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A sihgular solution of the capillary equation, II: uniqueness.*

Paul ConcusTand_Robert FinnI

We discuss here a uniqueness question for the sinqular solution

U(r) of the capillary equation

(1) div Tu = -(n-1)u , Tu = W Vu , W= \[1 + qulz '

cohstructed in the paper [1] directiy preceding. There is some
evidence that U(r) is - up to trivial transformations - the

only solution of (1)-w;th an isolated singularity. We have as vet
no proof for that éssertion, even in the symmetric case con-
sidered in [1]. Our intention in the present work is to show
that anj symmefric solution ﬁ(r) with a (non-removable) isolated
singularity at r = 0 is asymptotic to U(r) as r + O.

Precisely, we intend to prove:

Theorem 1: Let u(r) be a solution of

(2) <‘ S = - (n-1) u r“”1

1l +u r

in an interval O < r < R. Then either u(r) can be defined at

r =0 so0 as to satisfy (1) in;the entire open ball O £rc< R,

or for any two constants

A > n+92

° fn-l E E n-1

there holds

1




(3) = A r < U(r) + |u(n)]| < Ar

for ali sufficiently small r.

Theorem 2: Under the conditions of Theorem 1, either u(r)

can be defined as a solution in the éntire ball O < r < R,

2
or for any vy > 111521— there holds
' - 1
(4) sin y(r) = wlurf> 1 - v r4

for all sufficiently small r.

We note that y(r), defined by (4), is the angle between
the line tangent to the solution curve and the (positively

directed) r axis.

We prove these theorems in several steps:

1

i) Suppose u{(r) = olr ') as r + O.

We have for any € > O

and since W_llupl < 1 we obtain

' r

" ; Yy n-1 n-1
——— £ - P udp = _o(r )
0

(5)

as r -+ O. Thus, lim u_ =0, and we conclude also uo'=_1im u(r)

r+0 r+0
exists. Defining u(0) = u,, we find from (5) that u'(O)

exists,'and u'(0) = lim u
. r+0

t

L{r) = o. Putting this information




into (5) and integrating by parts now yields

n-1 '

r u. n n
= = = u, + of(r’)

w n
" from which
. e u .
l r 1l .
—r- W‘- = - "r'; uo + O(l) ’ r -+ o .
From (2) we now obtain

1l n-1 ur

— u + —— = = - (n-1) u(r)

w3 ¥ r w

and hence there exists lim u = -1 u_ .
. r+0 T n

The mean value theorem yields immediately the existence of

. _ 1 -1
u,..(0) = - = u,. Thus, if u(r) = o(r 7) , any singularity at

r =0 is removable.

ii) Suppose there were a sequence r * O. along which
Iu(rk)l i.ril + A,r . By restricting attention to a suitable
subsequence and (if necessary) replacing u by:-u in (2),
we may suppose |

-1

(6) | u(rk) § - - Alrk .
. r
Lemma 1: Let a(p) > O satisfy 1lim S' a(p) dp = =,
: r-+0

Under thevhypothesesof_ii), a sequence 2k + O can be found,

at which {6) holds and also

(7) Cut(g) 2 0 - -a(g) .

1

Proof: Set f(r) = - r~1 - A;r . Let k be the smallest

‘integer 2 2, such that the function
| .



r

v(r) = f(r) - {f(rk)—u(rk)} - g alp) dp
will satisfy v(r,) < u(rl). In the interval ry s rg< r, we ‘

then have v(r) < £(r), and vi(r) = r"2

- Al - a{r). Since
v(r
21,

This determines the first point of the new sequence.

_ |
k) = g(rk), V(rl) < u(rl),’there must be at least one point E
e < £ <y, with' u(f)) = v(2 ), u'(£)) 2 v'(£). |

‘The n*™ point fk having been determined, let k_ ., be the

smallest k such that r . < £ . Repeating the procedure
kn+l n

with r, replaced by rkn+1 yields an (n+1) point 2n+1 ST e

An induction completes the construction.

 .In what follows, ﬁe use the original notation r, to

describe the sequence fk.

Lémma 2: If u(r) < 0 in an interval rk <r ( R € »,

then ‘u'(r) > 0 in this interval.

Proof: We have, in such an interval,

L u(r) rﬁ-l u' (r) § n
Tx

= - o™ ! u(p)y ap > o.
W | W

We conclude from Lemma 2 that a segment of the solution

curve passing through (rk, u(rk)) projects simply on the !

u - axis, covering at 1éast the interval ukrk ) - u(rk); for
o —
any fixed ko. In particular, for any fixed o > O, an interval :
of length at least o will be ‘covered, for all sufficiently ‘ f
|
{

large k.



We now write (2) in the form

sin ¢ _ 1
r ‘n=1

(8)

(cos w)u = -u

which splits the mean curvature of the solution surface into

latitudinal and meridional components.

We integrate (8) from u, to u +0 ; noting that on this

interval, O<sinyp<l, ro> Iy » cos yp >0, we f;nd

B 1 12
(9) E; o + ==y cos y > Wo =50
In Lemma 1, we may choosea(p) so that r2 - A, - a(r)
= r-z(l.- e(r)) with e(r) = o(r) (a possible.explicit
o p2
choice is € = r/ln r 1); we then obtain cos ¥y < %IE .

.Using again (6), we f}nd from (9)

rg

(n-1) (1-€)

1 2
+-2-O > 0 .

- Al.rk o +

2
n-1 1

for all r sufficiently small that e(r) < 1 - TE:%sz .

If 'Ai > , the choice ¢ = A,r yields a contradiction,

Thus, :
-u(x) -t < A
for all sufficiently émall r. From the result of [1] we have
(10) u(x) = -+ o)
! -

as r + 0. These two relations establish the right side of (3).

i;i)'We establish the left side of (3) by reducing the
problem{to,the case just diségssed. We shall show that if the

singularity is not removable, then the existence of a sequence




rk *‘0- for which
(11) alr,) > -l +ar
: k k %o’k

implies the existence of a sequence fk + 0, with u(fk)

< - fk - Alfk'

We note first that if a sequence I -~ O exists for which
(11) holds and if the singularity is not removable, then by i)
there exists a sequence - which we again label r, - for which (11)

holds and for which u(rk) <=-C ril s for some fixed C > O.

For any fixed k > 1, define

u(rl)-u(rk)

= - e | ;
v(r) = maxA{u(rk) + 2= (r :k), r +A°r} .

If k is Sufficiently large, there will be exactly two points
at which v(r) is not differentiable, and the lower derivate

D v of v(r) will satisfy (at all points)

- -2 '
Dv > r1 + Ao .

Since v(r) is continuous, there must exist at least one point
e R “ : _. v -1 _
fye Iy S 21 <r at which u(fl) = v(fl) 2 rlA_+ Aorl,

' -2 ’
and u (21) 2> 21 + Ao .

“The nth point 2n having been determined, let kn+1 be the

smallest integer for which ry, < f£ _ ; repeating the procedure

\ n+l n
with r, replaced by r, yields a point £ 41 ST o with
n+l n+l
CulEpyy) 2 Prin * Aofney and (R 2 205 4, and
4 - o, u(g ) + ~=» , We conclpde by induction the existence

n+l n+l ;
of a sequence 2k + O with those properties.




We now revert (for the same sequence) to the original

notation.rk, and considér, for fixed k, the auxiliary equation

| - 1 |
1 " tu - 1 n-1
(12) — »r) = —= (" ." sin yp)_ = =-(n-1) = nH

, -1 ( W . -1 r - T k

for a surface u(x) of constant mean curvature H,.

Lemma 3: Given . Lo Yo O with 0O < - le ey, < o < 1,

there is a unique solution v(r) of (12), for which sin ¢(rk)

= 0, and which has the properties: the solution is defined in

-1
an interval I, = (a,,b ), O <a <=-w” <b <- - u",

]
ot
L]

and satisfies sin ¢y(r) >0 in I,, lim sin y(x)
r+ak,bk ' :

If n = 2, then a, +-bk = =2 uil ;i 1f n > 2, this relation

: 1l -1
holds asxmptoticgl;y as a, +u.- or bk > u .

Proof: In what follows, we suppress'the index k. For the

most general real solution'of (12), there holds

sin ¢(r) = Hr + A '™
for some constant - A < & (EZL)n_l'Hl-n.
n\"n
Set .
1 n-l)n 1 .1-n ,,_
A= n ( o H (1~¢)

(13)

If O<¢e <1, the solution will exist on an interval (a,b)

determined by the two real roots Our 0 Of e

n-1 _ (1+9)"- 1 }

(14) e = n {0(1+0)

- | i 1 ‘
There holds -1 < g, < O < Tb< =1 ¢ lop! < lo,|: the minimum
| S |



of oa'and'the maximum of o), are attained in the limit as e » 1.

Asymptotically as ¢ -+ O,

e B L (2

If n = 2, (15) becomes an equality, and in that case
oa+ob=0.
The initial condition will be satisfied by the choice

(16) e = n(otl=a) (1+0)" T + 1 - (140)"

| where o is the value corresponding to Iy We note a(rk)'* o,
€ -+ n(l-a) as e u, + =1. One verifies immediately that a
solution of the type indicated is possible, with 0 < ¢ < 1,

for all a in the range

n-1 o _
—H-(1+°).<’° <1

This relation yields the condition of the lemma.

- l.emma 4: Under the conditionsof Lemma 3, there hold,

if n > 2,

(17) "{1‘(1"‘6)1/n_ { n—3f(1‘€)1/2n+ ,{1"(1-15)1/“}.‘ o, < _‘n_(_l%%l_j_

as fi-a-a A {{Zra-aV {ica-o ] o < {20

9

In particular, 1lim
_ oa

=1, If n=2 then -9_. =90, = 9¢.
e~+0 a b {-

"

Proof: Differentiating (14) yields

de

(19) > = n(n-1)0(1+a)n-2- .

Thus, 1if o 2> -1, (14) has the unique solution ¢(0) = O..

If n> 2 then €'(o) 2 n(n-1l)g, equality.holding only
at o = O. From this estimate the right sides of (17), (18)




follow directly.
To obtain the remaining inequalities we start with (16),

which yieids, for fixed €s .

d a l - ¢
(20) == = (n-1)
 a0? ' (l+o)n+;

Denoting by O o, the values of o, a at which a'(g) = O,

we find
= - _\1/n
(21) B a, = 1+ 0, = (1-¢)
Hence if o < o_, then a'(o) <O and o"(0) > (n-1) (1-¢) 1/7,

From this we conclude

.da n-1
(22) Ea < m.(d'dc)

and.noting that d(oa) = 1, we obtain the left side of (17)
from (22).after_a furﬁher integration.

If o > Oq then a'(o) > 0, a"(o) < (n-l)(14C)fl/n;
‘ thus, (22) holds also in this case. Integration and use of (2i)
yields the left side of (18).

We note also the expressions, for o = o4 or ¢ = Op

(23) e = 02 g—a-{-;-'[(li-o)n - (1"’“0)_]} |

(24) € = (g) o2 + 2(§)a5 +oees +>n(2)on

Lemma S5: Under the conditiom of Lemma 3, suppose -y <1,

_ : r .
and let Oy correspond to Lir Op to Iy e Then the change in

height §v between the values Ok and LN satisfies

n+2 n+l
2 l-a (140,))
- 7 J1 Q-e)® 1 1 . -1 2T% 1 b
(23) v < Ny e AT T s 1 v 3 I

(140,02 | (=)



- 10 -

Proof: We may write

: b
§v = g% 5 o 5 do
Ok l1-a
a . 1
. C . i )
= - L { S g g%_da + { - g% daj .
k a.k 1-a Jag l1-a

To estimate g% we start with (16). If 0 < °c then

a"(0) > (n-1) (1-¢) (1+o) 1) nus

a'(0) < (n—l)(l-e)(1+oc)-(n+l)(o—oc) ; on the other hand,

n+l)

a*(0) < (n-1) (1-€) (140, )" , which with the above estimate

bpnd (21) yields

- n+2
' : : "\ 2n
_ do -1/2 1 (1-¢) ™
(26) 0O < - = < L(o~a_) L =
da c ’ {37;:;3 n+1l
(1+ok)
Similarly, if o > o, Wwe find
: " n+l
' (140, )"
do -1/2 1 b
(27) 0 < =— < R(a=a) + R =
, da c {“————‘ 2n+1
2(n-1) :
"7 (1-e) 20
Thus,
‘ a 1
SO % ) o N W (R
12 @ f1-a fa-ac a, 'fl—a*{a-ac .
since a_ L . Formal integration yields the stated estimate.
l+a {5 - -

Lemma 6: let ﬁ(r), v(r) satisfy

(28) | (rn-ISin w)r = f(n-l}rn-lu v sin'w = —t




- 11 -

(29) (" lsin §)_ = ~tn-1)r" Yy, sin § = ==
r k 1+v2
[1+ve

in r sr < Iy Suppose u(r) > Uy in this interval, and
sin $(r,) 2 sin y(r ). Then u(r) < v(r) , u'(r) < v'(r) in

!.'k < r-<.rb .

Proof: Integrating the difference of (28), (29) yields

2 Y(sin ¢(r) - sin $(xr))

X

= —=(n-1) S pn—l(u-uk) dp + rz—l(sin ¥(r,) - sin Q(rk))
Tx

< . 0 *

1

iv) We return to consideration ofjthe.singular solution
u(r); for Which we have supposed the existence of a seguence
I * O with u = u(rk) z,—;;l + Aork . and have shown as a

consequence that the sequence can be chosen so that

(30) - u'(rk) + -

| | -2
(31) u'(rk) 2_rk‘ + A

-By Lemma 2, u(r) > u(rk) = uk in any interval r > r -
in which u(r) < O. We consider the solution v(r) of (29)
with v(rk) = uk., v'(rk) a‘u'(rk). By Lemma 3, this sélution

exists and has the properties indicated in that lemma, for all k

sufficiently large'that

u' ('_rk)

1+u’ (rk)



-12 -

By Lemma 5, v(r) < O on a<r<b for large k, hence
by Lemmas 2 and 6, u(r) < v(r) on r, <rc< b. From Lemma 5
we then cbnclude that the change in height §u on this interval

satisfies, for any n > 0,

(32) - -u du < +n

{n-l
for all k sufficiently large.

We have by hypothesis
L 2
o = (1 + ukrk) < AoTy

and o, < Op- Referring again to

de _ ; n-2
(19) 3 n{n-1)o(1+0)
we find

de n(n-1)

do > 2n--2 g

in the range -% €0 <0. If -1 <0 < -%- there holds in any

event €'(g) > O; thus

n(n-1) 2 -2 n(n-1) 2
efa,) > on1 min{o_, 2 "} 2 Pou ol .
If o > 0, (19) yields, since o < H%T ,
g  _a"!
do (n-l)n+1
from which _
. ) o
l_1!1 1_ ab
€ < +1 .
(n-1)" 2

We conclude, for the solution considered,

' 2
, 2 (n-1)™* 2
(33) % > —2-5;;172-— 9, .

We have
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oa < °k = —-(1 + rkuk) .

From the given relation
| A r - nuy - 11 < 0
we conclude
- ' &&o :
2lork < -“k{ 1 + -T' -1
u _
k
so that, for any 8 <1,

-1, Bl
Yk < o, 3

for all lukl sufficiently large, depending on 8. Thus

-

BA
o
6, < = ——
a 2
Y
so that from (33)
. ntl
: N 2 BA '
(n-1) o _ -2
o > n n-2 u2_'Aocn,8“k
22 2 k
"n
and”therefor ‘
I T T vewme:
b b 1l + *ocn,B
| -1

for sufficiently large 'ukj“ But by'Lemmas 5 and 6,

- ) = u +su < u - —T— - L
Y% uir, Y u Y uk{;:i | U, n

so that

1 i B |
b ) “Q' ” : uk(x BC ) -{nil ) n)' )

-

l
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Since

1 b n-1

uk 1+ob

there follows. finally

1l . (
- = u > A
r, b

and we conclude from the result of ii)

Lemma 7: Let u(x) be a solution of (2) in O < r <R,

with an isolated singqularity at r = O, such that u(rk) <0

for some sequence I * O. Then either the singularity is

removable or for any 8, O <g <1 and

(35) io S ( 2_ nfn—l) n 1

-1 n | n-1 Bcn,

B
‘there holds

1 A
(36) u(r) + T < Aor

for all sufficiently small r.

v) We proceed to use Lemma 7 to complete the main results.
We note first that the estimate (36), together with the equation

(2), yields, for t < r,
' r
n= “lsin v(t) - (n-1) L "

r 1sin y(r) = tn

Ly ap

T - —=(r

0 n+l

S Tnflsin yiT) + (rn-l_ n-l) y b=l n+l Tn+1)» ,

i

from which,'lettihg T+ 0,

n-1 _2
—— .

. A
(37) sin y(r) > l,f Ao nFl e
It follows in particular that the condition of Lemma 3 is
fulfilled for all sufficiently.small r. If the data of that

lemma are chosen from the given solution u(r), there follows
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by (13), (36)

(38) A r < 0 .

2
ok <

%

| L : .
From (16) follows, for a > a_ > O and |o| small,

o
e < (n-1) (1+no+[F o®) - nall+(n-1)e) + 1 .
Thus, for’the‘given solution, (37) and (38) imply

4 n-1 _2 n{n-1) :
e < nxo ntl ro 4+ e—_——— r .

In particular, ¢ + O as r + 0. It follows from Lemma 4 that

also 0,00 * 0O and

g
b
(39) - 1 .
. ca
" Suppose there were a sequence Iy - O along which
| . 1 ‘ t
1
4oy oy >ttt Ae Ny

for fixed A°-> 0. Then
1 _ %

I‘b 140

" _ fukf-l + ooy + o(ob))

= -uk(-l - o, +.°(°a))

> -uk(-l + Aori + o(ri))

as r, ~ 0 by (39), since
' v . . 2
o, < O = gkrk -1 < Aork

by (40).
We have again | |
N e — °(%) )
- Eukﬁn-l u,

s0 tha#, using (36),
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n

) r, + o(r,.). .
n-1 k v k

This inequality contradicts the result of ii) if 2 > §Z§§ .
_ n-1

The proof of Theorem 1 is thus'éomplete.

vi) Suppose now the existence of a sequence r * O along

which

4
Q. = sin wk < 1 - Yr, -

From (36) follows °k + 0, while from (16) we obtain
€ > n(l-a )[1+(n¥1)d ] > n r4(1-A r2)
k 'k Yo 127 2% %

for all sufficiently small |o,|. By Lemma 4,
’ 2¢ ey - €
% 2 n(n-1) (1-¢) n

2 j2y  _ 4
(41) Oy > Ty Yn-1 » Cc ry

and hence

for a fixed constant C, as' r -+ O.Again using Lemmas 5 and 6, -

v

L < 1- Tt _ -0 }
while by (36), (41),

1 (1 2 [ 2y 1
- Xy, > % {1 Tx Tn-1 + C Ty }

so that, by Lemma 7,

1 ( 2y " ) 2
- - > { - r, - Ccr. .
: Iy ub n-1 {;:i k k

From (16) we find ¢ -+ O, hence by Lemma 4, op * 0. Sihcé"

r 140
rb Ob -

Theotem 2 now follows from Theorem 1 and from (10).
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vii) We remark that a bound from above for sin ¥ in an
average sense follows immediately from Theorems 1 and 2.
A more precise estimate could be a significant step toward

a strict uniqueness proof for the singular solution U(r).
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