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Review Article
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Increasing body of evidence suggests that there exists a connection between diabetes and cancer. Nevertheless, to date, the potential
reasons for this association are still poorly understood and currently there is no clinical evidence available to direct the proper
management of patients presenting with these two diseases concomitantly. Both cancer and diabetes have been associated with
abnormal lactate metabolism and high level of lactate production is the key biological property of these diseases. Conversely, high
lactate contribute to a higher insulin resistant status and a more malignant phenotype of cancer cells, promoting diabetes and
cancer development and progression. In view of associations between diabetes and cancers, the role of high lactate production in
diabetes and cancer interaction should not be neglected. Here, we review the available evidence of lactate’s role in different biological
characteristics of diabetes and cancer and interactive relationship between them. Understanding themolecularmechanisms behind
metabolic remodeling of diabetes- and cancer-related signaling would endow novel preventive and therapeutic approaches for
diabetes and cancer treatment.

1. Introduction

Globally, diabetes mellitus (DM) and cancer are two of
the most predominant diseases, with cancer the 2nd and
diabetes the 12th primary cause of death [1, 2].The connection
between these two diseases was first hypothesized over 75
years ago. More and more evidence proposes that DM is
related to an augmented risk of cancer [3] and the higher
mortality in cancer patients [4, 5]. Actually, recent studies
have suggested that type 2 diabetes (T2DM) is an indepen-
dent risk factor for the progress of various types of cancer
[6]. Although these two diseases share a number of common
risk factors, the biological link between them is still not well
known [6, 7], which poses a challenge for clinical manage-
ment. While a thorough picture is yet to emerge, several
mechanisms have been suggested to explain this relationship,
for example, hyperglycemia itself [3], oxidative stress [8–11],
treatment for diabetes, hormonal disorders, insulin resistance

with secondary hyperinsulinemia [3], metabolic alterations
underlying the diseases [12], insulin-increased bioactivity of
IGF-I [13, 14], insulin’s positive effect on estrogen bioavail-
ability, the status of chronic inflammation, and obesity [7].
On the other hand, DM might also develop after tumor
establishment in certain cancers that progress very rapidly,
for example, pancreatic and liver cancers [15].

Lactate (2-hydroxypropanoic acid), formerly deemed a
waste product of glycolysis, has drawn more and more atten-
tion as a crucial regulator of insulin resistance, DM, cancer
development, maintenance, andmetastasis. Over the last half
century, substantial experiments revealed that lactate is both
a powerful fuel and signalingmolecule, and it is continuously
being produced and circulated through the body [16]. Its
presence in diabetes and cancer has been recognized, and
recent studies suggest that suppressing it can be therapeutic,
after 50 years of disavowal. Recently, cancer and DM have
been associated with abnormal lactate metabolism. Lactate
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Figure 1: Lactate production and shuttling pathways. GLUT, glucose transporter; LDH, lactate dehydrogenase; MCT, monocarboxylate
transporter.

facilitates cancer cell intrinsic effects on metabolism and has
extra noncancer cell autonomous effects which can induce
tumorigenesis. In addition, lactate plays an important role
in stimulating tumor inflammation and in promoting tumor
angiogenesis by functioning as a signaling molecule [17].
Given that hyperlactacidemia is the most imperative biologi-
cal feature of diabetes and cancer, it is reasonable to imagine
that hyperlactacidemia might play an important role during
diabetes and cancer interaction. Here, we review the available
evidence of lactate’s role in different biological characteristics
of diabetes and cancer and interactive relationship between
them. It appears that hyperlactacidemia may function as an
interaction hub between diabetes and cancer and contribute
to a higher insulin resistant status and a more malignant
phenotype of cancer cells.

2. Lactate Production and Metabolism

Lactate, a 3-carbon hydroxycarboxylic acid, is produced in
the cytoplasm by the glycolysis pathway under anaerobic
conditions, via the reduction of an intermediate metabolite
pyruvate, with the simultaneous oxidation of NADH to
NAD+. This reaction is catalyzed by lactate dehydrogenase
(LDH) [18]. LDH is composed of four subunits of two distinct
types (H and M), with each subunit type under distinct
genetic control leading to five diverse isozymes includ-
ing LDH-1 (H4), LDH-2 (H3M1), LDH-3 (H2M2), LDH-4
(H1M3), and LDH-5 (M4) [19]. Under aerobic conditions
and in the presence of the enzyme pyruvate dehydrogenase
(PDH), pyruvate is converted into acetyl CoA, subsequently
entering the tricarboxylic acid (TCA) cycle or Kreb’s cycle.

The normal plasma concentration of lactate is 0.3–
1.3mM. In plasma, lactate is buffered by NaHCO

3
. Lactate

may have two stereoisomers, namely, d-lactate and l-lactate.
In humans, lactate exists predominantly in the levorotatory

isoform.Most tissues in the human body produce lactate, but
the majority of production is found inmuscles [18]. Lactate is
transported across the plasma membrane with the aid of the
monocarboxylate transporters (MCTs), which facilitates the
proton-linked transport of monocarboxylates, for example,
L-lactate, pyruvate, and the ketone bodies [20, 21]. So far
four isoforms,MCT1–4, have been functionally substantiated
to implement this function in mammals, each with different
substrate and inhibitor affinities [20, 21] (Figure 1).

Plasma concentrations of lactate represent an equilib-
rium between its production and metabolism. Lactate can
be metabolized by various cells and tissues, for example,
liver, germ cells, and neurons, converting to pyruvate via
LDH and subsequently to glycogen or carbon dioxide [22].
Under normally physiological conditions, lactate is cleared
by the livers and kidneys [23, 24]. At present, lactate is also
considered as a regulator of energy homeostasis [16, 25, 26].
At a generalized level, lactate can be carried to the liver and
reconverted into glucose through the Cori cycle, serving as
an energy source [27].

3. Lactate Production Increases in Diabetes

Fasting plasma lactate level is increased in patients with
DM including T1DM and T2DM versus nondiabetic per-
sons [28–36]. Diabetic patients with obesity exhibit higher
fasting plasma lactate levels than nondiabetic individuals
with obesity [37, 38]. Barnett et al. proposed that diabetes-
associated hyperlactatemia might be an early change in the
time course of the disease [39]. Recently, Berhane et al.
[40] demonstrated that lactate production progressively rises
during hyperinsulinemic euglycemic clamp study, a condi-
tion of hyperinsulinemia similar to the early stages in the
development of T2DM. Intriguingly, similar previous studies
also report elevated lactate concentrations during the early
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stages of diabetes, prediabetes, and the hyperinsulinemia
condition. In addition, Brouwers et al. [41] reported increased
lactate levels in patients with poorly controlled T1DM and
glycogenic hepatopathy, implying that enhanced plasma
lactate concentrations are part of the clinical spectrum of
these diseases. Furthermore, lactate has also been revealed to
predict diabetes occurrence in the future [42, 43].

The mechanisms underlying diabetes-associated hyper-
lactatemia include serious changes in the intracellular glucose
metabolism in insulin-sensitive tissues, for example, dimin-
ished glycogen synthesis, compromised glucose oxidative
metabolism, and increased whole-body rate of nonoxidative
glycolysis [28, 31, 44]. Importantly, when compared with
controls, nonoxidative glycolysis rate retains higher in T2DM
patients during hyperglycemic [31, 44, 45] and hyperin-
sulinemic [31, 44] status. In addition, the postprandially
nonoxidative glycolysis is elevated in these patients relative
to healthy controls and blood lactate level rises under this
condition [36]. Insulin resistance plays a vital role in the
pathogenesis of T2DM [46] and can be used as an early
marker for the disease [40]. Under the insulin resistant
condition, high levels of insulin promote glycolysis through
activating two rate limiting enzymes, namely, phosphofruc-
tokinase and pyruvate dehydrogenase [47]. Thus, patients
with insulin resistance/diabetes exhibit augmented activity of
glycolysis [31, 48].The elevated glycolysis results in enhanced
formation of NADH and pyruvate and reduced NAD+ levels.
Pyruvate is converted into lactate by LDH accompanied
by NAD+ generation from NADH in a redox reaction.
This reaction may be accentuated in insulin resistance since
hyperinsulinemia induces enhanced glycolysis.

4. Contribution of Lactate to
Insulin Resistance/Diabetes

As an imperative cellularmetabolite in the glycolytic pathway,
lactate might reflect the cellular metabolism status. Some
studies suggest that augmented lactate levels in obesity,
which might play a significant role in glucose transport
and metabolism, profoundly influence insulin sensitivity
[49]. Its high plasma level might be an early indication
of the beginning of insulin resistance and can be utilized
to identify a state of insulin resistance [40]. In addition,
in HIV-infected patients treated with nucleoside reverse
transcriptase inhibitors, both resting and postexercise levels
of lactate are associated with insulin resistance in skele-
tal muscle [50]. Lactate alone or combined with other
insulin secretagogues, for example, ketone bodies, stimu-
lates insulin release in INS-1 cells and isolated pancreatic
islets [51], indicating that increased plasma lactate promotes
insulin secretion and pancreatic response to insulin secre-
tagogues. Thus, these results suggest that lactate not only
enhances insulin secretion from 𝛽-cells but also improves
the responsiveness of these cells to insulin [51]. These data
may explain that the transiently elevated lactate obtained
during physical exercises and aerobic/anaerobic training
improves DM symptoms. Instead, lactate concentrations are
chronically increased in diabetic patients with obesity [52].

The chronical hyperlactatemia maintained by the enhanced
lactate formation from adipocytes in obese individuals [53]
is found preceding diabetes onset [52] and might participate
in this pathologic process. Together, these data indicate that
chronical hyperlactatemia might indicate the early stages of
insulin resistance and contributes to the onset of diabetes.
Actually, some epidemiologic studies suggest that high lactate
levels might predict the occurrence of diabetes [42, 43].
Crawford et al. [43] in their cross-sectional study among
white elderly people with severe carotid atheromatosis reveal
a relationship between plasma lactate levels and prevailing
T2DM; nonetheless no association is detected amongAfrican
Americans.

While the molecular mechanisms underlying lactate-
induced insulin resistance/diabetes are yet uncertain, it has
been proposed that inhibition of the ability to oxidize glucose,
the repression of glucose transport, and insulin-stimulated
glycolysis, as well as reduced insulin-induced glucose uptake
is implicated in this phenomenon. Furthermore, it has been
suggested that lactate-induced insulin resistance is related
to compromised insulin signaling and reduced insulin-
triggered glucose transport in skeletal muscle [54].

5. Lactate Production Increases in Cancer

A common feature of primary and metastatic cancers is
increase in glycolysis rate, leading to augmented glucose
uptake and lactate formation, even under normal oxygen
conditions. This is also known as aerobic glycolysis or the
“Warburg effect” [55], a metabolic hallmark of cancer. It was
first described in the 1920s by Warburg and he hypothe-
sized that cancer is caused by compromised mitochondrial
metabolism. While this hypothesis has been proven wrong,
the experimental observations of elevated glycolysis in can-
cers even under normoxic conditions have been repetitively
substantiated [56]. Unlike anaerobic glycolysis that stimulates
energy generation under hypoxia, the Warburg effect pro-
vides a proliferative advantage via converting carbohydrate
fluxes from energy generation to biosynthetic processes. To
meet cancer cell proliferation requirements, the glycolytic
switch is related to increased glucose consumption and
lactate accumulation [57]. It is shocking that the lactate
levels determined in human cancers, for example, cervix
cancer, can range from 4mM to 40mM [58], while the
physiological levels of lactate in normal tissues are 1.8–2mM
[59].

The molecular mechanisms underlying upregulation of
glycolysis in cancer are not well delineated. It is generally
assumed that this phenomenon results from defective cel-
lular respiration, oncogenic changes, and overexpression of
metabolite transporters and glycolytic enzymes, for example,
glucose transporters and hexokinases, which are the crucial
regulatory molecules for glycolytic flux [60]. The oncogenes
and tumor suppressor genes implicated in the metabolic
alteration from oxidative phosphorylation to an increased
glycolysis of cancer cells include hypoxia-inducible factor-
1𝛼 (HIF-1𝛼) [60, 61], epidermal growth factor (EGF), phos-
phoinositol 3-kinase (PI3-K), myc, nuclear Factor Kappa
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Beta, protein kinase B (PKB), insulin-like growth factor I,
mTOR, Kirsten rat sarcoma viral oncogene homolog (KRAS),
and 5 adenosine monophosphate-activated protein kinase
(AMPK). The majority of these oncogenes stimulate genes
encoding proteins that regulate glycolysis and glutaminolysis
[55].

Among the aforementioned oncogenes, the transcription
factor HIF-1𝛼 is the most important controller of the gly-
colytic response and cellular adaptation [62]. Expression of
HIF-1𝛼-regulated genes results in an increased glycolytic flux
in cancer cells in an oxygen-independentmanner.The targets
of HIF-1 include hexokinase II [63], angiogenic growth
factors (e.g., VEGF), haematopoietic factors (e.g., erythro-
poietin and transferrin) [64], and membrane transporters
including glucose transporter-1 (GLUT-1) andmonocarboxy-
late transporter-4 (MCT-4). These membrane transporters
contribute to both sufficient glucose transport into the cell
and release of amassed lactate out of the cell. HIF-1𝛼 activates
pyruvate dehydrogenase kinase 1 (PDK-1) and subsequently
inactivates the pyruvate dehydrogenase complex (PDC),
leading to reduced flux into oxidative phosphorylation [55].
In addition, the activated HIF-1𝛼 is related to constitutively
high rate of glucose consumption. Furthermore, hypoxia-
reoxygenation injury in cancers may stabilize HIF-1𝛼 [65],
indicating that its constitutive upregulationmay be caused by
the cyclic oxic-hypoxic cycles which happen in premalignant
cancers.

In addition to glycolysis, glutaminolysis is another pri-
mary pathway for energy generation and cause increased
lactate formation in cancer cells. Moreover, glutaminolysis
facilitates macromolecule synthesis in proliferating tumor
cells [61].The tumor-specific isoform of pyruvate kinase (PK)
M2 (PKM2) offers an additional source of lactate by convert-
ing phosphoenolpyruvate (PEP) into pyruvate. Nevertheless,
PEP may promote the production of pyruvate independent
of PKM2 activity through serving as a phosphodonor for
phosphoglycerate mutase 1 (PGAM1) [66].

6. Lactate Facilitates Cancer Development

High concentrations of lactate have been linked to un-
favoured clinical outcome in some human cancers [57].
Augmented intratumoral lactate levels are related to elevated
incidence of metastasis in cervical, breast, head, and neck
cancers [58, 67, 68]. Due to lactate concentrations conversely
correlated with overall and disease-free patient survival,
tumor lactate generation, serum lactate, and LDH levels have
long been recognized as prognostic biomarkers of patients
with various types of epithelial cancers [55, 69–79]. Increased
lactate altersmicroenvironment, fuels cancer cells, and results
in acidosis, inflammation, angiogenesis, immunosuppres-
sion, and radio-resistance [80–83]. In the next paragraphs,
we review these biological actions of increased lactate in
cancer development and progress by describing the main
evidences.

Substantial studies have demonstrated that cancer cells
can uptake lactate and use it for energetic production and
amino acid formation. Accumulative evidence demonstrates

that lactate is a fuel for the oxidative metabolism in oxy-
genated cancer cells [68, 84–87] and a signaling mediator in
cancer and endothelial cells (ECs) [88–90]. Recently, Bonuc-
celli et al. [68] reveal that ketones and lactate fuel tumor
growth and metastasis, which might illuminate why diabetic
patients have an augmented cancer incidence and poor
prognosis, because of elevated ketone/lactate production. In
vitro studies suggest that cervical cancer SiHa cells and breast
cancer MDA-MB-231 cells uptake lactate in a pH-dependent
manner [84, 91]. Due to lack of sufficient oxygenation or an
effective vascular network in the microenvironment, cancer
uptake and exploitation of lactate is dependent on oxygen
concentrations, lactate levels, amount of healthy mitochon-
dria, and suitable MCT expression [92, 93]. Owing to the
significant metastasis-promoting characteristics of lactate,
one can reason that it is unwise to use lactate-containing
intravenous injection solutions, for example, lactated Ringer’s
or Hartmann’s solution in cancer patients [68].

The tumormicroenvironment (TME) refers to a sophisti-
cated network of extracellular matrix molecules, soluble fac-
tors, adipocytes, and stromal cells including tumor endothe-
lial cells (TECs), tumor-associated fibroblasts (TAFs), and
macrophages. Among the soluble factors in TME, large
amounts of lactate are important due to its effects on tumor
and stromal cells [18]. In addition, it decreases extracellular
pH to 6.0–6.5 [94–96]. Actually, lactic acidosis frequently
contributes to death in patients with some types of metastatic
cancer, for example, metastatic breast cancer [97–113]. The
acidic TME causes pain in cancer patients [114] and results
in metastasis of some tumors [115]. Moreover, acidosis per
se may be mutagenic [116], probably via suppression of DNA
repair [95] and may result in spontaneous transformation of
diploid fibroblasts [117]. Under some circumstances, low pH
induces in vitro invasion [118] and in vivo metastasis [119],
possibly via the metalloproteinases/cathepsins, which stimu-
late the degradation of the extracellular matrix and basement
membranes [120, 121]. Lactic acidosis results in overexpres-
sion of matrix metalloproteinase-9 (MMP-9) [122], VEGF-
A [123, 124], transforming growth factor-𝛽2 (TGF-𝛽2) [125]
and IL-8 [126–128] in various cancer cells, rendering the
TME even more complicated. Pavlides et al. [129] suggest
that cancer cells stimulate aerobic glycolysis in CAFs. CAFs
render tumor survival and a higher proliferative capacity by
a number of factors including secreting lactate and pyruvate
and alterations in cell metabolism. Accordingly, cancer cells
may become accustomed to rapid alterations in the TME via
reprograming stromal cells and via themetabolic interchange
between oxidative and glycolytic cells [129, 130].

Within the tumor, TAFs exhibit a different lactate
metabolic pathway than the cancer cells. TAFsmainly contain
low levels of glucose importerGLUT1, lactate dehydrogenase-
B and pyruvate dehydrogenase, while cancer cells contain
high GLUT1, lactate dehydrogenase-A, pyruvate dehydroge-
nase kinase and hypoxia inducible factor-1𝛼. Within cancer
cells, the imported glucose is metabolized to pyruvate, while
pyruvate dehydrogenase is inactive due to its phosphory-
lation by pyruvate dehydrogenase kinase phosphorylates.
Therefore, LDH-5 (made of LDHA subunits) in an anaerobic
manner converts pyruvate to lactate which is exported out of
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the cell. On the other hand, TAFs import the lactate and by
their LDH-1 (containing LDHB subunits) activity convert it
back to pyruvate which is funneled to aerobic pathways of
mitochondria via the activity of pyruvate dehydrogenase. It
seems that these two lactate metabolic pathways in cancer
cells and TAFs work in a complementary manner as cancer
cells generate high levels of lactate and acidify the microenvi-
ronmentwhile TAF consume the lactate in an aerobicmanner
and decrease the acidity of the microenvironment [131, 132].

The angiogenesis process supports the new blood ves-
sel development and plays an important role in restoring
perfusion, oxygenation, and nutrient supply. Lactate is an
imperative contributor to wound healing and angiogenesis
[133–135]. Lactate itself induces cell migration [134], vascular
morphogenesis [136], circulating vascular progenitor cell
recruitment [137], and tube formation and promotes angio-
genesis by activating the VEGF/VEGFR2 pathway [136, 138]
and stimulating endothelial cells via MCT1, which induces
the phosphorylation and degradation of I𝜅B𝛼, triggering
the NF-kB/IL-8 (CXCL8) signaling pathway [90]. Lactate-
stimulated angiogenesis depends on lactate oxidation by
LDH-1, exploiting the enzymatic reaction products, for exam-
ple, pyruvate and NADH, and lactate transporters [136, 137].
The enhancing production of pyruvate from lactate oxidation
activates NF-𝜅B and HIF-1, leading to overexpression of
some growth factors required for angiogenesis, including
VEGF, basic fibroblast growth factor (bFGF), and stromal
cell-derived factor-1 (SDF-1) [139, 140]. In addition, Vegran et
al. [90] demonstrate that lactate-stimulated NF-𝜅B activation
in ECs is associated with IL-8-mediated autocrine angio-
genesis and that this pathway promotes EC migration and
tube formation in vitro, as well as lactate-triggered tumor
angiogenesis in vivo.

Endothelial cells of tumor vasculature import high levels
of glucose (high GLUT1 levels). However, since they contain
high LDH1 and low HIF-1𝛼 and lowLDH5, similar to TAFs,
they show an aerobic metabolism. Meanwhile due to low
expression of lactate transporters, endothelial cells perhaps
do not import much of the lactate in the tumor. Hence, it
seems the main role of endothelial cells is to respond to
the tumor microenvironment by generating new vessels to
support the cancer cells and other tumor associated cells.
However, they may not participate in uptake and consump-
tion of lactate within the tumor [132, 141].

One main reason for cancer development is that the
immune system loses its ability to effectively eradicate aber-
rant cells. High levels of lactate have a harmful effect on the
tumor infiltrating immune cells. Clinical evidence indicates
that lactate restricts immune cell infiltration in renal cell
carcinoma (RCC) and damages the metabolism and cytolytic
functions of T cells in the TME [80, 142]. Lactate hinders
proliferation and cytokine release of human cytotoxic T
lymphocytes (CTLs) by 95% and their cytotoxic activity by
50%. Lactate released from melanoma cells impedes TAA-
induced IFN-𝛾 generation by specific CTLs in melanoma
spheroid cocultures [143]. In addition, other studies substan-
tiated that high levels of lactate suppresses TCR-stimulated
cytokine release (IFN-𝛾, TNF-𝛼, and IL-2) and prompts
partial damage of lytic granules exocytosis in CTLs by

selectively downregulating the MAPKs p38 and JNK/c-Jun
signaling pathways [81]. Moreover, tumor-derived lactate
enhances arginase-1 (ARG1) expression in tumor-associated
macrophages (TAMs), hindering T-cell activity and prolif-
eration [144], inhibiting antitumor immune responses and
promoting tumor growth [145, 146]. Lately, Colegio et al. [145]
demonstrated that, under normoxic conditions, lactate stabi-
lizes HIF-1𝛼, resulting in ARG1 and VEGF gene expression
inmacrophages. Furthermore, tumor-derived lactate changes
monocytes’ function hinders their differentiation to DCs and
inhibits the cytokine production from differentiated DCs
and suppresses the activity of NK cells, thus contributing to
immune suppression within tumors [82, 147, 148].

Some studies on experimental tumors, including about
1,000 xenografts of individual human head and neck squa-
mous cell carcinoma, indicate that lactate levels are pos-
itively correlated with radio-resistance [149]. The mecha-
nisms behind this correlation reside in, at least partially,
the antioxidant characteristics of lactate [150]. Anticancer
treatments, for example, ionizing radiation and a number
of chemotherapeutic drugs, work through inducing overpro-
duction of reactive oxygen species (ROS) in targeted cancer
cells, which causes DNA/RNA damage, genomic instability,
and lipid peroxidation. Hence, an accretion of lactate may
promote resistance to radiation and lead to chemoresistance
[151]. Wagner et al. reveal that lactate can modulate cellular
DNA damage repair processes in the uterine cervix, leading
to the resistance of cervical cancer cells to anticancer therapy
[152]. Since animals receiving chemotherapy or radiotherapy
exhibit a reduction in lactate [153], checking this metabolite
in human cancers might be used to predict therapeutic
responses. Accordingly, a recent study [154] proposes that
lactate can be used as a quantitative biomarker of acute
radiation response.

Finally, lactate is a mediator of inflammation [155, 156]
and might be used as a biomarker of inflammatory processes
[157]. Lactate and inflammation stimulate each other in
a malicious cycle [83]. It promotes IL-4/IL-13 production
[158] and stimulates the IL-23/IL17 pathway [18]. Lactate
promotes IL-23p19 expression in tumor infiltrating immune
cells by stimulating toll-like receptor. In addition, it stimulates
splenocytes to secrete IL-17 in an IL-23-dependent man-
ner. These effects stimulate local inflammatory responses,
favoring the incidence and development of tumors [159].
In addition, lactate benefits the growth of inflammation-
associated colorectal tumor by promoting PGE2 synthesis
and gluconeogenesis in monocytes [160]. Together, these
studies suggest that lactate plays a significant proinflamma-
tory role in tumor development.

It is believed that in diabetic patients, the adipose tissue
plays a major role in induction of metabolic syndrome. In
these patients there is an underlying chronic inflammation
in adipose tissue and a general increase in levels of cytokines
such as TNF-𝛼, IL-1, and IL-6 [161]. While these released
factors play important roles in cancer biology, there is
evidence that points to their possible reciprocal roles in the
lactate level. For instance, TNF𝛼 can induce LDHA and
lactate production in a short period of time [162], while
lactate induces release of TNF-𝛼 and IL-6 in some cells
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Figure 2: Illustration of lactate as an interaction hub between diabetes and cancer.

[163]. In a study on rats, chronic infusion of IL-1𝛼 induced
hyperlactacidemia [164] and in another study on rat ovaria
cells, IL-1𝛽 enhanced glucose uptake and induced aerobic
glycolysis [165]. Moreover, it has been shown that high levels
of IL-6 correlated with high levels of lactate and can result in
poor prognosis of patients with metastatic melanoma [166].
These findings indicate that the release cytokines may play
roles in both cancer and metabolic syndrome and may be the
connecting points between developments of both diseases.

7. Concluding Remarks and
Future Perspectives

Accumulative evidence indicates a high incidence and mor-
tality for a variety of malignancies in patients with diabetes.
Diabetes and its risk factors are associated with cancer
and they have an intricate and reciprocally reinforcing
relationship. Nevertheless, the underlying mechanisms are
poorly understood and currently there is no clinical evidence
available to direct the proper management of patients pre-
senting with these two diseases concomitantly. Diabetes and
cancer interact with each other in a vicious cycle, where
lactate plays a pivotal role in this mutual interaction. Insulin
resistance/diabetes and cancer conditions produce high levels
of lactate and conversely high lactate promotes diabetes and
cancer development and progression (Figure 2).

In diabetes, hyperlactacidemia is perhaps due to the high
levels of insulin which induces the activity of two glycolytic
enzymes phosphofructokinase and pyruvate dehydrogenase
[47]. However, glycolytic switch in cancer is due to the
increased activity of glycolytic enzymes, for example, glu-
cose transporters and hexokinases [60], which have been

attributed to signaling pathways such asHIF-1𝛼 [60, 61], EGF,
phosphoinositol 3-kinase (PI3-K), myc, NF-kB, PKB, IGF-I,
mTOR, KRAS, and AMPK. Among these, HIF-1 signaling
seems to be very important as it induces hexokinase II [63],
GLUT-1 and MCT4, and pyruvate dehydrogenase kinase 1
(PDK-1), and therefore inactivates the pyruvate dehydroge-
nase, leading to reduced flux into oxidative phosphorylation
[55]. In both diabetes and cancer lactate can induce inflam-
mation through IL-4/IL-13 production [158] and IL-23/IL17
pathway [18]. However, in cancer the effect of lactate is
more profound and can alter microenvironment, fuels cancer
cells, and results in acidosis, inflammation, angiogenesis, and
immunosuppression [80–83].

In this review, we deliberated themechanisms underlying
high lactate induced by diabetes and cancer, as well as
the effects of high level of lactate production, and the key
property of diabetes and cancer, on diabetes development
and different cancer biological behaviors. Besides supplying
abundant nutrition for tumor growth, increased lactate level
might also activate various signaling pathways, which play
imperative roles in cancer development and progression.
Existing evidence demonstrates that some diabetes treat-
ments might have significant therapeutic implications in
cancer patients and that MCT/lactate transport inhibitors
are employed therapeutically to repress cancer metastasis.
Understanding the molecular mechanisms behind metabolic
remodeling of diabetes- and cancer-related signaling would
endow novel preventive and therapeutic approaches for
diabetes and cancer treatment. Importantly, combined man-
agement of diabetes and cancer probably leads to better
improvement in mortality versus treating them individually.
Accordingly, more interdisciplinary approaches are required
to reveal the mechanisms underlying the links between
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these two diseases and, eventually, ameliorate clinical out-
comes.
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