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Abstract

Purpose

Congenital cataracts occur in isolation in about 70% of cases or are associated with other

abnormalities such as anterior segment dysgenesis and microphthalmia. We identified a

three-generation family in the University of California San Francisco glaucoma clinic com-

prising three individuals with congenital cataracts and aphakic glaucoma, one of whom also

had microphthalmia. The purpose of this study was to identify a possible causative mutation

in this family and to investigate its pathogenesis.

Methods

We performed exome sequencing and identified a putative mutation in gap junction protein

α8 (GJA8). We used PCR and DNA sequencing of GJA8 in affected and unaffected mem-

bers of the pedigree to test segregation of the variant with the phenotype. We tested cellular

distribution and function of the variant protein by immunofluorescence and intercellular

transfer of Neurobiotin in transiently transfected HeLa cells.

Results

Exome sequencing revealed a variant in GJA8 (c.658A>G) encoding connexin50 (Cx50)

that resulted in a missense change (p.N220D) in transmembrane domain 4. The variant was

present in all three affected family members, but was also present in the proband’s grandfa-

ther who was reported to be unaffected. The mutant protein localized to the plasma mem-

brane and supported intercellular Neurobiotin transfer in HeLa cells.
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Conclusions

We identified a variant in transmembrane domain 4 of Cx50 in a family with autosomal domi-

nant congenital cataracts. This variant has been previously identified in other cataract

cohorts, but it is also present in unaffected individuals. Our study demonstrates that the

mutant protein localized to the plasma membrane and formed functional intercellular chan-

nels. These data suggest that GJA8 c.658A>G is most likely a benign rare variant.

Introduction

Cataracts form when crystalline lenses lose transparency and become opaque. Worldwide, cat-

aracts are a major cause of treatable visual impairment in children, occurring in 1.2–6 per

10,000 live births [1]. Hereditary congenital cataracts account for 10–25% of pediatric cataract

cases [2]. In these cases, cataracts can occur in isolation or with other ocular and systemic

abnormalities. Mutations in lens crystallins and gap junction proteins constitute one of the

most common genetic alterations causing hereditary congenital cataract, but there is consider-

able genetic heterogeneity [3].

Ocular lenses are avascular structures that derive nutrients from the adjacent aqueous

humor. Water and solutes enter the lens driven by pumps in the epithelium, move through

extracellular spaces, and cross the cell membranes of lens fiber cells before being brought back

to the surface through channels contained in gap junctions; this process allows for nutrient

and metabolite exchange, maintenance of resting potentials, and lens clarity [4,5]. Gap junc-

tion proteins (i.e., connexins) oligomerize to form hexameric hemichannels that traffic to the

plasma membrane. Two hemichannels from adjacent cells dock with each other to form a gap

junction channel containing a central pore that allows for communication between the cells.

Connexins share a similar membrane topology with four transmembrane domains, two extra-

cellular loops, one cytoplasmic loop, and cytoplasmic N- and C-termini [6]. In human lenses,

three different gap junction proteins have been identified; mutants of those found in mature

lens fiber cells, connexin50 (Cx50) and connexin46 (Cx46) have been associated with congeni-

tal cataracts [6].

In this study, we identified a family with congenital cataracts associated with a variant of

GJA8 encoding a substitution in the fourth transmembrane domain of Cx50 (c.658A>G; p.

N220D) and examined the biochemical and functional consequences of this variant.

Materials and methods

Subjects

This study was approved by the institutional review board at the University of California, San

Francisco (UCSF). Written informed consent was obtained from all participants or their

parents (for children under 18 years of age). Medical records were reviewed. Subjects provided

peripheral venous blood or saliva samples (Oragene Discover ORG-500, DNA Genotek,

Ottawa, Ontario, Canada), and genomic DNA was extracted according to the manufacturer’s

instructions (DNeasy Blood & Tissue Kit, Qiagen, Valencia, CA, USA).

Genetic analysis

Exome sequencing. DNA samples were sent to the UCSF Institute for Human Genetics

Genome core for library preparation, exome capture, and sequencing. Briefly, genomic DNA
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was sheared using a Covaris S2 sonicator (Woburn, Massachusetts, USA) to a target size of

200–300 base pairs, and assembled into a library with TruSeq adapters containing indexes that

differentiate different libraries in a capture reaction as well as a sequencing run (KAPA Library

Preparation Kit, Kapa Biosystems, Wilmington, MA, USA). Libraries were pooled into a cap-

ture reaction that contained biotinylated DNA oligonucleotides (‘baits’) from Nimblegen,

(SeqCap EZ Human Exome Library v3.0; Roche Nimblegen, Madison, WI, USA) for 72 hours.

The DNA bait-DNA hybrids were pulled out of the complex mixture by incubation with strep-

tavidin-labeled magnetic beads and captured onto a strong magnet. After washing, the targeted

DNA of interest was eluted and subjected to 18 cycles of DNA amplification. The sample was

then sequenced using an Illumina HiSeq2000 sequencer (Illumina, San Diego, CA, USA). The

data were filtered using GeneTalk (http://www.gene-talk.de) [7]. Variants were analyzed with

Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/) and SIFT (Sorting Intolerant From Tol-

erant Web Server, version 5.1.1, database release February 3, 2015; http://sift.bii.a-star.edu.sg/)

to predict pathogenicity) [8,9].

Polymerase Chain Reaction (PCR) genotyping. DNA samples were genotyped using

PCR. Taq Polymerase (Thermo Scientific, Waltham, MA, USA) was used to amplify the DNA

according to the manufacturer’s directions using forward (5'-AGGCACTAAGAAGTTCCGGC
-3') and reverse (5'- CAACCTCGGTCAAGGGGAAA-3') primers. The thermocycler was run

at 94˚C for 3 minutes, then cycled 40 times at 94˚C for 30 seconds, 55˚C for 30 seconds, and

72˚C for 60 seconds, before final extension at 72˚C for 5 minutes. The PCR product was puri-

fied with ExoSAP-IT (Affymetrix, Santa Clara, CA, USA). Then 10 ng of the PCR product was

diluted in sterile water to 15 μl total volume with 8 pmol of primer (forward or reverse) for

DNA sequencing (ELIM Biopharmaceuticals, Inc.; Hayward, CA, USA) in both directions.

Molecular analysis

Generation of Cx50 constructs. The coding region of the wild-type human GJA8 gene

had been previously subcloned into pcDNA3.1/Hygro(+) (Life Technologies, Waltham, MA,

USA) [10]. A corresponding plasmid encoding the GJA8 mutant (c.658A>G; Cx50N220D)

was obtained by PCR using High Fidelity Phusion DNA polymerase (New England BioLabs,

Ipswich, MA, USA) [11]. Primers were designed in opposite directions to incorporate the

658A>G mutation into the PCR product (sense: 5'-GTGATGGAGTTGGGCCACCTGGGC-3'
and antisense: 5'-GTCGAGGAATAGGGACACAGAGGCCAC-3'). The coding region of the

construct was fully sequenced at the University of Chicago Comprehensive Cancer Center

DNA Sequencing and Genotyping Facility to ensure that PCR amplification did not introduce

unwanted mutations.

Cell culture and transfection. Communication-deficient HeLa cells were grown in MEM

supplemented with non-essential amino acids, 10% fetal bovine serum, 2 mM glutamine, 100

units/ml penicillin G and 10 μg/ml streptomycin sulfate. Cells at 50% confluence were transiently

transfected with wild type Cx50 in pcDNA3.1/Hygro(+) or with Cx50N220D in pcDNA3.1/Hygro

(+) using Lipofectin (Life Technologies, Carlsbad, CA, USA).

Immunoblotting and immunofluorescence. Immunoblotting to detect Cx50 and immu-

nofluorescent localization of Cx50 in cultured cells were performed essentially as described

previously [10,12]. Immunolocalization of Cx50 was assessed in many microscopic fields in

three independent experiments. Photomicrographs were obtained using a Zeiss Axioplan 2

microscope (Carl Zeiss, Munich, Germany) equipped with a mercury lamp and a digital

camera.

Intercellular transfer of gap junction tracers. Intercellular communication was assessed

by microinjection of low molecular weight tracers as previously described [12]. Briefly, one
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cell within a cluster was microinjected for 1 min with a solution containing 5% Lucifer yellow

(charge -2; MW: 444.4) and 9% Neurobiotin (charge: +1; MW: 287.2; Vector Laboratories)

using a picospritzer (model PLI-188; NikonInstruments Inc., Melville, NY). After 5 min fol-

lowing microinjection of the tracers, cells were fixed in 4% paraformaldehyde, subjected to

immunofluorescence (using rabbit anti-Cx50 antibodies and Alexa 488-conjugated goat anti-

rabbit IgG antibodies), and incubated with Cy3-streptavidin conjugate to allow detection of

the Neurobiotin by fluorescence microscopy. Lucifer yellow was used to identify the injected

cell, because Cx50 shows limited permeability to this dye. Incidence of coupling was quantified

in clusters of Cx50-immunopositive cells as the number of injections that resulted in Neuro-

biotin transfer divided by the number of injections.

Results

We identified a three-generation Caucasian family comprising three individuals with congeni-

tal cataracts and aphakic glaucoma inherited in a pattern consistent with autosomal dominant

transmission (Fig 1). The proband (III-1) was born 5 weeks prematurely and had a 14-day stay

in the neonatal intensive care unit. She was noted to have partial cataracts at 4 weeks of age,

which became very dense nuclear and cortical cataracts by 6 weeks of age. She underwent

uncomplicated bilateral lensectomy and anterior vitrectomy at 7.5 weeks of age. She was diag-

nosed with aphakic glaucoma at 3 months of age and was treated with a glaucoma drainage

tube in the right eye and aqueous suppressant medications in the left eye. The proband’s

mother (II-2) was diagnosed with bilateral cataracts at a few months of age. She had bilateral

cataract extraction at age 5 months and subsequently developed aphakic glaucoma in both

eyes. The proband’s maternal aunt (II-3) had bilateral congenital cataracts and microphthal-

mia. She developed aphakic glaucoma in both eyes following cataract extraction, requiring

multiple surgical interventions. The family’s medical history was otherwise unremarkable.

To investigate the causative mutation in this family, we first performed exome sequencing

on DNA from subject II-2, which identified 66,151 variants. We filtered the results to allow

only certain protein consequences (nonsynonymous, insertion/deletion, splice site affecting),

leaving 12,118 variants. We then limited allele frequencies to<1% compared to public data-

bases (1000 Genomes, Exome Sequencing Project, Exome Aggregation Consortium), resulting

Fig 1. Pedigree of the family with autosomal dominant congenital cataract. The proband (III-1) is

denoted with an arrow. Subject II-3 was also affected by microphthalmia. Asterisks indicate subjects from

whom DNA was available.

https://doi.org/10.1371/journal.pone.0183438.g001
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in 1,223 variants. We searched for mutations within candidate genes (Table 1) that have been

associated with autosomal dominant cataract in multiple studies. Only one of the remaining

variants was present within a candidate gene: GJA8c.658A>G, which leads to a missense muta-

tion p.N220D within the fourth transmembrane domain. When we tested for segregation of

this variant with the phenotype we found that it was present in each of the individuals with cat-

aracts, but it was also found in the proband’s maternal grandfather (subject I-1) (Fig 2). This

individual was reported by the family to have had no congenital cataracts; however, he was not

available for examination. The GJA8 c.658A>G variant has a population frequency of 0.005

(1000 Genomes, Exome Sequencing Project). The asparagine residue at position 220 is highly

conserved across species and isoforms (Fig 3) and is predicted to be pathogenic by SIFT

(score 0.01 out of 1.00, “damaging”) and Polyphen-2 (score 0.999 out of 1.000, “probably

damaging”).

We then examined the consequences of this variant using communication-deficient HeLa

cells transiently transfected with wild type GJA8 (encoding wild type Cx50) or with the

c.658A>G allele (encoding Cx50N220D). Immunoblots of homogenates from HeLa cells tran-

siently transfected with wild type Cx50 or Cx50N220D showed an immunoreactive Cx50 band

of similar electrophoretic mobility (Fig 4A). To test the ability of the mutant protein to form

gap junction plaques, we examined the cellular distribution of the proteins by immunofluores-

cence. Cells transfected with wild type Cx50 and Cx50N220D had substantial labeling at

Table 1. List of candidate genes for hereditary cataract.

Gene Name Exons (#)

AQP0/MIP aquaporin/major intrinsic protein of lens fiber 4

BFSP2 beaded filament structural protein 2 7

CHMP4B charged multivesicular body protein 4b 5

CRYAA crystallin, alpha A 3

CRYAB crystallin, alpha B 3

CRYBA1 crystallin, beta A1 6

CRYBA2 crystallin, beta A2 4

CRYBA3 crystallin, beta A3 6

CRYBA4 crystallin, beta A4 6

CRYBB1 crystallin, beta B1 6

CRYBB2 crystallin, beta B2 6

CRYBB3 crystallin, beta B3 6

CRYGB crystallin, gamma B 3

CRYGC crystallin, gamma C 3

CRYGD crystallin, gamma D 3

CRYGS crystallin, gamma S 3

Cx46/GJA3 connexin 46/gap junction alpha-3 2

Cx50/GJA8 connexin 50/gap junction alpha-8 2

EYA1 eyes absent homolog 1 (Drosophila) 18

FOXE3 forkhead box E3 1

FTL ferritin, light polypeptide 4

HSF4 heat shock transcription factor 4 15

MAF v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog 1

PAX6 paired box gene 6 15

PITX3 pituitary homeobox 3 4

WFS1 Wolframin 8

https://doi.org/10.1371/journal.pone.0183438.t001
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appositional membranes (Fig 4B) indicating successful trafficking. To test the ability of

Cx50N220D to form functional intercellular channels, we microinjected cells after transfection

with the gap junction permeant tracer, Neurobiotin. Both wild type Cx50 and the Cx50N220D

variant transferred Neurobiotin to their neighboring cells (Fig 4C); the incidence of coupling

in wild type Cx50-transfected cells was 9/9 and in Cx50N220D-transfected cells was 10/11.

Discussion

We identified a variant of GJA8 (c.658A>D) in a family with autosomal dominant cataract.

This variant results in the substitution of a polar, uncharged asparagine at amino acid position

220 for a negatively charged aspartic acid (N220D). Asparagine at this position in Cx50 is

highly conserved across species and across other connexin isoforms. The substitution is pre-

dicted to be probably damaging based on bioinformatic algorithms. However, based upon

Fig 2. GJA8 DNA sequencing. The c.658A>G variant results in missense mutation N220D within the fourth

transmembrane domain of Cx50. PCR of GJA8 and DNA sequencing revealed that the 658A>G variant was

present in all affected subjects, III-1, II-2, and II-3. The variation was also present in the proband’s maternal

grandfather (I-1).

https://doi.org/10.1371/journal.pone.0183438.g002
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genetic evidence, the pathogenicity of this variant is equivocal. It was first identified in a sub-

ject from a family with congenital cataracts, but was also found in 1 out of 340 alleles in the

control population (allelic frequency: 0.003), which led to the conclusion that was a non-path-

ogenic polymorphism [13]. The mutation was also found in a subject with congenital cataract

and microcornea and in his unaffected father, but not in his affected sibling, indicating that it

did not segregate with the disease in the family [14]. In our pedigree, the mutation was present

in all affected subjects, but it was also found in the proband’s maternal grandfather who was

reported to be unaffected. These observations suggest that the mutation is either an incidental

finding or that it is pathogenic with reduced penetrance and variable expressivity.

Fig 3. Protein sequence alignment. (A) Orthologous sequences of Cx50 from human, mouse, rat, chick and sheep show that amino acid N220

is highly conserved across species. (B) Alignment of other human gap junction protein sequences also demonstrated conservation of this residue

among isoforms.

https://doi.org/10.1371/journal.pone.0183438.g003

Fig 4. Cx50N220D production, localization and function in transfected cells. (A) Proteins from

homogenates of HeLa cells transiently transfected with wild type Cx50 or Cx50N220D were resolved by

SDS-PAGE and subjected to immunoblotting using rabbit polyclonal anti-human Cx50 antibodies. Samples

from cells expressing either Cx50 or Cx50N220D contain a single immunoreactive band of similar mobility.

Molecular mass standards are indicated on the left. (B) Photomicrographs show the distribution of

immunoreactivity to anti-Cx50 antibodies in HeLa cells transfected with wild type Cx50 (WT) or Cx50N220D

(N220D). Cells expressing WT and N220D both show substantial labeling at appositional interfaces between

cells consistent with gap junction plaques. (C) Photomicrograph showing intercellular neurobiotin transfer

from a microinjected cell (*) to neighboring cells in HeLa cells transiently with CX50N220D. Bar, 16 μm for B

and 10 μm for C.

https://doi.org/10.1371/journal.pone.0183438.g004
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Environmental factors, stochastic events, epigenetic changes or differences in genetic back-

ground (or modifiers) can all contribute to differential effects of a mutation. Notably, in the

family reported here all affected members are female, however, in a previous study the affected

child and the unaffected father that carried the mutation were male [14].

Ours is the first study to characterize the consequences of the N220D variant on the bio-

chemical and functional properties of Cx50. The most common pathogenic mechanism found

in other cataract-associated Cx50 mutants is failure to form gap junctions due to impaired pro-

tein folding and/or localization to the plasma membrane [6,15,16]. Unlike most pathogenic

mutations, Cx50N220D localized to appositional plasma membranes and formed functional gap

junction plaques between adjacent cells. These results demonstrate that this variant does not

abolish intercellular channel function (at least not in transfected HeLa cells). Variations of cell

density within the same tissue culture dish and of protein expression in transient transfection

experiments preclude us from estimating whether the extent of transfer differs between Cx50

and Cx50N220D. The ability of Cx50N220D to support intercellular communication may explain

the lack of segregation of the variant with the cataract phenotype in the different families. The

results suggest that other factors might contribute to the pathology.

Although Cx50N220D is the only variant in the fourth transmembrane domain of Cx50 identi-

fied to date, mutations in the corresponding region of other connexins have been associated with

diseases, including autosomal dominant congenital cataract (Cx46F206I) and autosomal dominant

and recessive hearing loss (Cx26C202F and Cx26N206S, respectively). Interestingly, the N220D sub-

stitution in Cx50 occurs in a homologous position to N206S in Cx26, however, the functional

consequences appear to be different. This might relate to the differential permeability of the inter-

cellular channels formed by Cx50 and Cx26. Cx50 channels are permeable to Neurobiotin, but

show limited intercellular transfer of Lucifer yellow whereas Cx26 channels are permeable to

both cationic and anionic molecules with a cationic preference. This implies that the amino acid

residues determining permeation must differ between Cx26 and Cx50 [17–21]. N206 is involved

in critical interactions within the Cx26 channel; the crystal structure of Cx26 shows that N206

forms a hydrogen bond with R143, located on the third transmembrane domain [22]. Mutations

in this residue are predicted to disrupt this interaction; indeed, Cx26N206S gap junction channels

show altered voltage gating properties and decreased permeability to ethidium (charge +1, MW:

314.39), but preserve permeability to anionic Lucifer yellow [18,20]. In Cx50 N220D, however, we

did not find a difference in intracellular transfer of Neurobiotin compared to wild-type Cx50.

In summary, we identified and characterized a variant occuring in transmembrane domain

4 of Cx50 in a family with autosomal dominant congenital cataracts. Functional studies dem-

onstrated that Cx50N220D forms gap junctions that allow the passage of small, cationic mole-

cules, similar to wild-type Cx50, supporting that this is a rare, benign variant rather than the

causative mutation in this family.
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