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ABSTRACT

Whether global change will drive changing forests from net carbon (C) sinks to sources relates to how 

quickly deadwood decomposes. Because complete wood mineralization takes years, most experiments 

focus on how traits, environments and decomposer communities interact as wood decay begins. Few 

experiments last long enough to test whether drivers change with decay rates through time, with 

unknown consequences for scaling short-term results up to long-term forest ecosystem projections. 

Using a 7-year experiment that captured complete mineralization among 21 temperate tree species, we 

demonstrate that trait effects fade with advancing decay. However, wood density and vessel diameter, 

which may influence permeability, control how decay rates change through time. Denser wood loses 

mass more slowly at first but more quickly with advancing decay, which resolves ambiguity about the 

after-life consequences of this key plant functional trait by demonstrating that its effect on decay 

depends on experiment duration and sampling frequency. Only long-term data and a time-varying 

model yielded accurate predictions of both mass loss in a concurrent experiment and naturally-

recruited deadwood structure in a 32-year old forest plot. Given the importance of forests in the 

carbon cycle, and the pivotal role for wood decay, accurate ecosystem projections are critical and they 

require experiments that go beyond enumerating potential mechanisms by identifying the temporal 

scale for their effects.

KEYWORDS: carbon cycle, plant traits, temperate forest, temporal scale, wood decay, woody debris
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INTRODUCTION

Deadwood is a large aboveground carbon (C) pool that influences how forests respond to 

global change (Edburg et al., 2012; Pan et al., 2011). After woody tissues senesce, many of the same 

plant traits that promote tree longevity resist biological decay. Few organisms can rapidly degrade 

lignified secondary cell walls characteristic of woody tissues (M. Harmon et al., 1986; Weedon et al., 

2009). Consequently, woody debris (WD) may have C residence times an order of magnitude longer 

than leaf litter and can remain in forests for years to decades (Pietsch et al., 2014). Due to slow 

decomposition, WD can delay C emissions following major forest disturbances (Edburg et al., 2012). 

For example, after a beetle outbreak decimated living trees, a western North American forest 

temporarily emitted less C because soil respiration fell more than deadwood respiration increased (D. 

J. P. Moore et al., 2013). However, in this forest and others affected by dieback, eventual carbon 

efflux from deadwood may exceed primary productivity, flipping the forests from C sinks to sources. 

Deadwood also influences other nutrient cycles, for instance as a temporary sink for N, with related 

impacts on productivity and C uptake (Zimmerman et al., 1995). Since forests play such a major role 

in the terrestrial C cycle, predicting how carbon balance will respond to changing disturbance regimes 

requires identifying the factors that influence the full temporal trajectory of wood decay from 

senescence to complete mineralization.

Variation in wood decay rates reflects the combined influences of intrinsic and extrinsic 

drivers (Cornwell et al., 2009; Zanne et al., 2015). Wider stems from species with denser, more 

nutrient-limited wood tend to decompose more slowly (Hu et al., 2018; Weedon et al., 2009). Decay 

rates also depend on features of the surrounding environment, such that higher soil nutrient 

availability, temperature, and moisture tend to accelerate decay (Fravolini et al., 2016; Gora, Sayer, 

Turner, & Tanner, 2018). Ultimately, decay rates reflect activity of decomposing organisms, 

including fungi, bacteria, archaea, and animals, which interact with changing substrates, external 

environments and one another (Van Der Wal, Ottosson, & De Boer, 2015). 

Despite a growing list of candidate wood decay drivers, scaling up from experimental results 

to accurate forest ecosystem projections has proven considerably more challenging for several 

reasons. First, different mechanisms that drive decay can interact in complex ways. For example, in 

experimental wood decay microcosms, the effect of temperature depended on both fungus identity A
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and substrate quality (Venugopal, Junninen, Edman, & Kouki, 2017). A second major challenge is 

identifying the spatial scale where important drivers and interactions emerge. Many experiments 

ignore environmental variability over small spatial scales, which can distort the relative explanatory 

power of, for instance, microclimate versus edaphic conditions (Bradford et al., 2014). Careful 

experiments and hierarchical models are beginning to resolve where certain drivers control decay 

(Bradford et al., 2017). However, a third remaining major challenge is to identify when these 

processes are most relevant. Scaling from short-term experiments to long-term processes requires 

extrapolating beyond the temporal domain of the results, raising the possibility that drivers that appear 

important early on eventually fade or flip with respect to their influence on decay before most C loss 

has occurred.

To illustrate how experimental time scale influences forest C projections, consider an 

experiment designed to test how variation in a tree functional trait drives deadwood residence times 

(Fig. 1). In this example, the trait value controls how decay rates change compared to the negative 

exponential, or NegExp, decay model (central grey curve). The NegExp model assumes constant 

proportional mass loss as controlled by a single parameter. Because this model is applicable to 

experiments designed to sample mass loss only once, it is a common choice for representing 

decomposition despite known limitations for representing dynamic decay processes (Adair, Hobbie, 

& Hobbie, 2010). As the example demonstrates, sampling once and assuming NegExp decay can 

distort the relationship between trait values and decay. Because samples from the species with high 

trait values have lost relatively less mass at first, but more mass later on, the apparent relationship 

between trait values and residence time depends on experiment duration. Long-term decay data 

produce a trait effect in the correct direction but of reduced magnitude, intermediate-term data show 

no significant relationship, and short-term data incorrectly imply that the trait strongly increases 

residence times. Any of these distorted relationships would lead to inaccurate representations of forest 

processes as an artefact of experimental time scale and associated misspecification of the underlying 

decay model. How long a decay experiment lasts and how frequently samples are collected may 

control what traits appear to be important, the directions of their effects and associated projections of 

deadwood dynamics.
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Here, we tested how decay experiment duration and sampling frequency influenced the 

strength of candidate plant trait and environmental drivers, their roles in different functional forms for 

decay and the consequences for accurately predicting mass loss and deadwood structure. We 

integrated data from three complementary studies: a common-garden wood decay experiment 

involving 21 woody species decomposing for up to 7 years in two contrasting habitats, a concurrent 

experiment for validating mass loss projections, and a WD inventory of naturally recruited deadwood 

in a 32-year old forest dynamics plot at the same site. For the decay experiment involving all 21 

species, we analyzed mass loss using a new hierarchical Bayesian approach that interpolated between 

the widely used NegExp model and a time-varying Weibull model (Feng & Li, 2001). We evaluated 

the strength for 23 candidate drivers, including tree species wood chemistry and anatomy, as well as 

plot edaphic and microclimatic variables using different sampling schemes to test two specific 

hypotheses. First, because decay changes the wood substrate itself, we predicted that significant 

drivers would change with the duration and sampling frequency of experiment. Second, we predicted 

that long-term data analyzed using a flexible time-varying model would more accurately project both 

mass loss and natural WD structure than models based on short-term data, single sampling points or 

NegExp models.

MATIERALS AND METHODS

Site description 

The experiments and WD inventory occurred at the Tyson Research Center, USA, at the northeastern 

edge of the Ozark ecoregion (38°31’N, 90°33’ W) with a mean annual temperature of 13.5°C and 

mean annual precipitation of 957 mm. Local topography varies across highly eroded limestone 

bedrock with distinct ridge top and valley bottom habitats that differ in soil chemistry and plant 

communities (Marko J. Spasojevic, Turner, & Myers, 2016; Marko J Spasojevic, Yablon, Oberle, & 

Myers, 2014).

Wood decay experiment 

Eight common-garden “rot-plots” were situated in adjacent ridge top and valley bottom sites in four 

watersheds. For each plot, we harvested tissue from 21 species widely spread across seed plant 

families, representing different growth forms (Supporting Information Table S1). We processed 

healthy stems into replicates approximately 22 cm in length and 5-9 cm in midpoint diameter with an A
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average value of 6.93 ± 0.04 (s.e.) cm. Using a relatively narrow diameter allowed us to include wood 

from shrubs and lianas that seldom reach the typical size threshold for coarse woody debris, i.e. 10 cm 

diameter (M. Harmon et al., 1986). For every replicate, we measured initial wet mass. We then 

estimated initial dry mass from the dry mass to wet mass ratio (DMWMR) of additional segments that 

we collected from each harvested stem and dried to constant mass at 103°C (Zanne et al. 2015). The 

first cohort was deployed in 2009 and included wood from 16 species.The second cohort was 

deployed in 2011 and included segments from five new species, as well as the validation experiment 

consisting of replicated segments from three species that were also included in the first cohort 

(Supporting Information Table S1).

We harvested replicates on 4 occasions. In 2010, 2012 and 2014, we harvested one replicate 

per species per rot plot per cohort using the protocol described in Zanne et al. (2015). Briefly, we 

randomly selected replicates in a given year and collected all wood or bark residue except fragments 

small enough to pass through a 0.5 cm2 mesh. We carefully removed adhered soil, insects and fruiting 

bodies and measured the final wet mass for each sample. We surface sterilized logs, allowed the 

sterilizing solution to evaporate and used a sterilized drill bit to collect approximately 1 g of sawdust 

from both the top and the bottom of logs for other analyses. Following sawdust collection, we 

reweighed the wet mass of the drilled log and dried them at 103°C for 48 hours. We estimated the dry 

mass at harvest as the product of the final wet mass and the measured DMWMR of the drilled sample.

In 2014, a laboratory accident damaged samples after weighing final wet mass and collecting 

sawdust subsamples but before drying the drilled logs. For these samples,we calculated moisture 

content using a multiple imputation approach (See Moisture content imputation). At the end of the 

harvest in 2014, decay had progressed so far among certain species and sites that we anticipated 

complete mineralization prior to the final planned harvest. We collected those samples using the same 

general protocol but directly measured dry mass. Specifically, we collected samples using the same 

field protocol including screening through the 0.5 cm2 mesh, removing insects, fruiting bodies and 

adhered soil. We then dried samples at 103°C for 48 hours to directly measure final dry mass. We 

harvested and directly measured dry mass for every remaining replicate during the final harvest in 

2016.

Moisture content imputation A
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As described above, a laboratory accident during the 2014 harvest damaged 108 samples after 

measuring wet mass and collecting sawdust subsamples but before measuring the drilled log dry 

mass. To estimate the log DMWMR, we measured the DMWMR of 493 sawdust subsamples 

representing all 256 logs from the harvest. Specifically, we weighed the wet mass of the sawdust, 

dried them to 103°C and reweighed them to a precision of 0.1 mg. In cases where more than one 

independent sawdust subsample was collected, we took the mean DMWMR of every subsample taken 

from the same log. We estimated the drilled log DMWMR for the damaged subsamples by regressing 

the measured log DMWMR onto the sawdust DMWMR. To better meet the assumptions of the 

regression, we logit transformed both the predictor (sawdust) and response (log) DMWMRs. 

Measured log DMWMRs were highly correlated with sawdust DMWMRs (r = 0.85, Supporting 

Information Figure S1). We then imputed the missing log DMWMR values while estimating the 

regression parameters in a Bayesian context with vague priors (i.e. Normal (0,1000)) on the intercept 

and slope coefficients using Markov-Chain Monte Carlo (MCMC) sampling as implemented in rjags 

4.6 (Plummer, 2016) in R v 3.1.1 (R Core Team, 2017). After discarding the first 1000 samples as 

burn-in, we drew 2000 samples from the posterior distribution from three independent MCMC chains 

representing both regression coefficients and, at each iteration, calculated the missing value of 

DMWMR for damaged log samples. We checked for convergence by visually inspecting the trace 

plots and ensuring that the Brooks-Gelman-Rubin (Brooks & Gelman, 1998) statistic was < 1.03. We 

substituted the mean of the imputed DMWMR when calculating mass loss for those samples. For all 

other samples from this harvest, we used the directly measured DMWMR of the drilled logs.

Candidate drivers 

To represent intrinsic drivers of decay, we analyzed initial wood chemical and anatomical traits. For 

wood chemistry, we analyzed the natural log of the C:N ratio, carbon fractions (i.e. Cellulose%, 

Hemicellulose% and log(Lignin%),) and concentrations of elements associated with wood decay 

enzymes (i.e. Ca, log(P), and Mn) (Zanne et al., 2015). Anatomical traits were wood density, conduit 

lumen diameter (Zanne et al., 2015) and conduit length (Oberle, Ogle, Zuluaga, Sweeney, & Zanne, 

2016). We also measured the fraction of cross-sectional area represented by parenchyma and conduit 

walls based on microscopic analysis of radial sectors of fixed, stained cross sections from three 

branches per species following the same methodology as (Osazuwa-Peters, Wright, & Zanne, 2017).A
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To represent extrinsic drivers of decay, we analyzed microclimate and soils. We measured air 

temperature and relative humidity at 1 m above the soil surface, as well as soil temperature and 

moisture content at 10 cm below the surface every 10 minutes from June 2011 to June 2014 using 

Hobo weather stations (Zanne et al., 2015). Because some sensors failed during this interval, we 

quantified plot-level microclimatic variation as the mean deviation from simultaneous measurements 

at a reference station that collected data for all four variables throughout the entire measurement 

period. For soil chemistry, we collected 8 cores from 1-10 cm depth within the original footprint of 

the rot plot in July 2012 and measured N content, soil pH, Total Exchangeable Bases, Bray P, Ca, and 

Mn using standard methods (Marko J. Spasojevic et al., 2016; Marko J Spasojevic et al., 2014). 

Finally, we used a smoothed digital elevation model to calculate the topographic moisture index at 

every site (Oberle et al., 2015).

Woody debris (WD) inventory 

We characterized WD structure based on a 2012 deadwood inventory in a 4-ha section of the 20-ha 

Tyson Research Center Forest Dynamics plot (M.J. Spasojevic, Yablon, Oberle, & Myers, 2014). This 

portion of the plot was established in 1981. Every stem > 2 cm diameter at 1.4 m height was tagged, 

identified, measured and mapped. In 1989, mortality was noted and new recruits were added. Between 

2010 and 2012, the plot was resurveyed and expanded using standard techniques (Anderson-Teixeira, 

Davies, Bennett, Muller-Landau, & Wright, 2014) . 

The 2012 deadwood inventory analyzed here included several measurements of tagged 

deadwood within the original 4 ha forest dynamics plot (B Oberle et al., 2015). Briefly, we classified 

vertical position of WD as either “standing” or “down” depending on whether it was suspended 

unsupported above 2 m height or had broken and fallen to the ground respectively. Depending on 

vertical position, we measured deadwood dimensions in different ways. For standing deadwood, we 

measured diameter above the root collar and at 1.4 m above the ground using a diameter tape. For 

down deadwood we measured the horizontal diameter at the base of the log at the most distal point 

that was at least 7 cm wide using timber calipers. For comparison with the decay experiment, we only 

analyzed WD wider than 7 cm diameter at its widest end. In addition to measuring deadwood 

dimensions, we identified decay class (DC), using a standard classification system based on a 

progressive series of external indicators (M. E. Harmon, Fasth, Woodall, & Sexton, 2013; B. Oberle A
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et al., 2015). DC1 still has attached twigs, DC2 has no twigs but retains most of its bark, DC3 has lost 

most of its bark but has an intact bole, DC4 has developed large holes and DC5 cannot maintain its 

original shape.

To estimate the values of environmental covariates at the locations of deadwood, we 

conducted spatial analyses of variation in soil-surface temperature. Specifically, we used a dataset of 

soil-surface temperatures generated by 199 shielded iButton (Maxim Integrated, Jan Jose, CA) 

temperature loggers systematically distributed across the site (Marko J. Spasojevic et al., 2016). 

Loggers measured temperatures at 2 hour intervals from July 11, 2013 to July 11, 2014. Because 

methods differed from the common-garden plots, we z-transformed the iButton data and rescaled 

them to have the same mean and standard deviation as air temperatures recorded over the same 

interval by the reference weather station for the common-garden plots. We fit an exponential 

variogram to the mean temperature-distance relationship and kriged the fitted variogram to a set of 

points in a 5x5 m square grid over the WD survey area using the R package “sp” (Pebesma & Bivand 

2005).

Besides features of deadwood that we directly measured in the 2012 survey, we determined 

tree species identity using retained tags from prior living tree surveys. Among 434 tagged pieces of 

WD > 7 cm in diameter, 261 matched 12 species from the decay experiment. To assess whether the 

tagged deadwood pool that we included in the inventory was representative of potential deadwood 

recruits, we made two comparisons. First, we compared the distribution of residence times estimated 

from the best-fit decay model (see Model implementation, simplification and adequacy) to the 

distribution of residence times for the same set of species in the living tree pool in the 2010-2012 

survey of the 4 ha plot. Second, we compared the tagged deadwood residence time distribution to the 

distribution of residence times estimated for stems that had been recorded as alive in 1989 but were 

not recorded as tagged living stems during the 2010-2012 inventory. Because drought-related 

defoliation made Amerlanchier arborea difficult to identify as dead during the inventory and because 

it appeared as anomalously overrepresented in the deadwood survey, we excluded this species from 

all analyses of deadwood structure. We tested whether estimated residence times differed between the 

set of tagged stems recovered in the deadwood inventory and the pool of stems missing from the 1989 
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inventory using logistic regression, with inventory as a binary response and estimated residence time 

as the predictor using the function “glm” in r package “stats” (R Core Team, 2017).

Model structure 

To represent decay in the experiment, we assumed that the proportion of mass remaining (M) for 

every replicate i =  1 … l with increasing time, t, since deployment for j  =  1 ... n species and k  =  1 

... m plots is defined by the Weibull function (Feng & Li, 2001):

(1)𝑀(𝑡)𝑖𝑗𝑘 =  1 ― 𝑒 ―(𝜆𝑗𝑘𝑡𝑖)
𝑐𝑗𝑘

where λ is the scale parameter and c is the shape parameter. If the value of the shape parameter is >1, 

mass loss accelerates through time, which reduces residence times relative to the NegExp decay. If 

the value of the shape parameter is <1, mass loss decelerates through time, which increases residence 

times. Fixing the shape parameter at 1 yields the NegExp model.

(2)𝑀(𝑡)𝑖𝑗𝑘 = 1 ― 𝑒 ―(𝜆𝑗𝑘𝑡𝑖)

To estimate the parameters of the Weibull function from observed data, we employed a 

generalized Weibull regression approach using a double log link function and normally distributed 

measurement-level error on the transformed scale (Oberle et al., 2016). Under this approach, the 

parameters of the Weibull decay function, λjk, cjk, may vary with intrinsic features of wood and 

extrinsic features of the environment. Specifically, we treated λjk and cjk as stochastic variables that 

depend in turn on hyperparameters in a multilevel regression framework: 

  (3)𝜆𝑗𝑘~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝛼𝜆 + 𝑾𝒈𝜆 + 𝑿𝒉𝜆, 𝜏𝜆)

Where αλ is the intercept for the scale parameter, W is a l x n matrix of species-level trait covariates 

and  is a vector of n species trait effects, X is a l x m matrix of plot-level environmental covariates 𝒈𝜆

and  is a vector of m environment effects, and τλ is the precision (inverse variance) for the scale 𝒉𝜆

parameter. An equivalent expression applies to a multilevel regression for the shape parameter, cjk. 

The log-normal likelihood reflects the constraint that both λjk and cjk must be positive. For NegExp 

decay, we fixed c to one and used the canonical log-link function with normally distributed 

measurement-level error (Oberle et al., 2016).

To determine which drivers predict variation in decay parameters we used a latent binary 

indicator variable approach (O’Hara & Sillanpää, 2009). Specifically, each element in the vector of n 
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+ m multilevel regression coefficients (i.e.  and  in Equation 2) is represented as the product of a 𝒈𝜆 𝒉𝜆

binary indicator variable, , and a latent regression coefficient, 𝐼𝜆𝑗,𝑘 𝛽𝜆𝑗,𝑘

 (4)𝒈𝜆𝑗,𝑘 =  𝐼𝜆𝑗,𝑘𝛽𝜆𝑗,𝑘

When an indicator variable takes a value of one, the corresponding covariate is included in the model. 

The probability that an indicator takes a value of one is treated as stochastic:

 (5)𝐼𝜆𝑗,𝑘~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝜆)

where  is the probability of covariate inclusion as estimated by the data.𝑝𝜆

Model implementation, simplification and adequacy 

We fit the decay model (Eq. 1-5) in a Bayesian context using rjags v 4.6 using vague priors with 

broad distributions. For the residual measurement-level level errors, we placed a broad uniform (0,10) 

prior on the residual standard deviation. We used the same prior for the error standard deviation in the 

lognormal hyperparameter regressions for the effects of species traits and environmental covariates 

(i.e. the square root of the reciprocal of  Eq. 3). For the intercepts of the hyperparameter regressions, 𝜏𝜆

(i.e.  Eq. 3), we used vague Normal (0,100) priors. As priors for the latent hyperparameter 𝛼𝜆

regression coefficients (i.e.  Eq. 4), we used vague Normal (0,100) priors. Finally, for the prior on 𝛽𝜆𝑗,𝑘

the proportion of important covariates, (i.e.  Eq. 5) we used a vague Beta (0.5,0.5) distribution 𝑝𝜆

which is symmetric around a minimum of 0.5.

We sampled from the posterior distributions using three independent MCMC chains with an 

adaptive burn-in phase of 104 iterations followed by 5x106 iterations, saving only every 50th sample. 

After quantifying the effective sample size, we extended chains, added additional chains or adjusted 

the thinning interval until effective sample size numbers for all sampled quantities exceeded 1000. 

We checked for convergence by visually inspecting the trace plots for the parameters and ensuring 

that the Brooks-Gelman-Rubin statistic was < 1.03. 

Simultaneously estimating multilevel regressions for Weibull shape and scale parameters 

using the same candidate predictors complicated sampling. To speed convergence for the full Weibull 

hyperparameter regression (Eq. 1, 3-5), we sampled from a model with a simple normal (0,100) prior 

on the intercept for the scale parameter (e.g.  Eq. 3) while estimating the full parameter effects for 𝛼𝜆

the shape parameter and vice versa. After running consecutive, complementary models with A
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hyperparameter regressions for shape and then scale parameters respectively, we included all 

covariates with 95% CI intervals that excluded zero in our simplified models. 

Following model simplification, we assessed the adequacy of alternative model specifications 

for different datasets. After analyzing the full model, we reduced the set of predictors to those with 

95% CIs that excluded zero during simplification and substituted the binary latent indicator variable 

structure (i.e. Eq. 4) for independent, vague normal (0,100) priors over each hyperparameter in the 

reduced vector of coefficients. We fit the models using the same approach described in model 

simplification but reduced the initial sampling phase to 5x105 iterations and the thinning interval to 

10. After checking convergence, we drew an additional 2x105 samples for estimating the deviance 

information criterion (DIC, Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). DIC is an analog for 

the more widely used Akaike Information Criterion (AIC, Akaike, 1973) that accommodates 

multilevel models where the number of parameters is estimated from the data. We selected the model 

with the lowest DIC as the most adequate model and report the mean of the posterior distribution and 

the limits of the 95% CI for parameters of interest. For datasets including only the first or the fifth 

year of mass loss data, the Weibull model is not identifiable. For these subsets of the data, we 

compared the NegExp decay models. 

To compare the predictive accuracy of different models against the validation dataset, we used 

two criteria. First, we re-expressed Eq. 3 as 

 (6)𝐸(𝜆𝑗𝑘) =  𝑒𝛼𝜆 + 𝑾𝒈𝜆 + 𝑿𝒉𝜆 +  
𝜎2

𝜆
2

where the final term is the standard variance correction factor for lognormal regression. We used an 

equivalent expression for calculating the expected value of the shape parameter for Weibull decay. 

We substituted the expected parameter values into the expression for mass loss (Eq. 1 or 2). From 

these, we calculated the root mean square deviation (RMSD), which decreases with increasing 

accuracy (Piñeiro, Perelman, Guerschman, & Paruelo, 2008). Secondly, we quantified accuracy by 

regressing observed mass loss onto predicted mass loss and tested the null hypotheses that unbiased 

predictions have an intercept of zero and a slope of one using ordinary least squares regression using 

function “lm” in R package “stats”.
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Because deadwood in the survey had naturally recruited at an unknown time, we calculated 

residence times for each piece of deadwood using trait and environmental covariates for different 

models. Under the Weibull decay function, the residence time  is given by:𝐸(𝑡)𝑗𝑘

  (7)𝐸(𝑡)𝑗𝑘 =   
1

𝜆𝑗𝑘
Γ(1 +  

1
𝑐𝑗𝑘)

where Γ is the gamma function (Feng & Li, 2001). Under NegExp decay, this expression simplifies to 

the reciprocal of . We evaluated the effect of residence time on WD vertical position with standard 𝜆𝑗𝑘

logistic regressions with a two-sided hypothesis test as estimated using function “glm” in R package 

“stats” (R Core Team, 2017). We evaluated whether estimated residence times predict variation in 

WD decay class as a proportional odds logistic regression with a two-sided hypothesis test using the 

“polr” function in R package “MASS” (Ripley, Venables, Bates, Hornik, & Firth, 2015). We 

compared models based on AIC with the goal of assessing whether the time varying model provided a 

more adequate prediction of naturally-recruited deadwood structure than alternative models informed 

by fewer sampling points or the NegExp model.

Parameter interpretation 

To represent the relative importance of parameters in simplified models, we used three approaches. 

First, we calculated standardized effect sizes by dividing the magnitude of the regression coefficients 

by the standard deviation of the associated covariates. Because the response variables represent decay 

function parameters, which can be difficult to interpret with respect to mass loss, we also calculated 

average predictive comparisons (Oberle, Ogle, Zanne, & Woodall, 2018). This second approach 

compares the difference (  in the response of interest (y) with a specified change () in a predictor ∆)

variable of interest ( ) as:𝑥

(8)∆(, 𝐭,𝑥,𝐗) =  
∑𝑛

𝑟 =  1(𝐸(𝑦│𝑥𝒓 + , 𝛉,𝐗𝑟) ― 𝐸(𝑦│𝑥𝒓, 𝛉,𝐗𝑟))
𝑛

where  represents the vector of other parameters  represents a matrix of residual covariates held at 𝛉 𝐗𝑟

their means. Here, the response of interest is the residence time estimated by the generalized 

regression (i.e. Eq. 6-7). To represent uncertainty in average predictive comparisons, we estimated the 

95% CI for each comparison based on 1000 samples from the posterior distributions for the associated 

parameters (i.e. Eq. 3). 
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Finally, we calculated the marginal effects of significant predictor effects for simplified 

models for all subsets of the data. For each significant predictor and simplified model, we randomly 

sampled 150 sets of parameter estimates from the converged MCMC chains. We substituted the 

parameter estimates into the generalized regression equation (i.e. Eq. 6-7) to calculate the expected 

residence time for marginal differences in each predictor with all others held constant at their means. 

This approach illustrates the magnitude, direction and uncertainty in the effect of each predictor on 

residence times.

RESULTS

Wood Decay Experiment 

Experimental duration (i.e. one versus five years of mass loss) and sampling frequency (i.e. once 

versus three to four times) strongly influenced which candidate drivers influenced decay, the strength 

of their effects and how they influenced the shape of the decay function. The common garden 

experiment involved 630 unique replicates and captured nearly complete mass loss for all species and 

sites. When the final replicates were harvested 5.7 yr (± 0.01 s.e.) after deployment, samples had lost 

72.9% (± 1.58 s.e.) of their initial mass. Among the 12 wood trait and 11 environmental candidate 

drivers (Fig. 2, Supporting Information Table S2), the portion that were important for decay (i.e.  in 𝑝𝜆

Eq. 5) was highest when analyzing only the first year of mass loss (yr 1 NegExp,   =  0.421, 95% CI 𝑝𝜆

= [0.225, 0.633]) and lowest when analyzing only the fifth year of mass loss (yr 5 NegExp,  = 𝑝𝜆

0.284, 95% CI = [0.091, 0.511]). After just one year, wood carbon fractions, branch density and the 

proportion of parenchyma were associated with significantly slower decay rates while wood 

phosphorous was associated with significantly faster decay rates (Fig. 2). Only log (lignin%) 

remained important after 5 years (Fig. 2). 

Analyzing every sampling point in the time series identified many of the same predictors, but 

supported different effect magnitudes and functional relationships. Assuming NegExp decay, the 

proportion and identity of important predictors resembled those estimated after only 1 year (yr 1-7 

NegExp,  = 0.410, 95% CI = [0.216, 0.622]). However, wood hemicellulose was not significant, 𝑝𝜆

while plot soil temperature slightly slowed decay (Fig 2). Compared to NegExp decay, a simplified 

Weibull decay model was much more adequate (yr 1-7 NegExp DIC = -949.4; yr 1-7 Weibull DIC = -

990.4). Many of the same candidate decay drivers were associated with variation in the scale A
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parameter of the Weibull distribution, which is functionally related to the scale parameter of the 

NegExp model. However, both initial wood density and xylem conduit diameter predicted variation in 

the Weibull shape parameter which controls how decay rates change through time. Wood density was 

associated with slow initial decay that accelerated relative to constant proportional mass while xylem 

conduit diameter had the opposite effect. 

Differences in the direction and magnitudes of predictor effects between different sampling 

schemes translated to very different projections for deadwood residence times. Wood density 

exhibited a time-scale dependent effect that changed from accelerating to slowing decay depending on 

the duration and model (Fig. 2). Analyzing the whole time series using the time-varying Weibull 

model resulted in denser wood having shorter residence times, while NegExp models implied that this 

trait had the opposite effect, with denser wood resulting in longer residence times. Differences in 

effect magnitudes for other wood traits translated to dramatically different projections of ecosystem 

dynamics (Fig. 3). Lignin was the only trait that significantly influenced mass loss for every temporal 

sampling scheme and model. Based on the first year of decay, a species with modestly more lignin 

(5%) had projected residence times more than an order of magnitude longer, while estimating the 

impact of the same trait difference after 5 years projected to an increase in residence times by only a 

factor of four. Short-term data also yielded much more uncertain projections for the effect of 

increased lignin content on deadwood residence times.

Validation Experiment

 For 72 additional replicates representing a subset of three species decaying at the same sites over 5 

years, long-term data generated more accurate predictions of observed mass loss. Original and 

validation mass loss values for the same species, plots and durations were weakly correlated (R2 = 

0.366) and lower during the validation experiment. Model-based projections performed better but 

varied in accuracy depending on experimental time scale. A model parameterized by just the first year 

of decay data resulted in the least accurate predictions (RMSD = 0.217), although the overall 

relationship was unbiased (validation linear regression, R2 = 0.498; intercept t [H0 = 0] = -1.324, P = 

0.19; slope t [H0 = 1] = -0.785, P = 0.218). In comparison, a model parameterized with just the fifth 

year of decay data was more accurate (RMSD = 0.174), but marginally biased towards lower mass 

loss values (validation linear regression, R2 = 0.689; intercept = -0.077, d.f. = 2, t [H0 = 0] = -1.988, P A
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= 0.051; slope t [H0 = 1] = -0.560, P = 0.289). Models parameterized using all of the decay data 

produced the most accurate predictions (yr 1-7 NegExp RMSD = 0.161, yr 1-7 Weibull RMSD = 

0.163) and neither exhibited bias (yr 1-7 NegExp, validation linear regression, R2 = 0.664; intercept t 

[H0 = 0] = -0.732, P = 0.467; slope t [H0 = 1] = -0.845, P = 0.200; yr 1-7 Weibull, validation linear 

regression, R2 = 0.666; intercept t [H0 = 0] = -0.540, P = 0.591; slope t [H0 = 1] = -1.269, P = 0.104). 

Woody Debris Inventory

Across a 4 ha, 32-year old forest dynamics plot at the same site, estimates of residence time based on 

the full time series and Weibull decay accurately predicted naturally recruited deadwood structure. At 

the time of inventory, 261 tagged dead stems matched species from the decay experiment. Of these, 

98 were standing unsupported above 2 m and intermediate decay classes were most common (DC 1 = 

51, DC 2 = 73, DC 3 = 106, DC 4 = 24, DC 5 = 7). The ratio of standing to down deadwood among 

tagged stems was about 50% higher than the ratio of all standing to down deadwood among all stems 

greater than 7 cm in the inventory. Similarly, the average decay class among tagged dead stems was 

2.48 ± 0.06 (s.e.), which was slightly lower than the average decay class among all stems greater than 

7 cm diameter at the base (3.08 ± 0.03 s.e.). While the tagged dead stems tended to be relatively intact 

compared to deadwood overall, the distribution of residence time estimates in the deadwood pool was 

similar to that of living trees (Supporting Information Figure S2). Furthermore, estimated residence 

time was not a significant predictor for whether or a piece of deadwood was recovered with a tag from 

the pool of potential recruits that had gone missing from the plot since the previous inventory 

(Logistic Regression, n = 1410, Weibull Residence effect, P = 0.1).

The most adequate model for deadwood position among naturally recruited tagged deadwood 

included both stem diameter and hierarchical Weibull residence times (Supporting Information Table 

S2). Controlling for the effect of stem diameter, WD from species and environments with longer 

projected residence times were marginally more likely to occur as standing (Supporting Information 

Figure S3, Logistic Regression, n = 261, diameter effect = 0.051, z = 3.56, P < 0.001, residence time 

effect = 0.397, z = 1.92, P = 0.055). Similarly, wider WD was more likely to occur in less advanced 

decay classes, as was WD with longer projected residence times (Supporting Information Table S3, 

Fig. 5, Proportional Odds Logistic Regression, n = 261, diameter effect = -0.0295, t = -2.306, P = 

0.009, residence time effect = -0.393, t = -2.20, P = 0.012).A
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DISCUSSION

As climate change stresses trees, forest carbon balance hinges on how quickly deadwood decomposes. 

Initial wood decay rates vary widely among tree species and sites, with short-term experiments 

emphasizing different roles for intrinsic and extrinsic drivers that can depend on spatial scale 

(Bradford et al., 2014; Weedon et al., 2009; Zanne et al., 2015). However, scaling from experiments 

to ecosystems also requires testing whether mechanisms that prevail when wood decay begins have 

the same influence as wood gradually mineralizes. Our results demonstrate how experimental time 

scale can distort mechanistic representations of decay in widely-used empirical models with major 

consequences for projecting forest responses to disturbance.

Trait effects depend on temporal scale. 

Consistent with our first hypothesis, based on the gradual changes in woody substrates during decay, 

the effects of trait and environmental drivers changed with time scale. As experiment duration 

increased, driver effects weakened and produced radically different relationships between traits and 

residence times. Fading effects of species traits has also been observed during long-term leaf litter 

decay (Moore, Trofymow, Prescott, & Titus, 2017). In a year-long experiment that captured complete 

mineralization of Mediterranean leaf litters, differences in intact leaf polyphenol content strongly 

influenced initial mineralization rates, but effect sizes decreased with increasing mass loss (García-

Palacios, Shaw, Wall, & Hättenschwiler, 2016). Initial trait effects, like the traits themselves, may 

become less distinct as decomposers homogenize senesced plant tissues (Witkamp, 1966). While 

certain litter traits may have legacy or indirect effects mediated by distinct patterns of decomposer 

community assembly (Fukami et al., 2010), experiments that examine only the initial stage of wood 

decay may exaggerate trait effects that prevail early on but diminish with advancing decay.

Not only did time scale change the effects of drivers, it also changed their functional roles. 

Initial wood density provides an important example. Wood density is a key plant functional trait with 

an ambiguous effect on decay (Pietsch et al., 2014). A recent global metanalaysis found that denser 

wood decayed more quickly (Hu et al., 2018) in contrast to specific experiments that have either 

demonstrated slower decay for denser wood (Hérault et al., 2010) or no wood density effect (Freschet, 

Weedon, Aerts, van Hal, & Cornelissen, 2012; Kahl et al., 2017; Weedon et al., 2009). Our results can 

resolve these discrepancies by demonstrating that wood density may not control decay rates per se, A
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but rather how decay rates change through time (i.e. Fig. 1). Because the wood density effect 

depended on experimental time scale, we would expect that studies that involve more cumulative 

mass loss are more likely to recover a positive density-decay correlation than studies which are much 

shorter. Because wood density governs so many aspects of tree growth, competition, stress tolerance 

and carbon storage (Cornwell et al., 2009), resolving how it relates to decay is essential for accurate 

forest carbon modelling and will require experiments that analyze mass loss at multiple time points 

for contrasting species using more flexible decay models than the standard NegExp. 

 Wood density was not the only trait with a time-scale dependent effect. Vessel diameter also 

changed the shape of the decay curve but in the opposite direction. Together, vessel diameter and 

wood density may mediate biological feedbacks related to substrate permeability and 

decomposability. Denser wood with narrow vessels may have more inaccessible internal cavities that 

breakdown faster as decay increases microbial access, microscale surface area to volume, and 

defensive compound leaching (Cornwell et al., 2009; M. Harmon et al., 1986). This interpretation is 

consistent with the results of an experiment analyzing monthly mass loss across almost three years of 

decay among 32 tree species in Borneo, where species with initially more permeable wood decayed 

faster than exponential while those with dense wood decomposed more slowly (Mori et al., 2014). 

Further experiments could explore underlying mechanisms by connecting changes in bulk wood 

properties with variation in microbial community assembly and function. 

Compared to wood traits, candidate environmental drivers had weak or unexpected effects. 

Differences in soil chemistry and temperature between habitats strongly influence living tree 

community structure (Marko J Spasojevic et al., 2014), but only soil temperature weakly slowed 

decay in the full time series. This unexpected result conflicts with expectations based on temperature-

dependence of enzyme kinetics, but is consistent with at least one other experiment which found that 

leaves in warmer sites decayed more slowly (Fravolini et al., 2016). It is possible that slightly slower 

decay for species in warmer sites reflects physical hardening of exposed wood as has been noted at 

this site (B. Oberle et al., 2014). Furthermore, the temperature gradients present at our site (<1 °C) are 

much smaller than gradients observed in studies that examine broad biogeographic gradients in wood 

decay (Adair et al., 2008; Bradford et al., 2017). Nevertheless, variation in initial wood traits more 
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strongly influenced wood decay than environmental variability, which is consistent with global 

patterns (Hu et al., 2018; Weedon et al., 2009).

Long-term data, frequent sampling and flexible models make more accurate ecosystem 

projections.

Consistent with our second hypothesis, accounting for dynamic wood trait effects generated more 

accurate predictions. In the validation experiment, the least accurate predictions were based on short-

term results, when trait effects were strongest. More accurate predictions came from a much weaker 

relationship between initial log(lignin%) and long-term decay, although this relationship was slightly 

biased towards lower mass loss values. Overall, models based on more traits and longer time series 

were more accurate and unbiased, predicting as much as 66% of the observed variation in mass loss. 

For applications that require more accurate predictions of long-term decay dynamics, particularly in 

systems where wood decays slowly or provides particularly valuable services, models informed by 

experiments with repeated harvests and multiple candidate drivers may provide needed accuracy.

The ultimate goal of scaling up from experiments to ecosystem dynamics requires assessing 

model predictions in natural systems. Our results provide the first direct connection between 

experimental wood decay and naturally recruited deadwood structure across a heterogeneous 

landscape. We note that many factors could influence the probability of encountering a dead stem 

with a tag, including varying tree mortality, trait-based tag shedding and overall decay rates obscuring 

the presence of stems. Even so, we found that the distribution of deadwood residence times in the 

tagged deadwood pool was very similar to the distribution of residence times for corresponding 

species in the living wood pool. Furthermore, estimated residence time did not predict whether a tag 

that had gone missing from a living tree was recovered on woody debris. Both results suggest that the 

tagged deadwood pool is unbiased with respect to decay rates even though tagged deadwood tended 

to be relatively intact. Within this broadly representative subset of deadwood, we compared how 

accurately different temporal sampling schemes and decay models predicted key aspects of deadwood 

structure. We found that long-term data with time-scale dependent effects were necessary for accurate 

predictions. Dead trees with quickly decomposing wood, as determined using a time-varying Weibull 

model,were more somewhat more likely to be broken, which is consistent with an analysis of standing 

dead tree fall across the eastern United States, where wood decay resistance was among the most A
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important predictors of snag half-life (B. Oberle et al., 2018). While a model with Weibull residence 

times only marginally outperformed the null model for deadwood position, woody debris with shorter 

estimated residence time as estimated using the full time series and a time varying Weibull model 

occurred in significantly more advanced decay classes. Short term data and simple models failed to 

predict variation in tagged deadwood decay class, with major implications for scaling up experimental 

results because decay classification is the basis for estimating deadwood C content in the US National 

Forest Inventory (Harmon, Woodall, Fasth, & Sexton, 2008). While long-term data and a flexible 

model were necessary for accurate predictions, other factors can contribute to variation in deadwood 

structure observed at a particular point in time. For example, it is possible that we recovered relatively 

intact wood that had longer estimated residence times because the same traits that control decay also 

control tree mortality. To limit this possibility, we excluded observations of Amerlanchier arborea, a 

species with relatively slowly decomposing wood, because it was severely impacted by drought and 

difficult to classify as dead. In the future, resolving this ambiguity will require more comprehensive 

forest C models that include trait-based mortality and wood decay.

By finding that time scale influences how wood traits influence decay, our study emphasizes 

how short-term studies and correspondingly simple empirical models can misrepresent long-term 

ecosystem dynamics. In a recent review of litter decay experiments in the boreal zone, very few 

(11%) lasted long enough to capture major changes in decay rates that emerged after 12 years (Moore 

et al., 2017). While short-term data may be sufficient for testing hypotheses about factors that 

influence initial decay rate variation, they may rush to conclusions about transient mechanisms. More 

importantly, analyses that cannot accommodate dynamic decay rates may distort the roles for 

underlying drivers and produce radically different ecosystem projections. With global change driving 

forest dieback, understanding what controls wood decay has never been more urgent. When it comes 

to accurately representing wood decay in earth system models, our results show that long-term 

experiments are worth the wait.
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FIGURE CAPTIONS

Figure 1. Hypothetical example illustrating how experimental time scale influences deadwood 

residence time estimates. Points represent mass loss from replicates of two tree species, one with high 

values of an important functional trait (light gray) and another with low values (dark gray). The 

generating function (lower left inset) is a hierarchical Weibull model (Eq. 1, 3) where the trait has a 

positive log-linear correlation with the value of the shape parameter (i.e. c Eq. 1). The mass-loss 

curves for both species intersect at time equal to the reciprocal of their common scale parameter (i.e. λ 

Eq. 1). The curve from the associated NegExp model is illustrated in medium grey. Inset panels 

represent the inferred relationships between residence time and trait values at different sampling times 

(dashed vertical lines).

Figure 2. Tree species trait and environment predictors of wood decay vary with experimental time 

scale and decay function. The effects of each predictor on estimated residence times were estimated 

from the generalized regression (Eq. 6-7) as marginal effects with other predictors held constant at 

their means. Curve overlays illustrate uncertainty using 150 sets of relevant parameters drawn from 

converged MCMC chains. Empty cells correspond to coefficients that had 95% credible intervals 

including 0 for a given temporal sampling scheme and functional form of decay.A
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Figure 3. Experimental time scale influences how increased log (lignin%) increases deadwood 

residence time. All values are expressed as a ratio of residence times for a hypothetical species with 

5% more lignin compared to the average species in the analysis. Points represent means of average 

predictive comparisons and whiskers represent 95% credible intervals. 

Figure 4. Time scale and decay function influence the accuracy of mass loss projections in a 

validation experiment. Species codes reflect the first two characters of the genus and species names 

(Supporting Information Table S1) and position denotes samples from plots on ridges (H) versus 

valleys (L).

Figure 5. Naturally recruited woody debris with longer estimated residence time occurs in less 

advanced decay classes. Curves represent the marginal effect of residence times based on a Weibull 

model of wood decay for a hypothetical WD piece of average stem diameter.
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