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Narrowing the Explanatory Gap with Bridge Metaphors
Jeff Yoshimi (jyoshimi@ucmerced.edu)

Cognitive and Information Sciences, UC Merced
Merced, CA, 95343 USA

Abstract

A central problem in philosophy of mind concerns the rela-
tionship between subjective experiences and the physical pro-
cesses that subserve them. There seems to be an unbridgeable
“explanatory gap” between the two. Whereas other scientific
explanations (e.g. the explanation of temperature in terms of
kinetic energy) involve determinate relationships between two
kinds of phenomena, correlations between patterns of neural
activity and conscious experiences seem to be arbitrary. I argue
that by developing computer models of embodied agents, and
interpreting them using the tools of philosophical phenomenol-
ogy, the relationship between neural and conscious processes
can be seen to be systematic, and non-arbitrary. Visualiza-
tions of these models serve as “bridge metaphors” that further
emphasize how systematic neuro-phenomenological relations
are. By showing that links between brain states and conscious
states are non-arbitrary, the explanatory gap is narrowed.

Keywords: Explanatory Gap; Hard Problem of Conscious-
ness, Dynamical Systems Theory; Neural Networks; Phe-
nomenology; Reinforcement Learning; Husserl

The Explanatory Gap
The familiar mind-body problem is rooted in the difficulty
we have understanding how subjective feelings could be re-
ducible to (or identical with) objective physical facts. How
could my rush of excitement at the birth of a child “just be” a
distributed pattern of spiking neurons? This problem is asso-
ciated with a kind of explanatory challenge. When it comes to
consciousness, there seems to be an explanatory gap (Levine,
1983), or a “hard problem” (Chalmers, 1995), that does not
arise when inter-theoretic reductions are pursued in other ar-
eas of science. The problem is a matter of ongoing discussion,
and there is a fairly well-developed taxonomy of responses to
it; for review see (Tye, 2013).1

The explanatory gap argument can be presented as a modus
tollens:

1. To explain a phenomenon x requires making x intelligible.

1The relationship between the explanatory gap argument and the
mind-body problem is subtle. The explanatory gap argument is epis-
temological: it concerns our ability to understand how brain states
are related to conscious states. The mind-body problem is a meta-
physical problem: it concerns how brain states and mental states are
actually related to each other (in particular: are they identical or sep-
arate?). So they are distinct issues. Some have used the explanatory
gap argument as a metaphysical argument against materialism (and
in support of dualism), by adding a premise to the effect that what
cannot be explained in terms of physics is not itself physical. Others
defend the view that physicalism is true, and that the explanatory
gap is just a problem we human cognizers have with understanding
how physicalism is true. For an overview see (Chalmers, 2003). I
am officially neutral on these issues. I argue that there is less of
an explanatory gap than the authors of the original arguments sup-
pose. This naturally supports physicalism, but is nonetheless strictly
speaking compatible with dualism and even other forms of monism.

2. The relationship between consciousness and neural activity
cannot be made intelligible.

3. The relationship between consciousness and neural activity
cannot be explained.

Let us consider the two premises and conclusion of this argu-
ment in more detail.

The first premise describes an intelligibility condition on
explanation.2 According to Levine, when something is made
intelligible, “There doesn’t seem to be anything ‘left out”’
(Levine, 1983, p. 358). In the explanatory gap literature this
has also been characterized as a feeling of necessity or non-
arbitrariness. If an explanation makes a phenomenon intelli-
gible, we feel that the explanandum is necessitated by the ex-
planans. To use Levine’s example, that water boils at 100 de-
grees Celsius at sea level, seems necessary, given the laws of
chemistry. Or, to use an example from Tye, “Once one learns
that in solid things, the molecules are not free to move around
as they are in liquids, one immediately grasps that solid things
do not pour easily, that they tend to retain their shape and vol-
ume. Having been told the physical story, to ask: ‘Yes, but
why are things with molecules that are fixed in place solid?
Why shouldn’t such things not be solid?’ is to show a concep-
tual confusion” (Tye, 1999, p. 705). In these cases it does not
seem like the phenomenon explained (boiling water, solidity)
could be any other way, given the explanation. We could not
just change the mapping from low level physical states of a
thing to temperatures, or to states of matter (solid, liquid, gas,
etc.) in any arbitrary way.

The intelligibility condition can be summarized as follows:

If an explanation of some phenomenon p in terms of phys-
ical state s and laws L is intelligible, then the relationship
between s and p is felt to be necessary, rather than arbitrary.

More formally, if we describe the relationship between phys-
ical states s and higher level phenomena p using a function f ,
then if an explanation using f is intelligible, we must feel that
f is fixed by the relevant laws, and is not just arbitrarily stipu-
lated.3 For example, the mapping between low-level physical

2I refer to explanations, the phenomena explained in an expla-
nation, and the theoretical relationships involved in an explanation,
as being “intelligible.” These usages are related as follows: if a re-
lationship is intelligible it is determinate and non-arbitrary (details
are in the main text); if a phenomenon is made intelligible it is de-
scribed in terms of an intelligible relationship; if an explanation is
intelligible, it makes the phenomenon it explains intelligible.

3Notice the reference to “feeling”: intelligibility is, at least in
part, a phenomenological concept. Indeed, the phrase “felt contin-
gency” occurs five times in Levine’s paper.
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states of a system and states of matter like solidity and liquid-
ity is not arbitrary, but is fixed by the laws of physics. In a
similar way, the mapping between configurations of particles
in a volume and temperatures is (given a temperature scale)
fixed, and not arbitrary.

The second premise states the main problem. The problem
is that, when it comes to explanations of subjective conscious
experiences in terms of physical states, it does not seem the
intelligibility condition is fulfilled. Suppose it is shown that
activity in the insula and orbito-frontal cortex is correlated
with the taste of chocolate. Even if the correlational evidence
is strong, the relationship between these kinds of brain states
and taste experiences does not feel necessary. It seems like we
could have just as easily been told that activity in these brain
areas correlates with the taste of strawberries. We have this
feeling that the brain states and conscious states “are stuck
together in an arbitrary manner” (Levine, 1983, p. 359). This
arbitrariness does not apply in the other cases: we could not
just as well say that a crystal lattice of atoms in a diamond is
“liquid” as we could say it is “solid”. We could not just as
well say a given gas is 20 degrees Celsius as we could say it
is 30 degrees Celsius.

So whereas in the physical cases we have explanations that
fulfill the intelligibility condition, in the case of conscious-
ness we do not. So there is an explanatory gap. Or so the
argument goes.

I will make a case that the argument is unsound, because
the second premise is false. The relationship between activ-
ity in visual cortex and visual experience may seem arbitrary
when states of the visual cortex are considered in isolation.
A given brain state considered in isolation could just as well
have given rise to an auditory experience as a visual expe-
rience. However, when we shift attention to the dynamics
of the visual cortex (in a plausible environment) and consider
what kinds of phenomenological processes “match” those dy-
namics, our choice of mapping from brain states to experi-
ences will no longer seem arbitrary.

Narrowing the Gap with Bridge Metaphors
The explanatory gap problem was made prominent by
Levine’s paper as well as (Chalmers, 1995), which was sub-
sequently responded to by numerous philosophers and cog-
nitive scientists. Francisco Varela’s response was called
“Neurophenomenology–A Methodology Remedy to the Hard
Problem” (Varela, 1996). Varela’s strategy was to draw on
the area of philosophical phenomenology to try to solve the
hard problem and close the explanatory gap. Phenomenol-
ogy originates in the work of the German philosopher Ed-
mund Husserl (1859-1938). Husserl developed a complex
technical apparatus for studying the structure and dynamics
of consciousness. He did not merely describe the contents
of his experience introspectively, using something like a lit-
erary stream of consciousness or autobiography of his own
thoughts. Rather, he drew on his training in mathematics to
develop a more rigorous, formalized theory of consciousness

(his Ph.D. was in mathematics, and he wrote a dissertation
on the calculus of variation with Karl Weierstrass as his advi-
sor). Rather than emphasizing individual conscious states he
emphasized sets of possible conscious states, what he called
“manifolds” of possible experience. He also described laws
(which he thought of as invariant structures in these mani-
folds) constraining the kinds of processes that must occur if a
person is to experience a stable world.4

Varela argued that by drawing on the methods and results
of phenomenology and integrating them with neuroscience
and dynamical systems theory (via a system of “mutual con-
straints”), we can make progress on the hard problem. In his
response, Chalmers was enthusiastic: “the idea of ‘neurophe-
nomenology’ sounds eminently sensible to me. The test will
be whether it can be cashed out in the form of detailed results”
(Chalmers, 1997). I think we can pass this test.

Recall that the key issue with the explanatory gap prob-
lem concerns the intelligibility of the mind-brain correlations
discovered by cognitive neuroscience. According to the ar-
gument, any mapping discovered between neural states and
conscious states will feel arbitrary and thus fail to meet the
intelligibility condition. I argue that the intelligibility condi-
tion can be met.

Let B be the set of possible brain states for an agent and C
be theset of possible conscious states for that agent. Consider
a function f : B →C that maps the agent’s brain states to their
conscious states. Suppose a neural process occurs, which we
characterize by a discrete approximation b1, . . . ,bn. Using
f , we can consider the conscious process this neural process
gives rise to: f (b1), . . . , f (bn). We can do other work with f
as well. For example, given a way of saying how probable
future brain states are given current brain states, we can use f
to say how probable future conscious states are, given current
conscious states.

In general, we can use the mapping f to take structures in
B, and associate them with structures in C. Call the result-
ing structures “induced phenomenological structures.” I will
argue that we can test the arbitrariness and hence the intelli-
gibility of our neural explanations of consciousness by ask-
ing how coherent induced phenomenological structures are,
relative to different choices of f . If the degree to which in-
duced phenomenological structures are coherent varies with
our choice of f , then our choice of f is not arbitrary, and so
our neural explanations of consciousness are intelligible.

A number of questions arise here. First, we don’t know
what the function f is. Second, it is not clear what the “co-
herence” of an induced phenomenological structure amounts
to. Finally, it’s not currently possible to measure brain activ-
ity in a manner that is precise enough to allow us to refer in
any detailed way to specific neural processes b1, . . . ,bn.

We can address these questions by making use of simula-
tions and theoretical constructs, which are sufficiently well
motivated to make a case that our choice of f is not entirely

4For an overview of the ideas in phenomenology I draw on here,
see (Yoshimi, 2012).
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arbitrary. We can begin with a neural network simulation of
an agent in an environment, using theories and methods of
computational neuroscience. We can then posit a mapping
from the states of this simulation to conscious states. As we
will see, this can (at least for the cases I consider, which focus
on sensory states), be done in a fairly natural way: for exam-
ple, the states of an agent’s neural network when it is near a
flower stimulus can be thought of as experiences of smelling
the flower. We do not need to assume this must be the way the
mapping works (in fact, the key step in the argument will be
to imagine variations on the function). It will be enough for
our purposes just to start with something plausible. Finally, to
determine the coherence of induced phenomenological struc-
tures, we can ask to what extent those structures are consistent
with an independently developed theory of conscious experi-
ence, namely, Husserlian phenomenology.

The approach I am describing can be thought of as a step-
wise “bridge metaphor” strategy:

1. Develop a neural network model of an agent in a virtual en-
vironment, using existing principles of computational neu-
roscience.

2. Project patterns of activity from the neural network’s state
space to a visualizable 2d or 3d space using dimensionality
reduction techniques. Observe the sets of points or “point
sets” that occur in the projected neural network state space.

3. Propose a mapping f from network states to conscious
states.

4. Use f to induce phenomenological structures. Ask whether
these are coherent relative to the principles of Husserlian
phenomenology.

5. Consider alternative mappings f ′, and ask whether they in-
duce phenomenological structures that are more or less co-
herent than f .

In the last step, if the alternative mappings f ′ induce phe-
nomenological structures that are less coherent than f , we
have evidence that f is not felt to be arbitrary, and thus that
explanations of consciousness can be intelligible. To that ex-
tent we narrow the explanatory gap.

We can think about this process using the theory of con-
ceptual metaphors (Lakoff, 1993). Conceptual metaphors are
cognitive structures that allow one conceptual domain (the
source domain) to be understood in terms of another (the tar-
get domain). Typically the source domain is more concrete
and better understood, and in this way provides structure to
the target domain. Examples are time is money, love is a
journey, and argument is war. The structure of money, jour-
neys, and wars are relatively concrete and embodied, and can
thus be used to provide structure to the more abstract domains
of time, love, and argument. So too here. We begin on the
physical side, with a neural network model of an agent in an
environment. Neural network models can be directly con-
strained by anatomical, physiological, and behavioral data.

Figure 1: An agent in a 2d world with three objects, and the
5 excursions it takes. The dashed gray curves trace out the
paths taken by the agent on the five excursions.

They are also relatively concrete and easy to interact with in
computer simulations, and can be interpreted using a well de-
veloped body of theoretical work. The concrete structure of
neural network dynamics is a kind of source domain that can
be used to give structure to the domain of phenomenological
dynamics, which is more abstract and thus stands to be ben-
efit by this linkage. I call these “bridge metaphors” and the
strategy above a “bridge metaphor strategy.”

Whereas conceptual metaphors are mappings that happen
de facto in the course of our everyday experience, I envi-
sion bridge metaphors as tools that are actively tuned in sci-
entific practice, to maximally harmonize intuitions between
disparate domains. We use the neural network dynamics to
understand the phenomenological dynamics. We then use the
phenomenological dynamics to interpret the neural dynam-
ics. By proceeding back and forth in this way, we begin to
develop a detailed understanding of neuro-phenomenological
connections. We build a bridge between the two domains, and
begin to narrow the gap of intelligibility between them.

Example
I now illustrate the 5 steps of the bridge metaphor strategy
with a concrete example.

(Step 1). We begin with an idealized model of a network
in a virtual environment. The model was developed using
principles familiar from a wide range of models in cognitive
science, including reinforcement learning models (Sutton &
Barto, 1998), and Bayesian models of the brain as a predic-
tion machine (Clark, 2013). It is also consistent with ideas
from the earlier literature on animal learning going back to
(Tolman, 1948), according to which behavioral data imply
that agents’ navigate environments using internal maps. A
component of most models in these areas is a mathematical
structure that learns to predict what future states will occur,
often using an error based learning rule like the delta rule
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(Bishop, 1996).
The agent and its virtual environment are shown in Figure

1. The network controlling the agent consists of several sub-
networks: a sensory network consisting of neurons that re-
spond to objects in the environment; a motor network consist-
ing of neurons which, when activated, make the agent move
straight or turn (or both); and a prediction network (trained
using the delta rule) that predicts the next state of the sensory
network based on the current activations of the sensory and
motor neurons. Based on what the agent senses and how it
moves, it predicts what it will sense next. Each sensory neu-
ron responds to a specific object via a linear scaling function
of the distance between the sensor and that object. For ex-
ample, if a cheese-sensing neuron is on top of cheese, then
it is maximally activated. As the agent moves away from the
cheese that neuron’s activation diminishes to 0.5

(Step 2). To get a feel for the way the agent represents
its simple environment, five “excursions” were run, where
the motor neurons were clamped to specific values at suc-
cessive times according to one of five scripts (see Figure 1).
At each iteration of the simulation, the network was updated,
the agent was moved on the basis of the states of the motor
neurons, and the current state of the sensory networkwas pro-
jected to a 2d plot using principal component analysis (Abdi
& Williams, 2010). The points of the plot were then col-
ored according to the predictions of the prediction subnet-
work. The current state was colored green, and states that
were predicted to occur next were colored red at varying de-
grees of saturation (and clipped to gray below some thresh-
old), in proportion to the Euclidean distance between those
states and the next predicted state.

On the first three excursions, the agent moves past each
of the three objects individually. As the agent passes an ob-
ject a single arc (in these cases line segments) unfolds in the
state space. Intuitively the agent is representing (for exam-
ple) a “faint flower smell, a little more flower smell.... max-
imal flower smell ... a little less flower smell...” etc. until it
is back to smelling nothing. As it moves up to each of the
objects a kind of “halo” of red (predicted next states) moves
with the current point up to the end of the forming arc. As it
passes the objects the halo moves back down the just-formed
arc (you are encouraged to download the software, run the
simulation, and see it yourself). After the agent has passed
the three objects its state space contains the three-pronged
structure shown at the core of Figure 2, what can be called a
“bouquet of three arcs,” where each arc corresponds to one of
the represented objects.

In the fourth and fifth excursions, the agent visits two ob-
jects in succession, moving forward past the cheese and then
turning either left or right. An example is shown in Figure 2.
This creates new mixed representations that did not occur in
the first three excursions, corresponding to two sensory nodes

5For a complete specification of the algorithm, the code can be
requested from the author and run via Simbrain, a freely available
simulation package (Yoshimi, 2008).

Figure 2: The “spandrelled bouquet” point set after all five
excursions have occurred. Shown is the fifth excursion. The
current point (shown in green) corresponds to the point when
the agent has just passed the cheese and is turning towards the
flower.

being active at once. In the fifth excursion, for example, we
have a sequences of points that moves from the arc corre-
sponding to the cheese alone, to a new connecting path or
“spandrel” corresponding to mixed representations of flower
and cheese, to the arc corresponding to the flower alone. As
with the first three excursions, as the agent moves, a halo of
red follows the current point in state space.

After the agent has gone on these five excursions it can be
sent back on any of them again. In these cases the point set
does not change (no new sensory states occur) but the struc-
ture of the halo moving through the point set does (the net-
work’s predictions improve). For example, after the first five
excursions if the agent is sent on the fifth excursion again,
then at the moment the agent begins turning towards the
flower, it correctly predicts that it will soon be in a mixed
cheese / flower state even though it occupies the same point
in the point set as when it is about to have the mixed cheese
/ fish state of the fourth excursion. Figuratively, when it is at
the “fork in the road” (shown in Figure 2), it correctly predicts
which path (which spandrel) it will follow, based on what it
is sensing in its sensory nodes and what action it is taking.6

(Step 3). Our provisional mapping f from points in the net-
work’s state space to associated conscious states was already
suggested above. We can simply assume that states of the
sensory network produce conscious perceptions of the repre-
sented objects. For example, the network state that occurs
when the agent is right on top of Swiss cheese corresponds
to a conscious perception of Swiss cheese as being near the
agent, whereas the network states that occur when the agent
is at various distances from the cheese correspond to percep-

6This is hard to see in the figure, though it is the case that the
output of the prediction network corresponds to the first point on the
upper spandrel.
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tions of the Swiss cheese at corresponding distances from the
agent. When the agent is near multiple objects it has a mixed
conscious state encompassing all the objects it perceives, at
corresponding distances from it. When it is sufficiently far
from the objects it consciously perceives no object.

(Step 4). Thus, under f , in each of the first three excur-
sions a sequence of conscious perceptual states occurs be-
ginning with faint perception, rising to maximal perception
of one object, then falling back to faint perception. Each of
the arcs corresponds to a perceptual processes of moving past
one of the three objects. The origin of the bouquet, where the
three arcs intersect, corresponds to perceiving no objects. In
the fourth and fifth excursions, the agent first perceives one
object, then perceives two objects (while it is on the span-
drels), then perceives the second object alone. This is the
phenomenological structure induced by the spandrelled bou-
quet of arcs under the mapping f .

We can also consider the phenomenological structure in-
duced by the prediction subnetwork under f . After some
training, the states of the prediction subnetwork—visible as
a moving halo of red—accurately predict what the agent
willsense next. These predictions correspond to phenomeno-
logical predictions about what the agent will consciously per-
ceive at successive times. We can also associate the mean
error at each time step (the discrepancy between the states
predicted to occur and the states that actually occur, which is
used by the delta rule to update the weights), with feelings of
rightness or wrongness.

All of this is consistent with Husserlian phenomenology.
According to Husserl, we consciously perceive objects as
“identities in manifolds”, such that when we move our bodies
in a smooth, continuous way relative to an object, we perceive
it as changing in a correspondingly smooth, continuous way.
Husserl also develops a complex phenomenology of expecta-
tion (or as he also says, “protention”), whereby as we move
with respect to a familiar object we constantly have expec-
tations about how the object will look relative to our move-
ments. These expectations are “fulfilled” or “frustrated” in
varying degrees depending on what we actually perceive in
successive moments. As we learn more about an environ-
ment these expectations become more specific, in the sense
that there are fewer subsequent perceptions that would fulfill
our expectations. This corresponds to the idea that the halo
of predictions surrounding the current point narrows as the
agent repeatedly goes on the same excursions.

(Step 5) We can now ask how coherent these induced phe-
nomenological structures are, relative to other choices of f . If
f were different, we would get different induced phenomeno-
logical structures. Would these different structures still make
sense relative to Husserlian phenomenology? For many such
differences, the answer is obviously “no”. Suppose, for ex-
ample, that we chose an f ′ such that on the first excursion
the agent experienced a haphazard sequence of perceptions
of the fish, cheese, and flower, in rapid succession as it passes
the cheese. This would not be a sensible or coherent experi-

ential process. The agent could not, in Husserl’s terms, have
any kind of experience of stable things or “posited unities.”
A subjective process would occur, but it would be a kind of
“maelstrom”, a chaos of unrelated perceptual states. Husserl
admits that something like this is imaginable, but says that in
such a case all sense of reality would be lost:

Could it not be that, from one temporal moment on...
the series of appearances would run into one another
in such a way that no posited unity could ultimately be
maintained... Thus we arrive at the possibility of a phe-
nomenological maelstrom... it would be a maelstrom so
meaningless that there would be no I and no thou, as
well as no physical world—in short, no reality (Husserl,
1997, 249-250)

Though I think this is enough to show that our choice of
f is not arbitrary, let us briefly consider the prediction net-
work and the phenomenological structures it induces. If we
consider an expanded f that not only maps sensory states to
conscious perceptions, but also maps from error states of the
network to experiences of fulfillment and frustration, then the
only way this map would make sense of the phenomenology
would be if low error corresponded to fulfillment and high er-
ror corresponded to frustration. For example, when the agent
begins to turn right, having just sensed the cheese (excursion
5), it predicts it will sense the flower. When it actually does
sense the flower, the prediction is confirmed and error is low.
If this mapped to a feeling of surprise under an expanded f ′,
that would make no phenomenological sense. We are not
surprised when our subsequent perceptions match our previ-
ous expectations: we experience something like the kind of
smooth feeling of fulfillment Husserl describes.

Thus, our choice of f is not arbitrary. We cannot simply
associate brain states with conscious states however we like,
and expect the result to make phenomenological sense. Some
choices of f produce phenomenological structures that are
consistent with Husserlian phenomenology; other choices of
f produce phenomenological structures that are inconsistent
with Husserlian phenomenology. So premise 2 is false, the
explanatory gap argument is unsound, and there is hope yet
for an intelligible explanation of consciousness in terms of
neural structures.7

Conclusion
I have used the bridge metaphor strategy to address a specific
philosophical argument, the explanatory gap argument. Like
Varela, I think neuro-phenomenology can be used to narrow

7The upshot of all this is that the explanatory gap can be nar-
rowed. I do not say it can be “closed”, because I believe that there is
some latitude in how we specify f . For some range of f ’s I think that
induced phenomenological structures can remain coherent. In fact
some fairly radical permutations of f , akin to color inversion cases
(Byrne, 2014), may preserve phenomenological coherence. So, I am
not sure a unique mapping from brain states to conscious states can
be achieved. But I do think I have shown that there are substantial
constraints on how f is specified, and to that extent I believe I have
narrowed the explanatory gap.

3147



the explanatory gap (though I do not think it can close the gap
altogether), and make progress on the hard problem.

In developing this argument, I have been motivated by
a broader research agenda: to show how these two exten-
sive bodies of research—computational and cognitive neu-
roscience on the one hand, and Husserlian phenomenology
on the other—can be integrated using the tools of computer
simulation and dynamical systems theory. We have seen
that computer simulations can be used to visualize an agent’s
model of its environment. The point-set that develops as an
agent explores its environment has a specific and meaning-
ful shape. In the simple case considered above, where three
objects were repeatedly explored in five ways, the point set
was a spandrelled bouquet of three arcs.8 As the agent ex-
plores its environment it traverses this structure, and a halo
of predictions, which narrows over time, moves with it. Us-
ing a mapping from brain states to conscious states, we can
interpret this structure as being simultaneously a picture of
the agent’s neural representation of its environment, and as a
phenomenological structure, which shows how well the agent
knows its way around its environment, what it perceives at
each moment, what it expects at each moment, and the de-
gree to which it is surprised by what it perceives.
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