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A genome-wide interaction analysis of tri/tetracyclic 
antidepressants and RR and QT intervals: a pharmacogenomics 
study from the Cohorts for Heart and Aging Research in 
Genomic Epidemiology (CHARGE) consortium

A full list of authors and affiliations appears at the end of the article.

Abstract

Background—Increased heart rate and a prolonged QT interval are important risk factors for 

cardiovascular morbidity and mortality, and can be influenced by the use of various medications, 

including tri/tetracyclic antidepressants (TCAs). We aim to identify genetic loci that modify the 

association between TCA use and RR and QT intervals.

Methods and Results—We conducted race/ethnic-specific genome-wide interaction analyses 

(with HapMap Phase II imputed reference panel imputation) of TCAs and resting RR and QT 

intervals in cohorts of European (n=45,706; n=1,417 TCA users), African (n=10,235; n=296 TCA 

users) and Hispanic/Latino (n=13,808; n=147 TCA users) ancestry, adjusted for clinical 

covariates. Among the populations of European ancestry, two genome-wide significant loci were 

identified for RR interval: rs6737205 in BRE (β = 56.3, Pinteraction = 3.9e−9) and rs9830388 in 

UBE2E2 (β = 25.2, Pinteraction = 1.7e−8). In Hispanic/Latino cohorts, rs2291477 in TGFBR3 
significantly modified the association between TCAs and QT intervals (β = 9.3, Pinteraction = 

2.55e−8). In the meta-analyses of the other ethnicities, these loci either were excluded from the 

meta-analyses (as part of quality control), or their effects did not reach the level of nominal 

statistical significance (Pinteraction > 0.05). No new variants were identified in these ethnicities. No 

additional loci were identified after inverse-variance-weighted meta-analysis of the three 

ancestries.

Conclusion—Among Europeans, TCA interactions with variants in BRE and UBE2E2, were 

identified in relation to RR intervals. Among Hispanic/Latinos, variants in TGFBR3 modified the 

relation between TCAs and QT intervals. Future studies are required to confirm our results.
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Introduction

An increased resting heart rate and a prolonged QT interval are independent risk factors for 

cardiovascular morbidity and mortality[1–4]. To date, multiple medications have shown 

clinically significant effects on heart rate, the heart-rate corrected QT interval (QTc), or 

both[5–7]. For example, the tri/tetracyclic antidepressants (TCAs) have tachycardic and QT-

prolonging effects originating from their anticholinergic properties (through antagonizing 

acetylcholine neurotransmitter signaling[5 7–11]). Despite drug safety warnings, particularly 

in at risk populations (e.g., the elderly), TCAs are still commonly prescribed in Western 

societies[12–14] for the treatment of depression, anxiety, insomnia, and neuropathic 

pain[12].

Both resting heart rate and QT interval duration are heritable, with hereditability estimates 

ranging from 55–77% for resting heart rate and 35–51% for QT intervals[15–16]. To date, 

multiple single nucleotide polymorphisms (SNPs) have been identified in genome-wide 

association studies of resting heart rate[17–19] and QT interval[20–21] among different 

ethnicities. However, the identified loci (21 for resting heart rate and 35 for QT interval 

duration[17–20]) explain only 0.8–0.9% and 8–10% of the total variance in these traits[17–

20]. Inability to fully explain variance in heart rate and QT intervals may be related to the 

presence of gene-gene and gene-environment interactions[22]. To examine this possibility, a 

genome-wide, TCA-SNP interaction meta-analysis of QT was previously conducted in 

individuals of European ancestry within the Cohorts for Heart and Aging Research in 

Genomic Epidemiology (CHARGE) consortium[23]. However, no significant TCA-SNP 

interactions were identified, possibly due to the small number of TCA users in the study or 

its cross-sectional design[23]. Since then, new statistical methods have been developed to 

incorporate data from multiple visits[24], and additional cohorts of different ancestral 

origins have been included to increase statistical power.

The present effort collaboratively leverages these methods in a study designed to identify 

TCA-SNP interactions capable of explaining variation in heart rate (or RR interval) and QT, 

while also providing insights into the biology of tachycardic and QT-prolonging 

medications.

Methods

Study populations

The present study used data from 21 different cohorts of three ancestral populations 

(European [14 cohorts], African [5 cohorts], and Hispanic/Latino [2 cohorts, noting that 

“Hispanic/Latino” captures a diverse population][25]) that were assembled and analyzed by 

the Pharmacogenomics Working Group in the CHARGE consortium[26]. All cohorts 

conducted the analyses within their own study on the basis of a predefined protocol. Cohorts 

with genetic data were eligible to participate when data on medication use and on the study 

outcomes were both collected during the same visit. Genotype data had to be imputed with 

either the HapMap Phase 2[27] or 1000 Genomes reference panel[28]. One of the studies 

(Anglo-Scandinavian Cardiac Outcomes Trial [ASCOT]) did not record electrocardiograms 

(ECGs), and therefore participated in analyses on only RR, and not on QT. All studies were 
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approved by local ethics committees, and all participants gave written informed consent. 

Cohort-specific descriptions of the study design can be found in the Supplementary 

Materials.

Inclusion and exclusion criteria

All participants with data on medication use and a high quality ECG (when available), and 

who were successfully genotyped, were eligible for inclusion in the analyses. Participants 

with atrial fibrillation, a pacemaker, and/or second or third degree atrioventricular block 

were excluded from the analyses, as were participants with heart failure or a QRS duration 

≥120 milliseconds (ms).

Drug exposure assessment

Most cohorts collected information on medication use by inventory (Supplementary Table 

1). However, the Rotterdam Study (RS) defined medication use on the basis of pharmacy 

dispensing data (from 1991 onwards). For these individuals, exposure was defined as a 

prescription filled for a medication of interest within 30 days preceding the ECG recording. 

Cohorts were asked to define exposures to the following medications (or medication 

classes): TCAs (ATC code “N06AA”), beta-blocking agents (ATC code “C07”), verapamil 

(ATC code “C08DA01”), diltiazem (ATC code “C08DB01”), and medications known to 

definitely prolong QT intervals or that are generally accepted to increase the risk of torsade 

de pointes. Categorization of medications as “definite” for QT prolongation was based on 

classification from the Arizona Center for Education and Research on Therapeutics (UAZ 

CERT) as of March 2008[29].

Assessment of QT and RR interval

In each cohort, research technicians recorded a standard 12-lead ECG or pulse rate (in the 

case of ASCOT) in the resting state for each participant (Supplementary Table 2). Almost all 

cohorts measured RR and QT intervals automatically, to decrease measurement error and 

inter-individual variation. Studies conducted all analyses longitudinally, allowing multiple 

visits per participant in the analyses when multiple ECGs were available (and when data on 

medication use were also collected).

Genotyping and imputation

Genome-wide SNP genotyping was performed within each cohort separately, using 

commercially available genotyping arrays from Affymetrix (Santa Clara, CA, USA) or 

Illumina (San Diego, CA, USA; Supplementary Table 3). Duplicates and samples with 

gender mismatches were excluded from all studies. First-degree relatives were excluded 

from all studies, except for the family-based Framingham Heart Study (FHS), Jackson Heart 

Study (JHS), and Hispanic Community Health Study/Study of Latinos (HCHS/SOL); 

HCHS/SOL investigators also used methods that accounted for admixture, population 

structure, and Hardy-Weinberg-departures, when estimating kinship coefficients[25]. 

Cohort-specific thresholds for genotyping call rates ranged from 95% to 99%. To increase 

homogeneity between cohorts with respect to the SNPs genotyped by the different 

platforms, as well as to increase coverage, summary results were based on SNPs from the 
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HapMap Phase 2 (build 36) reference population[27], given the uniform availability of 

HapMap2-imputed SNPs and the computational burdens associated with performing 

analyses for reference panels with much larger numbers of SNPs.

Genome-wide TCA-SNP interaction analyses and meta-analysis

The statistical approaches used to estimate TCA-SNP interactions on RR or QT intervals 

depended on the study design (e.g., family-based) and the availability of ECG and 

medication data (e.g., cross-sectional or longitudinal). Cohorts with longitudinal ECG and 

medication data (e.g., Atherosclerosis Risk in Communities Study, Cardiovascular Health 

Study, RS, and Women’s Health Initiative [WHI]) used generalized estimating equations 

(GEE)[30] with independent working correlation structure. The family-based FHS and 

HCHS/SOL studies used linear mixed models that accounted for relatedness, sampling 

design (HCHS/SOL), and heterogeneity of outcome variance by drug use (HCHS/SOL). 

Cohorts with unrelated participants and with cross-sectional assessment of ECG and drug 

data used linear regression models with robust standard errors, as implemented in the 

ProbABEL software package[31] or in the “bosswithDF” package as implemented in the R 

statistical environment. Assuming that exposure to TCAs varies randomly across within-

person visits for the analyses on RR, we had a power of 0.91 to observe interaction effects of 

at least 35 milliseconds for variants with a minor allele frequency (MAF) of at least 0.25 

(Supplementary Table 4). For QT, we had a power 0.91 to observe interaction effects of at 

least 7 milliseconds for a MAF of at least 0.25.

TCA-SNP interaction analyses on both RR and QT were adjusted for age and sex. The 

analyses of RR were additionally adjusted for the use of beta-blocking agents, verapamil, 

and diltiazem. Similarly, analyses of QT were additionally adjusted for the use of 

medications that definitely prolong the QT interval and for the resting RR interval. Studies 

also adjusted for study-specific covariates, as necessary (e.g., study site and principal 

components).

The robust standard error estimates led to inflated type I errors when the number of 

participants exposed to the drug and the MAF were both small[24]. We addressed this 

potential for false-positive results by incorporating variability in the standard error estimates, 

through use of a t-reference distribution with degrees of freedom approximated via 

Satterthwaite’s methods[32–33]. However, at the lowest combinations of minor allele 

frequency and use of TCAs, the variability of the standard errors was poorly estimated, 

requiring exclusion of SNPs where 2*(number of exposed participants)*MAF*imputation 

quality < 10, as described previously [24]. An inverse-variance-weighted meta-analysis was 

then performed with genomic control using METAL, to combine the results from the 

different studies [34]. To avoid high type I errors from robust standard error estimates, 

standard errors were “corrected” using the t-distribution-based P-values. These “corrected” 

standard error estimates were used as inputs for the inverse-variance-weighted meta-

analysis. Meta-analyses were performed for each ethnic group separately and for all ethnic 

groups together. To be considered in our study, SNPs had to be present, after quality control, 

in at least three cohorts (two cohorts in case of the Hispanic/Latino meta-analysis).
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A two-sided P-value <5e−8 for TCA-SNP interactions was considered statistically significant 

in the genome-wide association analyses. Detailed summary results of the ethnic-specific 

analyses (including rs numbers, MAF values, effect sizes, and P-value) are available through 

dbGaP (https://www.ncbi.nlm.nih.gov/gap).

Evaluation of previously identified SNPs associated with resting heart rate and QT 
intervals

Within our European ancestry meta-analysis, we evaluated SNPs that were previously found 

to have main effects on heart rate or QT in the GWAS of European ancestry as done with 

HapMap Phase II imputed reference panel imputation [17–20]. From the European GWAS 

meta-analysis, we extracted all SNPs that had statistically significant effects on heart rate or 

QT interval (P-value <5e−8) and were present in at least three cohorts (after all quality 

control steps). We adjusted the P-value threshold for statistical significance using the 

Bonferroni correction: 2.38e−3 for RR intervals (21 independent loci) and 1.43e−3 for QT 

intervals (35 independent loci).

The 21 SNPs associated with RR intervals and the 35 SNPs associated with QT intervals 

from the meta-analysis in Europeans were further used to calculate a combined multi-locus 

effect estimate on the TCA-SNP interaction. The resulting multi-locus effect can be 

interpreted as a Mendelian randomization analysis to assess whether a high resting heart rate 

and prolonged QT interval are causal effect modifiers of TCA-induced increases in heart rate 

or QT intervals[35]. This data-driven inverse-variance weighted approach[36] has been 

implemented in the “gtx” statistical package in the R statistical software environment[37].

Results

Study characteristics

The number of TCA users for each ethnic group were: Europeans, 1,417 (out of 45,706); 

African Americans, 295 (out of 10,235); and Hispanics/Latinos, 174 (out of 13,808) (Table 

1). Cohorts had a mean age ranging from 40.2 (FHS) to 75.3 (Prospective Study of 

Pravastatin in the Elderly at Risk), and the percentage of included women ranged from 

17.8% (ASCOT) to 100% (WHI). Mean RR intervals ranged from 875 (RS1) to 981 (FHS) 

ms, and QT intervals ranged from 397 (RS1) to 416 (HCHS/SOL) ms.

Genome-wide interaction analysis between tricyclic antidepressants and RR intervals

Within the cohorts of European ancestry, two independent loci reached statistical 

significance (Table 2; Figure 1A). A q-q plot of the meta-analysis in European cohorts is 

presented in Figure 1B. The top independent loci comprised the rs6737205 polymorphism 

on chromosome 2 (Figure 1C), and the rs9830388 polymorphism on chromosome 3 (Figure 

1D). Variant rs6737205 (passed quality control in four European cohorts) mapped within the 

BRE gene and was associated with a 56.3 ms prolongation of the RR interval in TCA users, 

beyond the difference attributed to the allele among nonusers (Effect allele frequency [EAF]: 

0.94; P-value = 7.66e−9). Variant rs9830388 (passed quality control in all European cohorts), 

mapped within the UBE2E2 gene, and was associated with a 25.2 ms longer RR interval in 

TCA users, beyond the difference attributed to the allele among nonusers (EAF: 0.51; P-
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value = 1.72e−8). Furthermore, rs11877129 (passed quality control in 11 studies) mapped 

within the ABCA3 gene and was suggestively (P-value < 1e−7) associated with a 36.7 ms 

longer RR interval in TCA users, beyond the difference attributed to the allele among 

nonusers (EAF: 0.09; P-value = 2.57e−7). There was no significant heterogeneity between 

studies in the observed estimates (P-values > 0.05). These three SNPs, however, did not 

reach nominal statistical significance in the meta-analyses of the African American cohorts 

and the Hispanic/Latino cohorts (Table 2, Supplementary Figure 1). Regional plots are 

presented in Supplementary Figure 2. A meta-analysis of the three ethnicities together did 

not yield any additional loci with statistically significant effects (Supplementary Figure 3).

Genome-wide interaction analysis between tricyclic antidepressants and QT intervals

Results of the QT meta-analysis in the cohorts of European ancestry are presented in Figure 

2. Within this analysis, no significant TCA-SNP interactions were observed. There was one 

locus in the Hispanic/Latino meta-analysis that reached genome-wide significance, 

represented by variant rs2291477 (which mapped to TGFBR3; β = 9.3; EAF: 0.88; P-value 

= 2.55e−8; Supplementary Figure 4/Supplementary Table 5). However, effects of this locus 

either did not reach nominal statistical significance or did not pass quality control in the 

European and African American meta-analyses (P-values > 0.05). Furthermore, no genome-

wide significant TCA-SNP interactions were observed in the meta-analysis of the three 

ethnicities together (Supplementary Figure 5).

Previously identified loci for heart rate and QT intervals

The TCA-SNP interactions on RR and QT for SNPs that were previously associated with 

heart rate and QT are presented in Supplementary Tables 6 and 7. None of the loci 

previously associated with heart rate or QT showed TCA-SNP interactions on RR or QT 

respectively (after Bonferroni correction for the number of SNPs included). Furthermore, 

multi-locus effects of all loci for RR and QT were not statistically significant 

(Supplementary Figures 6 and 7; P-values = 0.35 and 0.74 for RR and QT, respectively).

Discussion

In a study population of 45,706 European individuals, among whom 1,417 individuals used 

a TCA at the moment of an ECG recording, we identified two independent loci (and one 

suggestive locus) that modified the association between TCAs and RR intervals. The 

significant loci were represented by variants rs6737205 (BRE) and rs9830388 (UBE2E2), 

and the suggestive locus by variant rs11867129 (ABCA3). As it is well-known that the 

anticholinergic activity of TCAs may increase heart rates and thus decrease the RR interval, 

these findings may have a biological basis. Although the variance explained by our findings 

was not calculated, it is likely modest in view of the low number of exposed individuals. The 

three loci (BRE, UBE2E2, and ABCA3) either were excluded from the meta-analyses of 

African and Hispanics/Latino ancestry participants (as part of quality control, e.g., DF <10) 

or their effects were not nominally significant in the meta-analyses (Pinteraction >0.05). There 

were no genome-wide significant loci that modified the association between TCA use and 

QT intervals in cohorts of European and African American ancestry, although one locus had 

an effect in Hispanic/Latino cohorts (TGFBR3, represented by rs2291477). None of the loci 
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previously observed to be associated with RR and QT intervals modified TCA effects on 

their intervals. Furthermore, there was no multi-locus effect of variants previously associated 

with heart rate or QT intervals on TCA-SNP interactions with RR or QT intervals.

Genetic variation in BRE has not been related to any study outcome in prior GWAS reports. 

The association detected in our meta-analysis appeared to be driven by the estimate observed 

in ASCOT, although the P-value for heterogeneity among studies was not statistically 

significant. However, the directions of possible BRE effects were similar in the other three 

studies in which the BRE variant passed quality control. ASCOT was the only cohort that 

examined RR without ECGs, but this difference should have increased inter-individual 

variation and would decrease statistical power. Therefore, future replication studies of this 

variant are warranted.

Genetic variation in UBE2E2 was previously identified in GWAS reports on type 2 diabetes 

mellitus[38] and motion sickness[39]. To the best of our knowledge, no studies have been 

published on genetic variation in UBE2E2 in relation to cardiac conduction (e.g., heart rate 

or QT intervals) or pharmacological responses to medications. However, variant rs9830388 

was associated with mRNA expression levels of UBE2E2 in blood, based on eQTL data[40–

41]. Although significant in Europeans, the results on UBE2E2 were not generalized in 

African and Hispanic/Latino ancestry cohorts, perhaps due to limited sample sizes or the 

smaller effect size. Also, the linkage structure in this part of the genome may differ among 

ethnicities, as seen in the regional plots.

Genetic variation in ABCA3, which produced a suggestive TCA-SNP interaction for RR 

intervals, has been previously described in relation to the pharmacological response to 

imatinib in chronic myeloid leukemia [42]. However, we did not find evidence in the 

literature that ABCA3 is related to the electrophysiology of the heart.

Despite increasing our sample size and adding repeated ECG assessments to our previous 

effort on this research topic[23], no significant TCA-SNP interactions were identified for the 

QT interval in the meta-analysis of European cohorts (for which we had the largest number 

of TCA users). The single locus with a significant effect in the Hispanic/Latino meta-

analysis (represented by rs2291477 in TGFBR3) did not have a nominally significant effect 

among Europeans and African Americans. The observation may suggest that TGFBR3 
influences the QT interval specifically in Hispanic/Latino populations. Alternatively, effects 

of the TCA-SNP interactions for QT intervals were too small (if any) to be detected with the 

available sample size. Previously, this variant was identified in GWAS in relation to optic 

disc morphology[43], but not cardiac conduction. Therefore, potential explanations for the 

results of our study include lack of TCA-SNP interactions for QT intervals or presence of 

only small effects that could not be detected, even with the large sample size amassed in this 

study.

Earlier it was shown that TCA effects on QTc are related to the anticholinergic effects of 

TCAs on heart rate [12]. When the QT interval was corrected for heart rate by methods other 

than Bazett’s formula, the association between TCA use and QT intervals diminished. 

Moreover, when using the statistical model adopted herein, the effect of TCAs on QT 
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intervals was shown to be negligible [12]. Furthermore, prescribed TCA doses and duration 

of TCA use can be variable among individuals and cohorts. Such variability can increase 

heterogeneity, making it more difficult to observe significant TCA-SNP interactions on QT 

intervals. However, it remains possible that TCAs increase the QT interval duration in rare 

cases (e.g., in association with low frequency genetic variants).

In addition, we showed that neither any genetic variants previously associated with a higher 

resting heart rate or QT intervals, nor a multi-locus score of these variants significantly 

modified the association between TCAs and resting RR or QT intervals[17–20]. The results 

of the multi-locus score analysis can be largely interpreted as a Mendelian randomization 

analysis, estimating whether a high resting heart rate or prolonged QT interval modified the 

TCA-SNP interactions. The results may indicate that participants with higher resting heart 

rates or prolonged QT intervals are not at higher risk for further TCA-induced increases in 

resting heart rate or QT duration. However, the variance explained by SNPs associated with 

mainly resting heart rate is low (0.8–0.9%)[17], which could affect the validity of this 

assumption.

A limitation of the study was the relatively low number of TCA users (especially in non-

European ancestry cohorts), although our study is the largest effort assessing TCA-SNP 

interactions on RR and QT intervals to date. With limited power TCA interactions with 

relatively low frequency SNPs or in small samples could have been missed. Attempts at 

replication in non-European ancestry cohorts could have been underpowered. Second, our 

study was unable to account for prescribed TCA dosages, duration of use, and treatment 

adherence, which likely vary among cohorts from different countries. Such differences may 

have resulted in heterogeneity among studies. Third, results on RR from the European 

ancestry meta-analysis were not replicated in independent cohorts of a different ancestry. 

Fourth, one cohort determined RR intervals from heart rates (ASCOT). This method would 

increase RR measurement error, but independent of TCA exposures and genotypes. Any 

misclassification would have led to findings in the direction of the zero hypothesis. 

Furthermore, previously no heterogeneity in results was observed when comparing RR 

intervals from ECGs and pulse recordings [17]. Fifth, we were not able to adjust for 

potential confounders of SNP-TCA interactions. However, confounders with strong effects 

on the drug-outcome association were shown to only modestly bias the results [44]. And 

last, TCA doses may have been titrated to provide optimal blood concentrations, according 

to participant CYP2D6 and CYP2C19 genotypes. Because we defined TCA exposures as 

present or absent, SNP-TCA interactions caused by pharmacokinetic genes might have been 

missed.

For the present study, a well-powered, independent replication was not feasible, due to the 

limited availability of populations with high quality ECGs (twelve-lead), reliable assessment 

of drug use, and genome-wide SNP data. Our discovery effort should therefore be viewed as 

hypothesis generating. Future studies should attempt to replicate and validate our findings, 

to understand the pharmacological mechanisms involved.

In summary, we identified 2 independent genetic loci (BRE and UBE2E2) that modify the 

association between TCAs and heart rate in populations of European ancestry, and 1 locus 
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that modifies the association between TCAs and QT intervals in Hispanic/Latino ancestry 

populations. If replicated and validated, these results may provide new insights into 

biological mechanisms underlying the effect of TCAs on heart rate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide interaction analysis between tricyclic antidepressants and RR interval 
sin European cohorts
Abbreviations: AGES, Age, Gene/Environment Susceptibility – Reykjavik Study; ARIC, 

Atherosclerosis Risk in Communities Study; ASCOT, Anglo-Scandinavian Cardiac 

Outcomes Trial; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; 

GARNET, Genome-wide Association Research Network into Effects of Treatment; HCHS/

SOL, Hispanic Community Health Study/Study of Latinos; Health ABC, Health, Aging, and 

Body Composition Study; JHS, Jackson Heart Study; MESA, Multi-Ethnic Study of 

Atherosclerosis; MOPMAP, Modification of PM-Mediated Arrhythmogenesis in 

Populations; NEO, Netherlands Epidemiology of Obesity; Nexposed, number of independent 

participants using tricyclic antidepressants; PROSPER, Prospective Study of Pravastatin in 

the Elderly at Risk; RS, Rotterdam Study; SD, standard deviation; SHARe, WHI CT, 

Women’s Health Initiative Clinical Trials. A) –Log(p) plot of all SNPs present in at least 3 

European cohorts and passing all quality control steps. In black are all SNPs within a 40 kb 

distance from the top result on chromosomes 2 and 3. B) Q-Q plot of the meta-analysis in 

European cohorts. λ = 1.031. C) Cohort-specific and meta-analysis estimate for rs6737205 

on chromosome 2. Results are presented as the effect estimate of the interaction between 

rs6737205 and TCA-use status on RR intervals (with the 95% confidence interval). D) 
Cohort-specific and meta-analysis estimate for rs9830388 on chromosome 3. Results are 
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presented as the effect estimate of the interaction between rs9830388 and TCA-use status on 

RR intervals (with the 95% confidence interval).
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Figure 2. Genome-wide interaction analysis between tricyclic antidepressants and QT intervals 
in European cohorts
A) –Log(p) plot of all SNPs present in at least 3 European cohorts and passing all quality 

control steps. B) Q-Q plot of the meta-analysis in European cohorts. λ = 1.022.
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