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Abstract
A cylindrical cell useful for rotating-disk studies has been
analyzed forbits primary resistance. Valdes of the resistance are‘
given for a large number:of.éell configurations. The resistance
qalculations permit the simpler resistance formulas for infinite cells

to be applied to the design of finite cells.
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An axisymmetric cylindrical cell is a conveﬁient one for use

with a rotating disk or ring-disk electrode. A counterelectrode
could naturally occupy the opposite end of the cell and be a
mercury pool or a stationary disk. Newman (1) computed the primary
current distribution for a disk electrode surrounded by an
infinité insulating plane with the counterelectrode being the entire
hemisphere at infinity. The effects of mass transfer and kinetics
were‘included in a later paper for a similar cell (2). A carefully
.designed disk and cell can approacﬁ conditions which allow calculations
for infinite.cells to be applied to finite laboratory sized cells
without correcfion.v Previous récommendations for constructing electrodes aﬁd
‘cells have been made based upoﬁ hydrodynamic and mass transfer
considerations (13,14,15). Sawyer and Roberts (16) give some advice
on locating the reference electrode in a cell. However, the effect of cell
size on the potential distribution does not seem to have been considered,
even though the potential mapping experiments of Angell, Dickenson,
and Greif (12) around various rotating disk electrode mantles were
ferfofmed in cells small enough to affect the distribution. The
iSOpotential surfaces they.mapped were found to be in qualitative
_ agreement ‘with Newman's result (1). . Miller and Bellavance (10)
performed_éingle aﬁd double probé mapping experiments in a cell which
also affected the measurements but fbund good agreement with the theory.

. Better insighﬁ into these experiments can be gained by computing
the effect of the céll walls. . Current interrupters have been shown

to measure a resistance corresponding to a primary distribution (23).



To interéret éccurately the meaning of the resistance; the effect
of.the cell must be included. Controlled potentiél electrolysis
réquires carefulldesign of ceils to minimize potential variation
across the working electrodes and has been previously t:eated.by
Néwman-and Harrar (11).‘ The effect of cell walls on curreﬁﬁ.and
potential disfributions have been investigated‘for several plénar
~ geometries (4,17,18). Drossbach (5) has analytic solutions for
cylindrical cells which have working and counterelectrodes of equal
diamefer. fhe solutions are infinite series which were developed in
a cylindrical coordinate system. A large number of terms would be
ne;eésary to describe accurately the behavior of the field near the
eléctroaes. The following treatment can be easily extgndeq to the
case of Drossbach and should give better results with’ fewer terms.

bThe disk aﬁd cell treated are shown in Fig. 1. A working electrode
of radius r |

d

The remaining area_betweeh the edge of the disk and the cell wall,

‘occupies some fraction of the upper plane of the cell.

and the vertical cell walls of height h , are considered to be
insulators. The bottom of the cell is compoéed éntirely of a counter-
electrode of radius L . A method of superpositidn is developed to
solve Lapléce's equatioﬁ_for the cell in Fig. 1 where both the working
and counterelectrodes have uniform-potential distributions. Thus,

the primary current and potential distribqtions are obtained for the

cell.
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Figure 1. Axisymmetric cylindrical cell with disk electrodes.



Analysis
The solution for the primary distribution for a disk electrode
in an infinite insulating plane was developed by Newman (1) using

a classical separation-of-variable technique. Laplace's equation

V9 = 0 [1]

which is the basic governing equation to be solved is 1ineaf, S0
any solution of Eq. [1] may be added to any other solution and the

resulting field will satisfy Laplace's equation. Superposition is the

. technique of adding up simple solutions to Eq. [1l] so that a prescribed

boundary condition is met. The disk and cell shown in Fig. 1 have a
current distributién on the top electrode which is similar to the

disk in an infinite plane. An éssential similarity is the manner in
which the éurrépt density becomes infinite as r - approaches r; on
thé upper electrode. This feature of Newman's solution suggests that

a éupetposition v approach to correct the infinite problem to a
finite-cell problem would be more advantageous than a finité differgnce
fechnique, Visualize a ¢ylindrical insulator placed axisymmetrically
over the disk in an infinite plane as shown in Fig. 2. The current
which flowed to infiﬁity along the plane of the disk is forced to

flow along the walls of the insulating cylinder. The open end of the

‘cylinder would then be capped with a counterelectrode. Qualitatively,

this is the procedure used to correct the original solution.
To develop this solution quantitatively, a sequence of potential

functions which satisfy Eq. [1] will be defined that allow satisfaction
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a) Current lines for a disk electrode in an infinite
b) The qualitative effect on the current

insulating plane.

lines by channelization with an insulating cylinder of

height h .
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of‘thé boundary cbnditionsvof constant potential electrode surfaces

and insulating Qalls of the cell. A natural set of functions to
‘consider aré the functions which result from the separation—of;variables
solution to Eq. [1] in rétational elliptic coordinates. The first

term of the series yields the primary distribution for the infinite
plane proBlem.v Newman (2) demonstrated the utility of the remaining
terms for computing secondary distributions and for combining into
below-the-limiting-current calculation schemes. The.orthogonal
broperties of the terms give powerful leverage in describing potential

variations across the disk electrode. Newman (1,19) derives functions

%0 " Ty Paa (M (® | (2]

where n and & are related to the coordinate system of Fig. 1 by

z="h - fdin
| | 1/2 (3]
r =,rd[(1 +£Ha - n? ]

Pzn(n) are Legendre polynomials (20) and Mzn(g) are functions

which éatisfy

2, am au

(1+€)_2+2£d€

ag

-2n(2n+ 1) =0 [4]

with boundary conditions

M=1 at §=0 o [5]



and

M+0 as £+, [6]

The functions ¢ . are well behaved at the centerline and give a zero
" .

current density on the insulating plane surrounding the disk. They

may bé_superposed to give an arbitrary potential distribution on the

- disk. With the functions of Eq. [2], the boun&ary conditions on the

upber disk and surrounding plane can be met but.not those on the

insulating cylinder and the counterelectrode.

These conditions will be met by defining a sequence of corrections

which can be added to the functions of Eq. [2] in the following manner
k :
¢ = ) o [7)

k indicates the number of corrections in the sequence. The correction
functions indexed by  j in Eq. [7] are required to be solutions to

Eq. [1] written in cylindrical coordinates
13 [ 90\, 9%
?_ r——)+ — =0 . [8]

" The normal component of the current through the walls of the cell

can be expressed for the n-th function through the k-th correction as

. [91




Eq. [9] will be used to evaluate the effectiveness of corrections as

they are added.

The first typg of corréction function, Qn,l , is chosen to
eliminate the current near the botﬁom corner 6f the cell where the
insulating cylinder is normal to the counterelectrode.’

Q (h-2z) Qr
& =1 ¢ COsh(—o——) J (—"—) [10]
n,l r o

n,l 4Krd e r,

Q is the first zero of JO , the Bessel function (20). The constant

o}
(o

n.1 is evaluated by requiring Eq. [9] to -be zero at ¥ =r_  and
b . .

z = 0 , which gives

4rdrc

‘ -1
c =—in 0_(rc,O) [QoJl(Qo) cosh (Qoh/rc)] . [11]

n,l ,

Thé function in Eq. [10] serves to deflect some of the current from
the side wall and onto the bottom of the cell, without disturbing
the current distribution on the top surface of the cell.

The remaining current through the cell walls is evaluated by

means of Eq. [9] with k equal to 1. A second solution to Eq. [8] is

1§ m(4-1/2)r\ . (m(2-1/2)z)\
%2 " Akry 029 n,2,8 Io( h ) Sln(——' h ) - [12]

This correction function has zero potential at the bottom of the cell
and zero current density at the top. The coefficients C, .0 g are

? ?
evaluated by forcing Eq. [9] to be zero at r = L and 0 <z <h

with k equal to 2
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. h
8 r :
= d i (r ,z) x
€n,2,0 T(2-1/2)x n,1 ¢’
j(l -1/2) 1 Il(———f—?r———) [ Y
sin (IL&Z%LZLE) dz . | [13] b

The problem is well behaved because the first correction function was
chosen to make it so. Thus Eq. [12] éan be truncated after a few terms.
The boundary condition of zero current density along the cylindrical
cell walls ié now satisfied. The potential along the counterelectrode
must now be made unifornm. Thé next correction function must be chosen
carefully. ‘The.solution to Eq. [8] must have a zero current density

along the sides and top of the cell

0 A, r .
_ 1 L (h-2z)
Qn,B =Rt I cn,3,2Jo( T ) cosh (AQ T ) [14]
d 2=1 e c

Al are the zeros of the Bessel function, Jl (20). The coefficients

C,.3.g are evaluated by computing ‘Qn , Eq. [7], with k = 2 and

setting

(r,0) ' [15]

for ’ : ‘ _
. - .z

The coefficients are
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: r
gmKr > Ay |
cn,3,2 = - Irz - A T _— )-]2 f d)n(r,O_)Jo(;;——) rdr [16]
St W N O 0
and
r
8nkr
K= - 2d f ¢ (r,0)rdr [17]
n
Ir

c 0

chosen so that the potential will now be zero on the counterelectrode.
All boundary conditions are now satisfied except for a uniform potential
across the top disk. The final solution is achieved by summing up

all the generated correction functions in the following manner

m

- ]
TOTAL ~ %/

o) éRQQ(r,z) [18]

@2 béing evaluated fromvK. [7] with k = 3 ‘utilizing all of the
previously developed constants. The coefficients cy ére found by
requiring that the'potential QTOTAL be constant between zero and Ty
along the upper disk. A Gram-Schmidt process is used to compute

c, (22).

2

Results
The outlined scheme. of compﬁtation was programmed and run on a
digital computer. The solution was found to converge in most cases
witﬁ only 2 functions as defined by Eq. [7], and within those functions,
- the series of Eq; [12] and Eq. [14] could be'truncated with 20 terms

or less. Resistances for a large number of cell configurations were
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computed and plotted in Fig. 3 and Fig. 4, where R 1is made dimension-
less with the resistance of a disk electrode with radius T4 in an
infinite cell. The electrode dimensions were held constant, and the
height of the cylinder was varied in Fig. 3. When rc/rd is equal
to unity, the upper electrode fills the entire area of the cylinder,
and tﬁe dimensionless resistance can be computed analytically as
acr R = | [19]

and is the upper bound for the curves in Fig. 3. As the ratio r-c/rd
becomes larger, the upper disk is shrinking, and the cell appears
more like the infinite cell. This is reflected in the trend of the
dimensionless resistance towards unity for these curves, except for
extremely short cells. The same dimensionless resistance is plotted in
Fig. 4 with cells of constant height and varying disk radius. The shorter
cylinders in Fig. 4 require a much smaller upper disk electrode to
approach the infinite cell.resistanée. Té design a cell for which
uncorrected calculations are accurate, valués of h/rd and rd/rc must
be chosen so that the resistance ratio is close to unity in Fig. 3 or Fig. 4.

Miller and Eellavénceb(IO) reported a resistance and extensive
pdtential mapping for a céll of the configuration shown in Fig; 5a.
This cell was modeled in sections as shown in Fig. 5. The idealization
assumes that an equipotential plane‘exists in the cell; resistances
are then calculated for both the uppef and lower cell. Since most of

the potential drop occurs close to the electrode surface, the computed

0
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Figure‘3. Resistance of the axisymmetric cell with diameter held
constant.
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Figure 4. Resistance of the axisymmetric cell with height held
constant.,
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Figure 5. The upper cell is that of Miller and Bellavance. The
lower cell is the idealization used by Pierini and
Newman. (Not to scale.)
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resistance is relatively insensitive to the location of the équipotential
plane in the cell model, AThe results using the dimensions_of.Fig. 5
give a resistance of 11.32 ohms which can be compared to the reported
value of 11.35 ohms‘andAcontrasted with the value of 11.03 ohms for
the disk electrode in an iﬁfinite cell. 1In particular, the effect
of the geometry of the cell walls and the counterelectrode is adequate
to account for the:departure of the intefrupter resistance from the
infinite-cell value and no support can be found for the computation
of a resiétange value based on the area average of the éotential of
the solution adjaéent to the electrode, as suggested by Nanis (7,9).
Isopotential lines for the cell of Fig. 5: are mapped in Fig. 6.
The potential lines close to the electrodes are quite similar to. those
plotted -in Fig. 1 of Newman (1) for the disk electrode in an infinite
cell. The effect of the cell walls is exhibited most strongly by the
bending of potential lines near the wall of the cell. The bending of
the potential lines and the presence of the counterelectrode explains
the deviation of Miller and Bellavances' interrﬁpter.resistance from
the calculated resistance .as suggésted by Newman (23).

- This technique of superimposing solutions to Laplace's equation.
to satisfy boundary conditions appears to be complicated and unwieldy
when compared to finite difference techniques. However the computer program
is straightforward and the resulting caiculations take into account
correctly the nature of the infinite current density at the edge of
the smaller disk. The results of the calculations will be useful to
design finite rofating disk cells which give results in agreement
with the simpler calculations for an infinite cell, thus eliminating

the need for the more detailed computations.
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List of Symbols

c 3C ;C c ants associated with potential functions.
n,13%n,2,2%,3,8 onst s s P

h vertical height of cell, cm.

i current density, A/cmz.

I total current, A.

Io modified Bessel function of the first kind of order O.
I1 modified Bessel function of the first kind of order 1.
j,k, 2 indices.

Jo Bessel function of the first kind, of order O.

J1 Bessel function of the first kind of orde; 1.

K constant of Eq. [17].

M2n _ Legendre function, see Eq. [4].

P2n Legendre polynomial.

Q0 ' first zero of Jo s Qo = 2.404825558.

r radial coordinate, cm.

fc radius of counterelectrode, cm.

Ty radius of working electrode, cm.

R total resistance of cell, ohms.

z vertical coordinate, cm.
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rotational elliptic coordinates.

potential in cell, V.

see Eq. [ 7], corrected function, V.!
' corfection terms, V.

zeros of Jl.

electrical conductivity, mhos/cm.
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