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ABSTRACT OF THE DISSERTATION

Some Applications of the Higher-Dimensional

Heegaard Floer Homology

by

Tianyu Yuan

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Ko Honda, Chair

Given a closed oriented Riemann surface Σ of genus greater than zero, we construct a map

F from the higher-dimensional Heegaard Floer homology of cotangent fibers of T ∗Σ to the

Hecke algebra associated to Σ. We show that F is an isomorphism of algebras. We also

define a higher-dimensional analog of symplectic Khovanov homology. Consider the standard

Lefschetz fibration p : W → D ⊂ C of a 2n-dimensional Milnor fiber of the A2κ−1 singularity.

We represent a link by a κ-strand braid, which in turn is represented as an element h of

the symplectic mapping class group Symp(W,∂W ). We then apply the higher-dimensional

Heegaard Floer homology machinery to the pair (a, h(a)), where a is a collection of κ

unstable manifolds of W which are Lagrangian spheres. We prove its invariance under arc

slides and Markov stabilizations, which shows that it is a link invariant.
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CHAPTER 1

Introduction

Aiming to study higher-dimensional contact topology, Colin, Honda and Tian [CHT20] devel-

oped the foundations of the higher-dimensional Heegaard Floer homology (HDHF). HDHF is

supposed to model the Fukaya category of the Hilbert scheme of points on a Liouville domain

and was used to analyze symplectic fillability questions in higher-dimensional contact topol-

ogy. As an application, the HDHF of the 4-dimensional Milnor fibration of type A provided

an invariant of links in S3. This invariant is a close cousin of symplectic Khovanov homology

[SS06; Man06] and especially its cylindrical reformulation [MS19]. As a categorified quantum

invariant, Khovanov homology is directly related to the categorification of quantum groups

and to various Hecke algebras, including affine Hecke algebras and quiver Hecke algebras

(also called KLR algebras) [CR08; Rou08; KL09]. There are several approaches to these

Hecke algebras from the point of view of geometric representation theory: The affine Hecke

algebra can be realized as the equivariant K-theory of the ordinary Steinberg variety [KL87;

CG10; Lus98]; the double affine Hecke algebra admits a similar realization in terms of the

loop Steinberg variety [Vas05]. Moreover, the rational double affine Hecke algebra of type A

is closely related to the Hilbert scheme of points on C2 [GS05; KR08]. It is therefore natural

to ask:

Question: Is there a symplectic geometry interpretation of the various Hecke algebras?

We give a partial answer in Chapter 3. Specifically, let Σ denote a closed oriented

Riemann surface of genus greater than zero, and Σ̊ denote a surface with punctures. The
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goal of Chapter 3 is to use the HDHF of cotangent bundles of oriented surfaces to give an

answer for the various Hecke algebras of type A, including the finite, affine, and double affine

Hecke algebras (abbreviated DAHA and also called Cherednik algebras). We consider two

cases:

1. a closed oriented surface Σ of genus g > 0;

2. a surface Σ̊ which is obtained from a closed oriented surface of genus g ≥ 0 by removing

a finite number (> 0) of punctures.

More precisely, we realize the various Hecke algebras as the HDHF of the disjoint cotangent

fibers of T ∗Σ (or T ∗Σ̊).

Type of Hecke algebra Surface

finite Hecke algebra open disk

affine Hecke algebra cylinder

DAHA torus

Remark 1.0.1. Note that we exclude the case of a sphere which is more complicated since

the homology of its loop space is not supported in degree zero. We hope to revisit this in a

future paper.

Remark 1.0.2. Recently, Ben-Zvi, Chen, Helm and Nadler identified the affine Hecke alge-

bra with the endomorphism algebra of the coherent Springer sheaf, for any reductive algebraic

group [BZCHN20, Theorem 1.7]. It would be interesting to study the connection between the

algebro-geometric realization of the affine Hecke algebra of type A and our symplectic geom-

etry one.

Remark 1.0.3. In this thesis we consider T ∗Σ as a symplectic manifold, not as a holomor-

phic symplectic manifold corresponding to the Riemann surface Σ, which is more natural in

many contexts (e.g., [Nak99, Chapter 7]).
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In addition to the definition of HDHF, this work crucially depends on three key ingredi-

ents:

1. the relationship between the wrapped Floer cochain complex of a cotangent fiber and

chains on the loop space of the base due to Abbondandolo and Schwarz [AS10a] and

Abouzaid [Abo12];

2. an interpretation of the HOMFLY skein relation in terms of holomorphic curve counting

due to Ekholm and Shende [ES19];

3. a topological description of DAHA of glκ as a braid skein algebra due to Morton and

Samuelson [MS21].

Our first ingredient is the result of Abbondandalo-Schwarz [AS10a] which states that

the wrapped Floer cochain complex CW ∗(T ∗q Σ) of a cotangent fiber and the chain complex

C−∗(ΩqΣ) of the loop space of the base Σ are isomorphic as graded algebras on the coho-

mology level. Abouzaid [Abo12] further improved this to an A∞-equivalence on the chain

level.

In Chapter 3 we investigate its generalization to HDHF. More precisely, we consider

CW (tκi=1T
∗
qi

Σ), the wrapped HDHF cochain complex of κ disjoint cotangent fibers of T ∗Σ;

it can be given the structure of an A∞-algebra. The HDHF complex CW (tiT ∗qiΣ) is defined

over Z[[~]], the ring of formal power series in ~, where ~ keeps track of the Euler characteristic

of the holomorphic curves that are counted in the definition of the A∞-operations. Since Σ

is a surface, CW (tiT ∗qiΣ) is supported in degree zero and hence is an ordinary algebra.

Our generalization of the loop space of the base will be the loop space of the un-

ordered configuration space UConfκ(Σ) of κ points on Σ. Generalizing Abouzaid’s map

CW ∗(T ∗q Σ)→ C−∗(ΩqΣ), we define an evaluation map

E : CW (tiT ∗qiΣ)→ C0(Ω(UConfκ(Σ)))⊗ Z[[~]].

Here C0(Ω(UConfκ(Σ))) is the 0th chain space of the loop space of UConfκ(Σ) and all tensor

products are over Z, unless indicated otherwise. The map E is given by counting curves of
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“Heegaard Floer type”; the precise definition will be given in Section 3.5.1. This map however

fails to be a homomorphism of algebras due to an additional degeneration of curves: the nodal

degeneration. This phenomenon was recently clarified by Ekholm and Shende [ES19]: It is

the HOMFLY skein relation that controls the boundaries of 1-dimensional moduli spaces of

varying Euler characteristics; see Figure 3.7.

Starting with the map E , taking the homology of both sides and quotienting out by the

HOMFLY skein relation, we obtain a map

F : HW (tiT ∗qiΣ)→ H0(Ω(UConfκ(Σ)))⊗ Z[[~]]/{the skein relation}. (1.0.1)

The map F is an algebra homomorphism; see Proposition 3.5.4.

At this point we observe that H0(Ω(UConfκ(Σ))) is isomorphic to the group algebra of

the surface braid group of Σ over Z. In [MS21], Morton and Samuelson defined the braid

skein algebra BSkκ(Σ), which is a quotient of the group algebra of the surface braid group

over Z[s±1, c±1] by the skein relation and the marked point relation; see Definition 3.3.1. Here

s and c are parameters that appear in the skein and marked point relations, respectively.

We define the surface Hecke algebra Hκ(Σ) by reformulating the marked point relation as a

c-deformed homotopy relation, and making a change of variables ~ = s− s−1; see Definition

3.3.4. We show that Hκ(Σ) and BSkκ(Σ) are isomorphic, up to a change of variables.

Motivated by the c-deformed homotopy relation, we consider CW (tiT ∗qiΣ)c, the wrapped

HDHF with a parameter c. Adding the parameter c to the map in (1.0.1), we obtain

F : HW (tiT ∗qiΣ)c → Hκ(Σ)⊗Z[~] Z[[~]], (1.0.2)

which is still denoted F by abuse of notation.

We then apply the Abbondandolo-Schwarz result [AS06] to show that the restriction of

F to ~ = 0 is an isomorphism. The following is the main result of Chapter 3 and directly

follows from the isomorphism of F|~=0:

Theorem 1.0.4. The map F in (1.0.2) is an isomorphism of algebras.
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The main result from Morton-Samuelson [MS21] is that the double affine Hecke algebra

Ḧκ of glκ is naturally isomorphic to BSkκ(T
2). Hence we have:

Corollary 1.0.5. The algebra HW (tiT ∗qiT
2)c is isomorphic to Ḧκ|~=s−s−1 ⊗Z[~] Z[[~]].

When the base Σ̊ has punctures, one can similarly define the A∞ algebra CW (tiT ∗qiΣ̊).

It is possible to formally include a c-parameter, but we expect that it does not yield any

extra information. The isomorphism (1.0.2) still holds and the corresponding surface Hecke

algebra Hκ(Σ̊) is isomorphic to the finite Hecke algebra Hκ and the affine Hecke algebra Ḣκ

of glκ when Σ̊ is an open disk and a cylinder, respectively.

Corollary 1.0.6. The algebra HW (tiT ∗qiΣ̊) is isomorphic to Hκ|~=s−s−1 ⊗Z[~] Z[[~]] (resp.

Ḣκ|~=s−s−1 ⊗Z[~] Z[[~]]), when Σ̊ is an open disk (resp. a cylinder).

Returning to the discussion of categorification, the affine Hecke algebra is related to cat-

egorified quantum groups of type A [CR08]. This can be explained symplectically by noting

that T ∗Σ̊ for a cylinder Σ̊ is symplectomorphic to R2 × T ∗S1. The latter naturally appears

in the 4-dimensional Milnor fibration and the HDHF approach to symplectic Khovanov ho-

mology [CHT].

The isomorphism (1.0.2) holds only after tensoring with Z[[~]]. Nevertheless, we believe

that the coefficient ring could be taken to be Z[~].

Conjecture 1.0.7. The algbera HW (tiT ∗qiΣ)c is well-defined over Z[~] and Theorem 1.0.4

still holds over Z[~].

There is some evidence for this conjecture: In particular, direct computations of the

third author [Yua] (in preparation) show the well-definedness over Z[~] when Σ = R2 and

the surface Hecke algebra is the finite Hecke algebra.

Question 1.0.8. What is the geometric meaning of the change of variables ~ = s− s−1?

Question 1.0.8 is important from the perspective of representation theory. For instance,

the affine Hecke algebra with parameter s has interesting modules, but the situation is not
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clear for the affine Hecke algebra with parameter ~. A possible explanation of ~ = s − s−1

may require additional data of flat bundles which is well-studied in mirror symmetry and

Fukaya categories.

On the HDHF side, other κ-tuples of Lagrangians in T ∗Σ give rise to modules over

HW (tiT ∗qiΣ)c. It is interesting to look at the category of such modules and try to relate it

to the Fukaya category of the Hilbert scheme Hilbκ(T ∗Σ).

The other topic we are interested in is the symplectic Khovanov homology by Seidel and

Smith [SS06].

Over the last twenty years many powerful Floer-theoretic invariants of knots and links

have appeared, e.g. Heegaard Floer homology [OS04] and knot Floer homology in dimension

1; symplectic Khovanov homology [SS06] and knot contact homology [EENS13] in dimension

2. Here when we say “dimension n”, we are taking the ambient symplectic manifold to

be 2n-dimensional and the Lagrangian submanifolds (if we are talking about Lagrangian

intersection Floer thoeries) to be n-dimensional. In [Man07] Manolescu also used quiver

varieties to define a higher-dimensional analog of sl(n)-homologies.

Along similar lines, in Chapter 4, we use HDHF to define a link invariant which is a

variant of the symplectic Khovanov homology, following Chapter 9 of [CHT20]. This is a

higher-dimensional analog of the usual Heegaard Floer homology by [OS04].

Specifically, in dimension 1, Lipschitz [Lip06] proved the equivalence between Ozsváth

and Szabó’s Heegaard Floer homology [OS04] and its cylindrical analog. In dimension 2,

Mak and Smith [MS19] proved the equivalence of symplectic Khovanov homology and its

cylindrical interpretation. Colin, Honda and Tian [CHT20] then defined a higher-dimensional

analog of cylindrical Heegaard Floer homology, which helps place the cylindrical symplectic

Khovanov homology in a more general framework. In Chapter 4, the ambient manifold is a

2n-dimensional Milnor fiber of the A2κ−1-singularity p : W → D ⊂ C, extending the case of
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n = 1 considered in [CHT20]. Given a link, we consider its κ-strand braid representation σ,

which is in fact an element h of the symplectic mapping class group Symp(W,∂W ). There is

a natural collection of κ Lagrangian spheres a by the matching cycle construction between

pairs of critical points of p. We then apply the higher-dimensional Heegaard Floer homology

machinery to the pair (a, h(a)) to define the link invariant and denote the homology group

by Kh](σ̂).

Though cylindrical versions of Heegaard Floer theories are more convenient for visualizing

pseudoholomorphic curves, the original theories defined in the symmetric products Symκ(X)

have their advantages: In dimension 1, Perutz [Per08] proved that Lagrangians in Symκ(Σ)

related by a handle slide are in fact Hamiltonian isotopic for some specific symplectic form,

which directly implies the handle slide invariance property without pseudoholomorphic curve

counting techniques in [OS04]. In dimension 2, Seidel and Smith [SS06] considered nilpo-

tent slices instead of Symκ(X), which was shown to be a subset of Hilbκ(X) by Manolescu

[Man06]. Inside the nilpotent slice, matching cycles as Lagrangians related by arc slides

are also Hamiltonian isotopic, which is not obvious in the cylindrical formulation. Mak and

Smith [MS19] then showed that the cylindrical version is equivalent to the original symplectic

Khovanov homology in nilpotent slices.

However, in higher dimensions, the cylindrical symplectic Khovanov homology with van-

ishing cycles κ-tuples of Sn does not have its “original” version; at this moment we do not

know how to put the theory inside a nilpotent slice setting. Another problem is that Hilbert

schemes of points in higher dimensions are not smooth, so we need new ways to resolve the

singularities along the diagonal of Symκ(X). One possible solution is to restrict to some

smooth stratum of Hilbκ(X). For example, the subset of subschemes where each support

point is of length at most 3 (at most triple point) is smooth. However we will not continue

the discussion in this dissertation further. It would be interesting to study this problem in

future.

Therefore, we will follow the curve counting strategy as in [OS04] and [CHT20] to prove

the invariance under arc slides and Markov stabilizations.
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Organization:

Chapter 2:

We review the symplectic backgrounds and the basic settings of HDHF.

Chapter 3:

In Section 3.1, we consider HDHF of cotangent bundles and define CW (tiT ∗qiΣ).

In Section 3.2, we review the chain complex of the loop space and the results of [AS06;

Abo12].

In Section 3.3, we discuss the homology of the based loop space of UConfκ(Σ), which

degenerates to surface braid groups. We then define the Hecke algebra Hκ(Σ), a variant of

BSkκ(Σ) by [MS21].

In Section 3.4, we include the parameter c originated from BSkκ(Σ) to the HDHF and

define CW (tiT ∗qiΣ)c.

In Section 3.5, we construct the map F and prove that F is an isomorphism of algebras.

In Section 3.6, we show that our results can be extended to surfaces with punctures.

Chapter 4:

In Section 4.1, we begin with a brief review of Section 9 of [CHT20], describe the no-

tations, definitions and prerequisite theorems. Then we state the main result. We use a

subsection to explain the Morse gradient tree theory and its relation to pseudoholomorphic

curves originated from [FO97], which is crucial in our proof.

In Section 4.2, we show the arc slide invariance by counting pseudoholomorphic curves

with certain boundary Lagrangians. The idea is to stretch the curve into several parts so

that each one is easy to count by elementary model calculation.

In Section 4.4, we translate the Markov stabilization into the gluing of some pseudoholo-

morphic curves, which we count by Morse gradient tree arguments instead.

In Section 4.5, we compute Kh](σ̂) for unknots, Hopf links and trefoils, which is mainly
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based on the count of simple pseudoholomorphic quadrilaterals.
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CHAPTER 2

Review of the higher-dimensional Heegaard Floer

homology

We review the general facts of HDHF. The main reference for the basic settings of HDHF is

[CHT20].

Definition 2.0.1. A symplectic manifold is a pair (X2n, ω) consisting of a smooth 2n-

dimensional manifold X and a closed nondegenerate 2-form ω on X. We call (X,ω) exact

if there exists a 1-form θ so that ω = dθ.

Definition 2.0.2. A Lagrangian submanifold L is a n-dimensional submanifold of (X2n, ω)

so that ω|L = 0. We call L exact if ω = dθ and θ|L = df for some function f ∈ C∞(L,R).

Definition 2.0.3. Let (X2n, ω) be an exact symplectic manifold of dimension 2n. The objects

of the A∞-category Fκ(X) are κ-tuples of disjoint exact Lagrangians. Given two objects

Li = Li1t· · ·tLiκ, i = 0, 1, whose components are mutually transverse, HomFκ(X)(L0, L1) =

CF (L0, L1) is the free abelian group generated by all y = {y1, . . . , yκ} where yj ∈ L0j ∩L1σ(j)

and σ is some permutation of {1, . . . , κ}. The coefficient ring is set to be Z[[~]]. The A∞-

operations µm, m = 1, 2, . . . , will be defined by (2.0.2).

To define the A∞ operation µm, for i = 1, . . . ,m, let Li = tκj=1Lij so that Li−1 and Li

are transverse. Let yi = {yi1, . . . , yiκ} be a κ-tuple of points so that yij ∈ L(i−1)j ∩ Liσi(j)

where σi is some permutation of {1, . . . , κ}.

As in the cylindrical reformulation of Heegaard Floer homology by Lipschitz [Lip06], we

also need an extra “cylindrical” direction to keep track of points in “Symκ(X)”. Specifically,

10
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∂1Dm∂m−1Dm

∂mDm

Figure 2.1

as shown in Figure 2.1, let D be the unit disk in C and Dm = D − {p0, . . . , pm}, where

pi ∈ ∂Dm are boundary punctures arranged counterclockwise. Let ∂iDm be the boundary

arc from pi to pi+1. Let Am be the moduli space of Dm modulo automorphisms; we choose

representatives Dm of equivalence classes of Am in a smooth manner (e.g., by setting p0 = −i

and p1 = i) and abuse notation by writing Dm ∈ Am. We call Dm the “A∞ base direction”.

The full ambient symplectic manifold is then (Dm × X, Ωm = ωm + ω), where ωm is

an area form on Dm which restricts to dsi ∧ dti on each strip-like end ei around pi. As we

approach the puncture pi, si → −∞ for i = 0 and si → +∞ for i = 1, . . . ,m. Then we

extend the Lagrangians to the A∞ base direction: for i = 0, . . . ,m, let L̃i = ∂iDm × Li and

L̃ij = ∂iDm×Lij. Let πX : Dm×X → X be the projection to X and πDm be the symplectic

fibration

πDm : (Dm ×X,Ωm)→ (Dm, ωm).

There is a smooth assignment Dm 7→ JDm , where Dm ∈ Am, such that:

1. JDm is close to a split almost complex structure jm × JX , where JX is a compatible

almost complex structure on (X,ω);

2. JDm projects holomorphically onto Dm;

3. when m = 1, JD1 is invariant under R-translation of the base.

One can construct such an assignment for all m ≥ 1 in a manner which is (A) consistent

with the boundary strata and (B) for which all the moduli spacesM(y1, . . . ,ym,y0), defined
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below, are transversely cut out. A collection {JDm | Dm ∈ Am, m ∈ Z>0} satisfying (A) will

be called a consistent collection of almost complex structures; if it satisfies (B) in addition,

it is a sufficiently generic consistent collection.

Remark 2.0.4. To avoid cumbersome terminology, in what follows, when we say sufficiently

generic, we mean that all the moduli spaces under consideration are transversely cut out.

Let M(y1, . . . ,ym,y0) be the moduli space of maps

u : (Ḟ , j)→ (Dm ×X, JDm),

where (F, j) is a compact Riemann surface with boundary, p0, . . . ,pm are disjoint κ-tuples

of boundary punctures of F , Ḟ = F \ ∪ipi, and Dm ∈ Am, so that u satisfies

du ◦ j = JDm ◦ du;

each component of ∂Ḟ is mapped to a unique L̃ij;

πX ◦ u tends to yi as si → +∞ for i = 1, . . . ,m;

πX ◦ u tends to y0 as s0 → −∞;

πDm ◦ u is a κ-fold branched cover of Dm,

(2.0.1)

where the 3rd condition means that πX ◦ u maps the neighborhoods of the punctures of

pi asymptotically to the Reeb chords of yi for i = 1, . . . ,m at the positive ends. The 4th

condition is similar.

The µm-composition map of Fκ(X) is then defined as

µm(y1, . . . ,ym) =
∑

y0,χ≤κ

#Mind=0,χ(y1, . . . ,ym,y0) · ~κ−χ · y0, (2.0.2)

where the superscript χ denotes that the Euler characteristic χ(u) = χ.

Theorem 2.0.5. The Fredholm index of Mχ(y1, . . . ,ym,y0) is

ind(u) = (n− 2)χ+ µ+ 2κ−mκn+m− 2, (2.0.3)

where µ is the Maslov index of u, defined as in [CHT20, Section 4].
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If 2c1(TX) = 0 and the Maslov classes of all involved Lagrangians vanish, then there

exists a well-defined Z-grading. In this case, the dimension of Mχ(y1, . . . ,ym,y0) can be

rewritten as

ind(u) = (n− 2)(χ− κ) + |y0| − |y1| − · · · − |ym|+m− 2, (2.0.4)

where |yi| = |yi1|+ · · ·+ |yiκ|. Note also that

|~| = 2− n. (2.0.5)

We omit the details about the orientation ofM(y1, . . . ,ym,y0) and the A∞-relation, and

refer the reader to [CHT20, Section 4].

13



CHAPTER 3

HDHF of cotangent bundles and the Hecke algebra

3.1 Wrapped HDHF of disjoint cotangent fibers

Recall the notations of Chapter 2. From now on, we restrict to the case X = T ∗M , where

M is a compact oriented manifold of dimension n. Let πM : T ∗M → M be the standard

projection; by abuse of notation we also denote the projection map πM ◦ πT ∗M simply by

πM .

The wrapped HDHF category is denoted by Fκ(T ∗M). Let q1, . . . , qκ be κ distinct points

in a small disk U ⊂ M . We discuss the wrapped Heegaard Floer homology of the object

tiT ∗qiM , where we assume i to range from 1 to κ in what follows.

Let g be a Riemannian metric on M and | · | be the induced norm on T ∗M . Choose a

time-dependent Hamiltonian HV : [0, 1]× T ∗M → R:

HV (t, q, p) =
1

2
|p|2 + V (t, q), (3.1.1)

where t ∈ [0, 1], q ∈ M , p ∈ T ∗qM , and V is some perturbation term with small W 1,2-norm.

The Hamiltonian vector field XHV with respect to the canonical symplectic form ω = dq∧dp

is then given by iXHV ω = dHV . Let φtHV be the time-t flow of XHV .

By choosing g and V generically, we can guarantee that all Hamiltonian chords of φtHV

between the cotangent fibers {T ∗q1M, . . . , T ∗qκM} are nondegenerate.

Definition 3.1.1. The wrapped Heegaard Floer chain complex of CW (tiT ∗qiM) is defined

to be CF (φ1
HV

(tiT ∗qiM),tiT ∗qiM).
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There is a subtlety when defining A∞-operations for wrapped HDHF and we briefly

review the rescaling argument of [Abo10, Section 3].

Choose a consistent collection {JDm | Dm ∈ Am, m ∈ Z>0}. We would like to im-

pose Lagrangian boundary conditions φm−jHV
(tiT ∗qiM) over the arc ∂jDm, but there is some

subtlety near the end e0 since CF (φmHV (tiT ∗qiM),tiT ∗qiM) is not naturally isomorphic to

CF (φ1
HV

(tiT ∗qiM),tiT ∗qiM). We will explain how to modify the Lagrangian boundary condi-

tion and the family JDm for Dm ∈Mm−N(∂Mm), where N(∂Mm) is a small neighborhood

of ∂Mm in Mm. It is not hard to extend these modifications to all of Mm which is consis-

tent with boundary strata. Let ψρ be the time-log ρ flow of the Liouville vector field p∂p of

(T ∗M, pdq). There is an isomorphism

CF (ψρ(φ1
HV

(tiT ∗qiM)), ψρ(tiT ∗qiM);ψρ∗JDm)

∼= CF (φ1
HV

(tiT ∗qiM),tiT ∗qiM ; JDm) ∼= CW (tiT ∗qiM).

Taking ρ = 1/m, ψ1/m(φ1
HV

(tiT ∗qiM)) limits to φmHV (tiT ∗qiM) as |p| → ∞ and ψ1/m(tiT ∗qiM)

remains the same as tiT ∗qiM . We then take the Lagrangian boundary condition over ∂0Dm

to be the trace of the Lagrangian isotopy from φmHV (tiT ∗qiM) to ψ1/m(φ1
HV

(tiT ∗qiM)) as

s0 → −∞ and take the boundary condition over ∂mDm to be the trace from tiT ∗qiM to

ψ1/m(tiT ∗qiM) as s0 → −∞ which we can take to be tiT ∗qiM . The boundary condition over

∂jDm for j 6= 0,m is the usual one φm−jHV
(tiT ∗qiM).

We modify JDm to a compatible almost complex structure J̃Dm so that on the output end

e0 of Dm, J̃Dm → ψ
1/m
∗ JDm as s0 → −∞; also, in the context of wrapped HDHF a consistent

collection of almost complex structures is a collection of J̃Dm . By abuse of notation, we write

JDm instead of J̃Dm from now on.

Lemma 3.1.2. Let d = 0 or 1. Given y1, . . . ,ym ∈ CW (tiT ∗qiM), Mind=d,χ(y1, . . . ,ym,y0)

is empty for all but finitely many y0. If it is nonempty, Mind=d,χ(y1, . . . ,ym,y0) (and

Mind=d,χ(y1,y0)/R if m = 1) admits a compactification for each χ.

Proof. This is similar to [Abo10, Appendix B] or [AS10b, Section 7].
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Therefore, the A∞-operation

µm : CW (tiT ∗qiM)⊗ · · · ⊗ CW (tiT ∗qiM)→ CW (tiT ∗qiM),

can be defined using a sufficiently generic consistent collection, making the chain complex

CW (tiT ∗qiM) into an A∞-algebra.

Remark 3.1.3. The same prescription gives us the wrapped HDHF category Fκ(X) of a

Liouville domain, which generalizes the wrapped Fukaya category F1(X) of X.

We now discuss the grading on CW (tiT ∗qiM). Since c1(T (T ∗M)) = 0 and the Maslov

class of the Lagrangian vanishes, there is a well-defined Z-grading. Following [Aur14, Section

1.3], we choose a nonzero section µ of the trivial complex line bundle Λ2
CT
∗(T ∗M): Let {Uα}

be a cover of M . On any local chart Uα with coordinates (x1
α, . . . , x

n
α), we define

µα = (dx1
α − i ◦ dx1

α ◦ J) ∧ · · · ∧ (dxnα − i ◦ dxnα ◦ J); (3.1.2)

here J can be viewed as a bundle map which takes v ∈ TM to its dual v∗ ∈ T ∗M via g. Let

µ =
∑

α ϕαµα where {ϕα} is some partition of unity with respect to {Uα}. Then we consider

the phase function

ϕµ : LGr(T (T ∗M))→ S1 (3.1.3)

A 7→ µ(v1 ∧ · · · ∧ vn)2

||µ(v1 ∧ · · · ∧ vn)||2

where LGr(T (T ∗M)) is the Grassmannian of Lagrangian planes in T (T ∗M), {v1, . . . , vn}

are tangent vectors that span A. Note that ϕµ is independent of the choice of {v1, . . . , vn}.

For any loop l in LGr(T (T ∗M)), the Maslov index of l is then defined as the degree of ϕµ

on l. Moreover, if the Maslov class of some Lagrangian L vanishes, we can lift ϕµ on L to a

grading function ϕ̃µ : L→ R.

Given any q ∈ M , denote the tangent space of the zero section of T ∗M at q by TqM .

One can check that ϕµ(TqM) = 1 ∈ S1 for any choice of µ. Hence we can define a grading

function on the zero section M which is identically 0. Similarly, given any x ∈ T ∗M , denote
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the vertical space at x by Vx. We check that ϕµ(Vx) = (−1)n ∈ S1 for any choice of µ.

Therefore we can define a grading function on any (unwrapped) cotangent fiber TqM which

is identically 0.

Now let M = Σ, a closed oriented surface of genus greater than 0. In this case |~| =

2 − n = 0 from (2.0.5). Let g be a Riemannian metric on Σ which is a small perturbation

of the flat metric when Σ is a torus and of the hyperbolic metric when Σ has genus greater

than 1. In this case:

Lemma 3.1.4. Fix µ by any choice satisfying (3.1.2). Then the grading |y| = 0 for every

y ∈ CF (φ1
HV

(tiT ∗qiΣ),tiT ∗qiΣ).

Proof. Given y = {y1, . . . , yκ} ∈ CF (φ1
HV

(tiT ∗qiΣ),tiT ∗qiΣ), each yi ∈ φ1
HV

(Li) ∩ Li′ corre-

sponds to a time-1 Hamiltonian chord from Li to Li′ , parametrized by (q(t), p(t)), t ∈ [0, 1].

Its Legendre transform (see Definition 3.2.2) gives a perturbed geodesic γ on Σ. By classical

results of Duistermaat [Dui76, Theorem 4.3] and [AS06, Section 1.2], the Conley-Zehnder

index of yi with respect to µ is equal to the Morse index of γ with respect to its Lagrangian

action. Lemma 3.2.6 then implies that |yi| = 0. Hence |y| =
κ∑
i=1

|yi| = 0.

Proposition 3.1.5. The A∞-algebra CW (tiT ∗qiΣ) is supported in degree zero, and hence is

an ordinary algebra.

Proof. The complex CW (tiT ∗qiΣ) is supported in degree zero by Lemma 3.1.4 and |~| = 0.

The A∞-operation µm = 0 for all m 6= 2 since the degree of µm is 2 −m. Hence µ2 is the

only nontrivial A∞-operation and CW (tiT ∗qiΣ) is an ordinary algebra.
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3.2 Review of works on the loop space and the wrapped Floer

homology of a cotangent fiber

Let M be a compact oriented manifold of dimension n. We review some basic properties

of loop spaces on M and in particular the relationship to the wrapped Floer homology of

a single cotangent fiber of T ∗M , i.e., the case when κ = 1. We refer the reader to [AS06;

Abo12] for more details.

Let g be a generic Riemannian metric on M and let ∇ be its associated Levi-Civita

connection.

Consider the path space

Ω(M, q0, q1) = {γ ∈ C0([0, 1],M) | γ(0) = q0, γ(1) = q1}.

There is a composition map which is simply the concatenation of paths:

Ω(M, q0, q1)× Ω(M, q1, q2)→ Ω(M, q0, q2),

γ1γ2(t) =

 γ1(2t), 0 ≤ t ≤ 1/2,

γ2(2t− 1), 1/2 ≤ t ≤ 1.

In order to do Morse theory on the path space, we use Ω1,2(M, q0, q1), the subset of

Ω(M, q0, q1) consisting of paths in the class W 1,2.

There is a natural action functional on Ω1,2(M, q0, q1). Recall the Hamiltonian HV ,

the Hamiltonian vector field XHV , and the time-t Hamiltonian flow φtHV from Section 3.1.

Consider the function LV : [0, 1]× TM → R given by:

LV (t, q, v) =
1

2
|v|2 − V (t, q), (3.2.1)

where t ∈ [0, 1], q ∈M , and v ∈ TqM . For each γ ∈ Ω1,2(M, q0, q1), let

AV (γ) =

∫ 1

0

LV (t, γ, γ̇) dt. (3.2.2)

It is well-known that AV is a Morse function on Ω1,2(M, q0, q1). Therefore we can define

CM∗(Ω
1,2(M, q0, q1)) as the Morse complex generated by the critical points of AV and with
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differential induced by AV and the metric g. We omit the details which can be found in

[AS06, Section 2] and simply denote the Morse homology group of CM∗(Ω
1,2(M, q0, q1)) by

HM∗(Ω
1,2(M, q0, q1)).

Definition 3.2.1. A V -perturbed geodesic γ is a map [0, 1]→M such that

∇γ̇ γ̇ = −∇V, (3.2.3)

where ∇V denotes the gradient of V with respect to g.

By a standard calculus of variations computation, the critical points ofAV on Ω1,2(M, q0, q1)

are exactly V -perturbed geodesics.

We now recall some standard facts following [AS06, Section 2.1]. Let CHV be the set of

time-1 integral curves of XHV on T ∗M and let CLV be the set of time-1 V -perturbed geodesics

on M , i.e.,

CHV := {ζ : [0, 1]→ T ∗M | ζ(t) = φtHV ◦ ζ(0)},

CLV := {γ : [0, 1]→M | ∇γ̇ γ̇ = −∇V }.

We define a map L : CHV → CLV as follows: Given ζ ∈ CHV , let L(ζ) be the path

[0, 1]→M given by

L(ζ)(t) := πM ◦ ζ(t).

One can verify that L(ζ) satisfies (3.2.3) and hence belongs to CLV .

We define the inverse map L−1 : CLV → CHV as follows: Given γ ∈ CLV , we define

L−1(γ) : [0, 1]→ T ∗M as

L−1(γ) := (γ(t), dL(t, γ(t), γ̇(t))|T v
(γ(t),γ̇(t))

TM), (3.2.4)

where T v(γ(t),γ̇(t))TM is the vertical fiber kerDπM ∼= Tγ(t)M at (γ(t), γ̇(t)) ∈ TM and

πM : TM →M is the projection.
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Definition 3.2.2. We call L the Legendre transform and call L−1 the inverse Legendre

transform.

Remark 3.2.3. Each generator y ∈ CF (φ1
HV

(T ∗q0M), T ∗q1M) corresponds to a time-1 integral

curve of XHV from T ∗q0M to T ∗q1M :

ly : [0, 1]→ T ∗M, ly(t) = φt−1
HV

(y). (3.2.5)

We define L(y) to be L(ly). Conversely, L−1 maps each time-1 integral curve of XHV from

T ∗q0M to T ∗q1M to a generator of CF (φ1
HV

(T ∗q0M), T ∗q1M).

Since the inclusion

Ω1,2(M, q0, q1) ↪→ Ω(M, q0, q1) (3.2.6)

is a homotopy equivalence, we deduce that HM∗(Ω
1,2(M, q0, q1)) is isomorphic to the singular

homology group H∗(Ω(M, q0, q1)).

When q0 = q1 = q, we get the based loop space

Ω(M, q) = {γ ∈ C0([0, 1],M) | γ(0) = γ(1) = q}.

Theorem 3.2.4 (Theorem B of [AS10a]). There is an isomorphism of graded algebras:

H−∗(Ω(M, q))→ HW ∗(T ∗qM). (3.2.7)

In the opposite direction, Abouzaid constructed a chain level evaluation map

CW ∗(T ∗qM)→ C−∗(Ω(M, q)).

It induces an isomorphism on the level of homology:

F̃ : HW ∗(T ∗qM)→ H−∗(Ω(M, q)). (3.2.8)

Remark 3.2.5. Theorem 3.2.4 also holds for path spaces by [AS06], i.e., there is an iso-

morphism

H−∗(Ω(M, q0, q1))→ HW ∗(T ∗q0M,T ∗q1M) (3.2.9)

where the right-hand side is the wrapped Floer homology group whose generators are time-1

Hamiltonian flows of φtHV from T ∗q0M to T ∗q1M .
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Let us now specialize to M = Σ, a closed oriented surface of genus greater than 0. In

this case we further see:

Lemma 3.2.6. H∗(Ω(Σ, q0, q1)) is supported in degree 0.

Proof. Recall that V is small in the W 1,2-norm. If Σ is a torus, then we can assume that g

is the flat metric, where all V -perturbed geodesics with V sufficiently small are minimal and

isolated. If the genus of Σ is greater than 1, then we can assume that g is the hyperbolic

metric with constant curvature −1. It is well known that on a hyperbolic surface, there is

a unique V -perturbed geodesic in each homotopy class of paths with fixed endpoints for V

sufficiently small. For details the reader is referred to Milnor [Mil63, Lemma 19.1]. Hence

the Morse indices of all critical points of Ω1,2(Σ, q0, q1) are 0.

Note that when M = Σ, all terms of (3.2.7) vanish except for ∗ = 0 by Lemma 3.2.6. We

write HW (T ∗q Σ) for HW 0(T ∗q Σ). Moreover, H0(Ω(Σ, q)) is isomorphic to the group algebra

Z[π1(Σ, q)] of the fundamental group π1(Σ, q).

3.3 The Hecke algebra

Theorem (3.2.4) and the isomorphism (3.2.8) relate H0(Ω(Σ, q)) to the wrapped Floer ho-

mology HW (T ∗q Σ) of a single cotangent fiber, and represent the special case of κ = 1 in

HDHF. In this section, we discuss the generalization of H0(Ω(Σ, q)) to κ ≥ 1, which we show

to be equivalent to HW (tiT ∗qiΣ) in later sections.

Summary. Consider the loop space of the unordered configuration space of κ points on Σ.

Its 0th homology is isomorphic to the group algebra of the braid group of Σ. The braid skein

algebra BSkκ(Σ,q), due to Morton and Samuelson [MS21, Definition 3.1], is a quotient of

the group algebra of the braid group by the HOMFLY skein relation and the marked point

relation. Here q is a κ-tuple of distinct points on Σ. By reformulating the marked point

relation, we obtain the surface Hecke algebra Hκ(Σ,q) in Definition 3.3.4. This surface Hecke
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algebra serves as an intermediary between the wrapped Floer homology and the braid skein

algebra. On one hand, we show that Hκ(Σ,q) and BSkκ(Σ) are isomorphic up to a change

of variables in Proposition 3.3.5. On the other hand, we will construct an evaluation map

from the wrapped Floer homology to Hκ(Σ,q) in Section 3.5.1.

Note that the braid skein algebra for Σ = T 2 is isomorphic to the double affine Hecke

algebra (DAHA) of glκ [MS21, Theorem 3.7]. Hence Hκ(T
2,q) is also isomorphic to the

DAHA.

Let UConfκ(Σ) = {{q1, . . . , qκ} | qi ∈ Σ, qi 6= qj for i 6= j} be the configuration

space of κ unordered points on Σ. Fix a basepoint q ∈ UConfκ(Σ). The based loop

space Ω(UConfκ(Σ),q) consists of κ-strand braids in Σ. Note that H0(Ω(UConfκ(Σ),q))

is isomorphic to the group algebra Z[Brκ(Σ,q)], where Brκ(Σ,q) denotes the braid group of

Σ.

Fix a marked point ? ∈ Σ which is disjoint from q. Let Brκ,1(Σ,q, ?) be the subgroup

of Brκ+1(Σ,q t {?}) consisting of braids whose last strand connects ? to itself by a straight

line in [0, 1]× Σ.

Definition 3.3.1 (Morton-Samuelson). The braid skein algebra BSkκ(Σ,q) is the quotient

of the group algebra Z[s±1, c±1][Brκ,1(Σ,q, ?)] by two local relations:

1. the HOMFLY skein relation

− = (s− s−1) , (3.3.1)

2. the marked point relation P = c2

P := = c2 . (3.3.2)

Here the black lines are strands between basepoints in q and the straight blue line connects

the marked point ? to itself.

The product is given by the concatenation of braids.
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For the purposes of relating BSkκ(Σ,q) to the wrapped Floer homology, it is more con-

venient to give another description of the marked point relation (3.3.2). Let

Ω(UConfκ(Σ \ {?}),q) (3.3.3)

= {γ ∈ C0([0, 1],UConfκ(Σ \ {?})) | γ(0) = γ(1) = q}.

Given γ1, γ2 ∈ Ω(UConfκ(Σ \ {?}),q) viewed as based loops on UConfκ(Σ), let H : [0, 1]2 →

UConfκ(Σ) be a homotopy between γ1 and γ2 relative to the boundary, i.e.,

H(t, 0) = γ1(t), H(t, 1) = γ2(t), H(0, s) = H(1, s) = q.

Note that the homotopy H may intersect the marked point ?. Let

Y = {{p1, . . . , pκ} ∈ UConfκ(Σ) | pi = ? for some i};

it is a codimension two submanifold of UConfκ(Σ). Define 〈H, ?〉 := 〈H,Y 〉, the algebraic

intersection number of H and Y . This is well-defined since H(∂([0, 1]2)) ∩ Y = ∅.

We identify H0(Ω(UConfκ(Σ \ {?}),q)) with the group algebra Z[Brκ(Σ \ {?},q)] of the

braid group Brκ(Σ \ {?},q).

Definition 3.3.2. The c-deformed braid group Brκ(Σ,q)c of Σ is generated by Brκ(Σ\{?},q)

and a central element c, subject to the following c-deformed homotopy relation:

[γ2] = c2〈H,?〉[γ1], (3.3.4)

where γi ∈ Ω(UConfκ(Σ \ {?}),q), H is the homotopy between them as above, and [γi] ∈

H0(Ω(UConfκ(Σ \ {?}),q)) ∼= Z[Brκ(Σ \ {?},q)].

Remark 3.3.3. The group algebra Z[Brκ(Σ,q)c] is naturally isomorphic to the quotient of

C0(Ω(UConfκ(Σ \ {?}),q))⊗ Z[c±1] by the c-deformed homotopy relation (3.3.4).

See Figure 3.1 for an example when κ = 1 and 〈H,Y 〉 = 1.

Specializing to c = 1, Brκ(Σ,q)c recovers Brκ(Σ,q). Hence there is a central extension

of groups:

0→ 〈c〉 → Brκ(Σ,q)c → Brκ(Σ,q)→ 0, (3.3.5)
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γ1

γ2

⋆

Figure 3.1: The deformed homotopy relation [γ2] = c2[γ1]. Both dotted points are q ∈ Σ.

where 〈c〉 is the free abelian group generated by c.

Let 〈Brκ,1(Σ,q, ?), c〉 denote the group generated by Brκ,1(Σ,q, ?) and a central element c.

Define the group Brκ(Σ,q)′c as the quotient of 〈Brκ,1(Σ,q, ?), c〉 by the marked point relation

P = c2 (3.3.2). There are two natural projections from 〈Brκ,1(Σ,q, ?), c〉 to Brκ(Σ,q)′c and

Brκ(Σ,q)c, respectively:

〈Brκ,1(Σ,q, ?), c〉

((

P=c2

vv
Brκ(Σ,q)′c

φ // Brκ(Σ,q)c

The relation P = c2 also holds in Brκ(Σ,q)c. Therefore, there is a natural induced map

φ : Brκ(Σ,q)′c → Brκ(Σ,q)c.

The algebra Brκ(Σ,q)′c also fits into a central extension similar to (3.3.5):

0→ 〈c〉 → Brκ(Σ,q)′c → Brκ(Σ,q)→ 0.

Moreover, the following diagram commutes:

0 // 〈c〉 // Brκ(Σ,q)c // Brκ(Σ,q) // 0

0 // 〈c〉 // Brκ(Σ,q)′c //

φ

OO

Brκ(Σ,q) // 0.

By the Five Lemma, φ is an isomorphism.

Recall from Definition 3.3.1 that the braid skein algebra BSkκ(Σ,q) is the quotient of

Z[s±1][Brκ(Σ,q)′c] by the skein relation (3.3.1). We introduce the variable ~ = s − s−1 and

add the corresponding skein relation to Brκ(Σ,q)c.
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Definition 3.3.4. The Hecke algebra Hκ(Σ,q) of Σ is the quotient of the group algebra

Z[~][Brκ(Σ,q)c] by the local skein relation:

− = ~ . (3.3.6)

Proposition 3.3.5. The algebra Hκ(Σ,q) is naturally isomorphic to BSkκ(Σ,q), up to a

change of variables ~ = s− s−1.

Finally, we consider the degeneration ~ = 0 for later use. The skein relation (3.3.6) then

reduces to the symmetric group relation. Further setting c = 1, we have Hκ(Σ,q)|~=0,c=1
∼=

Z[(
∏

i π1(Σ, qi))o Sκ], where the symmetric group Sκ acts on
∏

i π1(Σ, qi) by permuting the

factors. Adding the parameter c, let π1(Σ, q)c denote Br1(Σ, q)c, the 1-strand c-deformed

braid group. Its group algebra Z[π1(Σ, q)c] is a Z[c±1]-algebra. The following is straightfor-

ward.

Lemma 3.3.6. There is an isomorphism of Z[c±1]-algebras:

Hκ(Σ,q)|~=0
∼= (⊗i Z[π1(Σ, qi)c]) o Sκ, (3.3.7)

where the tensor product is over Z[c±1].

3.4 The parameter c in HDHF

Motivated by the c-deformed homotopy relation (3.3.4), in this section we define CW (tiT ∗qiΣ)c,

the wrapped HDHF homology of disjoint cotangent fibers with an additional parameter c.

We inherit the notation from Section 3.1.

Let CF (φ1
HV

(tiT ∗qiΣ),tiT ∗qiΣ)c := CF (φ1
HV

(tiT ∗qiΣ),tiT ∗qiΣ)⊗ Z[c±1].

Given u ∈M(y1, . . . ,ym,y0) of index 0 or 1, consider its projection to Σ and denote the

image by πΣ(u). We enhance the A∞-operations from Section 3.1 to include c-coefficients by

keeping track of modified intersections of πΣ ◦ u and a fixed marked point ? ∈ Σ. Note that

we cannot directly take the intersection number of πΣ(u) and ? since the boundary of πΣ(u)

could cross ? in a generic 1-parameter family and the A∞-relation would not be satisfied.
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βi

qi+1

qi

qi−1

bi

bi+1

αi

γi

Bi

Figure 3.2: The projection of some curve u to Σ. The path αi is the projection of some

component ∂iḞ ⊂ ∂Ḟ . We choose any homotopy from αi to −βi + γi, where the relative

homology class Bi that is swept out does not depend on the choice of homotopy. Note that

qi, qi+1 and bi+1 lie on the same V -perturbed geodesic.

To remedy this issue, we carefully choose the marked point ? ∈ Σ and modify πΣ(u). Con-

sider the set of V -perturbed geodesics (see Definition 3.2.1) with endpoints in {q1, . . . , qκ}.

Since there are only countably many such V -perturbed geodesics, we can choose a generic

marked point ? ∈ Σ in the complement of the images of these perturbed geodesics.

We then homotop the boundary of πΣ(u) on Σ to piecewise V -perturbed geodesics, which

can be guaranteed to be disjoint from ?. Specifically, suppose the domain of u is Ḟ and

{pi−1, pi, pi+1} are three consecutive boundary punctures on ∂F , ordered according to the

boundary orientation of ∂F . Write πT ∗Σ◦u(pi) etc. for the values of the continuous extensions

of πT ∗Σ ◦u to the puncture pi etc. Denote the boundary arc from pi to pi+1 by ∂iḞ . Suppose

the cotangent fibers T ∗qi−1
Σ, T ∗qiΣ and T ∗qi+1

Σ are wrapped using the wrapping functions

ψi−1, ψi and ψi+1, respectively. For r = 0, 1, suppose πT ∗Σ ◦ u(pi+r) ∈ ψi+r−1(T ∗qi+r−1
Σ) ∩

ψi+r(T
∗
qi+r

Σ), which corresponds to the intersection of two Hamiltonian chords that start from

T ∗qi+r−1
Σ and T ∗qi+rΣ. The Legendre transforms of these Hamiltonian chords (see Definition

3.2.2) correspond to certain V -perturbed geodesics on Σ: Let βi+r−1 be that from qi+r−1 to

bi+r−1, and γi+r−1 be that from qi+r−1 to bi+r, where bi = πΣ ◦ u(pi). Observe that qi, qi+1

and bi+1 lie on the same V -perturbed geodesic. Let αi be the path πΣ ◦ u(∂iḞ ). See Figure
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3.2.

Fix parametrizations of αi, βi and γi by the interval [0, 1]. Note that αi and β−1
i · γi are

homotopic as paths from bi to bi+1; this is due to the facts that αi, βi and γi are all projections

of paths in ψi(T
∗
qi

Σ) and that T ∗qiΣ is contractible. Let Bi be a homotopy between αi and

β−1
i · γi relative to boundary. We extend the image πΣ(u) on Σ by the homotopy Bi for all

∂iḞ ⊂ ∂Ḟ so that its new boundary lies in C :=
⋃
i(βi ∪ γi); this defines a relative homology

class [πΣ(u)]′ ∈ H2(Σ, C).

Given two homotopies Bi and B′i from αi to β−1
i · γi, their difference determines a map

S2 → Σ, which induces the zero map on H2(S2) → H2(Σ, C). Hence [πΣ(u)]′ does not

depend on the choice of {Bi} and the algebraic intersection number 〈u, ?〉 := 〈[πΣ(u)]′, ?〉 is

well-defined.

We modify the µm-composition map so that

µm(y1, . . . ,ym) =
∑

u∈Mind=0(y1,...,ym,y0)

c2〈u,?〉 · ~κ−χ(u) · y0, (3.4.1)

where u ranges over curves of index 0.

Since C is disjoint from ?, 〈u, ?〉 is constant for any 1-parameter family of u. Therefore,

by analyzing the degeneration of index-1 moduli spaces, we see that CW (tiT ∗qiΣ)c is an

A∞-algebra. Proposition 3.1.5 can then be improved to:

Proposition 3.4.1. The A∞-algebra CW (tiT ∗qiΣ)c is supported in degree zero, and hence

is an ordinary algebra.

3.5 The evaluation map

Following Abouzaid [Abo12], we construct the evaluation map

F : CW (tiT ∗qiΣ)c → Hκ(Σ)⊗Z[~] Z[[~]]

in Section 3.5.1. It is given by counting holomorphic curves between cotangent fibers and the

zero section of T ∗Σ in the framework of HDHF. We then show that F is a homomorphism
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of algebras in Section 3.5.2. The key ingredient is the holomorphic curve interpretation of

the HOMFLY skein relation due to Ekholm-Shende [ES19]. We finally prove Theorem 1.0.4

which states that the map F is an isomorphism.

3.5.1 The definition

At this point we rename Dm as Tm−1, where ∂iTm−1 = ∂iDm for i = 0, . . . ,m. The disk Tm−1

will be the A∞ base direction, where p1, . . . , pm−1 ∈ ∂Dm = ∂Tm−1 correspond to inputs

(κ-tuples of intersection points) and ∂mDm = ∂mTm−1 corresponds to the output (κ-tuples

of arcs on Σ). Let Tm−1 be the moduli space of Tm−1 modulo automorphisms; again we

choose representatives Tm−1 of equivalence classes of Tm−1 in a smooth manner.

Let πT ∗Σ be the projection Tm−1 × T ∗Σ→ T ∗Σ. Choose a sufficiently generic consistent

collection Tm−1 7→ JTm−1 of compatible almost complex structures on Tm−1 × T ∗Σ for all

Tm−1 ∈ Tm−1 and all m ≥ 2 such that JTm−1 is close to a split almost complex structure on

Tm−1 × T ∗Σ and which projects holomorphically to Tm−1.

Recall that φtHV is the time-t Hamiltonian flow of (3.1.1). We will refer to Σ as the zero

section of T ∗Σ when it is clear from the context. Let q (resp. q′) be the set of intersection

points between φ1
HV

(tiT ∗qiΣ) (resp. tiT ∗qiΣ) and Σ and let y ∈ CF (φ1
HV

(tiT ∗qiΣ),tiT ∗qiΣ).

We define H(q,y,q′) as the moduli space of maps

u : (Ḟ , j)→ (T1 × T ∗Σ, JT1),

where (F, j) is a compact Riemann surface with boundary, p0,p1,p2 are disjoint tuples of
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Figure 3.3: The A∞ base direction T1 forH(q,y,q′). The notation denotes the corresponding

preimages of πT1 in T ∗Σ, e.g., p0 is denoted by q since πT ∗Σ ◦ u tends to q as πT1 ◦ u→ p0.

boundary punctures of F and Ḟ = F \ ∪ipi so that u satisfies

du ◦ j = JT1 ◦ du;

πT ∗Σ ◦ u(z) ∈ φ1
HV

(tiT ∗qiΣ) if πT1 ◦ u(z) ⊂ ∂0T1;

each component of ∂Ḟ that projects to ∂0T1 maps to a distinct φ1
HV

(T ∗qiΣ);

πT ∗Σ ◦ u(z) ∈ tiT ∗qiΣ if πT1 ◦ u(z) ⊂ ∂1T1;

each component of ∂Ḟ that projects to ∂1T1 maps to a distinct T ∗qiΣ;

πT ∗Σ ◦ u(z) ∈ Σ if πT1 ◦ u(z) ⊂ ∂2T1;

πT ∗Σ ◦ u tends to q as s0 → −∞;

πT ∗Σ ◦ u tends to y as s1 → +∞;

πT ∗Σ ◦ u tends to q′ as s2 → +∞;

πT1 ◦ u is a κ-fold branched cover of a fixed T1 ∈ T1,

where we follow conventions of (2.0.1). See Figure 3.3.

Lemma 3.5.1. Fixing generic JT1, H(q,y,q′) is of dimension 0 and consists of discrete

regular curves for all q, y and q′.

Proof. By the discussion before Lemma 3.1.4, |q1| = · · · = |qκ| = |q′1| = · · · = |q′κ|=0. Hence

|q| = |q′| = 0. By Lemma 3.1.4, |y| = 0. We then see that the virtual dimension of

H(q,y,q′) is 0 by the index formula (2.0.4); note that the same index formula holds even

when we do not assume that the copies of the zero section Σ are disjoint. The lemma then

follows from standard transversality arguments.
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Let Hχ(q,y,q′) be the subset of H(q,y,q′) such that χ(Ḟ ) = χ.

Lemma 3.5.2. Given q, y and q′, the moduli space Hχ(q,y,q′) consists of finitely many

curves for each Euler characteristic χ.

Proof. Each y determines a unique q and q′. Since there is an energy bound for curves in

H(q,y,q′), by Gromov compactness, H(q,y,q′) contains a finite number of curves for each

χ.

Fix a parametrization of the arc ∂2T1 from p0 to p2 by τ : [0, 1] → ∂2T1. There exists

a sufficiently generic consistent collection {Tm 7→ JTm} such that for all u ∈ H(q,y,q′),

(πT ∗Σ ◦ u) ◦ (πT1 ◦ u)−1 ◦ τ(t) consists of κ distinct points on Σ \ {?} for each t ∈ [0, 1] and

hence gives a path in UConfκ(Σ \ {?}):

γ(u) : [0, 1]→ UConfκ(Σ \ {?}), t 7→ (πT ∗Σ ◦ u) ◦ (πT1 ◦ u)−1 ◦ τ(t).

Define

Ω(UConfκ(Σ \ {?}),q,q′) = {γ : [0, 1]→ UConfκ(Σ \ {?}) | γ(0) = q, γ(1) = q′}.

Then γ(u) ∈ Ω(UConfκ(Σ \ {?}),q,q′).

For u ∈ H(q,y,q′), we can define [πΣ(u)]′ as in Section 3.4: We extend the image πΣ(u)

by the homotopies Bi from Section 3.4, where ∂iḞ ranges over all boundary arcs of ∂Ḟ which

are not of “output type”. Here ∂iḞ is of “output type” if πT1 ◦ u(∂iḞ ) ⊂ ∂2T1. We then

define the algebraic intersection number

〈u, ?〉 := 〈[πΣ(u)]′, ?〉.

We now define the evaluation map

E : CW (tiT ∗qiΣ)c → C0(Ω(UConfκ(Σ \ {?}),q,q′))⊗ Z[c±1]⊗ Z[[~]], (3.5.1)

y 7→
∑

u∈H(q,y,q′)

c2〈u,?〉 · ~κ−χ(u) · γ(u).
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Figure 3.4: The A∞ base direction T2 for H(q,y,y′,q′).

The Hamiltonian flow φtHV of (3.1.1) fixes the zero section Σ and hence q′ = q. Note

that Ω(UConfκ(Σ \ {?}),q,q) = Ω(UConfκ(Σ \ {?}),q) as in (3.3.3). By Definitions 3.3.2

and 3.3.4 there is a natural projection map

P : C0(Ω(UConfκ(Σ \ {?}),q))⊗ Z[c±1]⊗ Z[[~]]→ Hκ(Σ,q)⊗Z[~] Z[[~]], (3.5.2)

by first taking the c-deformed homotopy class and then quotienting by the skein relation.

We finally define the evaluation map

F = P ◦ E : CW (tiT ∗qiΣ)c → Hκ(Σ,q)⊗Z[~] Z[[~]]. (3.5.3)

Note that E depends on the choice of the parametrization τ but F does not.

3.5.2 The isomorphism

Both the domain and target of the map F in (3.5.3) are ordinary algebras. We will show

that F is an isomorphism of algebras in this subsection.

We consider a moduli space of curves whose A∞ base direction is T2 ∈ T2. See Figure

3.4. In this case, a 1-parameter family of T2 ∈ T2 may degenerate into broken curves in ∂T2

as shown in Figure 3.5. As in Section 3.1, we need to modify the consistent collection near

the point T ′2 of ∂T2 corresponding to the left-hand side of Figure 3.5.

Let U ⊂ V be ends of T2 that limit to T ′2 such that each T2 ∈ V is close to breaking

into D2 ∪ T1 and U ∪ {T ′2} is a relatively compact subset of V ∪ {T ′2} in T 2. For each

T2 ∈ V we choose the neck region N(T2) (chosen to be smoothly dependent on T2) such that
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T2 \N(T2) is independent of T2 and write T+
2 and T−2 for the two components of T2 \N(T2)

corresponding to D2 and T1, respectively.

We then modify T2 7→ JT2 to T2 7→ J♦T2 such that:

J♦T2 =



JT2 for T2 ∈ T2 \ V ;

JT2 = JD2 on T+
2 for T2 ∈ V ;

JD2 on T+
2 ∪N(T2) for T2 ∈ U ;

ψ
1/2
∗ JT1 on N(T2) ∪ T−2 for T2 ∈ U ,

where ψρ is the time-log ρ Liouville flow defined in Section 3.1. Note that the definition of J♦T2

above can be taken to agree on the overlap. Given y ∈ CF (φ2
HV

(tiT ∗qiΣ), φ1
HV

(tiT ∗qiΣ))c and

y′ ∈ CF (φ1
HV

(tiT ∗qiΣ),tiT ∗qiΣ)c, letH(q,y,y′,q′) be the moduli space of of maps u : (Ḟ , j)→

(T2×T ∗Σ, J♦T2), where (F, j) is a compact Riemann surface with boundary, T2 ∈ T2, p0, . . . ,p3

are disjoint tuples of boundary punctures of F and Ḟ = F \ ∪ipi so that u satisfies:



du ◦ j = J♦T2 ◦ du;

πT ∗Σ ◦ u(z) ∈ Ψ(πT2 ◦ u(z))(tiT ∗qiΣ) if πT2 ◦ u(z) ⊂ ∂0T2;

each component of ∂Ḟ that projects to ∂0T2 maps to a distinct

Ψ(πT2 ◦ u(z))(T ∗qiΣ);

πT ∗Σ ◦ u(z) ∈ φ1
HV

(tiT ∗qiΣ) if πT2 ◦ u(z) ⊂ ∂1T2;

each component of ∂Ḟ that projects to ∂1T2 maps to a distinct φ1
HV

(T ∗qiΣ);

πT ∗Σ ◦ u(z) ∈ tiT ∗qiΣ if πT2 ◦ u(z) ⊂ ∂2T2;

each component of ∂Ḟ that projects to ∂2T2 maps to a distinct T ∗qiΣ;

πT ∗Σ ◦ u(z) ∈ Σ if πT2 ◦ u(z) ⊂ ∂3T2;

πT ∗Σ ◦ u tends to q as s0 → −∞;

πT ∗Σ ◦ u tends to y as s1 → +∞;

πT ∗Σ ◦ u tends to y′ as s2 → +∞;

πT ∗Σ ◦ u tends to q′ as s3 → +∞;

πT2 ◦ u is a κ-fold branched cover of some T2 ∈ T2,
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where we follow conventions of (2.0.1) and Ψ: ∂0T2 → Symp(T ∗Σ, ω) depends smoothly on

T2 ∈ T2 such that

Ψ =


φ2
HV

for T2 ∈ T2 \ V ;

φ2
HV

on ∂0T2 \N(T2) for T2 ∈ V ;

ψ1/2 ◦ φ1
HV

on ∂0T2 ∩ (N−(T2) ∪ T−2 ) for T2 ∈ U ,

where N−(T2) is the bottom half of N(T2) (the part adjacent to T−2 ).

Lemma 3.5.3. There exists a sufficiently generic consistent collection of almost complex

structures such that H(q,y,y′,q′) is of dimension 1 and is transversely cut out for all q,

y, y′ and q′. Moreover, H(q,y,y′,q′) admits a compactification H(q,y,y′,q′) such that its

boundary ∂H(q,y,y′,q′) is of dimension 0 and contains discrete broken or nodal curves.

Proof. Similar to Lemma 3.5.1, since |y| = |y′| = 0 and |q| = |q′|, H(q,y,y′,q′) has virtual

dimension 0 by (2.0.4). By standard transversality arguments and Gromov compactness,

a 1-parameter family of curves in H(q,y,y′,q′) may limit to broken curves by pinching

boundaries of T2 or to nodal curves by letting branch points approach ∂T2.

Similar to the definitions of E in (3.5.1) and F in (3.5.3), we define a partially-defined

evaluation map

G : H(q,y,y′,q′) 99K Hκ(Σ,q)⊗Z[~] Z[[~]], u 7→ c2〈u,?〉 · ~κ−χ(u) · [γ(u)],

where

γ(u)(t) = (πT ∗Σ ◦ u) ◦ (πT2 ◦ u)−1 ◦ τ(t) (3.5.4)

and [γ] = P(γ) defined by (3.5.2); the domain of the definition of G is the set of u for which

γ(u) is an element of UConfκ(Σ \ {?}). Here τ : [0, 1] → ∂3T2 parametrizes the boundary

arc ∂3T2 from p0 to p3. The definition of [πΣ(u)]′ is similar to that in Section 3.5.1. For

a generic u ∈ H(q,y,y′,q′), the boundary of [πΣ(u)]′ is disjoint from ?. Therefore, the

algebraic intersection number 〈u, ?〉 := 〈[πΣ(u)]′, ?〉 is well-defined.

Proposition 3.5.4. The map F in (3.5.3) is a homomorphism of algebras.
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Proof. It suffices to show that

F(µ2(y,y′)) = F(y)F(y′)

for any y,y′ ∈ CW (tiT ∗qiΣ)c. We analyze the boundary of the index 1 moduli space

Hχ
(q,y,y′,q′).

For each u ∈ Hχ(q,y,y′,q′), consider the path γ(u) defined by (3.5.4) as a κ-tuple of

paths in Σ. For a generic point u ∈ Hχ(q,y,y′,q′), γ(u) does not pass through ? and G(u)

is defined but for a generic 1-parameter family ut ∈ Hχ(q,y,y′,q′), t ∈ [0, 1], γ(ut) may

intersect ? at some t. At any rate G(u0) = G(u1), so we may ignore the intersections with ?

in this proof.

Note that codimension-1 degenerations only occur in the A∞ base direction, i.e., the

projection of curves to the A∞ base direction leads to codimension-1 degenerations of Dm.

The schematic picture is shown in Figures 3.5 and 3.6.

There are three types of boundary degenerations:

(1)
∐

y′′,χ′+χ′′−κ=χMind=0,χ′(y,y′,y′′)×Hind=0,χ′′(q,y′′,q′);

(2)
∐

q′′,χ′+χ′′−κ=χHind=0,χ′(q,y,q′′)×Hind=0,χ′′(q′′,y′,q′);

(3) the set ∂nHind=1,χ(q,y,y′,q′) with a nodal degeneration along Σ.

(1) is given on the left-hand side of Figure 3.5 and contributes F(µ2(y, y′)). (2) is given on the

right-hand side of Figure 3.5 and contributes F(y)F(y′′). A standard gluing argument shows

that all contributions to F(µ2(y,y′)) and F(y)F(y′) come from such broken degenerations.

We now discuss (3), which is given in Figure 3.6. Let ut, t ∈ [0, 1), be a generic 1-

parameter family such that πT2 ◦ ut has a branch point (generically a double branch point)

that limits to ∂T2 as t → 1. Moreover, the only component of ∂T2 that a branch point

can approach is ∂3T2 (corresponding to the zero section Σ) since all other boundary arcs

correspond to disjoint sets of Lagrangians where nodal degenerations cannot occur. By

Gromov compactness, ∂nHind=1,χ(q,y,y′,q′) is finite. If we continue this family past the
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Figure 3.5: Degeneration of Hind=1,χ(q,y,y′,q′) in the T2 direction: concatenation of

curves in Mind=0,χ′(y,y′,y′′) and Hind=0,χ′′(q,y′′,q′) (left); concatenation of curves in

Hind=0,χ′(q,y,q′′) and Hind=0,χ′′(q′′,y′,q′) (right).
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Figure 3.6: Nodal degeneration of Hind=1,χ(q,y,y′,q′) in the T2 direction: a nodal point on

Σ (middle); removal of the nodal point (right).
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nodal curve, then the nodal point is removed and χ increases by 1 as seen on the right-hand

side of Figure 3.6. Interpreted in another way, given un ∈ ∂nHind=1,χ(q,y,y′,q′), there exists

a 1-parameter family of curves ut, t ∈ (−δ, δ), in Hind=1,χ+1(q,y,y′,q′) such that u0 = un

and the family γ(ut) corresponds to a crossing of two paths in [0, 1]× Σ. This is illustrated

in Figure 3.7 as a skein relation on [0, 1]× Σ.

On the other hand, suppose there is a 1-parameter family ut, t ∈ (−δ, δ), of curves

in Hind=1,χ+1(q,y,y′,q′) such that γ(ut) exhibits a single crossing of two strands (see the

bottom blue line of Figure 3.7), let un = u0 be the nodal curve as in the middle of Figure

3.6. Suppose the nodal point on the domain of un is pn ∈ Ḟ . Since a neighborhood of un(pn)

in the ambient symplectic manifold T2 × T ∗Σ is diffeomorphic to T ∗R × T ∗R2 ≈ R6, we

can construct a preglued curve ũεn using a cut-off version of the standard hyperbolic node

model of [ES19, Section 4.1.1], where ε ∈ [0, ε0) is the pregluing parameter for some small

ε0 > 0 so that un = ũ0
n. By a standard Newton iteration technique, there exists a unique

1-parameter family of holomorphic curves uεn ∈ H
ind=1,χ

(q,y,y′,q′) for each ε ∈ [0, ε0),

where un = u0
n; see [ES19, Lemma 4.16] for details. Therefore, a small neighborhood of un in

Hind=1,χ
(q,y,y′,q′) is homeomorphic to [0, ε0), which corresponds to the upper arc of Figure

3.7.

Summarizing the above discussion, tχH
ind=1,χ

(q,y,y′,q′) is a uni-trivalent graph with

trivalent vertices such that for each u ∈ ∂nHind=1,χ(q,y,y′,q′), we can pick three nearby

curves u+, u− and un that locally correspond to , and in Figure 3.7, respectively.

Ranging over all u ∈ ∂nHind=1,χ(q,y,y′,q′) and comparing the count of boundary curves
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Figure 3.7: Representing a curve u by its image γ(u) on [0, 1] × Σ. The upper arc denotes

the moduli space with a nodal degeneration. The lower arc denotes the companion moduli

space with χ increased by 1, whose evaluation by G on [0, 1] × Σ exhibits a crossing of two

braid strands.

with different Euler characteristics, we have

F(y)F(y′)−F(µ2(y,y′)) (3.5.5)

= 1 · [
∑

χ(u+)=κ

G(u+)−
∑

χ(u−)=κ

G(u−)]

+ ~ · [
∑

χ(u+)=κ−1

G(u+)−
∑

χ(u−)=κ−1

G(u−)−
∑

χ(un)=κ−1

G(un)]

+ ~2 · [
∑

χ(u+)=κ−2

G(u+)−
∑

χ(u−)=κ−2

G(u−)−
∑

χ(un)=κ−2

G(un)]

+ · · ·

The skein relation in Definition 3.3.4 implies that

G(u+)− G(u−) = ~ · G(un) ∈ Hκ(Σ,q)⊗Z[~] Z[[~]].

So the right-hand side of (3.5.5) is zero. This completes the proof.

To show F is an isomorphism, it suffices to show that F is a bijection. We use a

perturbation argument and start with the case where ~ = 0:
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Lemma 3.5.5. The restriction of F to ~ = 0 is an isomorphism:

F|~=0 : HW (tiT ∗qiΣ)c|~=0 → Hκ(Σ,q)|~=0.

Proof. For simplicity, we write F0 = F|~=0 throughout this proof.

We first prove the lemma for κ = 1. In this case H1(Σ,q)|~=0
∼= Z[π1(Σ, q)c]. Setting

c = 1, π1(Σ, q)c is isomorphic to π1(Σ, q). In each homotopy class of π1(Σ, q), there is

a unique generator y ∈ HW (T ∗q Σ) whose Legendre transform L(y) represents this class.

By [Abo12, Lemma 5.1], F0|c=1(y) = [L(y)]. Hence, F0|c=1 is an isomorphism. Add the

parameter c and view y ∈ HW (T ∗q Σ)c. We have F0(y) = cd[L(y)]c for some integer d, where

[L(y)]c ∈ π1(Σ, q)c is a lift of [L(y)] ∈ π1(Σ, q). Hence F0 is an isomorphism. For later use,

we denote the map F0 for κ = 1 as

F̃c : HW (T ∗q Σ)c → Z[π1(Σ, q)c], (3.5.6)

which is the version of (3.2.8) with the c-parameter.

We now prove the lemma for κ ≥ 1. The µ2-operation of HW (tiT ∗qiΣ)c|~=0 only counts

curves with χ = κ, i.e., where there are κ trivial pseudoholomorphic disks. In this case one

can easily compute that HW (tiT ∗qiΣ)c|~=0 is isomorphic to
(
⊗iHW (T ∗qiΣ)c

)
o Sκ. On the

other hand, Hκ(Σ,q)c|~=0 degenerates to (⊗i Z[π1(Σ, qi)c])oSκ by Lemma 3.3.6. Here, both

tensor products are over Z[c±1].

Since HW (tiT ∗qiΣ)c|~=0 is generated by ⊗iHW (T ∗qiΣ)c and Sκ as an algebra, it suffices

to show that

1. F0|⊗iHW (T ∗qiΣ)c = F̃⊗κc : ⊗i HW (T ∗qiΣ)c → ⊗i Z[π1(Σ, qi)c], where the map F̃c is in

(3.5.6);

2. F0|Sκ = id: Sκ → Sκ.

By Theorem 3.2.4, Remark 3.2.5 and [Abo12, Lemma 5.1], F̃c maps the time-1 Hamilto-

nian flow to the homotopy class of its Legendre transform. The first equation follows since

F0|⊗iHW (T ∗qiΣ)c maps κ time-1 Hamiltonian flows to their Legendre transforms.
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The symmetric group Sκ is generated by transpositions σi = (i, i + 1). Let yi =

{yi1, . . . , yiκ} ∈ HW (tiT ∗qiΣ)c|~=0 be the corresponding generator in the Floer homology,

where yij ∈ CF (φ1
HV

(T ∗qjΣ), T ∗qσi(j)
Σ). Since ~ = 0, the map F0(yi) counts curves with χ = κ.

There is a unique such curve consisting of κ trivial pseudoholomorphic disks. The image

of the boundary of the curve in the zero section of T ∗Σ gives a loop in UConfκ(Σ,q). The

loop consists of two short paths from qi to qi+1 and from qi+1 to qi, and trivial paths from

qj to qj for j 6= i, i + 1. This loop gives a class in Hκ(Σ,q)c|~=0
∼= (⊗i Z[π1(Σ, qi)c]) o Sκ

corresponding to σi ∈ Sκ. Hence, the second equation follows.

Proof of Theorem 1.0.4.

Injectivity of F . Suppose that there exists a 6= 0 such that F(a) = 0. Let a =
∑

i≥0 ~iai,

where ai ∈ CW (tiT ∗qiΣ)c|~=0. Without loss of generality we may assume that a0 6= 0. Setting

~ = 0, we have F(a0) = F(a) = 0. Hence F|~=0(a0) = 0, which means a0 = 0 since F|~=0 is

an isomorphism. This leads to contradiction. Thus F is injective.

Surjectivity of F . It suffices to show that any b ∈ Hκ(Σ,q) is in ImF . Since F|~=0 is an

isomorphism, there exists a0 ∈ CW (tiT ∗qiΣ)c|~=0 such that F(a0) ≡ b (mod ~). Let

b1 =
(b−F(a0))

~

∣∣∣∣
~=0

.

Then there exists a1 ∈ CW (tiT ∗qiΣ)c|~=0 such that F(a1) ≡ b1 (mod ~). Repeating this

procedure, we get F(
∑

i≥0 ai~i) = b. Hence F is surjective.

3.6 Surfaces with punctures

In this section we show that Theorem 1.0.4 still holds for Σ̊, which is obtained from a

closed oriented surface of genus g ≥ 0 by removing a finite number (> 0) of punctures. For

simplicity we assume that c = 1.

In this case, the wrapped Floer homology of the cotangent fibers and the F map of (3.5.3)

can be defined similarly but need modifications near the punctures. The main issue is the
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noncompactness of the moduli space of holomorphic curves: if the wrapped Lagrangians on

T ∗Σ̊ approach the punctures when projected to Σ̊, then a sequence of curves bounded by

those wrapped Lagrangians projected to Σ̊ may also approach the punctures.

To remedy this, we confine the wrapped Lagrangians and all involved holomorphic curves

to stay over a compact subset of Σ̊. Our approach is a simple application of the partially

wrapped Fukaya category by Sylvan [Syl19] and its further development by Ganatra, Pardon

and Shende [GPS18; GPS20]. A similar approach in the context of sutured contact manifolds

is due to Colin, Ghiggini, Honda and Hutchings [CGHH11].

Let g be the standard flat metric on Σ̊ if Σ̊ is homeomorphic to R2 or R×S1. Otherwise let

g be a complete finite-volume hyperbolic metric on Σ̊, i.e., all the punctures of Σ̊ correspond

to cusps.

Suppose Σ is a closed oriented surface and z ∈ Σ. We consider the once punctured surface

Σ̊ = Σ \ {z} (the case of more than one puncture is similar).

Let q = {q1, . . . , qκ} ⊂ Σ̊ be a κ-tuple of points. Pick an end N ≈ (−∞, 1)s×S1
θ near the

puncture of Σ̊ so that {q1, . . . , qκ} ⊂ Σ̊ \N . We have a trivialization of TN by { ∂
∂s
, ∂
∂θ
}. See

Figure 3.8. Let (ps, pθ) be the dual coordinates to (s, θ) so that we have a trivialization of

T ∗N by { ∂
∂ps
, ∂
∂pθ
}. The canonical symplectic form ω on Σ̊ restricts to ω = ds∧dps+dθ∧dpθ

on T ∗N . We fix the trivial almost complex structure JN on T ∗N so that JN ( ∂
∂s

) = ∂
∂ps

and

JN ( ∂
∂θ

) = ∂
∂pθ

. Then there is a (JN , j)-holomorphic map

πs : T ∗N → CRe<1, (s, θ, ps, pθ) 7→ s+ jps,
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where j is the standard complex structure on CRe<1.

Fix a diffeomorphism f : (0, 1)s → (−∞, 1)s such that f ′ > 0, f ′′ ≤ 0, and f(s) = s for

s ≥ 1/2. It induces the diffeomorphism N ∩ {s > 0} ∼→ N , (s, θ) 7→ (f(s), θ). Extending by

the identity, we obtain a diffeomorphism

f̃ : Σ̊0 := Σ̊ \ {s ≤ 0} → Σ̊.

The pullback metric f̃ ∗g on Σ̊0 induces a norm | · |f on T ∗Σ̊0. Choose a time-dependent

Hamiltonian HV,f : [0, 1] × T ∗Σ̊0 → R with |p|f instead of |p| in Equation (3.1.1), where V

has compact support in Σ̊ \N and has small W 1,2-norm; XHV,f and φtHV,f are as before with

respect to HV,f . Note that the wrapped Lagrangians φtHV (tiT ∗qiΣ̊) ⊂ Σ̊0 ⊂ Σ̊ for all t ≥ 0,

and hence cannot cross {s = 0}.

We follow the notation of Section 3.1. Similar to Definition 3.1.1, we define

Definition 3.6.1. The wrapped Heegaard Floer cochain complex of CW (tiT ∗qiΣ̊) is defined

to be CF (φ1
HV

(tiT ∗qiΣ̊),tiT ∗qiΣ̊).

Choose a ω-compatible almost complex structure JT ∗Σ on T ∗Σ so that it coincides with

JN on T ∗N . Let jm be the standard complex structure on Dm. Choose a generic almost

complex structure J0
Dm

on Dm×T ∗Σ which is close to jm×JT ∗Σ. We then apply the rescaling

argument of Section 3.1 on J0
Dm

to get JDm .

Given y1, . . . ,ym ∈ CW (tiT ∗qiΣ̊), let M(y1, . . . ,ym,y0) be the moduli space of maps

u : (Ḟ , j)→ (Dm × T ∗Σ̊, JDm),

where (F, j) is a compact Riemann surface with boundary and u satisfies the conditions

similar to (2.0.1).

It is easy to check that all conclusions in Section 3.1 still hold except for Lemma 3.1.2 and

the A∞-relation. However, we claim that the standard proof of A∞-relation (see [CHT20,

Proposition 4.0.3]) works by showing that
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Lemma 3.6.2. Let d = 0 or 1. Given y1, . . . ,ym ∈ CW (tiT ∗qiΣ̊), Mind=d,χ(y1, . . . ,ym,y0)

is empty for all but finitely many y0. When it is nonempty, Mind=d,χ(y1, . . . ,ym,y0) (and

Mind=d,χ(y1,y0)/R if m = 1) admits a compactification for each Euler characteristic χ.

Proof. We follow [GPS20, Lemma 2.41]. Let π : T ∗Σ̊ → Σ̊ be the projection. For each

u ∈M(y1, . . . ,ym,y0), we show that π ◦ u(Ḟ ) ∩ {s < 0} = ∅.

Consider the holomorphic map

πs ◦ u : u−1(π−1
s (CRe<0))→ CRe<0.

By definition, π ◦ u(∂Ḟ ) ∩ {s ≤ 0} = ∅, hence u−1(π−1
s (CRe<0)) ⊂ F \ ∂F is an open subset

of the interior of F . Therefore, K := (πs ◦ u)(u−1(π−1
s (CRe<0))) is an open subset of CRe<0

by the open mapping theorem.

On the other hand, u−1(π−1
s (CRe≤0)) ⊂ F \ ∂F is a compact subset of the interior of F .

Therefore, the function

Re ◦ πs ◦ u : u−1(π−1
s (CRe≤0))→ R

attains its minimum on u−1(π−1
s (CRe≤0)). Since K is open, this is only possible if K = ∅.

Hence u−1(π−1
s (CRe<0)) = ∅ and then π ◦ u(Ḟ ) ∩ {s < 0} = ∅.

We have shown how to prevent curves from crossing the vertical boundary of T ∗Σ̊0. The

remaining proof is the same as that of Lemma 3.1.2.

Therefore CW (tiT ∗qiΣ̊) is a well-defined ordinary algebra supported in degree 0.

To modify Section 3.2, we consider paths in Σ̊0 instead of Σ. We now use the metric f̃ ∗g.

The Legendre transform Lf,v is with |v|f instead of |v| in (3.2.1), where | · |f is the norm on

T Σ̊0 induced by f̃ ∗g. Given q0, q1 ∈ Σ̊0 \N , the Lagrangian action functional AV,f is defined

as in (3.2.2) with LV replaced by LV,f . By the choice of the metric f̃ ∗g it is easy to see that

1. no V -perturbed geodesics can exit Σ̊0;
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2. the induced negative gradient flow of AV always stays inside a compact region of Σ̊0.

Since f̃ : (Σ̊0, f̃
∗g)→ (Σ̊, g) is an isometry, we have:

Lemma 3.6.3. The Morse homology HM∗(Ω
1,2(Σ̊0, q0, q1)) induced by the metric f̃ ∗g is

well-defined and is isomorphic to HM∗(Ω
1,2(Σ̊, q0, q1)) induced by the metric g.

It is easy to verify that all the definitions and conclusions in Section 3.3 hold for Σ̊0.

Hence the Hecke algebra Hκ(Σ̊0,q) is well-defined.

Next we consider the modification of the map F defined by (3.5.3). We use the notation

from Section 3.5 with the following modifications:

1. HV is replaced by HV,f ;

2. choose a sufficiently generic consistent collection Tm−1 7→ JTm−1 of compatible almost

complex structures on Tm−1×T ∗Σ̊ for Tm−1 ∈ Tm−1 and all m ≥ 2, where JT ∗Σ̊ coincides

with jm × JN on Tm−1 × T ∗N .

All of Section 3.5.1 carries over with the exception of Lemma 3.5.2. Recall that we denote

the set of intersection points between φ1
HV

(tiT ∗qiΣ̊) (resp. tiT ∗qiΣ̊) and Σ̊ by q (resp. q′).

Let y ∈ CF (φ1
HV

(tiT ∗qiΣ̊),tiT ∗qiΣ̊). We show that

Lemma 3.6.4. The moduli space Hχ(q,y,q′) admits a compactification for each Euler char-

acteristic χ.

Proof. This is similar to the proof of Lemma 3.6.2. Let π : T ∗Σ̊→ Σ̊ be the projection. For

each u ∈ Hχ(q,y,q′), consider the holomorphic map

πs ◦ u : u−1(π−1
s (CRe<0))→ CRe<0.

By definition, u(∂Ḟ )∩T ∗N|s<0 is a subset of the zero sectionN|s<0. Since u−1(π−1
s (CRe≤0)) ⊂

F \ ∂F is an compact closed subset of F , its image P := (πs ◦ u)(u−1(π−1
s (CRe≤0))) ⊂ C is

also compact.

43



Note that (πs◦u)(u−1(π−1
s (CRe<0, Im 6=0))) ⊂ C is open by the open mapping theorem. As a

result, ∂P ∩CRe<0, Im 6=0 = ∅, hence P ⊂ CRe=0∪CIm=0. This implies u−1(π−1
s (CRe≤0)) ⊂ ∂F ,

which is only possible if P ⊂ CRe=0. Therefore we conclude that π ◦ u(Ḟ ) ∩ {s < 0} = ∅.

We have shown that curves in Hχ(q,y,q′) cannot cross the vertical boundary of T ∗Σ̊0.

The remaining proof is the same as that of Lemma 3.5.2.

The parallel modification of Lemma 3.5.3 and its proof are similar. Also note that

Proposition 3.5.4 still holds. Therefore

F : CW (tiT ∗qiΣ̊)→ Hκ(Σ̊0,q)|c=1 ⊗Z[~] Z[[~]] ∼= Hκ(Σ̊,q)|c=1 ⊗Z[~] Z[[~]]

is well-defined.

To modify the proof of Theorem 1.0.4, it suffices to modify the proof of Lemma 3.5.5

when κ = 1. Note that ~ = 0 is automatically satisfied in this case.

Lemma 3.6.5. When κ = 1, the map F is an isomorphism:

F : HW (T ∗q Σ̊)→ H1(Σ̊0, q)|c=1
∼= H1(Σ̊, q)|c=1.

Proof. This is essentially Lemma 5.1 of [Abo12], replacing Σ by Σ̊.

Recall that Abbondandolo and Schwarz [AS06, Theorem 3.1] constructed a chain isomor-

phism

Θ: CM∗(Ω
1,2(Σ, q))→ CW (T ∗q Σ)

by a specific moduli spaceM+
Ω of holomorphic curves of index 0 (see [AS06, p.35]). Abouzaid

then showed that F is a homotopy inverse of Θ by constructing another moduli space C of

curves of index 1 (see [Abo12, p.33]).

In the case of Σ̊, we define the moduli spaces M+
Ω and C in a similar manner. Again it

suffices to show that no curves in M+
Ω or C can cross the vertical boundary of T ∗Σ̊0. We

omit the details which are similar to the proofs of Lemma 3.6.2 and Lemma 3.6.4.
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CHAPTER 4

A variant of symplectic Khovanov homology

4.1 Definitions and main results

4.1.1 Higher-dimensional analog of Sympletic Khovanov Homology

Let D̃ = {−2 ≤ Re z, Im z ≤ 2} ⊂ Cz. We consider the standard 2n-dimensional Lefschetz

fibration

p̃ : W̃ → D̃ ⊂ Cz

for a Milnor fiber of the A2k−1 singularity, where the regular fiber is T ∗Sn−1. There are

2κ critical values z̃ = {z1, . . . , z2κ}, where Re zi = Re zi+κ, Im zi = −1 and Im zi+κ = 1,

i = 1, . . . , κ. Let

p : W := p̃−1(D)→ D

be the restriction of p̃ to D = D̃ ∩ {Im z ≤ 0}. For i = 1, . . . , κ, connect zi and zi+κ by

straight arcs γ̃i. Then the matching cycles ã = {ã1, . . . , ãκ} over {γ̃1, . . . , γ̃κ} are Lagrangian

spheres. Let z, ai and γi be “half” of z̃, ãi and γ̃i, that is, their restrictions to W .

Given a κ-strand braid σ ∈ Diff+(D, ∂D, z), let hσ ∈ Symp(W,∂W ) be the monodromy

on W which descends to σ and let h̃σ be the extension of hσ to W̃ by the identity.

In this chapter we always do cohomology. Recall the settings of Chapter 2. The

variant CKh](σ̂) of the symplectic Khovanov cochain complex is defined as the higher-

dimensional Heegaard Floer cochain complex, in the sense of [Lip06] and [CHT20], denoted

by ĈF (W̃ , h̃σ(ã), ã). Specifically, a κ-tuple of intersection points of h̃σ(ã) and ã is a κ-tuple

y = {y1, . . . , yκ} where yi ∈ α̃i ∩ h̃σ(ãβ(i)) and β is some permutation of {1, . . . , κ}. Then
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ĈF (W̃ , h̃σ(ã), ã) is the free F[A][[~, ~−1]-module generated by all such κ-tuples y, where the

coefficient ring is discussed below.

To define the differential, let F be a surface with boundary of Euler characteristic χ and

Ḟ be the surface with boundary punctures. We start with the split almost complex structure

JR×[0,1] × JW̃ on R× [0, 1]× W̃ , and apply a perturbation to achieve transversality, denoted

by J♦.

For y,y′ ∈ ĈF (W̃ , h̃σ(ã), ã), let Mind=1,A,χ
J♦ (y,y′) be the moduli space of u : Ḟ →

R× [0, 1]× W̃ satisfying

1. du ◦ J♦ = J♦ ◦ du,

2. u(∂Ḟ ) ⊂ R× (({1} × ã) ∪ ({0} × h̃σ(ã))),

3. As πR ◦ u tends to +∞ (resp. −∞), πW̃ tends to y (resp. y′), where πR, πW̃ are the

projections of u to R and W̃ .

The differential is then defined as

dy =
∑

y′,χ≤κ,A∈A

#Mind=1,A,χ
J♦ (y,y′)/R · ~κ−χeA · y′. (4.1.1)

We write Kh](σ̂) for the cohomology group ĤF (W̃ , h̃σ(ã), ã).

The coefficient ring F[A][[~, ~−1] (power series in ~ and polynomial in ~−1) keeps track of

the relative homology class and Euler characteristic of the domain, where

A = H2([0, 1]× W̃ , ({1} × ã) ∪ ({0} × h̃σ(ã));Z). (4.1.2)

The following lemmas justify the use of coefficient F[A][[~, ~−1] for n = 2 and F[[~, ~−1]

for n > 3:

Lemma 4.1.1. For fixed y,y′ and χ, #Mind=1,χ
J♦ (y,y′)/R is finite.

Lemma 4.1.2. Suppose W̃ is of dimension 2n. For n = 2, A ' Zr−1, where r is the number

of connected components of σ̂; for n > 2, A ' {0}.
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Proof. Denote X = [0, 1] × W̃ , Y = ({1} × ã) ∪ ({0} × h̃σ(ã))) and i : Y → X for the

inclusion.

If n = 2, H3(X, Y ) and H1(Y ) are trivial. By the long exact sequence for relative singular

homology, H2(X, Y ) ' H2(X)/i∗H2(Y ). Since there are 2κ critical points of p̃ : W̃ → D̃,

H2(X) is generated by 2κ− 1 matching cycles over arcs connecting pairs of critical values in

D̃. H2(Y ) is simply generated by collections ã and h̃σ(ã). Therefore, H2(X, Y ) generated

by 2κ − 1 arcs quotient by collapsing arcs corresponding to ã and h̃σ(ã). The number of

remaining nontrivial arcs is r − 1, where r is the number of connected components of the

braid σ̂.

If n > 2, H2(X) and H1(Y ) are trivial, so H2(X, Y ) ' {0} by the relative homology

sequence.

The following lemma computes the Fredholm index, which is a generalization from [CGH12]

and the proof is omitted:

Lemma 4.1.3. The Fredholm index of u is

ind(u) = (n− 2)(χ− κ) + µ(u), (4.1.3)

where µ(u) is the Maslov index.

The Floer homology group Kh](σ̂) is well-defined and now we state our main result,

which is a higher-dimensional version of Theorem 1.2.1 of [CHT20]:

Theorem 4.1.4. For n = 2 or n > 3, Kh](σ̂) is a link invariant, that is, it is independent of

the choice of arcs {γ̃1, . . . , γ̃κ} and Lagrangian thimbles {ã1, . . . , ãκ}, and is invariant under

Markov stabilizations.

Remark 4.1.5. Kh](σ̂) is a relative graded module over F[A][[~, ~−1]. From (4.1.1) and

Lemma 4.1.3, ~ is of degree 2− n.

Remark 4.1.6. Note that in Theorem 4.1.4, the case of n = 3 is excluded. The reason is

explained by the remark after Lemma 4.2.2 in Section 4.2.
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The computation of Kh](σ̂) for simple links in Section 4.5 gives results highly similar

to Khovanov homology [Kho00][Wil08]. We will not discuss their relation further in this

dissertation. Instead, we leave it as a conjecture:

Conjecture 4.1.7.

Kh],k(σ̂) '
⊕

i−j=kmodn−2

Khi,j(σ). (4.1.4)

Note that Conjecture 4.1.7 implies that we have found nothing new other than the sym-

plectic Khovanov homology [SS06].

4.1.2 Moduli space of gradient trees

If two closed Lagrangian submanifolds L0, L1 of a symplectic manifold (M,ω) are C1-close

to each other, and moreover they are exact Lagrangian isotopic, then by the Lagrangian

neighbourhood theorem, one can view L1 as the graph Γdf ⊂ T ∗L0, where f : L0 → R.

In this case, the count of pseudoholomorphic disks bounding L0, L1 can be reduced to the

count of Morse gradient trajectories on L0, which is much more convenient to compute.

More generally, if we have exact Lagrangian isotopic L0, . . . , Lk−1, where Li = Γdfi ⊂ T ∗L0

for fi : L0 → R, i = 0, . . . , k − 1, then we count gradient trees, to be explained below.

This alternative method of counting appears several times in Section 4.2 and 4.4, so we

make the statement precise here. The main reference is [FO97], which generalizes Floer’s

correspondence between gradient trajectories and pseudoholomorphic strips [Flo88]. There

is also a simpler proof of [FO97] by Iacovino [Iac08], which considers the perturbation of

Floer equations.

Definition 4.1.8. A ribbon tree is a directed tree T which satisfies:

1. T has no degree 2 vertex.

2. For each internal vertex v ∈ T , there is a cyclic order of the edges attached to v, i.e.

we have a labeling bijection `v : Ev → {0, 1, . . . , kv − 1}, where Ev is the set of edges
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Figure 4.1: An embedding of T into D2.

attached to v and kv is the degree of v so that there is a unique outgoing edge and

it is labeled 0. Therefore, there are two labels for each internal edge coming from the

two labeling functions corresponding to the endpoints of the edge and one label for each

external edge.

3. There is a cyclic order of external vertices of T so that the root has label 0, i.e. we

have a bijection ` : Vext → {0, . . . , k − 1} where Vext is the set of external vertices and

the one adjacent to the unique outgoing edge is labeled by 0.

4. We can define an embedding φ : T → D2 so that the above cyclic orders agree with coun-

terclockwise orders, i.e. at each internal vertex v, φ(`−1
v (0)), . . . , φ(`−1

v (kv − 1)) are in

counterclockwise order around φ(v). Also, φ(Vext) ⊂ ∂D2 and φ(`−1(0)), . . . , φ(`−1(0))

are in counterclockwise order on ∂D2. Note that the way we embed T is not important.

In the definition univalent vertices are called external and the others are internal; edges

adjacent to external vertices are called external and the others are internal.

The edges of T will represent gradient flows. Specifically, let (M, g) be a Riemannian

manifold and f0, . . . , fk−1 be C∞-functions on M so that fi− fi+1 is Morse for each i (where

fk = f0). We define the moduli space of gradient treesMg(M ;f ,p) to consist of pairs (T, I)

where T is a ribbon tree and I : T\Vext →M is a continuous function satisfying:
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1. limx→vi I(x) = pi, where pi is a critical point of Morse function fi − fi+1.

2. External edges are identified with (−∞, 0] except the outgoing one which is identified

with [0,∞); each internal edge e is identified with [0, t(e)] where t : Eint → [0,∞) is a

length function defined on internal edges. Now I takes the above intervals to M . For

each edge e of T , I|e is a reparametrization of the gradient flow of −∇g(fl(e) − fr(e)),

where l(e) and r(e) are defined with respect to the direction of e, i.e. if one looks in

the positive direction of e on D2, then l(e) (resp. r(e)) is the component of D2\T on

the left (resp. right) side of e.

Figure 4.1 shows an element T , together with an embedding of T in D2. Note that we

assign each function fi to a corresponding region of D2\T .

Lemma 4.1.9 ([FO97]). Mg(M,f ,p) is of dimension

∑
v

ind(v)− (k − 1)n+ (k − 3), (4.1.5)

where k is the number of boundary vertices and n is the dimension of the manifold.

Next we define the moduli space of pseudoholomorphic disks bounding exact Lagrangian

submanifolds in T ∗M . Let (M, g) be a Riemannian manifold. Let f = (f0, . . . , fk−1) be a

generic collection of functions on M , and let Γ = (Γdf0 , . . . ,Γdfk−1
) be the graphs of their

differentials. We associate each critical point pi of fi−fi+1 with xi = (pi, εdfi(pi)) ∈ εΓdfi+1
∩

εΓdfi where ε > 0 is small.

We then fix a canonical almost complex structure Jg on T ∗M associated to the metric g

on M so that

1. Jg is compatible with the canonical symplectic form ω on T ∗M .

2. Jg maps vertical tangent vectors to horizontal tangent vectors of T ∗M with respect to

g.

50



3. On the zero section of T ∗M , for v ∈ TqM ⊂ T(q,0)(T
∗M), let Jg(v) = g(v, ·) ∈ T ∗qM ⊂

T(q,0)(T
∗M).

Definition 4.1.10. Let MJg(T
∗M ; εΓ,x) consist of pairs (u,D2

z) where D2
z is the domain

D2 with marked points z = (z0, . . . , zk−1) arranged in counterclockwise order on ∂D2 and

u : D2\{z0, . . . , zk−1} → T ∗M satisfies

1. u(zi) = pi,

2. u(∂iD
2) ⊂ εΓdfi,

3. Jg ◦ du = du ◦ Jg,

where ∂iD
2 is the shortest counterclockwise arc between zi and zi+1 on ∂D2. Here we are

identifying pairs (u,D2
z) and (v,D2

z′) which are related by an isomorphism of the domain.

The following theorem relates Morse gradient trees on M to pseudoholomorphic disks on

T ∗M :

Theorem 4.1.11 ([FO97]). For ε > 0 sufficiently small, there is an oriented diffeomorphism

Mg(M ;f ,p) ∼=MJg(T
∗M ; εΓ,x).

Roughly speaking, for each gradient tree ((T, i), I), we can construct a pseudoholomorphic

curve near I(T ) inside T ∗M by some gluing techniques. We should note that the theorem

depends on a specific choice of almost complex structure Jg.

The following example counts pseudoholomorphic triangles with 3 Lagrangian bound-

aries, which we will meet again in Section 4.2.

Example 4.1.12. We give an example of a gradient tree with 3 vertices here. Consider

functions f0, f1, f2 on Sn so that the domain D2 looks like the left side of Figure 4.2. We

can perturb f0, f1, f2 generically so that v1 is a source (top generator) of ∇(f2 − f1), v2 is

a sink (bottom generator) of ∇(f0 − f2) and v0 is a sink (bottom generator) of ∇(f0 − f1).

The middle of Figure 4.2 shows a possible perturbation when n = 1 for illustration. Sources
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Figure 4.2: The gradient tree T viewed inside D2 (left), the perturbation of Lagrangians in

the special case of T ∗S1 (middle) and the image of T on Sn (right). We abuse notation and

label both the domain and image of a vertex by vi since there is no ambiguity.

and sinks are denoted by blue arrows. The right side of Figure 4.2 shows what happens on

Sn: v1 is the unique top generator of f2− f1 on Sn, so the flows from v1 form a Sn−1-family

and pass through all the points of Sn except two critical points. v2 is the bottom generator of

f0 − f2, so the flow from v2 of ∇(f0 − f2) is of length 0. Therefore the flow from v1 should

pass v2 and there is a unique such flow line. Similarly, there is a unique flow line from v2

to v0 of ∇(f0 − f1). To conclude, there is a unique gradient tree. Thus there is a unique

pseudoholomorphic disk bounded by the Lagrangians εΓdf0 , εΓdf1 , εΓdf2 for small ε by Theorem

4.1.11.

4.2 Invariance under arc slides

Given {γ̃1, . . . , γ̃κ} from Section 4.1.1, consider the arc slide of γ̃1 over γ̃2: Let {γ̃′1, . . . , γ̃′κ}

be the new set of arcs as in Figure 4.3. Let ã′ = {ã′1, . . . , ã′κ} be the new tuple of Lagrangians

over {γ̃′1, . . . , γ̃′κ}. For i = 1, . . . , κ, let Θi (resp. Ξi) be the intersection point of ãi and ã′i

that lies over zi (resp. zi+κ). Denote Θ = {Θ1, . . . ,Θκ} and Ξ = {Ξ1, . . . ,Ξκ}.

The purpose of this section is to prove:

Theorem 4.2.1. ĈF (W̃ , h̃σ(ã), ã) and ĈF (W̃ , h̃σ(ã′), ã′) are quasi-isomorphic.

Proof. It suffices to prove that ĈF (W̃ , h̃σ(ã), ã) and ĈF (W̃ , h̃σ(ã), ã′) are quasi-isomorphic.

The quasi-isomorphism between ĈF (W̃ , h̃σ(ã), ã′) and ĈF (W̃ , h̃σ(ã′), ã′) is similar.
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Figure 4.3: Arc sliding of γ̃1 over γ̃2.

We define the cochain map by the µ2 composition map of the A∞-relation:

Φ : ĈF (W̃ , h̃σ(ã), ã)→ ĈF (W̃ , h̃σ(ã), ã′), (4.2.1)

y 7→ µ2(Ξ⊗ y),

where µ2 is the product map

µ2 : ĈF (W̃ , ã, ã′)⊗ ĈF (W̃ , h̃σ(ã), ã)→ ĈF (W̃ , h̃σ(ã), ã′).

Similarly we define the cochain map going back by

Ψ : ĈF (W̃ , h̃σ(ã), ã′)→ ĈF (W̃ , h̃σ(ã), ã), (4.2.2)

y 7→ µ′2(Θ⊗ y).

The following lemma justifies that Φ, Ψ are well-defined:

Lemma 4.2.2. For n = 2 or n > 3, Ξ is a cocycle in ĈF (W̃ , ã, ã′) and Θ is a cocycle in

ĈF (W̃ , ã′, ã).

Proof of Lemma 4.2.2: For simplicity assume κ = 2. By Lemma 4.1.3 and a Maslov index

calculation,

ind(u; Θ,Ξ) = (n− 2)(χ− 2) + 4n− 4, (4.2.3)

ind(u; Θ, {Ξ2,Θ1}) = (n− 2)(χ− 2) + n, (4.2.4)

ind(u; Θ, {Ξ1,Θ2}) = (n− 2)(χ− 2) + 3n− 4, (4.2.5)
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where for example, ind(u; Θ,Ξ) denotes the Fredholm index of curves u : Ḟ → R× [0, 1]×W̃

so that

1. du ◦ J♦ = J♦ ◦ du,

2. u(∂Ḟ ) ⊂ R× (({1} × ã) ∪ ({0} × ã′)),

3. As πR ◦ u tends to +∞ (resp. −∞), πW̃ tends to Θ (resp. Ξ), where πR and πW̃ are

the projections of u to R and W̃ .

We explain (4.2.3)-(4.2.5) now. First, the Maslov index of a closed path over γ̃′2 and γ̃2

is n by definition, which implies (4.2.4). To get (4.2.5), observe that the projection to D̃

of the curve from Θ1 to Ξ1 is over the region surrounded by γ̃′1 and γ̃1, which contains two

critical values of the Lefschetz fibration. The region surrounded by γ̃′1 and γ̃1 can be viewed

as the outcome after applying Lagrangian surgery twice on a trivial strip to incorporate

the two critical values. By Theorem 55.5 of [FOOO09], each Lagrangian surgery increases

the Fredholm index by n − 2. Therefore, ind(u; Θ, {Ξ1,Θ2}) = (n − 2)(χ − 2) + 3n − 4 by

comparing with (4.2.4). Finally, (4.2.3) follows by adding the Maslov index terms of (4.2.4)

and (4.2.5).

For n = 2, the Fredholm index does not depend on χ:

ind(u; Θ,Ξ) = 4, ind(u; Θ, {Ξ2,Θ1}) = ind(u; Θ, {Ξ1,Θ2}) = 2.

For n > 3, observe that in all 3 cases the domain F has 2 punctures and thus χ is even.

In particular, ind(u; Θ,Ξ) is even and ind(u; Θ,Ξ) 6= 1; If ind(u; Θ, {Ξ1,Θ2}) = 1, then

χ = 2− n−1
n−2

, which is not a integer for n > 3; If ind(u; Θ, {Ξ2,Θ1}) = 1, then χ = −1− 1
n−2

,

which is also not a integer for n > 3.

Therefore, for n = 2 or n > 3, there is no index 1 curve from Θ, i.e. Θ is a cocycle in

ĈF (W̃ , ã′, ã). The case of Ξ is similar.
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Figure 4.4: Two possible degenerations.

Remark 4.2.3. Lemma 4.2.2 does not deal with the case of n = 3, where the index could

be 1 for some χ. Therefore, to show Θ is a cocycle, we still need to understand the index 1

pseudoholomorphic curves from Θ2 to Ξ2, whose projection to D̃ is the thin strip surrounded

by γ̃′2 and γ̃2, and also the curves from Θ1 to Ξ1, whose projection to D̃ is the fat strip

surrounded by γ̃′1 and γ̃1.

It remains to show that Ψ ◦ Φ induces identity on cohomology (with some nonzero co-

efficient). The composition of Ψ and Φ is given by the left-hand side of Figure 4.4, which

is viewed as a degeneration of a family of curves. The right-hand side of Figure 4.4 shows

another degeneration. Observe that the right-hand part of the right degeneration is of index

0. In fact the right degeneration corresponds to the identity map times the count of its

left-hand part, which is chain homotopic to Ψ ◦ Φ.

Now we count the left-hand part of the right degeneration of Figure 4.4. For convenience,

assume κ = 2, i.e. focus on the arc sliding of γ̃1 over γ̃2. The moduli spaceMJ(Ξ,Θ) contains

curves u with boundary condition which maps ∂Ḟ to (R×{1}× ã′)∪ (R×{0}× ã). There is

another restriction on the right degeneration: u passes through (0, 0, w1) and (0, 0, w2), where

(0, 0) ∈ R× [0, 1] and wi ∈ ãi. Passing through a generic w = {w1, w2} is a codimension 2n

condition. By Lemma 4.1.3, ind(Ξ,Θ) = 2n if and only if n = 2 or χ = 0 for n > 3.

By Theorem 4.2.5 below, the count of Mχ=0
J (Ξ,Θ) passing a generic w is 1 (mod 2).

Thus Ψ◦Φ is cochain homotopic to identity with some nonzero coefficient. The case of Φ◦Ψ

is similar. �
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Figure 4.5: Half of the base. We count pseudoholomorphic disks surrounded by γ1, γ2, γ
′
1, γ
′
2.

4.2.1 Half of curve count

There is a half version of the counting problem, where the base is shown as Figure 4.5. The

base D can be extended to C by adding cylindrical ends, denoted by D̄. Let āi and ā′j be

the cylindrical completion of ai and a′j. The asymptotic Reeb chords from āi to ā′j form

a Sn−1-family. We then perturb the contact form so that the Sn−1-family becomes Morse-

Bott and let čij, ĉij be the longer and shorter asymptotic Reeb chords. Let c = {č12, č21}.

The problem is to countMχ=1,w
J♦ (c,Θ), which is over the cylindrical extension of the region

surrounded by γ1, γ2, γ
′
1, γ
′
2.

Theorem 4.2.4. #Mχ=1,w
J♦ (c,Θ) = 1 mod 2 for generic w.

Proof. For u ∈Mχ=1,w
J♦ (c,Θ), let v = πW̄ ◦u : Ḟ → W̄ , where W̄ is the cylindrical extension

of W and F is the unit disk in C.

Recall that p : W̄ → D̄ is the projection. p ◦ v : Ḟ → D̄ has degree 2 (resp. 1) over

region A (resp. B) of Figure 4.5, which are connected components of D − γ1 ∪ γ′1 ∪ γ2 ∪ γ′2
with extension. There are two possible branching behaviors: Type int has a branch point b

that maps to the interior of region A; Type ∂ is more obscure which has two switch points

b1, b2 on the boundary of region A instead of a branch point. Denote Type ∂1 for the case

b1, b2 on γ′2 and Type ∂2 for b1, b2 on γ2. Choose b1 as the point closer to the puncture c12

(resp. c21) on ∂Ḟ that maps to γ′2 (resp. γ2).

There is another codimension-1 constraint. Denote the preimage of ∗ under u as q(∗),
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and we will often leave this notation out if there is no ambiguity. A possible arrangement

of points on ∂Ḟ is shown as Figure 4.6. Since the projection of u to R × [0, 1] is a double

branched cover and under this projection, {q(w1), q(w2)}, {q(Θ1), q(Θ2)}, {q(č12), q(č21)} are

mapped to (0, 0),−∞,+∞ respectively, the deck transformation requires the involution:

q(Θ1) 7→ q(Θ2), q(č21) 7→ q(č12), q(w2) 7→ q(w1). (4.2.6)

The counting strategy uses the fact that the mod 2 count #Mχ=1,w
J♦ (c,Θ) does not

depend on w, which allows us to stretch the curve by letting w tend to some limit:

1. Let |p(w2)| � 0;

2. Let the width between γ2, γ
′
2,m→ 0;

3. Choose w1 so that p(w1)→ z1.

Step 1. Denote ι = Im ◦ p. We first observe that as p(w1) → z1, either ι ◦ v(b) � ι(w2) or

ι ◦ v(b2) � ι(w2). If this is not true, then by Gromov compactness there exists a limiting

curve which contradicts the involution condition 4.2.6. Refer to [CHT20] for details.

Step 2. WriteMχ=1,w,]
J♦ (c,Θ) for the curves satisfying ι◦v(b)� ι(w2) or ι◦v(b1) ≥ ι(w2)−C.

The case of ι ◦ v(b) � ι(w2) is shown as the left of Figure 4.7, where the limiting 2-level

curve contains v(1) ∪ v(2) ∪ v(3). The case of ι ◦ v(b1) ≥ ι(w2)−C is similar. We push off the

bottom singular point a little so that a1 and a′1 have clean Sn−1-intersection, which does not

change the moduli space of v(1) by [FOOO09].
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č22

2

b1

w1
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Figure 4.7

The region of p ◦ v(1) contains a singular point of a Lefschetz fibration, which can be

viewed as the outcome after a Lagrangian surgery from the trivial region without singular

points. By Theorem 55.5 of [FOOO09], the moduli space of v(1) is diffeomorphic to Sn−2.

Therefore the evaluation map of v(1) at č11 sweeps Sn−2 inside the Sn−1-family of Reeb

chords, of which the homology class vanishes. The result is #Mχ=1,w,]
J♦ (c,Θ) = 0 mod 2.

Step 3. The remaining case is the curve satisfying ι◦v(b2)� ι(w2) and ι◦v(b1) ≤ ι(w2)−C.

The stretched limiting curves are shown as the middle and the right of Figure 4.7. We expect

that such curves exist and contribute 1 (mod 2) to Mχ=1,w
J♦ (c,Θ).

First we treat Type ∂1. v(2) is uniquely determined since there is a unique gradient

trajectory from č22 to Θ2 passing through w2. Denote the bottom-left Reeb chord of v(3)

by d̂21. We show that the pseudoholomorphic triangle v(3) exists uniquely: The Lefschetz

fibration around v(3) is the trivial one p : C×T ∗Sn−1 → C. We can perturb the Lagrangians

a1, a
′
1, a2, a

′
2 in the fiber direction. The case of n = 2 is shown as Figure 4.8, where there

exists a single pseudoholomorphic triangle.

More generally, the case of n ≥ 2 is done by the gradient tree argument. Put the

perturbed Lagrangians as Figure 4.8 on T ∗S1 ⊂ T ∗Sn−1 and extend to T ∗Sn−1. After a

further small perturbation, we consider the moduli space of Morse gradient trees with 3
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č22

d̂21

Figure 4.8: The fiber T ∗S1 with perturbed Lagrangians. The sides are identified.

vertices č22, č21, d̂21. Viewing all vertices as sources of gradient flow, we check that ind(č22) =

0, ind(č21) = ind(d̂21) = n− 1.

By Lemma 4.1.9, the dimension of this moduli space is 0 and it contains a unique gradient

tree which corresponds to a single pseudoholomorphic triangle by Theorem 4.1.11. Note that

this is almost the same as the example after Theorem 4.1.11.

It remains to count v(1), which is a pseudoholomorphic disk with a slit and a singular point

inside. The singular point can be viewed as coming from a Lagrangian surgery [FOOO09],

which increases the Fredholm index by n− 2. Now the moduli space of v(1) passing through

a generic w1 is of dimension n − 1. Consider the evaluation map ev21 of v(1) on its top-left

end, where the image lies in a Sn−1-family of Reeb chords. The gluing condition on both

ends says ev21 should take the value of d̂21. All we need is that ev21 intersects d̂21 at a unique

point. We will show in Type ∂1, ev21 sweeps half of Sn−1 and the other half is dealt with by

Type ∂2. This is done by a model calculation of explicit pseudoholomorphic curves in Step

3’ below.

Step 3’. A model calculation. All notations are limited to this step.

We replace the base of v(1) in Type ∂1 by a standard one, i.e. the unit disk in Cz with a

slit {−1 ≤ Re z ≤ 0} ∩ {Im z = 0}. The Lefschetz fibration over the unit disk is

p : (z1, z2, . . . , zn) 7→ z2
1 + z2

2 + · · ·+ z2
n, (4.2.7)
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with a critical value at 0 ∈ Cz. It is however more convenient to think of the case n = 2

first, and the Lefschetz fibration is

p′ : (z′1, z
′
2) 7→ z′1z

′
2, (4.2.8)

where z′1 = z1 + iz2, z
′
2 = z1 − iz2. Let T be the Clifford torus {|z′1| = 1} × {|z′2| = 1} over

|z| = 1 and let L be the Lagrangian thimble over {−1 ≤ Re z ≤ 0} ∩ {Im z = 0}. T ∩ L is a

clean S1-intersection over −1 ∈ Cz.

We consider curves with boundary on T ∪ L: letM2 (2 stands for n = 2) be the moduli

space of holomorphic disks

u = (u1, u2) : R× [0, 1]→ C2

with standard complex structure Jstd satisfying

1. u(R× {0}) ⊂ T and u(R× {1}) ⊂ L;

2. p ◦ u has degree 1 over {|z| < 1} − {−1 ≤ Re z ≤ 0} ∩ {Im z = 0} and degree 0

otherwise;

3. u(0, 0) = w1 = (w11, w12) = (1, 1).

Condition 3 is essentially the same as that v(1) passes through w1 in Step 3. It is not

hard to see that M2 is homeomorphic to a line segment where ∂M2 consists of two curves

z 7→ (z, 1) and z 7→ (1, z). Figure 4.9 gives a schematic description of M2, from the top

row of z 7→ (z, 1) to the bottom row of z 7→ (1, z), where the right-hand column changes the

coordinates to (z1, z2).

We then consider the evaluation map. The top-left end of v(1) in Type ∂1 is translated

to ei(π+ε) ∈ Cz for small ε > 0. Define ev′1 : M2 → S1
|z′1|=1 as the z′1 projection of the

intersection between u and p′−1(ei(π+ε)), which is shown by red dots in the z′1 column of

Figure 4.9. Clearly ev′1 is a homeomorphism between M2 and {eiθ1|π + ε < θ1 < 2π}.
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1
z
′
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Figure 4.9: The pictorial description of M2. The left column describes the base Cz. The

middle and right column are for two sets of coordinates. Dashed curves denote the unit

circle. The red dots indicate ei(π+ε) on the left and for their preimages on the middle and

right. The arrows indicate images of the arrow from (0, 1) to (0, 0) on the domain R× [0, 1].

Note that the drawings are not necessarily accurate.

61



z1 z2 zn

Figure 4.10: u1/
√
n−1,...,1/

√
n−1 of the first row in Figure 4.9.

For general n ≥ 2, define Mn similar to M2, where T, L in condition 1 are still the La-

grangian vanishing cycles over the unit circle and {−1 ≤ Re z ≤ 0} ∩ {Im z = 0}. Condition

3 is modified to

3’. u(0, 0) = w1 = (w11, w12, . . . , w1n) = (1, 0, . . . , 0).

M2 in coordinate (z1, z2) is viewed as the slice of Mn that restricts to 0 on z3, . . . , zn.

Observe that forMn, the coordinates z2, z3, . . . , zn are symmetric. Thus we can recoverMn

from M2 by a symmetric rotation of z2-coordinate. Each u = (z1, z2) ∈ M2 corresponds to

a Sn−2-family of curves in Mn:

uλ1,...,λn−1 = (z1, λ1z2, . . . , λn−1z2), (4.2.9)

where λ2
1 + · · ·+λ2

n−1 = 1 and λi ∈ R for i = 1, . . . , n−1. Figure 4.10 shows u1/
√
n−1,...,1/

√
n−1

recovered from the first row of Figure 4.9.

The new evaluation map ev is defined as the n-tuple of coordinates which projects to

ei(π+ε) ∈ Cz. Therefore,Mn is homeomorphic to Dn−1. One can check that ev :Mn → Sn−1

is a homeomorphism to its image, which is half of the vanishing cycle Sn−1 over ei(π+ε).

In case Jstd is not regular, we apply small perturbation J♦ of Jstd. One can show that

for any z ∈ evJstd(Mn), #ev−1
J♦ (z) = 1 mod 2. Therefore the argument of Step 3 still works.

This finishes Step 3’.

Finally we glue v(1), v(2) and v(3). Still assume we are in Type ∂1. The involution condition

(4.2.6) will fix the neck length: As we take ι ◦ v(b2) → ∞, q(Θ2) approaches q(č21) but
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Θ2

γ̃
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γ̃2

γ̃1

γ̃
′

1

Ξ2

Ξ1Θ1 w1

w2

Figure 4.11: The stretched base as K � 0. Im z is the horizontal direction.

|q(w2) − q(Θ2)| � |q(w2) − q(č21)|. Assume w1 is close to Θ1, there is a unique value of

ι ◦ v(b2) for which there exists an involution of F . This completes the proof of Theorem

4.2.4.

4.2.2 Curve count

The goal of this section is to count the full version of pseudoholomorphic annuli from Ξ1,Ξ2

to Θ1,Θ2 over the region in Figure 4.3 and prove the following theorem:

Theorem 4.2.5. #Mχ=0,w
J♦ (Ξ,Θ) = 1 mod 2 for generic w.

Proof. The strategy is the same as the proof of Theorem 4.2.4: We stretch the curve into

several levels by choosing some extreme w, then use the restriction of domain involution and

gluing conditions to find a unique (mod 2) curve.

We closely follow the proof of Theorem 9.3.7 of [CHT20] and some details are omitted.

As before, we write u : Ḟ → R× [0, 1]× W̃ for an element inMχ=0,w
J♦ (Ξ,Θ) and let v be its

projection to W̃ .

The main idea is to stretch the base D̃ in Im z direction as Figure 4.11: Let Im zi = −2K

and Im zi+κ = 2K, i = 1, . . . , κ and K → +∞. The region R bounded by γ1, γ
′
1 is split into

3 parts: R1 = R∩ {Im z ≤ −K}, R2 = R∩ {−K ≤ Im z ≤ K} and R3 = R∩ {Im z ≥ K}.

The mod 2 count is independent of w. We choose w̃1 close to z1, w̃2 close to Im z = 0 and

the thin strip R′ between γ2, γ
′
2 with width m→ 0.

The curve v has degree 2 over R′ and degree 1 over R − R′. The types of branching

behaviors are denoted by 2, 1L, 1R, 0LL, 0LR, 0RR. Take 0LR for example: 0 means
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Θ2

i → ∞

v
(i)

v∞

δ+

δ−

Figure 4.12: The limiting proceduce of Type 0LR.

the number of interior branch points is 0; L means one pair of switch points is over γ̃′2;

R means one pair of switch points is over γ̃2. Denote (if exist) interior branch points by

b, b′ ∈ int(Ḟ ) and switch points by b1, b2, b3, b4 ∈ ∂Ḟ . We assume ι(b′) > ι(b), ι(b2) > ι(b1)

and ι(b4) > ι(b3).

Step 1. Suppose K � 0. Take a sequence of u(i) ∈ Mχ=0,w
J♦ (Ξ,Θ) so that v(i) : F (i) → W̃

with m(i) → 0. In the limit i → ∞, the thin strip tends to a slit, the limiting curve splits

into v∞ ∪ δ+ ∪ δ−, where δ+ is a gradient trajectory from Ξ2 and δ− is a gradient trajectory

to Θ2, and v∞ is a pseudoholomorphic annulus. Figure 4.12 describes the limiting proce-

dure in the case of Type 0LR. In fact we will show that Type 0LR is the only nontrivial case.
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Step 2. We claim that the limiting slit is long enough, that is, for K � 0 and m→ 0,

max{ι(b′), ι(b2), ι(b4)} ≥ K, (4.2.10)

min{ι(b), ι(b1), ι(b3)} ≤ −K. (4.2.11)

which are the two endpoints of the slit.

If (4.2.11) is not true, i.e. min{ι(b), ι(b1), ι(b3)} > −K, then the part of v∞ in region

R1 has no slit, which can be viewed as the outcome of a Lagrangian surgery on a trivial

pseudoholomorphic disk. Similar to Step 2 in the proof of Theorem 4.2.4, the moduli space

of pseudoholomorphic disks passing through a generic w1 is diffeomorphic to Sn−2, of which

the evaluation map at the cylindrical end has a Sn−2-intersection with the Sn−1-family of

Reeb chords. The evaluation map vanishes at homology level, which contributes 0 (mod 2)

to the curve count. The argument for (4.2.10) is similar.

Step 3. We claim that for K � 0 and m small, if (4.2.10) and (4.2.11) hold, the mod 2

contribution of Type 2, 1L, 0LL, 0RR is 0. The reason is that if one considers the involution

condition

q(Θ1) 7→ q(Θ2), q(Ξ1) 7→ q(Ξ2), q(w1) 7→ q(w2) (4.2.12)

for a pseudoholomorphic annulus, there is a constraint on the position of Θ2,Ξ2, w2 on the

slit in v∞. One can refer to [CHT20] for detailed discussion that all but Type 0LR contradict

with (4.2.12)

Step 4. It remains to consider Type 0LR. Assuming (4.2.10) and (4.2.11) are satisfied, we

claim that the contribution of Type 0LR is 1 (mod 2).

Although there are other possible arrangements of b1, b2, b3, b4 on the slit, we just consider

the case in Figure 4.12 for illustration. As shown in Figure 4.13, v∞ is the gluing of two

regions: vl,∞ with Im z � −K and vr,∞ with Im z � −K, which can be viewed as two

pseudoholomorphic disks similar to Step 3’ of the previous section. The conditions that w1
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Figure 4.13: v∞ with a long slit. R1 on the left and R2 ∪R3 on the right.

is close to Θ1 and that w2 sits on the slit will be translated to an explicit model calculation

in Step 4’ below. For suitable choices of w1 and w2, we will show that the space of two disks

with c21 = c∗21, c12 = c∗12 is homeomorphic to a line segment I. Let MI be the set of v∞

glued from the I-family of (vl,∞, vr,∞).

The involution condition (4.2.12) determines a unique curve inside MI . In conclusion,

#Mχ=0,w
J♦ (Ξ,Θ) = 1 mod 2. We have proved Theorem 4.2.5 modulo the model calculation

below:

Step 4’. A model calculation. We use similar notations as in Step 3’ of the previous

section. Define Ml for the space of vl over the left-hand of Figure 4.13 and Mr for those

of vr over the right-hand side. Both are viewed as maps from R× [0, 1] to Cn over the unit

circle with one slit ⊂ {−1 ≤ Re z ≤ 0} ∩ {Im z = 0} ⊂ Cz. Consider evaluation maps

evl, evr :Ml,Mr → Sn−1 × Sn−1, (4.2.13)

which are defined below, corresponding to c12, c21, c
∗
12, c

∗
21 in Figure 4.13. The gluing condition

is evl(vl) = evr(vr).

As usual, we first consider the case of n = 2 with Lefschetz fibration (4.2.8).

Ml is defined as holomorphic disks passing through w1 = (1, 1) over 1 ∈ Cz. Note that

Ml is the same as M in Step 3’ of the previous section. Let w± = ei(π±ε) ∈ Cz. Define the

evaluation map evl as

evl :Ml → S1 × S1, (4.2.14)

vl 7→ (evl+(vl), evl−(vl)),
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1
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z1 z2

Figure 4.14: The pictorial description of Ml. The left column describes the base Cz. The

middle and right columns are for two sets of coordinates. The red and violet dots indicate

ei(π±ε) on the left and their preimages on the middle and right.

where evl±(vl) is the z′1-coordinate of the point that projects to w±. Figure 4.14 gives a

schematic description of Ml, homeomorphic to a line segment, and its evaluation maps

evl± denoted by red and violet dots. We also show the maps in coordinates (z1, z2) with

z′1 = zi + iz2, z
′
2 = zi − iz2.

Since w1 = (1, 0) in coordinate (z1, z2), define w1 = (1, 0, 0, . . . , 0) for n ≥ 2. Then Ml,2,

the moduli space for n = 2, is viewed as the slice of Ml,n that restricts to 0 on z3, . . . , zn.

Now Ml,n is a symmetric rotation of Ml,2 which contains v′ = (z1, λ1z2, λ2z3, . . . , λn−1zn),

where λ2
1 + · · ·+ λ2

n−1 = 1, λ1, . . . , λn−1 ∈ R. Thus Ml,2 is homeomorphic to Dn−1.

Next we consider Mr of v′′ : R × [0, 1] → Cn. We put the constraint that v′′ passes
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through (−r, r) ∈ L for some r ∈ [0, 1], which corresponds to w2 sitting on the slit in Figure

4.13. Let evr±(v′′) be the z′1-coordinate of the point that projects to w± and define the map

evr :Mr → S1 × S1, (4.2.15)

vr 7→ (evr−(vr), evr+(vr)),

where + and − are switched because we want to identify w± of v′ with w∓ of v′′.

Observe thatMr,2 is of dimension 2. Figure 4.15 describes some of the curves insideMr,2.

(−r, r) in (z′1, z
′
2) equals (0, ir) in (z1, z2). Thus for n ≥ 2, if Mr,2 is viewed as the slice of

Mr,n with z3 = · · · = zn = 0, then Mr,n contains curves of vr = (λ1z1, z2, λ2z1, . . . , λn−1z1),

where λ2
1 + · · ·+ λ2

n−1 = 1, λ1, . . . , λn−1 ∈ R.

For n = 2, we have the following observation:

Claim 4.2.6. For n = 2 and ε → 0, the evaluation map of Ml and Mr with images in

S1 × S1 is described in Figure 4.16. evl(Ml) is the blue line segment and evr(Mr) is the

2-dimensional pink region. Their intersection is a line segment I.

For general n ≥ 2, we have the same result:

Lemma 4.2.7. For n ≥ 2 and ε→ 0, the intersection between evl(Ml) and evr(Mr) is still

I.

Proof of Lemma 4.2.7. Suppose vl,λ = (zl1, λ1zl2, . . . , λn−1zl2) and vr,λ′ = (λ′1zr1,

zr2, λ
′
2zr1, . . . , λ

′
n−1zr1) satisfy evl(vl,λ) = evr(vr,λ′) where the 3rd to n-th coordinates are

not all zero. Denote

evl±(vl,λ) =(zl1±, λ1zl2±, . . . , λn−1zl2±),

evr∓(vr,λ′) =(λ′1zr1∓, zr2∓, λ
′
2zr1∓, . . . , λ

′
n−1zr1∓).

Observe that Imλ1zl2+ = Imλ1zl2− and then zr2− = zr2+. From c and d in Figure 4.15 we

see that evr((zr1, zr2)) (in coordinate (z′1, z
′
2)) must lie in {θ1 + θ2 = 2π} ∩ {π ≤ θ1 ≤ 3π/2}

of Figure 4.16. For such curves v (as (a, b, e) in Figure 4.15), Im zr1− = −Im zr1+ and
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Figure 4.15: The pictorial description of part ofMr. The notations are as before, while the

red and violet dots indicate ei(π∓ε) on the left and their preimages on the middle and right.
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Figure 4.16: The description of evl (blue) and evr (pink) for n = 2. The sides are identified.

a-g correspond to curves in Figure 4.15.

Re zr1− = Re zr1+. Since Re zl2+ = −Re zl2− and Im zl2+ = Im zl2−, the consequence is that

λ2zl2± = · · · = λn−1zl2± = 0, which is a contradiction.

Now we go back to the curve count problem. We want to pick a single curve from the

I-family of v∞ and then glue it to get a unique v(i) for each i.

First we show the position of b∞2 determines v∞ uniquely in I: Consider the slit in v∞

of Figure 4.12. In the limit q(w1) = q(Θ1), so q(w2) = q(Θ2) = q(b∞2 ). If we fix b∞2 , then

v′′∞ passes through (−r, r) for some r ∈ [0, 1], corresponding to fixing a hypersurface in

Sn−1×Sn−1, whose intersection with S1×S1 is the dotted curve in Figure 4.16. The dotted

curve intersects the blue line at a single point, which determines v∞. Moreover, the length

of the slit in v′∞ and v′′∞ are determined and thus b∞1 and b∞4 are fixed. Finally b∞3 is fixed

by the involution of F∞.

Consider then v(i) for large i. From the previous paragraph ι(b
(i)
2 ) will fix a unique v∞

in I. By Implicit Function Theorem, it will fix a unique v(i) as well, which is close to v∞.

Then observe that the distance between q(Θ2) and q(w2) is a monotone function of ι(b
(i)
2 ):

As ι(b
(i)
2 ) increases, the slit gets longer, b

(i)
1 moves left and b

(i)
4 moves right. Therefore q(w2)

leaves q(Θ2) and approaches q(Ξ2) on F (i). The involution of F (i) determines a unique ι(b
(i)
2 )

and thus a unique v(i).
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Figure 4.17: The base C on the left and the fiber T ∗Sn−1 on the right.

This finishes the proof of Theorem 4.2.5.

4.3 A model calculation of quadrilaterals

We make a model calculation which will be used in Section 4.4 and 4.5. Consider the trivial

fibration p̂ : C × T ∗Sn−1 → C and Lagrangian submanifolds ai = {y = i} × Sn−1, i = 1, 2,

bj = {x = j} × Sn−1, j = 1, 2, where Sn−1 is the zero section of T ∗Sn−1. We further modify

ai, bj to a′i, b
′
j by a Hamiltonian perturbation in the fiber direction so that they intersect

transversely. Specifically, we choose the restriction of Euclidean metric on Sn−1 and identify

T ∗Sn−1 with TSn−1. Choose Morse functions f1, f2, f3, f4 on Sn−1 each with 2 critical points

and all of the critical points are disjoint (as the right of Figure 4.17). We can then rescale

these Morse functions so that the difference of each pair is still Morse with 2 critical points:

Lemma 4.3.1. For small enough ε > 0, the difference between each pair of functions in

{ε3f1, ε
2f2, εf3, f4} is Morse with 2 critical points.

Proof. For small enough ε > 0, f4− εf3 is a small perturbation of f4. Since Morse condition

is C∞-stable, f4 − εf3 is still Morse with 2 critical points. By a simple induction the proof

is finished.
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{x†12, x
†
21} {x†11, x

†
22}

0

n− 1

2n− 22n− 2

n− 1

0

Figure 4.18: The differentials of ĈF (b,a). The generators in the top row have 2 checks,

those in the middle row have 1 check and those in the bottom row have no check.

Denote fa′1 = ε3f1, fa′2 = ε2f2, fb′1 = εf3, fb′2 = f4, the gradients of which correspond to the

fiber projection of a′1, a
′
2, b
′
1, b
′
2. Let x̌ij, x̂ij over xij be the top and bottom critical points of

fb′j − fa′i , i, j ∈ {1, 2}.

Now we compute the differentials of ĈF (b′,a′), which is generated by 8 elements {x†12, x
†
21}

and {x†11, x
†
22}, where † denotes a check or hat.

Lemma 4.3.2. The differential of ĈF (b′,a′) is given by ~ times the arrows in Figure 4.18.

Moreover, a relative grading by Maslov index is denoted in Figure 4.18.

Proof. Let u : Ḟ → R × [0, 1] × (C × T ∗Sn−1) be a pseudoholomorphic disk with positive

ends {x†12, x
†
21} and negative ends {x†11, x

†
22}. Suppose the complex structure is split, then

its projection to C is a degree 1 map over [1, 2] × [1, 2], which fixes the cross ratio of the 4

punctures on ∂Ḟ .

Then we consider the projection of u to the fiber direction T ∗Sn−1, denoted by w : Ḟ →

T ∗Sn−1. By the construction above a′1, a
′
2, b
′
1, b
′
2 are graphical near Sn−1 ⊂ T ∗Sn−1, with

respect to Morse functions fa′i , fb′j , i, j = 1, 2. The domain of the Morse moduli space is

shown in Figure 4.19, where inner edges are ignored and arrows denote the direction of

−∇(fright − fleft).

Viewing all boundary vertices as sources of gradient flow, observe that x̌ij is of Morse

index n − 1 if i 6= j and 0 if i = j; x̂ij is of Morse index 0 if i 6= j and n − 1 if i = j. By
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Figure 4.20: Two possible gradient trees on Sn−1. The moduli space is parametrized by the

length of the inner (blue) edge.

Lemma 4.1.9,

ind(w) =
(

#checks in {x†12, x
†
21}+ #hats in {x†11, x

†
22} − 3

)
(n− 1) + 1. (4.3.1)

Therefore, the Morse moduli space with respect to the arrows in Figure 4.18 is of ind(w) = 1

and the case of gradient tree on Sn−1 from {x̌12, x̌21} to {x̂11, x̌22} is shown in Figure 4.20.

By Theorem 4.1.11, the Fukaya moduli space is diffeomorphic to the Morse moduli space,

so we can think of gradient trees instead of pseudoholomorphic disks. Taking the base

direction into consideration, we check that

ind(u) = ind(w). (4.3.2)

For example, still consider the case of Figure 4.20: The two gradient trees are parametrized

by the length of their inner edges. As the inner length tends to zero, the left and right
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gradient trees tend to the same one. As the inner edge of the left one tends to the bottom

generator of fb′2 − fb′1 , its length tends to infinity and q(x̌21) approaches q(x̌22). Similarly,

as the inner edge of the right one tends to the top generator of fa′2 − fa′1 , its length tends

to infinity and q(x̌12) approaches q(x̂22). Since the cross ratio on the domain is fixed by the

base direction, the result is that the algebraic count of w is one. This verifies ind(u) = 1

and the arrows in Figure 4.18.

If we set {x̌12, x̌21} to be of grading 0, we can verify the relative grading of generators in

Figure 4.18 by Lemma 4.1.3, (4.3.1), (4.3.2) and the convention that |~| = 2− n, where the

difference of grading is given by Maslov index.

4.4 Invariance under Markov stabilization

A Markov stabilization is given as Figure 4.21: σ is a κ-strand braid which intersects D

along z = {z1, . . . , zk}. On the base D, σ is viewed as an element of Diff+(D, ∂D, z), which

restricts to identity near γ0. Without loss of generality, we construct a positive Markov

stabilization between γ0 and γ1: Let c be an arc from z0 to z1 which is disjoint from other

γj, perform a positive half twist along c, then we get a (κ+ 1)-strand braid given by σ ◦ σc.

Now we consider the fiber and Lagrangians. Let p′ : W ′ → D be the standard Lefschetz

fibration with regular fiber T ∗Sn−1 and critical values z′ = {z0, . . . , zκ} and p : W →

D − N(γ0) be its restriction to D − N(γ0). Let aj denote the Lagrangian thimble over γj.

Let hσ be an element of Symp(W,∂W ) which descends to σ and h′σ ∈ Symp(W ′, ∂W ′) be its

extension to W ′ by identity. Finally, let τc ∈ Symp(W ′, ∂W ′) be the Dehn twist along the

Lagrangian sphere over c.

The proof of invariance under Markov stabilization is the same as Theorem 9.4.2 of

[CHT20], and we briefly restate its proof here:

Theorem 4.4.1. ĈF (W,hσ(a),a) and ĈF (W ′, h′σ ◦ τc(a′),a′) are isomorphic cochain com-
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Figure 4.21: Markov stabilization along c.

x0 x1

γ0 γ1 γ2

x2

cΘ01

Figure 4.22: The red half-arcs are σ ◦ σc(γ0) and σ ◦ σc(γ1). The shaded region denotes the

curve we are gluing.
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plexes for specific choices of almost complex structure and hσ(a) and h′σ ◦ τc(a′) after a

Hamiltonian isotopy.

Proof. We directly construct a homomorphism Φs : ĈF (W,hσ(a),a) → ĈF (W ′, h′σ ◦

τc(a
′),a′) and show it is a cochain isomorphism. The notations are as in Figure 4.22.

Consider the κ-tuples in ĈF (W,hσ(a),a): it may or may not contain {x1}. Similarly,

the κ-tuples in ĈF (W ′, h′σ ◦ τc(a′),a′) may contain either {x0, x1} or {Θ01}. In fact there is

a linear isomorphism:

Φs : ĈF (W,hσ(a),a)→ ĈF (W ′, h′σ ◦ τc(a′),a′), (4.4.1)

{x1} ∪ y′ 7→ {x0, x1} ∪ y′,y 7→ {Θ01} ∪ y,

For convenience of gluing below, we put hσ(a1) and h′σ ◦ τc(a0) in a position so that they

go over the same arc near γ1. Rigorously, let γ1 = {Re z1}× [−1, 0] ⊂ D and ε > 0 be small.

The projections σ(γ1) and σ ◦ σc(γ0) are written as ζ1 ∪ ζ2 ∪ ζ3 and ζ ′1 ∪ ζ2 ∪ ζ3. The main

requirement is that ζ2 be a common neck, for example, set ζ2 = {Re z1 − ε} × [−2/3,−1/3].

Refer to Figure 4.22.

We compare the differential of ĈF (W ′, h′σ ◦ τc(a′),a′) and ĈF (W,hσ(a),a). If u′ goes

from {x0, x1} ∪ y′1 to {x0, x1} ∪ y′2, then u′ is in bijection with u that goes from {x1} ∪ y′1 to

{x1} ∪ y′2 since the strip from x0 to x0 is trivial. Similarly, u′ that goes from {Θ01} ∪ y1 to

{Θ01}∪y2 is in bijection with u that goes from y1 to y2. There are no curves from {x0, x1}∪y′1
to {Θ01}∪ y2 and no curves from {x1}∪ y′1 to y2. The nontrivial case is that, if u′ goes from

{Θ01} ∪ y1 to {x0, x1} ∪ y′2, then it is in bijection with u that goes from y1 to {x0} ∪ y′2,

where u′ comes from u by replacing the end containing x1 by the shaded region in Figure

4.22. The bijection comes from Lemma 4.3.2 which says the curve over the shaded region

has algebraic count 1. The gluing details are omitted.

76



x1 x2

z1 z2

Figure 4.23: The braid representation of an unknot on D.

4.5 Examples

In this section we consider some simple links and compute their cohomology groups Kh](σ̂)

in the sense of Theorem 4.1.4, with coefficient ring F[A][[~, ~−1] when n = 2 and F[[~, ~−1]

when n > 3, where ~ is of grading 2−n. We assume that F is of characteristic 2 for simplicity.

4.5.1 Unknots

Figure 4.23 shows the 2-strand braid representation of an unknot. In the Morse-Bott fam-

ily of Reeb chords, x1, x2 are viewed as longer Reeb chords (top generators) and z1, z2

are viewed as shorter Reeb chords (bottom generators). The only possible differential in

ĈF (W̃ , h̃σunknot(ã), ã) counts quadrilaterals u with {x1, x2} at positive ends and {z1, z2} at

negative ends. The projection of u to D has degree 1 over the region bounded by the loop

x1 → z2 → x2 → z1 → x1 and degree 0 over its complement.

Proposition 4.5.1. Kh](σ̂unknot) is freely generated by {x1, x2} and {z1, z2}, where the dif-

ference of grading between these two generators is 2 (mod n− 2):

generators grading

{x1, x2} 0

{z1, z2} 2

Proof. Similar to the proof of Lemma 4.3.2, we check that the pseudoholomorphic disk u

with {x1, x2} at positive ends and {z1, z2} at negative ends is of Fredholm index n and
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x1 x2

y1 y2

z1 z2

A

B
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x1 x2

y1 y2

z1 z2

Figure 4.24: The braid representation of the left-handed Hopf link (left) and the right-handed

Hopf link (right).

Maslov index 2n− 2. Therefore, {x1, x2} and {z1, z2} are both cocycles and thus generators

of Kh](σ̂unknot).

4.5.2 Hopf links

We then consider the 2-strand braid representation of a left-handed Hopf link as the left-

hand side of Figure 4.24. ‘A’ to ‘C’ denote the corresponding regions on the base D. For

example, we use ‘A’ + ‘B’ to represent the union of region ‘A’ and ‘B’.

Lemma 4.5.2. ĈF (W̃ , h̃σleft Hopf
(ã), ã) contains the following (mod 2) differential relations:

d{x1, z2} = ~{ŷ1, y̌2}+ ~{y̌1, ŷ2}, (4.5.1)

d{x2, z1} = ~{ŷ1, y̌2}+ ~{y̌1, ŷ2}, (4.5.2)

d{y̌1, ŷ2} = ~{z1, z2}, (4.5.3)

d{ŷ1, y̌2} = ~{z1, z2}. (4.5.4)

Proof. All nontrivial index 1 pseudoholomorphic curves with count 1 (mod 2) are listed as

follows, where we label the regions with positive weights after projection to base D:

regions ends of generators

A {x1, z2} → {y̌1, ŷ2}/{ŷ1, y̌2}

B {x2, z1} → {y̌1, ŷ2}/{ŷ1, y̌2}

C {y̌1, ŷ1}/{ŷ1, y̌1} → {z1, z2}
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To see this, after projection to D, the domain with positive weights is bounded by one

of the following loops:

1. y1 → x1 → y2 → z2 → y1,

2. y1 → z1 → y2 → x2 → y1,

3. y1 → z2 → y2 → z1 → y1,

4. y1 → x1 → y2 → x2 → y1,

Note that x1, x2, z1, z2 should be viewed as top generators at positive ends or as bottom

generators at negative ends. Specifically they give no constraints.

Case 1. This corresponds to region A. u is a quadrilateral with {x1, z2} at positive ends and

{y̌1, ŷ2} or {ŷ1, y̌2} at negative ends. By Lemma 4.3.2, ind(u) = 1 and 〈{x1, z2}, {y̌1, ŷ2}〉 =

〈{x2, z1}, {ŷ1, y̌2}〉 = ~ mod 2.

Case 2. This corresponds to region B. u is a quadrilateral with {x2, z1} at positive ends and

{y̌1, ŷ2} or {ŷ1, y̌2} at negative ends. This is similar to Case 1. Therefore, ind(u) = 1 and

〈{x2, z1}, {y̌1, ŷ2}〉 = 〈{x2, z1}, {ŷ1, y̌2}〉 = ~ mod 2.

Case 3. This corresponds to region C. u is a quadrilateral with {z1, z2} at negative ends.

Since z1, z2 are bottom generators, we need one check and one hat at positive ends due to

Lemma 4.3.2 so that there is a nontrivial count of u. Therefore we get (4.5.3) and (4.5.4).

Case 4. This corresponds to region A+B+C. u is a quadrilateral with {x1, x2} at positive

ends and {y1, y2} at negative ends. x1, x2 are viewed as top generators and there are two

critical points inside the domain. We check that ind(u) = n for {y̌1, y̌2} at negative ends;

ind(u) = 2n − 1 for {ŷ1, y̌2} and {y̌1, ŷ2} at negative ends; ind(u) = 3n − 2 for {ŷ1, ŷ2} at

negative ends. Therefore there is no such u with index 1.
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Corollary 4.5.3. If we set |{x1, x2}| = 0, then Kh](σ̂left Hopf) is freely generated by the

following generators with the corresponding relative grading (mod n− 2):

generators grading

{x1, x2} 0

{x2, z1}+ {x1, z2} 2

{y̌1, y̌2} 2

{ŷ1, ŷ2} 4

The computation for the right-handed Hopf link is similar. As shown in Figure 4.24, the

braid representation of the right-handed Hopf link is the mirror of the left-handed one.

Note that there is a bijection of pseudoholomorphic curves between these two Hopf links:

Each curve in the left-handed moduli space corresponds to a curve in the right-handed one,

where the positive and negative ends are exchanged, as well as the checks and hats. As a

consequence, the grading by Maslov index is also reversed. Specifically, the right-handed

Hopf link satisfies:

Lemma 4.5.4. ĈF (W̃ , h̃σrightHopf
(ã), ã) contains the following (mod 2) differential relations:

d{y̌1, ŷ2} = ~{x1, z2}+ ~{x2, z1}, (4.5.5)

d{ŷ1, y̌2} = ~{x1, z2}+ ~{x2, z1}, (4.5.6)

d{z1, z2} = ~{y̌1, ŷ2}+ ~{ŷ1, y̌2}. (4.5.7)

Corollary 4.5.5. If we set |{x1, x2}| = 0, then Kh](σ̂right Hopf) is freely generated by the

following generators with the corresponding relative grading (mod n− 2):

generators grading

{x1, x2} 0

{x1, z2} −2

{ŷ1, ŷ2} −2

{y̌1, y̌2} −4
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x1 x2

y1 y2

z1 z2

w1 w2

Figure 4.25: The braid representation of the left-handed trefoil (left) and the right-handed

trefoil (right).

4.5.3 Trefoils

The left-hand side of Figure 4.25 shows the 2-strand braid representation of a left-handed

trefoil, where ‘A’ to ‘E’ denote the corresponding regions on the base D.
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Lemma 4.5.6. ĈF (W̃ , h̃σleft trefoil(ã), ã) contains the following (mod 2) differential relations:

d{x1, w̌2} = ~{y̌1, ŷ2}+ ~{ŷ1, y̌2},

d{x1, ŵ2} = ~{ŷ1, ŷ2}+ ~{y̌2, z1}+ ~{y̌1, z2}

d{x2, w̌1} = ~{y̌1, ŷ2}+ ~{ŷ1, y̌2},

d{x2, ŵ1} = ~{ŷ1, ŷ2}+ ~{y̌1, z2}+ ~{y̌2, z1},

d{y̌1, z2} = ~{w̌1, ŵ2}+ ~{ŵ1, w̌2},

d{ŷ1, z2} = ~{ŵ1, ŵ2},

d{y̌2, z1} = ~{w̌1, ŵ2}+ ~{ŵ1, w̌2},

d{ŷ2, z1} = ~{ŵ1, ŵ2},

d{w̌1, ŵ2} = ~{z1, z2},

d{ŵ1, w̌2} = ~{z1, z2},

d{y̌1, ŷ2} = ~{w̌1, w̌2},

d{ŷ1, y̌2} = ~{w̌1, w̌2},

d{ŷ1, ŷ2} = ~{w̌1, ŵ2}+ ~{ŵ1, w̌2}.

Proof. All nontrivial index 1 pseudoholomorphic curves with count 1 (mod 2) are listed as

follows:
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y1

w1

z1 z2

y2

w2

Figure 4.26: Horizontal stretch of region C +D + E.

regions ends of generators

A {x1, w̌2} → {y̌1, ŷ2}/{ŷ1, y̌2}, {x1, ŵ2} → {ŷ1, ŷ2}

B {x2, w̌1} → {y̌1, ŷ2}/{ŷ1, y̌2}, {x2, ŵ1} → {ŷ1, ŷ2}

C {y̌1, z2} → {w̌1, ŵ2}/{ŵ1, w̌2}, {ŷ1, z2} → {ŵ1, ŵ2}

D {y̌2, z1} → {w̌1, ŵ2}/{ŵ1, w̌2}, {ŷ2, z1} → {ŵ1, ŵ2}

E {w̌1, ŵ2} → {z1, z2}, {ŵ1, w̌2} → {z1, z2}

A+ C + E {x1, ŵ2} → {y̌2, z1}

B + C + E {x2, ŵ1} → {y̌2, z1}

A+D + E {x1, ŵ2} → {y̌1, z2}

B +D + E {x2, ŵ1} → {y̌1, z2}

C +D + E {y̌1, ŷ2}/{ŷ1, y̌2} → {w̌1, w̌2}, {ŷ1, ŷ2} → {w̌1, ŵ2}/{ŵ1, w̌2}

The proof is similar to Lemma 4.5.2. While the regions B +D + E and C +D + E are

more interesting for the critical points inside.

Consider the region C + D + E first. We stretch the region C + D + E as Figure 4.26

which is similar to Figure 28 of [CHT20]. The dashed line is viewed as a gluing condition

of a point constraint of both sides. Each side is equivalent to a disk with a slit. The slits

must lie over the vertical black lines. Now both sides are disk models similar to Figure 4.9,

that is, 2 point constraints on the boundary will fix a unique pseudoholomorphic disk. Take

{y̌1, ŷ2} → {w̌1, w̌2} for example: On the right-hand side of Figure 4.26, ŷ2 and w̌2 are point

constraints, so there is a unique disk over the right-hand side which also fixes the gluing
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condition along the dashed line. On the left-hand side, y̌1 imposes no constraint but w̌1

and the dashed line are 2 point constraints, which fixes a unique disk. Therefore, there is a

unique disk from {y̌1, ŷ2} to {w̌1, w̌2}.

Similarly, the region B +D+E is viewed as a disk with slits. ŵ1, y̌1 are viewed as point

constraints and x2, z2 impose no constraints. There is a unique disk from {x2, ŵ1} to {y̌1, z2}

for the same reason as above.

Corollary 4.5.7. If we set |{x1, x2}| = 0, then Kh](σ̂left trefoil) is freely generated by the

following generators with the corresponding relative grading (mod n− 2):

generators grading

{x1, x2} 0

{x1, w̌2}+ {x2, w̌1} 2

{y̌1, y̌2} 2

{x1, ŵ2}+ {x2, ŵ1} 3

{y̌1, z2}+ {y̌2, z1} 4

{ŷ1, z2}+ {ŷ2, z1} 5

The computation for the right-handed trefoil is similar and the proof is omitted:
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Lemma 4.5.8. ĈF (W̃ , h̃σright trefoil(ã), ã) contains the following (mod 2) differential relations:

d{y̌1, ŷ2} = ~{x1, ŵ2}+ ~{x2, ŵ1},

d{ŷ1, y̌2} = ~{x1, ŵ2}+ ~{x2, ŵ1},

d{y̌1, y̌2} = ~{x1, w̌2}+ ~{x2, w̌1},

d{w̌1, ŵ2} = ~{ŷ1, z2}+ ~{ŷ2, z1}+ ~{y̌1, y̌2},

d{ŵ1, w̌2} = ~{ŷ1, z2}+ ~{ŷ2, z1}+ ~{y̌1, y̌2},

d{w̌1, w̌2} = ~{y̌1, z2}+ ~{y̌2, z1},

d{z1, z2} = ~{w̌1, ŵ2}+ ~{ŵ1, w̌2},

d{ŷ1, z2} = ~{x1, w̌2}+ ~{x2, w̌1},

d{ŷ2, z1} = ~{x1, w̌2}+ ~{x2, w̌1},

d{ŵ1, ŵ2} = ~{y̌1, ŷ2}+ ~{ŷ1, y̌2}

Corollary 4.5.9. If we set |{x1, x2}| = 0, then Kh](σ̂right trefoil) is freely generated by the

following generators with the corresponding relative grading (mod n− 2):

generators grading

{x1, x2} 0

{x1, ŵ2} −2

{ŷ1, ŷ2} −2

{x1, w̌2} −3

{ŷ1, z2}+ {ŷ2, z1} −4

{y̌1, z2} −5
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