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Expression activation of over 70% of Chlamydia trachomatis 
genes during the first hour of infection

Wurihan Wurihan,1,2 Yuxuan Wang,1 Sydney Yeung,1 Yi Zou,3 Zhao Lai,3,4 Joseph D. Fondell,1 Wei Vivian Li,5 Guangming Zhong,6 

Huizhou Fan1

AUTHOR AFFILIATIONS See affiliation list on p. 13.

ABSTRACT The obligate intracellular bacterium Chlamydia has a unique developmental 
cycle that alternates between two contrasting cell types. With a hardy envelope and 
highly condensed genome, the small elementary body (EB) maintains limited metabolic 
activities yet survives in extracellular environments and is infectious. After entering 
host cells, EBs differentiate into larger and proliferating reticulate bodies (RBs). Progeny 
EBs are derived from RBs in late developmental stages and eventually exit host cells. 
How expression of the chlamydial genome consisting of nearly 1,000 genes governs 
the chlamydial developmental cycle is unclear. A previous microarray study identified 
only 29 Chlamydia trachomatis immediate early genes, defined as genes with increased 
expression during the first hour postinoculation in cultured cells. In this study, we 
performed more sensitive RNA sequencing (RNA-Seq) analysis for C. trachomatis cultures 
with high multiplicities of infection. Remarkably, we observed well over 700 C. tracho
matis genes that underwent 2- to 900-fold activation within 1 hour postinoculation. 
Quantitative reverse transcription real-time PCR analysis was further used to validate the 
activated expression of a large subset of the genes identified by RNA-Seq. Importantly, 
our results demonstrate that the immediate early transcriptome is over 20 times more 
extensive than previously realized. Gene ontology analysis indicates that the activated 
expression spans all functional categories. We conclude that over 70% of C. trachomatis 
genes are activated in EBs almost immediately upon entry into host cells, thus impli
cating their importance in initiating rapid differentiation into RBs and establishing an 
intracellular niche conducive with chlamydial development and growth.

KEYWORDS Chlamydia, transcriptome, gene regulation, transcription, chlamydia 
developmental cycle

S exually transmitted Chlamydia trachomatis infections represent a significant health 
concern globally. Since its designation as a notifiable infection in 1988, C. trachomatis 

infection in the USA has consistently been the most frequently reported infection to the 
Centers for Disease Control and Prevention (1). Moreover, ocular C. trachomatis infection 
is a leading infectious cause of blindness in numerous undeveloped regions (2).

As with other Chlamydia species, C. trachomatis exists in two different cellular forms. 
The infectious elementary body (EB), approximately 300 nm in diameter and with 
limited metabolic activities, can temporarily endure in extracellular environments and is 
responsible for initiating the infection process. Upon binding to the host cell membrane, 
EBs are endocytosed (3). Over the subsequent hours, bacterium-containing vacuoles 
(termed inclusions) are transported to perinuclear regions where EBs differentiate into 
the larger reticulate body (RB). RBs then multiply logarithmically until they asynchro
nously differentiate back to EBs which exist host cells (4).

The 1 million base pair C. trachomatis genome includes over 900 coding sequences 
(5, 6). To decipher the regulatory patterns of the chlamydial transcriptome, Nicholson 

March 2024  Volume 92  Issue 3 10.1128/iai.00539-23 1

Editor Andreas J. Bäumler, University of California, 
Davis, Davis, California, USA

Address correspondence to Huizhou Fan, 
fanhu@rwjms.rutgers.edu.

The authors declare no conflict of interest.

Received 2 January 2024
Accepted 9 January 2024
Published 1 February 2024

Copyright © 2024 American Society for 
Microbiology. All Rights Reserved.

https://crossmark.crossref.org/dialog/?doi=10.1128/iai.00539-23&domain=pdf&date_stamp=2024-02-01
https://doi.org/10.1128/iai.00539-23
https://doi.org/10.1128/ASMCopyrightv2


et al. and Belland et al. employed microarray strategies to profile the C. trachomatis 
transcriptome across various developmental cycle stages (7, 8). Nicholson et al.’s earliest 
data point was at 6 hours postinoculation (hpi), around which time the initial EB-to-RB 
differentiation typically concludes. Data for earlier time points were not included in this 
study, possibly due to the limited sensitivity of the microarray in their experimental 
design which utilized a multiplicity of infection (MOI) of just one inclusion-forming unit 
(IFU) per host cell (8). In contrast, Belland et al. performed a cDNA microarray analysis 
as soon as 1 hpi. To bolster transcript detection sensitivity during this immediate early 
stage, they infected cells with an MOI of 100 (7). At 1 hpi, they identified transcripts from 
55 protein-encoding genes. Their subsequent quantitative reverse transcription real-time 
PCR (qRT-PCR) analysis validated the activated expression of only 29 of these 55 genes, 
while the other 26 showed declined expression. They defined the 29 activated genes as 
“immediate early genes” and the other 26 as “late genes” (7).

More recently, Humphrys et al. detected 399 activated gene transcripts using RNA 
sequencing (RNA-Seq) at 1 hpi (9). Clearly, RNA-Seq offers higher gene expression 
sensitivity than microarray across all systems (10, 11). However, Humphrys et al. only 
validated activated expression for 10 of the 399 genes, which were the same 10 genes 
previously identified by Belland et al. as immediate early genes. Furthermore, they did 
not investigate which of the remaining 389 mRNAs might also be newly synthesized 
upon cell entry nor distinguish whether some of the genes may have been simply carried 
over from the previous developmental cycle (9).

To elucidate the role of immediate early gene expression in the onset of the 
chlamydial developmental cycle, we revisited the C. trachomatis transcriptome during 
the initial stage of infection. We employed RNA-Seq analysis at MOIs of 50 and 200 to 
monitor the expression profiles of C. trachomatis genes, using the 0 hpi as the baseline 
from which we could determine differential expression at 1 hpi. We then conducted 
qRT-PCR analysis with an MOI of 1 to validate RNA-Seq data. Our results demonstrate 
that over 70% of the C. trachomatis genome becomes activated by 1 hpi. Moreover, our 
findings show broad gene activation in each and every functional ontological category 
during this presumptively crucial immediate early stage.

RESULTS

RNA-Seq analysis reveals activation of 730 C. trachomatis genes from 0 to 1 
hpi

Comprehensive identification of differentially expressed genes (DEGs) in Chlamydia 
during the immediate early developmental phase is hindered by two challenges: the 
inherently low RNA content of EBs (12) and the dominance of host RNA in the samples. 
To address these challenges here, high infectious doses were used, echoing the approach 
of Belland et al., who employed an MOI of 100 for microarray at 1 hpi (7).

Our initial RNA-Seq study, using 50 IFUs per cell, resulted in 3.9- and 15.9-fold genome 
coverage at 0 and 1 hpi, respectively (Table 1). While this captured 785 and 911 genes 
at the respective time points (Table 1; Table S1), the modest coverage at 0 hpi was a 
concern. Hence, a subsequent RNA-Seq study was conducted using an increased MOI 
of 200, which enhanced genome coverage significantly for both time points (Table 1). 
Comparatively, this higher MOI identified 113 more genes at 0 hpi but just 6 additional 
at 1 hpi (Table 1; Table S1), suggesting a near saturation point around 15- to 20-fold 
genome coverage.

The increased genome coverage observed from 0 to 1 hpi suggests substantially 
increased transcriptional activity during the immediate early developmental phase. To 
address the unlikely but possible scenario that the increased RNA levels at 1 hpi could 
be due to a higher number of EBs associated with host cells, we quantified the C. 
trachomatis genome by measuring ctl0631 gene using quantitative PCR (qPCR). This 
analysis revealed consistent genome copy numbers in both 0 and 1 hpi cultures (data 
not shown), lending support to the hypothesis of a broad activation of the C. trachomatis 
transcriptome during the first hour of infection.
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We performed DESeq2 analysis (13) to identify DEGs between 0 and 1 hpi. Both the 
50MOI and 200MOI studies detected genes undergoing dramatic activation: over 150 
and 500 genes with ≥100- and ≥10-fold activation, respectively, and nearly 700 genes 
with ≥2-fold activation (Table 2; Table S2). The vast majority of the activated genes were 
consistent between the individual studies; upon analysis of the combined data set, we 
identified 154, 538, and 730 genes with ≥100-, ≥10-, and ≥2-fold activation, respectively 
(Table 2; Table S2).

In contrast, only 27 and 29 genes with ≥2-fold reduction in transcripts in the 50MOI 
study and 200MOI study, respectively (Table 2; Table S2). The high degree of reduction 
was only eightfold. The downregulated genes are also highly consistent between the 
studies (Table 2). Analysis of the two data sets combined identified a total of only 30 
genes with ≥2-fold downregulation, with 6.9-fold being the largest reduction (Table 2).

Taken together, results from our RNA-Seq studies clearly demonstrate robust 
activation of the C. trachomatis transcriptome during the immediate early developmental 
phase.

qRT-PCR analysis validates immediate early genes identified from RNA-Seq 
analysis

To validate our RNA-Seq findings, we conducted qRT-PCR analysis on 48 of the detected 
activated genes from C. trachomatis cultures with an MOI of 1 IFU per cell at 0 and 1 hpi. 
From the RNA-Seq data, we selected genes for qRT-PCR analysis that had a broad range 
of FPKM (fragments per kilobase of transcript per million, which normalizes read count 
based on gene length and the total number of mapped chlamydial reads) from the top 
1.0 percentile (i.e., higher expressers) to the bottom 84.5 percentile (i.e., low expressers), 
as well as a broad range of fold activation (2.9- to 868.4-fold) (Table 3).

Of the 48 genes chosen for qRT-PCR, 44 showed statistically significant increases 
in transcripts (≥2-fold, P < 0.05) from 0 to 1 hpi, consistent with our initial data from 
the RNA-Seq studies. For the remaining four genes that did not exhibit this pattern, 
we reevaluated after increasing the MOI to 10. After the adjustment, two genes, pkn1 
and ldh, displayed expression activation between from 0 to 1 hpi. However, sucB and 
murE remained unchanged (Table 3). The concurrence between our qRT-PCR findings 
and the RNA-Seq data strongly supports the notion that an overwhelming majority of C. 
trachomatis genes are activated within the first infection hour.

Activation of the rRNA operons during the immediate early phase.

rRNAs, owing to their abundance in nearly all cell types, are typically removed prior to 
RNA-Seq library construction to enhance detection efficiency of other RNAs. Our method 
for rRNA removal was notably efficient; we recorded 0 counts for both 16S and 5S rRNA 
from both 50MOI and 200MOI studies, and a total of only 1211 23S rRNA reads (Table S1). 
We performed qRT-PCR analysis to quantify all three rRNA with the MOI of 1 to compare 
their expression levels at 0 and 1 hpi.

The chlamydial rRNA genes are arranged in a 16S, 23S, and 5S rRNA order within 
two identical rRNA operons (Fig. 1A). Cleavages in the initial transcripts subsequently 

TABLE 1 RNA-Seq unique reads mapped to the C. trachomatis genome, genome coverage, and genes 
detecteda

hpi 50MOI 200MOI

Ct reads Fold coverage Genes detected Ct reads Fold coverage Genes detected

0 82,377 3.9 785 402,679 19.2 898

1 332,916 15.9 911 1,761,784 105.3 917
aL929 cells were inoculated with C. trachomatis L2 at an MOI of 50 or 200 and centrifuged at room temperature 
for 10 min. After three washes, RNA was extracted either immediately (0 hpi) or after a 1-hour incubation at 37°C. 
RNA-Seq was conducted as outlined in the Materials and Methods section. Average values for the number of reads 
uniquely mapped to the C. trachomatis genome (Ct reads) and fold coverage, derived from biological triplicates, 
are presented.
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produce individual rRNAs (Fig. 1A). We employed three primer pairs, each amplifying 
sequences present in mature rRNAs and the nascent transcript, and a primer pair 
targeting only the nascent rRNA (Fig. 1A). We detected a 23.3-fold increase in the nascent 
rRNA at 1 hpi (Fig. 1B) and also detected 3.5 and 3.3 increases in the 16S and 23S 
rRNA, respectively (Fig. 1B). A larger increase in the nascent form than the total rRNA is 
expected since rRNA maturation is relatively efficient, and mature rRNAs are relatively 
stable. Interestingly, we did not detect any changes in the 5S rRNA despite increased 
expression of pre-rRNA (Fig. 1B).

We hypothesized that 16S and/or 23S rRNA are limiting. To test that expression 
increases are sufficient to increase ribosome formation during the immediate early 
developmental phase, we determined copy ratio of the three C. trachomatis rRNA species 
at both time points. We first performed qPCR analysis on the genomic DNA to determine 
the amplification efficiency of the primer pairs used for qRT-PCR analysis. The chromo
some rRNA gene amplification efficiencies were used to normalize the relative expression 
levels of the three chlamydial rRNAs. Our analysis revealed an excess of 5S rRNA at both 0 
and 1 hpi. In contrast, 23S rRNA appeared limiting, which is most evident at 0 hpi than at 
1 hpi (Fig. 1C). These data suggest that increased 16S and 23S rRNAs expression can lead 
to elevated ribosome numbers; provided expression of genes encoding ribosomal 
structure and biogenesis proteins are also activated.

Immediate early gene ontology

We next performed gene ontology analysis to better understand the physiological 
importance of the C. trachomatis transcriptome during the immediate early phase. The 
percentage of up- and down-regulated genes (≥2-fold change, P < 0.05) was plotted in 
each functional category (Fig. 2). DEGs in functional categories and the implications of 
their expression changes are summarized below.

Activation of genes involved in protein synthesis

Topping of the list of up-regulated gene categories is the translation and ribosomal 
structure and biogenesis category, with 133 of the 138 (96.4%) genes activated (Fig. 2A; 
Table S3). Consistent with this finding, 28 of 37 (75.7%) C. trachomatis tRNAs are also 
increased (Fig. 2A; Table S3). Together with aforementioned increases in 16S and 23S 
rRNAs, these findings strongly suggest an enhanced protein synthesis capacity starting 
the immediate early developmental phase.

Activation of genes with functions in nutrient acquisition and metabolism 
and energy production and conversion

Other ontological categories that ranked high in the list of activated genes at 1 hpi are 
those with functions in nutrient acquisition and metabolism. Specifically, they include 
inorganic ion transport and metabolism, nucleotide transport and metabolism, lipid 
transport and metabolism, and amino acid transport and metabolism categories with 20 
of 21 (95.2%), 14 of 15 (93.3%), 32 of 35 (91.4%), and 47 of 52 (90.4%) genes activated, 
respectively (Fig. 2A). In addition, 36 of 42 (85.7%) genes in the coenzyme transport and 
metabolism category and 29 of 36 (80.6%) genes in the carbohydrate transport and 

TABLE 2 Differentially expressed C. trachomatis genes (P < 0.05) identified between 0 and 1 hpi in the 
RNA-Seq studies referenced in the Table 1 legenda

50MOI 200MOI Common Combined

≥100-fold increase 203 150 122 154
≥10-fold increase 552 515 475 538
≥2-fold increase 663 681 638 730
2- to 14-fold decrease 27 29 26 30
aNumbers of genes with increased or decreased expression in individual studies, common to both studies, or in the 
combined data set are presented.
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metabolism category are also activated (Fig. 2A; Table S3). This widespread activation 
suggests that C. trachomatis rapidly adapts to meet heightened nutrient requirements, 
support the increased RNA and protein synthesis, and initiate morphological transforma
tion. Additionally, 29 of 36 (69.4%) genes essential for energy production and conversion 
were activated, ensuring adequate energy for the increased cellular activities.

Activation of pathogenicity and virulence genes

Incs (inclusion membrane proteins) are required for establishment and maintenance of a 
chlamydial intracellular growth niche (14). Secretion of many Incs and other virulence 
determinants depends on the type III secretion system (T3SS) and/or trafficking systems 
(15–17). The chlamydial plasmid encodes a virulence protein Pgp3, a transcription 
regulator of chromosomal gene, and proteins essential for the maintenance of the 
plasmid (18). Notably, 35 of 39 (89.7%) Inc genes and 22 of 48 (45.8%) genes in T3SS, 4 of 
5 (80%) genes involved in defense, 14 of 18 (77.8%) genes with functions in intracellular 
trafficking, secretion, and vesicular transport, and 7 of 8 (87.5%) genes encoded by the 

FIG 1 23S rRNA is the rate-limiting rRNA in C. trachomatis during the immediate early developmental phase. (A) C. trachomatis 

chromosomal rRNA gene organization and rRNA genesis. The schematic illustrates the rRNA genes on the chromosome 

and the processing steps of pre-rRNA to mature rRNAs. Scissors symbols indicate RNA cleavage at indicated sites. Arrows 

represent primers targeting specific sequences for amplifying pre-rRNA and mature rRNA. Lines below the arrows signify 

reverse transcription PCR products using different respective primer pairs. (B) Temporal changes in rRNA levels (0–1 hpi). Bar 

graph shows the largest increase in pre-rRNA, moderate increases in 16S and 23S rRNA, and unchanged 5S rRNA from 0 to 1 

hpi. (C) Proportional shifts in mature rRNAs. Stacked bar graph depicts the changing proportions of the total rRNA pool, with 

concurrent 23S and 16S rRNA increases and 5S rRNA decrease. The proportions of pre-rRNA in the graph are too small to be 

visible at both 0 and 1 hpi. (B, C) pre-rRNA and mature rRNAs (16S, 23S, and 5S) were quantified via qRT-PCR, utilizing primers 

indicated in (A).
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virulence plasmid are activated by 1 hpi (Fig. 2A). Collectively, these results underscore 
the rapid expression of a diverse array of pathogenicity and virulence factors during the 

Repressed genes (fraction of genes in functional group)
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FIG 2 Functional categorization of activated and repressed genes. (A) Distribution of activated genes across all 23 functional categories. (B) Distribution of 

activated genes in only nine functional categories. (A, B) The numbers adjacent to each category indicate the count of repressed genes out of the total in that 

category, based on the criteria of ≥2-fold change in expression (P < 0.05).
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immediate early phase, which presumably positions the pathogen for a successful 
infection.

Activation of genes with functions in transcription and transcriptional 
regulation

Twenty of 25 (80%) genes in the transcription category are activated by 1 hpi. These 
include genes encoding all the four subunits of the RNA polymerase core enzyme 
composed (i.e., rpoA, rpoB, rpoC, and the newly identified rpoZ) (19). rpoD encodes 
σ66, the principal sigma factor that binds the RNA polymerase core enzyme to form a 
holoenzyme. The σ66 holoenzyme is thought to be necessary for initiating transcription 
from all early gene promoters, while alternative holoenzymes containing either σ28 or 
σ54 are required for initiating transcription from certain late gene promoters. Consistent 
with this notion, rpoD demonstrated a 28.1- and 33.2-fold activation in RNA-Seq and 
qRT-PCR analyses, respectively, from 0 to 1 hpi, while expression levels of fliA (σ28) and 
rpoN (σ54) remain unchanged.

Genes encoding eight additional transcriptional factors are activated from 0 to 1 
hpi (Table S1). We found that euo is strongly activated (Table S3), consistent with 
numerous previous studies showing that it represses both midcycle and late genes 
(20–23). In addition, grgA, which regulates RB growth and progeny EB formation (24), 
and hrcA, which encodes the heat-inducible transcription repressor HrcA that regulates 
the expression of protein chaperones (25, 26), are both strongly activated by 1 hpi (Table 
S3). Furthermore, the transcription elongation factor gene greA and all four transcription 
termination factor-encoding genes (i.e., rho, nusA, nusB, and nusG) are all activated 
during the immediate early phase (Table S3).

Taken together, the activation of a broad spectrum of genes encoding components 
of the RNA polymerase core and holoenzyme, as well as transcription factors regulating 
initiation, elongation, and termination, suggests that increasing the immediate early 
capacity of the transcription machinery is critical for the subsequent growth and survival 
of C. trachomatis.

Activation of genes with functions in the category of DNA replication, 
recombination, and repair (DRRR) and in the category of cell cycle, division, 
chromosome partitioning (CCDCP)

The primary differentiation of the infectious EB to the replicative RB takes about 6 hours. 
Interestingly, 48 of 58 (82.8%) DRRR genes are activated from 0 to 1 hpi (Fig. 2A). In 
addition, 6 of 11 (54.5%) genes related to CCDCP are also activated (Fig. 2A). The reason 
and significance for the seemly untimely DRRR and CCDCP gene activation are explored 
below.

Downregulation of late genes

The 30 genes with moderate (2.0- to 6.9-fold) downregulation from 0 to 1 hpi fall 
into only 9 of 23 (39.1%) functional categories (Fig. 2B). The top ranked decreased 
category contains mostly putative T3SS effectors (copB, copD, ctl0034, ctl0064, ctl0255, 
ctl0338, ctl0338A, ctl0339, ctl0886) and a T3SS chaperone (scc2). As expected (7, 24, 27), 
three EB-enriched outer membrane protein genes (omcA, pmpD, and ctl0815) showed 
decreased expression. Similarly, the percentages of decreased genes in the remaining 
eight categories are all in single digits (2.7%–7.1%) (Fig. 2B). Significant decreases in 
the expression of these genes during the immediate early phase suggest that contin
ued expression of these genes is not important for the immediate early (and early) C. 
trachomatis development.
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Lack of correlation between genomic organization of DRRR and CCDCP genes 
and their immediate early activated

We hypothesized that some DRRR and CCDCP genes are activated within the first hour 
because they are components of operons containing genes with critical roles during 
the immediate early phase. To test this hypothesis, we surveyed the organization of 
increased DRRR genes on the chromosome. Our analysis revealed that 30 of the 48 
increased DRRR genes are located in operons with non-DRRR genes (Fig. 3A), while only 
19 are standalone non-operon genes or are in operons containing multiple DRRR genes 
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(D) Standalone CCDCP genes and operons exclusively composed of CCDCP genes. (A–D) arrows indicate the transcription direction and the extent of each 
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(Fig. 3B). Among six increased CCDCP genes, only two are in operons containing genes of 
other functional categories (Fig. 3C), while the remaining four are all non-operon genes 
(Fig. 3D). Therefore, possible collateral activation does not fully account for increased 
expression of DRRR and CCDCP genes from 0 to 1 hpi.

DISCUSSION

In this study, we present evidence that a significant majority of C. trachomatis genes are 
activated by 1 hpi (Tables 1 to 3; Tables S1 and S2), thus indicating that the immediate 
early chlamydial transcriptome is much more robust than previously recognized in the 
pioneering Chlamydia transcriptomic study by Belland et al. (7). We achieved this insight 
by adopting Belland et al.’s strategy of using high MOIs for 0 and 1 hpi and by employing 
RNA-Seq, a technique with significantly superior sensitivity and breadth compared to the 
slide microarray technology employed in their study.

There is also a key difference in our approach to preparing RNA samples from 0 
hpi cultures. Belland et al. used RNA from purified EBs, likely raising the sensitivity in 
their microarray analysis and potentially masking the detection of genes with increased 
expression at 1 hpi. We prepared RNA samples from infected cells at both 0 and 1 hpi, 
which allowed for a more accurate identification of immediate early gene activation.

Practical implications

We anticipate that our report will ignite broad interests in exploring the influence 
of chlamydial gene product, host factors, and potential antichlamydial drugs on the 
immediate early chlamydial transcriptome. Analysis of our RNA-Seq data sets (Tables 1 
and 2; Tables S1 and S2) indicates that with biological triplicates, a 4- to 5-fold genome 
coverage at 0 hpi and 15- to 20-fold genome coverage at 1 hpi can identify most DEGs, 
including both activated genes and repressed genes. However, to bolster confidence in 
the RNA-Seq data, we recommend fivefold higher coverages.

Even with increased MOI, we recommend qRT-PCR analysis to be performed to 
validate DEGs identified by RNA-Seq analysis. This may be particularly important for 
genes with relatively low expression levels, which can be identified with FPKM values 
(ranked around 50 percentile or lower) and for genes with relatively small changes 
(<10-fold change).

Fundamental implications

Once inside host cells, successful Chlamydia infection depends on execution of two 
interrelated tasks: avoidance of clearance by the host cellular defense system and 
conversion of EBs into RBs (14). While the previous microarray study recognized the 
importance of immediate early gene expression in the regulation of host cell signaling 
(7), results presented in this report show for the first time that immediate early tran
scription activation extends to all functional gene categories involved in the EB-to-RB 
conversion (Fig. 1 and 2). We infer that EB-to-RB conversion requires broad activation 
of the chlamydial transcriptome. For example, the surface area of RBs is about 10 times 
larger than that of EBs. Expansion of the surface area necessitates synthesis and/or 
acquisition of large amounts of lipids and robust synthesis of membrane proteins 
and glycans. The demands for increased protein synthesis can only be accomplished 
through broad expression increases in the components comprising the protein synthesis 
machinery, which include ribosomal RNAs and proteins and tRNAs. The increases in 
transcription and protein synthesis further demands a surge in acquisition and synthesis 
of metabolic precursors, cofactor, and energy, which in turn depends on new protein 
synthesis.

The activation of a significant majority of chlamydial genes during the immediate 
early development phase suggests a physiological importance for the rapid enhance
ment of multiple biological processes. Nonetheless, the observed upregulation of 
DRRR and CCDCP genes during this period (Fig. 2; Tables S2 and S3) was somewhat 
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unexpected, given the prevailing view that DNA replication does not begin until after the 
completion of the EB-to-RB conversion. Our genomic analysis of the activated DRRR and 
CCDCP genes suggests that activation of numerous standalone and operon-contained 
DRRR and CCDCP genes (Fig. 3) might facilitate some level of DNA synthesis activity 
during the immediate early phase. This invites speculation that chlamydial chromoso
mal de-condensation, necessary for broad transcription activation, may involve strand 
breakage and subsequent DNA repair, which would necessitate increased DRRR and 
CCDCP gene expression. Indeed, this rationale might explain the observance of DRRR 
and CCDCP genes within operons containing other genes essential for the immediate 
early phase. A precedent for this scenario is revealed with the genes gmk (guanylate 
kinase), rpoZ (RNA polymerase omega subunit), and metG (methionine-tRNA ligase), all 
of which are co-transcribed with rnhB (RNase H). RnhB is necessary for DNA synthesis 
(28), while Gmk and RpoZ play essential roles in RNA synthesis, and metG is crucial for 
protein synthesis (19).

While this study was conducted in cultured cells, its insights may be relevant to 
chlamydial pathogenesis in vivo. Interferon gamma (IFN-γ), produced in response to 
chlamydial and other infections, inhibits C. trachomatis growth by promoting trypto
phan degradation and altering the metabolism of certain other amino acids (29–32). 
Conversely, C. trachomatis has developed the ability to enter a persistent state where RBs 
halt division and conversion to EBs until a balanced nutritional environment is reestab
lished (29–32). Notably, ctl0225, one of numerous amino acid transporters activated by 
1 hpi (Tables S1 to S3), regulates chlamydial persistence (30, 31). The upregulation of 
ctl0225 during the immediate early phase could be a strategic adaptation of C. trachoma
tis to establish infection in environments with elevated IFN-γ levels.

In summary, our study has uncovered that a vast majority of chlamydial genes are 
activated within the first hour following the entry of EBs into host cells. This transcrip
tional activation spans across all functional gene categories. While this widespread 
activation of the chlamydial transcriptome facilitates a variety of biological processes 
essential for the primary differentiation and establishment of an intracellular environ
ment favorable for development and growth, the notable increase in the expression of 
DRRR and CCDCP genes raises the possibility of some DNA synthesis occurring during 
this early phase. Additionally, our experimental strategies as well as our recommenda
tions for genome coverage, informed by our data, will be invaluable for studies of early 
transcriptomes, not only in chlamydiae but also in a broader spectrum of intracellular 
pathogens.

MATERIALS AND METHODS

Chlamydia and culture

C. trachomatis L2 (strain 434/BU) was purchased from ATCC (33). The bacterium was 
grown using L929 cells and Dulbecco’s modified Eagle medium containing 4.5 g/L 
glucose and 110 mg/L sodium pyruvate and supplemented with fetal bovine serum 
(final concentration, 5%), gentamicin (20  µg/mL), and cycloheximide (1  µg/mL). EBs for 
this study were sequentially purified through ultracentrifugation using 35% MD-76 and 
44%/40%/52% MD-76 gradients.

RNA preparation

Total chlamydial and host RNA was prepared as previously described with modifications 
(25). The overnight culture media in 6-w plates with L929 monolayers were replaced with 
fresh medium containing EBs to achieve an MOI of 1, 10, 50, or 200. The plates were 
centrifuged at 900 × g at room temperature for 10 min and then washed three times with 
100 µg/mL heparin in Hank's balanced salt solution to remove free EBs. At the end of 
washes, cells in one plate were lysed with Tri Reagent (Millipore Sigma), and those in the 
other plate were lysed with Tri Reagent after incubation at 37℃ in a CO2 incubator. RNA 
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in Tri Reagent was further purified by following manufacturer’s instructions. Contaminat
ing DNA was removed through two rounds of DNase I-XT. Complete DNA removal was 
confirmed by lack of amplification of ctl0631. RNA concentration was determined using 
Qubit RNA assay kit (ThermoFisher). Aliquots of the DNA-free RNA samples were stored 
at −80°C.

RNA-Sequencing

RNA-Seq was performed as described with minor modifications (20, 25). Briefly, total 
RNA integrity was determined using Fragment Analyzer (Agilent) prior to RNA-Seq 
library preparation. Illumina MRZE706 Ribo-Zero Gold Epidemiology rRNA Removal 
kit was used to remove mouse and chlamydial rRNAs. Oligo(dT) beads were used to 
remove mouse mRNA. RNA-Seq libraries were prepared using Illumina TruSeq stranded 
mRNA-seq sample preparation protocol, subjected to quantification process, pooled for 
cBot amplification, and sequenced using Illumina HiSeq 3000 platform with a 50 bp 
single-read sequencing module. Short read sequences were first aligned to the CtL2 
434/Bu genome including the chromosome (GCF_000068585.1_ASM6858v1) and the 
pL2 plasmid (AM886278) and the mouse genome (GCF_000001635.27) using TopHat2 
aligner and then quantified for gene expression by HTSeq to obtain raw read counts per 
gene, and then converted to FPKM (Fragment Per Kilobase of gene length per Million 
reads of the library) (34–36). DESeq2, an R package commonly used for analysis of data 
from RNA-Seq studies and test for differential expression (13), was used to normalize 
data and find group-pairwise differential gene expression based on three criteria: P < 
0.05, average FPKM > 1, and fold change 1.

Quantitative reverse transcription real-time PCR

qRT-PCR was performed using QuantStudio 5 real-time PCR System (ThermoFisher 
Bioscientific) and Luna Universal one-step qRT-PCR kit (New England BioLabs) as 
previously described (20). Refer to Table S4 for information for qRT-PCR primers. t-Tests 
were conducted using Microsoft Office Excel to evaluate the qRT-PCR results. P-values 
were adjusted for multiple comparisons by Benjamini-Hochberg procedure to control the 
false discovery rate.

Gene ontology analysis

Gene ontology analysis was performed based on Clusters of Orthologous Genes 
functional classification of the C. trachomatis proteome (37) as recently reported (24).
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