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Abstract

Premises and conclusions in classical syllogistic reasoning are
formed using one of four quantifiers (All, Some, Some not,
None). In everyday communication and reasoning, however,
statements such as “most” and “few” are formed as well. So
far only Chater and Oaksford’s (1999) Probability Heuristics
Model (PHM) makes predictions for these so-called general-
ized quantifiers. In this article we (i) extend existing and de-
velop new theories, (ii) develop multinomial processing tree
(MPT) models for these theories, and (iii) conduct an ex-
periment to test the models. The models are evaluated with
G2, Akaike’s (AIC) and Bayesian Information Criteria (BIC),
and Fisher’s Information Approximation (FIA). Mental model-
based accounts and PHM provide an equal account to the data.
Keywords: Syllogistic Reasoning; Generalized Quantifiers;
MPTs; Model Selection

Introduction
Syllogistic reasoning derives a conclusion from two quanti-
fied statements. Each statement is formed using one of the
four quantifiers: all (A), some (I), some not (O), or none (E).
Consider, a simple syllogism, e.g.,

(1) All cognitive scientists are intelligent.
Some intelligent people are rich.

Most individuals erroneously infer from these statements that
“Some cognitive scientists are rich” (Khemlani & Johnson-
Laird, 2012). The only logically valid response is, how-
ever, that nothing follows. A meta-analysis by Khemlani and
Johnson-Laird (2012) investigating twelve theories shows
that there is still no psychological theory that provides a com-
prehensive account for human syllogistic reasoning. The as-
sessed theories can be categorized into one of the following
three classes: heuristic theories, logical theories, and model-
based theories. The findings indicate that heuristic-based
theories (such as the Matching Hypothesis by Wetherick &
Gilhooly, 1990) and the Probabilistic Heuristics Model (PHM
by Chater & Oaksford, 1999) and model-based theories (such
as the Theory of Mental Models, see Johnson-Laird, 2006)
performed better overall than theories of mental logic.

It has been criticized that classical quantifiers are too lim-
ited with respect to everyday contexts. The quantifiers A and
E are too strict, not allowing any exceptions, whereas I and
O are considered too weak requiring only a single individ-
ual (Pfeifer, 2006). In contrast, everyday human reasoning is
“based [. . . ] on beliefs, in which there are varying degrees of
confidence” (Evans, 2002, p. 980). In accordance with that,
we consider the generalized quantifiers most (M) and few (F),
e.g.,

(2) Some X are not Y .
Few Y are Z.

From these premises a reasoner could conclude “Few X are
Z” although again (logically) nothing follows. An additional
advantage of using generalized quantifiers is that they can
provide a new benchmark for theories of classical syllogis-
tic reasoning.

The remainder of this article is structured as follows: We
first review the only existing theory for the generalized quan-
tifiers most and few – the PHM (Chater & Oaksford, 1999).
In a second step we extend successful approaches for classical
syllogistic reasoning. Specifically, we extend the Matching
Hypothesis and develop two additional mental model-based
accounts – one based on minimal models and the other on
preferred mental models. Finally, all theories are formalized
via multinomial processing tree (MPT) models and their em-
pirical performance is assessed on data from a new experi-
ment.

Theories for Generalized Quantifiers
Established Theory: Probability Heuristics Model
Chater and Oaksford (1999) proposed a Probability Heuris-
tics Model (PHM) that accounts for the four classical and two
generalized quantifiers M and F . It predicts that conclusions
are chosen by their likelihood. Chater and Oaksford (1999)
argue that quantifiers can be ordered according to their re-
spective informativeness:

A > M > F > I > E >> O

with A being the most informative quantifier as no excep-
tions are allowed. Simple heuristics like the min-heuristic
and p-entailments describe the conclusion drawn by individ-
ual reasoners. The min-heuristic postulates that the quanti-
fier of the conclusion is the same as the one in the least in-
formative premise. Hence, for Example (2) above, the min-
heuristic predicts reasoners conclude that “Some X are not
Z” as the first premise (containing O) is less informative than
the second one (containing F). The conclusion drawn by this
heuristic is called min-conclusion. If more than one conclu-
sion can be derived from a given problem, the following con-
clusions are called p-entailments (i.e., they are probabilisti-
cally entailed) of the min-conclusion. For Example (2) the
min-conclusion “Some X are not Z” entails that “Some X are
Z.”

The predictions were evaluated in two experiments (Chater
& Oaksford, 1999). Participants received two premises and
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had to choose one, multiple, or none of four response op-
tions. Each answer option contained a different quantifier
and related the third term Z to the first term X . The first ex-
periment investigated the quantifiers A, M, F , and O, while
a second experiment considered the quantifiers M, F , I, and
E. Forcing participants to draw Z−X inferences (though in
good tradition as they argue in their paper) influences the re-
sults; experiments in which both orders are permitted (e.g.,
Bucciarelli & Johnson-Laird, 1999) have shown that partici-
pants (sometimes) prefer the X−Z order. An additional point
is that multiple responses are more difficult to interpret.

Extending Classical Theories
Matching Hypothesis. Another heuristic approach to syl-
logistic reasoning is the Matching Hypothesis (Wetherick &
Gilhooly, 1990). This theory claims that the quantifier of the
conclusion is selected according to the quantifier of the most
conservative premise, i.e., referring to the smallest number
of individuals. Ordered from most to least conservative the
quantifiers are:

E > O = I >> A

A strength of this theory is that it can easily be generalized
to additional quantifiers. By assuming that M and F are less
conservative than I and O – as they not only make statements
about an arbitrary number, but also impose quantitative re-
strictions – we get the order:

E > O = I > M = F >> A

For Example (2) above, the predicted responses by the Match-
ing Hypothesis are “Some X are not Z”, and “Some Z are not
X”. This approach, however, is weak in that it cannot explain
instances in which nothing follows from the premises since a
least conservative quantifier always exists. Although the pos-
tulated order of quantifiers differs from the order predicted by
the PHM, the underlying mechanisms are quite equivalent.

Mental Models and Heuristics. An important non-
heuristic approach is the Mental Model Theory (MMT)
(Bucciarelli & Johnson-Laird, 1999; Khemlani & Johnson-
Laird, 2012). This theory claims that deductive reasoning
consists of the construction and manipulation of mental mod-
els.

While the classical MMT (Bucciarelli & Johnson-Laird,
1999) does not provide predictions for reasoning with gen-
eralized quantifiers (but, see Neth & Johnson-Laird, 1999)
a new approach has been proposed by Johnson-Laird and
Khemlani (2014) – a Unified Theory – which integrates
heuristics into the MMT. This theory is implemented in a
computer program called mReasoner1. It contains a seman-
tic for the generalized quantifier most (M) in addition to the
classical quantifiers.

We extend the classical theory with the principle of parsi-
mony, i.e., we assume that reasoners construct Minimal Mod-
els. This approach receives support from the limited working

1http://mentalmodels.princeton.edu/models/mreasoner/

memory capacity. Additionally, heuristics guide the reason-
ing process: Reasoners first construct a model in which they
try to verify a conclusion with a quantifier from one of the
premises. The minimal mental model for Example (2) is:

X
X Y Z

Y
Y

Consequently the reasoner chooses a quantifier from the
premises and verifies whether it holds in the initial model.
Empirical data suggests that this choice is based on the fol-
lowing ordering of quantifiers:

E > I ≥ F > O > M > A

As F appears before O in this order, F is checked and the ini-
tial model of Example (2) supports the conclusion that “Few
X are Z.” Note that during the construction of the initial
model, the preferred strategy is to minimize the number of
individuals, which implies a maximization of the overlap be-
tween individuals.

Although this might in some ways resemble the heuristics
of the Unified Theory (for a detailed description, see Johnson-
Laird & Khemlani, 2014), there is one important difference:
The Unified Theory assumes that an initial model is con-
structed first and only with this model in mind do heuristics
affect the derivation of a conclusion. In contrast to this, our
account of Minimal Models predicts that heuristics play a role
with regard to the construction of the initial model, which is
governed by the quantifiers.

Preferred Mental Models. In a current analysis (Ragni,
Schrögendorfer, & Nebel, in prep) we formalized the MMT
as spatial models, i.e., a mental model can be seen as a map-
ping from the set of premises P onto a discrete space N2. The
preferred model is the one which has minimal extension. To
provide an example:

(3) Few of the Architects are Beekeepers.
Some of the Beekeepers are Chemists.

We identify all the architects with a set of instances A, the
beekeepers with a set of instances B, and the set of instances
of chemists with C for each premise. The syllogism above
is P1 := (Few,A,B) and P2 := (Some,B,C). The preferred
mental model for Example (3) is constructed as the minimal
interpretation Ω1 and a map ϕ1 : Ω1→N2 satisfying premise
P1.

Ω1 := A ∪̇ B

A1 := {a,a′,a′′}, B1 := {b}
ϕ1 : a 7→ (1,1) a′ 7→ (1,2)

a′′ 7→ (1,3) b 7→ (2,1)

The graph of ϕ1 is shown in Figure 1 on the upper left
and consists of the instances {a,a′,a′′,b}. The instances a
and b share the same row. Therefore, exactly one A-instance
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Figure 1: Graphs of preferred mental models to syllogisms
of the form F-O (ul), and I-M (ur), the conclusion models in
lower row implying the conclusion F (ll), and I (lr)

a is a B-instance, whereas the A-instances a′ and a′′ are not
B-instances. Thus, the premise P1 is satisfied, and it easily
follows that Ω1 is chosen with minimal cardinality.

We now choose a proper extension of the model ϕ1 to get
the preferred mental model ϕ of Example (3) shown in Figure
1 on the upper left. The formal model ϕ2 is minimal. Thus,
to satisfy P2 := (Some,B,C) exactly the B-instance b is row
equivalent to c ∈C. Therefore, A := {a,a′,a′′}, B := {b,b′},
and C := {c}. This model is constructed to be minimal, par-
simonious, and to satisfy premise P2. Consider Example (4):

(4) Some of the Artists are not Bakers.
Most of the Bakers are Cheerleaders.

On the upper right side of Figure 1 the preferred mental
model ϕ′ of the syllogism

((Some Not,A,B),(Most,B,C))

can be found. The model ϕ′1 (that is restricted to a, a′,
b or formally, ϕ′ |{a,a′,b}) is minimal and satisfies the first
premise P′1 := (Some Not,A,B), and is a proper submodel of
ϕ. Through extension of the map ϕ′1 to a minimal and parsi-
monious model which satisfies P′2 the preferred mental model
ϕ′ is constructed.

Examine the A-C-submodels of ϕ and ϕ′ to draw conclu-
sions (from these models). The models for Example (3) and
Example (4) are given in the lower row of Figure 1. The
submodel ϕAC to example (3) uniquely satisfies the premise
P := (Few,A,C), and the submodel ϕ′AC to example (4) holds
P′ := (Some,A,C). As nothing else holds, we conclude from
the constructed preferred mental models for problem (3) that
“Few of the Architects are Chemists.” and for problem (4)
that “Some of the Artists are Cheerleaders”.

Besides heuristics and mental models, another important
approach in syllogistic reasoning are theories based on for-
mal rules, like for example the PSYCOP model (Rips, 1994).
According to this theory, reasoners rely on formal rules of in-
ference which they apply to propositional representations of
the premises. So far this approach is limited to the classical
quantifiers and thus not included in our analysis.

Model Comparison and MPT-Analysis
One of our main goals was to assess the empirical adequacy
of the presented theories. To achieve this in a statistical
sophisticated manner, we resorted to formalizing the theo-
ries as multinomial processing tree (MPT) models (Riefer
& Batchelder, 1988). MPT models are a class of cognitive
measurement models for multinomial (i.e., categorical) data
that describe observed response frequencies as resulting from
latent cognitive states. The probabilities that the cognitive
states are reached are estimated from the data and provide
a measure of the contribution of said states to the observed
responses. To formalize all models in a consistent manner,
we assumed that responses can be produced by one of two
(mutually exclusive) cognitive states: A response is either (a)
produced by the reasoning processes assumed by the theories,
in which case a response predicted by the theories is given, or
(b) a response is guessed in which case any possible response
can be given (see Oberauer, 2006, for a similar approach for
conditional reasoning).

More specifically, regarding (a) we assumed that for each
syllogism with probability ri (where i represents the specific
syllogism) a reasoning state is reached. In the reasoning state,
one of the predicted responses is invariantly given (i.e., we as-
sume the absence of post-reasoning response processes such
as motor errors). If a theory predicts more than one response
for a given syllogism, the probability with which each of the
predicted responses is given is estimated freely from the data
(if only one response is predicted, this response is given). One
exception existed for PHM which assumes that two distinct
processes, min-heuristic and p-entailment, can generate con-
clusions and min-heuristic is the preferred process. Conse-
quently, we imposed a weak-order on the multinomial distri-
bution predicted by the reasoning state of PHM such that the
probability of responses by min-heuristic was equal or greater
than the probability of responses by p-entailments.2

Regarding (b), we assumed that in cases where the reason-
ing state is not reached a guessing state is entered with prob-
ability (1− ri). Further, we assumed that the guessing state
was identical across all syllogisms (i.e., across all i). Within
the guessing state, the probability with which each response
is given is estimated freely from the data. In other words,
whereas the guessing tree can in principle account for any
observed data pattern, the models are restricted in such a way
that the predicted guessing pattern needs to be identical for all

2In cases where one of the two processes predicted more than one
response (which occurred several times), this restriction pertained to
the sum of the predictions from one of the processes.
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Table 1: Reliable responses for all 40 syllogisms and the corresponding response proportions.

2. Premise

1. Prem. Concl. Type A M I F E O
A X-Z M(72%), I(24%) F(60%)

Z-X M(56 %), I(32%) F(68%)
M X-Z M(84%) M(84%) I(68%) F(60%) E(36%), F(36%) I(56%)

Z-X M(68%) M(56%), I(36%) I(60%) F(56%), I(36%) E(44%), F(28%) I(52%)
I X-Z I(76%) F(56%), I(32%)

Z-X I(68%) F(52%)
F X-Z F(76%) F(64%) F(64%) F(84%) E(40%), I(28%) F(44%), I(32%)

Z-X F(72%) F(56%), I(32%) I(40%), F(36%) F(68%) E(44%) F(32%), I(28%)
E X-Z E(68%) E(64%)

Z-X E(72%) E(56%)
O X-Z I(48%), F(36%) F(48%), I(24%)

Z-X I(56%) F(56%), I(24%)

Note. Responses which occurred significantly often (>22%). For one item the modal response (M, in bold) was given significantly more
often than a second reliable response (I).

syllogisms for a given theory (i.e., guessing is constant across
syllogisms).

The advantages of formalizing the theories in such a
way are basically threefold. First, formalizing all theories
within one model class allows a consistent statistical treat-
ment across theories. Second, MPT models are a statistically
well developed model class (see Singmann & Kellen, 2012,
for an overview). Specifically, in addition to assessing model
fit via the G2 statistics we can employ model selection in-
dices that provide a sort of automatic Occam’s razor by taking
both model fit and model complexity into account. Here we
use the well-known Akaike information criterion (AIC), the
Bayesian information criterion (BIC), as well as the Fisher
Information Approximation (FIA Wu, Myung, & Batchelder,
2010) a measure that estimates the flexibility of a model.
Third, by separating and estimating the contribution of rea-
soning versus guessing, we can evaluate the contribution of
both types of processes across theories, but also across syl-
logisms. We now describe the experimental data obtained to
compare the formalized theories.

Method
Participants.
Twenty-five English native speakers (M = 30.8 years) partic-
ipated in this experiment. They were recruited by Amazon
Mechanical Turk and paid for their participation.

Materials, Procedure, and Design.
The experiment was conducted as an online experiment via
Amazon Mechanical Turk. Each participant completed 40
syllogistic reasoning tasks and additionally one easy test
problem which was excluded from the analysis. The tasks
consisted of two premises at least one of which contained
a generalized quantifier (F or M). Simultaneously with the
premises, the question “what follows?” as well as a response
field for the conclusion appeared. The participants had to gen-
erate a conclusion using one of the six quantifiers (A, E, F ,
I, M, O), which were displayed at the bottom of the screen,

and type their answer (i.e., only the quantifier) into a provided
response field (see example below). Participants could only
proceed to the next syllogism if they entered one of the six
quantifiers into the response field. In order to enhance rea-
soning and avoid fast responses, “nothing follows” was not
provided as a response option. An example item follows:

All brokers are waiters.
Few waiters are agents.

What follows?

of the brokers are agents.

Quantifiers: All, Some, Some Not, Most, Few, None.
In half of the trials the conclusion related the subject of the

first premise (i.e., X) to the end-term of the second premise
(i.e., Z), and vice versa in the remaining 20 trials; all 40 tasks
were of the same form as Example (2) above (i.e., X −Y
Y −Z, which is also known as Figure I). Each set of 20 syl-
logisms consisted of the following items: 6 syllogisms in
which most appeared as first quantifier and each quantifier
appeared as second quantifier once, 6 syllogisms in which
few appeared as first quantifier and each quantifier appeared
as second quantifier once, 4 syllogisms in which each of the
four standard quantifiers (i.e., A, E, F , I) appeared as first
quantifier once and most appeared as second quantifier, and
4 syllogisms in which each of the four standard quantifiers
appeared as first quantifier once and few appeared as second
quantifier. The syllogisms were presented in a individually
randomized order. Different professions and hobbies con-
stituted the content of the terms (e.g., Chater & Oaksford,
1999).

Results
Descriptive Results
Table 1 presents the reliable responses (i.e., responses which
occurred significantly often, >22%) and the corresponding
response proportions for all 40 syllogisms. For one item
(printed in bold) the modal response (M) was given signifi-
cantly more often than a second reliable response (I).
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Table 2: Predictions of the four theories for selected syllo-
gisms (X-Z conclusion) and significant choices.

Syll. Data PHM Matching PMM Min. Models

IF F, I I, (O) I F F, I
FI F I, (O) I F F, I
FO F, I O, (I) O I F
OF F, I O, (I) O I F
MO I O, (I) O I O
OM I, F O, (I) O I O

Note. Predictions in parentheses indicate predictions by the
non-preferred process, i.e., p-entailments for PHM.

MPT analysis
For each of the 40 syllogisms in our data we created predic-
tions from the four theories. A few examples in which the
theories give specifically diverging predictions are presented
in Table 2 along with the reliable responses given by the par-
ticipants. From the predictions we constructed MPT models
as described above. The full model for each theory consisted
of 40 trees, each representing one syllogism. Each tree con-
tained an individual ri parameter estimating the probability
with which a response was produced by a reasoning or guess-
ing state. As described above, the probabilities of responses
within the reasoning branch of the trees were freely estimated
(with the restriction regarding the min-heuristic for PHM) and
the parameters in the guessing tree were constant across all
trees (i.e., each model only had one set of five guessing pa-
rameters for all 40 syllogisms).

We fitted each model to the aggregated data via the maxi-
mum likelihood method using MPTinR (Singmann & Kellen,
2012). The full dataset had 5 × 40 = 200 available degrees
of freedom for a total of 25 × 40 = 1000 responses. Model
comparison data is presented in Table 3. In terms of model
fit as measured by the G2 statistic the first important obser-
vation is that all models provide an inadequate account (i.e.,
all p < .001). Furthermore, PHM provided the best account
(smallest ∆G2 = 36.30). This is not too surprising given that
it makes the most predictions and has the most parameters.

When considering both model fit and model flexibility
the picture somewhat changes. The two “naive” measures
AIC and BIC (which operationalize model flexibility only via
numbers of parameters) favour the two Mental Model based
theories (AIC: Minimal Models; BIC: PMM). But it should
be noted that AIC and BIC are somewhat inappropriate for
models where parameters impose order restrictions as is the
case for PHM. For such a case, FIA is a more appropriate
measure as it estimates the flexibility of a model, taking order
restrictions into account (see Wu et al., 2010, for a discus-
sion). According to FIA, PHM provides the best account.
However, when inspecting the FIA penalty terms (which are
added to 1

2 G2) estimated model flexibility only minimally dif-
fers (maximal difference is 8.9). Given the rather huge dif-

Table 3: Model Comparison

Theory k G2 AIC BIC FIA CFIA
PMM 45 235.8 325.8 546.6 197.8 79.9
Min. M. 49 223.5 321.5 562.0 195.7 83.9
Matching 49 261.7 359.7 600.1 214.2 83.4
PHM 101 187.2 389.2 884.9 182.4 88.8

Note. k is the number of model parameters, the total number
of available df is 200 (i.e., model df = 200− k). All p < .001.
Theories are ordered by the number of parameters. The small-
est value per column is printed in bold. FIA gives the value of
the Fisher Information Approximation and CFIA is the penalty
term for FIA representing the flexibility which is estimated us-
ing 1 million Markov chain Monte Carlo (MCMC) samples.

ferences in number of parameters and predictions between
e.g., PMM and PHM, this is odd. It most likely reflects the
asymptotic nature of FIA, which only perfectly captures flex-
ibility differences for n→∞, and our small sample size (only
n= 25 per tree; where n in both cases is the number of items).
Hence, we interpret the results that the model that strikes the
best balance between model fit and flexibility is either one of
the two mental model-based theories or PHM.

In the next step of the analysis we looked at the ri parame-
ters. As shown in Table 4, the theories differ wrt. the amount
of reasoning compared to guessing they assume. In line with
the G2 values, PHM estimated the greatest probability for rea-
soning based responses. However, even for PHM the mean
probability for a reasoning based response was .5. In other
words, even for the best fitting theory (i.e., ignoring the issue
of model flexibility), half of the responses were produced by
guessing processes and only the other half of the responses
by the reasoning processes the theories assume. This finding
may well be responsible for the overall unsatisfactory model
fit given that the guessing process which was responsible for
at least 50% of the responses was assumed to be constant
across all 40 syllogisms (i.e., only 5 parameters for 50% of
the responses across 40 trees).

Finally, we analyzed the ri parameters with a mixed
ANOVA (i.e., an item-wise analysis) with theory as within-

Table 4: Comparison of Reasoning (ri) Parameters

Theory Mean SD Median Min Max

PMM .44 .21 .46 .00 .82
Minimal Models .46 .21 .48 .00 .82
Matching .38 .26 .39 .00 .83
PHM .51 .25 .53 .08 .93

Note. Although .00 is the smallest value for three theories, it
does not occur at the same syllogism for all of them.
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subject factor and generalized quantifier (M vs. F), po-
sition of generalized quantifier (first vs. second premise),
and conclusion (X-Z vs. Z-X) as between-subjects fac-
tors. The analysis revealed, besides a main effect of the-
ory (F(2.59,83.00) = 10.36, p < .001), a significant theory
× generalized quantifier interaction (F(2.59,83.00) = 11.22,
p < .001).3 With the exception of the Minimal Model the-
ory were the reasoning parameters consistently larger for M
than for F (differences are .10 for PMM, -.03 for Minimal
Models, .13 for Matching, and .21 for PHM). This indicates
that most theories predicted more reasoning when M was the
generalized quantifier compared to F .

Discussion
Everyday reasoning is based on degrees of belief rather than
absolute certainty. To this end, we investigated syllogisms
with generalized quantifiers such as “Most” (M) and “Few”
(F). There is currently only one approach – the Probability
Heuristics Model (Chater & Oaksford, 1999) – that makes
any predictions about possible inferences. We extended the
Matching Hypothesis and developed two model-based ap-
proaches for generalized quantifiers, formalized them as MPT
models and evaluated them on a new dataset.

Our results show that MPT models can be used to success-
fully compare reasoning theories. In terms of model fit, how-
ever, all discussed theories provide an inadequate account to
the data. Nevertheless, differences between these approaches
exist in their predictive power. PHM and the mental model-
based approaches clearly outperform the Matching Hypothe-
sis (which shows a good fit to the data on classical syllogistic
reasoning; Khemlani & Johnson-Laird, 2012). Deciding be-
tween the remaining three theories seems to require a larger
number of responses as indicated by the inconclusive results
from the different model selection indices employed. Specif-
ically the small differences in FIA penalty given the rather
dramatic differences in the predictions between the theories
point to this conclusion.

While the results indicate that no current theoretical ap-
proach captures the full set of responses, one further take
home message can be distilled from our analysis: Disen-
tangling the contribution of reasoning and guessing based
responses reveals that almost all theories are more success-
ful in predicting participants’ responses when reasoning with
“Most” compared to “Few”. This result shows that our MPT
modelling can help in providing specific insight for further
theoretical development.

In contrast to other analysis strategies, MPT modeling al-
lows to test specific, possibly ordered, predictions and uses
raw response frequencies instead of transformed data. Fur-
thermore, the ability to disentangle latent cognitive processes
such as reasoning and guessing provides important theoreti-
cal insights. From this perspective, MPT models are an excel-
lent cognitive modeling methodology for assessing reasoning

3df are Greenhouse-Geisser corrected.

theories on a new and more precise level and allow for distin-
guishing between competing theories in a unified framework.
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