simulation results of Foreman and 

Makin. Their analysis suggests that Foreman and Makin predict a much 

smaller effect from the width of the distribution. Since the simula­

tion was performed using point obstacles, Munjal and Ardell suggest 

. that the finite size of the physical obstacles may be responsible for 

the difference. 

Munjal and Ardell make several assumptions to compare their data 

-with Foreman and Makin's results. Foreman and Makin considered square 

distributions of breaking angles. Although a square distribution of 

obstacles is unlikely to arise in a real material, Munjal and·Ardell 

argue that the effect of other distributions with the same standard 

deviation should be similar. Accordingly, they compute a breaking 

angle histogram for comparison; howeve·r, they do so from the distribu­

tion of precipitate radii rather than from the distribution of obstacle 

radii (precipitate radii on glide planes). This choice causes their 

histograms to be both narrower and strongly biased toward strong obsta­

cles. Both of these errors lessen the size of the distribution width 

effect predicted by Foreman and Makin. As a consequence, the 8% 

decrease in strength measured by Munjal and Ardell is not obviously 

inconsistent with the results of Foreman and Makin. 

The results of Munjal and Ardell are consistent with the predic­

t ions "of the Hanson and Morris theory and the extension to prec ipi tate 

size distributions given here. Munjal and Ardell. compare the critical 

resolved shear stresses at a fixed average particle radius that corre­

sponds to peak strength for the narrower distribution. Since widening 

the distribution has the effect of shifting peak strength to smaller 

average radii, the wider distribution is averaged ~t this average 

radius. Consequently, the observed decrease in strength due to the 

widened distribution is greater than the difference between the respec­

tive peak strengths. The change in the critical resolved shear stress 

is a strong function of the average radius in this regime. If Munjal 

and Ardell had chosen to fix the average particle radius at the radius 



128 

for peak strength of the wider distribution. they might -ave even 

concluded that widening the distribution increased the critical 

resolved shear stress. 
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VI. Applic,ations of the model to the aluminum-lithium alloy system 

VI.1 Importance of the Al-Li system 

The properties of binary aluminum-lithium alloys alloys have 

received a great deal of attention in the last ten years. This 

research is a consequence of intens.e industrial interest in commer­

cializing more complex al'tlminum alloys containing lithium. The driving 

forces behind the development effort are summarized briefly below. 

The dual objectives of minimizing operating costs and maximizing 

performance of aircraft and aerospace systems provide a powerful incen­

tive to reduce aircraft empty weight. Recent design studies indicate 

that structural weight is more effectively lowered by reducing the 

density of structural materials than by improving their mechanical 

properties (Quist, Narayanan and Wingert, 1981). This conclusion has 

provided the impetus for the development and application of resin 

composites. However, the highly anisotropic properties of composites 

make their application difficult, and it seems likely that at least 

commercial aircraft will remain primarily aluminum. As a consequence, 

there is a strong impetus to develop advanced high strength aluminum 

alloys. This challenge is responsible for a renewed interest in produ­

cing low density aluminum alloys to replace current alloys. A promising 

series of alloys has been developed which contain additions of lithium 

to reduce their density. 

Intensive research and development in the last several years have 

led to the registration of several aluminum-lithium alloys intended to 

replace at lower density standard commercial aluminum alloys such as 

2024, an Al-Cu-Mg-Si alloy and 7075, an Al-Zn-Mg alloy. One of the new 

alloys is 2090, designed to have properties similar to those of 7075-

T651. In addition to having a significantly lower density, 2090 is 

superior to 7075 in many respects; in fact, although low toughness .. has 

been a problem of aluminum-lithium alloys in the past, the room tempe­

rature strength-toughness relationship of 2090 is better that of any 

other standard aerospac~e alloy, at least in the longitudinal and trans­

verse directions (Sawtell, Bretz, Petit and Vasudevan, 1984). Its 

cryogenic properties are also superior to aluminum alloys currently 

employed for cryogenic tankage, space systems and high-field magnets 

.<Glazer, Verzasconi, Dalder, Yu, Emigh; Ritchie and Morris, 1985). 
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Aluminum-lithium alloys are expected to be incorporated into commercial 

aircraft within the·next few years. 

In the course of the alloy development effort for the high­

strength, low density alloys described above, the properties of the 

binary alum inum-1 i thium system have received considerable attention. 

Although the commercial and near-commercial alloys all contain other 

alloying additions for high strength and toughness, an understanding of 

the unique properties of the binary system is.£undamental to under­

standing these more complex alloys. 

VI.2 Al-Li system as a model system. 

The aluminum-! ithium system is an excellent model system for the 

modified strong line solution of the critical resolved shear stress 

model (Section V). The solution in Section Vis designed to predict 

the aging cur•e of an alloy strengthened by an ordered precipitate. In 

the following section, the assumptions of the solution are compared 

with the actual behavior of the binary aluminum-lithium system. Sec­

tion VI.3 contains a detailed discussion of the properties of the 

aluminum-lithium system relevant to each point in this summary. 

The assumptions of the solution are: 

(1) The binary Al-Li system is hardened by an ordered precipitate 

: A1 3Li. denoted &•. 

The&' precipitate is the. only type of obstacle that contributes 

significantly to the strength of the alloy. 

(2) Each spherical precipitate may be reduced to a set of point 

obstacles whose strengths correspond to the effective radii of 

the precipitate in the glide planes it intersects. 

The &' precipitates are spherical and remain so even at very 

large sizes. 

(3) The strength of the obstacles is assumed to be a function of the 

radius of the sheared ordered precipitate only. This is equiva-

.. 
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lent to neglecting the misfit of the·precipitate. 

The misfit of the &' precipitate is extremely low, so neglecting 

its effect is a good assumption. 

(4) The precipitates coarsen according to the Lifshitz-Slyozov-Wagner 

(LSW) rate law • 

The precipitates appear to coarsen according to LSW from very 

small sizes. 

(S) The shape of the precipitate size distribution as a function of 

r/r does not change during coarsening. 

Precipitate size distributions have been measured and found to 

coarsen in a self-similar fashion. 

(6) The precipitates coarsen at approximately constant volume frac­

tion. 

The interfacial energy of the &' precipitate in the aluminum 

matrix is small. Therefore, volume fraction increases during 

coarsening are small for precipitates of reasonable size and 

volume f rae t ion. 

(7) The line tension for screw dislocations is used. 

Line tension considerations suggest that edge dislocations should 

control deformation because it is more difficult for an edge 

dislocation to shear an ordered precipitate. However, screw 

dislocations are observed experimentally to control detormation • 

(8) The dislocations move as superdislocat"ion pairs. The effect of 

this pairing is that the actual stress at the obstacle is twice 

the applied stress. 

Superdislocation pairs are observed and their properties as a 

function of precipitate distribution have been studied. 
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(9) The strength of an obstacle may be related to the maximum obstacle 

strength. An obstacle of maximum strength corresponds to a preci­

pitate of radius greater than or equal to the looping radius, the 

size at which Orowan looping is first preferred over shearing of 

the precipitate. 

The looping radius has been determined by transmission electron 

microscopy. 

(10) The calculated critical resolved shear stress due to the obstacle 

distribution represents the increment in the total strength of 

the alloy due to precipitate hardening only and should properly 

be denoted A-r. 

Several investigators have tried to address the contribution of 

the matrix to the strength and to examine the effect of solid 

solution hardening and variations in grain size. 

Vl•l Properties of the aluminum-lithium alloy system. 

Each of the items in the previous section will now be discussed in 

more detail. The discussion will again be limited to binary or near­

binary aluminum-lithium alloys. 

VI.3.1 The precipitate. 

The strengthening precipitate in the binary Al-Li system is Al 3Li 

(&'>. which has the face-centered cubic based L1 2 ordered crystal 

structure (Silcock, 1960; Noble and Thompson, 1971). Precise values 

for the solubility of lithium in aluminum are difficult to determine 

because of the difficulty in detecting lithium with most analytical 

techniques. However, considerable progress has been made. The data on 

the Al-rich portion of the phase diagram including the region in which 

the &' precipitate is observed have been summarized by Williams 

(1981). A binary phase diagram for the Al-rich portion of the phase 

diagram is included as figure VI.1 (Sanders and Starke, 1983). A more 

complete phase diagram for the Al-Li system is given by McAllister 

(1982). 

.. 
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As suggested in the solution of Section V, the Burgers vector- is 

the natural unit of length for precipitate dimensions. The Burgers 

v~ctor b of the {111} planes in aluminum is the length (a
0

/2)(110), 

which has magnitude b = 0.29 nm. 

VI.3.2 Precipitate shape. 

Precipitates of&' are almost always very close to spherical in 

shape (Kulwicki and Sanders, 1983) although other shapes (Baumann and 

Williams, 1985a) and discontinuously precipitated material (Williams 

and ~ington, 1976; Makin and Ralph, 1984) are sometimes observed. Gu 

et al. (1985b) have measured the aspect ratio of nearly spherical &' 

precipitates. At small sizes some ellipsoidal precipitates are obser­

ved (possibly products of precipitate coalescence), but at longer aging 

times, the precipitates are increasingly spherical. Unlike the analo­

gous L1 2 precipitate y'. found in superalloys, which becomes cuboidal at 

large sizes, the &' precipitates are neither observed nor expected to 

change shape as they coarsen (Glazer, et al, 1985; Muller, Bubeck and 

Gerold, 1985). The precipitate shape is in excellent correspondence 

with the .spherical precipitate assumption used to generate the obstacle 

strength distribution in Section V. 

VI.3.3 Degree of order strengthening. 

The lattice mismatch between the &' precipitate and the matrix is 

extremely small. Est.imates range from -0.0018 to -0.0008 (Noble and 

Thompson, 1971;Williams and Edington, 1975; Sainfort and Guyot, 1985; 

Tamura, Mori and Nakamura, 1970; Baumann and Williams, 1983). The 

actual value is probably at the lower end of this range. Because the 

mismatch is so small, it is reasonable to make the simplifying assump­

tion that cbheYency strengthening can be entirely neglected in favor of 

order hardening. 

VI.3.4 Precipitate coarsening behavior. 

The coarsening behavior of &' is discussed in numerous papers 

(Noble and Thompson, 1971; Williams and Edington, 1974; Kulwicki and 

Sanders, 1983; Baumann and Williams, 1984; Jensrud and Ryum, 1984). 

The &' precipitates coarsen according to Lifshitz-Slyozov-Wagner kine­

tics. The LSW rate constant is required if the solution for the criti-
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cal resolved shear stress is to be interconvertible between precipi­

tate radius and aging time. It has been determined for a variety of 

lithium contents and temperatures by the above-mentioned investigators. 

It is not clear at this time if the &' precipitaies form by 

nucleation and growth. from GP zone precursors or because the solid 

so 1 u t ion is un s t a b 1 e w it h r e spec t t o dec om p o s i t ion f o 11 owed by 

ordering. Plots of precipitate coarsening behavior as a function of 

t i me s u g g e s t an in it i a 1 r ad ius v e r y n e a r z e r o. Th-e r e have be en two 

attemptsto determine a critical radius for homogeneous nucleation. 

Baumann and Williams (1984) measured a critical radius of 2 nm (- 7b) 

at 473 K for an alloy containing 7.9 a/o Li in a reversion experi­

ment. Livet and Bloch (1985) determined the critical radius by small 

•ngle x-ray scattering to be 0.6 nm (-2b) at 423 K for an alloy con­

taining 7.5 a/o Li. However. there is some evidence for a precursor 

to the&' precipitate (Ceresara. Giarda and Sanchez. 1977; Nozato and 

Nakai. 1977). 

VI.3.5 Precipitate size distributions. 

Precipitate size distributions of various shapes can be created by 

appropriate thermal treatments. This point is illustrated by the sample 

distributions for binary aluminum-lithium alloys shown in figure IV.10 

(Gu et al.. 1985a; Baumann. 1984; see also Jensrud and Ryum. '1983). At 

least some of these are almost certainly non-equilibrium distribution~; 

their coarsening behavior is not known. 

The element Zr is often added to aluminum alloys because it forms 

the compound Al 3Zr. which inhibits recrystallization. The &' phase may 

precipitate on the Al 3Zr particles forming composite spheroids (Makin 

and Ralph. 1984; Gayle and Vandersande. 1985). The&' on these parti­

cles coarsens at the same rate as the isolated &'. If these particles 

are not distinguished fro~ &' particles that do not have an Al 3Zr core, 

the &' precipitate size distribution will be improperly biased toward 

large particles (Gu et al., 1985a). The strengthening behavior of 

these composite particles is not understood. 

Gu et al. (1985b, 1986) have done an extensive study of the beha-. 

vior of the precipitate size distribution in binary aluminum-lithium 

a 11 o y s • The pre c i p i t a t e s i z e d i s t r i but ion c oar. s en e d s e 1 f- s i m i 1 a r 1 y 
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over the range of compositions examined. They found that it was possi­

ble to specify the precipitate size distribution as a function of 

lithium content by the two pa.rameters of a Weibull distribution. These 

distributions were essentially independent of aging temperature and 

time. The distributions had a symmetrical shape better approximated by 

a normal curve than by the skewed curves suggested by most of the 

theories discussed in section IV.4; however, Gu et al. could not find 

evidence for the encounters assumed by the Davies et al. model, which 

does predict a normal curve. 

VI.3.6 Volume fraction effects during coarsening. 

As discussed in Section IV.4, the equilibrium solubility in the 

matrix decreases as the precipitates coarsen due to the decreasing 

importance of the surface energy of the precipitate. As a consequence, 

the precipitate volume fraction increases during coarsening. In this 

section, the magnitude of the effect in the aluminum-lithium system is 

estimated. 

Numerous investigators have attempted· to measure the interfacial 

surface energy between the &' precipitate and the matrix. Some 

·measured values and techniques by which they were determined are given 

in Table 2. Most of the measurements of the surface energy are made by 

determining the diffusivity, D, and the LSW coarsening constant K 

(denoted D,K in the table). These parameters are related by the equa­

tion 

(VII.1) 

where Vm is the molar volume. Both D and K are strong functions of 

temperature; Y~p vari~s much less. The interfacial surface energy 

almost certainly varies with temperature since the solubility of 

lithium in the matrix changes; .. however, the range of measured values 

far exceeds the expected variation. 

Kulwicki and Sanders (1983) note that in other systems containing 

coherent precipitates, the interfacial energy is always less than 250 

mJ/m2• For precipitates with misfits less than 1% (cf &' - 0.2~). the 

interfacial surface energy is generally less than 20 mJ/m 2 • ·On this 

bas is, the lower values in Table 2 seem more reliable. The D,K method 
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Table 2. Measurements of Al-A1 3Li surface eneray. 

Investiaator Alloy 

Tamura, Mori and Nakamura (1970) 7 

Noble and Thompson (1971) 4 a/o 

Williams and Edinaton (1975) n/a 

Jensrud and Ryom (1984) 3 w/o 

Baumann and Williams (1984) 8 a/o 

Livet and Bloch (1985) 7.5 a/o 

Sainfort and Guyot (1985) 2-3 w/o 

• Method 

7 

D,l 

Surface Eneray (mJ/m2) 

180 

240 

misfit vs other L1 2 mat'ls 25 

D,l so 

critical radios 14 

D,l 14 

D,l (30 

--------------------------------------------------------------------------------------------

• D,l refers to calculations based on the relationship between the diffusivity D and the 

Lifshitz-Slyozov-Waaner coarsenina constant I. ..... 
w .... 
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is suspect since both of these parameters vary strongly with tempera­

ture and precipitate volume fraction. The value of 14 mJ/m2 obtained 

by Baumann and Williams (1984) is used here to calculate the change in 

equilibrium precipitate volume fraction during coarsening 

The effect on the equilibrium volume fraction is illustrated for 

binary aluminum-lithium alloys in figure IV.11. The effect is large 

only for extr~mely small precipitates or very small volume fractions 

(and even then only a few percent for this alloy system). Most investi­

gations seem to agree with this finding (e.g. Baumann and Williams, 

1985b); however, Miura, Matsui, Furukawa and Nemoto (1985) found that 

the volume fraction increased substantially throughout the aging pro­

cess and did not stabilize until after peak strength was reached for an 

Al-3w/o Li alloy. 

VI.3.7 Dislocation line tension. 

Line tension considerations suggest that edge dislocations should 

control yielding at least until Orowan· looping begins at or near peak 

strength. However, Miura, et al. (1985)- observed long straight screw 

dislocations in the underaged material, h.dicating that screw disloca­

tions may actually control the yield strength. Cross-slip of screw 

dislocations is known to be an important factor controlling the varia­

tion of yield strength with temperature in L1 2 ordered alloys. The 

applicability of this theory to alloys hardened by relatively small 

volume fractions of L1 2 precipitates is still in question, but it is 

possible that cross-slip prevents the screw di~locations from gliding 

out. However, Miura, et al. did not observe any slip on {010} planes 

even in favorably oriented single crystals. 

Tho numerical value of the line tension may be calculated as func­

tion of 1 if the shear modulus is known. A good estimate is 3/8 the s . 
value of the elastic modulus, which is easily measured in uniaxial 

tension. A representative value for the shear modulus is 30 GPa. There 

is a subtlety here that Ardell (1985) points out. The relevant shear 

modulus is the shear modulus in the glide plane. In anisotrop{c crys­

tals, the modulus will be different along each plane. Since aluminum 

is very close to isotropic, the error in ignoring this correction is 

small (from 25.9 to 24.9 GPa (Ardell, 1985)). The shear modulus of 

.. 
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aluminum-lithium has been measured by a number of investigators (Miura 

et al. (1985) suggests 30.2 GPa; Jensrud (1985) suggests 27.6 or 28.6 

GPa for the matrix and 30.6 for the precipitate; Muller et al (1985) 

found 26-28.5 for an Al-Al 3 Li mixture containing 0-4 a/o Li at room 

temperature). 

VI.3.8 Superdislocations • 

Deformation in a 1 um inum-1 i·thium alloys occurs by the mot ion of 

dislocations along {111} planes, the close-packed planes in the face­

centered cubic structure. In underaged and peak-aged alloys, in which 

6' precipitates are sheared, dislocations occur in pairs since the 

Burgers' vector of the 6' precipitate is twice that Gf the matrix. 

As mentioned earlier, the Burgers vector of the {111} pla-nes ~n 

the aluminum matrix is the length (a~/2)<110), which is approximately 

0.29 nm. 

As expected, the dislocations are not coupled in the overaged 

condi+.ion when Oro wan looping is dominant (Sainfort and Guyot; 1985; 

Miura, et al., 1985). The uncoupling is reflected in a rapid incre~se 

in the dislocation pair spacing as a function of aging time when the 

precipitates are large (Tamura, Mori and Nakamura, 1972). 

VI.3.9 Obstacle strength. 

The preferred method for quantifying the obstacle strength is 

experimental measurement of the looping radius (see Section IV.S). The 

needed experimental data is available for the aluminum-lithium system 

and is discussed in Section VI.3.9.1. The obstacle strength may also 

be calculated; the computation is included as Section VI.3.9.2. 

VI.3.9.1 Direct measurements of the looping radius. 

The minimum size at which the Orowan condition is observed puts an 

upper limit on the strength of the obstacle, whatever its physical 

size. Miura, et al. (1985) have determined that dislocation ioops do 

not stand away from 6' precipitate~ by a measurable distance. This 
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means that measuring the minimum dislocation loop size is equivalent to 

measuring the minimum size of looped precipitates. Only upper and 

lower limits on the looping radius can be determined from photographic 

observations, since only pre~ipitate sizes clearly visible in the 

micrographs can be considered. In addition it is not always possible 

to ascertain if the observed loop lies on a glide plane that is also a 

precipitate diameter. Transmission electron micrographs from de Hos­

son, et al. (1984) suggest an upper limit on the looping radius in a 

2.2 w/o Li alloy of approximately 2S nm for a mean square particle 

spacing of about 0.9 11m. Sainfort and Guyot (1985) measured a looping 

radius of 18 nm for an Al-3w/o Li with a volume fraction of 2S percent. 

Miura, et al. (1985) m~asured a looping radius of approximately 30 nm 

in a similar alloy. Furukawa, et al. (1985) quote 25 nm. 

VI.3.9.2 Calculations of the antiphase boundary energy. 

Calculations of the sort described in Section IV.5 that quantify 

the strength of the particle may be performed for the aluminum-lithium 

system. 

VI.3.9.2.1 Calculations of y for Al 3 L1. 

Two investigators have calculated the antiphase boundary energy 

for the o' precipitate to date; unfortunately, neither calculation is 

done correctly. 

Recall from Section IV.5.1 that ti-e energy of an antiphase boun­

dary of type a
0

/2<110) in the L1 2 crystal structure may be calculated 

from the formula 

(IV.40) 

where h l k, a is the lattice parameter of the disordered phase, Tc is 

the critical order-disorder temperature (determined from the phase dia­

gram). kB is Boltzmann's constant, and N = h2+t2+12. 

The first calculation is done by Furukawa, et al (1985). There 

apparently is a misprint in the paper and "a" •hould be "a 2 ." In 

addition, the formula is missing the multiplicative factor 1/0.82. 

Their calculation is done using a critical ordering temperature of 548 
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K, which is lower than the peak temperature at which o' is obse~ved. 

The second calculation is done by Jensrud (1985) ostensibly using the 

same theory for the calculation. However, the formula he quotes is 

completely wrong, causing him to get an unreasonably high value for the 

antiphase boundary energy and distorting his other calculations, 

A lower limit on the antiphase boundary energy can be estimated by 

using the peak temperature at which the o' phase is experimentally 

observed. The values in the literature range from 573 K (Noble and 

Thompson, 1971) to 613 K (Williams andEdington 1975). From these 

temperatures, a lower limit on the antiphase boundary energy is approx­

imately 70 mJ/m2 • The actual antiphase boundary energy is expected to 

_be greater. 

VI.3.9.2.2 Superdislocation spacings. 

A number of investigators have attempted to determine the anti­

phase boundary energy from dislocation pair spacings (Sainfort and 

Guyot, 1985; Tamura et al, 1972; de Rosson et kl, 1984; Huang and 

Ardell, 1986). The values of the antiphase boundary energy measured in 

this way range from 130 to 195 mJ/m2 • 

Vl.3.9.2,3 Calculation from minimum looped particle size {or Al-Li. 

No calculations of this sort exist in the literature. However, 

sufficient data exist for one case in de Rosson et al. (1984). For 

rloop = 25-30 nm and L = ls~= 0.9 x 103 nm, the antiphase boundary 

energy from the equation IV.42 is 110-135. mJ/m2 . A looping radius of 
fit •• 

25 nm is in the middle of the range of the reported values. The choice 

fortuitously leads to exactly the antiphase boundary energy calculated 

by de Rosson et al. from superdislocation pair spacings. Assuming a 

looping radius of 20 nm for the same mean square precipitate spacing 

leads to an antiphase boundary energy of about 170 mJ I m2 • All of these 

values are in reasonable agreement with values determined from super­

dislocation pair spacings. 

VI.3.10 Total strength. 

Several investigators have attempted to determine the relative. 

contributions Gf all the hardening mechanisms that impart strength to 
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binary aluminum-lithium alloys (Miura et al., 1985; Jensrud and Ryum, 

1985). While it is genera.lly agreed that order hardening dominates the 

strength; the superpositiion techniques used to determine the influence 

of other factors are questionable. 

Jensrud and Ryum (1984) measured the variation in the critical 

resolved shear stress with grain size. The alloys obey a Hall-Petch 

relationship in all aging conditions. The Hall-Petch coefficient k is 

approximately 0.1 MPavm in the as-quenched materia I. about 0.82 in 

underaged material and 0.90 in overaged material. These results con­

tradict results of Hansen and Bronsted (1985) that kHP decreases during 

aging. 

VI.4 Predictions of the critical resolved shear stress in Al-Li 

alloys. 

Using the solution for the critical resolved shear stress in Sec­

tion V and numerical values from Section VI.3, the critical resolved 

shear stress can be determined. Calculated 'aging c~rves' for the 

experimentally obtained precipitate size distributions measured by Gu· 

et al. (1985a) and Baumann (1984) (shown in figure IV.10) are given in 

figure VI.2. The results of Section V for uniform precipitate size are 

shown for comparison. These calculations assume a looping radius of 30 

nm for ls = 0.9 ~m and an initial radius of lb. The distributions were 

normalized to a volume fraction of 0.2. As can be seen from the fi­

gures, the more sharply peaked the distribution, the more effectively 

it strengthens. The theoretical increment in A~c is large enough to 

have alloy design implications. It should be noted that the effect of 

grain size is assumed to be constant along the aging curve and is 

therefore included in the matrix strength (see Sect ion IV.1.4.3). 

Direct comparison of the theoretic~! and experimental strengthe­

ning increment from the coarsening of o' is possible for the precipi­

tate size distribution shown in figure VI.3 from Gu et al. (1985b) for 

Al-2.78Li-0.3Mn aged at 200°C. Theoretical aging curves were calcu­

lated for a looping radius of 25 nm, which is an intermediate choice 

from the currently available data. The experimental and theoretical 

aging curves are shown in figure VI.4. (It should be noted that this 

plot differs from the one in Glazer, et al. (1985) and Glazer and 

Morris (1986) both in the choice of looping radius and in the proper 

.. 
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incorporation of the fact that much of the lithium remains in solu­

tion.) The theoretical coarsening rate has been fixed using the experi­

mentally determined LSW rate constant. Since the quenched alloy undoub 

tedly contains some atom clustera, the theoretical aging curve has been 

shifted to slightly shorter times to obtain the best fit. The strength 

increment for both yield strength curves is the increase over the 

lowest measured strength. To convert theoretical critical resolved 

shear stress values to yield strengths, a Taylor factor of 3 has been 

assumed. The figure shows that the theoretical and experimental aging 

curves are in excellent agreement up to peak strength. Beyond peak 

strength, the model is no longer valid since it does not account for 

the uncoupling of paired dislocations after Orowan looping begins. This 

uncoupling would cause the strength to drop off more gradually after 

the peak. 



.. 

147 

VII. Conclusion. 

This paper outlines the development of a model of the age­

hardening behavior of alloys strengthened by coherent. ordered precipi­

tates. The model is then used to consider the effect of the precipi­

tate size distribution on the critical resolved shear stress and final­

ly. to obtain quantitative predictions for strengthening in binary 

aluminum-lithium alloys hardened by o' precipitates • 

The problem considered here is a special case of the general 

problem of modeling the strengthening of a crystalline material by 

inhomogeneities that interact with gliding dislocations. A model of 

precipitate hardening must al~o account for the observed rise and fall 

in strength as the precipitates coarsen. The random array model has 

been most useful in modeling this behavior. This model has four basic 

premises: 

(1) The material is modelled in terms of a dislocation glide plane·, a 

hypothetical plane between two atomic planes. 

(2) The obstacles to dislocation glide are idealized as point obstacles 

which interact similarly with the dislocatio~. 

(3) The obstacles are randomly distributed in the glide plane. 

(4) The dislocation is treated as a flexible, extensible string with a 

definite line tension. 

The random array model was first proposed in the late 1950's. 

There have been many attempts to solve it mathematically since then. 

This paper has focussed on one of the more accurate solutions to the 

model for relatively strong obstacles. the Hanson and Morris strong 

line model. The distinguishing feature of this model is its focus on 

the interaction of the dislocation corifiguration with the array rather 

than on the interaction of isolated dislocation segments with particu­

lar obstacles. This view mates it possible to equate the critical 

resolved shear stress with the stress required to bypass the strongest 

line in the array. a powerful concept. The Hanson and Morris solution 

also led to a quadratic summing rule to describe the effects of obsta­

cles of various strengths. 

the Hanson and Morris solution contains the elements of the age­

hardening problem; however. there are a large number of problems that 

must be addressed to make it apply quantitatively or, in some cases. 

qualitatively. to real systems. These include the variability of the 

line tension with dislocation character. the relative energies asso­

ciated with particle shear and looping, the actual strengths of the 
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obstacles, and the effect of superdislocations on order hardening, to 

name a few. Not all of these problems have been solved satisfactorily, 

but it is possible to account for their effects at least partially. It 

is probable that at least their qualitative consequences can be pro­

perly included. 

Probably the single most important problem that remains is the 

proper incorporation of the results of Bacon et al. on the effects of 

dislocation self-interactions on particle shear and looping. The 

initial steps here do not fully consider the effects of dislocation 

self-interactions on the effective line tension and, therefore, on the 

consequences of self-interactions for quantitative determinations of 

particle strength. The impact of these results on summing rules for 

combinations of obstacles that include some very strong obstacles is 

also as yet.nnknown. 

The solution for the critical resolved shear stress derived in 

Section V is a modified version of the Hanson and Morris solu~ion for a 

random array of point obstacles. This solution leads to predictions of 

aging behavior that are in reasonably good quantitative agreement with 

measured behavior in binary aluminum-lithium alloys hardened by o' 
precipitates. These results are a vindication, to some extent, of the 

assumptions incorporated in the model. They suggest that the solution 

may be used with confidence to do theoretical "experiments" that lead to 

predictions of more optimized microstructures. The precipitate shape 

and precipitate size distribution are two microstructural features whose 

consequences can be explored using this solution. In both cases, it can 

be concluded that strengthening is most efficient for a particular 

microstructure (e.g~ plate-like precipitates and uniform precipitate 

size distribution). Undoubtedly, there are other important microstruc­

tural characteristics whose consequences can be considered in a similar 

fashion. 
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Appendix A. Derivation of Friedel relation. 

The Friedel relation may.be simply derived using geometrical argu­

ments for the case in which all obstacles are randomly distributed and 

have the same strength. The line tension of the dislocation is assumed 

to be constant. The argument depends on two assumptions; the disloca­

tion must bow-out in a circular shape with a large radius (so that the 

angles involved are small) and a steady state unzipping condition must 

hold. 

A.l Circular bow-out of the dislocation 

The first of these assumptions makes it possible to write a force 

balance for an infinitesimal length of the dislocation such as that 

shown in figure A.l. The force on the dislocation, given by 

(A.l) 

is balanced by a restoring force due to the line tension of the dislo­

cation of 

2Tsin(&~/2) = T(&~) (A.2) 

where the equality holds if the angle '{I is small. Equating A.l and A.2 

gives a relation between ~ and the bow-out radius 

,; = T/bR. (A.3) 

The value of R may be found in terms of the effective obstacle spacing 

lf (as distinct from the mean square obstacle spacing ls). The proof 

depends on the rarely stated assumption that the obstacles along the 

dislocation line are collinear. For figure A.2, recalling that ~ is 

defined to be sin(~/2), the relationship is 

(A.4) 



Figure A.l 
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Geometry illustrating the force balance between the bow­

out of the dislocation of constant line tension under an 

applied stress~ and ~he restraining force imposed by 

the dislocation line tension. 
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.. Figure A.2 
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Dislocation-obstacle geometry from which the Friedel 

relation is derived. 
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Substituting A.4 into A.3 we get the relation 

't = 2Tf3/bl f (A.S) 

A.2 The Friedel relation 

The problem now is to find the effective obstacle spacing. 1. in 

terms of the mean square obstacle spacing 1
5

, a known parameter of the 

array. The proof is based on the steady state unzipping condition for 

the geometry of figure A.2. As shown in the figure, the steady state 

unzipping condition requires that when the dislocation bypasses an 

obstacle and bows outward it will be pinned by exactly one new obsta­

cle. The mathematical expression of this condition is 

(A.6) 

where Sf is the area the dislocation sweeps out as it moves forward and 

ns is the number of obstacles per unit area. Since ls = n
5

-
112 , 

(A.7) 

when the bow-out radius is large. The height h can be eliminated from 

the equation by relating it to lf and R since 

1 2 + ( R-h) 2 = R2 
f . 

(A. 8) 

where the second equality is true because h is small compared toR. 

Eliminating h from equations A.7 and A.S and substituting for r using 

equation A.4 gives the desired relation between 1 and ls• 

Substituting into A.S gives 

't = 2Tf33 / 2/bl s 

(A.9) 

(A.10) 

.. 
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Defining ~· = ~lsb/2T gives 

~· = IJ3/2 (A.ll) 

which is the Friedel relation. 
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Appendix B. Derivation of eqns 1 and 2 of Haasen and Labusch (1979). 

For the purpose of calculating the critical resolved shear stress, 

Nabarro (1972. 1977. 1985) distinguishes between localized and diffuse 

obstacles on the basis of the size of the parameter K (which he and 

Labusch call ~). It pertinent to give this parameter a physical signi­

ficance before continuing. 

B.1 Rationale for the Labusch K. 

Labusch chooses K as a convenient parameter in his statistical 

solution for solid solution hardening. He then concludes that the value 

of K describes regimes of behavior in which obstacles behave in a loca­

lized or a diffuse manner. He does not attempt to provide a physical 

rationalization for his choice of parameter. According to the scheme 

for differentiating localized and diffus~ obstacl•s in Section I, 

solute atoms may act as either type of obstacle depending on their 

concentration. Consequently. it makes sense that there should be a 

parameter like K that defines points along the continuum between 

localized and dif~use obstacles. It can be shown that the Schwarz and 

Labusch ~ is directly proportional to Labusch's K. Nabarro illustrates 

the relationship between K and the obstacle concentration and spacing 

as part of a series of review papers on solid solution hardening.(1972, 

1977, 1985). 

The value of K may be used to arbitrarily define the regimes in 

which localized and diffuse obstacle statistics apply. Nabarro's 

papers (1972. 1975, 1985) are inconsistent about whether the point of 

division is at K = 1 or K = 1/2. The reasons for the confusion are 

highlighted in the following discussion. 

The parameter K is defined in terms of the characteristics of the 

dislocation and the obstacles it encounters: 

K = F/4Tcw2 (B.l) 

where 2w is the range of interaction of the obstacle and c is the 

concentration of solute atoms per unit area. 
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To rationalize this choice for the diffuseness parameter, Nabarro 

begins by defining an effective obstacle spacing 

L = 1/2cw. (B.2) 

The reasoning behind equation B.2 is worthy of comment since there is 

some confusion in the literature on this point. The geometry of the 

situation is shown in figure B.1 (after Kocks, Argon and Ashby, 1975). 

At zero stress the dislocation lies in a pipe of width 2w, the r~~ge of 

interaction. The concentration of obstacles per unit area is given by 

c, so the number of ~bstacles per unit length in a pipe of width 2w is 

2wc. It follows that the average spacing between obstacles along the 

the dislocation line. is L = 1/2cw. In some papers the diameter of the 

range of int.eraction of the obstacles is given as w' rather than 2w, 

which leads to a spacing of L = 1/cw'. 

There is an additional inconsistency in the derivation that re­

lates to whether the dislocation must be bowed through the radius or 

the diameter of the o~stacle's range of interaction to bypass it. Since 

the solute atom restrains the motion of the dislocation either as it 

approaches or as it l~aves, but not both, it seems reasonable to consi~ 

der the halfwidth of the interaction range (as in Nabarro, 1972). 

With these comments in mind, the derivation of the critical points 

of K is most easily accomplished using the derivation of Nabarro 1977 

or 1985. The geometry is shown in Figure B.2. If the dislocation 

bypasses the obstacle it must be turned through an angle 9/2 given by 

sin (9/2) = w/L = 2cw2• (B.3) 

The restoring force opposing the forward motion of the dislocation is 

given by 

sin (9/2) = F/2T. (B.4) 

If the restoring force is greater than the forward force then the 

dislocation is stable and the perturbation theory used by Labusch for 

diffuse obstacles is justified. The inequality that defines the diffuse 

obstacle regime is 
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T 

X8L862 -7505 

Figure B.l Defining geometry for the effective obstacle spacing L = 

l/2cw for diffuse obstacles (after Kocks, Argon and 

Ashby, i97S). 
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f 
2w 
1 

~-L=I/2 cw 

XBL 863 -7535 

Figure 8.2 Geometry for derivation of the critical points of K, the 

diffuseness parameter defined by Labusch. 
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F/2T > 2cw2 

or " = F/4Tcw2 > 1 (8.5) 

for obstacles of effective diameter 2w. 

In comparing this result to the parameter 11 used by Schwarz and 

Labusch, another discrepancy appears. The equivalence between volume 

fraction and areal fraction is generally invoked (Nabarro, 1972; 

Schwarz and Labusch, 1978; Kocks, Ashby and Argon, 1975). However, the 

glide plane of the dislocation lies between two planes of atoms (Syn, 

1973; Nabarro, 1985). The dislocation sees the atoms in both planes, 

so the effective concentration per unit area is 

·and not half of that. It follows that the value of 1s2 is given by 

1 2 = 1/c = b2/2v. s 

(8.6) 

(8.7) 

Schwarz and Labusch's definition is off by a factor of two, but if we 

use it and define y
0

, the range of interaction, to be 2w, then we have 

(for a " = 1 criterion) that the critical value of 11 is ~2 rather than 

1. If we define ls correctly and use y
0 

= w, we get 11 = 1 as the 

criterion corresponding to the " = 1/2 criterion in the paper they 

reference by Nabarro (1972). The correct value, using the " = 1 crite­

rion~ is again 11 = v2. The relationship between the two variables is 

therefore 

(8.8) 

8.2 Critical resolved shear stress equations. 

Nabarro (1977) considers 3 distinct cases (K=l, K(<l. K))l). In 

each case he starts from the common relation 

't'bL = F (8.9) 

where F is the maximum force exerted by the dislocation on the obstacle 
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and defines an appropriate value of L for the case in question. The 

effective spacings that Nabarro defines all represent average line 

solutions. It is important to note that while Schwarz and Labusch use 

a parameter like K in their solution, they USe an average Obstacle 

spacing only for dimensional purposes. Their solution is still a 

strong line solution. 

Case !. For an almost straight dislocation, Nabarro takes 

L = L = 1/2cw. 
0 

Substituting in equation B.9 gives 

1:
0 

= 2Fcw/b. 

Case 1· For the Mott model (K((l, diffuse obstacles) he finds 

where K = F/4Tcw2 which gives the result 

(B.lO) 

(B.ll) 

(B.l2) 

(B.l3) 

Letting c = v/r2 where v is the volume fraction of solute is what 

Haasen and Labusch calls c and letting E1, the line energy be equal to 

T the line tension and the range of interaction w be equal to the 

precipitate radius r, we have 

(B.l4) 

which is Haasen and Labusch's equation 2. 

Case !. For the Friedel model (also called the Fleischer regime), 

(K))l, discrete obstacles) Nabarro has 

L = ~ v2L '"
1

'
2 

0 
(B.l5) 
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so that 

{Bo16) 

,, 
Making the same substitutions as before. 

(B.17) 

which is Haasen and Labusch's equation 1. 



167 

Appendix C. Force from a dislocation pileup. 

Dislocations may be found in close proximity in a crystal for 

various reasons. They always maintain a separation & fixed by the 

repulsion between them. This repulsion is caused by the stress fields 

associated with the dislocations which decay as 1/r. The repulsive 

force between the dislocations can be simply calculated for simple 

cases for which the dislocation stress field is known, such as pure 

edge or pure screw dislocations that have the same Burgers vector. 

The force on the lead dislocation· in a pileup of dislocations may 

be calculated as follows. Let the critical resolved shear stress for 

glide of the nth dislocation be ~~. the interaction shear stress be ~i 

and the applied resolved shear stress be ~~P. Then the force balance 

for the nth dislocation is 

~n _ ~APP _ ~- = O 
c c 1 • 

Solving n equations of this form simultaneously gives the equation 

n~APP = 
c 

~1 + 
c ~~ + ••• + n 

~c· 

(C.1) 

(C.2) 

When ~~is zero f~r all dislocations except the first (i.e. only the 

first dislocation in the pileup is being restrained by a physical 

obstacle), then the resolved shear stress on the lead dislocation is 

given by 

(C.3) 

Friedel (1964, ~p. 260-261) obtains the same result by using a 

trivial work argument. If the lead dislocation moves forward by an 

amount dx, then the other dislocations in the pileup also can move 

forward by dx and maintain the same spacing. The total work produced by 

the shear stress must then be 

(C.4) 

so the force on the lead dislocation is again given by equation C.3. 
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Note that the dislocations are not coupled in any way. The in­

creased stress at the head of the pileup is often used to explain the 

increase .in yield strength with decreasing grain size; a~ the grain 

size decreases the maximum pileup length and the force on the lead 

dislocation on any given slip line decreases. This model of grain 

boundary strengthening is discussed at more length in the section on 

summing of strengthening mechanisms. 

. '" 
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