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Abstract 13 

The relationships and seasonal-to-annual variations among evapotranspiration (ET), 14 

precipitation (P), terrestrial water storage anomalies (TWSA), radiation (downward shortwave 15 

radiation, DSR), and phenology (leaf area index, LAI) are complex across the Amazon basin. To 16 

analyze how ET is controlled by these influencing factors, we used wavelet phase difference 17 

(WPD) to investigate the effects of P, TWSA, DSR, and LAI on ET at different spatiotemporal 18 

scales. The Amazon-scale averaged ET has strong correlations with these factors at the annual 19 

and multi-year periodicities. The patterns of WPDs have south-north and west-east divides due to 20 

the significant variation in climatic conditions. The results demonstrate that ET is mainly 21 

affected by water and energy availability while vegetation regulates both processes. The deep 22 

soil moisture/groundwater can provide strong subsidies to ET during the meteorological dry 23 

season in the water-limited area of Amazon. The WPD can well reflect the responses of ET to the 24 

variations of P, TWSA, DSR, and LAI, and the process of vegetation sustaining ET in the dry 25 

years in the water-limited area of the Amazon. 26 

1. Introduction 27 

mailto:jniu@jnu.edu.cn
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Evapotranspiration (ET) is an important part of the hydrological balance of the Amazon 28 

basin, as it links regional climate and forest function and plays a crucial role in the hydrological 29 

cycle. Large amounts of water are transferred from the land surface to the atmosphere via ET in 30 

the Amazon every day, which has a huge impact on the global energy budget (Bonan et al., 2018; 31 

Christoffersen et al., 2014; Hasler & Avissar, 2006; Restrepo-Coupe et al., 2016). Nonetheless, 32 

the spatiotemporal variation of ET across the Amazon basin, as well as the relative 33 

contributions of multiple drivers to this process, are still uncertain. Assessing the factors 34 

controlling ET in the Amazon basin, which largely depend on how tropical vegetation processes 35 

available energy and water, is still an essential research topic (Saleska et al., 2003; Swann et al., 36 

2017). 37 

The research on the seasonal variation of ET and its main controlling factors continued to be 38 

controversial since the early 1980s. Some models (Baker et al., 2008; Werth and Avissar, 2004) 39 

predicted water-limited ET seasonality that resembles precipitation (P) variations. This may be 40 

explained that increased atmospheric vapor pressure deficit (VPD) triggers the stomatal closure 41 

to avoid excess water loss in the dry season (Carnicer et al., 2013; Yuan et al., 2019). Gentine et 42 

al. (2012) concluded that the Amazon lies in a regime that is dominantly energy limited rather 43 

than water limited. Controls of ET across the Amazon basin vary. The evaluation of ET drivers in 44 

previous studies has not been conclusive in some cases, or only analyzed at the large scale for the 45 

whole Amazon basin. Malhi et al. (2002) measured the latent heat flux and analyzed its annual 46 

trend for the tropical rain forest close to Manaus, Brazil, pointing out that water limitation and 47 

stomatal control were the main factors driving seasonal ET. Recent studies based on eddy flux 48 

measurements indicate seasonal ET is driven by radiation, rather than water availability, in the 49 

Amazon (Juárez et al., 2007) and the tropics (Fisher et al., 2010), consistent with the greening of 50 



 3 

Amazon forests during the dry season from satellite data (Brando et al., 2010; Doughty & 51 

Goulden, 2008; Saleska et al., 2007) and phenocam data (Gonçalves et al., 2020). Except for the 52 

satellite-based greenness, solar-induced chlorophyll fluorescence data from TROPOMI (Doughty 53 

et al., 2019) and GOME-2 (Doughty et al., 2020) can show the same effect as greenness during 54 

dry season for moist tropical forest. Maeda et al. (2017) suggested that both annual mean and 55 

seasonality of ET are driven by a combination of energy and water availability, as rainfall or 56 

radiation alone could not explain ET patterns. Therefore, more detailed studies are needed to 57 

explore the factor driving ET. 58 

There are systematic biases of hydrologic and carbon fluxes and responses in Earth system 59 

models. For example, Tang et al. (2015) found that ET predicted using CLM4.5 at the Tapajos 60 

forest site in the Amazon basin compares poorly and is out of phase with MODIS data 61 

(MOD16A2). The modeling results from Verbeeck et al. (2011) showed that forests in some 62 

regions of the Amazon maintain high transpiration during the dry season. Due to the limited 63 

spatial coverage and the complex plant composition, the measurement of ET has great 64 

uncertainty (Culf et al., 2008). ET is a combined contribution of evaporation from the ground or 65 

other surfaces, as well as transpiration flux through plants, which reflects aspects of the plants’ 66 

functioning. (Swann et al., 2017). Reduction in rainfall has diminished vegetation greenness in 67 

the tropical evergreen forest and subtropical grasslands, which coincides with the decline in 68 

terrestrial water storage (Hilker et al., 2014). This pattern is supported by severe drought 69 

suppressed photosynthesis (Doughty et al., 2015). The latest MOD16 global ET product agrees 70 

well with measurements from eddy flux towers (Mu et al., 2011), and shows higher ET in the dry 71 

season and lower ET in the wet season in the Amazonian tropics. Groundwater storage has a 72 

strong influence on atmospheric and terrestrial hydrological processes by affecting soil moisture 73 
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and ET rate in the Amazon (Lin et al., 2016). Several modeling studies have also concluded that 74 

surface runoff is rare and groundwater plays a key role in Amazon hydrology (Miguez-Macho & 75 

Fan, 2012a), and groundwater has a significant influence on soil moisture and ET (Miguez-76 

Macho & Fan, 2012b). Our recent analysis with a three-dimensional hydrologic model applied to 77 

an Amazon watershed (Niu et al., 2017) demonstrated that lateral fluxes, especially groundwater 78 

flows, have a large impact on subsurface hydrologic processes. 79 

The estimation technology of the phase difference has gone deep into many fields, such as 80 

biomedicine, ultrasound, radar, and sonar (Etter and Stearns, 1981; Carter, 1993). It has an 81 

important significance to accurately estimate the transmission delay between two signals. 82 

Although many methods are used to calculate the phase difference between two signals 83 

(Micheletti, 1991; Audoin and Roux, 1996; Maskell and Woods, 2002; So, 2006; Bjorklund and 84 

Ljung, 2009), none of them can better deal with the problem of phase mutation like the wavelet 85 

transform. Compared with the traditional estimations of the phase difference, wavelet transform 86 

also improves the accuracy of estimation. Wavelet analysis has been applied widely in previous 87 

studies to identify the annual periodicity of the hydrologic and climate fluxes and detect their 88 

long-term trends (Andreo et al., 2006); to detect potential flood triggering conditions (Schaefli et 89 

al., 2007); and to extract significant information and the characteristic time scale of the dominant 90 

hydrologic processes (Zhang et al., 2017). The method has also been applied to monthly 91 

discharges of Amazon River to advise physical explanations for time-scale dependent 92 

relationships (Labat et al., 2005). To the best of our knowledge, due to the scarcity of 93 

observations, no previous studies using wavelet power spectral has analyzed the relationships 94 

between P or terrestrial water storage anomalies (TWSA), and ET in the Amazon. Moreover, the 95 

application of the wavelet phase difference (WPD) in the Amazon basin and focusing on the 96 
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phase lags of ET-P and ET-TWSA are relatively rare. In order to accurately identify the time-97 

delay characteristics at the specified frequency and phase mutation of hydrological components, 98 

it is necessary to explore the application prospect of WPD in the hydrological cycle. 99 

The Budyko curve framework is a classic empirical approach to analyze annual 100 

hydrological budgets and the inter-annual variability of annual hydrological budgets (Bukydo, 101 

1974) and annual water balances (Yang et al., 2007; Wang, 2012). A recent study found that the 102 

errors between observations and the traditional Budyko curve could be reduced if the equation 103 

was corrected using information extracted from the Gravity Recovery and Climate Experiment 104 

(GRACE) TWSA (Fang et al., 2016). Using the Budyko framework is conducive to understand 105 

the energy-limited and water-limited regimes across the Amazon basin. 106 

In this study, by analyzing the WPDs between P, TWSA, downward shortwave radiation 107 

(DSR), or leaf area index (LAI), and ET, we can explore the interaction between rainfall, 108 

terrestrial water storage, radiation or phenology, and ET flux at three spatial resolutions (whole 109 

Amazon basin, the individual grid cells, and four zones), including the effect of the drought 110 

events, especially in years 2005 and 2010 when droughts over Amazonia were very strong, 111 

which is referred to as a once-in-a-century drought (Liu et al., 2018). The purpose is to 112 

dynamically analyze the main factors controlling ET across the Amazon basin and promote the 113 

potential application of WPD in hydrology. We also apply the Budyko framework to evaluate the 114 

annual hydrological budgets in different sub-basins of the Amazon. With these tools we address 115 

the following questions: (1) How is ET affected by rainfall, terrestrial water storage, radiation, 116 

and phenology in the Amazon basin at different temporal and spatial scales? (2) What is the 117 

difference in the impact of terrestrial water storage on ET between the wet and dry years? And (3) 118 



 6 

Can the WPD analysis reflect the dynamic lag relationship between ET and influencing factors, 119 

as well as the process of water supply? 120 

2. Methods 121 

2.1 Data Sources 122 

The Tropical Rainfall Measuring Mission (TRMM, available from NASA, 123 

(http://trmm.gsfc.nasa.gov/) 3B42 V7 daily data with 0.25-degree spatial resolution were used 124 

for P. ET was derived from Moderate Resolution Imaging Spectroradiometer (MODIS) global 125 

terrestrial ET (MOD16A2) product at 1 km resolution (http://www.ntsg.umt.edu/project/mod16) 126 

from 2002 to 2013, which used a modified Penman-Monteith method (Mu et al., 2011). It 127 

separated the dry canopy surface from the wet. Therefore, ET is the sum of water lost to the 128 

atmosphere from soil surface evaporation, canopy evaporation from the water intercepted by the 129 

canopy, and transpiration from plant tissues. This product agrees well with measurements from 130 

46 eddy flux towers, including two towers in the Amazon basin. Different estimation methods of 131 

ET had been proposed in some recent studies (Paca et al., 2019; Swann et al., 2017; Wu et al., 132 

2020; Xu et al., 2019), and these products were compared with MOD16A2 in the meantime. 133 

Compared with these studies, although MOD16A2 tends to underestimate lower values of ET 134 

and overestimate the higher values, the long-term annual ET is consistent among these estimates, 135 

which has little effect on the study of the phase difference. The most recent release of the 136 

spherical harmonics GRACE observations was used to estimate terrestrial water storage 137 

anomalies (TWSA), which includes the variations of groundwater, soil moisture, surface water, 138 

vegetation water, snow, and ice. TWSA (RL05) was provided by the Tellus product processed by 139 

the Jet Propulsion Laboratory (available at http://grace.jpl.nasa.gov/). This distributed GRACE 140 

product has been “destriped” and smoothed using a 300 km wide Gaussian filter to minimize 141 
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north-south stripes, and is appropriate for land hydrology applications (Landerer & Swenson, 142 

2012; Swenson & Wahr, 2006). The resolution for TWSA dataset is monthly temporally and 1-143 

degree spatially. Optical satellite vegetation data were used to characterize canopy dynamics, 144 

which includes LAI. LAI is defined as the one-sided green leaf area per unit ground area in 145 

broadleaf canopies, and one-half of the total needle surface area per unit ground area in 146 

coniferous canopies. The LAI product (MCD15A2H) used is the latest version (Collection 6) of 147 

MODIS from Terra and Aqua combined (Yan et al., 2016), which provides an 8-day composite 148 

dataset with a 500-meter resolution. 149 

Land cover information was obtained from the Collection 6 MODIS Terra land cover 150 

dynamics product (MCD12Q2) that mapped global land surface phenology metrics at 500-meter 151 

spatial resolution and annual time step. Phenology metrics were derived from the time series of 152 

MODIS observed land surface greenness. The integrated time series of the 2-band Enhanced 153 

Vegetation Index calculated from MODIS nadir BRDF adjusted surface reflectance (NBAR-154 

EVI2) over a vegetation cycle was used to analyze in this study. The MODIS Terra and Aqua 155 

combined Level 3 product (MCD18A1 Version 6.1) generated 3-hourly Downward Shortwave 156 

Radiation (DSR) gridded data. DSR is incident solar radiation over land surfaces in the shortwave 157 

spectrum (300-4000 nanometers). 158 

The sub-basin delineation map applied here was obtained from a topography-independent 159 

analysis method (Mayorga et al., 2005) using the vector river network from the Digital Chart of 160 

the World (DCW, Danko, 1992). The map includes the sub-basin boundaries of the major 161 

tributaries to the main stem of the Amazon River 162 

(http://daac.ornl.gov/LBA/guides/CD06_CAMREX.html)  163 

2.2 Wavelet Analysis 164 
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Although the Fourier transform can process the signal into the frequency domain for 165 

analysis, it can only analyze the time series from the frequency domain alone. The wavelet 166 

transform can reflect the localized characteristics of the signal in both the time domain and the 167 

frequency domain, which overcomes the limitations of the traditional Fourier transform. Briefly, 168 

similar to Fourier analysis, wavelet analysis extracts frequency information (called scales) from 169 

time series. Wavelet analysis also reveals the timing of the features. For this work, we adopted 170 

the algorithm of wavelet transform from Torrence and Compo (1998). The wavelet transform 171 

decomposes the signal into a series of wavelet functions, generated by the mother wavelet 172 

function. Each wavelet is derived from a mother wavelet 𝜓(𝑡) by expansion and translation to 173 

yield 𝜓𝑎,𝑏(𝑡): 174 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) , 𝑎, 𝑏 ∈ 𝑅                                           (1) 175 

where 𝑎 is the frequency parameter, and 𝑏 is the time parameter. In general, the complex non-176 

orthogonal Morlet wavelet function is used as the mother wavelet function, which is defined as 177 

𝜓0. For time series 𝑥(𝑡)  if we denote its continuous wavelet transform as 𝑊𝑥(𝑎, 𝑏): 178 

𝑊𝑥(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓0

∗+∞

−∞
(

𝑡−𝑏

𝑎
)𝑑𝑡    (2) 179 

where * denotes the conjugate complex value. Then the wavelet power spectrum is defined as 180 

|𝑊𝑥(𝑎, 𝑏)|2, and the instantaneous phase of time series 𝑥(𝑡) is 𝑎𝑡𝑎𝑛2 (
𝐼𝑚𝑎𝑔{𝑊𝑥(𝑎,𝑏)}

𝑅𝑒𝑎𝑙{𝑊𝑥(𝑎,𝑏)}
). atan2 is 181 

the four-quadrant inverse tangent function with the value range of [–𝜋, 𝜋]. 𝑅𝑒𝑎𝑙{𝑊𝑥(𝑎, 𝑏)} and 182 

𝐼𝑚𝑎𝑔{𝑊𝑥(𝑎, 𝑏)}  denote the real and imaginary parts of the continuous wavelet transform 183 

𝑊𝑥(𝑎, 𝑏), respectively. The |𝑊𝑥(𝑎, 𝑏)|2 provides insight into the temporal-scale variability of the 184 

time series. 185 
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The global wavelet power spectrum is defined as the time-averaged wavelet spectrum over 186 

all the local wavelet spectra: 187 

 �̅̅̅�𝒙
𝟐

(𝒂) =
𝟏

𝒏
∑ |𝑾𝒙(𝒂, 𝒃)|𝟐𝒏

𝒃=𝟏  (3) 188 

where 𝑛 is the number of points in the time series. 189 

Given two time series 𝑥(𝑡) and 𝑦(𝑡), with wavelet transforms 𝑊𝑥(𝑎, 𝑏) and 𝑊𝑦(𝑎, 𝑏), the 190 

cross-wavelet spectrum is defined as: 191 

 𝑾𝒙𝒚(𝒂, 𝒃) = 𝑾𝒙(𝒂, 𝒃)𝑾𝒚
∗ (𝒂, 𝒃)  (4) 192 

where 𝑾𝒚
∗ (𝒂, 𝒃) is the complex conjugate of 𝑊𝑦(𝑎, 𝑏). The cross-wavelet power is |𝑊𝑥𝑦(𝑎, 𝑏)|, 193 

and indicates local covariance between the time series at each predefined scale, revealing the 194 

magnitude of influence between two time series on a given temporal scale, which includes both 195 

positive and negative correlation.  Since time series have finite length, the wavelet transform will 196 

not be completely localized, meaning there are edge effects in the time dimension. Therefore, the 197 

cone of influence (COI) is used for wavelet analysis (Torrence and Compo, 1998). 198 

As wavelet transforms can be robust tools for handling the localized characteristics between 199 

signals in the time-frequency domain, WPD shows its advantages in non-stationary time series. 200 

WPD of the two signals is computed as 𝑎𝑡𝑎𝑛2 (
𝐼𝑚𝑎𝑔{𝑊𝑥𝑦(𝑎,𝑏)}

𝑅𝑒𝑎𝑙{𝑊𝑥𝑦(𝑎,𝑏)}
) with the value range of [–𝜋, 𝜋]. 201 

The phase difference is used for two time series with the same frequency. According to the 202 

cross-wavelet spectrum analysis, the strong resonance of the periodicity between 𝑥(𝑡) and 𝑦(𝑡) 203 

is mainly explored in this study. In other words, we focus on the difference in timing between 204 

two time series at their high-power spectrum. In order to show WPD (𝜙) more intuitively, we 205 

multiplied the coherence phase in proportion to 2𝜋 by their coherent period at their strong cross-206 

wavelet power spectrum band: 207 
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 𝝓 = 𝒂𝒕𝒂𝒏𝟐(
𝑰𝒎𝒂𝒈{𝑾𝒙𝒚(𝑺𝒔𝒄𝒂𝒍𝒆}

𝑹𝒆𝒂𝒍{𝑾𝒙𝒚(𝑺𝒔𝒄𝒂𝒍𝒆)}
) ∙

𝑺𝒔𝒄𝒂𝒍𝒆

𝟐𝝅
 (5) 208 

where 𝑆𝑠𝑐𝑎𝑙𝑒 means the time scale (or period) of the cross-wavelet power spectrum band, which 209 

does not change over time. The range of the WPD is constrained at [−
𝑆𝑠𝑐𝑎𝑙𝑒

2
,

𝑆𝑠𝑐𝑎𝑙𝑒

2
]. When 𝜙 = 0, 210 

it means that the variations of two time series 𝑥(𝑡) and 𝑦(𝑡) over time are in phase at the 211 

specified frequency (𝑆𝑠𝑐𝑎𝑙𝑒), while the WPD of ∓
𝑆𝑠𝑐𝑎𝑙𝑒

2
 indicates an anti-phase relation between 212 

𝑥(𝑡) and 𝑦(𝑡). For |𝑊𝑥𝑦(𝑎, 𝑏)|2, if 𝜙 > 0, it represents that 𝑥(𝑡) leads 𝑦(𝑡). If 𝜙 < 0, it denotes 213 

that 𝑥(𝑡) lags behind 𝑦(𝑡)., The leading and lag relationship between 𝑥(𝑡) and 𝑦(𝑡) cannot be 214 

distinguished when 𝜙 is close to ∓
𝑆𝑚𝑎𝑥

2
, while it can be determined when 𝜙 is close to 0. In 215 

theory, the range of the phase difference also can be added or minus N periods, where N is an 216 

integer. Therefore, the magnitude of the WPD needs to be determined in combination with 217 

specific research problems. Although the WPD has been defined when the cross-wavelet analysis 218 

method was developed, there are few studies on its application to the best of the authors’ 219 

knowledge. The WPD is used to analyze the time lag relationships between hydrological 220 

components at each defined scale, providing very useful information on certain physical 221 

phenomena. This study also widens its application field. 222 

We calculated the WPDs between P, TWSA, DSR or LAI, and ET for three spatial 223 

resolutions: (1) averaged across the Amazon basin, (2) for individual 1-degree grid cells, and (3) 224 

averaged for four zones in the Amazon basin based on the WPDs at the 1-degree resolution. The 225 

underlying resolutions of P, ET, TWSA, DSR, and LAI are 0.25-degree, 1 km, 1-degree, 1 km, 226 

and 500 m respectively as described in Section 2.1. Since this study focused on the regional scale, 227 

P, ET, DSR, and LAI were converted to the same 1-degree resolution as TWSA by the moving 228 

average technique to calculate WPDs at 1-degree. Comparisons among these spatial averaging 229 
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units allow us to analyze the behavior of the coherences at different spatial scales. Hereafter, we 230 

define the WPDs between ET and P at the different spatial scales as 𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛, 𝜙𝐸𝑇−𝑃

1−𝑑𝑒𝑔𝑟𝑒𝑒
, and 231 

𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 , the WPDs between ET and TWSA as 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝐴𝑚𝑎𝑧𝑜𝑛 , 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
1−𝑑𝑒𝑔𝑟𝑒𝑒

, and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
𝑍𝑜𝑛𝑒 , the WPDs 232 

between ET and DSR as 𝜙𝐸𝑇−𝐷𝑆𝑅
𝐴𝑚𝑎𝑧𝑜𝑛, 𝜙𝐸𝑇−𝐷𝑆𝑅

1−𝑑𝑒𝑔𝑟𝑒𝑒
, and 𝜙𝐸𝑇−𝐷𝑆𝑅

𝑍𝑜𝑛𝑒 , and the WPDs between ET and LAI 233 

as 𝜙𝐸𝑇−𝐿𝐴𝐼
𝐴𝑚𝑎𝑧𝑜𝑛, 𝜙𝐸𝑇−𝐿𝐴𝐼

1−𝑑𝑒𝑔𝑟𝑒𝑒
, and 𝜙𝐸𝑇−𝐿𝐴𝐼

𝑍𝑜𝑛𝑒  for the whole Amazon basin, the individual grid cells, and 234 

four zones, respectively. A positive 𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛 would mean that ET signal leads that of P. 235 

For simplicity and convenience, the time scales and wavelet power spectrum are presented 236 

using the 2-based logarithmic scale in all figures shown in the results sections below. 237 

2.3 Budyko framework 238 

The Budyko hypothesis assumes that the long-term (2002 - 2013) partitioning of P into ET 239 

and runoff can be determined from available water measured as precipitation and available 240 

energy measured as potential evapotranspiration (𝐸𝑃). Based on the Budyko hypothesis, the ratio 241 

between actual evapotranspiration (𝐸𝐴) and P is related to the aridity index (the ratio between EP 242 

and P, 
𝐸𝑃

𝑃
), or the climate dryness index (Budyko, 1974): 243 

 
𝑬𝑨

𝑷
= {

𝑬𝑷

𝑷
𝒕𝒂𝒏𝒉 (

𝑬𝑷

𝑷
) [𝟏 − 𝒄𝒐𝒔𝒉 (

𝑷

𝑬𝑷
) + 𝒔𝒊𝒏𝒉 (

𝑷

𝑬𝑷
)]}

𝟎.𝟓
 (6) 244 

3. Results and Discussion 245 

3.1 Wavelet analysis for Amazon-scale averaged variables 246 

The wavelet power spectra of spatially averaged P, ET, TWSA, DSR, and LAI data over the 247 

whole Amazon basin reveal, for each dataset, a band of maximum power across all years with 248 

approximately a 12-month period (Figure 1(a), (b), (c), (d), and (e)). For ET the 95% confidence 249 

contour band ends around 2010, as there is a substantial change in the ET cycle after 2010. The 250 

pattern of a discontinuous maximum power spectrum band for ET can be explained by the 251 
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drought event in 2010 and its monthly time series with more frequent fluctuations after 2010 252 

than before (Figure 3(b)). Meanwhile, the global wavelet power spectra identify the main 253 

fluctuations of the time series (Figure 1(f), (g), (h), (i), and (j)). As expected, the wavelet analysis 254 

captured the annual cycles of the three hydrological fluxes. Additionally, ET also shows a 255 

smaller 3 – 6 months peak, as well as a 2 – 4 years peak (Figure 1(g)). Larger coherence 256 

indicates stronger linear correlation between two time series at the given time scale. Patches of 257 

high coherence around 1-year periodicity between ET and P, between ET and TWSA, between ET 258 

and DSR, and between ET and LAI are evident (Figure 2). It can be indicated that ET has a strong 259 

resonant periodicity with P, TWSA, DSR, and LAI at the annual scale, however, the covariation 260 

weakens substantially there since the annual cycle in ET has been interrupted after 2010 (Figure 261 

1(b)). Between ~2006 and ~2010, the high coherence at a 2 – 4 years period (Figure 2(a), (b), 262 

and (d)) corresponds to the 2 – 4 years fluctuation in the ET wavelet spectrum (Figure 1(g)). 263 

In order to obtain the anomalies in ET responding to anomalies in other influencing factors 264 

more clearly, the seasonality of original datasets was adjusted to further analyze their 265 

correlations. The results of the seasonality adjusted wavelet analysis are listed in Figures S1 and 266 

S2. P, DSR, and LAI have significant and discontinuous high-power regions at 2 – 6 months 267 

period (Figure S1(a), (d), and (e)), while P, ET, and TWSA have significantly high-power bands 268 

at the 1-year periodicity from 2003 to 2005 (Figure S1(a), (b), and (c)). The strong resonance at 269 

multi-year (2 – 4 years) periodicities between ET and P, between ET and TWSA, and between ET 270 

and LAI are evident (Figure S2(a), (b), and (d)), while the strong resonances at the 1-year 271 

periodicity between P / TWSA / DSR / LAI and ET are significant and discontinuous. These 272 

possibly relate to long-term climatic drivers (e.g., El Niño with ~3 – ~7 years periodicity) or the 273 

tropical Atlantic and Pacific Sea surface anomalies (~2 – ~6 years periodicity) (Fassoni-Andrade 274 
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et al., 2021). Their discontinuous resonances at intra-annual periods correspond to the significant 275 

high-power regions at 2 – 6 months period (Figure S1). ET is severely affected in the rainiest 276 

months (La Niña phenomena during 2007 – 2008 and 2011 – 2012), and the least rainy months 277 

(El Niño phenomena during 2002 – 2005 and 2009 – 2010) (Moura et al., 2019). 278 

3.2 Phase difference for Amazon-scale averaged variables 279 

The WPD between ET and P reflects the time lag relationship between ET and P. For 280 

instance, if rainfall would quickly become ET, we expect to see a 𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛 of ~0. However, as 281 

the leaves of tropical forests flush and grow at the beginning of the dry season when precipitation 282 

decreases and radiation increases, we must also consider the time it takes for growing. Hence, we 283 

can expect a small negative 𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛, meaning that ET occurs after P. It indicates that ET lags 284 

behind P due to the period required for growth and the period with cloud-cover (the decrease in 285 

energy availability caused by increased cloudiness during the wet regions/seasons). While, a 286 

positive 𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛  (ET signal leads that of P, which means that ET occurs before P) is quite 287 

intriguing and could possibly suggest that the cloud-suppressed (radiation-limited) forest has 288 

adapted to and anticipated the coming dry season and increases leaf allocation toward the end of 289 

the rainy season, as suggested by Fu and Li (2004), or it may be that photosynthesis and 290 

transpiration of evergreen plants increase during the dry season in the moist tropical Amazon 291 

(Saleska et al., 2007; Doughty et al., 2019; Doughty et al., 2020). 292 

Since the WPD is significant only at the continuous and strong resonance period, the 293 

subsequent results of WPDs are only valid for the the original dataset at 1-year time scale. The 294 

averaged WPDs across the Amazon basin scale, 𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛, 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝐴𝑚𝑎𝑧𝑜𝑛 , 𝜙𝐸𝑇−𝐷𝑆𝑅
𝐴𝑚𝑎𝑧𝑜𝑛, and 𝜙𝐸𝑇−𝐿𝐴𝐼

𝐴𝑚𝑎𝑧𝑜𝑛 295 

are presented in the Figure 3(a). For the Amazon basin, 𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛 ranges from ~2 to ~4 months, 296 

𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
𝐴𝑚𝑎𝑧𝑜𝑛  ranges from ~3 to ~8 months, 𝜙𝐸𝑇−𝐷𝑆𝑅

𝐴𝑚𝑎𝑧𝑜𝑛 ranges from -4 to -2 months, and 𝜙𝐸𝑇−𝐿𝐴𝐼
𝐴𝑚𝑎𝑧𝑜𝑛 297 
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ranges from -5 to -2 months. It can be seen that ET occurs after LAI and DSR, while before P and 298 

TWSA. The peak of ET appears at the beginning of wet season (Figure 3 (b)). The severe 299 

meteorological drought in 2005 and 2010 both began in the wet season and ended right before 300 

the end of the wet season. Seasonal cycles of P, TWSA, DSR, and ET over the whole Amazon are 301 

showed in Figure S3. The response of soil moisture lags rainfall for days to 1-month (Figure S3 302 

(a)), as soil acts as a temporary reservoir to accumulate rainfall (Liu et al., 2014). WPDs of  303 

𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛 and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝐴𝑚𝑎𝑧𝑜𝑛  decreased slightly in 2005 and 2010, meaning the degrees of resonance 304 

between P or TWSA, and ET are enhanced in drought event. Moreover, the two WPDs are 305 

qualitatively correlated in time, except for 2010, when a severe drought occurred from August to 306 

October. Both 𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛 and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝐴𝑚𝑎𝑧𝑜𝑛  decreased comparing to those in 2009, but after 2010, 307 

𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
𝐴𝑚𝑎𝑧𝑜𝑛  increased from ~ 5 months to more than 7 months while 𝜙𝐸𝑇−𝑃

𝐴𝑚𝑎𝑧𝑜𝑛 remained relatively 308 

constant at ~4 months (Figure 3(a)). It could suggest a pattern that ET will increase even when 309 

there is insufficient rainfall. The deep soil water/groundwater reserves are still maintained at a 310 

high level to provide sufficient water for ET during the meteorological dry season. Miguez-311 

Macho and Fan (2021) found that 70% of plant transpiration relies on P in the current month, 18% 312 

relies on past P stored in deeper unsaturated soils and/or rocks, only 1% relies on past P stored in 313 

groundwater, and 10% relies on groundwater from P fallen on uplands via river-groundwater 314 

convergence toward lowlands. Therefore, the process of ET affected by rainfall and deep soil 315 

moisture/groundwater has been changed by the drought event. 𝜙𝐸𝑇−𝐿𝐴𝐼
𝐴𝑚𝑎𝑧𝑜𝑛 and 𝜙𝐸𝑇−𝐷𝑆𝑅

𝐴𝑚𝑎𝑧𝑜𝑛 increased 316 

in 2005 and 2010, indicating that ET may be delayed due to the reduction of rainfall. 317 

To further analyze the spatiotemporal distribution of WPDs and the lag relationships 318 

between ET and other climatic indicators, the 1-degree and four-zones WPDs within the Amazon 319 

basin are examined in the following sections. 320 
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3.3 Phase difference for 1-degree spatial scale variables 321 

The 1-degree spatial scale WPDs of 𝜙𝐸𝑇−𝑃
1−𝑑𝑒𝑔𝑟𝑒𝑒

, 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
1−𝑑𝑒𝑔𝑟𝑒𝑒

, 𝜙𝐸𝑇−𝐷𝑆𝑅
1−𝑑𝑒𝑔𝑟𝑒𝑒

, and 𝜙𝐸𝑇−𝐿𝐴𝐼
1−𝑑𝑒𝑔𝑟𝑒𝑒

 are 322 

presented in Figures 4 – 7, respectively. Large south-to-north and small west-to-east gradients 323 

occur for WPDs across all years analyzed (Figures 4 – 7), especially the WPD between ET and P. 324 

The small and negative values of 𝜙𝐸𝑇−𝑃
1−𝑑𝑒𝑔𝑟𝑒𝑒

 and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
1−𝑑𝑒𝑔𝑟𝑒𝑒

 are distributed in the north of the 325 

Amazon basin, where there is sufficient rainfall. According to the sufficient precipitation and 326 

low radiation in this area, the WPD is described as ET lags behind P and TWSA (Figures 4 – 5), 327 

and ET leads to DSR (Figure 6). It possibly indicates that cloudy conditions limit the available 328 

energy driving ET (Zhang et al., 2001). To further distinguish the different water-limited and 329 

energy-limited regions, 33 sub-basins within the Amazon basin are examined by using the 330 

Budyko analysis (Figure 8). Sub-basin #1 is narrow, crosses almost the entire Amazon basin 331 

horizontally, and closely conforms to the Amazon River (cross hatched in Figure S4). The sub-332 

basin delineation from Mayorga et al. (2005) is not accurate for sub-basin #1 since it only 333 

approximates the floodplain of the main stem of the Amazon River and includes minor 334 

catchments bordering the floodplain. Thus, the results for this sub-basin #1 will not be discussed. 335 

Based on the result of the Budyko analysis, the sub-basins located in the north of the Amazon 336 

basin are energy limited (Figure 8). For these sub-basins, ET may be suppressed by excessive 337 

rainfall and low radiation. Excessive rainfall suppresses the respiration of root cells, which 338 

makes the plants come into a state of water shortage. The stomata of plants are closed, which 339 

affects their transpiration. The area where the absolute values of 𝜙𝐸𝑇−𝑃
1−𝑑𝑒𝑔𝑟𝑒𝑒

 and  𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
1−𝑑𝑒𝑔𝑟𝑒𝑒

 are 340 

close to 6 months is located in the central of the Amazon basin (Figures 4 – 5), suggesting that 341 

the relationship of the time lag between P or TWSA, and ET in this area is not clear. 𝜙𝐸𝑇−𝐷𝑆𝑅
1−𝑑𝑒𝑔𝑟𝑒𝑒

 342 
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and 𝜙𝐸𝑇−𝐿𝐴𝐼
1−𝑑𝑒𝑔𝑟𝑒𝑒

 are close to 0 month in this area. The strong resonances indicate that DSR and LAI 343 

jointly affect ET in the central of the Amazon basin. 344 

The small and positive 𝜙𝐸𝑇−𝑃
1−𝑑𝑒𝑔𝑟𝑒𝑒

 is distributed in the southwest of the Amazon basin, 345 

meaning that ET leads to P. The 𝜙𝐸𝑇−𝐷𝑆𝑅
1−𝑑𝑒𝑔𝑟𝑒𝑒

 in this area cannot be guaranteed which time series is 346 

lagged. Sub-basin #33 is water-limited and energy-limited (Figure 8), which is located southwest 347 

of the Amazon basin. All sub-basins (#5, #9, #16)  located in the southeast of the Amazon basin 348 

are generally water-limited compared to other sub-basins (Figure 8). 𝜙𝐸𝑇−𝑃
1−𝑑𝑒𝑔𝑟𝑒𝑒

 and  𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
1−𝑑𝑒𝑔𝑟𝑒𝑒

 349 

are closed to zero in the southeast of the Amazon basin (Figures 4 – 5), suggesting that P lags 350 

slightly behind ET. The mean annual precipitation (MAP) of this area corresponds to the 351 

threshold for light/water limitation (2000mm MAP) mentioned in many previous studies 352 

(Doughty et al., 2019; Doughty et al., 2020; Wagner et al., 2016). The importance of plant 353 

control should be considered in the water balance accounting of the water-limited area. The ET 354 

rate can increase even in rainfall deficit conditions, which can be explained by plants access to 355 

deep soil water (Maeda et al., 2017). Vegetation in the southern Amazon is particularly sensitive 356 

to changes in the length of the dry season. It is widely affected by anthropogenic forcing, 357 

especially along the “Arc of Deforestation” around the southeast edge of the forest (Wongchuig 358 

et al., 2021). Therefore, 𝜙𝐸𝑇−𝐿𝐴𝐼
1−𝑑𝑒𝑔𝑟𝑒𝑒

 in the southern Amazon are complex, which may be caused 359 

by the anthropogenic activities in areas like pasture, agriculture, and deforested area. 360 

In addition, the 𝜙𝐸𝑇−𝑃
1−𝑑𝑒𝑔𝑟𝑒𝑒

 and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
1−𝑑𝑒𝑔𝑟𝑒𝑒

 close to zero in the southeast of the Amazon basin 361 

vary to the larger WPD across years, meaning that the lag time between P or TWSA, and ET has 362 

increased. The increase of WPDs may be accompanied by deforestation, large rainfall, or 363 

reduced radiation, which may affect lag relationships between ET and other factors (P, TWSA, 364 

DSR, and LAI). It possibly indicates that the vegetation area in this area is reduced due to 365 
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deforestation activities, fire, logging, or extreme drought events (Spracklen et al., 2012; Brando 366 

et al., 2014; Brown and Brown, 2016; Qin et al., 2017). Based on the land cover dynamics 367 

(MCD12Q2) for 2005, 2010, 2011, and 2013 (Figure S5), the value of NBAR-EVI2 in the 368 

southern Amazon basin is relatively large, corresponding to the area of WPDs changed. The 369 

WPD of 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
1−𝑑𝑒𝑔𝑟𝑒𝑒

 has zero-to-positive variation patterns from 2002 to 2013 (Figure 5), 370 

suggesting that the decrease in ET after forest deforestation or degradation (Brown and Brown, 371 

2016; De Oliverira et al., 2018; Staal et al., 2020) was firstly caused by a reduction of the 372 

capacity of the vegetation to access subsurface water (Zemp et al., 2017; Aparecide et al., 2020). 373 

Humphrey et al. (2018) proved that the inter-annual variability of the CO2 growth rate is closely 374 

related to that of TWSA. Considering that interannual fluctuation in TWSA strongly affects the 375 

terrestrial carbon sink and the importance of the interactions between the water and carbon 376 

cycles, the variability of ET is also closely associated with TWSA. 𝜙𝐸𝑇−𝑃
1−𝑑𝑒𝑔𝑟𝑒𝑒

 has zero-to-positive 377 

variation patterns (Figure 4), which indicates that the interaction between ET and P has changed 378 

in the south of Amazon region due to deforestation and degradation. 379 

To further distinguish the relationship between P or TWSA, and ET in difference regions, 380 

the WPDs 𝜙𝐸𝑇−𝑃
𝑠𝑢𝑏𝑏𝑎𝑠  and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑠𝑢𝑏𝑏𝑎𝑠  of 33 sub-basins within the Amazon basin are examined 381 

(Figure S4). Inter-annual variability in 𝜙𝐸𝑇−𝑃
𝑠𝑢𝑏𝑏𝑎𝑠  (blue lines) and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑠𝑢𝑏𝑏𝑎𝑠  (red lines) differs 382 

among the sub-basins, although coherent patterns are evident. The linear correlations between 383 

𝜙𝐸𝑇−𝑃
𝑠𝑢𝑏𝑏𝑎𝑠 and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑠𝑢𝑏𝑏𝑎𝑠  are higher and more significant in the southern basins (#5, #9, #16, #20, 384 

#25, #32 and #33) than those of other basins. These indicate that rainfall and water storage have 385 

mutual constraints in affecting ET. Qualitatively, north-to-south pattern of WPDs are obvious 386 

due to these sub-basins vary considerably in topography and rainfall patterns. For these southern 387 

basins, the linear correlations between 𝜙𝐸𝑇−𝑃
𝑠𝑢𝑏𝑏𝑎𝑠 and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑠𝑢𝑏𝑏𝑎𝑠  are more statistically significant, 388 
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indicating that if the immediate supply from P is insufficient to maintain ET, deep soil 389 

moisture/groundwater plays an important role. 390 

3.4 Phase difference for four zones’ averaged variables 391 

According to the patterns of WPDs from Section 3.3, there are spatially varying differences 392 

in the interaction mechanism of P, TWSA, DSR or LAI, and ET. Therefore, the Amazon basin 393 

was divided into four zones on the basis of WPDs at the 1-degree spatial scale (see Text S1 and 394 

Figure S6). 395 

Both WPDs of 𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 1  and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑍𝑜𝑛𝑒 1  are negative from 2002 to 2012 (Figure 9(a)), 396 

indicating that ET lags behind P and TWSA (ET occurs after P and TWSA). Meanwhile, 𝜙𝐸𝑇−𝐷𝑆𝑅
𝑍𝑜𝑛𝑒 1  397 

and 𝜙𝐸𝑇−𝐿𝐴𝐼
𝑍𝑜𝑛𝑒 1  are positive (ET occurs before DSR and LAI), especially 𝜙𝐸𝑇−𝐿𝐴𝐼

𝑍𝑜𝑛𝑒 1  remains around 1 398 

month. The small 𝜙𝐸𝑇−𝐿𝐴𝐼
𝑍𝑜𝑛𝑒 1  means that the growth of vegetation is closely related to ET. The 399 

annual P in this zone is larger than those in other zones (Figures 9(c), 10(c), 11(c), and 12(c)), 400 

which implies that this zone should not be water-limited. The suppression of ET in Zone 1 is 401 

most likely that the sufficient P and cloud-cover limit the energy available to drive ET. Seasonal 402 

cycles of P, TWSA, DSR, and ET in different zones are showed in Figures S7 – S10. The peak of 403 

ET occurs 2 months after the heavy rainfall, as well as 1 – 2 months before the arrival of the dry 404 

season in Zone 1 (Figures S7 – S9). Meanwhile, TWSA responds quickly to P (Figure S7). 405 

Except for 𝜙𝐸𝑇−𝐿𝐴𝐼
𝑍𝑜𝑛𝑒 1 , other WPDs change significantly during drought events. These may indicate 406 

that the reduction of humidity and the elevation of temperature cause the increase of ET rate in 407 

less rainy months in Zone 1. Meanwhile, less severe droughts for the northern Amazon may 408 

enhance vegetation growth due to increased solar radiation. 409 

Zone 2 covers in the central of the Amazon basin. Both WPDs of 𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 2 and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑍𝑜𝑛𝑒 2  410 

range from ~-4 months to ~-6 months from 2002 to 2013 (Figure 10(a)). Thus, it means that the 411 
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lag relationship between P or TWSA, and ET may not be accurately determined in Zone 2. The 412 

peak of ET occurs at the end of the wet season, and the peak of TWSA occurs 1 month after the 413 

heavy rainfall (Figures S7 and S9). However, both WPDs of 𝜙𝐸𝑇−𝐷𝑆𝑅
𝑍𝑜𝑛𝑒 2  and 𝜙𝐸𝑇−𝐿𝐴𝐼

𝑍𝑜𝑛𝑒 2  are close to 414 

zero, indicating the strong degrees of resonances between DSR or LAI, and ET. All WPDs are 415 

slightly decreased during the drought events, which indicate that the degrees of resonance 416 

between P, TWSA, DSR or LAI, and ET have enhanced during drought events. Due to the fewer 417 

anthropic pressures and the denser vegetation cover, the higher incidence of solar radiation 418 

increases vegetation transpiration and ET from water bodies, which regulates the increase of ET 419 

(Flantua et al., 2015). The peak of ET occurs after the wet season when radiation begins to 420 

enhance to provide energy for ET in Zone 1 and Zone 2. 421 

Zone 3 contains the Peruvian region and the Andes on the southwest edge of the Amazon 422 

basin, where both 𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 3 and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑍𝑜𝑛𝑒 3  remained positive from 2002 to 2013 (Figure 11(a)). 423 

ET leads that of P and TWSA, and the lag relation between LAI and ET cannot be determined in 424 

Zone 3. The peak of ET occurs 1 – 2 months before the heavy rainfall, and 2 – 4 months after the 425 

dry season (Figure 11(b)). And the peak of TWSA occurs in the middle of wet season (Figure S7). 426 

𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 3 and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑍𝑜𝑛𝑒 3  have decreased in drought events, which promote the response of ET to P 427 

and TWSA. 𝜙𝐸𝑇−𝐷𝑆𝑅
𝑍𝑜𝑛𝑒 3  increases in drought events indicates that ET begins to be limited by 428 

available water with the increase of radiation. 429 

The smaller WPDs of 𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 4  and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑍𝑜𝑛𝑒 4  (Figure 12(a)) indicate that the degrees of 430 

resonance between P or TWSA, and ET for Zone 4 are stronger than others, while the peak of ET 431 

occurs in the middle of the wet season (Figure 12(b)), and the trough of ET occurs when the 432 

drought is most severe in the dry season (Figures S8 – S9). The variations of WPDs for Zone 4 433 

averaged variables correspond well to the drought events. The degrees of resonance between P, 434 
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TWSA or LAI, and ET have slightly enhanced in droughts, indicating that drought events can 435 

affect the water supply mechanism of ET. This is the regime with a higher aridity index and more 436 

deforestation activities, where may occur water-limited in some years (Figure 8). Due to the 437 

interaction between vegetation and atmosphere, deforestation in the Amazon basin is expected to 438 

exacerbate the dry season and inter-annual drought (Medvigy et al., 2011; Spracklen et al., 2012). 439 

The close response of 𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 4 to the variation of the annual P supports the hypothesis that P 440 

relies on rapid evaporation when it is small. Two WPDs of 𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 4  and 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑍𝑜𝑛𝑒 4  are 441 

qualitatively correlated in time, except for the drought event in 2010. The large variation and the 442 

small WPD of 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
𝑍𝑜𝑛𝑒 4  in 2010 indicate that groundwater or soil moisture supports ET during 443 

the dry periods via water supply mechanism (rooting depth and interaction between groundwater 444 

and soil) and vegetation water requirement (Christoffersen et al., 2014). However, the plant roots 445 

in deforested and grassland areas in this region are shallow, so their access is limited to the water 446 

available in the upper soil layer. By contrast, forest trees can obtain groundwater in the deeper 447 

soil areas, maintaining an optimum water balance and avoiding a decrease in ET in the drier 448 

months or even resulting in an increase in ET during this period due to ideal atmospheric 449 

conditions. 450 

 The correlation between P or TWSA, and ET across the different area of the Amazon basin 451 

vary. Evaporation demand (especially net radiation) plays a more important role in wetter forests, 452 

and deep soil moisture (or P) has larger effects in the relative drier area (da Rocha et al., 2009). 453 

In the southern of Amazon basin, the soil water storage still remains relatively large after the 454 

start of the dry season (i.e., when rainfall is small). Along with the cumulative water deficit 455 

increases, the soils reach their lower water storage capacity, which can be regarded as temporary 456 

water restrictions. Then 3 months after the peak of the dry season, the rainy season has already 457 
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started to provide enough water for evergreen plants. Therefore, the annual flux of ET remains 458 

relatively stable in dry years. 459 

4. Conclusions 460 

Using wavelet transform and wavelet phase difference (WPD) analysis, we found that 461 

Amazon-scale averaged evapotranspiration (ET) has strong correlations with precipitation (P), 462 

the terrestrial water storage anomalies (TWSA), downward shortwave radiation (DSR), and leaf 463 

area index (LAI) at the annual and multi-year periodicities. The WPDs have clear large south-464 

north and small west-east patterns across the Amazon basin at the spatial and temporal scales. 465 

The degrees of P, TWSA, DSR, or LAI impact on ET are affected by drought events and the 466 

spatiotemporal scale. The northern and central of Amazon have fewer anthropic pressures and 467 

denser vegetation cover. Drought events enhance vegetation growth, which increases vegetation 468 

transpiration. In the southern water-limited area, drought events would intensify the impact of 469 

soil moisture/groundwater on ET. During the 2010 drought, ET was supported by both rainfall 470 

and deep soil moisture/groundwater to maintain the same yield compared to the wet years. After 471 

the drought, when the watershed was no longer water-limited, the deep soil 472 

moisture/groundwater had recovered and ET was not immediately supported by it. The WPD 473 

introduced in this study can well reflect this restoration process. 474 

This study explored how rainfall, TWSA, radiation, and phenology drive ET in the Amazon 475 

basin. The results reflect the lag relationship between ET and these influencing factors, as well as 476 

the whole dynamic process of deep soil moisture/groundwater impact on ET in the drought. The 477 

vegetation phenology increases the complexity of the driving factor of ET in the Amazon. This 478 

study sheds light on the applicability of WPD in studying the driving factors of ET and expands 479 

its application prospect in the field of the hydrological cycle. 480 
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Figures 728 

Figure 1. Contour plots of wavelet power spectra of precipitation (a), ET (b), TWSA (c), DSR (d), 729 
and LAI (e), and global wavelet spectra of precipitation (f), ET (g), TWSA (h), DSR (i), 730 
and LAI (j). The x-axes of subplots (a), (b), (c), (d), and (e) represent the time, the y-axis 731 
represents the periodicity scale, and the color represents the magnitude of the wavelet 732 
coefficient. The contour lines enclose regions of greater than 95% confidence (Torrence 733 
& Compo, 1998). The x-axes of subplots (f), (g), (h), (i), and (j) represent the power of 734 
global wavelet spectrum. 735 

Figure 2. Cross wavelet power spectra of ET and P (a), ET and TWSA (b), ET and DSR (c), and 736 
ET and LAI (d). The contour plots represent the power of cross spectra and are shown as 737 
blank when the values are smaller than 2

-8
. The arrows represent the phase relationship 738 

between these time series and are only presented when the wavelet power is greater than 739 
2

-2
. 740 

Figure 3. Plots of phase differences (a) 𝜙𝐸𝑇−𝑃
𝐴𝑚𝑎𝑧𝑜𝑛 , 𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝐴𝑚𝑎𝑧𝑜𝑛 , 𝜙𝐸𝑇−𝐷𝑆𝑅
𝐴𝑚𝑎𝑧𝑜𝑛 , and 𝜙𝐸𝑇−𝐿𝐴𝐼

𝐴𝑚𝑎𝑧𝑜𝑛 ; (b) 741 
monthly time series data and (c) annual averaged data of P on the left y-axis, as well as 742 
ET on the right y-axis. All-time series data and phase differences are spatially-averaged 743 
across the Amazon basin. 744 

Figure 4. Map of the pixel-by-pixel phase difference between ET and P (𝜙𝐸𝑇−𝑃
1−𝑑𝑒𝑔𝑟𝑒𝑒

) for each 745 
year from 2002 to 2013. Different colors represent different phase differences in time 746 
(month) as shown in the legend. Missing data from either ET or P are shown as blank. 747 

Figure 5. Map of the pixel-by-pixel phase difference between ET and TWSA (𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
1−𝑑𝑒𝑔𝑟𝑒𝑒

) for 748 
each year from 2002 to 2013. 749 

Figure 6. Map of the pixel-by-pixel phase difference between ET and DSR (𝜙𝐸𝑇−𝐷𝑆𝑅
1−𝑑𝑒𝑔𝑟𝑒𝑒

) for each 750 
year from 2002 to 2013. 751 

Figure 7. Map of the pixel-by-pixel phase difference between ET and LAI (𝜙𝐸𝑇−𝐿𝐴𝐼
1−𝑑𝑒𝑔𝑟𝑒𝑒

) for each 752 
year from 2002 to 2013. 753 

Figure 8. The Budyko framework applied to 33 sub-basins of Amazon. In each subplot, the x-754 
axes are the ratio between potential evapotranspiration and precipitation (PET / P); the y-755 
axes are the ratio between actual ET and precipitation (ET / P); the solid horizontal line 756 
indicates water limitation (i.e., annual ET = annual P); the 1:1 line indicates energy 757 
limitation (annual ET = annual PET); the dashed vertical line indicates the boundary 758 
between these limitations; and the dots are the annual averaged data for each sub-basin. 759 
The label of each subplot corresponds to the index of each sub-basin (see Figure S1) and 760 
the positions of them are generally corresponding to the geographical location of each 761 
sub-basin. 762 

Figure 9. Plots of (a) phases between ET and P (𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 1), between ET and TWSA (𝜙𝐸𝑇−𝑇𝑊𝑆𝐴

𝑍𝑜𝑛𝑒 1 ), 763 
between ET and DSR (𝜙𝐸𝑇−𝐷𝑆𝑅

𝑍𝑜𝑛𝑒 1 ), and between ET and LAI (𝜙𝐸𝑇−𝐿𝐴𝐼
𝑍𝑜𝑛𝑒 1 ); (b) monthly time 764 

series of P, DSR, and ET; and (c) annual averages of P and ET. All-time series data are 765 
spatially averaged over Zone 1, and the phases are calculated based on the spatially 766 
averaged monthly variables of Zone 1. 767 
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Figure 10. Plots of (a) phases between ET and P (𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 2 ), and between ET and TWSA 768 

(𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
𝑍𝑜𝑛𝑒 2 ), between ET and DSR (𝜙𝐸𝑇−𝐷𝑆𝑅

𝑍𝑜𝑛𝑒 2 ), and between ET and LAI (𝜙𝐸𝑇−𝐿𝐴𝐼
𝑍𝑜𝑛𝑒 2 ); (b) 769 

monthly time series of P, DSR, and ET; and (c) annual averages of P and ET. All-time 770 
series data are spatially averaged over Zone 2, and the phases are calculated based on the 771 
spatially averaged monthly variables of Zone 2. 772 

Figure 11. Plots of (a) phases between ET and P (𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 3 ), and between ET and TWSA 773 

(𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
𝑍𝑜𝑛𝑒 3 ), between ET and DSR (𝜙𝐸𝑇−𝐷𝑆𝑅

𝑍𝑜𝑛𝑒 3 ), and between ET and LAI (𝜙𝐸𝑇−𝐿𝐴𝐼
𝑍𝑜𝑛𝑒 3 ); (b) 774 

monthly time series of P, DSR, and ET; and (c) annual averages of P and ET. All-time 775 
series data are spatially averaged over Zone 3, and the phases are calculated based on the 776 
spatially averaged monthly variables of Zone 3. 777 

Figure 12. Plots of (a) phases between ET and P (𝜙𝐸𝑇−𝑃
𝑍𝑜𝑛𝑒 4 ), and between ET and TWSA 778 

(𝜙𝐸𝑇−𝑇𝑊𝑆𝐴
𝑍𝑜𝑛𝑒 4 ), between ET and DSR (𝜙𝐸𝑇−𝐷𝑆𝑅

𝑍𝑜𝑛𝑒 4 ), and between ET and LAI (𝜙𝐸𝑇−𝐿𝐴𝐼
𝑍𝑜𝑛𝑒 4 ); (b) 779 

monthly time series of P, DSR, and ET; and (c) annual averages of P and ET. All-time 780 
series data are spatially averaged over Zone 4, and the phases are calculated based on the 781 
spatially averaged monthly variables of Zone 4. 782 
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(a) Cross Wavelet Power Spectrum of ET and P 
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