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Pediatrics, University of California Davis Medical Center, Sacramento, CA, USA

Premutation carriers have a 55–200 CGG expansion in the fragile X mental retardation 1
(FMR1) gene. Currently, 1.5 million individuals are affected in the United States, and
carriers are at risk of developing the late-onset neurodegenerative disorder Fragile
X-associated tremor ataxia syndrome (FXTAS). Limited efforts have been made to
develop new methods for improved early patient monitoring, treatment response, and
disease progression. To this end, plasma metabolomic phenotyping was obtained for
23 premutation carriers and 16 age- and sex-matched controls. Three biomarkers,
phenylethylamine normalized by either aconitate or isocitrate and oleamide normalized
by isocitrate, exhibited excellent model performance. The lower phenylethylamine and
oleamide plasma levels in carriers may indicate, respectively, incipient nigrostriatal
degeneration and higher incidence of substance abuse, anxiety and sleep disturbances.
Higher levels of citrate, isocitrate, aconitate, and lactate may reflect deficits in both
bioenergetics and neurotransmitter metabolism (Glu, GABA). This study lays important
groundwork by defining the potential utility of plasma metabolic profiling to monitor
brain pathophysiology in carriers before and during the progression of FXTAS, treatment
efficacy and evaluation of side effects.

Keywords: Fragile X, metabolomics, mitochondrial dysfunction, neurodegeneration, trinucleotide repeat disease

INTRODUCTION

A modestly expanded CGG nucleotide repeats (55–200) in the 5′ UTR of the fragile X mental
retardation gene, FMR1 (Kogan et al., 2008; Tassone et al., 2012; Battistella et al., 2013),
is the hallmark of premutation carriers. Originally, premutation carriers were thought to be
free of phenotypic traits; however, the findings regarding fragile X-associated primary ovarian
insufficiency [FXPOI; (Cronister et al., 1991)], followed by the discovery of fragile X-associated
tremor/ataxia syndrome (FXTAS; OMIM:300623) identified in adult carriers (Hagerman et al.,
2001) discredited this notion. Premutation carriers may also suffer from psychological problems,
visuo-spatial deficits, and immune dysregulation (Tassone et al., 2012; Winarni et al., 2012; Wong
et al., 2012; Battistella et al., 2013; Hagerman and Hagerman, 2013), while affected children are
often diagnosed with ADHD, autism, anxiety, and other psychopathologies (Farzin et al., 2006;
Chonchaiya et al., 2013). At the cellular level, fibroblasts from premutation carriers (humans or
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animal models of the premutation) are generally accompanied
by high FMR1 gene expression, normal or lower levels of its
translation product FMRP (fragile X mental retardation protein)
and mitochondrial dysfunction (Ross-Inta et al., 2010; Napoli
et al., 2011).

It is currently unknown which carriers of the premutation
(over 1.5 million women and men in the United States) will
develop FXTAS, as clinical diagnosis fails to identify carriers
before significant neurological symptoms are evident. Therefore
there is an immediate need for early detection and effective drugs
for the cure or the prevention of FXTAS.

An understanding of the molecular characteristics underlying
disease processes is a prerequisite for the development of
early detection biomarkers to provide high value therapeutics.
Metabolic profiling is one of the most important techniques,
particularly focused on the detection of biomarkers for diagnosis
of diseases (German et al., 2005) including metabolic disorders
(Wang et al., 2005), motor neuron disease (Rozen et al., 2005),
Parkinson’s disease (Scherzer et al., 2007), and Alzheimer’s
disease (Barba et al., 2008). Metabolomics, an omics-level analysis
of all metabolites, has become one of the main choices for
obtaining an overall view of in vivo disease states, which has
been successfully employed to identify metabolites associated not
only with disease, but also with toxicity and aging (Lawton et al.,
2008; Boudonck et al., 2009a,b; Sreekumar et al., 2009). Ante-
mortem studies generally target body fluids, such as cerebrospinal
fluid (CSF), urine, saliva or plasma/serum, as they are thought
to reflect changes in tissues. Thus, these non-invasively available
biofluids can be used as resources for first screening, in early
detection of any disease.

To our knowledge, no analysis comparing biomarkers for
differentiating premutation carriers (and their endophenotypes)
from controls has been reported to date. Here a global plasma
profiling has been developed for the discovery of novel plasma
biomarkers applied to the premutation with and without FXTAS.
Plasma metabolomics was evaluated in premutation carriers
and age- and sex- matched controls with the aim of providing
early biomarkers with the potential of uncovering metabolic
perturbations in pathways (Goodacre et al., 2004; Werner et al.,
2008) associated with the presence of the FMR1 premutation.

MATERIALS AND METHODS

Characteristics of the Subjects Enrolled
in this Study
The study was conducted at the MIND Institute and approved by
the IRB ethics committee at UC Davis Medical Center. Exclusion
criteria were refusal of the patient or his guardian, infection, or
malignancy. Blood samples were obtained by venipuncture with
informed consent, and the experiments were undertaken with the
understanding and written consent of each subject. Controls and
carriers of the premutation were recruited through the Fragile
X Treatment and Research Center at the MIND Institute at
University of California, Davis, and who participated in our
genotype–phenotype study of families with fragile X between
the years 2013 and 2015. Blood draws were all performed at

the MIND Institute between the hours 8 and 10 am (fasting
was not advised). No exercise has been reported by any of the
subject before the blood draw (unlikely event since they had to
be at the Clinic by 7–8 am on the day of the exam). Clinical
evaluations with Dr. Hagerman and associates were performed
after the blood draw. CGG repeat number in all individuals was
measured using Southern Blot and PCR analysis as previously
described (Tassone et al., 2000). The study group named “control”
consisted of 16 individuals, seven male and nine females, with
an average age (mean ± SD) of 36 ± 13 years and 31 ± 5 CGG
repeats (Table 1). The group named “premutation” included 23
premutation carriers, 11 men and 12 women, with an average
age of 37 ± 19 years. No significant differences in terms of age
(p = 0.867) or sex (χ2 test p = 0.804) were observed between
these groups except for the CGG repeats (average of longest
allele only: 103 ± 40; p = 2 × 10−8). Four of these subjects
were diagnosed with FXTAS utilizing the criteria reported by
Jacquemont et al. (2003) (Table 1). The average CGG repeats
of the mutant allele in heterozygous carriers (females only) was
86± 23 (mean± SD) whereas that of hemizygous carriers (males
only) was significantly longer (121± 47; p= 0.033).

Plasma Metabolomics
Plasma samples were isolated from a single blood draw per
individual as previously described (Napoli et al., 2016b) Samples
were extracted and analyzed by mass spectrometry as described
in detail elsewhere (Napoli et al., 2015). Briefly, 30-µl aliquots
were extracted by 1 ml of degassed acetonitrile:isopropanol:water
(3:3:2, V/V/V) at −20◦C, centrifuged and decanted with
subsequent evaporation of the solvent to complete dryness.
A clean-up step with acetonitrile/water (1:1) removed
membrane lipids and triglycerides. The cleaned extract was
aliquoted into two equal portions and the supernatant was
dried down again. Internal standards C08–C30 FAMEs are
added and the samples were derivatized by methoxyamine
hydrochloride in pyridine and subsequently by N-methyl-
N-trimethylsilyltrifluoroacetamide for trimethylsilylation
of acidic protons. Data were acquired using the following
chromatographic parameters, with more details to be found
in (Fiehn et al., 2008; Napoli et al., 2015). Metabolites were
identified by matching the ion chromatographic retention index,
accurate mass, and mass spectral fragmentation signatures
with reference library entries created from authentic standard
metabolites under the identical analytical procedure as the
experimental samples.

Statistics
Metabolite identification was performed through the use of
several databases including PubChem Compound (Kim et al.,
2016), KEGG (Kanehisa et al., 2016), and HMDB (Wishart et al.,
2007, 2009, 2013) and the online chemical translation service
(Wohlgemuth et al., 2010). Raw data were normalized to the
average of pooled control data and results were plotted as in
LOG2 scale, so that equal fold changes (up/down-regulated)
will have the same distance to the zero baseline. For biomarker
discovery, the linear SVM classification method was used with the
feature ranking method UNIV AUROC. Univariate analysis was
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TABLE 1 | Demographics and clinical characteristics of plasma donors
included in this study.

Subjects Age (y) CGG repeats Sex FXTAS stage

C1 29 30 M 0

C2 54 30 M 0

C3 23 29, 30 F 0

C4∗ 50.5 21 M 0

C5 24 30 M 0

C6 41.2 43 M 0

C7 28.8 20, 33 F 0

C8 26 30 M 0

C9 33.7 23, 30 F 0

C10 54 25, 33 F 0

C11 25 24, 33 F 0

C12 45 22, 33 F 0

C13 24 23, 35 F 0

C14 26.3 30, 37 F 0

C15 41.5 20 M 0

C16 57.4 23, 30 F 0

P1 46.3 61 M 0

P2 9.7 31, 63 F 0

P3∗ 8.4 180 M 0

P4∗ 24 31, 93 F 0

P5 19.7 177 M 0

P6 55.6 104 M 0

P7 49.3 31, 86 F 0

P8∗ 17.3 16, 67 F 0

P9 45.3 69 M 0

P10 49.9 20, 98 F 0

P11 9.1 160 M 0

P12 55.4 30, 69 F 0

P13 53 16, 67 F 0

P14 33.1 30, 137 F 0

P15 43.2 30, 106 F 0

P16 38.4 33, 60 F 0

P17∗ 8.4 180 M 0

P18 24 30, 79 F 0

P19 25 67 M 0

P20∗ 62.5 105 M 4

P21 61.3 96 M 4

P22 61.8 110–130 M 1

P23 59.1 33, 107 F 3

C and P refer to controls and carriers of the premutation, respectively. The number
following the letter identifies the subject from which the fibroblasts were obtained.
∗Receiving SSRIs.

used to visualize the data because it is one of the most common
methods utilized for exploratory data analysis and provides
a preliminary overview about features that are potentially
significant in discriminating the conditions under study. The
Receiver Operating Characteristic (ROC) curve analysis is
usually the method of choice of biomarker identification and
performance evaluation because it provides a complete and
easily visualized sensitivity/specificity report visualization. In a
ROC curve, the true positive rate (Sensitivity) is plotted as
function of the false positive rate (100-Specificity) for different

cut-off points of a given parameter. Each point on the ROC
curve represents a sensitivity/specificity pair corresponding to a
particular decision threshold. A test with perfect discrimination
(no overlap in the two distributions) has a ROC curve that passes
through the upper left corner (100% sensitivity, 100% specificity).
Therefore the closer the ROC curve is to the upper left corner,
the higher the overall accuracy of the test, the closer the ROC
curve to the diagonal line, the poorer the diagnostic power of
the test. The area under the ROC curve is an index of how
well a parameter can distinguish between two diagnostic groups
(carrier/normal). In the Youden’s approach, the optimal cut-
off is the threshold that maximizes the distance to the diagonal
line defined by max (sensitivity + specificity). This analysis was
performed with MetaboAnalyst (Xia et al., 2015). All metabolites
obtained by mass spectrometry were subjected to two rounds
of analyses. First, a list of single metabolites (or their ratios)
was identified by the algorithm under the biomarker discovery
feature of MetaboAnalyst. From these, only those with an area
under the curve (AUROC) of ≥0.8 and p < 0.05 were selected.
The second round of filtering involved the selection of markers
that had a false positive rate of ≤10% and a true positive rate
of ≥80%.

RESULTS

Identification of Plasma Biomarkers
A total of 143 metabolites (Supplementary Table S1) were
identified by mass spectrometry in plasma samples from 23
carriers of the premutation and 16 age- and sex-matched controls
(see demographics details of the subjects under Table 1). The
metabolites and their relative concentrations were analyzed by
using a linear SVM classification method with the univariate
AUROC feature ranking method. From this analysis, a list
of single metabolites (or their ratios) was identified as being
potential biomarkers of the premutation, from which only those
with an AUROC of ≥0.8 and p-values ≤ 0.05 were selected
(Figure 1A). These metabolites were classified based on their
biological role (based on the KEGG BRITE functional hierarchy)
as follows: biogenic amines (phenylethylamine; PEA), bioactive
fatty acids (oleamide), organic carboxylic acids (dicarboxylic
such as adipate and tricarboxylic such as citrate, aconitate, and
isocitrate), monosaccharides (aldoses such as xylose and sugar
acids such as glucuronic and galacturonic acids), and others
(uric acid, furan, threonic acid, 1,2-cyclohexadione, uridine
diphosphate glucuronic acid, or UDPG). The biomarkers that
differentiated the most between the two diagnostic groups
were oleamide ratios (eight instances), PEA alone or in
ratios (five instances), followed by Krebs’ cycle intermediates
(four instances; Figure 1A). By filtering the metabolites or
their ratios shown under Figure 1A by a false positive rate
of ≤10% and a true positive rate of ≥80%, the ratios of
PEA/aconitate, PEA/isocitrate, and oleamide/isocitrate were the
only ones fulfilling these thresholds (Figure 1A, shown in bold
and italics). These metabolite ratios were then visualized by
using the receiver-operator characteristic (ROC) curve analysis
(Figure 1B).
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FIGURE 1 | Metabolites and their ratios as potential biomarkers of the premutation. (A) The displayed biomarkers were obtained by using data from all
controls and premutation carriers (reported in Table 1). The complete list of metabolites identified by mass spectrometry is reported in Supplementary Table S1.
Metabolites’ performance was filtered based on their area under ROC curve (AUROC ≥ 0.800) and T-statistics (p ≤ 0.05). Also shown are the generalized log
transformation of the fold change (Log FC), false positive rate (FPR) and true positive rate (TPR). In bold, biomarkers with FPR ≤ 0.1 and TPR ≥ 0.8. (B) Receiver
operator characteristic (ROC) curves of the model using metabolite ratios identified under A as potential biomarkers. The X-axis represents the FPR (as 1-specificity)
whereas the Y-axis represents the sensitivity. On the right side of each ROC, box whisker plots of the generalized log transformation of fold change ratios in control
(N) and premutation carriers (Y). (C) As in A but analysis performed with subjects not taking SSRIs (those excluded were indicated with asterisks under Table 1).
(D) ROC curves of the model using metabolite ratios identified under C as potential biomarkers (other details under B). (E) Differences in the plasma biomarker
oleamide/isocitrate in controls and carriers of the premutation with and without FXTAS. Data are shown as fold change and were analyzed by ANOVA followed by
Bonferroni’s post-hoc test.

Within these identified biomarkers, the plasma levels of two
bioactive molecules, namely PEA and oleamide, in carriers of
the premutation were lower than controls, whereas those of two
Krebs’ cycle intermediates, aconitate, and isocitrate were higher
(Table 2).

Nutritional Supplements and
Medications as Confounding Factors for
Biomarker Validation
While the diagnostic groups were not different in terms of age
or sex (see Materials and Methods), it could be argued that
other confounding factors could influence certain metabolite
variations, such as intake of vitamins, minerals, nutritional
supplements, and medications. Participants on prescription

TABLE 2 | Levels of metabolites identified as potential biomarkers of the
premutation.

Metabolite Log2 FC −log10 (p) FDR

Aconitate 0.5 2.77 0.111

Isocitrate 0.3 1.29 0.427

PEA −0.6 3.49 0.046

Oleamide −2.9 2.05 0.211

medications were not excluded from this study. However, careful
record of all prescription medications was kept. Of the subjects
included in this study, 6 controls and 13 carriers were on
multivitamins/probiotics or nutritional supplements, one control
and eight carriers were on antidepressants, three controls and
four carriers on cyclooxygenase inhibitors, two controls and
two carriers on hormone replacement therapy, one control and
two carriers on antihistamines, one control and one carrier
on nitric-oxide producing drugs. Other medications included
hydroxymethylglutaryl-CoA reductase inhibitors (two carriers),
proton pump inhibitors (two carriers), beta2 agonist (two
carriers), levodopa (one carrier), alpha2A receptor agonist (one
carrier), alpha1 adrenergic blocker (one control), ACE inhibitor
(one carrier), anticoagulant (one control), barbiturate (one
carrier), beta blocker (one carrier), and inhibitor of monoamine
transport (one carrier).

Carriers, although not significant, were more likely to take
vitamins and supplements than controls (56.5% vs. 37.5%;
p = 0.059). From the variety of medications that both groups
were receiving (see Materials and Methods), carriers were more
likely to be taking antidepressants than controls (30.4% vs.
6.25%; p < 0.0001). The most common class of antidepressant
was constituted by the selective serotonin reuptake inhibitors
(SSRI; n = 6, including one control), followed by serotonin–
norepinephrine reuptake inhibitors (n = 2 carriers), serotonin
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modulators (n = 1 carrier), and dopamine–norepinephrine
reuptake inhibitors (n = 1 carrier). While a careful review of
the literature and known modes of action of these drugs does
not suggest that these classes of supplements or medications are
likely to influence any of the metabolites and/or biochemical
pathways discussed in this study, we could not ascertain whether
the differences in plasma metabolomics between controls and
carriers were the sole result of the presence of the FMR1
premutation, or its combination with the therapeutic use of SSRI
and/or metabolic consequences from SSRI-derived side effects.
To solve this issue, the biomarker discovery analysis was repeated
under identical conditions but excluding those subjects that were
taking SSRIs (indicated with asterisks under Table 1), which
represented a 6.25% of the controls and a 21.7% of premutation
carriers. Consistent with the previous findings, no statistically
significant differences were found between groups of SSRIs-free
controls and premutation carriers in terms of age, sex, or FXTAS
subjects (36 ± 12 vs. 41 ± 17, p = 0.304; 40% males vs. 44.5, χ2

test p= 0.8002), except on the CGG repeat expansion (32± 5 vs.
96± 35, p= 6.2× 10−8).

The resulting metabolites or ratios were screened for AUROC
≥0.8 and p-values ≤ 0.05 (Figure 1C) and those with a false
positive rate ≤10% and a true positive rate ≥80% were selected
as potential biomarkers (Figure 1C indicated in bold italics and
Figure 1D). The resulting metabolite ratios were PEA/isocitrate
and oleamide/isocitrate, two of the three biomarkers identified
before (compare Figures 1B vs. 1D). This analysis indicated
that the presence of subjects taking SSRIs (which constituted an
overall ∼18% of all subjects) did not influence significantly the
biomarkers identified before.

Finally, we tested whether any of the three biomarkers
identified above (Figure 1B) differentiated among the three
diagnostic groups, namely control and premutation with and
without FXTAS. Although only four carriers of the premutation
exhibited FXTAS, a significant difference between this group
and both controls and unaffected carriers was observed with
one of the biomarkers, namely oleamide/isocitrate (Figure 1E).
This ratio was 30% lower in FXTAS-affected compared to the
non-affected group (p= 0.039).

DISCUSSION

To the best of our knowledge, this is the first study in which
an untargeted serum metabolomic profiling approach combined
with sequential metabolite ratio analysis has been applied
to discriminate plasma biomarkers in plasma of premutation
and FXTAS-carriers. Our results demonstrate that a panel of
four core serum metabolites (PEA, oleamide, aconitate, and
isocitrate) can be used for sensitive and specific diagnosis of
the premutation with and without FXTAS, and one of these
ratios (namely, oleamide/isocitrate) as a biomarker of FXTAS.
The findings of this study are promising because, despite the
relatively small sample size (n = 16 and 23, respectively, for
control and premutation individuals), they were obtained from
a clinically well-characterized cohort of subjects with the FMR1
premutation representing the wider clinical spectrum of this

genetic disorder. Although it could be argued that plasma
metabolites may not be predictive of those in CNS because the
blood-brain barrier serves to limit the passage of metabolites
from and to the periphery, significant correlations have been
reported for a number of key metabolites between plasma and
CSF in subjects with HIV-1 infection [among them lactate,
glutamine, and citrate (Maher et al., 2011)]. Furthermore, several
reports have applied metabolomics of non-invasive samples to
study complex neurological disorders (Griffin and Salek, 2007)
including schizophrenia and Parkinson’s disease (Dumas and
Davidovic, 2013). Supporting the notion that plasma metabolites
can be used as surrogates of brain function, blood plasma
metabolic profiles (including lactate) consistent with metabolic
syndrome and increased inflammation have been reported in
elderly people with mild cognitive impairment, a transitional
state with considerably increased risk for Alzheimer’s disease
(Tukiainen et al., 2008), and high CSF citrate levels have been
found associated with depression but not to manic features
(Mellerup and Rafaelsen, 1981). If these correlations were also
applicable to our study, the higher plasma lactate (Figure 1C) and
citrate (Figures 1A,C) levels observed in carriers could be linked
to their higher incidence of cognitive impairment (Grigsby et al.,
2006, 2008; Brega et al., 2008) and depression (Bacalman et al.,
2006).

Considering that a significant number of metabolites
identified as potential biomarkers in this study are of
mitochondrial origin or involved in mitochondrial metabolism
(citrate, aconitate, isocitrate) and given the roles of mitochondria
at providing ATP to aerobic tissues—such as brain—and on
de novo synthesis of Krebs cycle-associated neurotransmitters
[i.e., Glu, Asp, and GABA (Butterworth and Heroux, 1989;
Laughlin et al., 1998; Attwell and Laughlin, 2001; Navarro
et al., 2008; Napoli et al., 2014)], it is tempting to propose that
these metabolites are pointing at an underlying mitochondrial
dysfunction. Consistent with this view, we have reported
deficits in bioenergetics and/or mitochondrial morphology and
dynamics in fibroblasts (Ross-Inta et al., 2010; Napoli et al., 2011,
2016c) from carriers as well as in brains (Napoli et al., 2016a)
and ovaries (Conca Dioguardi et al., 2016) from a murine model
of the premutation. Methods used for assessing mitochondrial
dysfunction are associated with significant drawbacks that
limit their routine clinical use. Some of them are invasive
(requiring a skeletal muscle biopsy), whereas non-invasive ones
require specialized exercise physiology evaluation or NMR
studies, which may not be widely available, and not practical
for monitoring disease progression or therapeutic responses for
subjects with limited mobility. Levels of key plasma metabolites
(lactate, alanine, and pyruvate) are often suggestive of respiratory
chain diseases or mitochondrial dysfunction (Robinson et al.,
1986; Gillis and Kaye, 2002), but simply lack sensitivity and
specificity [61% sensitivity based on (Scaglia et al., 2004)]. In
this study, by applying a global metabolite profiling utilizing a
relatively non-invasive method, a combination of metabolites
was identified that have the potential to provide a sensitive and
specific assessment of the mitochondria status or “fitness” in
carriers, not influenced by SSRI treatments. In this context, it is
important to point out that beneficial effects on mitochondrial
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function have been inferred from various studies based on the
fact that anti-depressant treatments normalize decreased cerebral
blood flow and glucose metabolism in the prefrontal cortex of
depressed patients (Buchsbaum et al., 1997; Kennedy et al.,
2001; Dimatelis et al., 2013). However, in our study, the same
mitochondrial metabolites with and without SSRIs treatments
were identified (citrate, aconitate, isocitrate) with the exception
of lactate, which was noted in the SSRI-free group, possibly
suggesting a marginal improvement provided by this therapy or
that carriers do not respond positively to this pharmacological
intervention.

Within these identified biomarkers, the plasma levels of
PEA and oleamide were lower than controls, whereas those of
two Krebs’ cycle intermediates, aconitate, and isocitrate were
higher (Table 2). To understand the biological meaning of these
biomarkers and their ratios, we focused on these metabolites and
the pathophysiology behind them.

Phenylethylamine- Decarboxylation of Phe in dopaminergic
neurons of the nigrostriatal system (Barroso and Rodriguez,
1996) result in the generation of PEA, the latter being a precursor
to the neurotransmitter phenylethanolamine. However, some
studies have indicated that PEA per se may function as a
neuromodulator or neurotransmitter, stimulating the release of
dopamine from the cytoplasmic pool and behaving as a dopamine
receptor agonist (Raiteri et al., 1977; Barroso and Rodriguez,
1996). High levels of PEA have been found in the urine (but not
in serum or CSF) of schizophrenics (Potkin et al., 1980; O’Reilly
and Davis, 1994). Low levels—as those observed in carriers—
have been reported in the CSF of subjects affected with Rett’s
syndrome (Satoi et al., 2000) and in urine from Parkinson’s
disease affected individuals (Zhou et al., 1997), children with
attention deficit hyperactivity disorder (Kusaga et al., 2002) and
subjects affected with depression (Sabelli et al., 1983). Some of
these clinical features are shared by carriers of the premutation
(Parkinsonism, ADHD, depression, autism; (Bacalman et al.,
2006; Farzin et al., 2006; Berry-Kravis et al., 2007). Interestingly,
the concentration of PEA or its metabolite phenylacetic acid have
been proposed as useful biochemical markers in psychiatric and
behavioral research (Davis and Boulton, 1994). This may also
be true in neurodegenerative diseases, as a significant negative
correlation between CSF concentration of PEA and severity of
Parkinson’s disease (Hoehn and Yahr stage) has been reported
(Zhou et al., 1997).

The observed lower PEA concentrations in carriers than
controls may reflect any of these possibilities:

(i) PEA may be decreased due to an incipient neuronal
degeneration as the amine is synthesized by the nigral
dopaminergic neurons. These neurons could be decreased
in carriers as loss of FMR1 is associated with reduced
numbers of dopaminergic neurons in the substantia nigra
pars compacta (Fish et al., 2013) as it has also been observed
in Parkinson’s disease (Morris et al., 1989; Colloby et al.,
2012). Consistent with this view, Greenshaw et al. (1986)
have found that degeneration of the substantia nigra results
in depletion of dopamine (DA) and a decrease in the rate of
PEA accumulation in deprenyl-treated rats.

(ii) Postsynaptic PEA catabolism may be increased in the
premutation such as increased monoamine oxidase B
(MAO-B) activity would be enough to accelerate the
catabolism of PEA. Truncating mutations in MAO-B, such
as those observed in individuals with schizophrenia—
but not with autism—may result in a gain-of-function
of activity (Piton et al., 2011). However, no genomic or
functional data on MAO-B activity are available for this
cohort of subjects.

(iii) Increased presynaptic dopamine concentrations are known
to inhibit PEA synthesis at the decarboxylation step
(Boulton et al., 1990), a phenomenon which may be
relevant in carriers with Parkinsonism under treatment
with levodopa (Hall et al., 2006). However, in our cohort of
carriers (n = 23), only one subject presented Parkinsonism
and was treated with levodopa.

In the context of the premutation, the lower plasma
PEA concentrations may reflect either incipient nigrostriatal
degeneration in subjects without yet significant signs of
Parkinsonism or a reduced modulatory effect of PEA on a
postsynaptic receptor in response to dopamine.

Oleamide- Oleamide is a natural occurring fatty amide that
accumulates in the CSF during sleep deprivation and induces
sleep in animals. In this regard, it is being studied as a
potential medical treatment for mood and sleep disorders, and
cannabinoid-regulated depression. The mechanism of action
of oleamide’s sleep inducing effects is not well understood
yet; however, it is likely that this compound interacts with
multiple neurotransmitter systems. Oleamide is structurally
related to the endogenous cannabinoid anandamide. Both
anandamide and oleamide elicit behavioral effects indicative
of cannabinoid activity, but only anandamide binds the
cannabinoid (CB1) receptor in vitro. Oleamide, anandamide,
and myristic amide are degraded to the corresponding fatty
acids (oleic acid, arachidonic acid, and myristic acid) by the
enzyme fatty-acid amide hydrolase (FAAH) to terminate the
signaling functions of these molecules (Wei et al., 2006).
This enzyme is most abundant in neocortex, hippocampal
formation, amygdala, and cerebellum suggesting that this
CNS distribution supports the degradation of neuromodulatory
fatty acid amides at their sites of action influencing their
effects on sleep, euphoria, and analgesia (Thomas et al.,
1997).

Oleamide has been proposed to induce its behavioral effects
by serving as a competitive substrate for the brain FAAH
and inhibiting the degradation of endogenous anandamide.
Disruption of the endocannabinoid pathway induces metabolic
imbalances (Di Marzo et al., 2001; Osei-Hyiaman et al.,
2005, 2006), outcomes generally considered detrimental to any
tissue but, they gain more weight in brain given its high
aerobic capacity (Laughlin et al., 1998; Attwell and Laughlin,
2001) and the localization of CB1 receptors in neurons and
neuronal mitochondria (Benard et al., 2012). In FAAH+/+ and
FAAH−/− mice, oleamide induced hypomotility, hypothermia,
and ptosis, all of which were enhanced in FAAH−/− mice,
with negligible binding to the CB1 receptor in brain extracts
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from either genotype (Lichtman et al., 2002). In contrast,
anandamide exhibited a 15-fold increase in apparent affinity for
the CB1 receptor in brains from FAAH−/− mice, consistent
with its pronounced CB1-dependent behavioral effects in these
animals. Other reports indicated that oleamide neither directly
activates CB1 receptors nor acts via the proposed “entourage”
effect (Mechoulam et al., 1997) to increase concentrations of
anandamide through FAAH inhibition, rather the selective
effects of oleamide on theta-burst-conditioning may reflect
modulation of GABAergic transmission (Lees and Dougalis,
2004). It has been proposed that genetic variations in FAAH
can be associated with susceptibility to polysubstance abuse
(OMIM: 606581). Indeed, a homozygous T129 variant is strongly
associated with drug and alcohol abuse and methamphetamine
dependence (Sipe et al., 2002; Filbey et al., 2010; Buhler et al.,
2014) whereas increasing amygdala anandamide (and possibly
oleamide) enables extinction-driven reductions in fear in mouse
and may promote stress-coping in humans (Gunduz-Cinar et al.,
2013).

Based on these reports and in the context of the premutation,
lower levels of oleamide may be predictive or linked to the
increased incidence of substance abuse, including alcohol (Kogan
et al., 2008), mood/anxiety issues of carriers of the premutation
(Kogan et al., 2008), their increased anxiety as a reflection
of lower stress-coping abilities (Bourgeois et al., 2007) and a
reflection of their sleep disturbance which is seen in the majority
of carriers (Chonchaiya et al., 2010).

Krebs’ cycle intermediates: citrate, isocitrate and aconitate- Two
intermediates of the TCA cycle, located within the first half
of the cycle, namely aconitate and isocitrate, were identified as
potential biomarkers along with citrate (Figures 1A,B). Their
levels were higher in plasma from carriers than controls (1.4-
fold of controls for aconitate and 1.2-fold for both citrate and
isocitrate; p < 0.05). Increases in these tricarboxylic acids located
within the first half of the cycle may indicate a slower Krebs’
cycle activity. This is based on the fact that increases in succinate,
malate, and fumarate (located in the second half of the cycle) have
been documented to accompany exercise, effect termed as the
TCA cycle expansion (Gibala et al., 1997a,b). The “expansion”
is believed to result from a relative excess of glycolysis
compared to OXPHOS, which then results in the shunting of
pyruvate and Glu to Ala and alpha-ketoglutarate (AKG) via
Ala aminotransferase. As a result, AKG is then converted to
other TCA cycle intermediates (succinate, malate, and fumarate).
Thus, increases in the first half of this cycle are suggestive
of lower alpha-ketoglutarate dehydrogenase (AKGDH) activity.
This would result in higher AKG concentrations, which via
the near-equilibrium of glutamate dehydrogenase, results in
the increase of Glu concentrations. The latter is an allosteric
inhibitor of glutaminase, and AKG is also an allosteric inhibitor
of mitochondrial transport of Gln. Hence, an increase in AKG,
due to a decreased activity of AKGDH, should lead to increases
in Glu and Gln, and given that Glu is a precursor of GABA,
also an increased synthesis of GABA or related metabolites.
Two experimental evidences supported this option suggesting
an increased flux from AKG to Gln: (i) the ratio of Gln-to-
Glu was higher in plasma of premutation than controls (0.86

vs. 0.37; p < 0.05) and (ii) higher 4-hydroxybutyrate (GHB, a
GABA derivative) was observed in plasma from carriers (twofold;
p < 0.05) suggesting an increased synthesis of GABA from Glu
and, as a result, of its product GHB.

In the context of the full and premutation, dysregulation
of neurotransmitter systems, including the mGluR1/5 pathway
and GABA pathways, has been reported in fragile X syndrome
(Hagerman et al., 2010), neurons from a KI mouse model of the
premutation (Cao et al., 2012) and in the brain of individuals
with FXTAS (Pretto et al., 2014). Although not pathognomonic,
the increased plasma levels of three TCA cycle metabolites
(citrate, aconitate, and isocitrate) along with a higher plasma
lactate (1.5-fold of controls; p = 0.095) have been observed
in some mitochondrial diseases (Crippa et al., 2015), usually
associated with the formation of analogs of TCA intermediates
with the potential of depleting oxaloacetate and slowing down
the TCA cycle, especially if not accompanied by the activation
of the anaplerotic reaction catalyzed by pyruvate carboxylase.
These results are consistent with the reports on mitochondrial
dysfunction and abnormal network/distribution in cells from
premutation carriers (Ross-Inta et al., 2010; Napoli et al., 2011,
2016c) as well as in KI mouse models of the premutation
(Kaplan et al., 2012; Conca Dioguardi et al., 2016; Napoli et al.,
2016a).

In the broader context, this and other studies (Fonteh et al.,
2007; Griffin and Salek, 2007; Dumas and Davidovic, 2013;
Tsuruoka et al., 2013; Napoli et al., 2015) highlight the potential of
metabolic phenotyping to (a) identify biomarkers of neurological
diseases utilizing non-invasive samples such as plasma and urine,
(b) characterize metabolic profiles that contribute to accurate
diagnosis in complex neurological conditions (endophenotypes),
and (c) assess treatment efficacy and determine metabolic
secondary side effects, especially in subjects with multidrug
treatments associated with metabolic disorders.

Further studies are warranted to allow the construction
of robust models for predicting neurological changes from
the less invasive approach of plasma metabolic profiling and
verifying the important biological roles of these key metabolites
with endophenotypes (e.g., with and without Parkinsonism). If
successful, the specific biochemical fingerprints could eventually
be used to identifying key pathways for therapy and helping in
monitoring disease progression. In this regard, the biomarker
oleamide/isocitrate seemed to discriminate carriers with FXTAS
from those not affected; however, future research would need to
be performed to test whether this ratio can be used to diagnose
more accurately stages of FXTAS as well as if it has any predictive
value in terms of discriminating carriers that will develop FXTAS
later in life.
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