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Abstract. Thomas and Williams conjectured that rowmotion acting on the rational (a, b)-
Tamari lattice has order a + b − 1. We construct an equivariant bijection that proves this
conjecture when a ≡ 1 (mod b); in fact, we determine the entire orbit structure of rowmo-
tion in this case, showing that it exhibits the cyclic sieving phenomenon. We additionally
show that the down-degree statistic is homomesic for this action. In a different vein, we
consider the action of rowmotion on Barnard and Reading’s biCambrian lattices. Settling a
different conjecture of Thomas and Williams, we prove that if c is a bipartite Coxeter ele-
ment of a coincidental-type Coxeter group W , then the orbit structure of rowmotion on the
c-biCambrian lattice is the same as the orbit structure of rowmotion on the lattice of order
ideals of the doubled root poset of type W .
Keywords. Rowmotion, m-Tamari lattice, biCambrian lattice, cyclic sieving, homomesy,
homometry
Mathematics Subject Classifications. 05E18, 06B10, 06D75

1. Introduction

The growing field of dynamical algebraic combinatorics seeks to understand dynamical sys-
tems arising from operators defined on objects in algebraic combinatorics. One of the most
vigorously-studied operators in this area is rowmotion, which is an operator Row that acts on the
set J (P ) of order ideals of a finite poset P .
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More precisely, Row: J (P )→ J (P ) is defined by1

Row(I) = {x ∈ P : x ̸⩾ y for all y ∈ max(I)},

where max(I) is the set of maximal elements of I . When ordered by inclusion, the order ide-
als of P form a lattice; in fact, Birkhoff’s Fundamental Theorem of Finite Distributive Lat-
tices [Bir37] states that a finite lattice is distributive if and only if it is isomorphic to the lattice
of order ideals of a finite poset. Thus, one can view rowmotion as an operator defined on a
distributive lattice.

Another very influential operator is Kreweras complementation, which Kreweras introduced
in 1972 in its most basic form in [Kre72] as a natural anti-automorphism of the lattice of non-
crossing set partitions of the set [n] = {1, . . . , n}. More generally, if one chooses a Coxeter
element c of a finite irreducible Coxeter group W , then one can consider the noncrossing par-
tition lattice NC(W, c), which is the interval [e, c] in the absolute order on W . In this setting,
Kreweras complementation is the operator that sends w to w−1c. Associated to the pair (W, c)
is a Cambrian lattice, which is a lattice on the set of c-sortable elements of W [Rea06]. Using
Reading’s bijection between NC(W, c) and the set of c-sortable elements of W [Rea07], one can
view Kreweras complementation as an operator on a Cambrian lattice.

In 2006, Thomas [Tho06] introduced trim lattices as generalizations of distributive lattices
that are not necessarily graded. Another natural family of lattices that generalize distributive
lattices is the family of semidistributive lattices. All distributive lattices and finite Cambrian
lattices are both trim and semidistributive. Barnard [Bar19] gave a natural definition of row-
motion on semidistributive lattices, and Thomas and Williams [TW19] gave a natural definition
of rowmotion on trim lattices; in recent work, the first author and Williams provided a simul-
taneous generalization of both of these definitions to the even broader class of semidistrim lat-
tices [DW23]. These definitions generalize that of classical rowmotion on distributive lattices
and that of Kreweras complementation on finite Cambrian lattices.

Prototypical examples of Cambrian lattices are provided by the Tamari lattices, which Tamari
originally introduced in 1962 [Tam62]. These lattices, which are often defined on Dyck paths,
have grown in prominence to become fundamental in algebraic combinatorics [MHPS12].
In 2012, Bergeron and Préville-Ratelle [BPR12] defined generalizations of Tamari lattices called
m-Tamari lattices in order to state conjectural combinatorial interpretations of the dimensions of
certain spaces arising from the study of trivariate diagonal harmonics. We denote
the n-th m-Tamari lattice by Tamn(m). These lattices have now received a great deal of at-
tention (see [BMCPR13, BMFPR11, CP15] and the references therein).

The m-Tamari lattices are special examples of rational Tamari lattices. Each rational Tamari
lattice is trim and semidistributive, so it comes equipped with a natural rowmotion operator.
Thomas and Williams conjectured a formula for the order of rowmotion on rational Tamari lat-
tices; one of our main results settles this conjecture for m-Tamari lattices by showing that the
order of Row: Tamn(m)→ Tamn(m) is (m+ 1)n. In fact, we will determine the entire orbit
structure of rowmotion on Tamn(m), showing that it exhibits the cyclic sieving phenomenon

1Several authors define rowmotion to be the inverse of the operator that we have defined. Our definition agrees
with the conventions used in [Bar19, DW23, TW19].
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with respect to the polynomial Cat(m)
n (q) = 1

[(m+1)n+1]q

[
(m+1)n+1

n

]
q
. Moreover, we will con-

jecture that rowmotion on an arbitrary rational Tamari lattice exhibits a similar cyclic sieving
phenomenon.

A popular and ubiquitous notion in dynamical algebraic combinatorics is that of homo-
mesy, which occurs when a statistic on a set of objects has the same average along every or-
bit of an operator. The down-degree statistic on a poset P is the function ddeg : P → R
given by ddeg(x) = |{y ∈ P : y ⋖ x}|. The articles [AST13, PR15, RW15] prove that
ddeg is homomesic for rowmotion on certain distributive lattices, and the article [Hop19] estab-
lishes the homomesy of ddeg for rowmotion on certain semidistributive lattices. As a byprod-
uct of our methods, we will show that this story extends into the realm of m-Tamari lattices.
Namely, we will prove that the down-degree statistic on Tamn(m) is homomesic for rowmo-
tion with average m(n− 1)/(m+ 1). We will also conjecture that ddeg on the rational Tamari
lattice Tam(a, b) is homomesic for rowmotion with average (a− 1)(b− 1)/(a+ b− 1).

In a different direction, we will consider rowmotion operators arising from Coxeter-biCatalan
combinatorics, which Barnard and Reading introduced in [BR18]. Each finite irreducible Cox-
eter group of coincidental type has an associated doubled root poset that is minuscule, and the
orbit structure of rowmotion acting on the set of order ideals of that doubled root poset is already
understood. In the same article, Barnard and Reading introduced the biCambrian lattice asso-
ciated to a pair (W, c), where W is a finite irreducible Coxeter group and c is a Coxeter element
of W . Each biCambrian lattice is semidistributive and, consequently, comes equipped with a
rowmotion operator. Thomas and Williams [TW19] conjectured that if W is a finite Coxeter
group of coincidental type and c is a bipartite Coxeter element of W , then the orbit structure of
rowmotion on the biCambrian lattice associated to (W, c) is the same as the orbit structure of
rowmotion acting on the lattice of order ideals of the doubled root poset of W . Our second main
result is a proof of this conjecture.

In Section 2, we provide background information concerning rowmotion, cyclic sieving, and
homomesy. We will only need to define rowmotion for semidistributive lattices (and not trim
lattices) because all of the specific lattices that we consider belong to this family. Section 3 de-
fines ν-Tamari lattices, of which rational Tamari lattices are specific examples. In Section 4, we
give an explicit description of rowmotion on ν-Tamari lattices. In Section 5, we specialize our
attention to m-Tamari lattices, producing an equivariant bijection that transfers from rowmotion
on Tamn(m) to cyclic rotation on Armstrong’s set of (m + 1)-shuffle noncrossing partitions
of [(m+ 1)n]. This bijection allows us to prove the aforementioned cyclic sieving phenomenon
and homomesy for rowmotion on Tamn(m). In Section 6, we shift gears and gather notions
from Barnard and Reading’s Coxeter-biCatalan combinatorics. Namely, we discuss lattice con-
gruences, doubled root posets, and biCambrian lattices. Section 7 is devoted to understanding
rowmotion on biCambrian lattices of type A with respect to bipartite Coxeter elements; we
produce an equivariant bijection demonstrating that the orbit structure of rowmotion on such a
biCambrian lattice is the same as the orbit structure of rowmotion on the lattice of order ideals
of the associated doubled root poset of type A (in this case, the doubled root poset is a product
of two chains of the same length). In Section 8, we prove the analogous result in type B (in
this case, the doubled root poset is a shifted staircase). The remaining cases of the conjecture
of Thomas and Williams are for types H3 and I2(m); Section 9 handles these remaining (not
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so difficult) cases. Finally, Section 10 mentions some ideas for future research. This includes
generalizing our results in Section 5 on the cyclic sieving phenomenon and homomesy for row-
motion on Tamn(m) to all rational Tamari lattices Tam(a, b). We also include two conjectures
about the behavior of the down-degree statistic on the orbits of rowmotion on the even larger
class of ν-Tamari lattices. The first conjecture describes a phenomenon that we call asymptotic
homomesy; the second concerns the homometry phenomenon, which was introduced recently by
Elizalde, Plante, Roby, and Sagan [EPRS23].

2. Background

2.1. Basic notation and terminology

Given positive integers a and b, we write [a, b] for the set {a, . . . , b} of integers weakly between a
and b, where we make the convention that this set is empty if a > b. We also write [b] instead
of [1, b]. Given a finite set X and an invertible map f : X → X , we define the order of f to be
the smallest positive integer ω such that fω(x) = x for all x ∈ X . When we refer to the orbit
structure of f , we mean the multiset of the sizes of its orbits.

2.2. Posets and lattices

We assume basic familiarity with the theory of posets, as discussed in [Sta99, Chapter 3]. All
posets throughout this article are assumed to be finite and connected (meaning their Hasse dia-
grams are finite connected graphs). Suppose P is a poset. For x, y ∈ P , we say y covers x and
write x ⋖ y to mean that x < y and there does not exist z ∈ P with x < z < y. We say P
is ranked if there exists a function rk : P → Z⩾0 such that rk(y) = rk(x) + 1 whenever x ⋖ y
and such that there exists x0 ∈ P with rk(x0) = 0. Note that the rank function rk is unique if it
exists (because P is connected).

A lattice is a poset L such that any two elements x, y ∈ L have a unique greatest lower
bound, called their meet and denoted x∧y, and a unique least upper bound, called their join and
denoted x ∨ y. Given a subset X of a finite lattice, we write

∧
X for the meet of X (i.e., the

greatest lower bound of all elements of X).
An element j in a lattice L is called join-irreducible if it covers exactly 1 element of L.

Similarly, an element m ∈ L is called meet-irreducible if it is covered by exactly 1 element of L.

2.3. Rowmotion on semidistributive lattices

Let P be a finite poset, and let J (P ) be the set of order ideals of P . As discussed in the
introduction, rowmotion is the operator Row: J (P ) → J (P ) defined by declaring Row(I)
to be the complement in P of the order filter generated by the maximal elements of I . The
origins of rowmotion date back to the works of Duchet [Duc74], Brouwer [Bro75], and Brouwer–
Schriver [BS74]. It was studied further in the 1990’s by Deza and Fukada [DF90], by Cameron
and Fon-der-Flass [CFdF95], and by Fon-der-Flass [FdF93]. Panyushev [Pan09] revived interest
in rowmotion via several conjectures about root posets that were later settled by Armstrong,
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Stump, and Thomas [AST13]. We refer to [SW12, TW19] for more detailed historical accounts
of rowmotion.

A lattice L is called semidistributive if the implications

x ∨ y = x ∨ z =⇒ x ∨ (y ∧ z) = x ∨ y and x ∧ y = x ∧ z =⇒ x ∧ (y ∨ z) = x ∧ y

hold for all x, y, z ∈ L. An equivalent definition says that L is semidistributive if and only if for
all x, y ∈ L with x ⩽ y, the set {z ∈ L : z ∧ y = x} has a unique maximal element and the
set {z ∈ L : z ∨ x = y} has a unique minimal element. Every distributive lattice (i.e., every
lattice of order ideals of a finite poset) is semidistributive. We refer the reader to [Bar19, TW19,
DW23] for the facts about semidistributive lattices that we discuss next.

SupposeL is a semidistributive lattice. Let J and M be the set of join-irreducible elements
of L and the set of meet-irreducible elements of L, respectively. For each j ∈J , let j∗ be the
unique element covered by j; for each m ∈ M , let m∗ be the unique element that covers m.
There is a bijection κ : J →M given by κ(j) = max{z ∈ L : z ∧ j = j∗} for all j ∈J ; its
inverse is given by κ−1(m) = min{z ∈ L : z ∨m = m∗} for all m ∈M .

Lemma 2.1. Let L be a semidistributive lattice, and let κ : J → M be the bijection defined
above. We have κ(j) ∧ j = j∗ and κ(j) ∨ j = (κ(j))∗ for all j ∈ J . Furthermore, for each
cover relation x⋖ y in L, there is a unique jxy ∈J such that jxy ⩽ y and κ(jxy) ⩾ x.

The first statement in Lemma 2.1 actually characterizes the bijection κ. For each z ∈ L,
Lemma 2.1 allows us to define the downward label set and the upward label set of z by

D(z) = {jxz : x⋖ z} and U(z) = {jzy : z ⋖ y}.

The set D(z) is also called the canonical join representation of z, while κ(U(z)) is called the
canonical meet representation of z.

It turns out that for each x ∈ L, there is a unique element of L whose upward label set is
equal to the downward label set of x. We define the rowmotion operator on L to be the bijective
operator Row: L→ L given by

U(Row(x)) = D(x).

When L is the lattice of order ideals of a finite poset, this definition agrees with the clas-
sical definition of rowmotion given above. This more general definition is originally due to
Barnard [Bar19], who denoted rowmotion by κ because it extends the map κ. Indeed, one can
show that Row(j) = κ(j) for every j ∈J .

Given a lattice L with minimum element 0̂, the pop-stack sorting operator on L is the oper-
ator Pop : L → L defined by Pop(x) =

∧
{y ∈ L : y ⋖ x} for x ̸= 0̂ and by Pop(0̂) = 0̂. This

operator was introduced in [Def22], and it was found to have strong connections with rowmotion
in [DW23] in the case when L is semidistrim. In particular, if L is semidistributive, then the
pop-stack sorting operator affords a useful alternative description of rowmotion.

Proposition 2.2 ([DW23, Section 9]). If L is a semidistributive lattice and x ∈ L, then Row(x)
is the unique maximal element of the set {z ∈ L : z ∧ x = Pop(x)}.
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2.4. The cyclic sieving phenomenon

The cyclic sieving phenomenon, which Reiner, Stanton, and White introduced in [RSW04],
occurs when the orbit structure of a finite dynamical system is determined by the evaluations
of a specific relatively nice generating function at roots of unity. To make this more precise,
let X be a finite set, and let f : X → X be an invertible map of order ω (i.e., ω is the smallest
positive integer such that fω(x) = x for all x ∈ X). Let F (q) ∈ C[q] be a polynomial in
the variable q. We say the triple (X, f, F (q)) exhibits the cyclic sieving phenomenon if for all
integers d, the number of elements of X fixed by fd is F (e2πid/ω). Notice that this forces F (1)
to be the cardinality of X . The cyclic sieving phenomenon has been observed in many settings,
including the relevant setting of noncrossing partitions in [BR16].

2.5. Homomesy and homometry

Suppose X is a finite set and f : X → X is an invertible function. A statistic on X is simply a
real-valued function on X . We say a statistic stat : X → R is homomesic for f if there exists a
constant c such that

1

|O|
∑
x∈O

stat(x) = c

for every orbitO of f . Propp and Roby coined the term homomesy in [PR15]. This phenomenon
has now become one of the central focuses of dynamical algebraic combinatorics because of its
surprising ubiquity and its ability to encapsulate interesting structural aspects of combinatorial
dynamical systems. We refer the reader to [Rob16] for a very accessible survey of homomesy.

The very recent article [EPRS23] introduces a new generalization of homomesy called ho-
mometry. We say a statistic stat : X → R is homometric for f if∑

x∈O

stat(x) =
∑
x′∈O′

stat(x′)

whenever O and O′ are orbits of f of the same cardinality. Note that homomesy implies ho-
mometry, but not the other way around. In Section 10, we will conjecture that the down-degree
statistic is homometric for rowmotion on an arbitrary ν-Tamari lattice.

3. ν-Tamari Lattices

3.1. Lattice paths

For us, a lattice path is a finite path in the plane that starts at the origin and uses unit north
steps and unit east steps. We denote north and east steps by N and E, respectively, thereby
identifying a lattice path with a finite word over the alphabet {N,E}. We use exponents to denote
concatenation of a word with itself; for instance, (NE3)2 = NEEENEEE. Given a lattice path ν,
let Tam(ν) be the set of lattice paths lying weakly above ν that have the same endpoints as ν.
For example, if ν = ENNEEEENNE is the lattice path shown in black in Figure 3.1, then the
path µ = NENENEEENE shown in red is in Tam(ν).
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Figure 3.1: The lattice path µ = NENENEEENE in the ν-Tamari lattice Tam(ν), where ν =
ENNEEEENNE. Each lattice point p is labeled with its horizontal distance.

Suppose µ ∈ Tam(ν). Given a lattice point p on µ, define the horizontal distance of p to be
the maximum number of east steps that can be taken, starting at p, before crossing ν; we illustrate
this definition in Figure 3.1. Now suppose p is a lattice point on µ that is preceded by an east step
and followed by a north step in µ. Let p′ be the first lattice point on µ that appears after p and has
the same horizontal distance as p. If we let D[p,p′] be the subpath of µ that starts at p and ends
at p′, then we can write µ = X ED[p,p′]Y for some lattice pathsX and Y . Let µ′ = XD[p,p′] EY .
Then µ′ ∈ Tam(ν). In this case, we write µ⋖ µ′. See Figure 3.2.

Figure 3.2: The lattice path µ on the left is covered by the lattice path µ′ on the right in Tam(ν).

The relations µ⋖µ′ described in the previous paragraph form the cover relations of a partial
order ⩽ on Tam(ν). Préville-Ratelle and Viennot [PRV17] introduced this partial order and
proved that it is a lattice. In fact, they proved that Tam(ν) is an interval of a Tamari lattice, and
it is well known that Tamari lattices are semidistributive. Because intervals of semidistributive
lattices are semidistributive, it follows that Tam(ν) is semidistributive. This means that we have
a rowmotion operator Row: Tam(ν)→ Tam(ν).

When ν = (NEm)n, the lattice Tam(ν) is precisely the n-th m-Tamari lattice, which we
denote by Tamn(m). When ν = (NE)n, Tam(ν) is the classical n-th Tamari lattice. Given
relatively prime positive integers a and b, let Tam(a, b) be the set of lattice paths
from (0, 0) to (a, b) that lie strictly above the line y = (b/a)x except at their endpoints. We have
Tam(a, b) = Tam(νa,b) for an appropriately-chosen lattice path νa,b, so we can view Tam(a, b)
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as a lattice. When a = mn + 1 and b = n, we have νa,b = (NEm)n E, and it is straightforward
to check that Tam(a, b) is isomorphic to Tamn(m). Thomas and Williams stated the following
conjecture.

Conjecture 3.1 ([TW19]). If a and b are relatively prime positive integers, then the rowmotion
operator Row: Tam(a, b)→ Tam(a, b) has order a+ b− 1.

In Theorem 5.13, we will determine the exact orbit structure of rowmotion on Tamn(m),
thereby settling and extending Conjecture 3.1 in the case where a = mn + 1 and b = n. We
will also formulate a stronger version of Conjecture 3.1 for arbitrary coprime a and b in Conjec-
ture 5.15.

3.2. ν-bracket vectors

There is a very useful alternative description of ν-Tamari lattices due to Ceballos, Padrol, and
Sarmiento [CPS20]. In what follows, we make the convention that vectors are 0-indexed. For ex-
ample, we would say that the number 8 appears in positions 0 and 4 in the vector (8, 3, 6, 5, 8, 6).
Our convention is that bi always denotes the entry in position i of a vector b.

Definition 3.2. Fix a lattice path ν that starts at (0, 0) and ends at (ℓ − n, n). Let us
write b(ν) = (b0(ν), . . . , bℓ(ν)) for the vector obtained by reading the heights (i.e., y-coordi-
nates) of the lattice points on ν in the order they appear in ν. For 0 ⩽ k ⩽ n, let fk be the
maximum index such that bfk(ν) = k. We call f0, . . . , fn the fixed positions of ν. A ν-bracket
vector is an integer vector b = (b0, . . . , bℓ) such that:

(I) bfk = k for all k ∈ [0, n];

(II) bi(ν) ⩽ bi ⩽ n for all i ∈ [0, ℓ];

(III) if bi = k, then bj ⩽ k for all j ∈ [i+ 1, fk].

Remark 3.3. It is often useful to note that condition (III) in Definition 3.2 can be replaced with
the condition that b avoids the pattern 121; this condition means that there do not exist indi-
ces i1 < i2 < i3 such that bi1 = bi3 < bi2 .
Remark 3.4. If b is a ν-bracket vector, then bfk+1 ⩾ bfk+2 ⩾ · · · ⩾ bfk+1

for each k ∈ [−1, n−1],
where we make the convention f−1 = −1.

Define the componentwise partial order ⩽ on the set of ν-bracket vectors by the condition
that b ⩽ b′ if bi ⩽ b′i for all i ∈ [0, ℓ]. It is straightforward to check that the componentwise
minimum min(b, b′) = (min{b0, b′0}, . . . ,min{bℓ, b′ℓ}) of two ν-bracket vectors b and b′ is also
a ν-bracket vector. In fact, the set of ν-bracket vectors forms a lattice in which the meet op-
eration is given by the componentwise minimum: b ∧ b′ = min(b, b′). Ceballos, Padrol, and
Sarmiento [CPS20] showed that this lattice is isomorphic to Tam(ν) (using an explicit bijection
from the set of ν-bracket vectors to Tam(ν) ). Therefore, by abuse of notation, we will hence-
forth write Tam(ν) to refer to the lattice of ν-bracket vectors with the componentwise order.
Similarly, Tamn(m) will denote the lattice of ν-bracket vectors when ν = (NEm)n. This con-
vention should not lead to any confusion since we will no longer be dealing with lattice paths.
The Hasse diagram of Tam3(2) appears in Figure 4.1.
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4. Describing Rowmotion on ν-Tamari Lattices

Let us fix a lattice path ν that starts at (0, 0) and ends at (ℓ − n, n). Let f0, . . . , fn be the fixed
positions of ν. As before, Tam(ν) denotes the ν-Tamari lattice, which we view as the lattice
of ν-bracket vectors under the componentwise order. Recall that there is a rowmotion operator
Row: Tam(ν)→ Tam(ν) because Tam(ν) is semidistributive.

Recall that bi always denotes the entry in position i of b. Let b ←i t be the vector obtained
from b by replacing the entry in position i with t. For instance,

(0, 1, 1, 2, 2, 3, 4, 5)←3 5 = (0, 1, 1, 5, 2, 3, 4, 5).

Recall that for k ∈ [0, n], every ν-bracket vector has the entry k in position fk. For b ∈ Tam(ν)
and 0 ⩽ i ⩽ ℓ, we are going to define integers ζi(b) and ηi(b); the primary motivation for
these definitions is that they will allow us to describe rowmotion on Tam(ν) via a step-by-step
procedure. The i-th step in this procedure will either do nothing or replace the entry in a ν-
bracket vector b with ζi(b) or ηi(b).

For b ∈ Tam(ν) and 0 ⩽ i ⩽ ℓ, let

ζi(b) = min{bj : j ∈ [0, i− 1] and bj ⩾ bi},

with the convention that ζi(b) = n if {bj : j ∈ [0, i− 1] and bj ⩾ bi} = ∅. Let

∆(b) = {i ∈ [0, ℓ− 1] : bi > bi+1}.

Suppose i ∈ ∆(b), and let k = bi+1. We have bi(ν) = bi+1(ν) ⩽ k ⩽ bi − 1, and it follows
from condition (III) in Definition 3.2 that bj ⩽ k for all j ∈ [i+1, fk]. Therefore, we can define

ηi(b) = max{h ∈ [bi(ν), bi − 1] : bj ⩽ h for all j ∈ [i+ 1, fh]}.

On the other hand, if i′ ∈ [0, ℓ] \∆(b), then we let ηi′(b) = bi′ .
In the following proposition, we write Pop for the pop-stack sorting operator on Tam(ν) (see

Section 2.3).

Proposition 4.1 ([Def22, Proposition 4.4]). For each b ∈ Tam(ν), we have

Pop(b) = (η0(b), . . . , ηℓ(b)).

The following theorem provides a description of rowmotion on Tam(ν); in order to state it,
we define maps Θr : Tam(ν)→ Tam(ν) according to the following rules:

1. If r ∈ {f0, . . . , fn}, then Θr(b) = b for all b ∈ Tam(ν).

2. If r ∈ ∆(b), then Θr(b) = b←r ηr(b).

3. If r ̸∈ {f0, . . . , fn} and r ̸∈ ∆(b), then Θr(b) = b←r ζr(b).
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It is straightforward to check that Θr does in fact send ν-bracket vectors to ν-bracket vectors.
Indeed, (2) says that if br is followed by a descent, then it is decreased by at least 1, and the
amount by which it is decreased is as small as possible for Θr(b) to be a ν-bracket vector. On
the other hand, (3) says that if br is not followed by a descent (and r is not a fixed position), then
it is increased as much as possible for Θr(b) to be a ν-bracket vector.

Theorem 4.2. For b ∈ Tam(ν), we have

Row(b) = (Θℓ ◦ · · · ◦Θ1 ◦Θ0)(b).

The computation of rowmotion in Theorem 4.2 is similar to the computation in slow motion
that Thomas and Williams introduced for trim lattices in [TW19]. However, our step-by-step
procedure is slightly different because we have added additional steps that always “do nothing”
(applying Θr when r is a fixed position) and we have combined some of the steps from the
description in [TW19] (thereby “speeding up” parts of the “slow motion”).

Example 4.3. Let ν = (NE2)3 so that Tam(ν) = Tam3(2). Let us compute the image of the
ν-bracket vector b = (0, 2, 2, 1, 2, 2, 2, 3, 3, 3) under rowmotion using Theorem 4.2. To ease
notation, let

b(α) = (Θα ◦ · · · ◦Θ0)(b).

First, b(0) = Θ0(b) = b since 0 = f0. Next, note that 1 ̸∈ ∆(b(0)) and ζ1(b
(0)) = n = 3. Thus,

b(1) = Θ1(b
(0)) = b(0) ←1 ζ1(b

(0)) = b(0) ←1 3 = (0, 3, 2, 1, 2, 2, 2, 3, 3, 3).

Since 2 ∈ ∆(b(1)) and η2(b
(1)) = 1, we have

b(2) = Θ2(b
(1)) = b(1) ←2 η2(b

(1)) = b(1) ←2 1 = (0, 3, 1, 1, 2, 2, 2, 3, 3, 3).

Now 3 = f1, so b(3) = Θ3(b
(2)) = b(2). Since 4 ̸∈ ∆(b(3)) and ζ4(b

(3)) = 3, we have

b(4) = Θ4(b
(3)) = b(3) ←4 ζ4(b

(3)) = b(3) ←4 3 = (0, 3, 1, 1, 3, 2, 2, 3, 3, 3).

Since 5 ̸∈ ∆(b(4)) and ζ5(b
(4)) = 3, we have

b(5) = Θ5(b
(4)) = b(4) ←5 ζ5(b

(4)) = b(4) ←5 3 = (0, 3, 1, 1, 3, 3, 2, 3, 3, 3).

Then 6 = f2, so b(6) = Θ6(b
(5)) = b(5). Since 7 ̸∈ ∆(b(6)), we have

b(7) = b(6) ←7 ζ7(b
(6)) = b(6) ←7 3 = b(6) = b(5).

Since 8 ̸∈ ∆(b(7)), we have

b(8) = b(7) ←8 ζ8(b
(7)) = b(7) ←8 3 = b(7) = b(5).

Finally, 9 = f3, so

Row(b) = b(9) = Θ9(b
(8)) = b(8) = (0, 3, 1, 1, 3, 3, 2, 3, 3, 3).

This fact is illustrated by the arrow from (0, 2, 2, 1, 2, 2, 2, 3, 3, 3) to (0, 3, 1, 1, 3, 3, 2, 3, 3, 3) in
Figure 4.1.
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Figure 4.1: Rowmotion onTam3(2). The solid pink and dotted orange arrows indicate the action
of rowmotion. Notice that there is one orbit of size 9 (solid pink) and one orbit of size 3 (dotted
orange).
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Proof of Theorem 4.2. Fix b ∈ Tam(ν), and let Row(b) = b̂ = (b̂0, . . . , b̂ℓ). For
each α ∈ [0, ℓ], let b(α) = (Θα ◦ · · · ◦ Θ0)(b); let us also write b(−1) = b. We claim
that b(α) = (b̂0, . . . , b̂α, bα+1, . . . , bℓ) for all α ∈ [−1, ℓ]; once we prove this claim, setting α = ℓ
will yield the desired result.

We will prove the desired claim by induction on α; it is certainly true when α = −1, so
we may assume that α ∈ [0, ℓ] and that b(α−1) = (b̂0, . . . , b̂α−1, bα, . . . , bℓ). Since Θα can
only change the entry in position α of a ν-bracket vector, we just need to show that the entry
in position α of the vector Θα(b

(α−1)) = b(α) is b̂α. If α = fk for some k ∈ [0, n], then every
ν-bracket vector has the entry k in position α, so b

(α)
α = b̂α = k, as desired.

Now suppose α ∈ ∆(b). In this case, the definition of Θα ensures that b(α)α = ηα(b
(α−1)).

Since b(α−1) agrees with b in positions α, α + 1, . . . , ℓ, we have ηα(b
(α−1)) = ηα(b). Note

that ηα(b) < bα. Proposition 4.1 tells us that ηα(b) is the entry in position α of Pop(b), and
Proposition 2.2 tells us that Pop(b) = Row(b) ∧ b = b̂ ∧ b. Since the meet of two ν-bracket
vectors is their componentwise minimum, this shows that b̂α = ηα(b) = b

(α)
α .

Finally, assume that α ̸∈ {f0, . . . , fn} and α ̸∈ ∆(b). In this case, the definition of Θα

ensures that b(α)α = ζα(b
(α−1)) is the minimum element of {b̂j : j ∈ [0, α− 1] and b̂j ⩾ bα} (or

is n if this set is empty). Let k = ζα(b
(α−1)); we want to prove that b̂α = k.

Suppose by way of contradiction that b̂α > k. This implies that k ̸= n, so there
exists j ∈ [0, α − 1] such that b̂j = k ⩾ bα. Then fk ⩾ fbα > α (the last inequality is
strict because α ̸∈ {f0, . . . , fn}). Since b̂α > k, the entries b̂j, b̂α, b̂fk form a 121-pattern in b̂,
contradicting Remark 3.3. This shows that b̂α ⩽ k.

Now suppose by way of contradiction that b̂α < k. Let b′ = b̂ ←α k. We claim that b′
is a ν-bracket vector. It is straightforward to check that b′ satisfies the first two conditions in
Definition 3.2, so (by Remark 3.3) we just need to check that b′ does not contain a 121-pattern.
Assume instead that b′ contains a 121-pattern in positions i1 < i2 < i3. Let k′ = b′i3 , and note
that i3 ⩽ fk′ and b′fk′ = k′. Therefore, b′ contains a 121-pattern in positions i1 < i2 < fk′ .
Since b′ agrees with the ν-bracket vector b̂ except in position α, one of i1, i2, fk′ must be α (oth-
erwise, b̂would contain a 121-pattern). We have assumed thatα ̸∈ {f0, . . . , fn}, so eitherα = i1
or α = i2. If α = i1, then k = b′α < b′i2 ⩽ n, so (by the definition of k) there exists j ∈ [0, α−1]
such that b̂j = k = b̂α. In this case, b̂ has a 121-pattern in positions j < i2 < fk′ , which is a
contradiction. On the other hand, if α = i2, then the ν-bracket vector

b(α) = Θα(b
(α−1)) = b(α−1) ←α k

agrees with b′ in positions i1, i2, and fk′ . However, this means that b(α) contains a 121-pattern in
positions i1 < i2 < fk′ , which is impossible. This proves our claim that b′ is a ν-bracket vector.
Now, min{b′α, bα} = min{k, bα} = bα = ηα(b), where the last equality comes from the fact
that α ̸∈ ∆(b). For i ∈ [0, ℓ] \ {α}, we can use Propositions 2.2 and 4.1 to see that

min{b′i, bi} = min{b̂i, bi} = (Pop(b))i = ηi(b).

This proves that b′ ∧ b = (η0(b), . . . , ηℓ(b)) = Pop(b) (using Proposition 4.1 for the last equal-
ity), which contradicts Proposition 2.2 because b′ > b̂.
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The following corollary is immediate from the proof of Theorem 4.2.

Corollary 4.4. If b ∈ Tam(ν) and i ∈ ∆(b), then (Row(b))i = ηi(b) < bi.

Before we proceed, let us record a simple lemma that will be useful later.

Lemma 4.5. Suppose b ∈ Tam(ν) and i ∈ ∆(b), and let z = ηi(b). We have bfz+1 = bi.

Proof. Let k = fz + 1 and h = bk. Note that h ⩾ bk(ν) = z + 1. The definition of ηi(b) tells
us that bj ⩽ z for all j ∈ [i + 1, fz]. We have bfz+1 = h, and condition (III) in Definition 3.2
implies that bj ⩽ h for all j ∈ [fz + 2, fh]. Thus, bj ⩽ h for all j ∈ [i + 1, fh]. It follows from
the maximality in the definition of ηi(b) that h cannot satisfy z < h < bi. We know that z < h,
so h ⩾ bi. If we had h > bi, then the entries of b in positions i, k, fbi would form a 121 pattern,
contradicting Remark 3.3.

5. m-Tamari Lattices

In this section, we fix positive integers m and n and focus our attention on the m-Tamari lat-
tice Tamn(m), which is the lattice Tam(ν) for ν = (NEm)n. It is a classical result [DM47] that
the cardinality of Tamn(m) is the Fuss–Catalan number

Cat(m)
n =

1

(m+ 1)n+ 1

(
(m+ 1)n+ 1

n

)
.

Let [k]q! = [k]q[k − 1]q · · · [1]q, where [k]q = 1−qk

1−q
= 1 + q + · · · + qk−1 is the q-analogue of

the integer k. The q-binomial coefficient
[
k
r

]
q

is defined to be
[k]q!

[r]q![k − r]q!
. There is a natural

q-analogue of the Fuss–Catalan number Cat(m)
n given by

Cat(m)
n (q) =

1

[(m+ 1)n+ 1]q

[
(m+ 1)n+ 1

n

]
q

.

We are going to completely describe the orbit structure of Row: Tamn(m) → Tamn(m) by
showing that the triple (Tamn(m),Row,Cat(m)

n (q)) exhibits the cyclic sieving phenomenon (see
Section 2.4).

Consider a partition ρ of a totally ordered set X . We say two distinct blocks B1 and B2 in ρ
form a crossing if there exist i1, j1 ∈ B1 and i2, j2 ∈ B2 such that either i1 < i2 < j1 < j2
or i1 > i2 > j1 > j2. We say ρ is noncrossing if no two distinct blocks in ρ form a crossing.
Let NC(k) be the set of noncrossing partitions of [k].

We are going to make use of the Kreweras complementation map Krew: NC(k)→ NC(k).
Given a noncrossing partition ρ of the set [k], let K ′(ρ) be the coarsest partition of the
set {1′, . . . , k′} such that ρ ∪ K ′(ρ) is a noncrossing partition of the totally ordered
set {1 < 1′ < 2 < 2′ < · · · < k < k′}. Then let Krew(ρ) be the noncrossing partition of [k]
obtained from K ′(ρ) by removing the primes from the elements of {1′, . . . , k′}. For example, if

ρ = {{1, 2, 3}, {4, 8, 12}, {5, 6, 7}, {9, 10, 11}} ∈ NC(12)
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is as shown in pink in Figure 5.1, then K ′(ρ) is the partition shown in orange in Figure 5.1, so

Krew(ρ) = {{1}, {2}, {3, 12}, {4, 7}, {5}, {6}, {8, 11}, {9}, {10}} ∈ NC(12).

Kreweras complementation is a bijection.

Figure 5.1: A noncrossing partition ρ ∈ NC(12) (pink) together with K ′(ρ) (orange).

Following [BR16] we say a partition ρ ∈ NC((m+1)n) is (m+1)-homogeneous if each of
its blocks has size m+1 (such partitions are sometimes called (m+1)-equal). Let HNC(m)(n)
denote the set of (m+1)-homogeneous noncrossing partitions of [(m+1)n]. Following [Arm09],
we say ρ ∈ NC((m + 1)n) is (m + 1)-shuffle if it has the property that i ≡ j (mod m + 1)
whenever i and j are in the same block of ρ. Let ShNC(m)(n) denote the set of (m+ 1)-shuffle
noncrossing partitions of [(m + 1)n] that have exactly mn + 1 blocks. One can readily check
(see also [Arm09, Section 4.3]) that

Krew(HNC(m)(n)) = ShNC(m)(n) and Krew(ShNC(m)(n)) = HNC(m)(n).

For example, the partition ρ shown in pink in Figure 5.1 is 3-homogeneous, while its Kreweras
complement Krew(ρ) is 3-shuffle.

There is a natural rotation operator Rot: NC((m + 1)n) → NC((m + 1)n) that acts by
cyclically rotating the blocks of a partition one space to the left. More precisely,
for ρ ∈ NC((m+ 1)n), two integers i and j lie in the same block of ρ if and only if i−1 and j−1
lie in the same block of Rot(ρ), where the integers are taken modulo (m+1)n. It is well known
that Rot = Krew2. Notice that Rot preserves each of the sets HNC(m)(n) and ShNC(m)(n).

Bodnar and Rhoades [BR16] proved that the triple (HNC(m)(n),Rot,Cat(m)
n (q)) exhibits

the cyclic sieving phenomenon. Since Krew is a bijection from HNC(m)(n) to ShNC(m)(n)
satisfying

Rot ◦Krew = Krew ◦Rot,
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it follows that

(ShNC(m)(n),Rot,Cat(m)
n (q)) exhibits the cyclic sieving phenomenon. (5.1)

Therefore, in order to prove the main result of this section, it suffices to construct a bijection
Ψ: Tamn(m)→ ShNC(m)(n) satisfying Ψ ◦ Row = Rot ◦Ψ.

Now let b ∈ Tamn(m) be a ν-bracket vector, where ν = (NEm)n. The fixed posi-
tions f0, . . . , fn of ν are given by fk = (m + 1)k, so b(m+1)k = k for all k ∈ [0, n]. Further-
more, b(m+1)s+t(ν) = s+1 for all s ∈ [0, n−1] and t ∈ [m+1]. Recall from Section 4 that ∆(b)
is the set of indices i ∈ [0, (m + 1)n − 1] such that bi > bi+1; it follows from Definition 3.2
that none of the fixed positions (m+ 1)k belong to ∆(b). Let us say an index i ∈ [(m+ 1)n] is
k-initial in b if bi = k and bj ̸= k for all j ∈ [0, i− 1].

If ρ is a partition of the set [(m+1)n] and i ∈ [(m+1)n] is an integer that is not maximal in its
block in ρ, we define the successor of i in ρ to be the smallest integer that lies in the same block
as i and is greater than i. We are going to define the set partition Ψ(b) by specifying successors
of various integers. To begin, we define a function φb : [(m + 1)n] → [(m + 1)n] ∪ {∅}. (To
motivate this definition, the reader may wish to look ahead at Lemma 5.3 to see how φb will be
used in defining Ψ(b).) Suppose i ∈ [(m+ 1)n]; there are three cases to consider.

Case 1 If i < (m + 1)n is a multiple of m + 1 and i + 1 is k-initial in b for some k, then we
define φb(i) = fk = (m+ 1)k.

Case 2 Suppose i ∈ ∆(b) (in particular, i ̸≡ 0 (mod m + 1)). In this case, we
define φb(i) to be the smallest integer j ∈ [(m + 1)n] satisfying j > i, j ≡ i (mod m + 1),
and bi = bj . To see that such an integer exists, let us write i = (m + 1)s + t, where
0 ⩽ s ⩽ n − 1 and 1 ⩽ t ⩽ m. If we let k = b(m+1)s+t, then (by the definition of ∆(b))
we have k > b(m+1)s+t+1 ⩾ b(m+1)s+t+1(ν) = s+1. Then (m+1)s+ t < (m+1)(k−1)+ t <
(m + 1)k = fk, so it follows from condition (III) in Definition 3.2 that b(m+1)(k−1)+t ⩽ k.
We also have b(m+1)(k−1)+t ⩾ b(m+1)(k−1)+t(ν) = k, so b(m+1)(k−1)+t = k. This shows that
(m+1)(k−1)+ t satisfies the conditions defining j (though it might not be the smallest integer
with these properties).

Case 3 If we are not in Case 1 or Case 2, then we simply define φb(i) = ∅.

Example 5.1. Suppose m = 2, n = 4, and b = (0, 4, 1, 1, 3, 3, 2, 3, 3, 3, 4, 4, 4). Then
φb(1) = 10, φb(3) = 9, φb(5) = 8, and φb(i) = ∅ for all i ∈ [12] \ {1, 3, 5}.

Lemma 5.2. The map φb : [(m+1)n]→ [(m+1)n]∪{∅} is injective on [(m+1)n]\φ−1
b (∅).

Proof. Suppose that i, i′ ∈ [(m + 1)n] \ φ−1
b (∅) are such that φb(i) = φb(i

′). Without loss of
generality, assume i ⩽ i′. It follows from the definition of φb that i ≡ φb(i) ≡ i′ (mod m+ 1).
If i ≡ i′ ≡ 0 (mod m + 1) (i.e., i and i′ both fall into Case 1 in the definition of φb),
then φb(i) = φb(i

′) = (m+ 1)k for some k. In this case, i+ 1 and i′ + 1 are both k-initial in b,
so we must have i = i′. If i ≡ i′ ̸≡ 0 (mod m + 1) (i.e., i and i′ both fall into Case 2 in the
definition of φb), then bi = bi′ = bφb(i) and i ⩽ i′ < φb(i), so the minimality in the definition
of φb(i) forces us to have i = i′.
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Lemma 5.3. Let b ∈ Tamn(m). There is a unique set partition Ψ(b) of [(m + 1)n] such that
the following conditions hold for all i ∈ [(m+ 1)n]:

• We have φb(i) = ∅ if and only if i is the largest element in its block in Ψ(b).

• If φb(i) ̸= ∅, then φb(i) is the successor of i in Ψ(b).

Proof. Let Ψ(b) be the finest partition of [(m+1)n] such that i and φb(i) are in the same block
for every i ∈ [(m+ 1)n] \φ−1

b (∅). Choose a block B of Ψ(b), and let p = minB. Let h be the
smallest positive integer such that φh

b(p) = ∅. The definition of φb guarantees that φb(j) > j
for all j ∈ [(m + 1)n] \ φ−1

b (∅). It follows that B = {p < φb(p) < φ2
b(p) < · · · < φh−1

b (p)}.
This proves that the largest element of B is in φ−1

b (∅) and that φb(i) is the successor of i for
every non-maximal element i of B. We have proven the existence of the partition Ψ(b) with the
desired properties; the uniqueness is immediate.

The preceding lemma provides us with a map Ψ that sends ν-bracket vectors in Tamn(m) to
set partitions of [(m+ 1)n].

Example 5.4. Let m = 2, n = 4, and b = (0, 4, 1, 1, 3, 3, 2, 3, 3, 3, 4, 4, 4); we computed the
function φb in Example 5.1. The set partition described in Lemma 5.3 is

Ψ(b) = {{1, 10}, {2}, {3, 9}, {4}, {5, 8}, {6}, {7}, {11}, {12}}.

Lemma 5.5. If b ∈ Tamn(m), then Ψ(b) has exactly mn+ 1 blocks.

Proof. According to the description of Ψ(b) in Lemma 5.3, our goal is to show that

|φ−1
b (∅)| = mn+ 1.

For each k ∈ [n], let gk be the smallest integer such that bgk = k (i.e., gk is the unique integer
that is k-initial in b). Let a ∈ [n] be the integer such that ga = 1. We will prove that

φ−1
b (∅) = [(m+ 1)n] \ {gk − 1 : k ∈ [n] \ {a}}.

To this end, we first observe that (m+ 1)n ∈ φ−1
b (∅).

Fix k ∈ [n], and let r be the number of occurrences of k in b. Let i1 < · · · < ir be the indices
such that bi1 = · · · = bir = k; thus, i1 = gk. Consider t ∈ [2, r]. If it ≡ 1 (mod m + 1),
then φb(it − 1) = ∅ because it is not k-initial in b. If it ̸≡ 1 (mod m + 1), then the obser-
vation that bit−1 = bit implies (via Remark 3.3) that bit−1 ⩽ bit , so it − 1 ̸∈ ∆(b). In either
case, it − 1 ∈ φ−1

b (∅). We now want to show that i1 − 1 ̸∈ φ−1
b (∅). This is obvious if k = a

(i.e., if i1 − 1 = 0), so we may assume k ̸= a. If i1 ≡ 1 (mod m + 1), then φb(i1 − 1) = fk
because i1 is k-initial in b, so i1 − 1 ̸∈ φ−1

b (∅). If i1 ̸≡ 1 (mod m + 1), then we can use
Remark 3.4 to see that bi1−1 ⩾ bi1 . In this case, we must actually have bi1−1 > bi1 since i1 is
k-initial in b, so i1 − 1 ∈ ∆(b). This shows that i1 − 1 ̸∈ φ−1

b (∅) in this case as well.

Proposition 5.6. If b ∈ Tamn(m), then Ψ(b) ∈ ShNC(m)(n).
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Proof. The definition of φb ensures that i ≡ φb(i) (mod m+1) for all i ∈ [(m+1)n]\φ−1
b (∅).

Hence, it follows from the description of Ψ(b) given in Lemma 5.3 that any two numbers in the
same block of Ψ(b) must be congruent modulo m+ 1. We also know by Lemma 5.5 that Ψ(b)
has exactly mn+ 1 blocks. We are left to prove that Ψ(b) is noncrossing.

Suppose by way of contradiction that Ψ(b) is not noncrossing. This implies that there are
indices i1 < i2 < j1 < j2 such that j1 is the successor of i1 and j2 is the successor of i2.
Then j1 = φb(i1) and j2 = φb(i2) by the description of Ψ(b) in Lemma 5.3.

Let us first consider the case in which neither i1 nor i2 is divisible by m + 1. This implies
that i1, i2 ∈ ∆(b) and that bi1 = bj1 and bi2 = bj2 . If we had bi2 > bi1 , then bi1 , bi2 , bj1 would
form a 121-pattern in b, contradicting Remark 3.3. If we had bi2 < bi1 , then bi2 , bj1 , bj2 would
form a 121-pattern in b, again contradicting Remark 3.3. Therefore, it must actually be the case
that bi1 = bi2 = bj1 = bj2 . Let us write

i1 = (m+ 1)s1 + t1, i2 = (m+ 1)s2 + t2,

j1 = (m+ 1)s′1 + t1, j2 = (m+ 1)s′2 + t2

where 0 ⩽ s1 ⩽ s2 ⩽ s′1 ⩽ s′2 ⩽ n − 1 and t1, t2 ∈ [m]. Because i1 ∈ ∆(b), we
have b(m+1)s1+t1 > b(m+1)s1+t1+1 ⩾ b(m+1)s1+r for all r ∈ [t1 + 1,m] by Remark 3.4. This im-
plies that s1 < s2. Similarly, the fact that i2 ∈ ∆(b) implies that s2 < s′1. If t1 ⩽ t2, then we can
use Remark 3.3 to see that b(m+1)s2+t1 ⩽ b(m+1)s2+t2 (since b(m+1)s1+t1 , b(m+1)s2+t1 , b(m+1)s2+t2

cannot form a 121-pattern), and we can use Remark 3.4 to see that b(m+1)s2+t1 ⩾ b(m+1)s2+t2 .
However, this means that b(m+1)s2+t1 = bi1 , which contradicts the minimality in the definition
of φb(i1) because (m + 1)s2 + t1 < j1 = φb(i1). On the other hand, if t2 < t1, then we can
use Remark 3.3 to see that b(m+1)s′1+t2 ⩽ b(m+1)s′1+t1 (since b(m+1)s2+t2 , b(m+1)s′1+t2 , b(m+1)s′1+t1

cannot form a 121-pattern), and we can use Remark 3.4 to see that b(m+1)s′1+t2 ⩾ b(m+1)s′1+t1 .
However, this means that b(m+1)s′1+t2 = bi2 , which contradicts the minimality in the definition
of φb(i2) because (m + 1)s′1 + t2 < j2 = φb(i2). This yields the desired contradiction when
neither i1 nor i2 is divisible by m+ 1.

We now consider the case where i1 is divisible by m + 1. We have j1 = φb(i1) = fk,
where k = bi1+1. We know by Definition 3.2 that bj2 ⩾ bj2(ν) > k because j2 > fk.
Condition (III) in Definition 3.2 tells us that bi2 ⩽ k since i2 ∈ [i1 + 1, fk]. This shows
that bi2 ̸= bj2 = bφb(i2), so it follows from the definition of φb that i2 is divisible by m + 1.
Thus, i1 ≡ i2 ≡ 0 (mod m + 1). We have i1 + 1 < i2 + 1 < j1 and bi1+1 = bj1 = k,
so Remark 3.3 tells us that bi2+1 ⩽ k. We have i2 + 1 < j1 < j2 and bi2+1 = bj2 , so Re-
mark 3.3 tells us that k = bj1 ⩽ bi2+1. Therefore, k = bi2+1 = bj2 . However, this is impossible
because j2 > j1 = fk.

Finally, consider the case where i2 is divisible by m + 1 and i1 is not. Let k′ = bi2+1.
Then i2 + 1 is k′-initial in b, and k′ = bi2+1 = bφb(i2) = bj2 . Since i2 + 1 ⩽ j1 < j2, it
follows from Remark 3.3 that bj1 ⩽ bi2+1 = k′. Because i1 is not divisible by m + 1, we must
have bi1 = bφb(i1) = bj1 . Since i1 < i2+1 ⩽ j1, Remark 3.3 tells us that k′ = bi2+1 ⩽ bj1 . This
shows that bi1 = bj1 = k′, which is a contradiction because i2 + 1 is k′-initial in b.

Our next goal is to show that the map Ψ: Tamn(m) → ShNC(m)(n) is a bijection. To do
so, we require the following simple lemma about noncrossing partitions.
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Lemma 5.7. If ρ = {B1, . . . , Br} and ρ′ = {B′
1, . . . , B

′
r} are noncrossing partitions of a totally

ordered set X such that

{minB1, . . . ,minBr} = {minB′
1, . . . ,minB′

r}

and
{maxB1, . . . ,maxBr} = {maxB′

1, . . . ,maxB′
r},

then ρ = ρ′.

Proof. The statement is trivial if r = 1, so we may assume r ⩾ 2 and proceed by induction on r.
We may assume thatX = [k] for some positive integer k. There exist u ∈ {minB1, . . . ,minBr}
and v ∈ {maxB1, . . . ,maxBr} such that the set [u+ 1, v − 1] is disjoint from both

{minB1, . . . ,minBr} and {maxB1, . . . ,maxBr}.

We must have [u, v] = Bi = B′
j for some i, j ∈ [r]. If we remove Bi from ρ and B′

j from ρ′, we
obtain noncrossing partitions of [k] \ [u, v]. We can apply the inductive hypothesis to find that
these noncrossing partitions are equal, so ρ = ρ′.

Proposition 5.8. The map Ψ: Tamn(m)→ ShNC(m)(n) constructed above is a bijection.

Proof. We already know by [Arm09, Section 4.3] and [DM47] that

|Tamn(m)| = |ShNC(m)(n)| = Cat(m)
n ,

so it suffices to prove that Ψ is injective. Suppose b, b′ ∈ Tamn(m) are such that Ψ(b) = Ψ(b′).
For each k ∈ [n], let Bk (respectively, B′

k) be the set of indices i ∈ [(m + 1)n] such
that bi = k (respectively, b′i = k). Let ρ = {B1, . . . , Bn} and ρ′ = {B′

1, . . . , B
′
n}. It follows

from Remark 3.3 that ρ and ρ′ are noncrossing partitions of [(m + 1)n]. Moreover, maxBk =
maxB′

k = (m + 1)k for all k ∈ [n], so {maxB1, . . . ,maxBn} = {maxB′
1, . . . ,maxB′

n}.
Observe that 1 is in both {minB1, . . . ,minBn} and {minB′

1, . . . ,minB′
n}. Now suppose

t ∈ [2, (m+1)n]. We saw in the proof of Lemma 5.5 that t ∈ {minB1, . . . ,minBn} if and only
if t + 1 has a successor in Ψ(b) (equivalently, φb(t + 1) ̸= ∅). Similarly,
t ∈ {minB′

1, . . . ,minB′
n} if and only if t + 1 has a successor in Ψ(b′). Since Ψ(b) = Ψ(b′),

this shows that
{minB1, . . . ,minBn} = {minB′

1, . . . ,minB′
n}.

Lemma 5.7 tells us that ρ = ρ′, from which it follows that b = b′.

In order to complete the proof of the main result of this section, we still need to show
that Ψ ◦ Row = Rot ◦Ψ. Let ℓ = (m + 1)n, and recall the definition of the maps Θ0, . . . ,Θℓ

from Section 4. In the following lemmas, we will find it convenient to write

b(α) = (Θα ◦ · · · ◦Θ0)(b);

observe that b(ℓ) = Row(b) by Theorem 4.2. Also, each of the vectors b(α) is a ν-bracket vector
since each of the maps Θj sends ν-bracket vectors to ν-bracket vectors.
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Lemma 5.9. Let b ∈ Tamn(m). Suppose i, j ∈ [(m+1)n] are such that i ≡ j ≡ 1 (mod m+1)
and φb(i) = j. If j = (m+ 1)u+ 1, then i is u-initial in Row(b).

Proof. Let us write Row(b) = b̂ = (b̂0, . . . , b̂ℓ). Let i = (m + 1)s + 1. Since φb(i) = j ̸= ∅,
we must have i ∈ ∆(b). Therefore, Corollary 4.4 tells us that b̂i = z < bi, where z = ηi(b). In
order to show that i is u-initial in b̂, we need to show that z = u and that z ̸∈ {b̂0, . . . , b̂i−1}.

The definition of ηi(b) ensures that br ⩽ z for all i ⩽ r ⩽ fz. Since bj = bi > z, this
implies that j > fz. But j = fu + 1, so u ⩾ z. Suppose by way of contradiction that u > z.
Then i < fz + 1 < j, and Lemma 4.5 tells us that bfz+1 = bi. This contradicts the minimality
in the definition of φb(i), so we conclude that u = z.

Suppose b̂r = z for some r ∈ [0, i − 1]. It follows from Theorem 4.2 that b(i−1)
r = b̂r,

so b(i−1)
r = z = u and b(i−1)

i = bi = bj ⩾ bj(ν) = u+1; however, this contradicts condition (III)
in Definition 3.2 (applied to b(i−1)) because r + 1 ⩽ i ⩽ fu.

Lemma 5.10. Let b ∈ Tamn(m), and suppose i, j ∈ [2, (m + 1)n] are such that φb(i) = j.
Then φRow(b)(i− 1) = j − 1.

Proof. Let Row(b) = b̂ = (b̂0, . . . , b̂ℓ). It follows from the definition of φb that
i ≡ j (mod m + 1) and i < j. If i ≡ j ≡ 1 (mod m + 1), then Lemma 5.9 tells us that i is
u-initial in b̂, where u is such that j = (m+ 1)u+ 1 = fu + 1. In this case, it follows from the
definition of φb̂ that φb̂(i− 1) = j − 1, as desired.

In the remainder of the proof, we may assume i ≡ j ̸≡ 1 (mod m+ 1). Keep in mind that

b(α) = (b̂0, . . . , b̂α, bα+1, . . . , bℓ)

for all α ∈ [0, ℓ] by Theorem 4.2 (and the fact that each map Θj can only change the entry in
position j of a ν-bracket vector). We now consider two cases.

Case 1 Assume i ≡ j ̸≡ 0, 1 (mod m + 1). Let x = bi and y = b̂i−1. The definition of φb

implies that bj = x. Invoking Remark 3.3, we find that

br ⩽ x for all r ∈ [i, j]. (5.2)

We have y = b
(i−1)
i−1 ⩾ b

(i−1)
i = bi = x by Remark 3.4.

We are going to prove by induction on α that

b̂α ̸∈ [x, y − 1] for all α ∈ [0, j − 1]. (5.3)

If α ⩽ i− 2, then this follows from condition (III) in Definition 3.2 since, otherwise, we would
have α + 1 ⩽ i − 1 ⩽ fb̂α and b̂i−1 = y > b̂α. We also know that (5.3) is true when
α = i− 1 since b̂i−1 = y. Now suppose i ⩽ α ⩽ j − 1. If α = fk = (m + 1)k for some k,
then fk < j < fx, so b̂α = k < x. If α ∈ ∆(b(α−1)), then we can use Theorem 4.2, the definition
of Θα, and (5.2) to see that

b̂α = (Θα(b
(α−1)))α = ηα(b

(α−1)) < b(α−1)
α = bα ⩽ x.
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Finally, suppose α is not divisible by m + 1 (i.e., is not of the form fk) and α ̸∈ ∆(b(α−1)).
According to Theorem 4.2 and the definition of Θα, we have

b̂α = (Θα(b
(α−1)))α = ζα(b

(α−1)) = min{b(α−1)
r : 0 ⩽ r ⩽ α− 1 and b(α−1)

r ⩾ b(α−1)
α }.

Our induction hypothesis implies that ζα(b(α−1)) ̸∈ [x, y − 1]. This proves (5.3).
We have i ∈ ∆(b) because φb(i) ̸= ∅. It follows from Corollary 4.4

that b̂i = ηi(b) < bi = x. Now, b̂i−1 = y ⩾ x > ηi(b) = b̂i, so i − 1 ∈ ∆(b̂). This means
that φb̂(i − 1) is the smallest integer p such that p > i − 1, p ≡ i − 1 (mod m + 1),
and b̂p = y; our goal is to show that φb̂(i − 1) = j − 1. By combining (5.2) with Remark 3.4
and the fact that bj = x, we find that bj−1 = x. Therefore, b(j−2)

j−1 = b
(j−2)
j = x; it follows

that j − 1 ̸∈ ∆(b(j−2)). Theorem 4.2 tells us that

b̂j−1 = (Θj−1(b
(j−2)))j−1 = ζj−1(b

(j−2)) = min{b(j−2)
r : 0 ⩽ r ⩽ j − 2 and b(j−2)

r ⩾ x}

= min{b̂r : 0 ⩽ r ⩽ j − 2 and b̂r ⩾ x},
so it follows from (5.3) and the fact that b̂i−1 = y that b̂j−1 = y. Consequently, we are left to
show that

b̂r ̸= y for all r ∈ [i, j − 2] satisfying r ≡ i− 1 (mod m+ 1). (5.4)
Let us write i = (m + 1)s + t and j = (m + 1)s′ + t, where 0 ⩽ s < s′ ⩽ n − 1

and 2 ⩽ t ⩽ m. Let z1 = ηi(b) = b̂i; note that z1 < x. Condition (III) in Definition 3.2 tells us
that b̂r ⩽ z1 < x for all r ∈ [i+ 1, (m+ 1)z1]. In particular,

b̂(m+1)v+t−1 < x ⩽ y for all v ∈ [s+ 1, z1 − 1]. (5.5)

If z1 ⩾ s′, then this proves (5.4). Now suppose z1 < s′. We can use Lemma 4.5 to conclude
that b(m+1)z1+1 = x. By the definition of φb(i), we have b(m+1)z1+t ̸= x, so (by Remark 3.4)
there must be some 1 ⩽ u1 < t such that

b(m+1)z1+u1 = x > b(m+1)z1+u1+1.

Then (m+1)z1+u1 ∈ ∆(b), so it follows from Corollary 4.4 that b̂(m+1)z1+u1 = η(m+1)z1+u1(b).
Let z2 = η(m+1)z1+u1(b) = b̂(m+1)z1+u1; note that z2 < x. Condition (III) in Definition 3.2 tells
us that b̂r ⩽ z2 < x for all r ∈ [(m+ 1)z1 + u1, (m+ 1)z2]. In particular,

b̂(m+1)v+t−1 < x ⩽ y for all v ∈ [z1, z2 − 1]. (5.6)

If z2 ⩾ s′, then (5.5) and (5.6) together complete the proof of (5.4), so we may assume z2 < s′.
An argument similar to the one just given shows that there exists 1 ⩽ u2 < t such that

b(m+1)z2+u2 = x > b(m+1)z2+u2+1.

Then (m+1)z2+u2 ∈ ∆(b), so it follows from Corollary 4.4 that b̂(m+1)z2+u2 = η(m+1)z2+u2(b).
We can then define z3 = η(m+1)z2+u2(b) and note that z3 < x. Also, b̂r ⩽ z3 < x for
all r ∈ [(m + 1)z2 + u2, (m + 1)z3], so b̂(m+1)v+t−1 < x ⩽ y for all v ∈ [z2, z3 − 1]. Continu-
ing in this fashion, we construct numbers z1, z2, . . . until eventually obtaining some zh that is at
least s′, at which point we obtain a proof of (5.4).
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Case 2 Assume i ≡ j ≡ 0 (mod m+1). Let i = (m+1)z1 = fz1 and j = (m+1)x = fx, and
note that z1 < x. The definition of φb implies that i+ 1 is x-initial in b; in particular, bi+1 = x.
Let y = b̂i−1. Condition (III) in Definition 3.2 tells us that

br ⩽ x for all r ∈ [i+ 1, j]. (5.7)

In order to prove that φb̂(i − 1) = j − 1, we first want to show that i − 1 ∈ ∆(b̂),
meaning y > b̂i = z1. We will actually show that y ⩾ x. Since y ⩾ z1 (by Remark 3.4),
we just need to prove that y ̸∈ [z1, x− 1]. In fact, we will prove by induction on α the stronger
assertion that

b̂α ̸∈ [z1, x− 1] for all α ∈ [0, i− 1]. (5.8)

First, suppose bα ⩾ x. Since i + 1 is x-initial in b, we must actually have bα ⩾ x + 1.
Notice that b(α−1)

r = br ⩽ x for all r ∈ [i + 2, fx] by condition (III) in Definition 3.2.
Also, b

(α−1)
i+1 = bi+1 = x and b

(α−1)
i = bi = z1 < x. This shows that b

(α−1)
r ⩽ x for

all r ∈ [i, fx]. If, in addition, we have α ∈ ∆(b(α−1)) and b
(α−1)
r ⩽ x for all r ∈ [α + 1, i− 1],

then it follows from Theorem 4.2 and the definition of ηα(b(α−1)) that

b̂α = (Θα(b
(α−1)))α = ηα(b

(α−1)) ⩾ x.

On the other hand, if there exists r ∈ [α+1, i−1] such that b(α−1)
r > x, then Remark 3.3 tells us

that b̂α ̸∈ [z1, x− 1] since, otherwise, the entries in positions α, r, fb̂α would form a 121-pattern
in b(α) (since b(α)α = b̂α and b

(α)
r = b

(α−1)
r ). Finally, if α ̸∈ ∆(b(α−1)), then

b̂α = (Θα(b
(α−1)))α = ζα(b

(α−1)) = min{b(α−1)
r : 0 ⩽ r ⩽ α− 1 and b(α−1)

r ⩾ b(α−1)
α }

= min{b̂r : 0 ⩽ r ⩽ α− 1 and b̂r ⩾ b(α−1)
α },

so it follows by induction on α that b̂α ̸∈ [x, y − 1] in this case as well. This proves (5.8), so we
conclude that y ⩾ x and i− 1 ∈ ∆(b̂).

We are now going to prove by induction on α that

b̂α ̸∈ [x, y − 1] for all α ∈ [0, j − 1]. (5.9)

This is certainly true if 0 ⩽ α ⩽ i − 2 since, otherwise, we would have α + 1 ⩽ i − 1 ⩽ fb̂α
and b̂i−1 = y > b̂α (violating condition (III) in Definition 3.2). We also know that (5.9) is true
whenα = i−1 orα = i since b̂i−1 = y and b̂i = b̂fz1 = z1 < x. Now suppose i+1 ⩽ α ⩽ j−1.
If α = fk = (m+1)k for some k, then fk < j = fx, so b̂α = k < x. If α ∈ ∆(b(α−1)), then we
can use Theorem 4.2, the definition of Θα, and (5.7) to see that

b̂α = (Θα(b
(α−1)))α = ηα(b

(α−1)) < b(α−1)
α = bα ⩽ x.

Finally, suppose α is not divisible by m + 1 (i.e., is not of the form fk) and α ̸∈ ∆(b(α−1)).
According to Theorem 4.2 and the definition of Θα, we have

b̂α = (Θα(b
(α−1)))α = ζα(b

(α−1)) = min{b(α−1)
r : 0 ⩽ r ⩽ α− 1 and b(α−1)

r ⩾ b(α−1)
α }.



22 Colin Defant, James Lin

Our induction hypothesis implies that ζα(b(α−1)) ̸∈ [x, y − 1]. This proves (5.9).
We saw above that i− 1 ∈ ∆(b̂), so φb̂(i− 1) is the smallest integer p such that p > i− 1,

p ≡ −1 (mod m+1), and b̂p = y; our goal is to show thatφb̂(i−1) = j−1. By combining (5.8)
with Remark 3.4 and the fact that bj = x, we find that bj−1 = x. Since b(j−2)

j−1 = b
(j−2)
j = x, we

have j − 1 ̸∈ ∆(b(j−2)). Theorem 4.2 tells us that

b̂j−1 = (Θj−1(b
(j−2)))j−1 = ζj−1(b

(j−2)) = min{b(j−2)
r : 0 ⩽ r ⩽ j − 2 and b(j−2)

r ⩾ x}

= min{b̂r : 0 ⩽ r ⩽ j − 2 and b̂r ⩾ x},

so it follows from (5.9) and the fact that b̂i−1 = y that b̂j−1 = y. Therefore, we are left to show
that b̂(m+1)v+m ̸= y for all v ∈ [z1, x − 2]. This is vacuously true if z1 = x − 1, so we may
assume z1 < x− 1.

Recall that b(m+1)z1+1 = bi+1 = x. Let u1 be the largest element of [m] with the property
that b(m+1)z1+u1 = x. Then (m + 1)z1 + u1 ∈ ∆(b) (by Remark 3.4), so it follows from
Corollary 4.4 that

b̂(m+1)z1+u1 = η(m+1)z1+u1(b).

Let z2 = η(m+1)z1+u1(b) = b̂(m+1)z1+u1; note that z2 < x since b(m+1)z1+u1 ⩽ x by (5.7). Con-
dition (III) in Definition 3.2 tells us that b̂r ⩽ z2 < x for all r ∈ [(m + 1)z1 + u1, (m + 1)z2].
In particular, b̂(m+1)v+m < x for all v ∈ [z1, z2 − 1]. Let u2 be the largest element of [m] such
that b(m+1)z2+u2 = x. If z2 < x−1, then (m+1)z2+u2 ∈ ∆(b), so it follows from Corollary 4.4
that b̂(m+1)z2+u2 = η(m+1)z2+u2(b). We can then define z3 = η(m+1)z2+u2(b) and note that z3 < x

since b(m+1)z2+u2 ⩽ x by (5.7). Also, b̂r ⩽ z3 < x for all r ∈ [(m+ 1)z2 + u2, (m+ 1)z3],
so b̂(m+1)v+m < x for all v ∈ [z2, z3 − 1]. Continuing in this fashion, we construct num-
bers z1, z2, . . . until eventually obtaining some zh that is equal to x − 1. This argument shows
that b̂(m+1)v+m < x ⩽ y for all v ∈ [z1, x− 2], which proves the desired result in this case.

Lemma 5.11. Let b ∈ Tamn(m). LetN be the largest element of the block ofΨ(b) containing 1,
and assume N > 1 (i.e., 1 is not in a singleton block). Then φRow(b)(N − 1) = (m+ 1)n.

Proof. Let b̂ = Row(b). Let i1 < · · · < ip be the elements of the block of Ψ(b) containing 1.
Then i1 = 1 and ip = N . The description of Ψ(b) given in Lemma 5.3 tells us that φb(it) = it+1

for all t ∈ [p− 1]. It follows from the definition of φb that 1 = i1 ≡ · · · ≡ ip (mod m+1). Let
us write it = (m+ 1)ut + 1 for all t ∈ [p]. Since N − 1 ≡ 0 (mod m+ 1), we can refer to the
definition of φb to see that our goal is to show that N is n-initial in b̂.

Consider t ∈ [p − 1]. It follows from Lemma 5.9 that it is ut+1-initial in Row(b). Be-
cause fut+1 = (m + 1)ut+1 = it+1 − 1, it follows from condition (III) in Definition 3.2
that b̂r ⩽ ut+1 for all r ∈ [it, it+1 − 1]. This shows that b̂r ⩽ up for all r ∈ [0, N − 1]. In
particular, b̂r ̸= n for all r ∈ [0, N−1]. Therefore, we will be done if we can prove that b̂N = n.

Because N is the largest element of its block in Ψ(b), it is in φ−1
b (∅) by Lemma 5.3. This

means thatN ̸∈ ∆(b). Since b(N−1)
N = bN and b(N−1)

N+1 = bN+1, we also haveN ̸∈ ∆(b(N−1)). By
Theorem 4.2 and the definition ofΘN , we have b̂N = (ΘN(b

(N−1)))N = ζN(b
(N−1)). Recall that
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our convention is that ζN(b(N−1)) = n if the set {b(N−1)
r : 0 ⩽ r ⩽ N − 1 and b

(N−1)
r ⩾ b

(N−1)
N }

is empty. We know that b(N−1)
r = b̂r ⩽ up for all r ∈ [0, N − 1]. On the other hand, we

have b(N−1)
N ⩾ bN(ν) = up+1. This shows that {b(N−1)

r : 0 ⩽ r ⩽ N−1 and b
(N−1)
r ⩾ b

(N−1)
N }

is indeed empty, so b̂N = ζN(b
(N−1)) = n.

We are now finally in a position to prove the main result of this section.

Theorem 5.12. The map Ψ: Tamn(m)→ ShNC(m)(n) is a bijection satisfying

Ψ ◦ Row = Rot ◦Ψ.

Proof. We already know by Proposition 5.8 that Ψ is a bijection. Consider a ν-bracket
vector b ∈ Tamn(m); our goal is to show that Ψ(Row(b)) = Rot(Ψ(b)). We will make use of
Lemma 5.5 (or rather, its proof), which tells us that

|φ−1
b (∅)| = |φ−1

Row(b)(∅)| = mn+ 1. (5.10)

Let N be the largest element of the block of Ψ(b) containing 1. Let X be the set of pairs (α, α′)
such that α, α′ ∈ [(m+1)n] and φRow(b)(α) = α′. Note that |X | = (m+1)n− |φ−1

Row(b)(∅)| =
n− 1 by (5.10).

SupposeN = 1. LetY be the set of pairs of the form (i−1, j−1) such that i, j ∈ [2, (m+1)n]
and φb(i) = j. Since N = 1, we have φb(1) = ∅, so |Y| = (m+ 1)n− |φ−1

b (∅)| = n− 1
by (5.10). Lemma 5.10 tells us that Y ⊆ X , so we must have X = Y . This implies
that Ψ(Row(b)) = Rot(Ψ(b)), as desired.

Now suppose N > 1. Let Z ′ be the set of pairs of the form (i − 1, j − 1) such
that i, j ∈ [2, (m+ 1)n] and φb(i) = j. Let Z = Z ′ ∪ {(N, (m + 1)n + 1)}. Since N > 1,
we have φb(1) ̸= ∅, so |Z ′| = |([(m + 1)n] \ φ−1

b (∅)) \ {1}| = n − 2 by (5.10). This shows
that |Z| = n − 1 = |X |. Lemmas 5.10 and 5.11 tell us that Z ⊆ X , so we must have X = Z .
This implies that Ψ(Row(b)) = Rot(Ψ(b)), as desired.

The following result settles Thomas and Williams’s Conjecture 3.1 when a ≡ 1 (mod b).

Theorem 5.13. The order of Row: Tamn(m) → Tamn(m) is (m + 1)n. Moreover, the
triple (Tamn(m),Row,Cat(m)

n (q)) exhibits the cyclic sieving phenomenon.

Proof. The first sentence is immediate from Theorem 5.12 because the map

Rot: ShNC(m)(n)→ ShNC(m)(n)

clearly has order (m+1)n. The second sentence is a consequence of Theorem 5.12 and (5.1).

Our final result of this section exhibits an instance of the homomesy phenomenon (see Sec-
tion 2.5). Recall from the introduction that the down-degree statistic on a poset P is the func-
tion ddeg : P → R defined by ddeg(x) = |{y ∈ P : y ⋖ x}|.

Theorem 5.14. The down-degree statistic on Tamn(m) is homomesic for rowmotion with aver-
age

m(n− 1)

m+ 1
.
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Proof. Suppose b ∈ Tamn(m). It follows from [Def22, Proposition 4.4] that ddeg(b) = |∆(b)|.
Referring to the description of Ψ(b) in Lemma 5.3 and the definition of φb, we find that ∆(b)
is the set of indices i ∈ [(m + 1)n] such that i is not maximal in its block of Ψ(b) and i ̸≡ 0
(mod m+1). For ρ ∈ ShNC(m)(n), let Q(ρ) be the number of indices i ∈ [(m+1)n] such that i
is maximal in its block in ρ and i ̸≡ 0 (mod m+1). Then ddeg(b) = |∆(b)| = mn−Q(Ψ(b)).
Invoking Theorem 5.12, we find that the desired result will follow if we can prove that Q is
homomesic for Rot: ShNC(m)(n)→ ShNC(m)(n) with average mn−m(n− 1)/(m+ 1).

For a set X ⊆ [(m+1)n], let f(X) = 1 if maxX ̸≡ 0 (mod m+1), and let f(X) = 0 oth-
erwise. Fix ρ ∈ ShNC(m)(n). BecauseRot: ShNC(m)(n)→ ShNC(m)(n) has order (m+ 1)n,
the average of Q along the orbit of Rot containing ρ is

1

(m+ 1)n

(m+1)n∑
k=1

Q(Rotk(ρ));

our goal is to show that this quantity is mn −m(n − 1)/(m + 1). For each block B ∈ ρ and
each k ⩾ 1, letB−k be the block ofRotk(ρ)whose elements are obtained by subtracting k from
the elements of B and reducing modulo (m+1)n. Since all of the elements of B are congruent
modulo m+ 1 (by the definition of ShNC(m)(n)), we have

∑(m+1)n
k=1 f(B − k) = mn. Thus,

1

(m+ 1)n

(m+1)n∑
k=1

Q(Rotk(ρ)) =
1

(m+ 1)n

(m+1)n∑
k=1

∑
X∈Rotk(ρ)

f(X)

=
1

(m+ 1)n

(m+1)n∑
k=1

∑
B∈ρ

f(B − k)

=
1

(m+ 1)n

∑
B∈ρ

(m+1)n∑
k=1

f(B − k)

=
1

(m+ 1)n

∑
B∈ρ

mn =
1

(m+ 1)n
mn(mn+ 1),

where the last equality follows from the fact that ρ has mn + 1 blocks (by the definition
of ShNC(m)(n)). Finally, note that 1

(m+1)n
mn(mn+ 1) = mn−m(n− 1)/(m+ 1).

To end our discussion of ν-Tamari lattices, we state two conjectures about rowmotion on
rational Tamari lattices. The first conjecture strengthens Conjecture 3.1 and Theorem 5.13, while
the second strengthens Theorem 5.14. Recall the definition of Tam(a, b) from Section 3.1.

Conjecture 5.15. Let a and b be relatively prime positive integers, and let

Cat(a,b)(q) =
1

[a+ b]q

[
a+ b

b

]
q

.

The triple (Tam(a, b),Row,Cat(a,b)(q)) exhibits the cyclic sieving phenomenon.
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Conjecture 5.16. Let a and b be relatively prime positive integers. The down-degree statistic
on Tam(a, b) is homomesic for rowmotion with average

(a− 1)(b− 1)

a+ b− 1
.

6. BiCambrian Lattices and Doubled Root Posets

In the next several sections, we turn our attention to rowmotion on biCambrian lattices. We
begin with some notation and terminology surrounding the main result that we seek to prove.

6.1. Lattice congruences

LetL be a lattice. A lattice congruence ofL is an equivalence relation≡ onL that respects meets
and joins. More precisely, this means that if x1, x2, y1, y2 ∈ L satisfy x1 ≡ x2 and y1 ≡ y2,
then (x1 ∧ y1) ≡ (x2 ∧ y2) and (x1 ∨ y1) ≡ (x2 ∨ y2).

Each equivalence class C of a lattice congruence ≡ is an interval in L, so it has a unique
minimal element Cmin and a unique maximal element Cmax. We obtain projection opera-
tors π↓, π

↑ : L → L by letting π↓(x) = Cmin and π↑(x) = Cmax whenever x is in the equiva-
lence class C. Thus, π↓(L) is the set of minimal elements of equivalence classes, while π↑(L) is
the set of maximal elements of equivalence classes. We consider π↓(L) and π↑(L) as subposets
of L.

The lattice congruence≡ gives rise to a quotient lattice L/≡ whose elements are the equiv-
alence classes of ≡. The order relation on L/≡ is defined so that C ⩽ C ′ if and only if there
exist x ∈ C and x′ ∈ C ′ such that x ⩽ x′. It is straightforward to check that C ⩽ C ′ in L/≡
if and only if Cmin ⩽ C ′

min in L if and only if Cmax ⩽ C ′
max in L. Thus, π↓(L) and π↑(L) are

lattices that are naturally isomorphic to L/≡.

6.2. Doubled root posets

Let Φ be a finite root system with a corresponding Coxeter group W (see [BB05, Hum80] for
relevant background). Let Φ+ be a system of positive roots for Φ. If Φ is crystallographic, then
there is a natural partial order on Φ+ obtained by saying α ⩽ β if β − α is a nonnegative linear
combination of positive roots. Endowed with this partial order, Φ+ is called the root poset of Φ.
The minimal elements of Φ+ are the simple roots.

Barnard and Reading [BR18] introduced Coxeter–biCatalan combinatorics as a variant of
Coxeter–Catalan combinatorics motivated by several fascinating enumerative phenomena. Given
a root poset Φ+, we obtain the associated doubled root poset by taking a copy of Φ+ and a copy
of the dual of Φ+ and identifying corresponding simple roots. For example, the doubled root
posets of types A5 and B3 are shown on the left in Figure 6.1. In general, the doubled root poset
of type An is isomorphic to the product of two chains [n] × [n], and the doubled root poset of
type Bn is a shifted staircase with n(2n− 1) elements (this is the quotient of [n]× [n] modulo
the action of the map (i, j) 7→ (j, i)).
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Although the root systems of types H3 and I2(m) are not (in general) crystallographic,
Armstrong gave a definition of what their root posets should be [Arm09, Section 5.4.1] (see
also [CS15]). Using this definition, we obtain the doubled root posets of types H3 and I2(6) as
shown on the right in Figure 6.1. The doubled root poset of type I2(m) is the obvious analogue
of the doubled root poset of type I2(6) with 2m− 2 elements.

Figure 6.1: Doubled root posets of types A5, B3, H3, and I2(6) (from left to right).

The root systems of coincidental type are those of type A, B, H3, or I2(m). It turns out
that the doubled root poset of a root system of coincidental type is always a minuscule poset;
such posets arise naturally as the weight lattices of certain representations of simple complex Lie
algebras. The orbit structures of rowmotion on the lattices of order ideals of minuscule posets
are well understood. For type-A minuscule posets (i.e., rectangle posets), this follows from a
theorem of Stanley [Sta09] and Theorem 1.1(b) in the article [RSW04] by Reiner, Stanton, and
White. Type-B minuscule posets (i.e., shifted staircase posets) were first worked out (with essen-
tially the same argument used for minuscule posets of type A) by Striker and Williams [SW12,
Corollary 6.3]. Rush and Shi [RS13] gave a uniform treatment of all minuscule posets, proving
the following theorem. Note that minuscule posets are ranked (see Section 2.2 for the definition
of the rank function rk).

Theorem 6.1 ([RS13]). Let P be a minuscule poset with rank function rk : P → Z⩾0. The
triple (J (P ),Row, FP (q)) exhibits the cyclic sieving phenomenon, where

FP (q) =
∏
x∈P

1− qrk(x)+2

1− qrk(x)+1
.

6.3. BiCambrian lattices

In what follows, whenever we refer to the weak order on a finite Coxeter group, we mean the right
weak order; it is well known that the weak order is a semidistributive lattice. Given a finite irre-
ducible Coxeter groupW and a Coxeter element c ofW , there is an associated lattice congruence
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on the weak order of W called the c-Cambrian congruence [Rea06]. Since c−1 is also a Coxeter
element, one can also consider the c−1-Cambrian congruence. The c-biCambrian congruence
is the lattice congruence on the weak order of W obtained by taking the common refinement
of the c-Cambrian and c−1-Cambrian congruences. The c-biCambrian lattice is the quotient of
the weak order modulo the c-biCambrian congruence. Being a quotient of the weak order, the
c-biCambrian lattice is semidistributive, so it comes equipped with a rowmotion operator.

Let Φ be a finite root system of coincidental type with a corresponding Coxeter group W
and corresponding doubled root poset P . Because the Coxeter diagram of W is a tree, it has a
bipartition X ⊔ Y . Let c+ =

∏
s∈X s and c− =

∏
s∈Y s. Then c = c+c− is called a bipartite

Coxeter element; its inverse is c−c+, which is also bipartite. Our goal in the next three sections is
to prove the following theorem, which Thomas and Williams stated as a conjecture in [TW19].

Theorem 6.2. Let W be a Coxeter group of coincidental type, and let c be a bipartite Coxeter
element of W . Let P be the doubled root poset of type W . The orbit structure of rowmotion on
the c-biCambrian lattice is the same as the orbit structure of rowmotion on J (P ).

Let W , c and P be as in Theorem 6.2, and let FP (q) be the polynomial defined in Theo-
rem 6.1. Theorems 6.1 and 6.2 imply that rowmotion acting on the c-biCambrian lattice exhibits
the cyclic sieving phenomenon with respect to FP (q).

7. Type A BiCambrian Lattices

Our goal in this section is to prove Theorem 6.2 in type A. The Coxeter group of type An is iso-
morphic to the symmetric group Sn+1, whose elements are the permutations of the set [n + 1].
We view permutations both as bijections from [n+1] to itself and as words in one-line notation.
Let si denote the transposition that swaps i and i+1. An index i ∈ [n] is called a descent (respec-
tively, ascent) of a permutation w if w(i) > w(i + 1) (respectively, w(i) < w(i+ 1)); abusing
notation, we will often say thatw(i) > w(i+1) is the descent (respectively, thatw(i) < w(i+ 1)
is the ascent). For example, we would say that 6 > 3 is a descent of 416352, while 3 < 5 is an
ascent of 416352. A permutation in Sn+1 is join-irreducible (respectively, meet-irreducible) in
the weak order if and only if it has exactly 1 descent (respectively, ascent).

An inversion of a permutation w ∈ Sn+1 is a pair (i, j) such that 1 ⩽ i < j ⩽ n + 1
and w−1(i) > w−1(j). For w,w′ ∈ Sn+1, we have w ⩽ w′ if and only if every inversion of w is
also an inversion of w′.

Let c = c+c−, where c+ =
∏

i∈[n] even si and c− =
∏

i∈[n] odd si. Throughout this section, we
let ≡ denote the c-biCambrian congruence on Sn+1. We will work with the following explicit
combinatorial description of ≡. Suppose w ∈ Sn+1 has a descent a > b. If there exist inte-
gers k,m of different parities such that b < k < m < a and such that k and m appear on the
same side of a and b in the one-line notation of w, then we can swap a and b to produce a new
permutation w′ such that w′ ⋖w in the weak order and such that w ≡ w′. We call this operation
that swaps a and b a valid swap. We also use the term valid swap to refer to the inverse operation
that swaps a and b to go from w′ to w (in this case, k and m still have opposite parities and lie on
the same side of a and b in w′). It is straightforward to check that a valid swap can be performed
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on a permutation v by swapping two numbers a and b with a < b if and only if the following
hold:

• The entries a and b form a descent or an ascent in v.

• There exists an integer k such that a < k < k + 1 < b and such that k and k + 1 appear
on the same side of a and b in v.

The c-biCambrian congruence ≡ is defined by saying v ≡ v′ if and only if there is a sequence
of valid swaps that transforms v into v′; see Figure 7.1. This equivalence relation is in fact a
lattice congruence, so we can consider the associated projection operators π↓ and π↑ defined in
Section 6.1. The c-biCambrian lattice is the lattice quotient of the weak order on Sn+1 mod-
ulo ≡. As discussed in Section 6.1, the c-biCambrian lattice is isomorphic to both π↓(Sn+1)
and π↑(Sn+1). Note that a permutation w is in π↓(Sn+1) if and only if there does not exist a
descent b > a of w for which we can perform a valid swap. Similarly, w is in π↑(Sn+1) if and
only if there does not exist an ascent a < b of w for which we can perform a valid swap.

Figure 7.1: There are 20 c-biCambrian congruence classes in S4; 16 of them are singletons while
the other 4 (shown in red) have cardinality 2.

Consider a permutation w. Suppose a and b are integers that appear consecutively in the
one-line notation of w and satisfy a < b. Then either b > a is a descent of w or a < b is an
ascent of w. We say this descent or ascent is right-even (respectively, left-even) if a and b appear
to the right (respectively, left) of all even numbers in [a+ 1, b− 1] and to the left (respectively,
right) of all odd numbers in [a + 1, b − 1] in w. Note that b − a = 1 if and only if this descent
or ascent is both right-even and left-even. It follows from the combinatorial description of the
c-biCambrian congruence that w ∈ π↓(Sn+1) if and only if every descent of w is right-even or
left-even (or both).

Suppose w ∈ π↓(Sn+1) has k descents b1 > a1, . . . , bk > ak; we will define two k-element
subsets S↓(w), T↓(w) ⊆ [n]. If the descent bi > ai is right-even, then we put ai into the set S↓(w)
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and bi − 1 into the set T↓(w); if the descent bi > ai is left-even, we put bi − 1 into S↓(w)
and ai into T↓(w). For example, if w = 896753421 ∈ π↓(S9), then S↓(w) = {1, 3, 4, 5, 6}
and T↓(w) = {1, 2, 3, 6, 8}. It is straightforward to check that no number will be added twice
into one of these two sets from two different descents—thus, (S↓(w), T↓(w)) is indeed a pair
of k-element subsets of [n]. Let Ωn denote the set of all pairs (S, T ) such that S, T ⊆ [n]
and |S| = |T |. Barnard and Reading proved the following result.

Theorem 7.1 ([BR18, Theorem 3.8]). The map ξ↓ : π↓(Sn+1)→ Ωn given by

ξ↓(w) = (S↓(w), T↓(w))

is a bijection.

Our general strategy for proving Theorem 6.2 for An will be to use the bijection ξ↓ to transfer
the operator Row: π↓(Sn+1) → π↓(Sn+1) to an operator χ : Ωn → Ωn that is much easier to
analyze (see Theorem 7.13). However, the main challenge is to prove that the map ξ↓ has the
properties we need; this will occupy most of our focus in this section.

Before we proceed, let us record an analogue of Theorem 7.1 that concerns π↑(Sn+1).
Given w ∈ π↑(Sn+1) with k ascents a1 < b1, . . . , ak < bk, we define two k-element subsets

S↑(w), T ↑(w) ⊆ [n].

If the ascent ai < bi is right-even, we put ai into the set S↑(w) and bi − 1 into the set T ↑(w); if
the ascent ai < bi is left-even, we put bi − 1 into S↑(w) and ai into T ↑(w). The next theorem
follows from Theorem 7.1 by considering duals, so we will attribute it to [BR18] even though it
is not stated in this exact form in that article.

Theorem 7.2 ([BR18]). The map ξ↑ : π↑(Sn+1) → Ωn given by ξ↑(w) = (S↑(w), T ↑(w)) is a
bijection.

The next proposition tells us that an element w ∈ π↓(Sn+1) is join-irreducible if and only
if |S↓(w)| = |T↓(w)| = 1. The first statement is an immediate consequence of Proposition 4.11
(and the paragraph immediately after) in [BR18], while the second statement follows from the
dual version of that result.

Proposition 7.3 ([BR18, Proposition 4.11]). A permutation in π↓(Sn+1) is join-irreducible
in π↓(Sn+1) if and only if it has exactly 1 descent (i.e., it is join-irreducible in the weak or-
der on Sn+1). A permutation in π↑(Sn+1) is meet-irreducible in π↑(Sn+1) if and only if it has
exactly 1 ascent (i.e., it is meet-irreducible in the weak order on Sn+1).

Suppose w ∈ Sn+1, and let b > a be a descent of w. Let λ(w, b > a) be the unique
permutation in Sn+1 whose only descent is b > a and such that the set of numbers in [a+1, b−1]
appearing to the left of b in λ(w, b > a) is the same as the set of numbers in [a + 1, b − 1]
appearing to the left of b in w. For example, λ(31746285, 6 > 2) = 13462578. Note that
if b > a is right-even (respectively, left-even) in w, then b > a is also right-even (respectively,
left-even) in λ(w, b > a). It is well known that if b1 > a1, . . . , bk > ak are the descents of w,
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then {λ(w, b1 > a1), . . . , λ(w, bk > ak)} is the canonical join representation of w in the weak
order (see Section 2.3). Proposition 4.11 (and the paragraph immediately after it) in [BR18] tells
us that if w ∈ π↓(Sn+1), then the canonical join representation of w in π↓(Sn+1) is the same as
the canonical join representation of w in Sn+1. We record this in the following proposition.

Proposition 7.4. Let w ∈ π↓(Sn+1). Let b1 > a1, . . . , bk > ak be the descents of w.
Then {λ(w, b1 > a1), . . . , λ(w, bk > ak)} is the canonical join representation of w in π↓(Sn+1).

Note that if w ∈ π↓(Sn+1) has descents b1 > a1, . . . , bk > ak, then

S↓(w) =
⋃
i∈[k]

S↓(λ(w, bi > ai)) and T↓(w) =
⋃
i∈[k]

T↓(λ(w, bi > ai)). (7.1)

If w ∈ Sn+1 has an ascent a < b, then we let τ(w, a < b) be the unique permutation in Sn+1

whose only ascent is a < b and such that the set of numbers in [a + 1, b − 1] appearing to the
left of a in τ(w, a < b) is the same as the set of numbers in [a + 1, b − 1] appearing to the left
of a in w. We have the following analogue of Proposition 7.4.

Proposition 7.5. Let w ∈ π↑(Sn+1). Let a1 < b1, . . . , ak < bk be the ascents of w.
Then {τ(w, a1 < b1), . . . , τ(w, ak < bk)} is the canonical meet representation ofw in π↑(Sn+1).

Moreover, if w ∈ π↑(Sn+1) has ascents a1 < b1, . . . , ak < bk, then

S↑(w) =
⋃
i∈[k]

S↑(τ(w, ai < bi)) and T ↑(w) =
⋃
i∈[k]

T ↑(τ(w, ai < bi)). (7.2)

Proposition 7.6. Let j be the join-irreducible element of π↓(Sn+1) with right-even (respectively,
left-even) descent b > a. Let m be the meet-irreducible element of π↑(Sn+1) with right-even
(respectively, left-even) ascent a < b. Then m = π↑(Row(j)), where rowmotion is computed
in π↓(Sn+1).

Proof. For x ∈ Sn+1, let [x]≡ be the c-biCambrian congruence class containing x; thus, the
equivalence classes of the form [x]≡ are the elements of the c-biCambrian lattice Sn+1/ ≡. Let j∗
(respectively, m∗) be the unique element of Sn+1 that is covered by j (respectively, covers m) in
the weak order. One can check that j∧m = j∗ and j∨m = m∗, where the join and meet are taken
in the weak order. This implies that [j]≡∧ [m]≡ = [j∗]≡ and [j]≡∨ [m]≡ = [m∗]≡, where the join
and meet are taken in the c-biCambrian lattice. It follows from Lemma 2.1 that κ([j]≡) = [m]≡.
This proves that Row([j]≡) = [m]≡ in Sn+1/ ≡ (recall from Section 2.3 that Row is just κ when
restricted to join-irreducible elements). It follows that in the lattice π↓(Sn+1), rowmotion sends j
to the minimum element of [m]≡. This yields the desired result.

We still need to establish a few more technical lemmas before we can transfer the action of
rowmotion from π↓(Sn+1) to Ωn via the map ξ↓.

Lemma 7.7. Suppose that w,w′ ∈ Sn+1 are in the same c-biCambrian congruence class and
that d1, d2 ∈ [n+ 1] satisfy 1 ⩽ |d1− d2| ⩽ 2. Then d1 appears to the left of d2 in w if and only
if d1 appears to the left of d2 in w′.
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Proof. This is an immediate consequence of the combinatorial description of the c-biCambrian
congruence since there is no valid swap of d1 and d2.

In the following lemma, let us write Inv(w)|[a,b] for the set of inversions (x, y) of a permuta-
tion w that satisfy a = x < y ⩽ b or a ⩽ x < y = b.

Lemma 7.8. Let w ∈ π↓(Sn+1), and let w′ be a permutation in the same c-biCambrian con-
gruence class as w. If w has a descent b > a, then Inv(w)|[a,b] = Inv(w′)|[a,b]. Analogously,
if π↑(w) has an ascent d < e, then Inv(π↑(w))|[d,e] = Inv(w′)|[d,e].

Proof. We will prove only the first statement since the proof of the second statement is similar.
We will also assume that b > a is a right-even descent of w; the case in which it is left-even is
similar. Since w ⩽ w′, we know that Inv(w)|[a,b] ⊆ Inv(w′)|[a,b]. Assume by way of contradic-
tion that Inv(w)|[a,b] ̸= Inv(w′)|[a,b].

Referring to the combinatorial description of the c-biCambrian congruence, we see that
there is a chain w = v0 ⋖ v1 ⋖ · · · ⋖ vm = w′ in the weak order whose elements are all
in the same c-biCambrian congruence class as w and such that each vi is obtained from vi−1

by applying a valid swap. Let j be the smallest index such that Inv(vj−1)|[a,b] ̸= Inv(vj)|[a,b].
Then Inv(vj−1)|[a,b] = Inv(w)|[a,b]. There is some z ∈ [a + 1, b − 1] such that the valid swap
used to move from vj−1 to vj either swaps a and z or swaps z and b; we will assume
that it swaps a and z since the other case is similar. Because this swap is valid, there exists
some k ∈ [a+ 1, z − 1] such that k and k + 1 appear on the same side of a in vj−1. However,
since Inv(vj−1)|[a,b] = Inv(w)|[a,b], this implies that k and k + 1 appear on the same side of a
in w. This contradicts the fact that b > a is a right-even descent of w.

Lemma 7.9. Let b be an even (respectively, odd) integer. Let w ∈ π↓(Sn+1) have a right-even
(respectively, left-even) descent b > a. Then π↑(w) cannot have a right-even (respectively, left-
even) ascent of the form b < d.

Proof. Assume by way of contradiction that b is even, w has a right-even descent b > a,
and π↑(w) has a right-even ascent b < d; the proof of the other case is similar. Let C be
the c-biCambrian congruence class containing w. Because (b, d) is not an inversion of π↑(w),
it is not an inversion of any element of C. There must be some permutations v, v′ ∈ C such
that v′ covers v in the weak order, a < d is an ascent of v, and v′ is obtained from v by perform-
ing a valid swap that swaps a and d. However, it follows from Lemma 7.8 that a and d are to
the right of all even elements of [a + 1, d − 1] (including b) and to the left of all odd elements
of [a+ 1, d− 1] in v. This means that swapping a and d to reach v′ is actually not valid, which
is a contradiction.

Lemma 7.10. Let b ⩽ n−1 be an integer. Suppose that eitherw ∈ π↓(Sn+1) has an ascent a < b
or b is the first integer in w. Suppose also that w has a descent b+1 > d such that b+1 appears
to the right of b. Then either π↑(w) has an ascent of the form e < b + 2, or b + 1 is to the
left of b + 2 in π↑(w) and all integers appearing between b + 1 and b + 2 in π↑(w) are larger
than b+ 2.
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Proof. First we prove that all integers to the left of b in w are smaller than b. Assume for con-
tradiction that there is an integer to the left of b that is larger than b, and let x be the rightmost
such integer. There is a descent x > y, where y is less than b (a and y may coincide). Both b
and b + 1 are to the right of x and y, so the descent x > y is not right-even or left-even; this
contradicts the fact that w ∈ π↓(Sn+1).

Now, Lemma 7.7 tells us that b appears to the left of both b + 1 and b + 2 in π↑(w). Be-
cause (d, b + 1) is an inversion of w, it is also an inversion of π↑(w) (since w ⩽ π↑(w)); that
is, b + 1 appears to the left of d in π↑(w). If the lemma we are trying to prove is false, then we
must have one of the following cases:

• Case 1: b + 2 lies to the right of b and to the left of b + 1 in π↑(w), and π↑(w) has a
descent of the form d > b+ 2.

• Case 2: b+ 2 lies to the right of b+ 1 in π↑(w), and there is an integer e between b+ 1
and b+ 2 in π↑(w) that is smaller than b.

In Case 1, let x1 be the rightmost integer to the left of b+ 2 in π↑(w) that is less than b+ 1.
Then there is an ascent x1 < y1 in π↑(w) with y1 larger than b+2. But then, since b+1 and b+2
are both to the right of y1, we can perform a valid swap by swapping x1 and y1; this contradicts
the maximality of π↑(w).

In Case 2, let x2 be the rightmost integer to the left of b + 2 in π↑(w) that is less than b.
Then x2 is to the right of b + 1, and there is an ascent x2 < y2 in π↑(w). But then, since b
and b + 1 are both to the left of x2, we can perform a valid swap by swapping x2 and y2; this
contradicts the maximality of π↑(w).

Lemma 7.11. Let w ∈ π↓(Sn+1) have an ascent a < b, and suppose there exists some inte-
ger smaller than a appearing to the right of b in w. Then π↑(w) must have an ascent of the
form a < d.

Proof. Take x to be the leftmost integer to the right of b in w that is smaller than a. Then
there must be a descent y > x in w, where y is larger than a (b and y may coincide). By
Lemma 7.8, a must appear to the left of y in π↑(w). We will reach π↑(w) from w by performing
a particular sequence of valid swaps, each of which swaps the two integers in an ascent and
results in a permutation in the same c-biCambrian congruence class. Throughout the sequence
of valid swaps, let M denote the consecutive subsequence beginning at a and ending at y.

We claim that whenever we swap an ascent e < a, we can choose to swap ewith every integer
in M from left to right until it is to the right of y before moving on to perform other swaps. This
is because we maintain throughout the swapping process that all the integers in M are at least a
(except during the process of moving e through the block M from left to right). Indeed, we only
add to the set of integers in M when we swap y with an integer that is larger than y and to its right
(which adds an integer larger than a to M ) or when we swap a with an integer that is smaller
than a and to its left (which we immediately move through the subsequence M until it exits to
the right of y). When we move an integer e smaller than a through M , each valid swap results
in a permutation in the same c-biCambrian congruence class. This is because the first swap of
the ascent e < a is valid, so there are integers k,m of opposite parities on the same side of the
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ascent satisfying e < k < m < a. Since M consists of integers at least a, this means that k
and m are not in M—thus, we can choose these two integers to see that any swap of e with an
integer in M is valid. It follows that π↑(w) must have only integers larger than a to the right of a
and to the left of y, which implies that π↑(w) has an ascent of the form a < d.

We are now in a position to state and prove our critical theorem that will allow us to describe
rowmotion on type-A biCambrian lattices. Recall that si denotes the simple transposition inSn+1

that swaps i and i+1; when i ∈ [n−1], we can also view si as a transposition in Sn. Recall also
that we defined a bipartite Coxeter element c = c+c− in Sn+1. In the following theorem, we will
need to use the analogues of c+ and c− in Sn instead of Sn+1. To avoid confusion, we denote
these elements by c′+ =

∏
i∈[n−1] even si and c′− =

∏
i∈[n−1] odd si. For σ ∈ Sn and X ⊆ [n], we

use the notation σX = {σ(x) : x ∈ X}.

Theorem 7.12. If w ∈ π↓(Sn+1), then

T ↑(π↑(w)) = [n] \ c′+S↓(w), S↑(π↑(w)) = [n] \ c′−T↓(w),

T↓(w) = [n] \ c′−S↑(π↑(w)), and S↓(w) = [n] \ c′+T ↑(π↑(w)).

Proof. The latter two equalities follow immediately from the first two. We will only prove the
first equality since the proof of the second is analogous. It suffices to prove each of the following
statements:

• Exactly one of the following holds: 1 ∈ S↓(w) or 1 ∈ T ↑(π↑(w)).

• For even k ∈ [2, n − 1], exactly one of the following holds: k ∈ S↓(w) or k + 1 ∈
T ↑(π↑(w)).

• For even k ∈ [2, n − 1], exactly one of the following holds: k + 1 ∈ S↓(w) or k ∈
T ↑(π↑(w)).

• If n is even, then exactly one of the following holds: n ∈ S↓(w) or n ∈ T ↑(π↑(w)).

All of these statements have similar proofs, so we will only prove the second statement.
First, let us assume by way of contradiction that k ∈ S↓(π↓(w)) and k + 1 ∈ T ↑(π↑(w)).

The condition k ∈ S↓(w) is equivalent to one of the following mutually exclusive cases being
true for w:

• Case 1A: There is a right-even descent b1 > k for some b1 ⩾ k + 2.

• Case 1B: There is a left-even descent k + 1 > a1 for some a1.

The condition k+1 ∈ T ↑(π↑(w)) is equivalent to one of the following mutually exclusive cases
being true for π↑(w):

• Case 2A: There is a right-even ascent a2 < k + 2 for some a2 ⩽ k.

• Case 2B: There is a left-even ascent k + 1 < b2 for some b2.
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Recall that we have assumed k is even. In Case 1A, the integers k+2, k, k+1 lie in that order inw,
and in Case 1B, the integers k+1, k lie in that order in w. In Case 2A, the integers k, k+2, k+1
lie in that order in π↑(w), and in Case 2B, the integers k + 1, k + 2 lie in that order in π↑(w). If
Case 1A holds, then it follows from Lemma 7.7 that neither Case 2A nor Case 2B can hold. If
Case 1B holds, then Lemma 7.7 tells us that Case 2A cannot hold, and Lemma 7.9 tells us that
Case 2B cannot hold. This exhausts all possibilities and yields our desired contradiction.

Now we prove that we cannot have both k ̸∈ S↓(w) and k + 1 ̸∈ T ↑(π↑(w)) for
even k ∈ [2, n − 1], which will complete the proof. Assume the contrary. The
condition k ̸∈ S↓(w) is equivalent to one of the following two mutually exclusive cases being
true for w:

• Case 3A: There is a left-even descent b3 > k for some b3 ⩾ k + 2.

• Case 3B: Either there is an ascent a3 < k for some a3, or the first integer is k.

and one of the following two mutually exclusive cases being true in w:

• Case 3C: There is a right-even descent k + 1 > a4 for some a4 ⩽ k − 1.

• Case 3D: Either there is an ascent k + 1 < b4 for some b4, or the last integer is k + 1.

Also, the condition k + 1 ̸∈ T ↑(π↑(w)) is equivalent to one of the following two mutually
exclusive cases being true for π↑(w):

• Case 4A: There is a right-even ascent k + 1 < b5 for some b5 ⩾ k + 3.

• Case 4B: Either there is a descent k + 1 > a5 for some a5, or the last integer is k + 1.

and one of the following two mutually exclusive cases being true for π↑(w):

• Case 4C: There is a left-even ascent a6 < k + 2 for some a6 ⩽ k.

• Case 4D: Either there is a descent b6 > k + 2 for some b6, or the first integer is k + 2.

In Case 3A, the integer k + 1 is to the left of k and k + 2 in w, and in Case 3C, the inte-
gers k, k + 1, k − 1 lie in that order in w. In Case 4A, the integers k + 2, k + 1, k + 3 lie in that
order in π↑(w), and in Case 4C, the integer k + 1 is to the left of k and k + 2 in π↑(w). So it is
not possible for either Cases 3A or 4C to hold at the same time as either Cases 3C or 4A.

If Cases 3D and 4B both hold, then by Lemma 7.11, we must have that all integers to the right
of k+1 in w are larger than k+1. But then Case 3A cannot also hold. An analogous argument
implies that all integers to the right of k + 1 in π↑(w) are smaller than k + 1, so Case 4C also
cannot hold. To summarize, if Cases 3D and 4B both hold, then neither Case 3A nor Case 4C
can hold.

Now, assume Cases 3B and 3C both hold. By Lemma 7.10, we know that either π↑(w) has an
ascent of the form e < k+2, or k+1 is to the left of k+2 and all integers between k+1 and k+2
are larger than k + 2. If we additionally assume that Case 4D holds, the former possibility is
ruled out. We also know that either Case 4A or Case 4B must hold, but both are contradicted by
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Case 3 Case 4 Reason Case 3 Case 4 Reason Case 3 Case 4 Reason Case 3 Case 4 Reason
AC AC 3A, 3C AD AC 3A, 4A BC AC 4A, 4C BD AC 4A, 4C
AC AD 3A, 3C AD AD 3A, 4A BC AD 3B, 3C, 4D BD AD 3B, 4A, 4D
AC BC 3A, 3C AD BC 3A, 3D, 4B BC BC 3C, 4C BD BC 3D, 4B, 4C
AC BD 3A, 3C AD BD 3A, 3D, 4B BC BD 3B, 3C, 4D BD BD 3B, 3D, 4B, 4D

Table 7.1: The many cases in the proof of Theorem 7.12.

the latter possibility. That is, it is not possible for Cases 3B, 3C, and 4D to all hold. Analogously,
we can prove that Cases 3B, 4A, and 4D cannot all hold simultaneously.

Finally, consider when Cases 3B, 3D, 4B, and 4D all hold. By considering Cases 3D and 4B,
from Lemma 7.11 we have that k is to the left of k + 1 in w. Analogously, we have that k + 2
is to the left of k + 1 in π↑(w). Because a valid swap can only swap numbers that differ by at
least 3, we know that the numbers in the set {k, k + 1, k + 2} appear in the same order in w
as in π↑(w); this order is either k, k + 2, k + 1 or k + 2, k, k + 1. Without loss of generality,
assume the order is k, k + 2, k + 1; we will show that Case 4D provides a contradiction (when
the order is k+2, k, k+1, Case 3B provides an analogous contradiction). Then in π↑(w), there
is a descent b6 > k+2 to the right of k and to the left of k+1. Let x be the rightmost integer to
the left of k+2 that is less than k+1. Then π↑(w) has an ascent x < y with y larger than k+2.
But then k + 1 and k + 2 both lie to the right of x and y, so the ascent x < y is not right-even
or left even. This contradicts the fact that π↑(w) ∈ π↑(Sn+1). Hence, it is not possible for Cases
3B, 3D, 4B, and 4D to all hold at once.

We have exhausted all 24 = 16 possible scenarios, as shown in Table 7.1. For an example of
how to read this table, consider the entries in the first three columns in the first row. The entries
in the first two columns assert that Cases 3A, 3C, 4A, and 4C cannot all hold simultaneously,
and the entry in the third column asserts that the reason for this is that (as we have already
established) Cases 3A and 3C cannot hold simultaneously.

Thus, we conclude that exactly one of k ∈ S↓(π↓(w)) and k + 1 ∈ T ↑(π↑(w)) holds.

Recall that we write Ωn for the set of all pairs (S, T ) such that S, T ⊆ [n] and |S| = |T |. Re-
call also the bijection ξ↓ : π↓(Sn+1)→ Ωn from Theorem 7.1. Define the operator χ : Ωn → Ωn

by χ(S, T ) = ([n] \ c′+T, [n] \ c′−S).

Theorem 7.13. For w ∈ π↓(Sn+1), we have ξ↓(Row(w)) = χ(ξ↓(w)).

Proof. Let b1 > a1, . . . , bk > ak be the descents of w. By Proposition 7.4, the canonical join
representation of w in π↓(Sn+1) is D(w) = {λ(w, bi > ai) : 1 ⩽ i ⩽ k}. As discussed in
Section 2.3, the canonical meet representation of Row(w) in π↓(Sn+1) is

κ(U(Row(w))) = κ(D(w)) = Row(D(w)) = {Row(λ(w, bi > ai)) : 1 ⩽ i ⩽ k}.

Consequently, the canonical meet representation of π↑(Row(w)) in π↑(Sn+1) is

{π↑(Row(λ(w, bi > ai))) : 1 ⩽ i ⩽ k}.

Theorem 7.12 and (7.2) tell us that

S↓(Row(w)) = [n] \ c′+T ↑(π↑(Row(w))) = [n] \
⋃
i∈[k]

c′+T
↑(π↑(Row(λ(w, bi > ai)))).
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For each i ∈ [k], it follows from Proposition 7.6 and the definitions of T↓ and T ↑ that

T ↑(π↑(Row(λ(w, bi > ai)))) = T↓(λ(w, bi > ai)).

Hence,
S↓(Row(w)) = [n] \

⋃
i∈[k]

c′+T↓(λ(w, bi > ai)) = [n] \ c′+T↓(w),

where we have used (7.1). A completely analogous argument shows that T↓(Row(w)) = [n] \
c′−S↓(w) as well. Therefore,

ξ↓(Row(w)) = (S↓(Row(w)), T↓(Row(w))) = ([n]\c′+T↓(w), [n]\c′−S↓(w)) = χ(ξ↓(w)).

The previous theorem shows that the operator χ : Ωn → Ωn has the same orbit structure as
rowmotion on the c-biCambrian lattice. To complete the proof of Theorem 6.2 in type A, we
need to relate χ to rowmotion on J ([n]× [n]), where we recall that [n]× [n] is the doubled root
poset of type An.

The elements of the rectangle poset [n] × [n] are ordered pairs (x, y) with x, y ∈ [n].
Let {0, 1}2nn denote the set of words in {0, 1}2n that have exactly n occurrences of 0 and ex-
actly n occurrences of 1. Given an order ideal I of [n] × [n], let max(I) denote the set of
maximal elements of I . If max(I) = {(x1, y1), . . . , (xk, yk)}, then the Stanley–Thomas word
of I is the word ST(I) = u1 · · ·unv1 · · · vn ∈ {0, 1}2nn defined by

uj =

{
1, if j ∈ {x1, . . . , xk}
0, if j ̸∈ {x1, . . . , xk}

and vj =

{
0, if j ∈ {y1, . . . , yk}
1, if j ̸∈ {y1, . . . , yk}.

For example, if I is the order ideal of [5] × [5] such that max(I) = {(2, 3), (4, 2), (5, 1)},
then ST(I) = 0101100011.

Let cyc : {0, 1}2nn → {0, 1}2nn denote the cyclic shift operator defined by

cyc(z1z2 · · · z2n) = z2 · · · z2nz1.

The following fundamental result, which was first described by Stanley in [Sta09] and later
discussed further by Propp and Roby in [PR15], relates rowmotion on J ([n]× [n]) to this cyclic
shift operator.

Theorem 7.14 ([PR15, Proposition 26]). The map ST: J ([n] × [n]) → {0, 1}2nn is a bijection
such that ST(Row(I)) = cyc(ST(I)) for all I ∈ J ([n]× [n]).

We can now prove Theorem 6.2 in type A.

Proposition 7.15. The orbit structure of the operator Row: π↓(Sn+1)→ π↓(Sn+1) is the same
as that of Row: J ([n]× [n])→ J ([n]× [n]).

Proof. Theorem 7.13 tells us that Row: π↓(Sn+1) → π↓(Sn+1) has the same orbit structure
as χ : Ωn → Ωn, and Theorem 7.14 tells us that Row: J ([n] × [n]) → J ([n] × [n]) has
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the same orbit structure as cyc : {0, 1}2nn → {0, 1}2nn . Therefore, it suffices to find a bijec-
tion G : Ωn → {0, 1}2nn such that cyc ◦G = G ◦ χ.

Given X ⊆ [n] and i ∈ [n], let X⟨i⟩ = 0 if i ̸∈ X , and let X⟨i⟩ = 1 if i ∈ X . Note that
if σ ∈ Sn, then (σX)⟨i⟩ = X⟨σ−1(i)⟩. Let (p1, . . . , pn) be the n-tuple obtained by listing the
odd elements of [n] in increasing order and then listing the even elements of [n] in decreasing
order. For example, if n = 7, then (p1, . . . , p7) = (1, 3, 5, 7, 6, 4, 2). This n-tuple is chosen so
that c′+c′−pj = pj+1 for all j ∈ [n] (with indices taken modulo n). Given (S, T ) ∈ Ωn, let

G(S, T ) = T ∗⟨pn⟩S⟨pn⟩T ∗⟨pn−1⟩S⟨pn−1⟩ · · ·T ∗⟨p1⟩S⟨p1⟩,

where T ∗ = [n] \ c′−T . We claim that this defines our desired bijection G : Ωn → {0, 1}2nn .
We first need to check that G(S, T ) is actually in {0, 1}2nn , meaning that it has exactly n

occurrences of 0 and exactly n occurrences of 1. This is immediate from the definition of G
since |T ∗| = n − |T | = n − |S| (by the definition of Ωn). We can easily recover T from T ∗

(since T = [n] \ c′−T ∗), so G is evidently injective. We have |Ωn| = |{0, 1}2nn | =
(
2n
n

)
, so G

must be a bijection.
We are left to prove that cyc ◦G = G ◦ χ. Consider (S, T ) ∈ Ωn, and let i ∈ [n].

For x ∈ {0, 1}2nn and k ∈ [2n], let xk denote the k-th letter in x, where indices are taken
modulo 2n (so x2n+1 = x1 and x0 = x2n). We have

cyc(G(S, T ))2i = G(S, T )2i+1 = T ∗⟨pn−i⟩ = ([n] \ c′−T )⟨pn−i⟩ = 1− (c′−T )⟨pn−i⟩.

Since c′− and c′+ are involutions and c′−(pn−i) = c′+(c
′
+c

′
−(pn−i)) = c′+(pn−i+1), we have

1− (c′−T )⟨pn−i⟩ = 1− T ⟨c′−(pn−i)⟩
= 1− T ⟨c′+(pn−i+1)⟩
= 1− (c′+T )⟨pn−i+1⟩
= ([n]\c′+T )⟨pn−i+1⟩
= G(χ(S, T ))2i.

Thus, cyc(G(S, T )) and G(χ(S, T )) have the same (2i)-th letter. We also have

cyc(G(S, T ))2i−1 = G(S, T )2i

= S⟨pn−i+1⟩ = S∗∗⟨pn−i+1⟩
= G([n]\c′+T, S∗)2i−1

= G(χ(S, T ))2n−i,

so cyc(G(S, T )) and G(χ(S, T )) have the same (2i + 1)-th letter as well. We conclude
that cyc(G(S, T )) = G(χ(S, T )).

Example 7.16. Suppose n = 7. Let S = {2, 3, 6} and T = {1, 2, 4}. Then (S, T ) ∈ Ω7. We
have T ∗ = [7] \ c′−T = {4, 5, 6, 7}, so

G(S, T ) = T ∗⟨2⟩S⟨2⟩T ∗⟨4⟩S⟨4⟩T ∗⟨6⟩S⟨6⟩T ∗⟨7⟩S⟨7⟩T ∗⟨5⟩S⟨5⟩T ∗⟨3⟩S⟨3⟩T ∗⟨1⟩S⟨1⟩
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= 01101110100100.

Thus, cyc(G(S, T )) = 11011101001000. Now, χ(S, T ) = ([7] \ c′+T, [7] \ c′−S) = (S̃, T̃ ),
where S̃ = {2, 4, 6, 7} and T̃ = {2, 3, 6, 7}. Then T̃ ∗ = [7] \ c′−T̃ = {2, 3, 6} = S, so

G(χ(S, T )) = T̃ ∗⟨2⟩S̃⟨2⟩T̃ ∗⟨4⟩S̃⟨4⟩T̃ ∗⟨6⟩S̃⟨6⟩T̃ ∗⟨7⟩S̃⟨7⟩T̃ ∗⟨5⟩S̃⟨5⟩T̃ ∗⟨3⟩S̃⟨3⟩T̃ ∗⟨1⟩S̃⟨1⟩

= 11011101001000 = cyc(G(S, T )).

8. Type B BiCambrian Lattices

In this section, we prove Theorem 6.2 in type B. The general strategy is to deduce the result for
type B from the results derived in the preceding section for type A.

Let w0 = (2n)(2n − 1) · · · 1 denote the longest element of the Coxeter group S2n.
There is a group automorphism β : S2n → S2n given by β(x) = w0xw0. Explicitly,
β(x)(i) = 2n + 1 − x(2n + 1 − i) for all 1 ⩽ i ⩽ 2n. The Coxeter group Bn is the n-th
hyperoctahedral group, which can be realized as the subgroup of S2n consisting of all x ∈ S2n

such that β(x) = x.
Let si denote the simple transposition in S2n that swaps i and i + 1. The simple generators

of Bn are sB1 , . . . , s
B
n , where sBi = sis2n−i for 1 ⩽ i ⩽ n − 1 and sBn = sn. Let c = c+c− be

the bipartite Coxeter element of S2n, where c+ =
∏

i∈[2n−1] even si and c− =
∏

i∈[2n−1] odd si. We
can also write c+ =

∏
i∈[n] even s

B
i and c− =

∏
i∈[n] odd s

B
i , showing that c can be viewed as a

bipartite Coxeter element of Bn. Our goal is to understand rowmotion on the associated type-B
c-biCambrian lattice.

As in the preceding section, we write π↓ : S2n → S2n for the operator that sends a permuta-
tion to the minimal element of its type-A c-biCambrian congruence class. We write

πB
↓ : Bn → Bn

for the operator that sends an element of Bn to the minimal element of its type-B c-biCambrian
congruence class.

It is well known that β is a lattice automorphism of the weak order on S2n. It follows that
the weak order on Bn is a sublattice of the weak order on S2n. Recall that the c-biCambrian
lattice of type B is isomorphic to the set πB

↓ (Bn) under the weak order. It is straightforward to
check that β restricts to a bijection from π↓(S2n) to itself. Since β is an automorphism of the
weak order on S2n, it follows that β : π↓(S2n)→ π↓(S2n) is a lattice automorphism. According
to [BR18, Proposition 3.15], we have

πB
↓ (Bn) = Bn ∩ π↓(S2n). (8.1)

Therefore, the set of fixed points of β : π↓(S2n) → π↓(S2n) is πB
↓ (Bn); this readily implies

that πB
↓ (Bn) is a sublattice of π↓(S2n). Moreover, in the proof of the type-B case of [BR18,

Theorem 2.12], Barnard and Reading explained that the type-B c-biCambrian congruence is
simply the restriction of the type-A c-biCambrian congruence to Bn. This means that if y ∈ Bn,
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then y and πB
↓ (y) are in the same type-A c-biCambrian congruence class, so π↓(π

B
↓ (y)) = π↓(y).

But (8.1) tells us that πB
↓ (y) ∈ π↓(S2n), so π↓(π

B
↓ (y)) = πB

↓ (y). This proves that

π↓(y) = πB
↓ (y) for all y ∈ Bn. (8.2)

The Coxeter element c is fixed by the automorphism β. As discussed in the proof of the
type-B case of [BR18, Theorem 2.12], this implies that β preserves the type-A c-biCambrian
congruence on S2n. In other words,

π↓(β(x)) = β(π↓(x)) for all x ∈ S2n. (8.3)

In what follows, let us write ∧, ∧A, and ∧B for the meet operations in the weak order on S2n,
in π↓(S2n), and in πB

↓ (Bn), respectively.

Lemma 8.1. If y ∈ S2n, then y ∧ β(y) ∈ Bn, and πB
↓ (y ∧ β(y)) = π↓(y) ∧A π↓(β(y)).

Proof. Since β is an involutive lattice automorphism of the weak order on S2n, we have

β(y ∧ β(y)) = β(y) ∧ β2(y) = y ∧ β(y).

This proves that y ∧ β(y) ∈ Bn.
We have seen that β is a lattice automorphism of π↓(S2n). Therefore, it follows from (8.3)

that

β(π↓(y) ∧A π↓(β(y))) = β(π↓(y)) ∧A β(π↓(β(y)))

= π↓(β(y)) ∧A π↓(β
2(y))

= π↓(y) ∧A π↓(β(y)).

This proves that π↓(y) ∧A π↓(β(y)) ∈ Bn. Since π↓(y) ∧A π↓(β(y)) ∈ π↓(S2n), it follows
from (8.1) that π↓(y) ∧A π↓(β(y)) ∈ πB

↓ (Bn). Because π↓(y) ⩽ y and π↓(β(y)) ⩽ β(y), we
have

π↓(y) ∧A π↓(β(y)) ⩽ y ∧ β(y).

The map πB
↓ is order-preserving, so

π↓(y) ∧A π↓(β(y)) = πB
↓ (π↓(y) ∧A π↓(β(y))) ⩽ πB

↓ (y ∧ β(y)).

To prove the reverse inequality, observe that

πB
↓ (y ∧ β(y)) = π↓(y ∧ β(y)) ⩽ π↓(y) and πB

↓ (y ∧ β(y)) = π↓(y ∧ β(y)) ⩽ π↓(β(y));

this implies that πB
↓ (y ∧ β(y)) ⩽ π↓(y) ∧A π↓(β(y)).

We are going to make use of the pop-stack sorting operator defined in Section 2.3. To avoid
confusion, let us write PopA for the pop-stack sorting operator on π↓(S2n) and PopB for the
pop-stack sorting operator on πB

↓ (Bn).

Proposition 8.2. If x ∈ πB
↓ (Bn), then PopA(x) = PopB(x).
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Proof. If x is the identity permutation, then PopA(x) = PopB(x) = x. Now assume x is not
the identity permutation. Let y1, . . . , yk be the elements covered by x in the weak order on S2n.
The elements of Bn covered by x are the elements of the form yi ∧ β(yi). The elements covered
by x in π↓(S2n) are π↓(y1), . . . , π↓(yk), and the elements covered by x in πB

↓ (Bn) are those of
the form πB

↓ (yi ∧ β(yi)). Using Lemma 8.1 and the fact that πB
↓ (Bn) is a sublattice of π↓(S2n),

we find that

PopB(x) =
∧

B
{πB

↓ (yi ∧ β(yi)) : 1 ⩽ i ⩽ k} =
∧

A
{π↓(yi) ∧A π↓(β(yi)) : 1 ⩽ i ⩽ k}.

Because x ∈ Bn, we have β(yi) ∈ {y1, . . . , yk} for each i. Thus,∧
A
{π↓(yi) ∧A π↓(β(yi)) : 1 ⩽ i ⩽ k} =

∧
A
{π↓(yi) : 1 ⩽ i ⩽ k} = PopA(x).

In what follows, we write RowB for rowmotion on the lattice πB
↓ (Bn), and we write RowA

for rowmotion on π↓(S2n).

Proposition 8.3. If x ∈ πB
↓ (Bn), then RowA(x) = RowB(x).

Proof. Since β is a lattice automorphism of π↓(S2n), it commutes with RowA. Consequen-
tly, RowA(x) = RowA(β(x)) = β(RowA(x)). This shows that RowA(x) ∈ Bn. We also know
thatRowA(x) ∈ π↓(S2n), so (8.1) tells us thatRowA(x) ∈ πB

↓ (Bn). Since πB
↓ (Bn) is a sublattice

of π↓(S2n), we can use Propositions 2.2 and 8.2 to see that

RowA(x) ∧B x = RowA(x) ∧A x = PopA(x) = PopB(x).

Proposition 2.2 tells us that RowB(x) is the unique maximal element of the set

{z ∈ πB
↓ (Bn) : z ∧B x = PopB(x)}.

We have shown that RowA(x) is in this set, so RowA(x) ⩽ RowB(x).
On the other hand, we have RowB(x) ∈ π↓(S2n), and we can use Propositions 2.2 and 8.2

once again to see that RowB(x) ∧A x = RowB(x) ∧B x = PopB(x) = PopA(x). This shows
that RowB(x) is an element of the set {z ∈ π↓(S2n) : z∧A x = PopA(x)}. The unique maximal
element of this set is RowA(x), so RowB(x) ⩽ RowA(x).

Recall that the doubled root posets of types A2n−1 and Bn are the rectangle
poset [2n − 1] × [2n − 1] and the shifted staircase with n(2n − 1) elements, respectively (see
Figure 6.1). Let SSn denote the shifted staircase with n(2n − 1) elements. We can view SSn

as the subposet of [2n − 1] × [2n − 1] consisting of all elements (x, y) with x ⩽ y. There is a
natural embedding

ι : J (SSn)→ J ([2n− 1]× [2n− 1])

given by ι(I) = {(x, y), (y, x) : (x, y) ∈ I}. It is straightforward to check that ι commutes
with rowmotion. In other words, Row(ι(I)) = ι(Row(I)) for all I ∈ J (SSn), where the
first rowmotion is on the lattice J ([2n − 1] × [2n − 1]) and the second is on J (SSn). Thus,
the orbit structure of rowmotion on SSn is the same as the orbit structure of rowmotion on the
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sublattice ι(J (SSn)) of J ([2n − 1] × [2n − 1]); note that this sublattice consists of all order
ideals I ∈ J ([2n − 1] × [2n − 1]) that are symmetric in the sense that (x, y) ∈ I if and only
if (y, x) ∈ I .

We can now prove Theorem 6.2 in type B.

Proposition 8.4. The orbit structure of the operator RowB : πB
↓ (Bn)→ πB

↓ (Bn) is the same as
that of Row: J (SSn)→ J (SSn).

Proof. As discussed above, rowmotion on J (SSn) has the same orbit structure as rowmotion on
the sublattice ι(J (SSn)) of J ([2n− 1]× [2n− 1]). Recall from Theorem 7.14 that we have a
map ST that sends each order ideal I ∈ J ([2n − 1] × [2n − 1]) to its Stanley–Thomas
word ST(I) ∈ {0, 1}2(2n−1)

2n−1 and satisfies ST(Row(I)) = cyc(ST(I)). Let Ξ2n−1 be the subset
of {0, 1}2(2n−1)

2n−1 consisting of all words u1 · · ·u2(2n−1) such that ui = 1 − ui+2n−1 for
all 1 ⩽ i ⩽ 2(2n− 1), where indices are taken modulo 2(2n− 1). It is straightforward to check
that Ξ2n−1 is the image of the set ι(J (SSn)) under ST. Therefore, it suffices to show that the
orbit structure of RowB : πB

↓ (Bn)→ πB
↓ (Bn) is the same as that of cyc : Ξ2n−1 → Ξ2n−1.

Theorem 7.13 and the proof of Proposition 7.15 provide bijections ξ↓ : π↓(S2n) → Ω2n−1

andG : Ω2n−1 → {0, 1}2(2n−1)
2n−1 such thatG(ξ↓(RowA(x))) = cyc(G(ξ↓(x))) for all x ∈ π↓(S2n).

We will show that the image of πB
↓ (Bn) under G ◦ ξ↓ is Ξ2n−1. Proposition 8.3 tells us that the

map RowB : πB
↓ (Bn)→ πB

↓ (Bn) is just the restriction of RowA to πB
↓ (Bn), so this will complete

the proof.
Given a set S ⊆ [2n − 1], let 2n − S = {2n − s : s ∈ S}. The proof of [BR18, Theo-

rem 3.18] asserts (using different notation) that the image of πB
↓ (Bn) under ξ↓ is the set of all

pairs (S, 2n− S) such that S ⊆ [2n− 1] (this is also straightforward to verify directly). There-
fore, we must check that G maps the set of such pairs bijectively onto Ξ2n−1. The number of
pairs (S, 2n−S) with S ⊆ [2n−1] is 22n−1, which is also the size of Ξ2n−1; since G is injective,
we just need to show that G(S, 2n− S) ∈ Ξ2n−1 for all S ⊆ [2n− 1].

As in the proof of Proposition 7.15, we let (p1, . . . , p2n−1) be the tuple obtained by listing
the odd elements of [2n − 1] in increasing order and then listing the even elements of [2n − 1]
in decreasing order. Let c′− =

∏
i∈[2n−2] odd si. Given T ⊆ [2n − 1], let T ∗ = [2n − 1] \ c′−T .

Recalling the definition of the map G, we find that

G(S, 2n−S) = (2n−S)∗⟨p2n−1⟩S⟨p2n−1⟩(2n−S)∗⟨p2n−2⟩S⟨p2n−2⟩ · · · (2n−S)∗⟨p1⟩S⟨p1⟩.

To show that this word is in Ξ2n−1, it suffices to check that (2n − S)∗⟨pi⟩ = 1 − S⟨pi−n+1⟩
for all 1 ⩽ i ⩽ 2n − 1 (with indices taken modulo 2n − 1). This is straightforward to verify
directly.

9. Completing the Proof of Theorem 6.2

In Propositions 7.15 and 8.4, we resolved Theorem 6.2 for biCambrian lattices of types A and B.
The purpose of this brief section is to handle the remaining cases: types H3 and I2(m). We have
checked by computer that the conjecture holds in type H3, so we only need to prove that it holds
for I2(m).
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The Coxeter group I2(m) is the dihedral group of order 2m. Let s1 and s2 denote the simple
generators of I2(m). Let [s1, s2]k denote the alternating product s1s2s1 · · · of length k that starts
with s1, and let [s2, s1]k denote the alternating product s2s1s2 · · · of length k that starts with s2.
The weak order on I2(m) consists of the two disjoint (m− 1)-chains

[s1, s2]1 ⋖ [s1, s2]2 ⋖ · · ·⋖ [s1, s2]m−1 and [s2, s1]1 ⋖ [s2, s1]2 ⋖ · · ·⋖ [s2, s1]m−1

together with the identity element e below both chains and the longest element w0 above both
chains.

Consider the bipartite Coxeter element c = s1s2. The c-biCambrian lattice is actually
equal to the weak order on I2(m). (For instance, see [BR18, Theorem 1.4], which
asserts that the size of the c-biCambrian lattice is 2m = |I2(m)|.) For 2 ⩽ k ⩽ m − 1,
we have Row([s1, s2]k) = [s1, s2]k−1 and Row([s2, s1]k) = [s2, s1]k−1. Furthermore,
Row(s1) = [s2, s1]m−1, Row(s2) = [s1, s2]m−1, Row(e) = w0, and Row(w0) = e. This
shows that rowmotion acting on the c-biCambrian lattice has one orbit of size 2 and one orbit of
size 2m− 2. See Figure 9.1.

The doubled root poset of type I2(m) consists of two chains x1 ⋖ · · · ⋖ xm−2

and y1 ⋖ · · ·⋖ ym−2 together with two incomparable elements z1 and z2 satisfying xm−2⋖z1⋖y1
and xm−2 ⋖ z2 ⋖ y1. It is straightforward to check that rowmotion acting on the lattice of order
ideals of this doubled root poset has one orbit of size 2 and one orbit of size 2m−2. We illustrate
this for m = 5 in Figure 9.1. This proves that Theorem 6.2 holds in type I2(m), which completes
the proof of the full theorem.

Figure 9.1: On the left is the action of rowmotion on the type-I2(5) c-biCambrian lattice; this
lattice is the same as the weak order on I2(5). On the right is the action of rowmotion on J (P ),
where P is the doubled root poset of type I2(5). Each order ideal in J (P ) is represented by
elements that are circled in green.

10. Future Directions

It would be interesting to extend our results about rowmotion on m-Tamari lattices to the
setting of the rational Tamari lattices Tam(a, b). In particular, recall Conjecture 5.15 and
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Conjecture 5.16, which state that (Tam(a, b),Row,Cat(a,b)(q)) exhibits the cyclic sieving
phenomenon and that the down-degree statistic on Tam(a, b) is homomesic for rowmotion with
average (a− 1)(b− 1)/(a+ b− 1).

In general, the down-degree statistic on a ν-Tamari lattice need not be homomesic for row-
motion. However, data suggests that it is “almost” homomesic in the sense that the averages
of ddeg on the orbits are all very close to each other. For example, if ν = NE3NE2NE6N,
then rowmotion has orbits of sizes 7, 7, 12, 18, 18, 18, 80; the average values of ddeg along these
orbits are (approximately) 2.286, 2.286, 2.25, 2.278, 2.278, 2.278, 2.263, respectively. It would
be very interesting to have some explanation of why these values are so close. The following
conjecture can be seen as predicting a new generalization of the homomesy phenomenon that
we call asymptotic homomesy. At the moment, this notion is fairly vague, and we do not wish to
give a formal definition of it.

Conjecture 10.1. Let ν0 be a lattice path that has a north steps and b east steps. For each inte-
ger t ⩾ 1, let νt

0 be the lattice path obtained by concatenating ν0 (viewed as a word over {N,E})
with itself t times. Let OrbRow(Tam(νt

0)) be the set of orbits of Row: Tam(νt
0) → Tam(νt

0).
We have

lim
t→∞

max
O∈OrbRow(Tam(νt0))

∣∣∣∣∣1t · 1

|O|
∑
x∈O

ddeg(x)− ab

a+ b

∣∣∣∣∣ = 0.

Recall from Section 2.5 that a statistic on a set X is called homometric for a func-
tion f : X → X if it always has the same sum over f -orbits of the same cardinality.

Conjecture 10.2. Let ν be a lattice path. The down-degree statistic ddeg : Tam(ν) → R is
homometric for the rowmotion operator Row: Tam(ν)→ Tam(ν).

Finally, we remark that it would be nice to have a more conceptual, type-independent proof
of Theorem 6.2.
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