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Chromatin Regulatory Signatures in Saccharomyces cerevisiae 

Randy Wu 

 

Abstract 

Eukaryotic transcriptional regulation is mediated by the organization of chromatin 

in promoter regions.  This thesis describes three projects which examine the relationships 

between chromatin and transcriptional regulation in the budding yeast S. cerevisiae.  First 

we describe a novel computational algorithm fREDUCE for the elicitation of regulatory 

motifs given sequence and expression data as inputs.  fREDUCE is used to find TnC 

motifs, novel repetitive sequences occurring prominently within nucleosome-free regions 

of promoters.  The second chapter describes the relationships between TnC and chromatin 

structure in fine details.  We conclude that TnC motifs constitute directional signature 

sequences which likely play roles in defining the locations of nucleosome-free regions in 

a majority of yeast promoters.  Finally, we also undertake a quantitative and systematic 

examination of the relationship between transcription factors, their binding sites, and 

their corresponding chromatin environments.  We find that the yeast transcriptome 

encompasses a diverse set of signature TF-chromatin relationships.  Taken together, these 

three studies examine multiple facets of the intricate nature of chromatin regulation in a 

simple eukaryotic organism.   
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Introduction 
 
 
 

Chromatin refers collectively to the intricate complexes of protein and nucleic 

acids that make up chromosomes inside the nuclei of eukaryotic cells. The fundamental 

packing unit of chromatin is the nucleosome, which consists of 147 base pairs of DNA 

wrapped around a core octamer of histone proteins[1,2]. Individual nucleosomes 

connected by intervening linker DNA comprise the “beads-on-a-string”[3] model of 

chromatin organization at its lowest level. The “beads-on-a-string” are further packed 

into a hierarchical scheme of successively more complex macromolecular structures, the 

largest of which is the metaphase chromosome (Figure 1).   

The elaborate organization of eukaryotic DNA as chromatin is thought to serve 

several essential biological functions.  First, chromatin condenses the immense amounts 

of genomic DNA (3 billion base pairs in human), allowing it to be packaged into the 

small volume of typical cells (microns in diameter) in an orderly way.  Second, chromatin 

provides DNA with a structural scaffold, giving it the physical integrity required for 

cellular events such as mitosis and meiosis in which large-scale genomic restructuring 

takes place.  Finally, chromatin serves multiple regulatory functions that control DNA 

replication and gene expression.   

 Chromatin can exert regulatory influences on the expression patterns of 

underlying genes through 1) the structural repression of genes as heterochromatin[4], 2) 

the alteration of expression through covalent post-translational modifications of histone 

C-termini tails (reviewed in [5,6]) and 3) the more subtle influence on transcription factor 
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binding sites (TFBS) exerted by nucleosome-positioning.  Among these categories of 

chromatin regulation, the last is perhaps the least well-understood and is the focal topic of 

this thesis.   

It is generally appreciated that the nucleosomal context of a TFBS is an important 

determinant of its function.  Perhaps the most best-known system for examining the 

detailed relationship between nucleosome-placement and transcription is the S. cerevisiae 

PHO5 promoter.  PHO5, encoding an alkaline phosphatase, is under regulation from the 

transcription factor Pho4p.  The Pho4p binding site is situated in the PHO5 promoter in a 

nucleosome-free region which is flanked by four positioned nucleosomes[7].  The 

placement of the Pho4p site in a nucleosome-free region is, in this case, critical to correct 

gene function[8].  In a more recent study, it has been demonstrated that both binding sites 

that are nucleosome-occupied as well as those that are nucleosome-free can contribute to 

transcriptional regulation, albeit with different functional roles[9].  In this case, it was 

found that extra-nucleosomal binding sites are initially recognized by the transcription 

factor and contribute to the induction of transcription, while intra-nucleosomal binding 

sites are initially hidden from the transcription factor but contribute to the steady state 

levels of gene activation.   

The complex interplay between nucleosome positioning and transcription is made 

possible by the fact that nucleosomes do not occupy DNA in an ad hoc way.  It is now 

well established that nucleosomes generally occupy predictable and well-defined 

positions in eukaryotic genomes with only modest (but functionally significant) 

variations over different environmental conditions.  As such, with the advent of high 

throughput methods (including tiling microarrays and sequencing) it has been possible to 
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reconstruct the genome-wide nucleosomal “atlas” for several organisms[10,11].  The 

availability of these data allows unprecedented opportunities for the detailed 

computational study of how nucleosomes relate to their underlying genes.  This thesis 

presents a set of three studies, each of which addresses one question related to the 

phenomena of transcriptional regulation through nucleosome placement.   

 

fREDUCE:  detection of degenerate regulatory motifs using correlation with 

expression 

One of the central questions this thesis attempts to address is:  how do DNA 

sequences affect the positioning of overlying nucleosomes?  The first two chapters of this 

thesis address this question in two successive parts.  First it is necessary to identify what 

candidate sequences may contribute to the positions of nucleosomes.  Because we are 

concerned primarily with transcriptional regulation we restrict our analysis to intergenic 

sequences that lie 5’ to genes.  Thus we desire an algorithm whose inputs consist of 

promoter sequences and nucleosome positioning data and which outputs DNA motifs.  

While many existing algorithms (reviewed in Chapter 1) have these characteristics, we 

were concerned that, unlike TF binding sites with highly defined motifs, nucleosome-

influencing sequences are likely to be degenerate motifs occurring in high copy number.  

Thus, traditional algorithms may potentially miss important candidates.   

To address this concern we devised the novel algorithm fREDUCE, which is an 

improved version of its predecessor REDUCE (Regulatory Element Detection Using 

Correlation with Expression).  Intuitively, REDUCE works by considering input 

sequence and expression data as vectors; a defined set of motifs are processed into 
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vectors of motif counts per promoter, vectors are correlated with expression data, and 

those motifs with the most significant correlations are chosen.  fREDUCE allows the 

consideration of motifs expressed in the form of IUPAC symbols for multiple bases, 

allowing the systematic treatment of degenerate sites in the REDUCE scheme.  Key to 

the fREDUCE algorithm are a number of computational shortcuts which dramatically 

improve its efficiency.   

 

Directed A/T-tracts:  a novel signature for nucleosome-free regions in yeast 

One potential motifs are identified, they must be analyzed for how they relate to 

the positions of nucleosomes.  Many of the top-scoring sequences candidates identified 

by fREDUCE take the form of poly-A and poly-T repeats.  These A/T-tracts generally 

appear to negatively correlate with positions of nucleosomes, indicating early on that they 

may function to repel nucleosomes.  Another curious observation from the fREDUCE 

analysis is that many of the tracts appear as GAn or TnC; that is, there appears to be a 

G/C cap that is placed onto the ends of A/T tracts in a directionally specific manner.  In 

the second chapter, we describe a set of computations which characterize the specific 

distributions of A/T tracts as well as the manners of their capping in yeast intergenic 

regions.   

Our results were twofold.  First, we observed that A/T tracts followed a 

characteristic distribution within nucleosome-free regions:  A-tracts appear 3’ relative to 

T-tracts and the two are symmetric relative to the central coordinate or the NFR.  

Furthermore, the width of the NFR appears to correspond with the locations of the A/T-

tracts in a strongly quantitative way.  Second, G/C capping of A/T-tracts, while a 
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phenomenon occurring in intergenic regions in general, is especially prominent within 

NFRs.  The highly characteristic placement of capped A/T-tracts led us to hypothesis that 

they play formative functions in defining the bounds of promoter NFRs, and that their 

directionality may be important in this capacity.   

 

Surveying TF-chromatin profiles in the yeast genome 

Having analyzed in extensive detail the functions of a putative set of NFR-

directing sequences, in Chapter 3 we step back and look at how nucleosome positions 

affect transcriptional regulation.  We try to address a number of questions such as 1)  Do 

TF binding sites on the whole prefer to lie in nucleosome-free regions, where are are 

presumably more free form steric hinderance?  2)  How do nucleosomes affect the ability 

of TFs to bind to their cognate sites?  3)  How do nucleosomes affect the ability of bound 

transcription factors to carry out their intended function?  All of these questions can be 

asked independently for each of the 122 TFs surveyed.   

We do this by considering the nucleosome-occupation, TF-binding, and sequence 

conservation data collectively and creating a set of derived parameters each of which 

answers one of the stated questions.  The TF-chromatin relationships of each 

transcription factor can thus be characterized by a set of four derived parameters.  By 

clustering TFs according to the derived parameters, we gain a global view of trends in 

TF-chromatin relations in the transcriptome.   
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Figures 

Figure 1.  Views of chromatin at various levels of detail.   
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Figure 2.  The PHO5 gene as a model system for examining the role of nucleosome 
context in transcription (Lam et al. 2008).  PHO5 contains two binding sites for the 
transcription factor Pho4p: a strong site located in a nucleosome and a weak site located 
in a nucleosome-free region.  It was observed that the induction profiles of genes 
containing mutant promoters behaved as if the nucleosomal Pho4p site was masked.   
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Figure 3.  The determination of genome-wide nucleosome positions using a tiling-array 
approach (Lee et al. 2007).     
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Chapter 1 

fREDUCE: Detection of Degenerate Regulatory Elements 

Using Correlation with Expression 

 

Abstract 

The precision of transcriptional regulation is made possible by the specificity of physical 

interactions between transcription factors and their cognate binding sites on DNA.  A 

major challenge is to decipher transcription factor binding sites from sequence and 

functional genomic data using computational means.  While current methods can detect 

strong binding sites, they are less sensitive to degenerate motifs.  We present fREDUCE, 

a computational method specialized for the detection of weak or degenerate binding 

motifs from gene expression or ChIP-chip data.  fREDUCE is built upon the widely 

applied program REDUCE, which elicits motifs by global statistical correlation of motif 

counts with expression data.  fREDUCE introduces several algorithmic refinements that 

allow efficient exhaustive searches of oligonucleotides with a specified number of 

degenerate IUPAC symbols.  On yeast ChIP-chip benchmarks, fREDUCE correctly 

identified motifs and their degeneracies with accuracies greater than its predecessor 

REDUCE as well as other known motif-finding programs.  We have also used fREDUCE 

to make novel motif predictions for transcription factors with poorly characterized 

binding sites.  We demonstrate that fREDUCE is a valuable tool for the prediction of 



 11 

degenerate transcription factor binding sites, especially from array datasets with weak 

signals that may elude other motif detection methods.   

 

Introduction 

Transcriptional regulation is modulated by a complex network of interactions 

between regulatory proteins and their binding targets on DNA.  To comprehensively 

understand gene regulation at a systems level, a primary goal is to decipher the 

“regulatory code” that consists of knowledge of all transcriptional regulators, their DNA 

binding profiles, and their regulatory targets [1].  Regulatory information can be inferred 

from the combined analysis of genomic sequence with an abundance of microarray based 

methods such as ChIP-chip (chromatin immunoprecipitation on microarray)[2-3] and 

transcription factor perturbation experiments [4-5].  However, highly reliable regulator 

specificies have been unattainable for many regulators probed by such genomic-scale 

methods [1] since weak signals from regulators are often very difficult to isolate from 

experimental noise.    

Thus, from a computational standpoint, a major challenge is to develop 

techniques that can extract maximal regulator specificity information from imperfect data.  

A common strategy among computational tools developed for this purpose is to first 

obtain a small group of genes in which a given motif may be statistically over-

represented, from which the motif can then be elicited using methods such as position 

weight matrix updating and word enumeration [5-10].  While highly effective in some 

cases, a potential drawback of this approach is that the process of isolating a subgroup of 

sequences, typically done using clustering, cutoffs, or functional categorization, can be 
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arbitrary.  The delineation of signal from background may be poor for noisy experimental 

data, where cutoffs can lead to significant loss of information.  Other algorithms, such as 

dictionary- [11] or steganalysis-based [12] methods, do not rely on clustering but can 

benefit from subgroup selection.   

A technique used by many motif-finding algorithms is to integrate expression data 

into the search process [12-14].  For example, the algorithm REDUCE (Regulatory 

Element Detection Using Correlation with Expression) avoids subgroup selection in a 

natural way by genome-wide fitting of motif counts to expression data [15].  REDUCE is 

a deterministic method that first enumerates oligonucleotides and then identifies words 

whose occurrence in promoter sequences correlate most strongly with expression data.  

This procedure is applied iteratively to produce a set of oligonucleotides that produce the 

best simultaneous fit to the data.  REDUCE requires only a single expression dataset and 

makes use of the entire genomic dataset (both signal and background) to assess the 

significance of individual motifs.  This method, which has already been widely applied 

[16-21], allows greater sensitivity to weak transcriptional signals and facilitates the 

discovery of combinatorial effects between regulators.   

One weakness of REDUCE is that it can miss weak but biologically significant 

variants of the regulator site.  Highly degenerate motifs whose individual variants fall 

below the detection threshold will be missed altogether.  This is particularly the case for 

regulators in higher mammalian genomes, which can exhibit strong site to site variation 

in specificity.  Thus, we have generalized the REDUCE approach to examine words 

containing degenerate IUPAC symbols representing multiple bases (i.e. S=C or G).  

However, a straightforward extension of REDUCE using exhaustive enumeration of 
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degenerate motifs becomes impractical when the motif length or number of degenerate 

positions increase.  Specifically, by including m IUPAC symbols in a word of length l the 

motif search space increases by a factor of 
m

mlm

l









− 4

11

)!(!

!
where 11 is the number of 

IUPAC symbols (excluding A,C,G,T).  For example, the computational cost is increased 

by 340-fold for l=10 and m=2, and by 3500-fold for m=3.  Therefore, we have developed 

fast-REDUCE (fREDUCE), a significant re-implementation of the REDUCE algorithm 

that allows efficient searches of the extended space of degenerate motifs.  We have 

applied fREDUCE to detect multiple motifs for transcription factor binding sites in yeast 

as well as human.   

 

Results 

Algorithm.  The original version of REDUCE identifies motifs by exhaustively 

correlating all oligonucleotides up to length l in promoter sequences with expression data.  

However, the direct computation of the Pearson correlation coefficient is computationally 

laborious and is not well suited for analyzing large spaces of degenerate oligonucleotides.  

fREDUCE uses the following strategy to efficiently compute the Pearson coefficients of 

the most significant degenerate motifs (Figure 1):  1) A list of degenerate motifs that can 

be derived from the sequence data is generated.  2) For each degenerate motif, we can 

quickly compute a “pseudo-Pearson” coefficient, an estimate of the actual Pearson 

coefficient.  The pseudo-Pearson coefficient is guaranteed to be an upper-bound on the 

actual Pearson coefficient and is used as a filter to eliminate most (typically >99.9%) of 

the motif list.  3) Actual Pearson coefficients are computed and the top motif is found and 
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4) The contribution from the top motif is subtracted from the expression data to form a 

residual, which is used for subsequent rounds of motif searching.   

 

Performance Assessment with Yeast ChIP-chip  To assess the performance of 

fREDUCE, we applied the algorithm to 352 ChIP-chip experiments from Harbinson et. al. 

[1] involving 203 known and putative transcription factors in the budding yeast S. 

cerevisiae.  For each ChIP-chip experiment, we correlated the normalized array data to 

the corresponding yeast intergenic sequences, eliciting motifs of up to length 8 and 

containing up to 2 IUPAC degenerate symbols.  In order to verify the correctness of our 

predictions, we compared these results to a benchmarking set consisting of 65 high 

confidence motif logos assembled from the predictions of six separate motif finding 

algorithms [1].  For 47 of 65 benchmarks fREDUCE produced an IUPAC motif that was 

identical to the annotated motif, including correct degeneracies (Table 1).  In comparison, 

we ran AlignACE [22-23] on the same 65 ChIP-chip experiments.  Using the same 

filtering and comparison criteria, we found that AlignACE detected the annotated motif 

for only 36 of 65 regulators.  We also compared the performance of fREDUCE with 

those of the other 5 motif finding algorithms used to assemble the benchmark motifs 

(Figure 2).  Even though the benchmark motifs are likely to be biased toward the six 

programs from which they were originally found, fREDUCE still stood out as having the 

best individual performance.   

We also examined the performance of fREDUCE on 38 regulators for which 

Harbison et. al. detected motifs with lower confidence.  Noting that many of these 38 
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predicted motifs could contain inaccuracies, fREDUCE matched 7 of these predictions 

while alignACE matched 3.   

 

Comparision to the original REDUCE and to MatrixREDUCE  To assess the ability 

of fREDUCE to correctly capture motif degeneracies, we systematically compared the 

predictions made by fREDUCE to those made by its predecessor REDUCE on the subset 

of benchmark motifs containing significant degeneracy.  Of 15 degenerate benchmark 

motifs, fREDUCE assigned IUPAC degenerate symbols identically to the benchmark in 

11 cases (Table 2a).  In the 4 remaining cases (HAP1, MSN2, STB5 and SUM1) 

fREDUCE made a prediction which is consistent with the benchmark motif while having 

a different degeneracy (e.g. CGGkGwTA vs. CGGwsTTA for STB5).  In all of these 

cases, fREDUCE assigns the degenerate motif a more significant p-value than the 

corresponding non-degenerate motif.  We note that in some cases motif degeneracies can 

be detected by the original REDUCE as separate motif predictions.  This is especially 

true for regulators with strong signal (AFT2, CIN5, FHL1, GCN4, SFP1 and YAP7).  

However, in 5 cases degeneracies successfully predicted by fREDUCE were not 

detectable at all by REDUCE (CAD1, PHO4, SNT2, TEC1 and YAP1).  This is typically 

characteristic of regulators with weaker signal.   

 We also compared the performance of fREDUCE to MatrixREDUCE, a recently 

introduced REDUCE-variant that refines motifs elicited by REDUCE into Position 

Specific Affinity Matrices (PSAM) [24-25].  MatrixREDUCE matched 43 of the 65 

benchmarks as well as 6 of 38 motifs in the lower confidence set.  In the high confidence 

set, six predictions were specific to fREDUCE (HAP4, HSF1, INO4, LEU3, NFG1 and 
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THI2) while two were specific to MatrixREDUCE (MCM1, SIP4).  Specific predictions 

from the lower confidence set included ROX1, SWI5, UME1 for fREDUCE and PUT3, 

RLM1 for MatrixREDUCE.  Overall, fREDUCE has a slightly stronger joint 

performance with 9 uniquely correct predictions from the two sets versus 

MatrixREDUCE’s 4.  In the former cases, MatrixREDUCE did not seem to begin with 

the correct seed, suggesting that an enumeration strategy is beneficial for some regulators.  

In the latter cases, fREDUCE does not find the correct motif because the long and fuzzy 

nature of these motifs makes them too costly for enumeration.  We note that some of 

these differences are dependent on run parameters; with the parameters we have used 

MatrixREDUCE took an order of magnitude longer to run on average than fREDUCE 

(data not shown).   

  

Prediction of novel motifs from yeast ChIP-chip   Next we looked to see whether 

fREDUCE was capable of detecting novel motifs for transcription factors with 

uncharacterized specificities.  Of the remaining transcription factors in the ChIP-chip 

study with no benchmark logo, we found 24 cases where fREDUCE made nontrivial (not 

repetitive poly-dA/dT sequences) motif predictions with p-values under 10-3 (Table 3).  

In all of these cases, there has been little to no experimental information available 

regarding the specificity, and existing computation methods have yielded little additional 

insight.  Nevertheless, in a few cases we found evidence in the literature which supports 

the novel motif predictions we have made with fREDUCE.  For example, the binding site 

of ARO80, a regulator of the aromatic amino acid structural genes, has been 

characterized in two genes as being tandem repeats of the sequences TAACCG and 
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TTGCCG [26].  From the ChIP-chip data, fREDUCE elicited the motif GATAACCG 

with high significance (p=10-41) as well as the degenerate motif T(A/G)CCG(A/C) (p = 

10-5.6), which is similar to both of the characterized repeat elements and reflects their 

degeneracies.  We also considered the regulator MTH1, which negatively regulates the 

glucose sensing signal transduction pathway by interacting with the transcriptional 

repressor Rgt1p [27].  Although it is unknown whether Mth1p has intrinsic DNA 

sequence specificity, Rgt1p has been shown to have the specificity CGGANNA [28].  

fREDUCE found the matching motif GGAGRA (p=10-3.57), which is compatible with the 

notion that Mth1p binds to DNA in association with Rgt1p.   

 

Motif Elicitation in Human Hepatocytes   In higher eukaryotes, motifs tend to be more 

degenerate and dispersed among longer intergenic regions.  A common benchmark set 

used to evaluate the performance of computational algorithms in higher eukaryotes is the 

liver specific dataset [29].  Krivan et. al compiled a set of experimentally defined 

regulatory elements upstream of genes that were expressed exclusively in liver or in a 

small number of tissues including liver.  From this set of genes, they found that 

hepatocyte-specific gene expression is mainly regulated by a small set of transcription 

factors (TFs), including HNF-1, HNF-3, HNF-4, and C/EBP.  HNF-1, HNF-4, and 

C/EBP are known to be transcriptional activators based on TRANSFAC [30] annotation. 

We ran fREDUCE on human adult hepatocyte expression data to capture binding 

sites of liver-specific transcription factors.  fREDUCE captured both the forward and 

reverse complement of the HNF-4 binding site as well as two key degeneracies in the 

motif core as published in Krivan et. al. (Table 2b).  HNF-4 is known to be linked to gene 
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expression in mature liver [29], which is consistent with the expression data set used in 

our analysis.  In contrast, REDUCE was not able to capture the known binding sites, 

which is most likely due to the degeneracy involved in the known consensus.  These 

results show the potential of using fREDUCE to identify regulatory elements in higher 

eukaryotes, including human. 

 

Discussion 

 Despite the availability of powerful techniques such as ChIP-chip, the binding 

specificities of many transcription factors remain uncharacterized.  This can be due to 

several reasons, including 1) regulators that have few genomic targets 2) regulators which 

interact weakly or indirectly with their targets and 3) regulators which bind to their 

maximal set of targets only under very specific environmental cues, which may be hard 

to find experimentally.  fREDUCE offers increased sensitivity in these cases because it 1) 

uses the entire array data set for correlation and 2) searches all possible degeneracies.  

While fREDUCE is in some respects similar to motif regressor [14] and matrixREDUCE, 

a key distinction is that fREDUCE detects degenerate motifs de novo by exhaustive 

enumeration.  In contrast, matrixREDUCE refines degeneracies from non-degenerate 

seeds and motif regressor selects among candidate matrices using correlation with 

expression.  Thus, fREDUCE may be advantageous when motifs are difficult to detect in 

a non-degenerate form or are missed in the candidate set.   

By comparison to 65 benchmark logos in yeast, we see that fREDUCE is 

comparable to or greater in detection power versus algorithms like AlignACE for strong 

motifs that are relatively easy to detect.  Even in these cases, fREDUCE outperforms the 
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original REDUCE algorithm by accurately predicting known degeneracies.  The most 

advantageous use of fREDUCE, however, is for the detection of weak motifs which may 

lie at the border of detection.  It is difficult to verify the correctness of many of the motifs 

elicited in these cases because of their poor characterization.  Nevertheless, we have 

found two cases where fREDUCE was sensitive to subtle signals:   ARO80, for which 

sites are highly degenerate, and MTH1, which may have a weak signal due an indirect 

interaction with DNA.  We have also shown that fREDUCE is capable of capturing the 

HNF-4 binding site in hepatocytes, demonstrating that this algorithm is generally 

applicable to the detection of degenerate motifs in mammalian cells.   

 

Conclusions 

We have presented the motif prediction algorithm fREDUCE, a refined variation of 

REDUCE specialized for the detection of degenerate motifs.  The two primary strengths 

of fREDUCE are 1) it maximizes data utilization by fitting all expression data and 2) it 

searches motif degeneracies in a comprehensive and unbiased way.  We have shown that 

fREDUCE is an improvement upon the existing REDUCE algorithm for degenerate 

binding profiles and that it can outperform existing motif finding methods on yeast ChIP-

chip benchmarks.  Furthermore, fREDUCE is able to detect degenerate signals in yeast 

and human.  Thus, fREDUCE should be a valuable computation tool for the detection of 

subtle motifs.     

 

Methods 

Algorithm .   
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The pearson correlation between expression values and counts of a possibly 

degenerate motif D is given by:   
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Where i is an index over genes, Ei is the expression of gene i, ni
D is the number of motif 

counts matching D in sequence i, n is the average of ni
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 for all S and readily construct the 

numerator of P(D) for any D.  However, the denominator is not linear in D
in  and cannot 

be expressed as a sum over S.  Nevertheless we can compute a pseudo-Pearson 

coefficient: 
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Hence the magnitude of pseudo-Pearson coefficient is an upper bound for the magnitude 

of the actual Pearson coefficient, allowing rapid screening of all degenerate motifs.  

Actual Pearson values can then be computed for a small subset of motifs with pseudo-

Pearson values above a given threshold.  This scheme is effective except for motifs where 

22~ nGn < , in which case the Pearson coefficient must be computed directly.  Thus, 

fREDUCE will give a computational advantage as long as the average motif count n is 

less than one.   

 Specifically, fREDUCE uses the following procedure:   

(1) For each oligonucleotide string S of length L that appears in the sequence, we pre-

compute the quantities ∑
=

=
G

i

S
ii

S
d ngp

1

, ∑
=

=
G

i

S
i

S n
G

n
1

1
, and ∑

=
=

G

i

S
i

S
i

S

nnn
1

2  

(2) We generate a list of all possible nucleotides containing up to l degeneracies 

matching the set of S.   

(3) We rapidly compute corresponding quantities for all degenerate strings D 

matching S: ∑∑ ==
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2~ and use them to construct the pseudo-Pearson 

coefficient 22~/ nGnpD − .  We save only those motifs whose pseudo-Pearson 

coefficients exceed a threshold corresponding to the p-value cutoff for its motif 
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class.  For the motifs whose pseudo-Pearson coefficients cannot be calculated 

directly (because 22~ nGn ≤ ), we compute the true Pearson.   

(4) We sort the remaining motifs in decreasing order of the magnitudes of their 

pseudo-Pearson and compute true Pearson coefficients in this order.  We stop 

computing when the magnitude of the pseudo-Pearson value of the current motif 

in the list falls below the magnitude of the true Pearson coefficient of the top 

motif.   

(5) Finally, we compute the residual gene expression D
iii nDPgg )(~ −= , that is, the 

expression data after the effect of motif D has been taken into account.  After a 

renormalization, the residual is used to carry out subsequent rounds of motif 

finding.   

To estimate the statistical significance of motifs, we note that since |P(D)|<<1, its 

distribution is well approximated by a Normal distribution.  We convert P(D) into a z-

score: 
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This z-score is used to derive the p-value [15]: 
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To correct for multiple testing, we first apply a Bonferroni correction factor of 

L

m

 

 
 
 

 
 Dm 4L−m to each motif of length L containing m IUPAC symbols.  This factor 

corresponds to the total number of motifs in the class of L and m, where D=11 or 15 

depending on whether 3-fold IUPAC symbols are included.  We then apply a second 
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correction factor for the total number of motif classes examined for a particular run.  For 

example, with the settings (L=7 and m=1) we would examine all motifs in the classes 

(6,0), (6,1), (7,0) and (7,1) giving a second correction factor of 4 for each motif (we 

require a minimum motif length of 6).  This weighted method of correction has the 

advantage of accounting for the fact that motif classes with larger values of L and m tend 

to give higher numbers of false positives.   

 

fREDUCE performance testing.  We ran fREDUCE on the REB1_YPD ChIP-chip data 

from Harbison et. al. [1] for varying L and m on an 2.40 GHz Intel Xeon processor.  In all 

runs, the known Reb1p binding site CGGGTAA or close variants appeared as the top 

motif (data not shown).   

 

Motif Detection from Yeast ChIP-chip.  We applied fREDUCE to 354 yeast ChIP-chip 

experiments involving 203 known and putative transcription factors [1].   Each 

experiment was analyzed with fREDUCE using the corresponding set of yeast intergenic 

sequences, searching all motifs up to length 8 containing up to 2 two-fold IUPAC 

degenerate symbols.  We filtered the set of motifs found for each fREDUCE run by three 

criteria.  First, since yeast intergenic sequences have relatively low G/C content, we 

eliminated motifs which only contained the letters A/T/W as such motifs tend to have 

inflated correlation coefficients.  From the remaining list of motifs, we chose the top 

three most significant motifs for further comparison.  Accounting for the fact that we are 

eliciting motifs from several hundred experiments, we also discarded motifs with 

corrected p-values less significant than 10-2.  If the given transcription factor was 
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associated with ChIP-chip data under multiple environmental conditions, then filtered 

motifs from all conditions were combined and the top three chosen.  The final motifs for 

each transcription factor were compared to reference motifs predicted by Harbinson et. al. 

based on a composite of several motif finding algorithms [1].  We extracted IUPAC 

representations of reference motifs from [31], which contained 102 specificities of which 

65 were considered high confidence. Each reference motif was compared to their 

corresponding fREDUCE predictions using a sliding window string comparison.  

Predicted motifs are considered a match if there is at least one window where all IUPAC 

characters are consistent between both strings.  Motif predictions made for transcription 

factors with no reference motifs were compared to literature.   

 

Comparison to non-degenerate REDUCE.  From the 65 high confidence benchmarks, 

we selected cases where the annotated motif had at least one IUPAC character.  In 15 of 

these cases, both fREDUCE and REDUCE made correct, if not correctly degenerate 

predictions.  In 11 of these 15 cases fREDUCE made the correct IUPAC assignments.  

For each of these 11 cases, we considered whether the degeneracy can be assembled from 

non-degenerate motifs with p<0.01 predicted by REDUCE.   

 

Comparison to other motif-finding algorithms.  We obtained the alignACE package 

and ran all ChIP-chip data with the default parameters using probes with p-values below 

0.001.  The output alignment was converted into an IUPAC string using the method 

described by Cavener et. al. [32] and the resulting motifs were compared to reference 

motifs in the same way as the fREDUCE motif predictions.  Details of alignACE motifs 
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found and comparisons to alignACE motifs from Harbison et. al. are available in Supp. 

Table 1.  We also obtained MatrixREDUCE [33] and ran all ChIP-chip data against the 

provided yeast sequence file Y5_600_Bst.fa.  Default parameters were used except that 

we set max_motif=10 for consistency with our fREDUCE runs.  For the other five 

algorithms, we tallied the total number of references to each algorithm from the list of 

matrices on Harbison et al. supporting website [34].   

 

Motif Detection from Human Liver Tissue.  158 custom made Affymetrix gene 

expression arrays for 79 different human tissues (2 replicates each) were obtained from 

Novartis in a publicly available database [35-36].  The arrays were normalized using 

gcrma [37-38] and the probes were annotated using Ensembl gene annotation [39] for 

human build 35.  To study adult liver specific gene expression, we first normalized 

expression values for each liver tissue replicate against the average expression of all other 

tissues (excluding the 2 liver tissue experiments)  The expression value of each gene in 

liver tissue experiments is represented as the following z-score:   

 

 

 

Where n is the liver tissue experiment replicate number, g is the index over genes, Eng
liver 

is the expression value of gene g in replicate n, µother is the mean expression value of gene 

g in non-liver tissue experiments, and σother is the standard deviation of gene g in non-

liver tissue experiments.   
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 Human genomic sequences (build 35) were extracted 1000bp upstream from the 

transcriptional start site (TSS) if known, or from the initiation codon, based on Ensembl 

v35 [40].  The repeat masked promoter sequences were mapped to corresponding z-

scores, which represent gene expression.  This resulted in a final set of 11,710 paired z-

scores and promoter sequences for input into fREDUCE.  We then ran fREDUCE on the 

z-scores for each replicate of the liver tissue on the basis that a higher z-score translates 

to higher expression in liver tissues compared to the other tissues.  Two different sets of 

parameters were run on each replicate as follows: length 8 with 0 IUPAC symbols and 

length 8 with 2 IUPAC symbols.   

 

Software Availability and Requirements 

• Project Name:  fREDUCE 
• Project Home Page:  http://genome3.ucsf.edu:8080/freduce 
• Operating system: Linux 
• Programming languages:  C++ 

 
Source code and example usage are included in the release file fREDUCE-1.0.tar.gz.   

http://genome3.ucsf.edu:8080/freduce
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Tables 
 
Table 1.  fREDUCE predictions from 65 yeast ChIP-chip experiments of Harbinson 
et. al.  Check marks (√) indicate that fREDUCE matched the IUPAC string 
corresponding to the benchmark logo.  The results of a similar analysis for AlignACE is 
given in the right column.   
 

Factor Known Site Condition Motif p-
value 

fREDUCE 
match? 

AlignACE 
Match? 

ABF1 rTCAyt....Acg YPD rTGATm 22.4 √ √ 
ACE2 tGCTGGT YPD kGCTGGy 6.2 √  
AFT2 GGGTGy H2O2Lo rGGTGy 91.5 √ √ 
AZF1 YwTTkcKkTyyckgykky YPD mTTTTw 14.8   
BAS1 TGACTC YPD TGACTCCG 37.2 √ √ 
CAD1 mTTAsTmAkC YPD GmTTAsTA 4.2 √ √ 
CBF1 tCACGTG YPD CACGTG 90.7 √ √ 
CIN5 TTAygTAA YPD TTAyrTAA 59.4 √ √ 

DAL82 GATAAGa RAPA GATAAG 9.4 √  
DIG1 TgAAAca YPD TGAAACA 18 √  
FHL1 rTGTayGGrtg YPD GTAyGGrT 141.2 √ √ 
FKH1 tTgTTTac YPD yTGTTkAC 28.8 √  
FKH2 aaa.GTAAACAa YPD GTAAACA 23.7 √ √ 
GAL4 CGG...........cCg YPD TTCGGAGC 4.9  √ 
GAT1 aGATAAG RAPA GATAAG 13.3 √  
GCN4 TGAsTCa YPD rTGAsTCA 166.7 √ √ 
GLN3 GATAAGa.a RAPA GATAAG 38.2 √  
HAP1 GGmraTA.CGs YPD kTTATCGG 60.3 √ √ 
HAP4 g.CcAAtcA YPD CCAATsAr 21.7 √ √ 
HSF1 TTCya.....TTC H2O2Hi TTCyrGAA 109.5 √ √ 
IME1  H2O2Hi     
INO2 CAcaTGc YPD kCACATGC 12.8 √  
INO4 CATGTGaaaa YPD CAyrTG 89.2 √ √ 
LEU3 cCGgtacCGG YPD CGGkACCG 10.8 √ √ 
MBP1 rACGCGt YPD ACGCGT 126.9 √ √ 
MCM1 tttCC.rAt..gg Alpha yTTCCTAA 5.7  √ 
MET4 RMmAwsTGKSgyGsc SM CrCGyG 14.8   
MSN2 mAGGGGsgg H2O2Hi rGGGGy 20.8 √  
NDD1 tt.CC.rAw..GG YPD CTCGAGGC 12.3  √ 
NRG1 GGaCCCT YPD AGGGTCs 11.3 √ √ 
PDR1 ccGCCgRAwra YPD CCrwACAT 11.4   
PHD1 sc.GC.gg YPD mTGCAk 21.1  √ 
PHO2 SGTGCGsygyG Pi-     
PHO4 CACGTGs Pi- sCACGTGs 14.1 √  
RAP1 tGyayGGrtg SM GyrTGGGT 57.1 √ √ 
RCS1 ggGTGca.t H2O2Lo GGGTGCA 43.6 √ √ 
RDS1 kCGGCCGa H2O2Hi TCCGCGG 35.6 √  
REB1 CGGGTAA YPD CGGGTAAy 136.7 √ √ 
RFX1 TTgccATggCAAC YPD GTCGTCCG 3.2  √ 
RLR1 ATTTTCttCwTt YPD     
RPN4 TTTGCCACC H2O2Lo TyGCCACC 109.8 √ √ 
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SFP1 ayCcrtACay SM yCCrTACA 31.6 √ √ 
SIG1 ArGmAwCrAmAA H2O2Hi     
SIP4 CGG.y.AATGGrr SM CTCGGCCC 58.4   
SKN7 G.C..GsCs H2O2Lo GsCyGGCC 37.7 √  
SNT2 yGGCGCTAyca YPD GrTAGCGC 96.1 √ √ 
SOK2 tGCAg..a BUT14 GGTrCAGA 5.6   
SPT2 ymtGTmTytAw YPD TkyATA 6.2   
SPT23 rAAATsaA YPD wTkAAA 25.1   
STB1 rracGCsAaa YPD wCGCGT 4 √  
STB4 TCGg..CGA YPD CGGryCGA 7.1 √ √ 
STB5 CGGwstTAta YPD CGGkGwTA 24 √  
STE12 tgAAACa YPD TGAAACA 38.9 √ √ 
SUM1 gyGwCAswaaw YPD GyGTCAs 25.0 √ √ 
SUT1 gcsGsg..sG YPD wCkCCG 49.8   
SWI4 raCgCsAAA YPD CGCsAAAA 12.6 √ √ 
SWI6 tttcGCGt YPD TTTCsk 11.6 √  
TEC1 rrGAATG YPD rrGAATGT 22.4 √  
THI2 gmAAcy.twAgA Thi- GGAAACyS 4.5 √  
TYE7 tCACGTGAy YPD TCACGTGr 70.8 √ √ 
UME6 taGCCGCCsa YPD GCsGCy 154.3 √ √ 
YAP1 TTaGTmAGc YPD mTkACTAA 13.6 √ √ 
YAP7 mTkAsTmAk H2O2Hi mTTAsTAA 121.9 √ √ 

YDR026c ttTACCCGGm YPD CCGGGTAA 23.2 √ √ 
ZAP1 ACCCTmAAGGTyrT YPD wAyATT 16.5   
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Table 2a:  fREDUCE predictions in comparison to non-degenerate predictions made 
by REDUCE.  Benchmark logos and their corresponding motifs are shown for reference.  
P-values are shown as –log10 values.   
 
TF REDUCE 

(p-value) 
fREDUCE 
(p-value) 

Benchmark Logo Benchmark 
Motif 

AFT2 GGGTGC(61.8) 
GGGTGT(31.6) 

GGGTGy(91.5) 
 

 

GGGTGy 

CAD1 ATTAGTA(2.9) 
- 

GmTTAsTA(4.2) 

 
mTTAsTmAkC 

CIN5 TATGTAA(17.8) 
 TACGTAA(15.6) 

TTAyrTAA 
(59.4)  

TTAyGTAA 

FHL1 TGTACGG(59.4) 
 GTATGGG(30.5) 

GTAyGGrT 
(159.7) 

 

rTGTayGGrt 

GCN4 TGACTCA(103.3) 
 GAGTCAT(36.4) 

rTGAsTCA 
(166.7) 

 

TGAsTCA 

HAP1 TATCGG(38.8) 
- 

kTTATCGG 
(60.3) 

 

GGmraTA.CGs 

MSN2 AAGGGG(8.6) 
- 

rGGGGy(20.8) 

 

mAGGGGsgg 

PHO4 CACGTGC(6.4) 
- 

sCACGTGs 
(14.1)  

CACGTGS 

SFP1 CCGTACA(12.2) 
CCCATAC(10.4) 

yCCrTACA 
(31.6) 

 

ayCcrtACay 

SNT2 GGCGCTA(49.7) 
  CGCTATC(7.0) 

GCGCTAyC 
(96.1) 

 

yGGCGCTAyca 
 

STB5 CGGTGTT(7.0) 
- 

CGGkGwTA 
(24.0)  

CGGwstTAta 
 

SUM1  TGTCAC(11.4) 
 TGACAC(8.9) 

GwCAGTAA 
(25.0) 

 

gyGwCAswaa 

TEC1 AGAATG(13.0) 
- 

rrGAATGT 
(22.4) 

 

rrGAATG 

YAP1  ATTAGT(10.9) 
- 

TTAGTmAk 
(13.6) 

 

TTaGTmAGc 
 

YAP7 TTACTAA(50.1) 
TTAGTAA(41.7) 
TGACTAA(15.9) 

TTAsTAAk 
(118.6)  

mTkAsTmAk 
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Table 2b:  fREDUCE elicitation of the HNF-4 binding site from human hepatocyte 
expression data.    
 

TF REDUCE 
(p-value) 

fREDUCE 
(p-value) 

Benchmark Logo Benchmark 
Motif 

HNF-4 - GRMCTTTG(7.4) 
 

 

TGrmCTTTG 
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Table 3.  fREDUCE predictions for regulators with poorly characterized 
specificities.  We searched the literature for evidence supporting our motif predictions 
and the matching examples are highlighted.  *The annotated motifs for Rgt1p.   
 

Regulator Predicted Site P-value Motif from Literature 
Search 

ARG80 TTYTCY 34.3 CYNYYAANKRMAR 
ARO80 TRCCGM 5.6 TWRCCG 
ASK10 AYTTKA 9.1  
CST6 TYAAWA 7.0  
DAT1 WTTSAA 16.7  

ECM22 GCRSCC 16.2 TCGTATA 
EDS1 TWTTSA 8.4  
FAP7 WTRAAG 11.3  
GAT3 CCTSGGC 15.2  
GCR2 TTCAWW 5.0 CTTCC 
HAL9 WTTRAA 14.7  
HIR3 WTTRAA 22.0 ACGCTAAA 
IME4 YACACAC 17.8  

MAL13 CCASSG 11.6  
MAL33 GCRCAS 13.8  
MET18 WTTCAA 8.2  
MGA1 TTTRAY 5.9  
MSN1 MMCCCA 3.8  
MTH1 GGAGRA 3.4 CGGANNA * 
OAF1 CGCASY 4.9 CGGNNNTNAN9-12CCG 
RGM1 CSGSCC 27.1  
RTG1 ATYTRA 10.3  
SIP3 WTCAAW 7.6  

SMK1 WTGWAG 3.9  
STB2 CAAGGYC 3.1  
STB6 TATSAW 5.6  
STP4 AARMTT 24.1  
TOS8 RCACMC 20.7  
UPC2 MATSAA 4.5  
WAR1 TYAAGW 6.6  

YBR239c WATAYT 16.8  
YDR049W AWTGAW 3.5  
YER051w AKYACT 3.9  
YER130C CAARTW 3.1  
YFL052w WTCAAK 3.6  
YGR067C TTYAAW 4.6  
YKR064W WGTTRA 6.3  
YLR278C KTTMAA 7.2  
YML081W WCAAMT 3.7  
YNR063W TCAARTA 2.4  
YPR196W WTCAAW 10.3  
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Figures 
 
Figure 1.  The fREDUCE algorithm.  A set of possible IUPAC strings are generated 
from the input sequence.  For each IUPAC string, we compute a pseudo-Pearson 
coefficient, which is an estimate and upper bound on the true Pearson coefficient.  After 
the vast majority of motifs are filtered out using the pseudo-Pearson value, we then 
compute true Pearson coefficients for the remaining motifs and select the top motif.  The 
residual expression value is then used to iteratively derive subsequent motifs.     
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Figure 2.  Comparison of fREDUCE to six other algorithms on 65 yeast ChIP-chip 
benchmarks.  AlignACE* indicates results of running AlignACE from scratch, while the 
performance of other methods were compiled from the Harbison et. al supporting website.     
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Figure 3.  Scalability of fREDUCE.  The performance of fREDUCE on yeast ChIP-chip 
experiment REB1_YPD for various motif lengths and numbers of degeneracies.   
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Chapter 2 

Directed A/T-tracts: 

A Novel Signature for Yeast Nucleosome Free Regions 

 

Abstract 

Eukaryotic transcriptional regulation is mediated by the organization of 

nucleosomes in promoter regions.  A highly stereotyped chromatin organization is seen in 

most S. cerevisiae promoters, where nucleosome-free regions (NFR) are flanked by well-

ordered nucleosomes.  By analyzing groups of promoters with varying nucleosome 

occupancy patterns, we found that yeast promoters with well-defined NFRs are 

characterized by positioned patterns of poly(dA:dT) tracts with two signature features.  

First, poly(dA:dT) tracts are highly localized in a strand-dependent fashion where 

poly(dA) tracts lie proximal to transciptional start sites and poly(dT) tracts are distal.  

Collectively the inverted tracts define an axis of symmetry coinciding with NFR centers.  

Second, poly(dA:dT) tracts exhibit a novel “capping” effect where tracts preferentially 

terminate in G:C residues in a direction-dependent manner.  In NFRs, capping is greatly 

increased and is localized to the poly(dA:dT) symmetric axis.  Both signature features 

quantitatively co-vary with fine positional variations between NFRs, establishing a 

closely-knit relationship between poly(dA:dT) tracts, their capping patterns, and the 

central coordinates of NFRs.  Based on our data, we hypothesize that localized stretches 

of short poly(dA:dT) tracts constitute directional signals in yeast promoters which 
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facilitate NFR placement in a manner independent of specific transcription factors.  We 

present a model of NFR origination in yeast in which directed poly(dA:dT) tracts 

contribute to the definition of a central NFR nucleation site, and provide data which 

distinguishes this model from an alternative model where tracts act as boundary elements 

that anchor flanking nucleosomes.   

 

Introduction 

Eukaryotic DNA is packaged as chromatin: highly organized arrays of 

nucleosomes which profoundly affect the functions of underlying sequence[1,2,3].  

Because chromatin structure plays critical regulatory roles[4], promoter sequences must 

not only dictate their own regulatory logic but also coordinate the patterns of 

nucleosomes that are superimposed upon them.  Current hypotheses describing how 

genomic sequence is mapped to nucleosome positioning are encompassed by two 

paradigms.  Because DNA affinities to the histone core can differ over a 1000-fold range 

depending on sequence[5], one view is that in vivo nucleosome positions can largely be 

specified by the thermodynamic preferences of nucleosomes for genomic DNA[6].  

Recent efforts have attempted to deduce nucleosome positioning from periodic 

dinucleotide patterns that confer physical properties favorable for the sharp DNA bending 

required for incorporation into nucleosomes[6,7], but their predictive power over random 

guessing is modest [8,9,10].  An contrasting view is that a small number of strategically 

positioned nucleosomes can serve as boundaries against which other nucleosomes fall 

into place through statistical packing[11,12,13,14].  The positions of these key “barrier” 

nucleosomes must be highly regulated, and is likely to involve a combination of cis 
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acting sequences that work through intrinsic DNA-histone interactions as well as trans 

acting sequences that signal transcription factors and chromatin remodeling 

complexes[2,15].  The balance between these two paradigms is not clear and is likely to 

depend on genomic context.   

The barrier nucleosome paradigm is likely to be especially relevant in promoters 

where nucleosomes are organized around nucleosome-free regions (NFR), spans of 

nucleosome-deficient sequence emanating in the 5’ direction from transcriptional start 

sites (TSS)[16].  Prevalent in yeast[10,16,17], fly[18] and human[19], NFRs appear to be 

a conserved mode of promoter nucleosomal organization in most eukaryotes.  In S. 

cerevisiae, NFRs appear in up to 95% of promoters[11], have a typical span of 

~140bp[10,17] and incorporate the histone variant H2A.Z into flanking 

nucleosomes[20,21].  It has been suggested that the highly defined nucleosomes flanking 

NFRs anchor a large part of nucleosome organization in the Saccharomyces genome 

using the barrier nucleosome principle[11].  The key question remains, however, of how 

the positions of the “keystone” boundary nucleosomes are specified through sequence.   

High-throughput nucleosome mapping studies in yeast have universally linked 

nucleosome-free regions with the enrichment of poly(dA:dT) tracts[10,16], contiguous 

stretches of homopolymeric dA or dT that are over-represented in the intergenic regions 

of many eukaryotes[22,23].  In addition, two recent computational approaches to 

nucleosome prediction have found that poly(dA:dT) tracts as short as length 3 have 

significant discriminative power in distinguishing nucleosomal vs. non-nucleosomal 

sequence[9,24].  This association between NFRs and poly(dA:dT) tracts is typically 

attributed to the latter’s physical rigidity[25], which is thought to destabilize nucleosomes.  
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However, the impact of poly(dA:dT) rigidity on nucleosome positioning has not been 

clearly demonstrated: long tracts (l ≥10) only modestly destabilize nucleosomes in 

vitro[26], and the in vivo impact of shorter tracts is not known.   

In this study we explore in detail two novel characteristics of poly(dA:dT) tracts 

in the S. cerevisiae genome and their relationships with patterns of nucleosome-free 

regions.  First, we show that positional distributions of poly(dA) tracts and their inverse 

poly(dT) tracts are related by symmetry across the central NFR axis.  Second, we 

demonstrate that poly(dA:dT) tracts in NFRs exhibit an oriented, terminal specific 

“capping” by G:C.  We demonstrate not only that both features are specific to NFR-

containing promoters, but also that they co-vary with fine variations among NFRs of 

different sizes and localizations.  The highly organized placement of poly(dA:dT) tracts 

in promoters, their orientation-specific terminal characteristics and their intricate 

correlations with NFRs suggest that directed poly(dA:dT) tracts may constitute signature 

sequences which influence NFR placement.  Models of how poly(dA:dT) tracts may 

guide NFR formation and mechanistic implications are discussed.   

 

Results 

Promoters classification into “strong” and “weak” NFR classes 

We re-examined the genome-wide nucleosome positioning map presented by Lee 

et al[10], aligning promoters according to mapped transcriptional start sites (TSS).  To 

avoid possible convoluting effects of divergently transcribed regions, we exclude these 

except in cases where the divergent TSSs are sufficiently far from each other (>1000bp).   

We used a Self-organizing Map (SOM)[27] to arrange the final, filtered set of 2118 
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promoters in a visually coherent manner (Fig1A).  Two qualitatively distinct nucleosome 

occupancy patterns were evident from the SOM (Fig1B).  The majority of promoters 

(84%) comprise the “strong-NFR” class, which  are characterized by a single well-

defined nucleosome-free region (NFR) emanating from the TSS that occupies the core 

promoter region (-150 to 0).  The remaining promoters comprise the “weak-NFR” class, 

which have non-stereotyped nucleosome occupancy patterns characterized by diffuse 

nucleosome deficiency in the entire promoter region up to -400.  The weak-NFR 

promoters encompasses a broad range of atypical nucleosome architectures, featuring 

delocalized nucleosomes and promoters with multiple localized NFRs of varying lengths.  

Divergently transcribed promoters are overrepresented in the weak class, but their 

inclusion did not qualitatively affect the overall nucleosome-occupancy patterns of either 

class (FigS1).  The biological significance of this grouping has been investigated by 

Tirosh et al., who made a similar classification and saw differences in many features 

including histone turnover, binding site locations, H2A.Z occupancy, expression noise, 

and expression diversity[28].  We observed similar trends in our grouping:  for example, 

the weak-NFR class was overrepresented in TATA-containing promoters (FigS2).   

 

First poly(dA:dT) signature:  localized, strand-dependent tracts symmetrically 

distributed about NFR centers 

We examined the frequencies of poly(dA:dT) tracts of varying lengths as a 

function of distance from the TSS, considering poly(dA) and poly(dT) tracts separately 

(Fig1C).   To facilate comparison between tracts of varying lengths, we expressed each 

frequency as a percent enrichment relative to background intergenic tract frequencies.  In 
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the strong-NFR promoter class, this analysis revealed a striking poly(dA:dT) localization 

pattern.  For lengths greater than l=2, poly(dA) enrichment is strongly peaked near -60 

and fall off sharply to background at -90 and -30.  Surprisingly, poly(dT) tracts have a 5’ 

offset from poly(dA): they are enriched between -120 and -60 with a shallower peak near 

-100.  Within peak regions, location-specific enrichments of both poly(dA) and poly(dT) 

increase monotonically with repeat length.  Finally, poly(dA) enrichment is usually 

greater than that of poly(dT) for similar-length tracts; for the longest tracts (l >= 6), 

maximum enrichments exceed +200% for poly(dA) and +175% for poly(dT).  In contrast, 

these characteristics are not observed in the weak-NFR class, where poly(dA:dT) 

enrichments are generally much smaller in magnitude than in the strong-NFR class.  We 

observe a slight enrichment of poly(dT) downstream of -60 and a slight deficiency of 

poly(dA) in the same region, but these trends do not significantly increase for longer tract 

lengths.   

It is telling to take the difference between the poly(dA) and poly(dT) enrichments 

(Fig1D).  The resulting enrichment difference curves track the asymmetry between the 

inverted tracts; their x-intercepts give the coordinates at which poly(dA) tracts become 

more abundant than poly(dT).  For the strong-NFR class, the enrichment differences of 

all six length-classes intercept the x-axis at -80, meeting there with a common point of 

inflection.  This curve has an approximate C2 symmetry:  rotation of the curve about the 

coordinate -80 by 180 degrees will result in a similar curve.  A similar C2 symmetry 

about -80 is manifest in the underlying sequence: from the point of view of an observer 

situated at -80, tracts in both directions appear identical until the symmetry is broken by a 

gene on one side (Fig1E).  From here on we will refer to -80 simply as the “symmetric 
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axis”.  Note that the coordinate of each poly(dA:dT) tract was assigned according to its 

5’-most base, introducing a slight 5’shift.  Therefore the symmetric axis is closer to -75 

when the discrete lengths of tracts are considered, placing it directly at the center of the 

core promoter region.   

 

Poly(dA:dT) positions correlate with fine NFR variations 

We have shown that strong NFRs in yeast are associated with a sequence pattern 

consisting of poly(dA:dT) tracts whose positional distributions are symmetric about NFR 

centers.  This result suggests that poly(dA:dT) tracts may directly influence NFR 

placement but leaves open the alternative that both features are independently associated 

with the biological specialization of genes in the strong-NFR class.  To resolve this issue, 

we analyzed how poly(dA:dT) tract localization relates to fine NFR positional variations 

within subgroups of the strong-NFR class.  Strong-NFR promoters ordered by the self-

organizing map gave a graded arrangement where 5’ NFR boundaries are progressively 

shifted toward the TSS (Fig2A).  By comparison, 3’ NFR boundaries shifted little, and 

some of this variation may be attributable to experimental error in TSS determination.  

Taken together, this amounts to a gradual narrowing of the NFR width from 202bp to 

98bp (inferred from peak-to-peak distances of boundary nucleosomes) over 1781 

promoters.   

We segmented the ordered strong-NFR promoters into 6 equal subgroups (I-VI).  

Group I promoters are the most similar to the weak-NFR class:  they have the longest 

NFRs and have the most NFR positional variability, or “fuzziness”.  Group VI, which 

contains the shortest NFRs, also had a high degree of variability; the remaining 
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subgroups were more homogeneous.  The peak-to-peak NFR center coordinate shifted 

toward the TSS by approximately 15bp per subgroup (fitted with linear regression), 

spanning a range from -130 to -50.  We then plotted the poly(dA:dT) enrichment 

difference as before for each subcluster (Fig2B; see FigS3 for raw enrichment values).  

As expected, the overall magnitude of each subgroup’s tract enrichments is dependent on 

its degree of fuzziness.   Group I enrichments peak near +100% whereas Group IV, the 

most localized subgroup, reached peak enrichments of +300%.   

The overall qualities of poly(dA:dT) enrichment are intact for every subgroup, 

with 5’ poly(dT) bias and a symmetric 3’ poly(dA) bias.  However, the symmetric axis 

for each group is shifted in a way that directly corresponds to its fine NFR position:  wide 

NFRs have axes shifted away from the TSS, whereas narrow NFRs have axes shifted 

toward the TSS.  To quantify this relationship, we plotted symmetric axis coordinates 

versus their corresponding NFR center coordinates for each subgroup (Fig2C).  Linear 

regression gave an excellent fit (r2 = 0.90) with a slope very close to 1:  a 1bp shift in the 

poly(dA:dT) symmetric axis will produce a corresponding 1bp shift in the NFR center 

position.  Their concordance with fine positional variations between NFRs reinforces the 

notion that poly(dA:dT) tracts distributed symmetrically across a central axis may have a 

direct influence on NFR placement.   

 

Poly(dA:dT) tracts show independence from transcription factor binding sites 

 Poly(dA:dT) have long been implicated as regulatory elements in S. 

cerevisiae[29,30], and in particular they have been seen to influence the regulatory 

behavior of transcription factors with adjacent binding sites[31].  For example, the 
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insertion of a Reb1 binding site juxtaposed with a 3’ T7 sequence was sufficient to induce 

NFR formation even in the context of a coding region[21].  Furthermore, Lee et al. 

recently showed that binding sites for Reb1 and Abf1 are localized specifically to a 

narrow region centered at -100bp upstream of the TSS[10], which is slightly upstream of 

the symmetric axis.  These observations not only suggest a synergistic relationship 

between poly(dA:dT) tracts and these particular transcription factors, but also raises the 

question of whether localized tract enrichments are seen solely as a consequence of 

juxtaposition with localized transcription factor binding sites (TFBS).   

 To address this question, we first used the set of all bound and functionally 

conserved transcription factor binding sites[31] to survey which factors may be spatially 

coupled to tract enrichment.  Because tract localization is seen only in the strong-NFR 

class, we first screened factors using their relative TFBS abundances in strong- vs. weak-

NFR promoters (Fig3A).  Interestingly, the TFBSs of the majority of factors are vastly 

overrepresented in the weak-NFR class; for example, Skn7 favors weak-NFR promoters 

by more than 10:1 (normalized by class size).  Only 4 of 45 factors examined (Reb1, 

Hsf1, Abf1 and Rpn4) were overrepresented in the strong-NFR class, and of these only 

Reb1 and Abf1 have bound and functionally conserved sites in a significant number of 

promoters genome-wide (226 and 209, respectively).   

We reasoned that if localized poly(dA:dT) tracts are manifest mostly in the 

context of abundant and localized sites such as those of Reb1/Abf1, then by restricting 

our analysis to promoters containing high-confidence Reb1 or Abf1 sites poly(dA:dT) 

enrichment signals should be greatly enhanced over those of background promoters.   

However, this is not the case:  tract enrichments are similar in magnitude between 
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Reb1/Abf1-site containing promoters and background (Fig3B).  To see whether 

poly(dA:dT) localization could arise from general juxtaposition with other transcription 

factors, we also assessed tract enrichment in a set of TFBS-depleted promoters: strong-

NFR promoters from which promoters containing annotated TFBS have been excluded.  

To maximize the stringency of this exclusion step, the TFBS used for filtering include 

non-conserved sites as well as sites with less stringent binding thresholds (p < 0.005) for 

118 transcription factors.  The final set of TFBS-depleted promoters (n=674), however, 

show no decrease in localized poly(dA:dT) tract enrichments compared to the unfiltered 

set (Fig3B).  In fact, TFBS-depleted promoters actually show slightly increased 

poly(dA:dT) enrichment.  Thus, while it is possible that poly(dA:dT) enrichments can be 

explained by juxtaposition to other abundant, localized and NFR-specific transcription 

factors not covered by the MacIssac et al. study, the most likely interpretation is that 

poly(dA:dT) positioning patterns arise from TF-independent tract function.   

 Curiously, both Abf1- and Reb1-specific tract enrichment profiles have slight 

variations from the overall strong-NFR profile.  Both Abf1 and Reb1 have sharper 

poly(dT) enrichments than background, and the Reb1 poly(dT) peak is shifted by ~30bp 

to the opposite side of the symmetric axis.  Reb1 also lacks a prominent poly(dA) peak.  

These factor-specific deviations from average poly(dA:dT) localizations likely reflect 

individualized factor-tract relationships.   

 

Independent assortment of poly(dA) and poly(dT) tracts suggests that individual 

promoters do not require dual symmetric tracts 



 48 

By analyzing the averaged localization profiles of poly(dA:dT) tracts over large 

numbers of promoters, we have seen a characteristic symmetry of opposing tracts with 

respect to the NFR center.  There are two ways in which this collective symmetry could 

arise:  either promoters are individually symmetric or the symmetry is a consequence of 

overlaying individually asymmetric promoters.  We address this question by considering 

whether the number of promoters containing both poly(dA) and poly(dT) tracts in 

enriched regions exceed the expected number given independent assortment of poly(dA) 

and poly(dT).  For this purpose we analyze the 297 well-aligned promoter sequences of 

strong-NFR subgroup IV:  because these promoters are highly uniform, we can estimate 

the number of functional poly(dA:dT) tracts in each promoter by counting them in fixed 

windows centered at tract-enriched positions.  This counting analysis is presented in 

Table 1, which shows the fraction of promoters containing at least a single copy of 

poly(dA) or poly(dT) in their respectively enriched regions in comparison to the fraction 

of promoters containing both.  For all length cutoffs, the number of promoters with co-

occuring poly(dA) and poly(dT) is comparable to or lower than the overlap expected 

from independent assortment.  This data is consistent with a model where poly(dA) tracts 

proximal to the TSS are positioned independently with respect to poly(dT) tracts distal to 

the TSS.  Therefore, this counting analysis disfavors models where poly(dA:dT) tracts are 

mechanistically constrained to act as inverted pairs in individual promoters.   

 

Second poly(dA:dT) signature:  NFR-specific and terminal-specific G:C capping of 

tracts 
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 Our analysis of poly(dA:dT) tracts has suggested that their placement in 

promoters is not constrained by functional coupling to either transcription factors or to 

symmetric counterpart tracts.  Nonetheless, it is difficult to imagine that poly(dA:dT) 

tracts can functional entirely autonomously given their low information content.  

Therefore, we investigated the possibility that there is additional information content in 

sequences flanking poly(dA:dT) by looking at the terminal base pair composition at both 

ends of poly(dA:dT) tracts of various lengths.  First, we examined the background set of 

all yeast intergenic sequences (Fig4A), where poly(dA) and poly(dT) were pooled due to 

the lack of reference directions.  Surprisingly, even in this background set we saw that, 

relative to poly(dA), tracts have a significant preference for the incorporation of G 

nucleotides at both terminal positions (accordingly, poly(dT) have terminal bias for C).  

We refer to this phenomenon as “G:C capping” of poly(dA:dT) and we define the G:C 

capping rate as the proportion of poly(dA:dT) tracts which terminate in this manner.  In 

the yeast intergenic background, the G:C capping rate is a steadily increasing function of 

tract length; for very long tracts the capping rate at both termini is greater than 40% 

(Fig4A), a significant increase from the expected rate of 25.7% (computed by 

renormalizing single base frequencies; see Methods).   

An interesting feature of “G:C capping” is that there is an asymmetry in capping 

rates between the two tract termini.  By convention, we designate the G:C capping 

terminus relative to the poly(dA) strand: tracts manifest as GAn and TnC will be referred 

to as “5’ G:C capped” whereas tracts of the form AnG and CTn will be referred to as “3’ 

G:C capped” (Fig4A).  In the yeast intergenic background, it is apparent that 5’ capping 
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rates are consistently greater than 3’ capping rates, a difference which tends to increase 

for longer tract lengths.   

 To see whether oriented G:C capping could play a role in poly(dA:dT) 

specification of NFRs, we considered the location dependency of G:C capping in the 

context of promoter regions (strong and weak NFR classes considered together) (Fig4B).  

In this context, we now consider poly(dA) and poly(dT) separately due to the symmetry 

breaking TSS.  Intriguingly, 5’ G:C capping has many features similar to poly(dA:dT) 

enrichment.  For poly(dA), 5’ capping rates are far above background at the center of the 

core promoter region(-150 to 0).  Near its peak, 5’ poly(dA) capping is an increasing 

function of tract length, with capping rates of >64% for tract lengths 6 and above.  5’ 

capping rates fall back to background levels at the edges of the core promoter region as 

well as in distal promoter regions (-300 to -150).  An identical effect is seen for the 5’ 

G:C capping of poly(dT) tracts.  However, in contrast to the strongly context dependent 

5’ G:C capping rates, 3’ G:C capping rates are uniform in both core and distal promoter 

regions, where their modest dependencies on tract length are consistent with background 

capping rates.   

Finally, we de-convoluted 5’ G:C capping into contributions from the strong-NFR 

vs. weak-NFR promoters (Fig 4C, l=5 shown).  Whereas the 5’ G:C capping rate for 

strong NFR promoters is strongly peaked in core promoter regions, the 5’ G:C capping 

rate is much more delocalized in weak-NFR promoters.  In weak-NFR promoters, 

poly(dT) tracts show a relatively uniform capping rate in both core and distal promoters 

regions while poly(dA) capping rates actually decline in core promoter regions.  In both 

cases, local capping rates in weak-NFR promoters differ substantially from the typical 
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pattern seen in strong-NFR promoters.  These observations are consistent with the notion 

that NFRs are arranged in delocalized and atypical ways in the weak class.   

Thus, our data suggests that there are two separate effects which contribute to the 

observed G:C capping of poly(dA:dT) tracts.  First, there is a background G:C capping 

effect that is prevalent in the bulk of intergenic yeast sequences.  This background G:C 

capping is non-specific:  it is present in both core and distal promoter regions, increases 

at a moderate rate as tract lengths increase and is largely similar between the 5’ and 3’ 

termini.  Superimposed on top of this background effect is a second G:C capping effect 

which is both 5’ terminal-specific (relative to poly(dA)) and NFRs-specific and which 

most strongly affects poly(dA:dT) tracts near the symmetric axis.  It is this second G:C 

capping effect which constitutes an additional poly(dA:dT)-based sequence signature for 

NFRs.   

 

Tract capping is skewed toward the symmetric axis 

 Although trends in 5’ G:C capping have many similarities with poly(dA:dT) 

enrichment, there is one important distinction:  5’ G:C capping for poly(dA) and poly(dT) 

both occur directly at the symmetric axis, whereas enrichment for poly(dA) is distinct 

from poly(dT) and occur at regions flanking the symmetric axis.  To highlight this 

distinction, we chose a particular length class (l≥5), renormalized their capping and 

enrichment curves relative to their range of values, and co-plotted them (Fig5A).  

Relative to enrichment peaks, there is a ~20bp shift in 5’ G:C capping toward the NFR 

central axis for both poly(dA) and poly(dT).  Thus, when capping biases are 
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superimposed on top of tract enrichments, the result is that each tract population contains 

a 5’ capped subpopulation that is skewed toward the symmetric. 

We offer two interrelated interpretations of this skewed capping effect.  First, 

capped tracts are directional signals, both in the sense that capping is specific to the 5’ 

terminus and in the sense that capping occurs on tracts skewed toward the NFR central 

axis.  Thus, capped tracts may highlight a sense of local orientation in promoter regions; 

either they “point” toward the central axis of the NFR or away from the NFR’s 

boundaries.  Second, the fact that capping is localized to the symmetric axis suggests that 

capping reinforces some aspect of poly(dA:dT) tract function that is especially significant 

near NFR centers.  Most promoters contain multiple tracts in poly(dA:dT) enriched 

regions (Table 1), and capping may give additional specificity to particular tracts as a 

way of “highlighting” them in the context of a group of tracts.  Based on the size of the 

shift between enrichment and capping curves (~20bp), we estimate the typical length of a 

poly(dA:dT) enriched region to be ~40bp in a single promoter.  In summary, both the 

position and directionality of poly(dA:dT) tract capping may important for facilitating the 

manner in which tracts relate to NFR positions (Fig5B).   

 

Discriminating between “Central” and “Boundary” NFR definition models 

Assuming that poly(dA:dT) tracts act as directional signals with roles in NFR 

specification, we consider two general NFR definition models which describe how 

poly(dA:dT) tracts can potentially influence NFR formation (Fig6).  In the “Central” 

definition model, poly(dA:dT) tracts mark a specific location within the promoter as the 

center of a nascent NFR.  Once the central site is defined, a set of downstream events 
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allows nucleosomes to be spaced equidistantly in opposite directions to create the 

nucleosome-free region.  This model is supported by the strong 1-to-1 concordance 

between tract enrichments and positions of NFR centers.  Furthermore, NFR-specific 5’ 

capping localizes specifically to the central axis and could play a role in the definition of 

the hypothetical center.  An additional advantage of this model is that, in principle, only a 

single tract or set of unidirectional tracts is required to specify each NFR.  However, one 

drawback of the Central model is that it does not explain how the extent of each NFR is 

specified.    

An alternative to the Central model is the “Boundary” model, which posits that 

poly(dA:dT) tracts act as directional boundary elements which anchor the NFR’s flanking 

nucleosomes.  In this model, nucleosomes are directed away from the capped ends of 

poly(dA:dT) tracts.  This model requires poly(dA:dT) tracts to be present in correct 

orientations at both nucleosome boundaries in each NFR.  This requirement is an obvious 

drawback, as we demonstrated earlier that such a scenario is unlikely.   

In order to differentiate between these two models, we now consider the detailed 

relationships between poly(dA:dT) locations and NFR positioning.  We use the centroids 

of poly(dA:dT) enrichment as single numerical indicators of tract location.  Intuitively, 

the centroid corresponds to the expected position of the poly(dA:dT) tract after taking a 

weighted average across the enrichment peak.  We schematically represent the positions 

of five promoter elements:  5’ nucleosome boundary, 3’ nucleosome boundary, NFR 

center, poly(dT) centroid and poly(dA) centroid across the six strong-NFR subgroups 

(Fig7).  We then assign a best-fit slope to each of the five promoter elements using linear 

regression.  The slope of each element, with units of bp/subgroup, represents the average 
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number of base pairs the element shifts toward the TSS per each group of 297 promoters 

from the SOM.   

If the Boundary model is correct, we would expect poly(dA:dT) tract positions to 

vary in lockstep with the positions of boundary nucleosomes.  This is not the case:  the 

slope of 5’ nucleosomes is 24 bp/group whereas the slope of the adjacent poly(dT) tracts 

is only 10bp/group.  The lack of coordination between 5’ nucleosomes and poly(dT) is 

clear by contrasting groups I and VI:  in the former case the two features are separated by 

over 80bp, whereas in the latter case the separation is less than 10bp.  A lack of 

coordination in the opposite sense is manifest between 3’ nucleosomes and poly(dA):  3’ 

nucleosomes barely shift (slope = 5 bp/group) whereas poly(dA) tracts have much greater 

shift (slope =13 bp/group).  Globally, it is apparent that distances between poly(dA) and 

poly(dT) do not narrow as NFRs do.  This lack of coordination between shifts in 

poly(dA:dT) positions and their respective nucleosome boundaries argues against the 

Boundary model.  On the other hand, the slope of the NFR central coordinate (15 

bp/group) is similar to slopes of poly(dA) and poly(dT) centroids.  Poly(dA) and poly(dT) 

tracts tend to remain at a relatively fixed distance from each other (~40-50bp) and 

maintain the NFR center between them regardless of NFR position or width.  The 

alignment preference of poly(dA:dT) tracts toward the central axis, rather than toward 

boundaries, favors the Central model of relating tracts with NFRs.   

 

Discussion 

 We have reported the computational characterization of two previously unknown 

features of poly(dA:dT) tracts in yeast promoters:  1) a strand-specific localization that is 
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approximately C2 symmetric about the center of the core promoter region and 2) a 

terminal-specific capping by G:C residues.  The association between these two 

poly(dA:dT) tract characteristics and nucleosome-free regions in promoters is supported 

by both qualitative and quantitative lines of evidence.  First, both strand-dependent tract 

enrichment and 5’ G:C tract capping were found to have characteristic, localized 

distributions that are specific to the strong-NFR class of promoters.  Second, shifts in 

NFR positions across different sets of promoters were mirrored by corresponding shifts in 

tract positions.  Collectively, they argue that a direct mechanistic relationship between 

poly(dA:dT) tracts at defined promoter positions and the specification of NFR placement 

at these promoters is highly plausible.   

Our work also suggests several mechanistic guidelines for how poly(dA:dT) tracts 

may translate into NFRs.  First, we believe that the directionality of tracts is important for 

providing a sense of local orientation in promoters, perhaps for binding of a factor that 

recognizes the direction of DNA.  This directionality is manifest in multiple aspects: in 

the C2 symmetry of tracts about NFR centers, in the terminal-specific tract capping 

preferences and in the way that capping is spatially skewed toward the symmetric axis.  

Second, individual promoters are unlikely to require complementary tracts on both sides 

of the symmetric axis (although in many cases these may be present) even though this is 

seen after tract profiles are averaged over many promoters.  Third, our work suggests that 

poly(dA:dT) tracts have better spatial correlation with NFR centers than with boundary 

nucleosomes.  Thus, we believe that positioned poly(dA:dT) tracts are not likely to act as 

boundary elements but instead play a role in defining the NFR center coordinate.  Finally, 

tract specification of NFRs does not generally seem depend on transcription factors.  
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However, tracts may have specialized relationships with particular transcription factors 

which occur prominently in strong-NFR promoters such as Reb1 and Abf1.  

Shortcomings of our current model are that it does not explain 1) how the extent of each 

NFR is defined and 2) how the -1 and +1 nucleosomes are spaced equidistantly from the 

central region.   

NFRs appear in most promoter regions and have well-defined localizations; thus 

the sequences that collectively define the spatial patterning of NFRs must be highly 

abundant as well as highly specific.  An ongoing challenge is to understand how low 

information content sequences such as poly(dA:dT) tracts can contribute to both criteria.  

There is a tradeoff of coverage for specificity as tract lengths increase: longer tracts are 

more specific but will occur in fewer promoters.  How long does a poly(dA:dT) tract 

have to be in order to exert a functionally significant effect?  Assuming that poly(dA:dT) 

tracts underlie a general NFR-specification mechanism, we can estimate an upper bound 

on the minimal functional tract length.  In order for strong-NFR promoters to be covered 

by at least one functionally relevant poly(dA:dT) tract, tracts as short as length 4 must be 

invoked (Table 1; 96% of promoters are covered in this case).  Indeed, our analysis has 

shown that even poly(dA:dT) tracts shorter than length 4 have significant enrichment 

peaks (Fig1C).  Thus is it very likely that short tracts on the order of length 4 make non-

negligible contributions to NFR specification in many promoters.   

Short tracts alone, however, seem to lack the necessary specificity.  Therefore, we 

reasoned that short poly(dA:dT) tracts must work within context:  there must be 

additional sequence signals specific to NFRs which allow functionally significant 

poly(dA:dT) tracts to be distinguished from decoy tracts.  Because the typical promoter 
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contains multiple co-localized tracts (Table 1), one possibility is that tracts benefit from 

cooperativity.  G:C tract capping, which increases tract information content, is likely to 

be another important source of specificity.  Because tract capping is centered at the 

poly(dA:dT) symmetric axis, capped tracts seem to be a more location-specific indicator 

of the central NFR coordinate than tracts in general.  Thus, both capped and uncapped 

tracts appear to be important:  uncapped tracts provide a context in which capped tracts 

are emphasized.  Together, they may act as a directed signal that helps to “point out” 

where NFRs should be centered.   

Our work represents a departure from the view that poly(dA:dT) tracts are 

haphazardly positioned promoter elements which generically displace nucleosomes by 

virtue of their physical rigidity.  Here it is important to emphasize that much of the work 

which suggest that poly(dA:dT) tend to exclude nucleosomes by rigidity pertain only to 

very long (l>20) tracts[33,34,35,36].  Effects are modest for shorter tracts: 10bp 

poly(dA:dT) tracts only destabilize nucleosomes by ~0.2-0.3 kcal/mol[32], while 

incorporating an A16 tract into the middle of nucleosomal DNA only resulted in a 1.7 fold 

(0.35 kcal/mol) destabilization[26].  In this shorter length range (10≤l≤20) poly(dA:dT) 

tracts can in many cases be incorporated into positioned nucleosomes in vitro[33,34,35] 

and in vivo[36].  Even if tracts at these lengths can perturb nucleosome positions, they are 

likely to affect only a minority of promoters genome-wide (~14% of strong-NFR 

promoters by Table 1).  By contrast, the lengths of poly(dA:dT) tracts for which we have 

shown to be functionally correlated to NFRs are much shorter.  While tracts as short as 

length 4 have been seen to adopt straight structures in vivo[25], it is unlikely that their 

rigidity alone can exert thermodynamically significant nucleosome exclusion effects.  
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Finally, in vitro selection experiments have found that even the the most disfavorable 

sequences destabilize nucleosomes by only modest amounts (< 0.7 kcal/mol relative to 

bulk genomic DNA)[5].  Even if core promoter sequences destabilize nucleosomes by 

comparable amounts, these free energy differences are on the order of thermal 

fluctuations and would be insufficient to keep NFR boundary nucleosomes in their fixed 

positions.   

We conjecture that poly(dA:dT) tracts, rather than acting as static nucleosome-

repelling elements, play an integral role in a series of well-orchestrated chromatin-

remodeling events that transform a random distribution of promoter nucleosomes into the 

characteristic open NFR architecture (Fig8).  One hypothesis is that poly(dA:dT) tracts 

can facilitate interaction with chromatin remodeling enzymes which remove nucleosomes 

and/or slide them away from the NFR center; the presence of multiple tracts may 

facilitate remodeling processivity.  Yeast contains numerous candidate chromatin 

remodeling complexes including Swi2/Snf2, Ino80, Isw1, Isw2, and RSC[37].  For 

example, RSC is known to mediate nucleosome sliding at Pol II promoters [38,39] and its 

ATPase subunit, Sth1, can track along one strand of duplex DNA with 3’ to 5’ 

polarity[40].  It will also be interesting to see whether H2A.Z, which is deposited at both 

NFR boundary nucleosomes, plays a role in NFR-specification that is coordinated with 

poly(dA:dT) tracts.   

Despite unresolved mechanistic details, we have provided insight into a class of 

promoter-specific sequences which correspond to the positions of  key nucleosomes.  By 

postulating that poly(dA:dT) motifs form the basis of a dynamic mechanism of NFR 

formation, we bring a fresh perspective on this ubiquitous class of sequences.  Finally, 



 59 

the essential features of NFRs are seen in the promoters of multicellular eukaryotes with 

small variations.  It is not yet known whether characteristic poly(dA:dT) sequences 

patterns are seen in NFR-containing promoters of higher organisms, but even if sequence 

patterns have diverged the mechanistic principles of NFR formation suggested in yeast 

may still be preserved.   

 

Methods 

Promoter classification.   

S. cerevisiae nucleosome positioning data mapped at 4bp resolution (Lee et al.) 

was aligned relative to 4799 mapped transcriptional start sites (David et al.) from -400 to 

+400.  For all single direction promoters we considered the distance between the TSS and 

the corresponding start codon, filtering out promoters where the TSS is downstream or 

>500bp upstream of ATG.  Furthermore, we excluded short promoters of less than 150bp, 

yielding a total of 1842 filtered single direction promoters.  This analysis was repeated in 

divergently transcribed intergenic regions where the TSS to TSS distance was greater 

than 1kb.  In these cases the opposing termini were extracted separately to give 276 

additional promoters.  All promoters were oriented relative to the direction of 

transcription.  Self-organizing Map analysis was performed using Cluster with default 

parameters (Xdim=49 and Ydim=1) and visualized with Treeview; both are available 

from the Eisen Lab (http://rana.lbl.gov/EisenSoftware.htm).   

 

Poly(dA:dT) enrichment analysis.   
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We computed background frequencies of all poly(dA:dT) sequences within all 

yeast intergenic sequences (3.5Mb) as motif count per total sequence length.  Motif 

counts were tabulated only according to the longest observed tracts; e.g. GAAAAT 

registers as AAAA but not AAA or AA.  For the background set, poly(dA) and poly(dT) 

were pooled due to lack of reference direction.  Position-dependent frequencies in 

promoter sequences were computing in 21bp sliding windows centered at the reference 

position.  Any poly(dA:dT) tract whose 5’ end was located in this window was tabulated 

to occur in this window.  For each window, frequencies were computed as total motif 

number over all sequences per window size.  For both background and location-specific 

analyses tracts of l ≥ 6 were counted as a single class.  Enrichment scores were computed 

as: 

background

backgroundobs

freq

freqfreq
Enrichment

−
=  

 

Transcription factor binding site analysis 

We used TFBS annotation from MacIssac et al. with ChIP-chip p<0.001 and 

conservation in 2 additional yeasts species (http://fraenkel.mit.edu/improved_map/).  For 

each factor we counted the number of promoters containing bound and conserved binding 

sites (“orfs_by_factor_p0.001_cons2.txt”) for factor in strong- and weak-NFR 

classes.  Only factors with sites in more than 30 promoters genome-wide (45 factors total 

meet this criterion) were considered.  For factors overrepresented in the weak-NFR 

cluster the p-value is log10(P(X≤n)) whereas for factors overrepresented in the strong-

NFR cluster the p-value is -log10(P(X≥n)), where n is the number of promoters occuring 

http://fraenkel.mit.edu/improved_map/
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in the strong-NFR class.  For the TFBS exclusion analysis we excluded from the 1781 

strong-NFR promoters all promoters in the file “orfs_by_factor_p0.005_cons0.txt”.   

 

Tract counting analysis 

Non-overlapping tracts were counted in fixed windows of the 297 aligned 

promoters of strong-NFR subgroup IV.  Windows were 80bp wide and centered at -60 for 

poly(dA) and at -100 for poly(dT).  The expected number of promoters with both 

poly(dA) and poly(dT) coverage given independent assortment of poly(dA) and poly(dT) 

is given by: 

total

TA

n

nn
E =  

where nA is the number of promoters containing poly(dA) tracts, nT is the number of 

promoters containing poly(dT) tracts, and ntotal is the total number of promoters.   

 

G:C capping analysis 

Background capping rates were found by pooling all instances of poly(dA) and 

poly(dT) in all yeast intergenic sequences and computing 5’ and 3’ terminal base 

compositions separately for each length class.  To compute the expected background 

capping rate r, we renormalize background single base frequencies fσ given that the 

capping base X is different than the tract base Y: 

∑
≠

=

Y

X
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  thus: 



 62 

),(257.
3245.1738.1779.

1738.
),( TCr

fff

f
AGr

TGC

G ≈=
++

=
++

=  

In promoter sequences, we define capping rates at upstream and downstream termini cL
up 

and cL
down by base X for Y-tracts of length L at coordinate i as: 

),,,|(),,( 11 LikiYYYXpiYXc kLiii
up
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and 
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'
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down
L +<≤=≠≠== +−+ σσσσ  

that is:  the probability that the upstream or downstream capping base is X given 

contiguous bases Y at positions i through i+L-1 flanked by non Y bases at i-1 and i+L.  

Capping rates shown were smoothed over 41bp windows centered at i.   

 

Nucleosome boundary calculations 

For each subgroup, we computed the average nucleosome occupancy profile 

using aligned data (Lee et al.).  The maxima of peaks corresponding to +1 and -1 

nucleosomes were taken to be their average central coordinates within each subgroup.  

Boundary coordinates were inferred by adjusting central coordinates by 73bp.   

 

Poly(dA:dT) centroid calculations 

For each subgroup, we first computed an extended motif enrichment profile from 

-300 to +50, which was then smoothed using a Gaussian (σ=5bp).  We then selected a 

promoter region that was inclusive of the major enrichment peaks for length classes 4, 5, 

and 6+.  This region is defined according to the largest region spanned by x-intercepts of 
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the smoothed enrichment curves of these three length classes.   The centroids for each 

length class was calculated within this region as follows: 

∑

∑
=

i
ik

i
ik

k E

iE

Centroid  

Where i is the promoter position relative to TSS, k=4, 5 or 6+ is an index over motif 

length classes, and E is the enrichment.  To filter out background signals only locations 

with enrichment values above 0% were tabulated.  The final centroid position for the 

subgroup was taken as the median value among the three length classes.   
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Tables 

Table 1:  Poly(dA:dT) coverage (fraction of promoters containing tract) and copy 
number (average number of tracts per promoter) in strong-NFR subgroup IV core 
promoters (n=297) 
 

Tract 

Length 

Cutoff 

Poly(dA) 

coverage 

Poly(dT) 

coverage 

dA or dT 

coverage 

dA + dT 

coverage 

(expected) 

dA avg. 

copies 

dT avg. 

copies 

3 96% 96% 100% 92%(92%) 3.02 3 

4 80% 80% 96% 65%(64%) 1.71 1.44 

5 59% 57% 83% 32%(33%) 0.89 0.83 

6 34% 31% 58% 7%(11%) 0.42 0.37 

7 23% 21% 41% 3%(5%) 0.27 0.23 

8 15% 13% 27% 1%(2%) 0.16 0.14 

9 10% 8% 18% 0%(1%) 0.11 0.084 

10 9% 6% 14% 0%(1%) 0.088 0.064 
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Figures 

Figure 1.  Poly(dA:dT) tracts in strong- and weak-NFR promoters.  A) Nucleosome 
occupancy data of 2118 S. cerevisiae promoters were clustered using a Self-Organized 
Map and partitioned into strong- and weak-NFR classes on a visual basis.  B) Averaged 
nucleosome occupancy for strong- and weak-NFR promoters.  Strong-NFR promoters are 
characterized by a single defined nucleosome-free region adjoining the TSS whereas 
weak-NFR promoters exhibit a variety of diffuse nucleosome patterns across the entire 
promoter.  C) Location-specific enrichment (vs. intergenic background) of poly(dA) and 
poly(dT) tracts of varying lengths, taken over 21bp windows.  Colors represent differing 
tract lengths.  Tracts of lengths 6 and greater were considered collectively for statistical 
accuracy.  Coordinates are relative to transcription start sites (TSS).  Note the lack of 
significant tract enrichments in weak-NFR promoters.  D) Difference between poly(dA) 
and poly(dT) enrichment; values above the x-axis indicate greater poly(dA) enrichment.  
Dashed line: symmetric axis at -80.  E) Illustrating the C2 symmetry of poly(dA:dT) 
tracts with respect to the symmetric axis.   
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Figure 2.  Poly(dA:dT) track fine variations in NFR positions.  A) The 1781 strong-
NFR promoters, which show progressive decrease in NFR length, are divided into 6 
equal subgroups I-VI.  B) Poly(dA:dT) enrichment differences in each subgroup.  Arrows 
denote locations of symmetric axes for individual subgroups.  C) Linear regression plot 
of subgroup NFR center positions vs. symmetric axis coordinates, showing 1-to-1 
tracking.  The multiple points per subgroup are enrichment difference x-intercepts for 
poly(dA:dT) lengths from 2 to 6+.   
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Figure 3.  Poly(dA:dT) enrichments occur independently of sampled transcription 
factor binding sites.  A) Ranking of transcription factors by overrepresentation of bound 
and functionally conserved sites (MacIssac et al.) in strong-NFR promoters.  Most 
transcription factors have large numbers of sites in weak-NFR promoters and few in 
strong-NFR promoters.  Prominent exceptions include general transcription factors Reb1 
and Abf1.  B) Poly(dA:dT) tract enrichments (length≥4) for subsets of strong-NFR 
promoters:  Abf1-containing, Reb1-containing, or TFBS-depleted.  TFBS-depleted 
promoters were selected by excluding promoters containing moderately bound (p<0.005) 
binding sites (no conservation requirement) for any of 118 TFs.   
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Figure 4.  NFR-specific 5’ G:C capping of poly(dA:dT) tracts.  A) Background (all 
yeast intergenic regions) G:C capping rates of poly(dA:dT) tracts for 5’ and 3’ termini 
over different tract lengths.  Examples of both 5’ and 3’ G:C capping are illustrated:  with 
respect to poly(dA), tracts tend to incorporate G residues at terminal positions at higher 
than expected frequencies.  B) Promoter-specific G:C capping rates (strong- and weak-
NFR classes combined).  5’ capping for poly(dA) and poly(dT) show prominent increases 
in core promoter regions (-150 to 0, shaded) but not in distal promoter regions; 3’ 
capping remains at background levels in core and distal promoter regions.  Dashed line: 
symmetric axis.  Thus motifs of the form GAn and TnC occur prominently in NFR central 
regions.  C) 5’ capping rates for strong- vs. weak-NFR promoters.   
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Figure 5.  Poly(dA:dT) capping is offset from tract enrichments toward the NFR 
central axis.  A) Poly(dA:dT) enrichments (blue) and capping rates (red) are each 
renormalized to their respective range of values and co-plotted.  A ~20bp shift capping 
shift toward the central NFR axis is manifest for both poly(dA) and poly(dT).  B)  
Illustrating a hypothetical set of poly(dA:dT) tracts in promoters, where capped 
poly(dA:dT) tracts exist as a subpopulation of “leader” sequences that directionally orient 
spans of tracts.  Blue regions denote poly(dA:dT) tract enriched regions and red arrows 
denote capped tracts that point toward the 5’ capped terminus.   
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Figure 6.  Two contrasting mechanistic models of NFR definition by poly(dA:dT) 
signals.  In the “Central” NFR definition model, tracts define a single location within the 
promoter as the NFR center, and a separate mechanism spaces nucleosomes equidistantly 
from the center.  In the “Boundary” NFR definition model, separate tracts at each end of 
the NFR act as directional boundary elements that prevent nucleosome incursion into the 
NFR.   
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Figure 7.  Locations of promoter elements in strong-NFR subgroups favors the 
Central Definition model.  Five promoter elements (5’ and 3’ nucleosome boundaries, 
NFR center, and poly(dA)/(dT) centroid locations) are represented for each strong-NFR 
subgroup.  The slopes of each element, which represent shifts of each element per 
subgroup, were derived using linear regression.  Poly(dA:dT) centroids track not with 
NFR boundaries but with NFR centers, thus supporting the Central NFR definition model.   
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Figure 8.  Summary of mechanistic hypotheses describing how poly(dA:dT) tracts 
can lead to the formation of nucleosome-free regions.  5’ G:C capped tracts in 
conjunction with uncapped tracts mediate the definition of the NFR central coordinate.  
Tracts may facilitate the action of a chromatin-remodeling complex such as RSC, which 
gives rise to the nucleosome-free pattern.  H2A.Z deposition into NFR-flanking 
nucleosomes may also be functionally relevant in this process.   
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Supplementary Figure 1  A) Average nucleosome profiles for divergently-transcribed 
vs. single-direction promoters.  B) Observed vs. expected number of divergently-
transcribed promoters in strong- vs. weak-NFR classes.   
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Supplementary Figure 2  Observed vs. expected number of TATA-box containing 
promoters in strong- vs. weak-NFR classes.   
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Supplementary Figure 3  Poly(dA:dT) enrichments in subgroups of the strong-NFR 
class.   
 

 
 



 78 

 References 
 
1. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal 

structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260. 
2. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 

128: 707-719. 
3. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental 

particle of the eukaryote chromosome. Cell 98: 285-294. 
4. Lam FH, Steger DJ, O'Shea EK (2008) Chromatin decouples promoter threshold from 

dynamic range. Nature 453: 246-250. 
5. Thastrom A, Lowary PT, Widlund HR, Cao H, Kubista M, et al. (1999) Sequence 

motifs and free energies of selected natural and non-natural nucleosome 
positioning DNA sequences. J Mol Biol 288: 213-229. 

6. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, et al. (2006) A genomic 
code for nucleosome positioning. Nature 442: 772-778. 

7. Ioshikhes IP, Albert I, Zanton SJ, Pugh BF (2006) Nucleosome positions predicted 
through comparative genomics. Nat Genet 38: 1210-1215. 

8. Segal MR (2008) Re-cracking the nucleosome positioning code. Stat Appl Genet Mol 
Biol 7: Article14. 

9. Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS, et al. (2007) 
Nucleosome positioning signals in genomic DNA. Genome Res 17: 1170-1177. 

10. Lee W, Tillo D, Bray N, Morse RH, Davis RW, et al. (2007) A high-resolution atlas 
of nucleosome occupancy in yeast. Nat Genet 39: 1235-1244. 

11. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, et al. (2008) A barrier 
nucleosome model for statistical positioning of nucleosomes throughout the yeast 
genome. Genome Res 18: 1073-1083. 

12. Kornberg R (1981) The location of nucleosomes in chromatin: specific or statistical. 
Nature 292: 579-580. 

13. Kornberg RD, Stryer L (1988) Statistical distributions of nucleosomes: nonrandom 
locations by a stochastic mechanism. Nucleic Acids Res 16: 6677-6690. 

14. Gupta S, Dennis J, Thurman RE, Kingston R, Stamatoyannopoulos JA, et al. (2008) 
Predicting human nucleosome occupancy from primary sequence. PLoS Comput 
Biol 4: e1000134. 

15. Rando OJ, Ahmad K (2007) Rules and regulation in the primary structure of 
chromatin. Curr Opin Cell Biol 19: 250-256. 

16. Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, et al. (2005) Genome-scale 
identification of nucleosome positions in S. cerevisiae. Science 309: 626-630. 

17. Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, et al. (2008) Dynamic 
remodeling of individual nucleosomes across a eukaryotic genome in response to 
transcriptional perturbation. PLoS Biol 6: e65. 

18. Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, et al. (2008) Nucleosome 
organization in the Drosophila genome. Nature 453: 358-362. 

19. Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the 
chromatin structure of human promoters. Nat Biotechnol 25: 244-248. 



 79 

20. Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, et al. (2007) Translational and 
rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae 
genome. Nature 446: 572-576. 

21. Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, et al. (2005) Histone 
variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. 
Cell 123: 233-248. 

22. Behe MJ (1995) An overabundance of long oligopurine tracts occurs in the genome 
of simple and complex eukaryotes. Nucleic Acids Res 23: 689-695. 

23. Karlin S, Blaisdell BE, Sapolsky RJ, Cardon L, Burge C (1993) Assessments of DNA 
inhomogeneities in yeast chromosome III. Nucleic Acids Res 21: 703-711. 

24. Yuan GC, Liu JS (2008) Genomic sequence is highly predictive of local nucleosome 
depletion. PLoS Comput Biol 4: e13. 

25. Suter B, Schnappauf G, Thoma F (2000) Poly(dA.dT) sequences exist as rigid DNA 
structures in nucleosome-free yeast promoters in vivo. Nucleic Acids Res 28: 
4083-4089. 

26. Anderson JD, Widom J (2001) Poly(dA-dT) promoter elements increase the 
equilibrium accessibility of nucleosomal DNA target sites. Mol Cell Biol 21: 
3830-3839. 

27. Holdaway RM, White MW (1990) Computational neural networks: enhancing 
supervised learning algorithms via self-organization. Int J Biomed Comput 25: 
151-167. 

28. Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter 
nucleosomes. Genome Res 18: 1084-1091. 

29. Struhl K (1985) Naturally occurring poly(dA-dT) sequences are upstream promoter 
elements for constitutive transcription in yeast. Proc Natl Acad Sci U S A 82: 
8419-8423. 

30. Schlapp T, Rodel G (1990) Transcription of two divergently transcribed yeast genes 
initiates at a common oligo(dA-dT) tract. Mol Gen Genet 223: 438-442. 

31. Macisaac KD, Gordon DB, Nekludova L, Odom DT, Schreiber J, et al. (2006) A 
hypothesis-based approach for identifying the binding specificity of regulatory 
proteins from chromatin immunoprecipitation data. Bioinformatics 22: 423-429. 

32. Getts RC, Behe MJ (1992) Isolated oligopurine tracts do not significantly affect the 
binding of DNA to nucleosomes. Biochemistry 31: 5380-5385. 

33. Bao Y, White CL, Luger K (2006) Nucleosome core particles containing a 
poly(dA.dT) sequence element exhibit a locally distorted DNA structure. J Mol 
Biol 361: 617-624. 

34. Losa R, Omari S, Thoma F (1990) Poly(dA).poly(dT) rich sequences are not 
sufficient to exclude nucleosome formation in a constitutive yeast promoter. 
Nucleic Acids Res 18: 3495-3502. 

35. Puhl HL, Behe MJ (1995) Poly(dA).poly(dT) forms very stable nucleosomes at 
higher temperatures. J Mol Biol 245: 559-567. 

36. Verdone L, Camilloni G, Di Mauro E, Caserta M (1996) Chromatin remodeling 
during Saccharomyces cerevisiae ADH2 gene activation. Mol Cell Biol 16: 1978-
1988. 

37. Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that 
regulate chromatin structure and transcription. Cell 108: 475-487. 



 80 

38. Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, et al. (1996) RSC, an essential, 
abundant chromatin-remodeling complex. Cell 87: 1249-1260. 

39. Parnell TJ, Huff JT, Cairns BR (2008) RSC regulates nucleosome positioning at Pol 
II genes and density at Pol III genes. EMBO J 27: 100-110. 

40. Saha A, Wittmeyer J, Cairns BR (2005) Chromatin remodeling through directional 
DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol 12: 
747-755. 

 
 



 81 

 
 

Chapter 3 
 

 
Transcription Factor-Chromatin Profiles in the Yeast Genome  
 

 

Abstract 

 When transcription factors interact with their cognate binding sites on DNA, this 

interaction must take place in the context of the chromatin environment in which the 

DNA is situated.  Transcription factor binding sites which are located in the context of 

nucleosomal DNA may have different binding and functional properties than sites which 

are located in nucleosome-free DNA.  In this study we systematically survey 122 

transcription factors in the S. cerevisiae genome to determine how each is affected by 

chromatin context.  High throughput data for TF binding, conservation, and nucleosome 

occupation is integrated into several numerical parameters for every TF, each of which 

indicates individual relationships between the transcriptional regulator and its 

nucleosomal setting.  While the spectrum of TF-chromatin profiles in the yeast genome is 

quite diverse, we find that certain signatures, such as high preference for binding and 

conservation in nucleosome-free regions, predominate.  Thus our survey presents a 

valuable first step in the systematic assessment of TF-chromatin relationships in a whole 

organism.   
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Introduction 

 The physical accessibility of regions of eukaryotic genomic DNA to its 

interacting protein machinery is strongly influenced by local chromatin structure.  When 

Transcription Factors (TFs) recognize their cognate DNA binding sequences, they must 

do so in the context of the chromatin’s physical space.  Intuitively, because contact with 

nucleosomes sterically occludes a substantial fraction of the DNA’s binding surfaces, it 

seems that nucleosomes should tend to hinder the binding of most proteins.  Indeed, the 

binding of certain TFs (e.g. Pho4p) have been shown to exhibit a strong dependence on 

nucleosomal context, where TF binding depends on the removal of local nucleosomes 

through ATP-dependent remodeling[1,2].  This notion is also supported by the general 

correspondence between transcriptional activation and promoter nucleosome 

deficiency[3].  It may not be the case, however, that chromatin must hinder the binding of 

all DNA-interacting proteins.  Hypothetically, nucleosomes may actually enhance the 

binding of DNA-interacting proteins by providing cooperative interactions.  Currently, 

this question has not yet been systematically addressed.     

A separate but related question to consider is how chromatin affects the 

functionality of TFs once they are actually bound to DNA.  It may be that some TFs 

behave identically regardless of underlying nucleosomes while other TFs exhibit 

behaviors that strongly depend on chromatin context.  To address these questions, we 

must consider the functional role of TFs in chromatin contexts in a manner which is 

independent from TF binding.   

In this study, we use a novel computation method to consider the 

interrelationships between three different and possibly independent binary parameters for 
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all known TF binding sequences:  TF binding, TF functionality and nucleosome 

occupation.  This is made possible by the recent availability of such data on a genome-

wide scale for S. cerevisiae.  These include 1) a comprehensive catalog of motifs and 

binding sites for 122 TFs[4,5], 2) the mapping of conserved regulatory sequences through 

comparative genomic analyses using additional sensu stricto yeasts[6] and 3) the high-

resolution (4bp) mapping of nucleosome positions in the yeast genome[7] (Fig1).  These 

data offer an unprecedented opportunity to systematically dissect the relationships 

between TF binding, nucleosome positions, and TF function on a genome-wide scale.  In 

our approach, for every TF we compile several parameters, each of which quantifies a 

particular TF-chromatin relationship.  These parameters, in aggregate, form a nuanced 

and complex portrait of the relationship between regulatory factors and chromatin in a 

simple eukaryotic organism.   

 

Results 

  

Tabulation of binary parameters for each TFBS 

To comprehensively identify Transcription Factor Binding Sites (TFBS) in the S. 

cerevisiae genome, we used annotated position-specific scoring matrices (PSSM) to 

select the top 1000 sites for each of 122 TFs.  For each TFBS, we tabulated three 

independent binary parameters: 

 a:  true if TFBS is in a nucleosome-free region, false otherwise 

 b:  true if TFBS is bound to factor, false otherwise 

 c:  true if TFBS is functionally conserved, false otherwise 
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Where nucleosome-free regions are demarked by troughs in the smoothed nucleosome-

occupancy tiling array data, binding is assigned according to ChIP-chip, and functional 

conservation is assigned according to sequence conservation among sensu stricto yeasts 

(see Methods for details).  Thus, the set of parameters (a, b, c) describe each TFBS in the 

yeast genome according to the independent criteria of nucleosome-occupancy, regulator 

protein binding, and functional conservation.  Finally, for each TF we tabulate the 

number of TFBS in each of the eight categories defined over the space of all possible 

values of (a, b, c).   

 

Derived parameters capture TF-chromatin relationships for each TF 

 After tabulating these parameters for all TFs across the entire genome, we 

compute for each TF a set of three derived parameters, each of which measures a 

particular TF-chromatin relationship.  The first derived parameter, α, measures the 

intrinsic tendency for a TF to have sites located in NFRs: 

bg

bg

NOR
NFR

NOR
NFR

=α  

Where NFR is the number of TFBS in nucleosome-free regions, NOR is the number of 

TFBS in nucleosome-occupied regions, and NFRbg and NORbg are the total lengths of 

NFR and NOR sequences in the genome.  This parameter gives the ratio of binding sites 

for a given TF in NFRs vs. NORs and is normalized by the expected ratio given by the 

relative lengths of such sequences.  Intuitively, if the placement of sites for a given TF 

has no preference or aversion for nucleosomes, then α is unity.   
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We also introduce another derived parameter β, which quantifies the relative 

likelihood that a given TF will be bound to its cognate size in nucleosome-free versus 

nucleosome-occupied regions: 

unbound

bound

unbound

bound

NOR
NOR

NFR
NFR

=β  

Where the subscripts indicate that we only consider those sites where b=true for bound 

and b=false for unbound.  Here the ratio in the numerator gives the intrinsic odds that a 

TF will be bound to a given site in a nucleosome-free region.  The denominator gives a 

similar ratio for nucleosome-occupies regions.  The ratio of these two ratios, then, gives 

the relative odds that a TF will bind with the presence or absence of a nucleosome and 

addresses the question of how the nucleosomal enrivonment affects TF binding.  TFs 

with β>1 have a built-in preference for preferring to bind to nucleosome-free regions 

whereas those TFs with β<1 prefer to bind to nucleosome-occupied regions.   

 We also introduce a derived parameter γ, which is similar to β except that it 

addresses functionally conserved sites rather than bound sites: 

ednonconserv

conserved

ednonconserv

conserved

NOR
NOR

NFR
NFR

=γ  

Thus, similarly to the function of β, γ addresses the question of how nucleosomal context 

affects the likelihood that a TFBS is functionally conserved.  TFs with γ>1 are more 

likely to be functionally conserved in nucleosome-free regions whereas TFs with γ<1 are 

more likely to be functionally conserved in nucleosome-occupied regions.   
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 Finally, we introduce the derived parameter δ, which measures a quantity similar 

to α except that only bound and conserved sites are taken into account.  This metric can 

been seen as a more accurate version of α when a TF has a large number of bound and 

conserved sites, but may be less accurate otherwise.   

bg

bg

conservedbound

conservedbound

NOR
NFR

NOR
NFR

,

,

=δ  

 

Distributions of derived parameters for the yeast transcriptome 

 The distributions of all four derived parameters are shown in Figure 2 as 

logarithmic values.  The histogram for α shows a relative normal distribution with a 

slight skew toward negative values.  This indicates that, on the whole, unfiltered 

transcription factor binding sites are largely unbiased in terms of preference for 

nucleosome-free or nucleosome-occupied positions.  In contrast, TFBS which are both 

bound and conserved have a fairly strong bias for nucleosome-free regions, as is evinced 

by the distribution of δ.  Despite this bias, a large peak is present for the distribution of δ 

at 0, indicating that a significant portion of TFs in the yeast genome have little NFR bias 

even when binding and conservation are taken into account.  The binding and 

conservation preferences of TFs also show a fairly broad spectrum.  The distribution of β 

has a slight positive bias where the distribution of γ, after correction for overall 

conservation bias, is fairly centered at 0.   

 

Hierarchical clustering of TFs based on derived parameters 

 In order to order TFs into coherent groups with similar TF-chromatin properties, 

we hierarchically clustered all 122 TFs according to the values of the four derived 

parameters (Figure 3).  Several prominent patterns emerged.  One of the most striking 

groupings consists of 11 TFs which have positive values for all four derived parameters 

(cluster 3).  These TFs, which include the general transcription factors Reb1p and Abf1p 
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(see Chapter 2 for the significant thereof), are characterized by some of the strongest 

values of α among all TFs, indicating the strongest intrinsic preference to reside in NFRs.  

TFs in this group also have consistently positive values of β and γ:  sites are more likely 

to be bound and conserved in nucleosome-free regions.   

 Related to cluster 3 is cluster 2, a large group of 34 TFs which include, among 

others, the general factors Rap1p and Cbf1p, the adaptor protein Mcm1p, and the Gcn4 

regulatory protein.  The true distinction between clusters 3 and 2 is unclear:  cluster 2 

generally has smaller values of α, but remains similar in terms of δ; the differences 

between these two groups are subtle.   

 In direct contrast to clusters 2 and 3 are clusters 5 and 6, which are characterized 

by predominantly negative values of α, β, and γ.  Our interpretation of these groups is 

that they represent TFs which preferentially bind to sites within nucleosome-occupies 

stretches of DNA.  Similarly, those sites within nucleosome-occupies regions are more 

likely to be functionally relevant.  While the reasons for such preference are not currently 

understood, some of this preference may be based on structural reasons.  Intriguingly, 

cluster5 contains a large number of transcription factors of the bZIP family such as Arr1p, 

Cst6p and Yap6p (Saccharomyces Genome Database, www.yeastgenome.org).  Thus, the 

preference of these TFs for nucleosomal sites may be tied to their structures.   

 Finally, in two of the observed groups the values of β have the opposite signs as 

the values of γ.  In group 1 β tends to be positive and γ negative, while in group 3 the 

exact opposites are true.  This demonstrates that the binding preferences and functional 

preferences of a given TF need not be in accord with respect to their chromatin 

environment.   

 

Conclusion 

 We have described a preliminary but systematic computational study of the 

relationships between TFs and their chromatin environments for 122 TFs in the yeast 

genome.  Our survey reveals substantial diversity in such TF-chromatin relationships.  

While a majority of TFs, as might be expected, prefer to bind and function within 

nucleosome-free environments, a significant minority of TFs have exactly the opposite 

behavior and instead prefer nucleosomal environments.  Another result is that the binding 
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preferences and functional preferences of TFs appear to be independent of one another, as 

many TFs have opposing values.  These initial data should provide a good foundation for 

continuing work in eludicating how chromatin context affects transcription factor 

function.   

 

Methods 

 

Regulator binding site annotation.  We obtained position-specific scoring matrices for 

122 yeast regulators from the Fraenkel lab website 

(http://fraenkel.mit.edu/improved_map/) and used them to score the ~3 megabases of 

yeast intergenic sequence.  The top 1000 scoring positions were selected to represent the 

most likely binding sites for each regulator.  We also imposed a minimum score of 7.8, 

which effectively filters out hits from very short matrices (typically 5-6 bases in length) 

with low information content.  We designate the lowest score for each regulator as its 

minimum scoring criteria.  We consider a site to be conserved if the aligned positions of 

at least two sensu stricto orthologs meet the minimum scoring criteria for that regulator.  

We consider a site to be bound by its regulator if the p-value of its corresponding probe 

for the YPD ChIP-chip experiment is below 0.01.   

 

Nucleosome-free region annotation.  To locate nucleosome-free regions, we applied a 

heuristic peak-selection strategy to the whole-genome nucleosome occupancy data by 

Lee et al (http://chemogenomics.stanford.edu/supplements/03nuc/index.html).  First, we 

smoothed out local irregularities in the array data by replacing each probe value with the 

median value of an 11-probe window centered on the probe.  Then, for each non-3’only 

intergenic region, we took the mean and standard deviation of all probes between 500 bp 

upstream and 500 bp downstream of the IGR.  Troughs in the array data which fell below 

one standard deviation were considered as NFR candidates.  Troughs with center-to-

center distances below 200 bp were iteratively merged.  The final set of troughs which 

were within 1000 bp of a start codon and which were at least 100 bp in length were 

selected as nucleosome-free regions. 
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Normalization of γγγγ.  Because nucleosome-free regions in yeast typically have higher 

conservation rates and are more easily alignable, the values of γraw collectively show a 

large skew toward ratios below 1.  To normalize these statistics, we permute the PSSM 

for each regulator 10 times and annotate sites for each permuted matrix in the same way 

as the original ones.  The corrected conservation preference is then: 

 

)( permutedrawcorrected median γγγ −=   

 

References 

1. Venter U, Svaren J, Schmitz J, Schmid A, Horz W (1994) A nucleosome precludes 
binding of the transcription factor Pho4 in vivo to a critical target site in the 
PHO5 promoter. EMBO J 13: 4848-4855. 

2. Lam FH, Steger DJ, O'Shea EK (2008) Chromatin decouples promoter threshold from 
dynamic range. Nature 453: 246-250. 

3. Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD (2004) Evidence for nucleosome 
depletion at active regulatory regions genome-wide. Nat Genet 36: 900-905. 

4. MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, et al. (2006) An 
improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC 
Bioinformatics 7: 113. 

5. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, et al. (2002) Transcriptional 
regulatory networks in Saccharomyces cerevisiae. Science 298: 799-804. 

6. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and 
comparison of yeast species to identify genes and regulatory elements. Nature 423: 
241-254. 

7. Lee W, Tillo D, Bray N, Morse RH, Davis RW, et al. (2007) A high-resolution atlas of 
nucleosome occupancy in yeast. Nat Genet 39: 1235-1244. 

 



 90 

Figures 

 

Figure 1.  Deriving TF-chromatin profiles for transcription factors in the S. cerevisiae 

genome.  A preliminary set of TFBS are derived by scanning the intergenic sequence 

with 122 PSSMs.  Sites are further filtered using ChIP-chip binding data, sensu stricto 

sequence conservation data, and nucleosomal occupation data.   
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Figure 2.  Distributions of the derived parameters α, β, γ, δ.   
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Figure 3.  Hierarchical clustering analysis of 122 TFs according to derived parameters.   
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