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ABSTRACT

.

An efficient numerical procedure for the material and
geometric nonlinear analysis of planar reinforced mbm pre=~
stressed concrete frames including the time uavmwuonn
effects due to load history, temperature wwmﬂOﬂwh.nummwh
shrinkage and aging of concrete and relaxation of prestress
is developed. The procedure i's capable of ﬁﬂmuwnnWbm nwm
response of these structures throughout their mmnmwom wowm
history as well as nwnocmwocn.mwwmﬁwnN Mﬁ»HﬂMﬂwo and ultimate

- load ranges., |

2 step ferward integration is performed by mw<wmwsm‘nWm
time domain into a discrete number om.wanmndmwm for the
guasi-static time dependent analysis. For each time inter-
vel nonlinear eguilibrium eguations which are valid for the
nmﬂmeﬂ geometry and material properties are set up and
solved by the finite element method based on the displace-
ment formulation. _wn incremnantal load method combined with’
unbalanced load iterations for each load increment is used
for the solution of the nouwwsmwn equilibrium wacmwnouma

Time dependent variation of concrete properties is

recognized. Concrete strain is assumed to consist of the




'SR

mechanical component and the non-mechanical component due to
creep, sShrinkage, aging and temperature variations. Para-
Uowwnlwwamwn~ bilinear and multilinear wﬁvuoxwamnwouu of the
gtress-gstrain curves are utilized for nouwumnm, reinforcing
steel and prestressing steel, respectively. A sinple model
for the inelastic load reversal is incorporated.

Creep strain is evaluated by an efficient auamﬂwnmw
procedure based on the ags and temperature dependent integral
foermulation. In the procedure the history effect is incozr-
voum«ﬁm by updating the values of only twe <mﬂwwwvnm wamann
cf the sterage ©f all the previous stress or strain histeories.
Nonlinear creep effect at high stress levels is alse con-
sidered.

Varied material properties ﬂwnvws.m frame element is
accounted for by the composite concrete and reinforecing steel
layer system. Element vhovmﬂmwmm<mﬂm evaluated by a layer
integration, and the contribution of prestressing steel is
added directly. |

Pre-tensioned, vomnlnmnmwosma bended and nbvowmm& frames
are analyzed distinguishing three wwmnwwon stages of leoading
s 1.2, before, at and after the transfer of prestress.

A series of numerical examples are presented to study
the validity and applicability of the present method. The
Hmmswﬂu are compared with experimental results and the ana-~

iytical results obtained by other investigaters.
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1. INTRODUCTION

1.1 General Remarks

Reinforced and prestressed concrete structures are de~
signed to satisfy the conditions of serviceability and safe-
ty. In order to ensure the serviceability requirements an
mnncﬂmﬂm prediction of displacements, w:ﬁmnnww forces anéd de-
formations of the structure subjected to service loads
throughout wnm.manqwom life is :onwumunwc The service loads
include not enly the live load history the structure is sub-
jected to, but also ﬂum.~o~am wsuoaon upon the structure due
to environmental changes. To assess the safety of the struce
ture against failure an accurate estimation of the ultimate
load rum.mo be made. And the prediction of the behavior of
the mwnsnncﬂm throughout the elastic, inelastic and ultimate
load ranges is degirable.

Analytical determination of the displacements, internal
forces, stresses and deformations of reinforced and pre-
stressed nounWmna.unucnwunmu_nsuonowoaw their load histories
is complicated by a number of factors which include non-
homogeneity of the Bunmnwmw #+ continuously changing topology
of the structural system due to cracking of concrete under
nrnnmmmwam load ; nonlinear stress-strain relationship of
concrete, reinforcing and prestressing steels ; variation of
concrete vnovmnnnuu with time and the time dependent concrete
deformations due to creep, shrinkage, load history and envi-

ronmental changes ; difficulties in the analytical modelling



of the dowel action of steel reinforcements, bond slip and
aggregate interlock at cracks ; the effects of geometric
nonlinearity on such structures as frames, plates and shells.
Due to the difficulties mentioned above engineers in the
past have been relying heavily on empirical formulas derived
from numerous experiments for the design ¢f concrete struc-
tures,. mo£m<mw. with the advent of mw@wwmw computers and
powerful modern numerlical analysis methods such as the finite
element method, numercus investigators in the past decade
Um¢o been making efforts to develeop analytical solutions
which would hopefully obviate the needs for experiments.
The present study is one of such continuing efforts, and con-
cerns the analysis of reinforcad w:a prestressed concrete

planar frames.

1.2 Review of mnm¢wona Studies

In thi=z section a brief review of previous studies on
the wanwnwnwoa of the finite mwmsmnﬁ method to reinforced
concrete structures will be given. The theory and the appli-
cation of the finite element method for the wswwwu»m 0f line
ear w:u nonlinear structures are treated comprehensively in
the bocks by Zienkiewicz {1), Desail wua.wUmH {2) and owwwwasmn
(3). |

Scordelis {4) presented a comprehensive review of the
application of the mhuwwo element method for the analysis
of reinforced concrete structures. He considered plane stress

systems, plate bending systems, combined plane stress and




plate bending systems, axisymmetric solid systems and general
three dimensional solids for both mwonnwnwsm and long~time
locadings. More nmnmunww..mnwsovnwhv {5,6) and Wegner {7)
presented similar surveys of the application of the finite
element method for the study of reinforced concrete struc-
tures. .

The earliest published mnvwwnmnwon of the finite element
method to reinforced concrete mﬂnannznmm was by zao and
Scordelis nmv at the cuw<mwaﬂw of California, Berkeley in
1967. Simple beams were analyzed in which concrete and steel
reinforcements were represented by constant strain triangular
elements, and special bond link elements were used to connect
the steel no_ﬂwm concrete. A linear elastic analysis was
performed on beams with predefined crack patterns to deter-
mine principal stresses in the concrete, stresses in the
steel reinforcement and bond stresses. Ngo, Scordelis and
Franklin {(9) used the same approach to study uvmun in beans
with m»wmoumw tension cracks, nOﬂwwmmnwnw the effects of
un»nncvw._motaw w:omﬂ. aggregate interlock and horizontai
splitting along reinforcement near the mmvnOﬂn.

Nilson (10,11} introduced nonlinear material properties
and a nonlinear ro:mlup»v anun»onwrwv into w:m analysis and
used an incremental load method to account for these nonlin-
earities. He analyzed concentric and eccentric reinforced
tensile members by using quadrilateral plane stress elements.
Cracking was accounted for by stopping the solution when an

element indicated a tensile failure and thence redefining a



new cracked mﬁucnncmm. Franklin (12) used an iterative pro-
cedure with incremental loading technigue to trace the re-
sponse of two-dimensional systems from initial loading to
failure in one continuous computer mamwwmwm.

Plane stress elements were widely used by numerous in-
vestigators to study the behavior of nmwzmounma concrete
frame and wall systems. Zienkiewicz, et al (13,14} used an
"initial wnnmww: approach for two-dimensional stress studies
including tensile cracking and mwmw¢onvwmmnwo behavior in
compression. Cervenka and Gerstle (15,16) analyzed shear
walls and spandrel beams by using a similar approach and a
constitutive relationship for nwm‘nosnOmwnm concrate-steel
material properties, MecCutcheon, Mirza, Mufti, et al (17,18)
studied plane stress problems including cracking and bond
failures, Plane stress problems have been also -analyzed by
other investigators adm-uo;m_ummymu.uuu using similar ap=-
proaches,

Reinforced concrete slabs were studied by Jofriet and
McNiece (23) by using a bilinear aoam:n:nanmncnm relation-
ship to accdunt for progressive cracking. Bell and Elms {28,
27) used a similar mvvnomnr to study slabs. Dotroppe et al
(28) used a layered finite element procedure Ha.tswnr slab
¢lementa were divided inte layers to mmnoc:ﬁ for the onaHmm|
sive c¢racking mnummm the thickness of the slab. " Berg, et al
{29,30) used a similar wvuﬂomnw.w:m included geometric non-
linearity.

Lin (31,32) studied reinforced concrete shells utilizing



in

layered ¢triangular finite elements which take the coupling
of the membrane action and the bending action into account.
He included the tension stiffening effect of concrete due to
steel reinforcements between cracks. Bell and Elms (33) an-
alyzed shells by using reduced stiffness to account for the
progressive cracking. Hand, et al {34) studied shells by
using layered rectangular finite elements.

Use of three dimensional elements for nmw:mOHQWQ con-
crete structures has been scarce due to the lack of knowl~
edge regarding nvm.umwmcwon of concrete in general three-
dimensional stress state. Suidan and Schnobrich (35) studied
beams by using 20=node three-dimensional elements. Elastic-
plastic concrete properties and the von Mises yield criter-
ion were utilized. Sarne (37) analyzed prestressed concrete
reactor vessels by using three-dimensional isoparametric el-
ements. He included time dependent effects and material
uonwwnmmﬂpn% in his analysis.

Ngo (36} recently presented a method to predict the
crack growth in concrete members by a network~topological
approach. Bar owmam:nm.‘ntOl&meamwonww isoparametric ele~
ments, bond elements and link elements were used in his
study.

Prestressed concrete reactor vessels were analyzed by
Rashid (38,39) and Wahl and Xasiba {(40) by utilizirg axisym=
metric elements. Further developments in the analysis of
reactor vessels were presented by Zienkiewicz, et.sal (41),

Argyris, et al (42) and Connor and Sarne (43).



The application of the finite element method for the
rnmw%u»u of concrete structures including the time dependent
effects such as creep, shrinkage, load history and tempera-
tura has uoma‘amnm by a number of investigators. Selna (44,
43) analyzed planar reinforced concrete frames including
cracking, creep and erHnwnam by developing a time dependent
constitutive relationship for acnonmnm based on linear visco-~
elasticity. Aas-Jacobseh {(46) studied slender reinforced
concrete frames including creep and geometric :onwwsmwu»nq.
Aldstedt (47) analyzed reinforced concrete frames including
the effects of bond slip, nﬂwmv and gecometric nonlinearity.
Scanlon and Murray Aamxnww.mnuawa@ the time dependent deflec=-
tion of reinforced no:muonm.uwwvu by utilizing Selna®s (44,45)
formulation of creep. mmuw%u (50) studied twe-dimensional
problems in concrete creep including the effects of temper-

ature on creep. Sandhu, et al (51) mnnwwnnm_vawn concrete

dans »:nPGana the affects of creep and temperaturae.

1.3 Object and Scope of the Pregsant Study

The object of the present study is to develop an effi-
cient ncaouwnWH procedure mmn the BnﬂonwuH and gecmetric
nonlinear mamwwm»a of planar reinforced and prestressed con-
crete frames including the time dependent effects due to load
history, temperature history, creep, shrinkage and aging of
concrete and relaxation of vﬂmwnnmwa. An accurate prediction
of the Hmuvonmn of these structures throughout their service
load history as well as nwnocﬂ:nOﬂn elastic, inelastic and

ultimate load ranges is aimed at,



A step forward integration is performed by dividing the
time domain into a discrete number of intervals for the
quasi-static time dependent analysis. For each time inter-
<mﬁ.unnwwnwun mncuwwuﬂwsa equations which are valid for the
nsHHM:ﬁ gecmetry and material properties are set up and
solved by the finite element method based on the displace-~
ment formulation. An incremental load method combined with
the unwmpm:nmm load iteration for each load increment is used
for the solution 0m the :onwwumnﬂ mﬂcwwwunvcu equations,

Concrete strain is assumed to consist of the mechanical
component and the uonnamowna»nmy component mcm to creep,
shrinkage, aging and temperature varjiations. Variation of
the strength of concrete with time is nmnonnmuma. Parabolic~
wwnmun..wawamnn and multilinear approximations of the
stress-sgtrain curves are sﬂuwwmmm for nmsnumnm» ﬂmwamonmwsm
steel and vﬂmmwnwumwnm Bteel, respectively. A simple model
for the inelastic load reversal is incorporated.

Creep strain is mcwwﬁunmm by an efficient numerical
vﬂonmmﬁum based on the age and temperature dependent integral
formulation. zoawwbmmﬂ.nﬂmmw effect at high stress levels
is also considered.

Varied aWﬁmHMmH_vwowmﬂﬁwmw within a frame element is
accounted for by the composite concrete and reinforcing
steel layer system, Element properties are evaluated by a
layer w:anHunwon. and the contribution of prestressing
steel is added directly,

mnwiwmsmwosmm. post-tensioned bonded and unbonded frames



are analyzed distinguishing three distinct stages of load=-
ing ¢+ i.e. before, at and after the transfer of prestress,

A series of ncamnwnmw.mxwaﬁwmm are presented to study
the validity and applicabiliity ¢f the present method. The

results are compared with experimental results and the ana-

lytical results obtained by other investigators.



2. MODELLING OF MATERIAL PROPERTIES

2.1 General Remarks

Reinforced and prestressed concrete structures consist
of different materials, namely concrete, reinforcing steel
and/or nﬂmmNﬂmmwmwsm steel, .wmwmmonnwnm and prestressing
steels can be considered homogeneous materials, and their
properties are generally well defined. O©On the other hand,
concrete is a heterogeneocus material consisting of cement
mortar and aggregates, Mainly because of this :onnwoooumwnw
the unovmnnwwm.Om concrete depend on many variables, and it
is very difficult to define its properties accurately.
However, conhcrete can be congidered =a roaoannmocn material
in a macroscopic sense if we define its average properties
on statistical grounds. For applications to civil engineer-
ing structures this assumption is generally unnnvnmmy Thus
we can study the composite action of different homogeneous
materials, concrete and steel,

Both no:muoﬂo and steel exhibit various nonlinear mate-
rial properties. qmm stress-strain relationship of concrete
is not only nonlinear, but it differs in compression and
tension. Tensile cracking is one of the most important fac-
tors which contribute wo the nonlinear behavior of reinforced
congrete structures. mmnﬂvmnaOHm. the properties of concrete
zare dependent on its age and ou<wno=5uunaw conditions such
as temperature and ambient humidity. Reinforcing steel gen~-
erally exhibits symmetrical nonlinear stress-strain relation-

ships in tension and compression, and its properties are gen-
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erally independent of time and environmental conditions en-
countered in most civil engineering applications. Prestress-
ing steel is used exclusively in tension, and its stress-
strain relationship is also nonlinear and the shape of its
stress-strain curve is different from that of reinforcing
steel,

Another nonlinear factor to be noted is the unloading
and relocading characteristics of concrete and steel. -Al-
though the effects of dynamic loadings such as seismic load
or wind load are not considered in nrwm study, the effects
of live 1load 7anoww and temperature vwmnoww are considered
in a static¢ manner. 'Thus a simple mathematical model for
cuwmwmwao and reloading is developed to study the effects
¢of load reversal.

The compoesite action of nmsnnmnm and reinforcing steel
in reinforced or prestressed concrete mnmamu ig studied uti-~-
wwnw:n a composite layer system. For n#wu_mnuaw it ww as=-
mclmm that perfect bond exists between concrete and rein-
forecing mnmmw. then the displacement field within a rein-
m0ﬂnmm concrete frame element can be considered continuous.
The material properties om.noamnmnm and steel mmvmnuAOﬂ the
unuwwu;mnmﬂm of the material due to the effects of nonlinear
stress~strain memn»onm:wv. cracking, yielding and crushing
¢f concrete and wwmwnwsm mm steel. 1In order to incorporate
the varied material properties within a frame element in
evazluating element properties such as element stiffness ma-

trix or internal force vector, the element is divided into



m
a discrete number of concrete and reinforcing steel layers.
The integrations required to evaluate the element properties
over the volume of the element is then performed layer by
layer through the depth of the mwmamnn“ Each layer in a
cross section is assumed to be in a state of uniaxial stress
and the deformation due to shearing strain Mm.ummwmnnma.

It is assumed that perfect bond meo exists between
concrete and prestressing steel in bonded prestressed con-
crete mhwgmw after the transfer mm prestress as in pre-ten-
sioned frames and post-tensioned bonded frames. Then the
displacement field in an element of these frames can also
be considered continuous. But the anWwoz of the prestressing
steel ig wnnwcmom in a different manner, as explained later
in chapter 6, not using prestressing steel layers.

For post-tensioned unbonded frames in which the displacement
field is not continuous within an element, an iterative meth-
od ooscmﬂmwnm to the solution is utilized.

In subseguent sections important vnomoun»mu of three
materials, namely concrete, reinforcing and prestressing
mnmmwp relevant to this mﬂcaw,z»wp be discussed briefly, but
emphasis will be placed on mathematical modelling of their

pProperties.

2.2 Concrete

2.2.% Deformation of Concrete

One of the most important assumptions in studying the

deformation of concrete is that the strain of concrete may
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be considered as being composed of strains caused by differ-
ent phenomena. Davis (74,79,80) and Glanville (81) provided
the experimental verification of this commonly accepted con-
cept in their studies of creep and shrinkage of concrete.
This nmznmvn is ﬂmwa by many investigators toc study the be-
havior of concrete structures (4,44,47,52).

For the present investigation, total uniaxial concrete
strain e(t} at any time t is assumed to be composed of the

following contributions.

glt) = e™(e) + e™®(g) | (2.1}

e™™(e) = e%(t) + €%(t) + £2(t) + e¥(v) (2.2)

e™(t) is the mechanical strain or instantaneous strain caused
by a short-time loading, and is the independent variable in

the following functional of the stress-strain relationship,
git) = £{e™(t)) (2.3)

where g(t) is the uniaxial concrete stress at time &. zo::.
mechanical strain €"™(t}) consists of creep strain mnﬁnwx
shrinkage mﬂnmwa.mnnnv. aging strain muﬁnu.mnn thermal strain
et(t). Among these strains, e™(t), €(t), €®(t) are stress
vummcnmm strains, and £%(t) and mnnnv are non-stress produced
strains,

The meaning of each of these strain components is illus-
trated in Fig. u.“ {53} except for the thermal strain which is
vnoacnmnluw naavmumﬁ:nm changes, Fig. 2.1.a shows shrinkage

strain of an unloaded concrete specimen. Shrinkage of con-
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crete is defined as the volume c¢hange which ¢occurs independ-
ently of imposed stresszes and of temperature changes. Fig.
2.1.b shows the strain history of a concrete specimen in
hygral equilibrium with the ambient medium, subjected to
mcmnmwbmm axial compression, We note that the strain at time
t is increased by mnﬁnv compared to n:m.mnﬂmwm at time ty-
This increase in strain under a sustained stress, whether it
is external or internal, is defined as creep., We also note
that the mechanical strain at time t is smaller than that at
time t,. This is caused by the fact that the strength and
modulus of concrete w:nwnmnm as time elapses, This phenom-
enon is called the aging of concrete, and the decrease in
the mechanical strain due to the aging of mosnﬂmnm is called
aging mnnmwaq Fig., 2.1.,c¢c usmtn nwl gstrain history of & load-
ed and drying specimen in which all the strain components
except thermal strain are present.

In this study, for the time dependent analysis, the time
domain is divided ‘into a discrete number of intervals each
of which may not be of the same length in time. The junc-
tions of these intervals are called time steps., Thus we
have a finite number of time steps nr ; n = 1,2, **,N, where
N ig the total number of time steps considered in the analy-
sis. wsm: a step forward integration is performed by adding
the reauylts obtained for each time step successively, start-
ing from the mwhmn time step, to arrive at the final solution.

The calculation of concrete strains and stresses at a typical

time step, t, is performed as followes,
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(1} Total strain ¢, at time step t, is cobtaineg by
adding the increment of total strain bmu occurring during

time interval t_ _, to t,» to the total strain €h-y 2t time

step t, _,.

€ = g 4 Ae : (2.4}

(2) The increment of non-mechanical strain mea occur-
ring between time steps th-1 and t, is obtained by adding

contributions due to creep, shrinkage, aging and temperature

changes.

& a t

B w AeS & Ae + Ae_ + Dmu . {2.5)

DNS n n

{3) Non-mechanical strain mms at time mnmﬁ.n: is then
obtained by adding the increment AeR™ to the previous total.

nm nm nm ’
€, = E _4 * bmu . {2.86)

{4) Mechanical strain mM at time step t. is obtained

by sidbtracting non-mechanical strain mwg from total strain Ep-

= E, - E, (2.7)
{5) sStress o, at time step t  is then obtained from the

stress~-strain relationship valid at time step t,-

o, = £ (e7) - (2.8)

2.2.2 Short-Time Deformation and the Stress-Strain

Relationship

Response of a structure under load depends to a large
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degree on the stress-strain relationship of the material

from which it is made, and the type of stress to which the
material is subjected. Concrete is used mostly in compres--
sion, so that its compressive stress-strain curve is of pri-
mary interest, Such a curve can be obtained by cylinder
tests or appropriate strain measurements on ﬁmm ccmpression
side in beams. Fig. 2.2,a shows two such curves, obtained

at moderate testing speeds on an axially loaded concrete cyl-
inder having two different compressive strengths (53).

The. curves consist mm an initial relatively straight
elastic portion in which stress and strain are closely pro-
portional, followed by a curve with a decreasing slope,
reaching zero slope and maximum stress Jp,, at a strain €9
which has the value of approximately 0.002 in. per in., and
finally mxot 2 descending branch, reaching the maximum strain

E The initial linearly elastic part extends to about 30

max-*
percent of the maximum stress, The initial slope of the
curve is called the initial modulus of concrete. |

The shape of the compressive stress-strain curve of con~
crete is largely determined by its compressive mnnmnmww. We
note in Fig. 2.2.a that the initial modulus of concrete hav-
ing higher strength is larger than that of concrete having
lower strength, It is also seen that concrete of lower
strength is less brittle, i.e. fracture occurs at a larger
maximum strain, than for rwawuunﬂmnmns concrete., The shape

of the curve is also affected by the rate of application of

streas, as shown in Fig. 2.2.b (54).
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The compressive strength of concrete is usually defined
mm.nwm,awxwaca average stress obtained from the testing of
concrete specimens such as cylinders, cubes and prisms, sub-
jected to uniaxial compression. The nmannmmmw<m strangth of
a 6 x 12 in, nwwwnmmm. denoted by mm~ is most commonly used
in the United States. The compressive strength of concrete
is influenced by many factors, among which water-cement ra=~
tio, size of aggragate and gain of strength with time are
omwmz mentioned. The increase in the mnnm:mnw of concrete
with time is well known, but it is not often fully taken
into consideration in design practice. A typical compressive
unWmuanrlano curve is wsots in Fig. 2.3 (55), in which cen-
siderable gain in strength can be noted.: Since the stress-
strain relationship of concrete is largely determined by the
magnitude of its compressive strength, it is mmumnnth nm
nonuwmmn this variation in strength with time in order to
analyze concrete structures for long-time loading more accu-
rately.

ACI Committee 208 (56) recommends the folleowing form of

equation for predicting compressive strength at any time,

t . .
(£1), alieves (£1) a4 (2.9)

where, nmmvuma is 28~-3ay strength, ¢t is time in days after
casting on.noaﬂnmnm. and a and b are constants. The values
of a and b mmumaa.ou the type of cement and curing method
used for the particular concrete. Following mvunmxwamnm

average values determined from some 88 test specimens are
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reccomnended.

Moist cured concrete, type I cement : Mu».oo. b=g .85

Moist cured concrete, type III cement : a=2.30, b=0.,92

Staam cured concrete, type I cement : wld.ocL b={ 95

Steam cured nonnnmnm..ﬂwnm I1I cement : a=0.70, b=0.98

As a basis for the analysis of concrete wnncnﬂcumm. a
mathematical formula for the stress-strain relationship of
concrete is a convenient and necessary tool. Many empirical
formulas developed are summarized by Popovics (58). Some of
the fregquently cnwwwnmn mathematical idealizations are shown
in Fig. 2.4.

Fig. 2.4.a shows a linearly elastic-perfectly plastic
aommp. This wa the simplest ¢of nonlinear models., This model
was used by Lin (31) in his study of reinforced concrete
slabs and mwmwww.

mwm. 2.4.> shows an inelastic-perfectly plastic model
proposed by the mcwotmnn Concrete Committee (59), consisting
of & anuuowu and a horizontal line,

Fig, 2.4.4 shows a vwmnntwum linear aonmw in which the
curve is approximated by a series of straight line segments.
Franklin (12) and Aldstedt (47) used this model in their
studies of reinforced concrete frames. Although this is the
most versatile model capable of representing wide variety of
Stress-strain curves, the use of this model is restricted to
the special nruou in which the experimental Qmmu for the par-
ticular concrete used is available.

A model which represents the stress-strain curve of
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wide variety of concretes in a mathematical formula was sug-
gested by Hognestad (60), and is shown in Fig. 2.4.c. For
the present investigation this model is utilized with minor
modifications. This model has been widely used by many in-
vestigators mﬂommxm. et al (61) in their study of slender
cencrete nowcasmr Wilhelm, et a2l (52) and »Homw {€3,64) in
their studies of prestressed concrete columns, to name a few.

The ascending part of the curve is described by the

equation,
m m
o= g7 E (2 - ET, {2.10)
c mo NQ

in which the strain Eg corresponding to the maximum compres-
sive stress £ is given by

Nmm
nu = -

At

(2.11)

where mw ig the initial tangent modulus. By differentiating

Eq.(2.10), the tangent modulus, E. is obtained.

m
E, = 39 =z 0= £ (2.12)
de™ 0

Observing the three equations given above, we note that :

the ascending branch of the wﬂnmmufmwnwws curve is a parabola
: the initial tangent mocdulus E; has twice the magnitude of
the secant modulus at the peak point ; the nrnmmun modulus

Ey, varies linearly from the origin where it has the maximum
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value mw to the peak point where the value reduces to zero,.
The descending part of the compressive wnummu:mﬁnmwb
curve is a straight line, 1In this study, the tangent modulus
of this vnnn‘wm assumed to be zero. But the decrease in
stress with the increase in the mechanical strain is accounted
for as unloading. The equation of this part mm: be written,
eM-¢

G = -0,15¢"
< mﬁlmo

o . u
+ mm } E, o. ﬁu.duv
Maximum compressive stress, mm is given by a fraction

of the compressive strength mm in this study as follows,

£t = ¢ £ (2.14)
#

Hognestad suggested to use r. = 0.85 for prismatic members
based on numerous tests of concentrically loaded columns,

but many investigators also use r_ = 1, For this study r

< <

is considered an w:unn parameter for a particular problem,
decided by the analyzer,.

There are uaamnozm empirical formulas for t£he evaluation
of the initial tangent modulus, Ey. They are summarized by
Aldstedt (47). »nH.OOBBwnamo 209 (586) recommends the follow-

ing formula,
Ey = 33w'- /€l pai (2.15)

where f. the compressive strength in psi, and w is the unit

weight of the concrete in pcf.

amﬂuwnm strength of concrete has the magnitude of about
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10 percent of the compressive strength (65). It is usually
measured in the flexure test of a plain concrete beam. The
computed flexural tensile stress at which the test beam would
mnmnncﬂn is called the modulus of rupture. The tensile
strength is also measured by applying pure tensile axial
force to a specimen or by a uﬂww&:n<ww=mmn nwwn. For this
Study, the maximum tensile stress in the gtress-strain curve
of concrete is assumed to have the value of the modulus of
rupture, and will be dencted by mm. ACI Committee 209 (56)

recommends the following value,
£¢ = r, YWI] psi (2.186)

where mm ww the compressive -nwwnanv in psi, w is the unit
weight in pcf, vmwmamnmn r, has the value of 0.6 to 1.0.

a:w slope of the tensile gtress-~strain curve is assumed
to be comnstant, mwm,nww same as the initial tangent modulus
E{. Then the tensile stresa~strain relationship can be writ-

ten as follows.

O = E; €7 ; Ey = Ej (2.17)

Tension stiffening of concrete after cracking due to
reinforcing steel is neglected in this study. The effect of
tension stiffening was incorporated by Scanlon (48) and Lin

{31) in their studies of reinforced concrete slabs and shells.

2.2.3 Long-Time Deformation -~ Creep, Shrinkage and Aging

Concrete is unique among structural materials in that

its deformations and properties are time dependent under
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practical no:a»nwonm of service., Thus it is important to
incorporate the time dependent effects of creep, shrinkage
and aging in the study of concrete structures throughout
their service lives.

Creep wm defined as the increase in strain under a sus-
tained stress, whiether the stress is vnomcnmm by external
loading or any other nm:wm such as temperature changes. The
nature om creep is illustrated in Fig, 2.5 (53). After the
application of the load the strain increases with time due
to creep st a mmnnnuuwna rate. At 120 days after sustained
load the strain becomes more than twice the strain on Hmmmwam.
When the sustained load is removed the strain decreases im-
mediately by an amount egqgual to the instantaneous strain at
that age, ﬁvwmu is smaller than the instantanecus strain at
the initial loading., This instantaneous recovery is followed
by a gradual decrease in Lnﬂmwn- called creep recovery. The
shape of the onmmv recovery curve is uwswwmﬂ to that of the
creep curve, but the recovery reaches its maximum value more
ﬂmvwawww

The mechanism of creep is still not completely under-
stocod. And there are many theories attempting to mwimwn it,
for example, mechanical mmmoﬂamnwoa nwmmﬂw {66), plastic
theory (67}, viscous flow theory {68), and seepage of gel

water theory (69).

There are many factors influencing creep of concrete,

Some of the important factors are discussed below.

(1} Age at loading
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In Fig. 2.6 typical specific compliance curves for dif-
ferent ages at loading are shown. Specific compliance is
defined as the total stress-produced strain, instantaneous
and creep, due to a unit sustained stress., We note first
that the creep strain of the specimen loaded at later age is
generally smaller than that of the specimen wwm&mm at earlier
ages after the same time interval follewing initial locading.
we also note that the instantaneocus strain cof the specimen
loaded at a later age is smaller due to the increase in the
modulus of elasticity with time. This decrease in creep
strain wnm.wamﬁwanmnmocm strain with increasing age st load-
ing can be attributed to the degree of hydration and the de-
velopment of strength of concrete.

AAMV Intensity of stress

nﬂmmv is vnonouﬂwo:mw to the applied stress within the
range of tonwwzm stress, At higher mﬁﬂmmutunwm:mﬂ: ratios,
about 0.4 to 0.6, creep increases at an increasing rate.
Above a stress-strength ratio of 0.8 to 0.9, creep produces
failure in time. This dependency of creep on the intensity
of stregs is shown in Pig. 2.7 {54}, Manuel and McGregor
(7¢) mw<muovmm an empirical formula mqucwnwum creep as a
function of time and stress-strength ratio based on Rusch's
study. To account for this nonlinear creep effect in the
linear creep formialation used in the present study, which is
based on nvm assumption that creep strain is proportional to

stress intensity, the effective stress concept explained in

chapter 3 is used.
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(3} Aggregate content

Maximum size of dwm.wmuﬂmmwnm. its grading and shape
influence the aggregate content, and consequently influence
creep by the restraining effect of the aggregate on the free
creep of cement paste. Generally creep decreases with the
increase of the volume and the modulus of mwmmnwnwn% cf the
aggregate {(74).

{4) Compressive strength

For a no:mﬁnuﬂ cement paste nomnosn and the same applied
mwnmnm. creep is generally inversely proportional to the
strength of concrete (53). Gain of strength with time also
causeg the decrease in creep &8 shown in Fig. 2.6,

| (5] Size of the member |

Creep amnnmurom with an increase in the size of the
specimen, but when the gpecimen thickness exceeds about 3 ft,
no furthur effect is apparent. It is alsc. noted that beyond
several weeks after the application of the wounh the rate of
creep is the same regardless of the size of the specimen (75).

Amw Ambient humidity

Creep generally decreases with an wunnonwm in the ambi-
ent relative humidity. But creep is not affected by the rel-
ative humidity if concrete has reached hygral mnc»wwvnwci
prior to wowmwsm.

(7) Temperature

Creep generally uumnmmmun proportionally to temperature
ranging from 0 deg, m.no 180 deg. ¥ (76,77). But beyond

180 deg. P the rate of mWoov decreases up to about 300 deg.
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F, and then increases again up to 500 deg. F (78).

Prediction of creep is a difficult task because of var-
ious factors influencing creep, and any formula attempting
to predict the creep of concrete is bound to be mnunoxwamﬂmu
Based on hundreds of experiments by many investigators, ACI
Committee 203 (56) suggests following form Om.mncmnwon for
the mnmmwnwwo: of creep,

Cpy 0.6
- {t-71) n...ﬂ ‘ AN-Amu

10 + (t-1)°-%

where, Cp.r is the creep coefficient defined as the ratio of
creep strain at (t-T) days after loading to initial strain at

loading ; €, is the ultimate creep coefficient defined as the

u
ratio ¢of creep strain at infinite nwﬂm.nmnmﬂ loading to ini-
tial strain at wowuwno ;) t is the current cobservation time

from the casting of concrete measured in days ; and T is the

2ge of concrete in days at lecading. ﬂfm ultimate creep coef-

ficient C, is computed as follows,
Cy = 2.35 KT K Kf Kg Kp Ky | . (2.19)

c _An“. ﬂ.n

c c c .
where na. Wm, xa. F and mw are creep correction factors

due to loading age, humidity, minimum thickness of member,
slump, percent fines and air content respectively. All of

1

these creep correction factors have the value of unity, i.e.

Cy = 2.35, for the following standard conditions ; 4 in. or

less slump, 40 percent ambient relative humidity, minimum

thickness of member 6 in. or less, lcading age 7 days for
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moist cured concrete and 1-2 days for stean cured concrete,
For conditions which differ from the standard conditions,

the following creep correction factors are used.

NM = 1,251 7 1% £or moist cured concrete (2.20)
= 1,137 9°%%%  £op steam cured concrete

KS = 1.27 - 0.0067H, H > 40%

Kg = 1,14 - 0.0237 for < 1 yr loading
= 1.10 - 0.017T for ultimate value

K = 0.82 + 0.067s

Kg = 0.88 + 0,0024F

Ky = 1.00 for A < 6%

= 0,46 + 0.090A for A > 6%

where T is the loading age in days, H is the ambient relative
humidity in percent, T is the minimum thickness in inches,
S is the slump in inches, F is the percent of mwum aggregate
weight, mnm w is the air nomnovﬂ in percent.

wvnwswumm of concrete is defined as non-stress and non-
thermal produced nwam dependent <owwsm change., As can mm
seen in Fig. 2.1.a, shrinkage reaches its maximum value as-
ymptotically with time mwawwmﬂww to c¢reep. Shrinkage of
concrete is nmamnmwww considered to unwmm from loss of water
on mn%wzm and volume changes on carbonation. Shrinkage gen-
erally w:nwmmmmm with the increase of water-cement ratio,
and mmnnmwmum with the increase of aggregate 4ow=5m. size of
the member and ambient relative humidity.

It is preferable to have experimental shrinkage strain-
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time curves for the time dependent analysis of concrete
structures. But in most cases such experimental data are
net mqmwwmwwmr g0 that a mathematical formula for predicting
mrnwawnmo has to be used. ynu mosawnnmm 209 (56} suggests
the use of the mowwoﬁw:m egquation for the prediction of
shrinkage,

(t-ty)

5 -]
€ = € (2.21}
=ty £ 4+ (t-ty) U | |

where, nmnno is the shrinkage strain after (t-t;) days from
the completion of ncnwnw. mm is the ultimate shrinkage strain
after infinite time, ¢t is time in days after casting of con-
crete, t, is the age of concrete in days at the noavwnnwos

of curing, and £ is a constant depending on the type of cur-
ing. The mOwHothm values of f and tg are recommended by

the Committee.

£ = 35 ; ty = 7 for moist cured concrete (2.22)

£ = 55 ; ty = 1-3 for steam cured concrete

The ultimate shrinkage coefficient mw is computed as follows.

hY

-6 .S .8 .8 .8 .8 .8
umooxao mmmqwmmeM,mvw nu.uuw

for moist cured concrete

-4

s -6 g 3 8 3 s
S = 730 X 10 Ky Km Kg Ky Kp K

. for steam cured concrete

s s S
T? K

where xm. .4 xm. Kp: Kp and mw are shrinkage correction fac-

tors due to humidity, minimum thickness of member, slump,
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cement content, percent fin=s and air content respectively.

All of these shrinkage correction factecrs have the value of

unity for the following standard conditiuns } 4 in, or less

slump, 40 percent zazmbient relative humidity, minimum thick~-

ness of member 6 in. or less.

from the standard conditions,

tion factors are used.

Ky = 1.40 ~ 0,010H,
= 3.00 -~ 0.030H,

= 1.23 '~ 0.,038T,

e

- dOM.N - c.oumﬂp-

= 0.89 + 00,0418
= 0,75 4 0.034B

= 0.30 + 0.0140F

e ODn e

= $.90 + 0,0020P

Kp = 0.95 + 0,0080A

40%

BO%
for

for

for

for

For cenditions which differ

the

A
w

H

A

< 1

following shrinkage ecorrec-

A

80% , : (2.24;
< 100

¥r loading

ultimate value

50s%

50%

where H is the ambient relative humidity in percent, T is the

minimum thickness in inches, § is the slump in inches, B is

the number of 94-1b sacks of cement per cu yd. of concrete,

F is the percent of fine aggregate mw.tmwmvﬂ. and A is the

air content in percent.

Aging strain of concrete can be defined as the decrease

in the mechanical strain with time due te the aging of con-

crete., If a concrete prism is subjected to a constant sus-

tained stress at nwam,no. the strain at some time t after

loading would be the same as the strain at t_  if tm exclude

0
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creep and m:nw:wm@m strains., as shown in Fig. 2.1.ec. But,
due to the increase in the modulus of concrete. with time,
the mechanical strain at time t corresponding to the constant
stress would be reduced. Thus we can congider nsm aging
strain as a correction factor for the calculation of the cuyr-
rent stress wm a functicen of the current 3mnwwswnmw strain
at any time, rather than actual physical straining.

The increment of aging strain DmM occurring between time
steps t,_4 and t,, assuming that the stress remains constant

at Op.1, can be calculated as follows.
Aed = g, _4(0,_4) - gp(a,_y) {2.25)

where, g is a time dependent function for computing mechan-
ical strain in terms of stress,i.e. an inverse function of £

defined in Egq., (2.3), and subscripts {n-1}) and n represent

‘time steps. Explicitly, function g can be expressed as fol-

lows.
e™ = g/E; in tenmsion : , (2.26)
e® = g4(1 - Y1-07£7) in compression (2.27)

where, currently valid values of time dependent variables Ei.»

€9 and mm have to be used.

2.2.4 bpDeformation Due to Temperature Changes

Concrete structures are subjected to temperature changes
during their service lives not only due to changes in envi-
ronmental oouawnwo:w. but also due to artificial heating or

cooling, Stresses induced by temperature changes in stati-
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cally indeterminate concrete structures are often subkstantial
and damaging to the structures, Therefore the effect of tem~
perature changes has to be incorporated in the analysis.

t

Uniaxial thermal strain, £€- may be expressed as follows,

et = w a(T)dT : (2.28)
Tp

where T, is reference temperature, T is n:nWmsﬁ temperature,
and al(T) 1is nrm.nommmwnum:n of thermal expansion which may
be temperature dependent, But below 600 deg. F, the coeffi-
cient of thermal expansion of concrete is almost constant
82), and the magnitude depends on the composition of the
nounﬂmﬂm mix and me hygral state at the time ow the temper-
ature change, For this nwcm%.o is assumed to be constant at

all temperature levels. Then Eg. (2,.28) can be rewritten as

follows.

e® = a(T-7,) = o AT | (2.29)

Creep strain of concrete is influenced by temperature,
as discussed previously. The effect is taken into account
in the present investigation, and will be discussed in detail

in chapter 3.

2.2.5 Load Reversal and Complete Stress-Strain Curve

The ﬁmmmnnm of mwbmswn cyclic loading such as seismic
locad or wind iocad are not considered in this study. But un-
loading u:n reloading due to live load :wmmOﬂ% and tempera-
ture history are unnOﬁ:wm@ for by & simple load reversal

model of the stress-strain curve. Even under a&a constant sus-
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tained load unloading could take place in reinforced concrete
frames due to creep and shrinkage of no:nﬂmwm.

The load reversal model utilized in thisg study is shown
in Fig. 2.8, Blakeley and Park (83) utilized a similar model
for their study of VNmmwnmmmma concrete sections with c¢cyclic
flexure. The mOwHozwﬁa assumptions are made in this model,

(1) The slope of the load reversal path in the stress-
mnn&wﬁ curve 1is the same as the initial tangent modulus E,.

{2) Tensile failure or cracking of concrete occurs
when the tensile mn&mLu exceeds its maximum tensile stress nm.

(3} Compressive failure of crushing of concrete occurs
when the compressive amnsmnwnnw strain exceeds its maximum
noanﬂmumw<m strain €y

(4) Once concrete is cracked, it cannot take any ten~
sile stress again. But it can take compressive strgss upon
closing of the crack and reloading. Thus the crack is as-
sumed to close in noavnmmmwon and recpen in tension without
any resistance.

In the computer program developed for this study the
concrete material state is classified into 11 different
states, as shown in Fig, 2.8, for the purpose of tracing pri-
mary loading, unloading and relcading paths M:‘nwm stress-
strain curve mwm m<mwcmnwnm the stress and the tangent modu-
lus E,. In the following mmnnn»vdwoa of the 11 different
concrete material states, concrete is defined Mm yielded when
»nu_noannmmww<m mechanical strain exceeds €5+ the strain cor-

responding to the maximum compressive stress, mm.
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{1} In primary tension {(path OA or AO0O)

(23 In mOsnnmmmwon. not ylelded {path ©C)

{3) ‘Hb noavnmmmwmﬁ. yielded (path CE)

Nbu Cracked {beyond points A, G, I)

{5) nw:mrmm.avm%o:a point E)

(6) In load reversal path from state 2 ﬁhmnu.mm or GB)

{7} In load reversal path from state 3 (path DI or ID)

(8} In compression, not yielded and once cracked
(path OC or BC)

{9) In compressicn, yielded and once crackagd
{path CE or DE)

{10} . In load reversal wmw& from state N‘bna once
nnmn#oa.ﬁﬁmns BF or FB}

{11} In load reversal path from state 3 and cnce
cracked (path DH or HD)

The complete stress-strain relationship of concrete used

in this mncmwwnnu now be uclswnwnna in the following Eqgs,

For state 1,
g = E;€E® ;3 E, = E , (2.30)
i LR i .

For states 2 and 8,

m m ‘ m
n £ 8 - B, (j-f_
o mn moﬁw mav ] mn mwn_ mow . A {2.31)
For states 3 and 9,
¢ = «0,75f" ——mou + f" mn = 0, (2.32)

c mﬂlmo c
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For states &, 7, 10 and 11,
m
g = mu..ﬁm -£€.) 3 E = E, {(2.33}

r t i

where €, is the residnal strain due to d:woamwno as shown by

points F and H in Fig. 2,8,

2.2.6 Sspecification of Time Dependent Concrete Properties

Haknwm computer program developed for this study, time
dependent properties of concrete are specified in the follow-
ing ways. Complete input instruction for the program is pro-
vided in the Appendix.

In order to determine the stress-strain relationghip at
any nwsm after casting of concrete two options are provided
for the specification of necessary parameters.

When experimental data for the time dependent properties
of the vmﬂﬁwncwrn concrete used in the unn:nmcnm to be ana-~-
lyzed are available, four parameters, i.e., maximum compres-
uw¢m.unnauu m. initial tangent modulus, mw..sustna tensile
stress, f{ and ultimate compressive strain, e, are avmnwmwma.
at each time step. $train corresponding to fo, €y is computed
by Egq. (2.11). |

When experimental data are not a¢nwwmvwm. seven param-
eters which do not vary with time, i.e. 28 day compressive
strength am.vuma. unit weight w, ultimate compressive strain

<

€ and coefficients a, b, r_ and r, are specified. Then the

u’ <

following parameters are nowvcnmm within the program recom-

mended v%.wnu Committee 209,

{1} Compressive mnwmamﬁw Ammvn is computed by Egq. (2.9).
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{2} Maximum compressive stress mm is computed by Eq.
{(2.14).

{3} Maximum tensile stress mm is computed by Egq. {2.16).

{(4) Initial tangent modulus Ey is computed by Egq.
{(2.15}).

{5} Compressive strain corresponding no.mm~ £4 is com-

puted by Eg. mwﬁuuu.

Once wwm <mwcmm of m. m. Ej, €5 and €, at m:w time
step are determined, the stress-gstrain Hmwwnwozmvwv at that
time step is defined by Eq. (2.30) to (2.33).

Shrinkage strain and temperature histories are specified
in a similar manner, Increments of mrﬂwnxwmm.unﬂmwn and tem-
nmnuncno.uﬂm specified at each time mnmv. Beth uniform gis~-
tribution otmn the whole mwnannﬁnm and nonuniform distribu-
tion through the depth of each frame element can be specified.
mwnwmn mxvmnwamsnuw data for the nmﬂnwncwmn concrete used or
ACI Egs. (2.21} to {(2.24) may be used WOﬂ the shrinkage strain
history.

Specification of concrete creep properties will be dis-

cussed in chapter 3.

2.3 Reinforcing Steel

avm nNOtmﬂnwmm of reinforcing steel, cnwwxm.no:nnmﬂm.
generally are not dependent on envircnmental conditions or
time. Thus specification of its stress-strain relationship
is sufficient to define its properties-relevant in the anal-
ysie of reinforced concrete structures. In this study a bi-

linear model which is symmetrical about origin, as shown in
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Fig. 2.9, is used. The only non-mechanical strain considered

ﬁ. which is computed by Eg. (2.33) as in

is thermal strain &
concrete. The coefficient of thermal expansion, & of steel
{about 6.5 X 10 ° per deg. F) is only slightly different from
that of concrete (about m_m x 10~° rer deg. F). The mechan-
ical strain €™ is then computed by mﬂwnwmnﬂwsw thermal strain
et from WOﬁmw strain E.

The slope of the load reversal path is assumed to be the
same as the initial modulus, and the load reversal path is
assumed to stay within the envelope shown with dotted lines
in Fig. 2.9, Four different material states can be identi-
fied in the stress-strain curve. Their equations can be

written as follows.

(1) In primary tension or compression
m
G = Eq€" ; Eg = E, (2.34)

where E; is the initial modulus up to yielding.

(2) Yieldeg
O = Eje" % (Oy-E;0,) § By = E, (2.35)

where, E, is the second modulus after yielding,
Cy and €y are w»mpm.unﬂoun,usm vield strain respec-
tively.

(2) In load reversal path

' 5' -
q E (€ mnv 1 mn E, _ {2.36)

where €, is the residual strain due to load
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reversal as shown in Fig. 2.9,
{4} Failed
Failure is assumed to occur when the mechanical

strain €™ exceeds the ultimate strain €y

2.4 Prestressing Steel

Besides a large difference in the magnitude of the ten-
sile strength, the stress-strain curve of prestressing steel
is different from that of reinforcing steel in that there isg"
no definite yield plateau for prestressing steel. Yielding

develops more gradually, and in the inelastic range the

stress~-strain curve continues to rise smcoothly until the ten-

sile strength is ﬂncnﬁom.. To accomodate this different sghape
a Bcwmww»=mNﬂ stress-strain curve, as shown in Fig. 2.10, is
adopted for prestressing steel in this study. The slope of
ﬂsw_cswom&wum and reloading path is assumed to be the same

as the wwwnwnw modulus, Since vnomnnmuuwmm steel is never
subjected to compreasgive unﬂouu. the noavumumw4m.nnnummtmnuwwa
curve is not noamwawunm. Also temperature strain is not con-
uwmwnmm for vumnnhmwuwzm steel.

Ancther important factor wr the properties of prestress-
ing steel iz the relaxation of stress with time. Relaxation
can be defined as the decrease in stryress with time under a
nosnnurn strain. Relaxation is just another anwmmmwwnwoa of
creep in prestressing steel, i.e. w:nnmwnm in strain with
time under a nonmwnmn stress. But relaxation is more often

uzed as a basis of measurement for time dependent properties

of prestressing steel because of its similarity to the actual
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conditions in prestressed concrete sStructures. The incorpo-~
ration of relaxation in the analysis ¢f prestressed concrete
frames is treated in detail in chapter 6.

mwwoﬁuou properties of prestressing steel are alsoc dig-
cussed in chapter 6 in conjunction with the tensioning cper-

ation of post-tensioned structures.

2.5 Composite Layer System

A composite layer system congisting of concrete and re-
inforcing mnmmw layers is constructed in order teo account for
varied material properties within a frame mwmaman, as shown
in Fig. 2.11. Each concrete or mﬂmow layer in a cross sec-
tion is assumed to be in a state of uniaxial stress, and for
each layer the cross sectional area and distance from the

A“V reference plane are specified as geometric properties,

Since concrete and nuwnmonnwna steel are assumed to be
perfectly bonded together, the &wnvwmmnsmaﬂ field of the re-
inforced concrete frame element is continuous. Then wnﬂwwul
tegral involving <mnwwsw material properties over the volume
of a frame element,; such as the integral required to evajuate
element stiffness Buwnwx or internal force qmnnmn. can be

performed layer by laver as follows,

n n
o L~ -3
gcaemc uwmuhceewmc +wmda<aewm< . (2.37)

where, ¢ is a function of space, ¢ is a function of varying

ﬁ”m material properties such as tangent modulus, stress or vari-

ocmnwammmvmanmuhmﬂnmwau. n. wuﬁrmacavmnomnounﬂmnmwwws

e —— i s e
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mnmbsw Hmnjm :ﬁadmn 0mmnmmwwm<mnm. Hsnmanmnwoan05m
the length of a frame element is performed by three point
Gaussian quadrature ag explained in chapter 5,
H:m.noawom»nm action due to prestressing mnmmw in con=-
crete frames is discussed wu.amwmwp in chapter 6, distin-
guishing bonded structures in which the &wmvwwnmaman field
of the frame element is assumed to be continuous, and une

bonded structures in which the displacement field is not

continuous.



3. MATHEMATICAL FORMULATION OF CREEP

3.1 Review of the Analytical Methods

Various analytical methods evaluating creep strain for
the time amﬁmnmmuw analysis of c¢oncrete structures have been
developed by many investigators. Most of these methods are
based on the linear creep law which may be defined as a law
in which the principle of superposition is valid. In the
linear creep law the creep strain is asgsumed to be propor-
tional to the stress. This assumption is demonstrated by
experiments to be valid up to the nnsvnmmuwcm stress level
of about 0.4£°_ (71,72}.

Thus the strain history of a concrete specimen subject-
ed to a unit sustained stress, as shown in Fig. 3.1, is of
importance. Fig. 3.1.a shows a specific nmﬂﬁw»wﬂno curve,
and Fig. 3.1.b shows a specific nnmnuuncﬂqm.. Specific com-
pliance mﬁnv is defined as the total stress vﬂoaﬂnmn strain
at time t due to a unit sustained stress applied at time
t = 0. Specific nnmmv c{t) is defined as the creep ptrain
at time t due to a unit sustained stress applied nn.nwam
t = 0,

Bazant and Najjar (84), Ross (85) uum England (86)
pPresented comprehensive reviews of ucuwwrdwm linear creep
methods. The analytical gmnwomm can be nwuuuwmwwm into two
~categories, namely approximate methods and general methods.
In approximate amn#mmm. 2im is taken at finding an approxi-
‘mate solution with the least amount of computational effort

by using some simplifying assumptions, The effective modulus
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method and the rate of creep method will kbe menticned fron
this mmnm@OHw. More accurate solutions are aimed at in
general methods by defining the time dependent constitutive
relationship of concrete either in differential form or in
integral form.

The e¢ffective modulus method, initially Wﬁmmm:nmm by
Faber (87), is the oldest and simplest method. It consists

of & single elastic solution using the effective modulus

E'(t) defined as follows,
EF(t) = 1/c(t). _ (3.1)

where c(t) is the specific compliance at time t, defined

previously. Total strain £€(t) is then computed by
E{t) = O(t)/E'(t) | (3.2)

This method does not take the stress histories and aging of
concrete into account. Thus, strains due to Btresgs changes
after the initial HOpmwsm are overestimated because the
decrease of specific compliance with aging, as shown in
Fig. 2.6, is neglected. Also complete strain recovery is
predicted by this method if the stress is reduced to zero,
which is not true as shown in Fig. 2.5.

The rate of anmv method, due to Glanville (81), is
based on the assumption that the creep strain ratée is a

function of the current stress g{t) and the nwam.uwuvmmm

since loading. Specifically,
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[
de~{t) = Qﬁﬂunwnnnu (3.3)
dt dt
where cl(t) is the specific creep. Then the creep strain is

evaluated by the integration,

mnﬁnua maﬁxvanﬂxvax . _ Au.gv
0 dx

This method does not include the effects of aging and
strain history, thus no creep recovery is accounted for.
<mn%waa stregsses with time is included, but the history
effect on creep strain is disregarded.

in the differential formulation of the linear creep
‘law, total stress vnowcnmm strain is expressed in terms of

the stress with linear differential operator,

ap” +a 0" 4 cee 4@ :
n Lk —2 5(e) (3.5)

mahny =

B p™ + B DRV 4 ces 4+ B
m m-1 0

-1

where, D is a differential operator, d/d4dt. Separating the
instantaneous elastic strain from the nonww strain,
Zienkiewicz (88) expressed the creep strain with a series
of partial fractions obtained from the expansion of ma.,ﬁu.mu
- na,
eC(t) nwmdmIHIMM ogl{t) _ : {3.86)
This can be interpretad as a nmmvonwm.om a2 series of n
Xelvin elements, But, difficulties in the experimental
determination of nuwmnoomm»nwmnnu ay and U» which may repre-

sent the effects of aging and nmavmwmacﬂm variations restrict

the use of this method for concrete,. Sarne {37} used this
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formulation in his three dirensional time dependent analysis
of concrete structures.

In the integral formulation of the linear creep law, the
total stress produced strain is represented as a Volterra

functional of stress.

t . 3 (1)
ef(ty = [ e(1,t-1)89 T aq (3.7)

0 9T

where c(T,t-t) is the specific compliance at time (t-T)
after loading, T is the age of concrete at loading, and t

is the observation time after casting of concrete. Specific
compliance c{T,t~T) nw:.vm mwcwmmm into two parts ; an

instantaneous elastic part and a creep part.

1

|m"|.mlm..wl + na.ﬂ.ﬂl.ﬂu {3.8)

clt,t-T) =

where E(T) is the modulus of elasticity at age T, and c(T,t-
T} is the specific nnmmh.w& time (t-T) after loading. Then,

Egq. (3.7) can be rewritten,

g

. t
. 1 80
t) = b= 3.8
€l = gy et lndn (3.9

mwmmnnm of mﬂﬁmmm_awmn0H< are accounted for by the linear
superposition method. This method asserts that the strain
at a given time can Um obtained by adding independent strains
caused by stresses with different durations of mwsm. This
implies that each stress is independent and does not affect
the wnnmws histories caused by other stresses. The appli-
cation of the linear mcvmwvomwwwos method is illustrated in

Fig. 3.2 with an axially loaded prism.
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We want to find the strain history of a prism due to

(t) shown in Fig. 3.2.a. annv is

(t}) in which a constant suystained

the stress history Qu

obtained by superposing o,

stress Q_wm.muvwwma at time ty, and Quﬂnw in which a constant

sustained stress -0 is applied at time ﬁw. The strain

histeory maﬁﬂv due to 0,(t) can be computed U%.

€,(t) =0 clty,t-t,) (3.10)

The strain history nuanv due to annu is
Exlt) = -0 c(t,,t-t,) | (3.11)

Then the strain history mwnwv due to Qunau is obtained by

superposing naanu‘nam nuanu as shown in Fig. 3.2.b.
e4{t) = g,(t) + g,(¢t) ﬂu.dmv

From Eg. {3.9), creep strain nwhnv may be written

t

noﬁnu ns nﬁa.nnavwmmwhma (3.13}
, 0

For the numerical evaluation of creep strain, the specific
creep nna.ﬁswv has to be approximated by uoam analytical
function. Proper choice of the analytical function for the
specific creep is very important in creep analysis because
the form of the function often influences the efficiency of
the numerical procedure for the solution of Eq. (3.13).

The function alseo mnu to be selected such that it fits the
experimental data as closely as vowmwvme

McHenry (89), who first utilized the superposition
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principle for the concrete creep analysis, suggested the

following form for the specific creep function.
clt,t-1) = a (1-e Y{E-T)y 4 ge Pl e mit-T), (3.14)

where ga, B, 4.,n. m are parameters used to fit the experi-

mental data.

Arutyunyan {90) suggested the form

n '*”ﬁ"'.ﬂw
cl{T,t-1) = ~u+w\avwmc,mxo : wu.“mw

where a, b, m». <w. m are moommwnwmznn for fitting the
experimental data.
Selna (44,45) proposed the following form in hig time

dependent analysis of ﬁmwnmonnon concrete frames.

3 4 . eRy (t-T
cl{t,t-1) lumdumdawnuaao.dAu:hvﬁdao 1l UM {(3.16)

twoﬂm ay s ww. uu mnm noomm»mwaﬂwu no vﬁ mmnmnawuma mnoa
experimental data. In Selna's cresp nonanwmn»ou. current
total strain is determined from the ncunwwnwmm stored from
two nua#»mcm nwam gsteps instead of the entire history.
Scanlon (48) used Selna's formulation of creep for his study
of time dependent deflection of reinforced concrete slabs.
Mukaddam and Bresler ﬁmju nﬂovOmw& a specific creep
function in which the effects of both age and temperature
variations wuo taken into account with nrw time-shift prin-

ciple.

n “A e(TIYP(T) (t-T)
c{T,t~1,T} lhmdﬂﬁn MG v -{3.17}



in which a;, A, are coefficients determined from experimental

i
data, ¢ (T) is the temperature shift function and Y(T) is the
age mw»wﬂ function.

However the application ow their formulation of creep is
restricted to Hmwwﬁwcmww simple structures because all the
previous mnnnmm histories have to be stored nm evaluate
current strains.

Zienkiewicz and Watson (92) proposed to use the form

uvwﬁnnav

n
clt,t-1,T) uﬂmdnnﬁa.ewmdum ] (3.18)

where age and temperature dependent function nnﬁa.ﬂv and
parameters n, vw.mno‘mmnmnswsmm from experimental data. By
smwsa this form of the specific creep function, they showed
that the storage of only a vector and the stress increment
at & time step immediately unmnmnwsm the current time step
is required to evaluate the creap strain ingrement at any
time step. But nvmemwn not suggest a specific form of both

age and temperature dependent mcunn»on_nhﬁa-au.

3.2 Age and Temperature Dependent Integral Pormulation

of Creep

In the present study an efficient numericsl procedure
for the evaluation on creep strain at mnw time is developed
with an integral formulation which takes inte sccount both
age and temperature variations. The following assumptions
are used for this formulation,.

{1) Total stress produced strain €% (t) at any time t

cengists of three components,
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ety = €™(e) + €3(t) + () (3.19)

Each component of the strain has been defined in section
2.2.1, and illustrated in Fig. 2.1.b. Creep strain €%(t)

is expresgsed with a superposition integral

ctt,t-1,T) 39 (V4 B (3.20)

e(t) = o

(= a4

in which the xmnwmw function c{T,t-7,T) is the specific

creep function dependent on age and temperature variations.
ﬂNu. Creep strain is assumed to be proporticnal to

applied stress, both in tension and compression. And

Egq. (3.20) is used both in compression and tension.

{3) Principle of superposition is assumed to be valid
for the uqmwnunwoa of creep strain. Thus, total creep strain
at any time t can be obtained as the sum of independent
creep strains produced by stress changes at awmmmwoud ages
with different durations of time cv to t.

{4) OOWnﬂmﬂm %m assumed to be a thermorheolcgically
simple material {(91). Such a material is defined as a
material which obeys the nwsmluﬁwnm principle for the temper-
ature variation, as »wwrunrunmm in Fig. 3.3. Let ﬂo be a
fixed reference temperature, and T a congtant temperature

such that T > T The specific creep versus logarithmic

g

‘time curves at temperatures chum T are identical in shape,

but shifted horizontally with a distance Y(T).

This relationship can be written

o Lant + b(m) B (3.21)

naamnnv = Cp
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witere C C are the specific creep curves for temperatures

T' Tp
T and Ty respectively. Since both sides of the equation
represent the same curve, taking the exponential of the

arguments on both sides and noting that e?nt » ¢ ang

SRRt 4 YT | L U(T)

cplt) = naoﬁnmeﬁevv = ep (E9(T)) 5 4(T) = eW{TY  (3.22)

where ¢ (T) is called a temperature shift function. Then the
specific creep curve NOM any temperature T is obtained by
replacing the time t by t*$(T) in the specific creep curve
for the nmmmnwsnm temperature T,. The validity of this
time~-shift huwnowhwo for concrete was demcnstrated by
Mukaddam and Bresler (91} using temperature dependent creep
data obtained by Ross, et al (76,71), Browne (23}, and
Hannant {94). |

{5) Stress changes are assumed to occur only at

distinct time steps t u.n - damf.r.z {sece mmnnwoa 2.2.1).
And, for nsm calculation of creep strain increment during
some nwam interval, the stress is assumed to nmamwu constant
during that interval. |

The following form of age and temperature dependent

specific creep function is used in this study.

n -A;9€T) (£-T)
c(T,t-T,T) = L a;(T)[1-e ] (3.23)

i=1

$(T) are to be determined from experi-

in which 8.,mwﬁav. wwu

mental creep data.

The principle of superposition for the creep strain is
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tllustrated in Fig. 3.4 twwr given temperature and stress
histories. The following definitions for incremental

quantities of time steps, stressas and creep strains are

used.
At = th = taog . (3.24)
Don =0 = Opuy 2 0(t ) - Clt,_4) (3.25)
Ae, = ef - €n-1 T €%0tn) - eS(t,y) (3.26)

Total creep strain mm at typical time step t, can be

cbtained by

€n = A0,ccle,,t -t,,T) + Agytc(ty,t ~t,,T) (3.27)

*oree 4 A0 el gt ., T)

Total creep strain ¢° can be obtained by

n-1 at time step nu

-1

€ - baﬂunand-d » T} {3.28}

.:.IM 'ﬂu-.ﬂv + bQNonﬂdNu"

n-1 n=1"%2

s r e & st + -t T
bus (.t 2 T)

-2 -2 =1 n=2

And the creep strain increment me occurring during time

unovm.n and nn is obtained by Egq. (3.26}). On inspection

n-%
of Eq. (3.26) to (3.28) it is evident that knowledge of all
previous stress increments are required to evaluate the
creep strain »nwnwamun at any time step. This presents a
nOluwaonmvum difficulty in computational procedures,; and

would require a substantial storage space and computational

time for a computer even for moderately sized problens. It



58

will be shown that this difficulty can be avoided by using
the form of the gspecific creep function expressed by
Eg. (3.213).

Egq. (3.27) can be written as follows substituting the
specific creep function expression given in Eg. (3.231) and
taking the temperature history into account,.

A OUT, YA+ (T ) At g+ oot b (T _ )AL )

m
N

“A (T, DAL +$ (T ) Bt +ree+d (T _ )AL }
AG,Iag(tg) (1-e i 2 3 3 4 n-1 n 1

+

“A T, AL,

+ 40 la(t, ) [1-e ] {3.29)

n

where sSummation is made on i = 1,2, ,m,
Similarly Eq. (3.28) may be written

“A (OUT VAE,+ (T ) Ak 4= o+ (T )8t )

¢
€ hey = &Qdmuwaﬂdvﬁdlm ]
: “A (T A +d (T At e e ead T, 508, )
+ bqwmnwnnuuadnm ]
< anw

Ao, _.2laj e o) (1~ | 1 -{3.30)

Then the creep strain increment Dmns is obtained by subtrac-
ting Eq. (3.30) from Eq. (3.29).

Dﬂﬂ = AG NW (t u@lyu..neﬁﬂ.ﬂwDﬁN.—-oa.?Gh.H_;IMuDﬂﬂlﬂvHulﬂ'yu.ﬂnﬂ.ﬂldvbﬁm—
1435 08y .

, “A (DT At +ee+d (T __ 34 _.) -Aselr _, )¢
. Dommmwﬂnuwm i 2 3 n-2 n-1 (1-e i n n
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e PE- A& SUPO .S S ~A (T __.¥At
+ Ao ammwwan ye i n-2 n (1-e i n-1 uu

n n-2

|y»enas|dwbn:
+ Ao |dmwwhﬁ= Y{1-e ] : {3.31)

n -1

'Eq. (3.31) can be simply written

m -A (T YAt .
T b n=-1 n_
Aep = I By pli-e 1 (3.32)
where ww.w is expressed by

ivr.u.. Aeﬁﬂ.“vb.ﬂN#.@mﬂ.Mvhnw.?- oo+ﬁﬁﬂ.nﬂleDﬂﬂu.’d

~A (LT ) A3 +4 (T At +eeedd (T )AL _,
+ bQMWu.. hﬁNvm
+ L3 )

-A (T _ At _

¥ i ne2 n-1
+ Ao, _oa (e - + ho _ja (e ) (3.33)

Using the general description of A we note that

i,n?

uw»ﬁeﬁadvpnm+eaemqbnm+...+@ﬂem

glhe, o)
Bi,n-1 = bo,a;(t )e

<

“A (BT AL+ (T B e e v (T _J)AE )

+ Damnwﬁnmvm
.o. .. w
+ AO a.{t ¥ , {3.34}

Inspection of Eq. (3.33) and {(3.34) leads us to the following

from the previ-

expression which enables us to evaluate Ai n
1]

ous value mw. successively.

n-1%

“hid (T )bt

= A e + Ao a

i,n i,n-1" no12glt ) (3.35)

>.LM - qumwaﬁdv (3.36)
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We note that, by using Eq. (3.32}), (3.35} and (3.386}), storage
of only Damnd and yh.u¢“ at time step t,_, is required to
evaluate the creep strain increment A€ at time step t_ in-
stead of the entire stress history. Thus, the present for-
Bcwmnwos.om.nnmmv saves a considerable maocun.om storage
space and computational time for a conmputer nmaﬁwnmm to other
formulaticns in which part or all of the previous stress his-

tories have to be stored, and enables us to efficiently

analyze ccocmplex concrete structures.

3.3 ' Creep at High Stress Levels

In w:m present formulation, wrw analysis of creep is
based ms the assumption that the creep strain is proportiocnal
to stress intensity. But this assumption ig valid only up
to & stress level of approximately c.amm for concrete. As
shown in Fig. 2.7 (S54), e¢reep strain generally increases at
an w:nnmuuw:m rate at higher stress Hm<nwu. To account for
this nonlinear creep effect in the wummmwﬂ linear formulation
of creep the effective stress concept suggested by Becker
and Bresler (73) is used in this study,.

The effective stress is obtained by multiplying the
actual stress by W: appropriate magnifying factor such that
the creep strain nmwncwmnmm.u% the effective stress on the
basis of the linear creep law would be the same as that
produced by the actual stress. The monotw:a eguations are
used for the calculation of the effective stress O_ in this

study.
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Oy =0 . if CHESE P S {3.37)
Ceg = cq + n»w:n if uamzn < 0 < mzn {(3.38)
Og = I,0 if o = f£", {(3.39)

where, r, is the stress-strength ratio up to which creep

1

strain is proportional to stress intensity, and r, is the

magnifying factor when the stress equals the maximum

compressgsive stress £“ . With given values of r

c and ¥y, €

1 1

and c, can be calculated from the three equations given above,

Ia2=I;y
ulH.._

¢y = P ey = r,(1-cy) ‘ (3.40)

Becker and Bresler used the values of ¢, = 2.33 and €y = =
0.465 with r, = 0.35 anad ry, = 1.865, based on the study of

Roll (71,72).

3.4 DpDetermination of Specific Creep Coefficients

Coefficients s..mnndv. w» 3 1= {.n....a and temperature
ghift function ¢{(T) in the specific creep function expreseed
by Eq. (3.23) are determined from experimental creep data
at some wowmwsm age T and reference temperature Tpy- And
assume that parameter m is known., Then the wvonwmwn creep
function in Eq. (3.23) can vatnnnnms

m C=Ax

c(x) n»m_mwnwsn ) : ) (3.41)
where x = t-1 nmvnmmm:ﬂm the time elapsgsed uwaﬁm_w:m locading
age T. ﬁ:m.&mnmnsw:nwwo: of a;, »» 3 io= 1,2, ,m is dis-

nﬁuwmm by Proberg (95) using Prony's method in which solutions

of mth degree polynomial equation and systems of simultane-
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ous linear eguations are required, By using this method

and comparing the results obtained using different values of
m, it was found that the use of focllowing fixed values
enables ug to fit ﬂrn mxvmﬂhﬂmmnmw creep data to the assumed

specific creep function with a sufficient degree of accuracy.

mo= 3, Ay = do-wwpnd-.u. ﬁw.&wv

Then, at any given loading age and reference temperature,
the determination of a; i = _.Nuu.mnm ﬁmncwﬂmm. Suppose
the experimental creep data are given at discrete vowamw in
nwam. 80 that we have N pairs of the wvalue ﬁxu.wwv ;3 o= 1,
2,**,8 in which Y4 is the mxvmﬂw&munmw specific creep at
time X4 and N is the total number of time steps. Then the

2;'s can be determined by setting up the following equations,

3 |acehx.
»mﬂmwﬁ“:m o d) = Yy j = 1,2, ,R (3.43)

Eq. (3.43) represent N sets of linear equations in 3 unknown
coefficients ay, mwlnam_mu ws.swwnv N is much larger than 3.
These egquations are solved by the least-square methad (95,
96) in ﬁﬁwnw the mra of the mmamnmw of errors are minimized.
Determination of a;’'s for different loading ages is
performed similarly, w:a.mon intermediate loading ages,
where the experimental data are not given, linear interpola-
tion is used to determine a;'s.
Experimental creep data for the particular concrete
used in the structure to be wsnkumm are not always available.

In such a case the creep data recommended by ACI Committee
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209 (56} and summarized in Igs. (2.18) to (2.20) may ke
used, Since Eg. {2.18) expresses creep data as the ratioc of
creep strain to initial strain at loading, specific creep,
which is the creep strain due to a unit stress, can be ob-
tained by dividing Eq. (2.18) by the initial mocdulus mwnau
at loading age T. ‘

If we use the ACI creep data, the determination of the
coefficients mw.m by the least-square method may be performed
only for cone lcading m@w because the ACI equations of the
creep curvesS for different loading ages differ only by a
constant multiplying factor nc. The ultimate creep coeffi-
cient Cy for different loading ages can be computed by Egs.
{2.19) and (2,20). Thus, assuming all the other conditions
mnm.wmmsnwnnw except for the loading age, once a; (1.} at
some Honawna.nmm T, are determined by the least-sguare meth-

©od, a; (T) for any other loading age T may be determined as

follows for moist cured concrete from Eq. (2.20).

2

E(To) (T y-0.110
E(T) T,

3 1= 1,2,3 {3.44)

a; (1) = ag(1,)-

where E(T5), E(T) are initial moduli at lcading age To and 7T
respectively. This equation may alsc be used in case the
experimental creep data is available only at one loading age.
Hrm following standard values of the coefficients w».m
obtained by the least-square method for the standard condi-
tions defined in section 2.2.3 may be used for the creep

analysis.
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T = 28 days ; E. = 3.834 x 10°% psi
a; = 2.02565 x 1077 (3.45)
a, = 1,85702 X 10”7

= 1,37290 x 10”7

For leoading ages other than T ™ 28, Egq. {(3.44) may be used
to evaluate mw.m for moist cured concrete, and for condi-

tions which differ from standard conditions, the mw.m are

multiplied by corrction factors xm. x%. KE, xw and xw defined
in Egq. (2.20).

The nmatwﬂmncwo shift function ¢{(T) can be obtained by
plotting specific creep versus leogarithmic time curves for
different temperatures as shown in Fig. 3.3. Then the func-
tion Y(T) or the temperature shift function ¢{T) may be
mvvﬂoxwﬁmn@m.vw a polynomial function.

The effectiveness of present mvmnwnwn nﬂmau function
expression to simulate the experimental creep data is demon-
strated in Fig. 3.5 in which Browne's (93} mxumnwamnnmw creep
curves at different loading ages can be seen to be almost
o%unnww_mwacwmﬂmm m< the creep curves generated by present

analytical model, maximum discrepancy betweaen the two curves

being less than 2 percent,
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4. SOLUTION STRATEGY FCR THE TIME DEPENDENT

NONLINEAR FRAME PROBLEM

4.1 Problem Statement

Suppose we want to analyze a planar concrete frame
shown in Fig., 4.1.a. The structure is idealized as an
assemblage of finite mwmaman interconnected by ijoints with
given boundary conditions as shown in Fig. 4.2.b. The
mxnnu:mw‘womau are assumed to be applied only at umwnﬂu.
Distributed loads may be converted into eguivalent joint
loads either by the consistent lcad method or a lumped
formulaticn (2). The joint load history, temperature histo-
ry of every part of the structure and the sgtress~-strain
curve valid at any instant of time are given. Alsoc creep
and shrinkage characteristics ¢of the concrete are given,
Then we want to find out joint displacements, support
reactions, w:nmn:mw forces for each element, strains and
stresses of every part of the Mﬂﬂsnnznm.un any instant of
time, | .

We 50¢m.nswn the load-displacement Amumv relationship
of this structure would wm so3ww=mmW for the following
reasons.

{1) The stress-strain (c-€") relationship is nonlinear.

{2} The strain-displacement ﬁ0|mv relationship is
nonlinear because of the large mwmﬁwwnmamsn.mmmmnnm.

{3} Time dependent effects of load history, temperature
history, creep, shrinkage and aging of concrete are present.

In order to incorporate these time dependent nonlinear-
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Fig. 4.1. A Planar Concrete Frame
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ities the time domain is divided into a discrete number of
intervals, and a step forward integration is performed in
which increments of displacements and strains mnmAmcnnmmmw<m:
ly added no‘ﬁum previous total as we march forward in the
time domain.

At each time step a direct stiffness mwnwnm element
method based on the displacement monacwwnwon is used for
the analysis in the space domain. Here, we need to set up
an mﬁcwwwunwaa equation which is necessarily neonlinear to be
valid for the current mnmﬂm of geometry and material proper~
ties,

To account for the geometric nonlinearity, an "Updated
Lagrangian" formulation (97,98,99,47) for the description of
motion is used in this study. For each element a local
rectangular Cartesian coordinate system X, Yy is defined as
shown in Fig. 4.7.b. The direction of ﬂ?wm.wonuw coordinate
system varies continuously as the structure deforms.
Internal forces and stiffnesses mnm.nuwnnwmﬂmm.wv the local
coordinate system for each nwmamnn..m:a then transformed to
a fixed mwovuw naonmwuwﬂm system X, Y shown in Fig., 4.1.b,
where the mncwwwunwcl equations for the entire structure are
set up and solved. Thus, the continucusly changing displace-
ment nnmrmmonamwwon matrix for each element represents the
effect of geometric nonlinearity aleong with nonlinear form

of strain-displacement (€-r) relaticnship.
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4.2 Solution Methods for Nonlinear Equilibrium Equations

Various methods for the solution of the total eguilib-

riuym eguations

Kr=R (4.1}
or the tangential eguilibrium eguations

K¢ mm = am (4.,2)

in which nwwmmnmmm matrices K and K, are functions of dis-
placements T and material properties are available (1,2,31,
100,101)., These methods can be ambmnuww%.owbmuwmwmm into
three categories as follows.

{1} Incremental Load Method (Fig. 4.2.a)
Total load R is subdivided into load increments bm. Por
each load increment bw, mwnkunmaown increment bm is obtained
ﬁmwsm.nuﬂmwuﬂ stiffness, and total displacement r is obtained
by -adding nwnnwnnmsmsm increments.

{2) Iterative Method (Fig. n.w.wv
Total wmmm.wn applied in one step in the lterative method,
and the unbalanced load iteration is performed ﬁ:ﬁww,n:m
equilibrium is reached to a desired degree. Unbalanced
load is obtained by subtracting internal resisting load
from external joint load, thus it represents the magnitude
of discrepancy from the equilibrium state. Depending on the
stiffness used for the iterations, the iterative method can
be classified into nrnmw methods ; initial stiffness methogd,

secant stiffness methed and tangent stiffness method.
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Tangent stiffness method reguires the fewest number of
iterations to arrive at the solution, but it has the disad-
vantage that the tangent stiffness has to be formed and
triangularized for the Gaussian elimination, for each
iteration. O©On the other hand, initial stiffness method
requires the largest number of iteraticons, Ucm it has the
advantage n:mw the same stiffness which is formed and tri-
angularized initially can be used for all the iterations.

(3} Combined Method (Fig. 4.2.c¢) |
This method combines the two methods described above., Thus,
total load is @divided into 1load increments, and for each
load increment one of the three iterative methods are uged
for better accuracy.

The incremental load method mmuwanww gives good
approximations to the wwnmna¢mwunm and final sclutions while
iterative methods yield the final solution to the desired
degree of rnnnwnnw. For concrete structures, the solution
is generylly vnnawmmvosnmaﬂ mainly due mo the progressive
cracking in tensile regions, so that it is desirable to use
the wnnwmamuﬂuw method. For this study, the combined methogd
is used to enhance the accuracy of nrm solution. An option
is vno<»mmm to use either tangent stiffness or constant

stiffness during iterations.

4.3 oOutline of the Nonlinear Time Dependent Analysis

Procedure

For the time dependent analysis, the time domain is

divided into a discrete number of time intervals each of
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which may not have the same duration in time, as already
explained in section 2.2.1. The junctions of these time
w:now<a~m are defined as time steps. Thus we have a dig~
crete number of time steps ns 3 no=1,2,"",N, where N is the
total number of time steps considered in the analysis. Then
a step mrnzmnm integration is performed in tswn: incremental
solutions are successively added to the previous total to
obtain the solution at the current time step, as follows.

At time step th-11 ve know all the uowwn displacements
m. total strains €, total non-mechanical strains e, and
stregses g of every part of the structure. nqnwnwnu the
increments of non-mechanical strains bmwa due to creep and
shrinkage of concrete and temperature changes occurring
during time steps t _, and t by the imnwom.nmmnﬂwumm in
chapters 2 and 3. Then nnwnzﬂmwm the equivalent jcint load

increments bmma at time step t, which would produce the

non-mechanical strain increments Dmmﬂ by treating them as

~initial strains (1). As shown in chapter 5, bwws for each

element can be calculated by the egquation

ARD® = /uBTE, A€l™ av 2..:

where B is the unnuw:nmwmvwwnmamﬁn matrix, and mn is the

tangent modulus.

Physically, Dw”ﬂ can be obtained by the following

procedure (4}.

{1) Lock all the joints against displacements at time

step th.q-
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(2} nmwnnwmnm the loads reguired at time step n: to
maintain all the joints locked by integrating the stresses
produced by wsm restraint of the non-mechanical strains gdue
to creep, shrinkage and temperature nwmuﬂmm which would have
occured during time steps th-q and t  if the joints were
free to displace.

{3} At time step ﬁv release all the joints and apply
the opposite of the joint locking loads calculated above.

In computing bwwa by Eg. (4.3) the aging wnwmws increment
me should be excluded from bmwa since the aging strain

does not cause actual bmwmwnmw straining, and can be ccnsid-
ered as a nowaann»ou factor for the calculation of the
stress, as explained in section 2.2.3,

At time step tn, load increment bms is obtained by
adding external joint load increment wa and unbalanced

load R to the eguivalent

I

., left over from time step th-g

joint load increment bmws due to non-mechanical strains.

3

n (4.4}

nm u
+ +
SR * Raoy

bR, = 8%
Then Dwu.wm divided into load increments AR, each of which
may not be of equal magnitude, for incremental load analysis
and the unbalanced load iteration is performed for each load
step as follows.

(1) Form tangent stiffness for each element based on
naﬂnmzn mmoamnnw and material properties. buuaavwm structure

tangent stiffness K, in global coordinates using current

displacement transformation matrix for each element.
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{2) Solve Mn Dm = bm for displacement increments Dm
and transform inte local cocrdinates to obtain element end
displacement increments.

{3) Compute strain increment A€ from element end
displacement increments by using nenlinear incremental
strain-digplacement relationship, and add to previous total
to obtain current total strain €.

{4) Add displacements Dm to previous total to get
current total ijoint displacements mr Based on current
nonmw displacements I update member geometry, i.e. update
element length and mwmvwwhmamuﬂ ﬂﬂwnmnonimnwon matrix.

(5) Subtract current total non-mechanical strain ™™
due to nﬂmmv.»mwnwnxmmm and aging of concrete and temperature
changes from current total strain £ to obtain current total
machanical mnnmwl e™, " Compute current stress ¢ from nonlin-
ear stress-strain (0-€®) law valid for the present time step
th taking load reversals wwno account.

{6) Compute element end forces by integrating current
total mﬂﬂmmnm- for each element in local coordinates, and
transform into global coordinates cmwam updated displacement
transformation matrices to assemble for the wammnnmw resisting
loads mw.

(7) sSubtract internal resisting loads m» from current

: u
total external joint loads wu te obtain unbalanced locads R .

g4 = r? - gi . (4.5)

~

(8) Set AR = R, and go back to step (1). Steps (1}
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te (8) are continued until unbalanced loads mc are within
allowable tolerances. Vn this point the current unbalanced
loads mc are added to the load increment &m for the next

lecad step and the iterative vﬂommmcum (1) to ﬁmv ig performed
mamwmu At the end of the final load step we proceed to next

time step nn+~.

4.4 Convergence Criteria

In solving the nonlinear equilibrium equations by
iterative amwvoam. nrn_no=<mnnmbnm at the end of an iteration
can be measured by two criteria., The first nm»nmnwou is the
magnitude by which equilibrium is violated. This can be
measured by the magnitude of the unbalanced locads. The
second criterion is wvm accuracy of the total displacements.
This can be measured by the magnitudes of additional
displacement w:nnmanznm.

For this study the mwmvunnmsmun criterion is used as a
primary convergence criterion. _wnn to guard against the
excesgive violation of equilibrium, the unbalanced load
criterion is also provided. Two kinds of displacement
tolerances are provided for this study. The first is the
displacement ratioc tolerance and the second is the displace-
ment increment tolerance.

Displacement ratio to be compared with the displacement
ratio tolerance is defined as follows. For each load step,
ummwn: mmﬂ two components of the displacement vector r, one
with maximum absolute value of the displacement increment

(here, the word displacement is used meaning translational
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displacement only}), the other with maximum absolute value of

A
-

e the rotation increment, after the first iteration. Suppose
ith component has the maximum displacement increment and

kth c¢omponent has the maximum rotation increment, Let et

3

be the total displacement increment of the jth component

i+
i

of the jth component for {(i+t)th iteration {see Fig. 4.3.1).

after ith iteration and Ar be the displacement increment

i+1
k

nw and Ar

X are defined similarly for rotation increments.

Calculate following ratios for displacement and rotation,

+1 i+1
Ar an
bnwl ﬁll.l.lll. u. DN.I mlulﬂlll_

r HW

e -

(4.6)

e b

A“V Then the displacement ratio p is defined by
p = the larger of p, and o, _ (6.7)

The displacement ratio p is compared with three conver-
gence tolerances as follows.
(1} tg (for final load step)

If p < ¢ proceed to next time step,.

= vg?
If p > tg, continuye iteration.
{2) t, {for intermediate load steps)
If p < ﬂw. proceed to next load step
If p > &y, continue iteration

{3} t (for changing stiffness)

If p < ¢t

< t., use previously formed and triangularized

A”V stiffness for next iteration.
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If p > L form new stiffness for next iteration.

By providing appropriate values of displacement ratio
tolerances, we can obtain intermediate and final results to
the desired degree of accuracy. And an appropriate choice

Om ﬁn mwwoﬁmcmnosmmmwnwmhasm»swnwwwmnwmmﬂmmwamnvo&

A or the tangent stiffness method for iterations,

To guard against unfavorable situations o¢f the dis-
placement overshoot which may occur in geometric nonlinear
analysis nwﬁa. 4.3.b) or load reversal analysis with material
nonlinearities wmwu. 4.3.¢c), maximum allowed values of the
&Mmﬁwmnmam:n increment nnmu and the rotation increment {t,)
for each iteration are provided, Suppose the ith component
of nwm.mwmﬂwwnmamnw vector r has the maximum displacement

AHV increment Dﬂuﬁ and kth moaﬁonmsn has the maximum rotation
increment Arp for the current iteration.
r? mmw

(1) 1f Jarg] > ¢ mnm‘_pnx_ <t

d

t
Ar; d _ ;1 i = 1,2,v++ ., n, where n is the
i bﬂw :

lb”ﬁxw
number of degrees of freedom in the structure.

(2)  1f |ary] < ty and |[Ary| > t,, set

Ar. = Ar, x |- E.] 3 i = 1,2,¢°¢,n

(3)y If thu_ > t4 and ﬁpnx_ > t,, set

o ’ t
d _ and _ r _v 5

Dﬂu DH.W

Ar,

i = Ar; x (the smaller of |

i = 1,2,,n
There is a possibility that equilibrium may be viclated

Ar\ mxnmmmw<mww even though the displacement convergence crite-
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rion is satisfied. To guard against such a case, a ceiling

is provided for the maximum unbalanced load allowed for

each iteration, t, is the maximum unbalanced force, ang tn

is the maximum unbalanced moment allowed for each iteration,.
In additicon nm the convergence tolerances described

above, a ceiling is provided to limit the ucammﬂ of iterations

performed for each load step in case monqmnmmunm tolerance

provided are too stringent. ny is the maximum number of

iterations allowed for intermediate load steps, and ne is

the maximum numbey of iterations allowed for the final loagd

step,

4.5 Numerical Examples

4.5.1 Time Dependent Analysis of a Concrete Prism

In order to demonstrate the time dependent analysis
proceduze a concrete prism having only one degree of freedom,
shown in Fig. 4.4, is analyzed with uwavuo.scsonwnnp data.
Joint load history and temperature history are given.
Concrete is assumed linearly mwwwnwn both in compression
and tension but the modulus is wmncamm to vary tFnJ time,
shrinkage strain ﬁwmﬂOnW and specific compliance curves for
different loading ages are given. Four time steps are
considered ; nw = 10, t, = 20, t; = 30, and ty = 60,

Creep is assumed to be nm&hmnuncnm independent for
mw!ﬁwwnwn% in computations, mﬁmnwmwn‘nﬂmmt curves given in
Fig. 4.4.e can be evaluated by

3

ana.ﬂlavlm mMHAWMdnmu
. i=

Aouwhncavw
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For this example it is assumed that ay; = a, = a; at each
loading age T, and these values are chosen such that we can

have simple numerical creep values at the last time step

ty. The values used are ; a;(10) = 5.57296 x 10 %, a, (20)

4.44255 x 10 2

; a3(30) = 3.22854 x 1072, Creep strains are
evaluated by using Eq. (3.26) to (3.28) directly instead of
using Eg. (3.32), (3.35) and (3.36) with ¢(T) = 1, which
would give the same result.
The mopw05wnw sequence of computstions are performed

for each time step.
a. Calculate the incremental and total values of non-

mechanical strains.
b. nwvocwwwm the load increment.
c. Calculate the incremental and total values of the

displacement and the strain,

d. Calculate the stress,

{1t} RAnalysis at time step 1, t, = 10.

- t -
a. €f = 0. ; €l = -3 x 1077 5 e = 3 x 1072 ; €2 = 0.

nm = - t a
€3 = €4 + €4 + Ey + Ey = 0.
b. R w mdwﬂmw + mw + mmu = 0. 5y RY « 1,

b
L]

3 nm _
Ry + R, 1.

(9]

H
-

"

nr\mdwv *Ry = 10, ; €

nm
d. g, = mﬂhmg.,nd }

= 1,

{2) Analysis at time step 2, t, = 20.

=4

a. NN

- umm = O cclt ,t,-t,) = 4.11 X 1072

2
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s _ -2 t -2
Le, -1 X 10 i besg = -1 x 10

a a , - -2
€5 = dej§ = qapgxmﬂud\mmu 5 X 19

E]

) a -2
5 * Dmu + Dmm = 7,11 x 10

nm c
bmm. = >m~ + Ag
nm nm

- 2
2 €y

€ + meg = 7.11 x 10"

8R3™ = E A(fed + 8el + Ae;) = 0.422 ; AR).= 2.

2 2

. u nau
me = Dmu + wa 2.422

bnm = ﬂﬁ\mwbvbmm = 12,11 ; ﬂm = N“ + Dnm = 22,11

bmn pnw\v 12.11 x 19 P Eq £y + Dmm 22.11 X 10

g. = muhmuamwav = 3, ; Ad_ = qg_ - g, = 2,

2 2 2 1

(3) Analysis at time step 3, nu = 30,
c . - - - -2
€3 o«o.nd.nu £y} o+ baunﬂnm«nu £yl 12.5 x 10

c c

n up u |»
ﬂ | I X .l X
umu mu mm m.um._o u.pmu uﬂ do ﬁ

me = 2 x 10”2
Ae® = G_(1/E.-1/E.) = 3 % 10-2%
3 2 VH/E, 3 ‘

Ae3™ = pe§ + A€l + el 4 Aef = 12,39 x 1077

nm nm nm -2
mw = £3 + me = 19,5 % 10

nm _ c s €, . 3 - -
pmw Murﬁumu + mmw + Dmuv 2.3475 ; bmu 1.
bwu wmu + Dmu 1.3475
Dnm = Ab\mwwvbmu = 5,39 , ry = ry + wﬂu = 27.5

= = IN . = E |N
Ae pnu\v = 5,39 x 10 v €3 €, + Dmu 27.5 x 10

3

o, = muﬁmulmu } o= 2. ; uau =03 - 0; = ad.

(4) Analysis at time step 4, ty = 60.
o |
Mb = gyrc{ty,tyg-ty) + DQMﬂnﬁM.ﬁhlﬂNv

-2
- » m
.+ Daunnnu.nA ﬂww = 16 1
c c c -2 s -2
be, = €4 - E3 = 3.5 x 10 i beg = -1 x 10 :
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me = -4 x 1072
a ) -
be, = O (1,E;~1/E,) = 3 x 1077
»mwa = me + bmw + me + pmw = 1.5 x 10”2
nm nm nm -2
= - x
ma mu + bm» 21 10
nm _ o] s t - 7 . -
b. pmn mayﬁbmb + Dmn + pmpy #= -0,6 ; pma = -2,
= u -+ nm = -
bma bmb Dmﬁ 2.6
c. mun = Nb\m»rv Ry = =6.5 Iy = r3 + r, = 21,
= - x -2 = = -
Dmn e bna\v 6.5 10 : ma mh + bm» 29 % 10
nm
d. q» = maﬁmaamn ) = 0,

Displacement histories due to the combined and separate
effects of joint load, temperature and shrinkage are plotted
in Fig. 4.5,

The nmmcunm.mﬂm checked with the sclution Otnuwnmm by
the computer program developed for this study, RCFRAME.

In the computer analysis the creep strain wunmmﬂmﬁn bmm is
ctomputed wcnonmwsn to the procedure developed in section 3.3

using the Eq. (3,32), (3.35) and (3.36).

4.5.2 Geometric and Material Nonlinear Analysis of a Truss

A Bimple wwvonwmnwnuw truss structure is analyzed to
demonstrate the combined mmmmnnm of geometric and material
nonlinearities by the computer program NTRUSS @m¢muovmm
during the course of this investigation to study wsm nonlin-
ear behavior of truss structures.

.ewm truss consists of three elements, as shown in Fig.
4.6 and 4.7, among which only the middle element has nonlin-

ear material properties like nosnuowwy,w.o. it cracks in
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tension and yields and crushes in compression as shown in
the stress-strain diagram. The outer two elements have the
same modulus as the middle element, but they behave linearly
elastically both in compression and tension.

In Fig., 4.6 the load-deflection curve of the truss
subjected to tension is plotted. After the awmawm elemant
s cracked we notice the stiffening of the truss due to
geometric nonlinearity.

Load-deflection curve of wwm truss subjected to com=~
pression is plotted in Fig. 4.7. .bmnmn nwm_awmapm element

yields and crushes, the structure can be seen to be softening

due to geometric nonlinearity.
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5. REINFORCED CONCRETE FRAMES

5.1 General Remarks

A general procedure for the geometric and material non-
linear analysis of planar reinforced concrete frames inclug-
ing the time dependent effects of load wwmnomw. temperature
history, creep, shrinkage and aging of concrete was discussed
in chapter 4 utilizing the mathematical model for material
properties developed in chapters 2 and 3.

Detailed descriptions for the derivation of equilibrium
equations, evaluation of tangent stiffness matrix and the
calculation of internal forces will be given in this chapter
based on the displacement mona:wmﬂwow of the finite element

method.

5.2 Definitions and Assumptions Regarding Geemetry and

peformation

A typical planar reinforced concrete framed structure
is shown in Fig., 5.1, amm mnwnnﬂcﬁm consists of elements in-
annOﬂbmnnmmlvw joints,

Each element is assumed to have a prismatic cross sec-
tion which has an axis of symmetry. But the shape of the
€ross section may differ element by element,

Local coordinates x, y for each element are defined as
follows. Let the two joints at the ends of an element be i
m%m 1. . Joint i is nwm‘ouwmwn of the local nomuuwunmm m%mﬂms.

Then the axis connecting the two joints i, j defines the x

axis, and the axis perpendicular to the x axis in the plane
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of the frame defines the y axis, The x axis need not coin-~
cide with the centroidal axis of the frame element. The ref-
erence plane of the element is defined as the plane contain-
ing the x axis ang Wm alsc perpendicular to x-y plane. The

y axis coincides with the axis of symmetry of the cross sec-
.tion.

Each element is divided into a discrete number of con-
crete and reinforcing steel layers. The geometry of each
layer is defined by its cross sectional area and the distance
from the reference plane,

Each joint has three degrees of freedom, i.e. two trans-
lational degrees of freedom and one rotational degree of
freedom. ewm.uwmvpmnmamswu of each joint can be defined ei-
ther in the global coordinate system or the local coordinate
system,

The global mocnmwuuwm system X, Y is fixed in space,
and is common for all elements. Eguilibrium equations for
the structure are set up and mowamm in this coordinate system.

Element properties such as the element stiffness matrix
and the internal forces are formed in local coordinates for
each element. However, the origin and the direction of this
noow&w:rnm system are continuously changing according to the
current locations cf the two joints which ¢unw as the struc~
ture deforms,

The cross section of an element is assumed to remain

rlane at all stages of lcading and time. This implies that

the deformation due to shearing stress is neglected.
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Concrete and the reinforcing steel are assumed %o be
perfectly bonded together, Thig assumption makes the dig-

placement field of the frame element continuous.

5.3 Derivation of Equilibrium Egquations ‘Including Geometric

and Material Nonlinearities and Neon-mechanical Strains

Displacement components of a frame element having six
degrees of freedom are defined in Fig. 5.2.a in its local
coordinate system, x-displacements, y-displacements and ro=
nwnwm:m of the two end joints, and all components of the
joint displacements are represented by vectors 4, v, and

r respectively.

m—
=

u v
! ! (5.1)

us v _ 8,

[Rec N

A non-dimensional parameter p is defined which represents

the position along the axis of the frame element as folliows,
p = x/L . (5.2}

Let coﬁxv and v{x) be the x-displacement and the y-displace~

ment of any point along the frame axis respectively. Assume

a linear variation of u, (x} and cubic variation of vi{x), then

4]
we can write
ug{x) = w u . (5.3)
¢ = <{1-p},p> : (5.4)
v .
vix} = @ = : (5.5%

8

~—

¥ = <(1-3p%+2p%), (3p?-2p%) ,L(p-2p%+p ") ,L(-p?+p’)> (5.86)
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anrwnrﬂm:aﬁwﬂmmvmvmmcsnnwommmon coﬁxv m:acﬁanmu
.spectively.
Let ul(x,y} be the x-displacement of any point in the

frame eslament, Then by the plane section assumption we can

express u({x,y) in terms of joint displacements as follows.

dv{x) v
uix,y) aonxv y i mm %@.x Nm. (5.7}
u{x,y) and v{x) may be expressed in terms of r.
ulx,y} = <¢,-y¢ xv 3 {5.8)
vix) = <0,y> r (5.9}

Axial strain €{x,y}) is defined by (102)

du{x,y) +.Paa¢nxvvm (5.10)

ax 2 dx

+

Elx,y) =

in which the second term represents the nonlinear displace-
ment effect,

In Pig, 5.2.b a nnuam element is shown in its various
states of deformation. State O represents the original un-
deformed state. ~State A represents the current deformed
state. And mnuwu B represents the next state from the cur-
rent state A with the displacement increments Dm and nmm de -
formation increments Au and Av, As the frame element deforms,
we note that the origin and the direction of the local co-
ordinates x,y, and the length of the element are continuocus-
ly changing. Total, incremental and tangential equilibrium

equations which are valid at the current state A will be de-
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veloped., All the state variables are referred to the cur-
rent state A, so that joint displacements, deformations,
loads and internal forces are referred to the current local
coordinates, and integrations are performed over the current
element volume.

Consider a finite change in the doint mMWﬁHmntmsﬂm Dm
from the current state A, with ctorresponding changes in &de-
formations Au, Av and the strain At. From Eg. (5.8) to (5.
10} the following expressions can be derived by replacing the

total values with the incremental values.

bu = <¢, -yy e Ax o (5.11)
b I, :
Av = <0, y> Ar . {5.12)
dBu _ oy, —yp > or ‘ (5.13)
dx -, X =, XX ~
da
=Y « <0, ¥y > Ar | (5.14)
LS - - ) x ~
1.7 T
Ae = <¢  , -yy > Ar 4+ —Ar*<o, Yy >°<0, ¥ > Ar (5.15)
X - ) XX ~ 2~ -7 -,x - =,x ~

The incremental mnnmwuumwmvwmnmsmuw umwaﬁwonm:wv at the cur-

rent state A represented by Eg. (5.15) may be rewritten

Ae = BAr + .W.Dnanenbﬂh where . (5,16}
B = <¢ , -yy > (5.17)
- = X -, XX

11 6 6 : 2 2
= Al-uu.,m...‘ﬁ. y{1-2p) .N..m..w-htq.fnﬂv .IH“.u\AN.!.va ...quu\nﬂl.wmuvv

= < ) > . (.18
¢ o, ¥ )

: 6 2, § 2 7 2
<0,0,T(=p+p"),T(P-P"), (1-4p+3p7 ), (-2p+3p“) >
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From Eq. (3.16), the tangential strain-displacement re=-

lationship at the state A is
dE = mam {(5.19)
The virtual work egquations at the state A can be written
ar’rd = / a€aav (5.20)

where mu is the external joint load vector, Qm and dE are the
virtual displacement vector and the nownmuvonmpsm virtual
Strain respectively, and 0 is the current stress of the ele-
ment. Note that the integration must be performed over the
current volume of the element. By mcvunwncnwuﬂ Eg. {5.19)

=T T

into Eq. (5.20), noting that d€ = d¥ B, we obtain the total

equilibrium equations at the state A.

R} = scmeqmc (5.21)

The tangential strain-displacement retationship at the
next state B can be obtained by taking the differential from

Eq. (5.186).

d€ = Bdr + drlecTecAr (5.22)

- -y

= dr (BT + c¢TchAr)}
The wvirtual work eguaticons at the state B can be written
azrT(rRI+ART). = 7, dE (g+a0) av (5.23)

in which, as the jcint displacements change by Ar, the

ﬁf\ stresses change te (0+AC0) and the joint loads required to
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maintain the equilibrium change.to ﬁwu+bmuq. By substitut-
ing Eq. (5.22) into Eg. (5.23) we obtain the total equilib-

rium eguations at the state B.
R) + ARI = \cﬁma+mqm>uVﬁq+pavm< (5.24)

The incremental equilibrium equations at the state A
are then obtained by subtracting Egq. (5.21) from Eg. {5.24)

and neglecting the higher ordeyr term H<ne>onac.bn.

ar7 = s BTaoav + / cTocavear {5.25)

-

The tangential equilibrium equations can be obtained
from Eq.. (5.25) by replacing Ar by dr, Ar7 by mwu and Ao by
d0. fThe tangential stress-strain raelationship for both con-

crete and the reinforcing steel can be written
do = B, de” = E_(de-as"") | (5.26)

where de™, de and de™™ are the infinitesimal increments of
the mechanical strain, the total strain and the soanﬁan:anw;
cal strain respectively, and mn is the tangent modulus as
defined in chapter 2, By substituting Eg. (5.19) for de into

mﬂ. Amonvu

do = E.Bdr - E,ae"" (5.27)

t

Substitution of Eq. (5.27) into Eq. (5.25), after replacing
the incremental operator A by the differential operator 4,
gives us the following tangential eguilibrium equations at

the current state A,
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-~

3 T T T
dr7 = (/yB E BAV+ /[ c 0ocdV) «dr - [yB E de""av (5.28)

By ammw:wsa the following terms

ar"® = xcmemnmmuaad (5.29)
dR u.mmu + arPm . (5.30)
T
= B .
Ke S BTE _BAV (5.31)
Kg = [ycTocdv (5.32)
Ke = Ko + mm (5.33)

we nwn rewrite the Eqg. {5.28)

dR = K,dr {5.34)

~ - ~

This is the desired form of the tangential egquilibrium

equations which are valid for the current geometry and mate~

om

rial properties. 4R is the egquivalent lcad increment vec-

tor due to non-mechanicsal]l strains., The tangent stiffness K
consists of the elastic stiffness K, and the geometric stiff-
ness K..

nonlinearity and the gecometric stiffness K_ represents the

The elastic stiffness Ko represents the material

gecmetric nonlinearity since wn.onwawnmnwm from the nonlinear
strain-displacement relationship in £q. (5.10). But both of
these gstiffnesses are dependent on the current geometry be-
cause n#m integrations are performed over the current volume

cof the element,
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5.4 Evaluation eof the Tangent Stiffness Matrix

Numerical evaluation of the tangent stiffness K., con-
sisting of the elastic stiffness Ke and the geometric stiff-
ness Kg, and its transformation from the local element coor-
dinates to the mwovww coordinates will be discussed in this
section.

To evaluate the elastic stiffness Ko decompose the
strain-displacement matrix w inte two parts, one associated

with the axial force action, the other asscciated with the

bending action, as follcows.

B = <¢ , -y¥ > = <By, =yBp? {5.35)
- -, -, XX - -
1
B, = < > = - -1, 1> {5.3¢6)
lm mh” HL m ? N
2° 3 3
By, = <y > = = <={-1+2p) ,v(1-2p)} , (-2+3p)} ,(-1+43p}>
- P XX L L L
{5.37)
Then, from Eg. (5,31}
BTE.,B., -yB E,B . K K g
_— Patela Y2a%¢2p Saa Xab
Ke = JyB EgBav = [y _— av =
~YBpE¢Ba Y BpEtBp 1 Xpa Kob
{5.38)

Note that B, is a constant matrix, By is a function of
x onww.‘twwwm the tangent modulus E4 is a mcnnnwwn cf both x
and y since the value of E, varies along the length of the
frame element as well as through its depth wnn0ﬂmwnm to the
strain state, wwcm it is necessary to perform the integra-
tion in both x wzm‘w,mwumnnwoum. However, if we assume that

the values of E. at the mid-length of the frame element rep-
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resent the average value along its length, the integrations

in Egq. {5.38) can ke separated as follows.

Kaa ™ JyBaE B, dV = H<Mnmm.w BTB, dx (5.39)
1.
Kab = Xpa = Jy-VBRE.Bpdv = |H<mn<mw.m BLBpdx (5.40)
L
Kup = xcw»mamnmwnc = Hmmnwnmw.% mMmumx {5.41)

zomm that the exact evaluvation of the tangent stiffness ma-~
trix is not a necessary requirement for the solution of the
nonlinear macwwwunwca equations as discussed in chapter 4.
Savings in the computation time due to this approximation
well compensates the increased computation time for the in-
nnmumo&.:nawmn of wnwnaahosu required te arrive at the equi-
librium state, |

The mwﬂmn integrals are o<mwcmnmn at the mid-length of

the frame mpmamnn.u< a layer integration as follows.

ﬂn bm
EA = H»mnar uwm_mnwwnw +wmdmm»mmw (5.42)
30 . ﬂ—h
ES = awymnwam = - EciYeiPey - L EgiYgqiPgy {5.413)
iml i=1
, Ng ng
El = Hbmn%»&y n.mamnwwwwmnw +»M_me<mw»mw (5.44)
P" =

" where Ne m:a,nm are the number of concrete layers and rein-

forcing gteel layers respectively, and the subscripts ¢ and
8 represent the concrete and the reinforcing steel respec-
tively.

awm second integrals are evaluated analytically by inte-

grating the shape functions.
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101

{5.45)

(5.46)

5.47)

The elastic stiffness Ko can be expressed explicitly as

follows combining Egs. (5.38) to (5.47).

1=

The geometric stiffness K

at the mid-length of the frame element as follows.

K

-g

= fycTocav = [,oda-r

M

A

T

sym.

ES ES
o 0 - =
o 0 _ES Es
L L
12E1 12EI  6EI  6EI
ﬁu bu Nh.N WN
12F1 6EI  6EI
T L? L?
4FI  2EI
L L
4E1
L

=g

L

<

{(5.48)

can be evaluated similarly

L
cTedx = p f cTcax
]

(5.49)

where p is the axial force of the frame element. By inte«
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grating the shape functions the geometric stiffness ma is

expressed explicitly as follows.

0 0 o 0 0 0
0 o 0 0 g
ép 52 p_  P_
SL SL 10 10
- 5.50
Kg 6 p  p_ (5.50)
5L 10 10
2plL pL
sym. 15 T30
ZpL
X 15

The same result has been derived by other investigators (103

» 104} .

The element tangent stiffness matrix Ke is then cbtained
by adding Kg and ma. In order to form the structure wumnm:w,
stiffness matrix, element tangent stiffness matrices have to
be transformed from the local element noonmwumnmw to the glo-
bal coordinates. For the assemblage of the structure stiff-
ness matrix the numbering system for the displacement nﬂanol
nents shown w:,m»a. 5.1.c is used instead of that shown in

Fig. 5.2.,a. Then the transformation can be performed with

the following eguation.
A {5.51)
in which K, is the element tangent stiffness in local coor-

mw:mnmm.‘mm is the element tangent stiffness in global coor-

dinates and the coordinate transformation matrix A can be
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written as follows.

i c s 0 ]
-3 c 0 o
0 g 1
A = {5.52)
c s ]
4 -5 c 0
B 0 G 1]

where ¢ = cos €, 8 = gin 8, and & is the angle between the

,mpoump and local coordinates, measured from the global X-axis

to the local x-axis. It should be noted that the angle B8

for the current state A has to be used here for each element.
After all the mwmamsﬁ.nuamm:n_wﬂnmmnmmmmm are transform-

ed to the global coordinates, the structure tangent stiffness

is assembled in a wwn:anwm manner utilized in the direct

stiffness methed (1,2).

5.5 Calculation of Strains and Stresses

For each iteration in the course of the solution proce-
dure discussed in chapt, 4, nwnmmmnwmw equilibrium egquations
are sclved for global m»wwwmnmgm:m increments. For this
study a symmetric banded eguation m0w4mﬂ utilizing Gaussian
eliminatiaon ﬁnonmamﬂm is used. The procedure for the calcu-
lation of the strain and the stress at any point in the frame
element is ocwHHnmm. Hr the following description all the
state <Wﬁwmvwmm should be referred to the current state A in
which displacement increments bm are not added yet.

(1} Transform global displacement increments Ar® to
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local displacement increments Ar for each element, The

transformation is performed by the fellowing eguatieon.
Ar = aArS , _ (5.53)

where the transformatiocn matrizx A was defined by Eg. (5.52}.

{2} Strain increment A€ at any point wn.nﬁm element is
calculated by Eg. (5.16). Total strain € is then obtained
by adding A€ to the previous total.

{3). Mechanical strain €™ is calculated by subtracting
non-mechanical strain e®™™ from total strain E. Non-mechani-
muw strain ™™ wu due to the combined effects of creep,
shrinkage, aging and temperature changes for concrete, and
due to the effect of nmsvmwwncnm changes for reinforcing
steel,

{4} Stress 0 is calculated by the nonliinear o-€™ curve
given in chapter 2, For nosnnmnmg.mnmf {2.30) to {(2.33) are
used, and for reinforcing steel, mam..ﬁw.u»u to {2.36) are
used.

The computation of strains and stresses described above
is performed for each concrete and steel layer at 3 Gaussian
guadrature points along the length of the element as explain-

ed in the next sectioen.

5.6 Calculation of Internal Resisting Loads and the

Equivalent Loads Due to Non-mechanical Strains

Hunamnmw resisting loads w». which can be defined as the
loads reguired to hold the structure in eguilibrium, is cal-

culated by the total equilibrium Eq. (5.21) for each element.
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ri = quqom< _ {5.54)

"

Equivalent load increments AR"™ due to the increments

of non-mechanical strain Ae®™ are calculated by Eg. (5.29).

ar"™™ = s BTE Ae"May : (5.55)

-

Unlike tangent stiffnesses, internal ﬂmmwwnwnm loads
have to be calculated as accurately as possible because the
comparison between the internal resisting loads and the ex-
ternal joint loads form the basis of the equilibrium correc-
tion for the wdmnwnwﬁm nonlinear analysis ﬁnonomaum. For
this reason both mw and bmug are evaluated by & 3-point
Gaussian quadrature (95,96) combined with the layer integra-
tion.

Each component of the vector mw or Dmsa contains a func-
tion f{x) which is dependent on x only and a function g{x,y)
which is dependent on both x and y, to be integrated over
the volume of the element. The integraticn can be performed

~as follows.

L . L 1
S mnvavmnN.wvm»mx =3 S mﬁﬁyawmﬁv.%v&wnb (5.56)
© )

[
o

dsxmavwinvxv

R I”)

x

hip,) = H>mﬁnx.<vav (5.57)

where three Gaussian integration points py, are ; p, = 0.5,

P> u.o.aﬂmuodmmmuqmmwmu p3 = o.mmqwmmuunmwoqhu. and the

weights w, are ; wy = 8/9, wp = wy « 5/9,
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Six compeonents of the interncl resisting load vector

nm .
due to non~mechanical

Ww or the equivalent load vector bw
strains gshown in Fig. 5.3.a. Since these components of the
lcad vector form a self equilibrating system of forces there
are only three independent internal force components wm.mrotn
in Fig., 5.3.b. Sy is the moment at joint i, WN is the moment
at joint j and S3 is the axial force. Thus only these three
components need to be nnwnswwnma. and the other components

are computed by the mncwwwvnwcs requirements. The functions

mnvv and g{p,y) for the calculation of the three internal

" forces Sy, 53 and S3 are tabulated below,

: gip,y)
s £{p) . I =
for R for ARPRW
2
sy | T(2-3p) yo yE AT
M .
Sy | T(1-3p) yo yE ™"
$3 w o Eede™™

The function sﬂvww defined by Eq. (5.57) is evaluated

by the layer integration for each Gaussian w:wmmnmnwou.vownn

Py - For example,
| ng ng
waqm» = Iy A + Ly

jm=1 ci%ciPei i=1 5i%siPsi

where n. is the number of concrete layers, nu is the number

of steel lavers.
Internal resisting load vector mw and the egquivalent

load vector AR™ for each element are transformed to the
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global ¢oordinates by multiplying the transformation matrix

ma defined in Eq. (5.52), and assembled for the structure.

5.7 Treatment of Boundary Conditions and Calculation of

Reactions

Boundary conditions at nrm.mcmvoﬂw are specified by
means of support springs. Two translational springs in or-
thogonal directions A and B and a rotational spring are pro-
vided for each support as shown in Fig, 5.4. Spring axes A
and B form a rectangular Cartesian coordinate system which
is rotated by an angle O from the global coordinate system.

Spring stiffnesses ww- k. and xn asgociated with these

b
three springs are gspecified to simulate the boundary condi=-
tions at the support. Por a zero displacement in the specific
direction, a large value of mﬁﬂwua stiffness corresponding

to that direction is specified, and for a free displacement,
zero value ig specified for the spring stiffness.

Support spring stiffness matrix Mm may be written in

A-«B coordinates as follows,

Tx o o]
a
5.58}
wm = 0 | wu 0 { }
0 Q k
n T
spring stiffness matrix mm in global coordinates can be ob~
tained by
k¢ « aTx a | (5.59)
- - lsm.l
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in which the transformation matrix n is given by

c 5 0
W = - c 0 {(5.¢0)
0 b 1

where ¢ = cos € and s = sin 6§,

NM for each support is added te the structure stiffness

-

to sclve for the displacerments at each joint, The reactions

F = <F Fy, mnvﬂ are then calculated by the equation

a?
F = -Kgr (5.61)

in which r is the displacement vector at the support in A-B
coordinates,

In owwncpmnwnm the cmwmwwnnma loaé vector mc by Egq.
ﬁn.wv. the support reactions have to be- subtracted from the
internal resisting load vector mw since the mxﬁmndmw joint

load vector r? does not include the reactions.

5.8 Summary

Based on the nonlinear time dependent analysis procedure
for planar frames described in chapter 4, detailed derivation
of the equilibrium equations, tangent stiffness matrix and the
procedure to compute strains, Stresses, internal resisting
loads, the equivalent loads due to souusmm:unwnuw strains
and reactions is described in this chapter.

Total, incremental and tangential forms of equilibriunm
equations including mateyrial and geometric :ozwwzmrnuwwmm and

the effects of non-mechanical strains are developed based on
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the "Updated Lagrangian" formulation for the description of
motion. The expression for the tangential stiffness awnﬂhxu
consisting of elastic and geometric components, which is valid
for the current geometry and amnmwwmw properties is derived,.

Numerical evaluation of the tangent stiffness matrix by
the integration over concrete and steel wmwmnw at the center
of each element is discussed. The wnnmanmﬂwol is performed
over the current length of the element using the current ma-
terial properties of each concrete and steel layer, The
transformation of the tangent stiffness matrix to the ﬂwowww
coordinates is performed using current displacement trans-
formation matrix for each element.

Computation of strains and stresses .-for each concrete
and steel layer at 3 Gaussian gquadrature points aleng the
length of each ejement is discussed. Total strain £€ is com=
puted by accumulating nww strain increments A€ for each it-
eration. A€ is computed by a nouwwsmuw.unnmwaamwmvwwnaam:u
nmwmnwOnmwwv.mnoa.uo»nd awuvwmnmamnm increments bm. Total
non-mechanical strain e®™™ is computed by accumulating the in-

crements Ae™™ for each time step, Total mechanical strain

m nm

£ is obtained by subtracting ¢ from €, Stress ¢ is then
computed by the currently valid stress-strain {(g-e™) relation-
ship. k

Internal resisting loads and the equivalent loads due to
non-mechanical loads are evaluated by a layer w:ﬂmoﬂmﬁ»o:

through the depth of an element and 3 uawnﬂ Gaussian guadra-

ture along the length of the element,
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Finally the treatment of boundary conditicns and the

calculation of reactions by providing support Eprings are

discussed,



G, PRESTRESSED CONCRETE FRAMES

6.1 General Remarks

Depending on the method of applying the prestress, pre-
stressed concrete mnncnnmumm are classified into pre-tensioned
and post-tensioned structures, In pre-tensioned structures
the prestressing steel is tensioned against some abutments
before nsm concrete is placed, and the prestress is transfer-
red to the concrete after it has set by the bond between the
concrete and the prestressing stesel. In post-tensioned sgtruc-~
nnnmm the prestress is transferrad gradually to the concrete
while nwa.vnmunummuwsn steel is tensioned against the hard-
ened nmunnmnuu and u:nsoun& against it wﬂamawWRme after the
nmamwoa»sw Oﬂmnmnwonw And depending on whether the prestress-
ing steel is grouted or ungrouted aftey the tensioning opsasr-
ation, post-tensioned structures are further classified into
bonded and cnvnammu structures.

In the mnmwwnwu cf prestressed concrete structures the
variation of the stress in the prestressing steel during var-
ious stages mm loading is an important factor since the be-
havior of prestressed concrete structures is largely depend-
ent on the effective amount of prestress acting on them.

In pre-tensioned structures the prestress loss takes place
before the transfer of prestress due wo the shrinkage of con-
crete and the relaxation of prestressing steel ; at the trans=-
fer mra to the elastic shortening of concrete ; and after the
transfer due no,nxm creep and shrinkage of concrete, the re-

laxation of prestressing steel and the effects of locad history
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and temperature history, In post~- tensioned structures the
prestress loss takes place during the tensioning operation
due to the friction between the prestressing steel and the
duct, and the anchorage slip ; and after the transfer of pre~
stress due te the creep and shrinkage of concrete, the re-
laxation of prestressing steel and the mmmmnnw of load hisg-
tory and temperature history.

In this study aim is taken at finding all the displace-
ments, internal forces, stresses and strains for nvm,ﬂonnnmnm,
reinforcing steel and nrm anmnnmmmwnn steel in the planar
pPrestressed concrete frames subjected to load history and
temperature history, at any Wwam during their service lives
by one complete analysis which includes both geometric and
material moawwsmmnwnwmu &nd the time nmﬁ»namsn effects of the
creep, shrinkage wsm.unwnm of concrete and the relaxation of
prestressing steel. The nonlinear time dependent analysis
procedure developed previously for reinforced concrete frames
Mu,mﬂvwowmu with some Bomwmwnunwmsm due to the distinct fea-
tures present in prestressed concrete frames. In this chap-

ter only those features distinct in prestressed concrete

frames are discussegd.

6.2 Definitions and Assumptions Fegarding Geometry

and Deformaticon

A typical planar prestressed concrete frame is shown in
Fig. 6.1.a. In addition to the definitions and asgumptions
regarding the geometry and deformation of reinforced concrete

frames given in chapter 5 the following definitions and as-
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sumptions are used for prestressed concrete frames,

There is a discrete number of ﬁﬂmmﬂummm%:m steel tendons
in the frame. Each of these prestressing steel tendons has
a given profile, initial tensioning force and a constant
nHOmm:mmnmwonmw area along MWm length.

A prestressing steel tendon consists of w discrete num-
ber of prestressing steel segments each of which is straight,
spans a frame element and assumed to have a constant force.
The locations of the two end points of a prestressing steel
segment in a frame elemnent are defined by the eccentricities
e; and ey as shown in Fig. 6.1.c. e; and mu are the distances
¢f the two end points from the joints i and j respectively
measured in wvm local ¥ nOOﬂmwnmnm. |

Perfect bond between the concrete and the prestressing
steel is assumed for pre~tensioned structures and post~-ten-
sioned bonded structures., Thus the displacement field within
an element of these structures is assumed to be continuous.
~The stiffness of the vﬁnunummmwam steel segment in an ele-
ment for these structures is calculated as mOwworm and added
te the wmeW5ﬂ mnme:mmu. Assume the prestressing steel seg-
ment MJ an element is located at the depth of the mid-length
of n:ﬁ wmmam:n parallel to the x-~axis of the element and cal-
culate its stiffness as if the segment wu.m steel layer hav-

ing the distance from the reference plane, y l‘ﬁmw+muv\m

PE

as shown in Fig. 6.1.¢.



6.3 Analysis of Pre-tensicned Frames

6.3.1 Analysis at the Transfer of Prestress

After the initial prestressing mownm is applied to the
prestressing steel ﬁw»nw i3 anchored to the abutments the
concrete is formed and cured. Before the prestress is trans-
ferred to the concrete the following events occur.

{1} The stress in the prestressing steel is relaxed.

(2) The concrete and the prestressing steel are bonded

together as the concrete hardens.

(3) shrinkage of concrete takes place gradually.

To analyze the gtructure for these events assume that all the
shrinkage om.nonnnmwm take place at the time of the transfer

after the mnnmmmAws-nUn Uﬂmwnﬂmmmwnn steel is relaxed and the
concrete and the bummanmmmwsa steel is completely bonded to-

gether. '

The analysis procedure ig illustrated by a gimple exam-
ple shown w: Fig. 6.2.a in which a concentrically pre-ten-
sioned concrete prism with linearly elastic material proper-
ties is given. Let P, be the force in the prestressing steel
remaining just before the transfer after the relaxation has
taken place from mxm initial prestressing force P,. Let mM
be the total free shrinkage of concrete up to transfer, then
nmm eguivalent load P acting on the composite prism due to

s

€a is

u u
PY = E_A_E, . ﬁm..:
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Let L€% be the amount of change in the strain of the compos-~
ite concrete and steel prism due to the shrinkage €3, Then
the corresponding decrease in the force for the prestressing

steel embedded in the vnwma is
S = - s :
ap mempm . {6.2)

The force in the prestressing steel embedded in the prism is
decreased by the amount bmw. and the force in the prestress-
Mam_mnmmw between the prism and the abutments is increased
by the amount AP® as shown in the free body diagram »=<mwm.
6§.2.b. |

Then, the change ww the strain of the composite prism,
Ae% can be calculated by applying the forces P® ana Ap® on

the composite vnwmaﬁ

s s » o5 _ 8
s PS + AP E A .EZ mmanbm

Ae® = = - (8.3}

EA, + E_A_ momn.+ E A,
Solving Eq. (6.3) for Ac®,
es

Ae® a < ‘ (6.4)

1 + 2m

in which m = ma»W\mnwn.

The axial force wn for the concrete can be computed by

- mlm.l B .
vc mo>nabm mnv 24P (6.5}

in which Ae® represents the total strain and mw raepresents

the non-mechaniecal strain due to shrinkage. By using Egq.
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(6.4) and (6.2} P_ can be shown to be egual to 24P% which
checks the statics as shown in Fig., 6.2.b.

The analysis for the shrinkage is based on the solution
cf Eq. (€.3). However, monLnoaﬁwmx structures with nonlinear
material properties it is generally impossible to set up such
a nonlinear force-displacement mmwwﬁwmsmw%v. In this case
£m.ﬁmw use the following iterative procedure as shown in Fig.
6.2.c.

(1) Bapply P® = mnynmw on the composite prism and cal-

culate the corresponding strain bmm.
ﬁwv, Since the prestressing steel connected to abutments
is stretched by cbmm. apply the corresponding force
ApS = amm»mbmw and calculate the nonnmmﬁona»nm
strain increment wa. .

(3} Now the prestressing steel connected to abutments

shortened by - w- 80 apply the corresponding

Ex
m

in
-~ &

force Dvw = |mmmubmw and nuwnnwmnm the correspond=-

-
3-

The desired strain Ae® can be calculated by adding the incre-

Msw strain increment Acg

ments obtained in the iterative process. By adding the re-

sults shown in Fig. 6.2.c

s s 8 s
de” = bmd + bmu + bmw + {6.6)

g ..y . L R
1+m T+m 1+m c

Note that the expression in brackets is a Taylor series ex-
pansion of 1/(1 + 1/(14m})) = (1+m)/(1+2m), thus Eq. (6.6)

converges to Eg. {(6.4) which is the exact solution.
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The first term in Eq. (6.6} represents the first order
approximation nm the exact solution, and ﬂ:ﬁ rest of the
terms wmﬁnmmmzn successive corrections, With numerical data
given in Fig. 6.2.a the exact value of the loss of prestress
AP% due to shrinkage can be calculated by Eq. (8.2) and (6.4},
which gives us APS = 6.767%. This Hmﬁnmmmnﬁu.nwm loss of
3.76% of the initial prestress Py = 180X, The first order
approximation which is obtained by applying P® gives the val-
ue Ar} = 6.977" which represents the loss of 3.88%. Note
n:wn the error involved by using the first order approxima-
qwon represents only 0.12% of the initial prestress force,
Thus it can be concluded that the mwwun ocrder approximation
twﬁnoan.mcvuma:mnm nonnamn»osm gives us an acceptable solu-
tion,

Then the analysis at the transfer of prestress can be
performed in a single step by applying the following loads
m: the composite frame in which the stiffness of the pre-
stresgsing steel is included.

{1} Joint loads due to the prestressing force P, exist~
ing at the time of the transfer after the relaxa-
tion has taken place. The calculation of P, ia
discussed in section 6.6 and the calculation of the
joint loads due to P_ is awmncmumm in secticn €.5.

{2) Joint loads due to the shrinkage of concrete up to
the time of the transfer.

{3} Dead load of the frame. Dead load is applied at

transfer since most of nsm.mﬂnamu are eccentrically



prestressed and will hog upward at transfer,

6.3.2 Analysis after the Transfer of Prestress

Rfter the transfer of prestress the composite frame, in
which the stiffness due to the prestressing mnwmp ie included,
is analyzed for various time dependent loads due to live load
history, temperature history, and the creep, shrinkage ang
aging of concrete by the procedure developed previously for
reinforced concrete frames. Calculation of the strain and
the stress for the prestressing steel and the contribution
om the prestressing steel to the element loads are discussed

in section 6.7,

€.4 Analysis of Post-tensioned Frames

€.4.1 Analysis at the Transfer of Prestress

For post-tensioned structures the prestress is transfer-
red to the concrete gradually during the tensioning opera-
tion. As the prestressing force is applied from the tension-
ing end with the initial force Py &#s shown in Fig. 6.3.a
friction takes place between the Prestressing steel and the
duct, resulting in the gradual mmnﬂmnmm in the prestressing
force away from nrm nmbmwoaw:m end. The decrease in the pre-

stressing steel force due to the friction can be calculated

by the formula (105)

P, = mdmeﬁtm+xvv . (6.7)

Referring to Fig. 6.3.b

P, = Prestressing force at point 1



®

122

e———
e

{a) Post-tensioned Beam with Initial Prestressing Force P,

{({b) vVariation of the Prestressing Stsel Porce Due to Friction

(¢} Freae Body Diagrams of the Prestressing Steal and the
concrete Daaxm

Pig. 6.3. Analysis of a Post~tensioned Beam at Transfer
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P, = Prestressing force at point 2

L = Length of the prestressing steel segment

8 = Change in the slope of the nﬂmmwmmmmwum steel

segment in radians assumed to be uniformly
distributed over the length L

¥ = Curvature friction coefficient

K = Wobble friction cocefficient
With Eq. (6.7) we can calculate the prestressing force at any
point along the tendon by starting from the tensioning eng
with given initial nmsumoumnm force Py. |

Since each prestressing steel segment is assumed to be
straight and have a constant force, the force in a specific
vnmuﬂnmmwwnm stee]l segment is taken as the average of the
forces at the two end points of the segment.

When there is an anchorage slip by an amount AL at the
tensioning m:m. it is assumed that uniform decrease in the
strazin by the amount of Dv\by tHMnm L is the length of the
prestressing steel nmmmou. takes place nwnwcmwozn the tendon,
and the force in each of the prestressing steel segments is
subtracted by the nouﬂmmnosuwuo.amnnmmmm in the force EARAL/L.

Fig. 6.3.c shows free body diagrams of the prestressing
steel tendon and the concrete frame at transfer, in which in-
teracting mownmm between the uummnnmmwwvm steel and the con-
¢rete can be observed. Then the analysis procedure 2t trans-
fer can be mcaamnwwma as follows.

{1} Calculate the prestressing segment end forces by

Eq. (6.7) by starting from the tensioning end with
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given initial tensioning force for each prestress-
ing steel tendon.

{2) Calculate each prestressing steel segment force by
m<mnumwsw two segment end monnmm.

(3) Subtract the loss due to anchorage slip from each
of the rrestressing mnmmw\mmmaw:n mwﬂnma.

{4) Calculate the joint loads due to prestress by a
pracedure described in section 6.5,

(5} Analyze the vawu.ow reinforced concrete frame, in
which the stiffness of the prestressing steel is
not included, for the joint loads due to prestress

and the dead load.

6.4.2 Analysis after the Transfer of Prestress for Bonded

and Unbonded Frames

After the transfer of prestress the prestyessing steel

.in the duct is grouted for bonded frames and left ungrouted

for unbonded frames,

For bonded frames the displacement field in a frame el-
ement is continucus, so that the composite structure, in
which the stiffness of the prestressing steel is includegd,
is analyzed for various time dependent Howmm after transfer.

For unbonded structures the mwwnwmnmamsﬁm and strains
of the concrete and the prestressing steel are wammnmbam:n
mxnmvw at anchorage points, and there is an interaction be-
tween nwm concrete and the ﬁnwmnWmmmw:@ steel due to fric-
tion. To illustrate the basic procedure for the analysis of

unbonded structures a simple beam with an unbonded straight
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eccentric prestressing steel shown in Fig, 6.4.a is analyzegqd,
The material vﬁoﬁmnnwmm_mnm assumed to be linearly elastic
and no friction is taken into account for simplicity.

Let AP be the increase in the Frestressing steel force
asm to the live lgad w. The corresponding increase in the
steel strain is DM\Mmbm assuming that the mﬂmmw strain in-
crease is uniform throughout the tendon and the effect of the
friction between the Prestressing steel and the duct is neg-
lected. This strain increase for the steel is equal to the
strain increase nmn the concrete at the steel level which is
ocbtained by applying the WOWHOtwsm end moments and forces to
the concrete beam as shown in Fig. 6.4.a.

(1) Average bending moment of W&o where M, is the max-

imum bending moment -at nvo swmmﬁwr due to w.

(2} Eccentric compressian Ap &t the steel level,

Equating .the strain increase for the steel and the concrete

at the steel level

2
P P .
mmw = wxo.mmH - muw - m m (6.8)
85 c ¢ ¢ e ¢

Sclving for AP

AP = mxo.mm. 1 : (6.9)
3 rl t+m(1+e?/r?)
in which the parameter m and the radius of gyration r are

defined in Pig. 6.4.a.

However, we cannot always set up the eguation for AP for
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complex structures with nonlinear material properties. The
m0wwn£w:m iterative procedure, similar no.ﬁwm procedure for
the shrinkage analysis of pre-tensioned frames before trans-
fer, in whieh the sclution »m_mw<ms by a series each term of
which represents a mﬁnanqum correction to the previous so-
lution, can be used for general structures.

(1) Apply w on the concrete beam, The average strain

increase at the steel level is

2 m. 2 me
Dm“ - Iko. = Imo. z
3 wan 3 r mmwm

The corresponding increase in the steel force is
Dmﬁ = mmmmbma.
(2) apply -AP, on the concrete beam at the steel level.

The resulting strain change is

DM.M Dﬁdmn Dmgg mN
bmu = - + y = - (1+55)
mnwn mnHﬂ mmwm r

The corresponding change in the steel force is
APy = E A A€,.
(3) We could go on by applying ﬂﬁm next correction
| force -AP,, and so forth for a more rigorous solu-
tion. |

The change in the steel force AP is obtained by

Ap = bmd + bww + Dmu + e {6.10)
2 2
2 me e 2 e 2
= M =T tem{(td—g) & m (14—5) - e e
370 p? r r ‘

Eg. (6.10}) represents a Taylor series expansion of Egq. (6.9).

Thus step (1) in the iterative procedure represents a first
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order approximaticn and step (2) represents a second order
approximation to the true solution. With the numerical wval-
ues given in Fig. 6.4.a

AP = m.cumx = 2,68 percent of P

AP, = £.667% = 2.89 percent of P

wm* + bmw = q.wmmw = 2.66 percent of P
The errcr for taking Dm“ is 0.2%1 percent of the total pre-
stressing force P and that for taking Dm“ + me is only 0.02s
of P. Thus we can conclude that it igs guite acceptable to
take the first order approximation and taking the second or-
der approximation may be too rigorous.

The vuonmmﬁum described above can be generalized to
analyze general unbonded frames for any time dependent load
assuming that the changes in the strain and the force for the
prestressing steel are uniform throughout the tendon by neg-
lecting the friction between the prestressing steel and the
duct. Refer to Fig. 6.4.0.

«du Analyze the concrete frame excluding the stiffness

of the prestressing steel for any live load IL.

The average change in nrw.mwmmw strain A€ can be
calculated by A¢ = IAL/LL where the summation is
made for each prestressing steel segment. The cor-
responding average increase in the prestressing
steel force is given by AP = Mmbmbm. This step
represents the first order approximation.

(2) Analyze the concrete frame for the forces induced

by the increase in the steel force AP and calculate



(3)

If

the corresponding changes in the steel strain and
force.
Superpose the results of steps (1} and (2} for the

second order approximation.

we& want to take the friction between fthe unbended

steel and the duct into account we can proceed as fcllows.

refer to Fig, 6.4.c.

(1)

{2)

It can

be

Analyze the concrete frame for the live lgad LL
and calculate the total elongation AL of the ten-
don. The problem here lies in the fact that the
distributien of the steel force increase along the
tendon cannct be determined easily. Assume that
this distribution can be determined by applying
the equivalent tensioning force AP, at both anchor-
age points A and B, The equivalent tensioning
force AP, can be determined by an iterative method
such that it produces the total elongation AL for
the tendon including the effect of friction as in
the tensioning operation. Once AP, is deterrmined
we can calculate the distribution of the stesel
foreces along the tendon.

For the gecond order approximation, analyze the
concrete for the forces induced by the increase in
the steel force and calculate the corresponding
changes in the steel strain and force, and super-
pose the results cbtained in step (1}.

shown that the difference between the results ob-
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tained by including and excluding the effect of the friction

is very small.

6.5 Calculation of the Load Vector Due to Prestress

at Transfer

For pre-tensioned frames the ﬁummnﬁmmmwnm.mnmmw tendon
is usually straight and has a constant force, 1In this case
the transfer of prestress takes ﬁwmnm by the cconcentrated
compression at the two end vamnm of the tendon. But scme-
times harped tendons are used to get the desired eccentricity.
At harped UOwsWu ﬁrm tendcn is connected to the Vnmmnnmmmw:n
bed and the connection is removed at transfer. Thus concen-
trated forces are applied to the concrete at the harped points.

i

In post-tensioned frames the vﬂmmnnmmmwna steel tendon
generally has a curved profile. This profile is approximated
by a series of straight prestressing steel mmm%mnnmlmmnw of
which is assumed te have a constant force.

The assumption that each prestressing steel segment has
a constant force implies that the interaction between the
prestressing steel and the concrete takes place mnww at the
mna.vo»snu of the prestressing steel segments, Fig. 6.5
shows a typical frame element in which a prestressing stee]l
wmﬂamnn AB with 2 force P is embedded. Application of the
opposite of the prestressing force P at two end points A and
B represents the interaction between the ﬁnmmnﬂmmmw:@ steel
and the concrete,

The components of P in local element coordinates are :

P, = Pcosa, m% - vmwsn~ where ¢ is the angle between the lo-
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Pig. 6.6. Calculation of the Stress Relaxation
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cal x axis and the prestressing steel segment AB, Then the

egquivalent joint load vectors R; and mu at joints i and j of

the element are

T T
Ry ™ <Ryys Rpjs Ryy?

R (6.11)

= Avx. P, smxmwv

b4

>T = <-P,, -P mxm.vﬂ {(6.12)

Ry = <“Ryj, Rpj. R34 3

%v

These load vectors are transformed into the global coordinates

by multiplying the transformation matrix wﬂ

defined by Egq.
{5.60)., By assembling these load vectors for each element
the total joint load vector for the structure due to prestress
at transfer can be obtained.

An identical procedure can be used to calculate the e~
guivalent joint loads due %o ﬂonnnnwwou.monnmm in the pre-
mwnmuww:m steel for the second order analysis of unbonded

frames described in section 6,4.2.

6.6 Stress Relaxation in Prestressing Stee]

aau,:uncnm of the stress relaxation in prestressing steel
was digcussed in umnnwon‘u.n. Magura, Sozen and Siess {108)
develcped the following equation for the calculation of the
stress relaxation in prestressing steel based on numerous

experimental data for a wide variety of prestressing steels.

£

£
28 .q - rog t.Zsi 45 55y ; <32 > o.ss (6.13)
fai ‘ 10 m% mw -
in which mm is the stress at time t, mmw is the initial stress

ig 0,1 percent offset yield

immediately after stressing, mw

A”\ stress and t is time in hours after stressing.
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Eq. (€.13} is developed on the condition that the strain
remains ceonstant and the initial prestress is the only stress
applied, In reality various changes ir the prestress take
place due to other causes. One example is the loss of pre-
.mnnmmm due teo elastic shortening cof concrete at transfer for
pre-tensioned structures, and after transfer wwm amount of
prestress varies due to variocus time dependent lcads. In
order tc take these variations in prestress into account in
the calculation of the relaxation, Hernandez and Gambie {107}
suggested the following procedure. Ghali, Sisodiya and Tadros
(108) utilized a similar procedure,

wwmmew:m to Fig., &.6, let mmwo be the initial prestress
applied at time tg. At time t4, in addition to the stress
relaxation Dmnd from the initial prestress f.ips the pre-
stress drops to mmd due to other causes. Calculate a ficti-
tious initial prestress fg39 by Eq. (6.13) such that the in-
.Wﬁwmw prestress mwwﬂ applied at t, would be relaxed to t
at tq. Then, on the basis of the initial prestress faite
calculate the stress relaxation meM occcurring during t, ang
ty. Lf_ 3 is calculated similarly after calculating a ficti-
tious initial prestress f_;, which would ﬁmwux to £f.-, at t,.

By continuing this process the total stress relaxation frn

at time t, can be calculated by

£ = L Af_. . , (6.14)
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6.7 Calculation of Prestressing Steel Strains and Stresses

and Interpal Element Forces Due to Prestress

In order to calculate the prestressing steel strains and
stresses, the current length of each of the prestressing steel
segments at mwnr stage of the iteration process is nwwnﬁwwﬂm&
by first calculating the gleobal coordinates om the two end
points. Fig. &.7 shows a procedure to calculate the current
global coordinates (X,Y) of the end point corresponding to
joint i which have the original global coordinates (X5,Y5).
In the figure, 8, is the original angle of the element axis
from the global coordinate mxww. Ty, T, and ry are the nOKl
ponents of the current total displacement vector of the joint

3

X.

For pre-tensioned and post-tensioned bonded frames the
strain and the stress for each prestressing steel segment are
evaluated as follows.

(1) Calculate the strain increment by
A€ = (Lo - Lg)/Lg (6.15)

where, L. wm_nrm segment length for the current it~
eration, Lp is the previous length and L, is the
original wmnnﬂr. L, is calculated on the basis of
the original locations of the two end points in the
frame element,

{2) Add AEe to the previous total to obtain the current
total strain €.

{(3) Calculate the stress corresponding to & from the
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nonlinear stress-strain curve shown in Fig, 2.10.

(4) m:Unnmmn the stress relaxation f,., calculated by

the procedure described in section 6.6 from the
stress ounmwmmn in step (3) to calculate the cur-
rent stress O.

For post-tensioned unbonded frames, wqmwwmm strain in-
crement A€ for the entire prestressing steel tendon is first
calculated by a similar expression as the Eq, (6.15) in which
L represents the length of the tendon. Then mvm stepsa {2} to
(4) are followed for each prestressing steel segment.

Haﬂmnnww.nmmwuﬂwna.woma <mnnou mw due to prestreas can

be expressed as follows hon each element, Refer to Fig. 6.8

mw = <-P., Py, me. mw. P.ej, |mxmuve . (6.16)

in trwnr.nmwm<nﬂn terms are defined in section 6.5. For ge-
ometric nonlinear analysis, nc&nmnn values of § and & should

be used,

i
Rp

internal resisting load vector due to internal forces for the

is transformed to global coordinates and added to the
concrete and the reinforcing steel, and then assembled for

all the elements to form the internal resisting load vector

ww for the Wnncnnaﬂm.
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6.8 Summary

The procedure for the nonlinear time dependent analysis
of prestressed concrete frames is similar to that for the
analysis of nmwanNnmm concrete frames developed in preceed-
ing chapters except for some additional steps which result
from the features awmnwsnn_ws prestressed oosmnmnm frames.

The analysis is performed distinguishing pre-tensionegd
and post-tensioned structures for three distinct stages of
loading in prestressed concrete structures ; namely before,
at and after the transfer of ﬁwmmnnmmm.

Bonded and ::wo:mmn vuunnwmumwonm@ structures are distin-
guished for the analysis after the transfer of vnmunﬂmmm.

Mon each type of structure, and for each stage of load-
ing a method for the evaluation of the stiffness and loading
due to prestress is developed. For pre-tensioned and post-
tensioned bonded structures the approximate stiffness due to
ﬁﬂmnnnmumwrm steel is added directly nm the element stiffness
asgsuming that the displacement field within an element is
continuous. For unbonded post-tensioned mnﬂcomcnmm an iter-~
unqu method is mm¢mwmvma to account for the awmnwmnmlmnn
wrnoavwnWwawnw. A procedure for the mmnmnawzwwwon of the
stress for the prestressing steel including the time depend-

ent effects is discussed.
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7. COMPUTER PROGERAMS

7.1 General Remarks

During the course of the present investigation 4 com=- .
puter programs had been written w: FORTRAN language for the
CDC 6400 computer at the University of nwwwmourwm_ Berkeley,
Twa programs, NTRUSS and NFRAME were written in *he esariier
stage of this investigation to study and verify various time
dependent nonlinear mnmwww»u ﬁnonm@nﬂmu.

In the program NTRUSS a procedure for the nonlinear

time dependent analysis of planar concrete trusses is incor~

porated. Elagstic-perfectly plastic stress-strain relation-

ship is assumed. Geometrzric nonlinearity and the time depend-
ent effects due to creep, shrinkage nnm aging of concrete and
temperature variations are Munwcamﬂ;_ Example 4.5.2 was ana-

lyzed by this vnoaﬂma.

The program WMwam was :nwwno: to verify the geometric
nonlinear analysis vﬂoomusmm for planar frames. Linearly e-
lastic material properties were assumed. Example 8.2.1 was
analyzed by this program.

In the programs RCFRAME and PCFRAME the present analyti-
cal procedures are incorporated for planar reinforced and
prestressed no:nnmnm mwwﬂmu. respectively. The input instruc-

tions for these programs are given in the wnmmamwx.

7.2 Flow Chart of the Programs RCFRAME and PCFRAME

A brief flow chart of the programs RCFRAME and PCFRAME

is given in the following page.
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Tha wvariables in the flow chart zre defined as follows.

Load case counter

Total number of lcad cases

Time step counter

Total number of time steps

Load step counter

Total number of load steps for the current time step
Iteration counter

Maximum number of iterations allowed for the final
load step

Maximum number of iterations allowed for intermediate
load steps

Displacement ratio defined in section 4.4, to be
compared with the following convergence tolerances
Tolerance for intermediate load steps

Tolerance for changing stiffness

Tolerance for the final locad step

Maximum unbalanced force

Maximum unbalanced moment-

Maximum allowed unbkalanced force

Maxinmum allowed unbalanced moment

Iteration output code (Qutput is given for each it-

eration if XOUT is not zero.)

Main functions of the subroutines listed are as follows.

1. INPUT

The geometry, boundary conditions, material properties

and element data are read in,
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LCAD

Load vector for the current time step including the e-

gquivalent loads due to wummﬁ. shrinkage and aging of

concrete and temperature changes is computed.

STIFF

Tangent stiffness matrix is formed based on the current

geometry and material properties.

SYMSOL

Displacement increments are solved by this symmetric

banded mmamnwom solver. SYMSOL(1) triancularizes the

newly formed stiffness matrix while SYMSOL({2) utilizes

already triangularized and stored stiffness matrix.

STRESS

Strains, stresses, element forces and unbalanced loads

are computed,

guTPUT

The following informations are printed out for each load

step, and for each iteration if XKOQUT is not zero.

{a) Joint displacement and rotations.

{b) Support reaction forces and moments.

{c} Unbalanced loads and moments,

{d}) Element forces and moments (Moments at two end joints
and the axial force) ,

(e) Strains, stresses and forces for each prestressing
steel segment for prestressed concrete frames,

(£} Material state number defined in chapter 2, stresses

and strains for each concrete and reinforcing steel

layer.
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8. NUMERICAL STUDIES

8.1 General Remarks

A number of reinforced and prestressed concrete mnwsmm
has been analyzed by the computer programs RCFRAME and PCFRAME
described in chapter 7. The purpose of these numerical stud-
wmm can be stated as follows.

(1) To verify the validity of the theoretical procedure
developed in this 'study for ﬁvm.nouwwnmmﬂ time dependent analy-
sis of reinforced and prestressed concrete frames ;

(2} To demonstrate the accuracy and the capability of
the computer programs RCFRAME and PCFRAME to predict the non=-
linear wwﬁm dependent behavior of reinforced and prestressed

#
concrete frames,

In mwnﬂwma 8.2, theoretical studies on the effects of
geometric and material nonlinearities and the load reversal
on concrete beams are presented. In sections m.u,ms& 8.4,
nmwnmonnma and prestressed concrete frames studied experi-
mentally by previous investigators are analyzed by the computer
nwonnwam RCFRAME and PCFRAME, and the experimental and mwm

analytical results are compared.

8.2 Thearetical Studies

8.2.1 Timoshenko Beam - Test on Geometric Nonlinear wsmeme
In order to test the accuracy of geometric nonlinear a-
nalysis procedure a simply supported bheam, restrained axially

and loaded uniformly, as shown in Fig. 8.%1.a is analyzed. The
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material is assumed to be linearly elastic. However, due to
the presence of axial force, if we consider the equilibrium
in the deformed configuration, the structure becomes stiffer
as the applied locad is increassasd.

Timoshenko (109) has presented an analytical solution
to this problem treating the structure as an mwmamnnmw strip
cut out mﬂos.m‘uo:a rectangular plate bending into a cyline
drical surface.

Since the structure and the loading are symmetric about
midspan, one half of the structure, divided into 5 equal el-
oamnwmh was analyzed by the programs NFRAME and RCFRAME with
11 load steps up to g = 2 k/in. aum.nnomu section of the
beam was divided into 10 egqual layers for the analysis by
wnwwvzm. The results mon‘nwm.a»mmvmn deflection are shown in
Fig. 8.1.b, and those for the axial and bending stress at
midspan are shown in Fig. 8.1.¢. It can be seen nwun.wnm
comparison between Timoshenko's soluticn and the present a-
nalytical solution is very good. A small error in the solu=-
tion by RCFRAME nuﬁ.wm nnnnwvﬁnmm to the errcr involved in
layering of the cross section. This problem was also analyzed

by Yeh {(100) and Aldstedt {47).

8.2.2 Reinforced Concrete Timoshenko Beam = Test Qn

Geometric and Material Nonlinear Analysis

An axially restrained reinforced concrete simple beam,
similar to that analyzed in section 8.2.%, is wuwwwum& to
study both separate and combined effects of geometric and ma-

terial nonlinearities,
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In Fig. 8.,2.a, the geometry and material properties of
the structure are summarized. Due to the symmetry only half
of the structure mw<wmmm into du elements is analyzed. The
cross section is divided into 10 concrete layers and a steel
layer. 1In order to increzse the ultimate load capacity of
the cross section the compressive strength Om.nsm concrete is
arbitrarily increased.

The structure 1s analyzed up to g = 140 lb/in with 10
load steps. Fig., 8.2.h shows Hommammmwmnnwo:_nunqmu at mid~
span for 4 different cases, Case 1 represents linearly elas-
tic response. Only geometric nonlinearity is considered in

case 2., We notice a distinct stiffening of the load-deflec-

tion curve due to nonlinear mmOBmwnw effects as discussed in

the preceeding sectien. 1In case 3 only material nonlinearity
is considered. Beyond the nnmowwwm load the structure softens
as the Howm is increased due to the gradual monnmwmm of the
modulus om.mwwmnwnwnw om_monnﬂmnm until it fails. In case 4
beth gecmetric and lwﬂmn»mw nonlinearities are considered,
Beyond the cracking load the structure can be seen softening
initially as the lcad is increased. However, as the load is
increased further, we notice that the structure stiffens
gradually due to the effects of geometric nonlinearity. We
note from Fig. 8.2,b that the single most important source of
nonlinearity is the cracking of concrete at relatively low
load level which reduces the structure stiffness in a sudden
manner. The gradual softening and stiffening of the struce

.

ture stiffness due to the yielding of concrete and the effects
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{lb/inj) Case 3 | Case 4| Case 3 | Case 4 Case 3| Case 4
10 0.26 0.26 3,8 4.4 162, 161,
20 0.82 c.86 7.2 -3.7 324. 327.
40 1.88 2.14 -33.3| -16.4 648, | 683, |
60 2.94 3.34 «54.0! -10.0 972, 1005,
8¢ | 4.05 §.41 «70.8 6.5 1296. 1267.
100 5,26 5.31 -86,3 27.7 1620, 1472,
110 5.90 5.75 | «%2.7] 35.7 1782. 1576,
120 6.58 | 6.15 -97.9| 44.8 1944, 1668.
130 |. 7.32 6.66 | -102.3| 45.1 | 2106. | 1805.
140 — | 7.12 —_— 48.13 — 1924,

Table 8.1. Example B.2.2 - Comparison of Deflection §,
Axial Force P and Bending Moment M at Midspan
for Case 3 and Case 4.
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of geometric nonlinearity can be noted at higher lcad level.

For cases 3 and 4, displacement ratio tolerance p de-
fined in section 4.4 was taken 0.01. The average number of
iterations per lcocad step was 4 for ommm 3 and 5 for case 4.
The results for cases 3 and 4 are summarized in Table 8.1.
In addition to the deflection &, the axial momnm P and the
bending moment M at midspan corresponding to each locad step
are tabulated. °

In case 3, the waawwwwnwaa equations are mowmm& in un-
deformed state. Thus in calculating the bending moment M at
midspan, the effect of the axial force P is neglected, and
the.value of M is proporticnal to the applied load g as can
be seen in Table 8.1, The bending moment M can be computed
by H = qL?/8 in this case. However, in case 4, the equilib-
rium egquations are uowcmn in deformed state, and the mmnmnﬂ
of the axial force P is included in computing the bending
moment M at midspan. The bending moment M can be computed
by M = qL?/8 - PS. The bending moment M and the axial force
P at midspan are plotted in Fig. 8.2.¢. We note that as the

lecad ¢ is increased, the portion of the moment resisted by

the axial force P i8 increased.

8.2.3 Load wmqmnmmw Analysis of a Reinforced Concrete

Simple Beam-

A hypothetical reinforced concrete simple beam shown in
Fig. 8.3.a is analyzed to study the behavior of reinforced
concrete structures subjected to load reversal. One half of

the structure jis divided into six elements. The cross sec=
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ticon is divided into 10 equal concrete lavers and two steel
layers, each representing 2 #9 bars at the top and bottom of
the cross section.

The concentrated load P applied at midspan is first in-
creased frem O to 40 kips, then the direction of “he load is
reversed and increased up to =40 kips, and then the direction
of the locad is again reversed and increased up to 40 kips.
With the load increment of 10 kips, 20 load steps are re-
gquired to analyze for this. sequence. For each load step,
the displacement Hwnwo tolerance p is taken 0.01. The aver-~
age number of iterations per load step is 11. "The effects
of geometric nonlinearities are not included in this analysis.

The results at midspan are tabulated in Table 8.2. §
represents the deflection at midspan. However, 04. m_ and

41 £, represent the stress, strain values of the bottom and

27 T2
w.-n-

vely, at the middle of the

(24
[ug
[ 20

o layer, respect

v
0
0
=
0
H
]
o
0

element No. 6, l.e., 6 inches apart from the midspan. The
Bwnmnwmw codes, representing various material states in the
concrete stress=strain curve, are defined in section 2.2.5.
Fig.8.3.d shows the stress~strain curves of the bottom fiber
nqanmdw and the top fiber ﬂqwumuv. respectively, at midspan
corresponding to each load step. In Fig, B.3.e, the stress
distribution through the depth of the cross section, as well
as along the length of the beam, is shown for each load step
distinguishing the compressive stress zone, the tensgile stress
zone and the cracked zone.

The behavior of the beam for each load step will be dis-
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zussed briefly by dividing the 20 lcad steps into 5 groups
each of which consists of 4 load steps.
(1) Steps 1 to 4 (p = 0X to p = 405)

The beam exhibits almost linearly elastic behavior
up to step 2. Between steps 2 and 3, cracking takes place in
bottom fibers, and the midspan deflection at step 3k ig mard-
edly increased as shown in Fig. 8.3.b. The neural axis of
the beam at midspan has moved up as shown in Fig. 8.3.e.

The slope of the load-deflection curve at midspan between
steps 3 and 4 shows the cracked stiffness,
(2) Steps 4 to 8 (P u.pow to P = oxv

Cracked nmawoum,umamwu ¢cracked during the unload-
ing to zero load as shown in Fig. 8.3.e since the cracks
cannot be closed as long as the strain states remain positive.
The structure stiffness during this unloading remain almost
constant. However, we note that this stiffness is increasead
compared to the stiffness between steps 3 and 4. This can
be mwimwnm& by examining the stress-strain curve of the top
fiber at midspan shown in Fig. 8.,3.d. In an unlcading path
the modulus of elasticity is the same as the initial modulus
which is greater than the secant modulus between steps 3 and
4., Accordingly, the stiffness is increased. We alsoc note
in the figure that there is some nmmwmcmw.mﬂﬂmub at step 8
{p = oww due to the unloading path with the initial modulus.
2 small amount of residual stress present may be considered

as a numerical error. However, total axial force at midspan

computed by the layer integration is zero.
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Auv mwmﬂmmnoﬂmhwn cw ﬂomu aboxv

As the upward load P is applied up to aow. we first
note that the cracks formed previously in bottom fibers of
the beam are now closed, an the fibers participate in re-
sisting compression as shown in Fig. 8.3.c and Fig. 8.3.e,
We also note in Fig. 8.3.b that cracking of the top fibers
takes place between steps 9 and 106, instead of between steps
10 and 11 corresponding to the oﬂmnwwnm load for downward P.
The reason for this lower cracking locad for upward P can be
explained by the ﬁwmmmunm of compressive residual strain in
top fibers as shown in Fig. 8.3,d, The cracking is assumed
to take place when the stress reaches the tensile strength
mw. Due to the residual compressive strain, the tensile
strain corresponding to £! is reduced compared to the value

t

for the initial downward loading. Hence the cracking lecad

§r

ced As a conse ce of this low cracking load,

[ 28

e alen radnu
€ &18Q0 redu -

displacements are increased compared to those in steps 1 to
4 as mWOts in Fig. 8.3.b. Structure stiffness after cracking
becomes softer compared to that for the downward leading
since the wvalue ¢f the tangent modulus becomes lower for
higher compressive stresses. Alse¢, crack propagates to a
wider region as shown in Fig. 8.3.e.
{4) Steps 12 to- 16 (P = lnox to P = owv

Crack patterns for steps 13 to 15 remain essential-

ly the same as those for step 12, and the structure stiffness

becomes stiffer for the same reason as explained for steps 4

to 8. Load reversal path of the bottom fiber at midspan in
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Concrete Properties

fe = 5.5 ksi £ = 0.77 ksi
E; = 4150 ksi €, = 3.8x10°°%

Steal Properties

£,y = 45 ksi Egu ™ 0.17

Bgq = 29%x10% ksi Eg, = 176 ksi

Fig. 8.3.a. Example 8.2.3 - Gecmetry and Materjial Properties




P
o~ -5
L = 120 in R
* 1 - 28 1 Load

40

3o

Load P (kip)

5 10 .

Deflection §x10% (in)

-10

=20

~30

-40

Fig. 8.3.b. Example 8.2.3 - Load-Deflection Curve at Midspan




<

156

P
h 02:€2
[ ]
- um....ﬁﬁa 1,81
Bottom Fiber Top Fiber
Load 4P | P | &x10% Mat. o, €yX10° Mat.] a, €p%x10°
Step| (k)| (k) {in} Code (ksi} Code {ksi)
1|10 | 10 1.22 ] 1 .32 0.78 | 2| -0.32! -0.78
2|10 20 2.45 | 1 0.65 t.57 | 2| -0.64| -1.58
31030 8.98 | 4 0. 9.60 | 2| -1.47]| -3.83
s |10 40 12.93] 4 0. 14.45 | 2| -1.85| -4.93
51030 9.74 4 i-o., h ﬂo.mq & .ﬂme:;,rmmwui
6 10 | 20 6.56 | 4 0. 7.29| 6| -0.87| -2.56
7 101 10 3.37 | 4 0. 3.7t 6! -0.38! -1.38
8 -10 o 0.18 | 4 c. 0.13 | & 0.1t =-0.20
9 ~10 ~10 | =-1.08 8| -0.30 -0.73| 6| 0.44 0.60
10 |-10 [~20 ~7.64 8 -2.83 -8.04 4 0. 8,13
11 =10 |-30 { ~15.64 8| -3.89| =12.15 4 G. 12.19
12 =10 |~40 | -23.98 mw -4.67 | -16.23 | 4 0. 16.25
13 [ 10 |30 | -18.08 | 10| <3.03 | -12.27| & o. 12.18 |
14110 -20{ -12.09 | 10 =-1.36| -8.23| 4 0. 8.11
15 10 }~10}| =-6.07| 4. 0. -4.17 ] 4 0. 4.05
16 10| 0| -0.01] 4 0. -0.01] 4 . o. -0.02
17 ] 10 1o 3.22| 4 0. 3.75 (10| =0.38] ~1.36
18] 10| 20 6.50 | 4 0. T.611 10| -0,82) =-2.43
19| 10 30 10.44 4 0. 11.37 | 10 -1.28 ~3.55
20 10} 40| 14.65] 4 0. 15.12 [ 10| =1.74| -4.66

Table 8.2, mxwivwm 8.2.3 - Summary of Results at Midspan
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the stress~strain curve is shown in Fig, B8,3.c. We note that
the rottom f£iber is cracked at step 15 although the strain
shows a negative value of =4.11%x10" "% (see Table 8.2). This
confirms the acsumption that previously cracked fibers can-
net resist any tensile stress. At step 16 (P = owv we again
note some residuval stresses due to numerical error.
(5} Steps 16 to 20 (P = ow to P = aowv

As the downward lcad is again applied, cracks re-
open in the previously nhﬂnwma.UOﬂﬂoa fibers as socon as they
are subjected to nmnmwwm stresses. As the load is increased,
crack propagates to a wider recion and the mwmvwmeamnn is

alsc increased accordingly compared to that corresponding +o

the initial downward loading.

8.3 Reinforced Concrete Frames

8.3.1 Bresler-Scordelis Beam = Ultimate Load Analysis

cf a Simple Beam

wwmmwmﬂ and Scordelis nddowaqdu have conducted numerous
tests on a series of reinforced concrete beams to study the
failure modes of these beams. A simple beam, failing in a
flexural mode and designated by beam B3, is selected for this
study.

One half of the beam loaded at midspan, with its rein-
forcement details is shown in Fig. 8.4.a. One half of the
beam is divided into 16 mwmamsnm‘ and the cross section is
divided into 19 concrete layers and 4 steel layers for the

analysis. Web reinforcements are not included in the analyt-



1690

ical model. Lin ﬁu“u also analyzed this beam with layered
plate elements for his study of reinforced concrete slabs and
shells.. The element division and the lavering of the cross
section are similar to those used by Lin.

Material bnovmWnHmm are alsoc shown in Fig. B.4.a. The
secant modulus of concrete measured at the wﬁmmmm of 1. ksi
was 4640 ksi. Since parabolic stress~strain curve is utilizegd
in this study, the initial modulus mw of concrete can be com=-
puted as mowH0£my From Eq. (2.10), with ¢ = 1 ksi, nB = 1/
4640, and nm = 5.62 ksi, solve for £€.. Then solve for E

g i

= 2.309%10° %, and E

from Eq. (2.11}). The results are : € "

Q
= 4867 ksi.

In the present wnmwwuwm..m load steps were required to
reach the ultimate load. Only lwwmn»mw uﬁ:w»:mmnwnw was in-
cluded. With the displacement ratio tolerance of 0.01, the
average number of iterations was 6§ per load step.

In Fig. 8.4.b, wmmnnmmmwonnwoa curves at l»mwvmu are
plotted. Experimental and wunwwnwnmw results, both by pres-
ent analysis and Lin's analysis, are shown together for com-
parison. In the mwumﬂwﬁmnw. about 30 percent of the ultimate
locad was first applied and removed. And then the vmwa was
loaded again up te the ultimate load, The load-deflection
curve shown in Fig. 8.4.b corresponds to the second cycle of
wowmwbm.. In both analyses, the midspan lcad was applied in
one cycle, The ﬂ»mmmwmnnm between the experimental and the
wmmwwnwnmw results in lower load level can be attributed to

the effects of load reversal. Both analyses predict the ul=
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timate load of 80 kips compared to the experimental value of
79.5 kips. Although the load-~deflection curves for both
analyses follow that for the experiment fairly closely, the
result by present analysis can be seen closer to the experi-
mental result compared to the result by Lin's analysis. This
can be attributed to the fact that present mnww%mwm approxie
mates concrete stress-strain curve with a parabola as opposed
to Lin's analysis in which elastic-perfectly plastic stress-
strain curve for concrete is assumed.

In table 8,3 the strain and stress distributions through
the depth of the cross section at the center of element 16 at
ultimate load (P = 80k) are tabulated. Strain distribution
is w»ﬁnwn as assumed, and layer stresses are computed by the
parabolic stress-strain law for concrete and the bilinear
law for warmono»nm steel. Also, statics check for the cross
section is presented, Total axial monnm- which should be
zZerc, is ao.wam kips, and the bending moment, which should be
40 k x {126=-4,5/2} in = 4950 kein, is 4950.21 k+*in. S5Small
errors present result from not carrying enough significant
digits in ﬁvm computation. Hn the computer output, the ax-
ial force and the bending moment at Bwnmvmsu evaluated by
the numerical integration of Eg. {(5.54}), are 6.80%x10" " kips

and 5040 k+in {40 k X 126 in} respectively.
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Table 8.3.

Layear | Area A y Strain | Stress TXA -OXAXY
No. | (in?) (in) | ex10® | 0 (xsi) (k) {k-in)
1 9. 8.5 | -2.208| =-5.609 | -50.481 | 429.09
2] 9. 7.5 | =1.959 | =5.491 | -49.419 | 370.64
3] 9. 6.5 | ~1.710| =5.241| -47.169 | 306.60
4] 9. 5.5 | =1.461 ] =4.861 | =43.749 | 240.62
5 9. 4.5 | -1.211 -4.349 | =39.141 176.13
6| 9. 3.5 | -0.962] =3.707 | -33.363| 116,77
71 9. 2.5 | -0.713| =-2.933| -26.397 65.99
m 8| i8. 1. ~0.339| =-1.528| =27.504 27.50
w e | 18, -1. | o.180| o. | o. 0.
s |10] 18, -3, 0.658 0. c. 0.
m 11] 9. -4.5 1,032 0. 0. a.
m 12 9. 5.5 1.282 0. 0. 0.
13| 9. -6.5 1.531 0. 0. 0.
14 9. -7.5 1,780 0. 0. 0.
15| 9. ~8.5 2.030 g, 0. 0.
t6| 9. -9.5 2.279 0. 0. 0.
17| s. -10.5 2.528 0. 0. 0.
18 9. -11.5 2.777 0. 0. 0.
19| 6.75 | -12.379 2.996 0. a. 0.
1m 1] 0.3907 7. ~1.835 | -50.12 | -19.582 137.07
m 2| 2.037| -7.75| 1.843| 56.57 | 115.233| 893.06
=1 3| 1.0185% -9, 2.154 | 66.13 67.353 | 606.18
lm‘ 4] 2.037}| -10,25| 2.466 | 75.70 | 154.201 | 1580.56
Total - | =0,018 | 4950.21
mxnavuu 8,3.%1 = Stress Distribution and

Statics Check at the Center of Element 16

at Ultimate Load (P = 80k}




§.3.2 Washa-Fluck Beam = Time Dependent Analysis

of a Continucus Beanm

Washa and Fluck (112) conducted tests on a series of two-
span reinforced concrete continuous beams to study their be-
havior under sustained load up to 2% years after loading.

This test followed their earlier test (113) in which they
studied time dependent behavior of a series of reinforced cen-
crete simple beams,.

Among the continuous beams tested, two beams, designated
by X1 and X3, were selected for the present analytical study.
Their geometric properties are shown in Fig. B8.5.a, Each bean
consists of two 20 £t spans loaded uniformly with w = 130 1lb/f¢t.
The uniform load which includes the dead load of the beam is
applied 14 days after casting of concrete, and then sustained
up to 2’ years after loading. Both beams, &" * B" in cross
section, have tensile and compressive reinforcements in the
negative moment region. In the positive moment region, Bean
X3 swm.nmnmwwm reinforcements only while Beam X1t has both ten-
gsile and compressive reinforcements. The c¢ross section orig-
inally designed with ACI specifications was that of Beam X3.
noanmmmwdw.nmwswonnmamSWm in the positive moment region for
Beam X1 were added to study the effects of these reinforcements
in reducing the effects of creep and shrinkage.

Since the structure and loading are both symmetric about
the midlength support, oné half of the beam was analyzed by
dividing into 15 beam elements. Log¢ations D, P anéd N, corre-

sponding to the locations of maximunm ammwmonwom- maximum pos-



166

itive moment and maximum smmwqum moment, respectively are
predetermined although their exact wonmﬂwomm vary slightly
due to the redistribution of internal forces. The cross sec-
tion is generally divided into 15 concrete wmwmnm and 2 or 3
steel lavers. .
Material properties used in the wumHWmHm are summarized
in Fig. 8.5.b. Formulas for time dependent concrete proper-
ties, recommended UW ACI Committee 209 (56) and described in
detail in chapter 2, are used. The numerical values are based
on the experimental values of the strength, mm_l 3230 psi and
the secant modulus, E = 2835 ksi at g = 1575 psi £3ww& repre-
sent the w<mwumm values of type X beams at 14 days after cast=
ing mm concrete, The weight of the concrete w = 146 vnm is
assumed. The increase of the strength and modulus of con-
crete with time are shown in Fig. 8.5.b.
Experimental creep and shrinkage data Nﬂm,uon given in the
reference 112. However, in the mwnwhmﬂ tegst on gsimple beams
by Washa and Fluck (113), the cress sectional properties and
the span length of the beams were identical to those of the
present continuous beams. Both experiments were conducted
with similar concrete mixes and under similar laboratory con-
ditions. Thus it was decided that the creep and shrinkage
data Hmmmpnmm in the mpavw@ beam test be used for the present

analysis. Utilizing nwm.mxﬁnmmmnou for the specific craep

function developed in chapter 3, i. e.

3 10”4 (e-
c(T,t-T) = I a,(ty(1 - e 0 (x Avu {8.1)

i=1
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+he felleowing values of creep coefficients wwﬁaou at Ao = 14
days were obtained by the least-sguare mathod ; mM = £.8308
x 1077, a, = 8.9356 X 10-7, a, = 0.1120 x 1077. lowever, the

creep data was obtanied by applying the compressive stress of
1275 psi to the concrete prism. Using the values of r, = 0.35

and Hw = 1,865 in Egs. {3.37) to {3.3%}, the effective stress
corresponding to 1575 psi is 2165 psi. Thus the creep coef-
ficients mw.m were reduced by a factor of 1575/2165 = 0.727.
Creep coefficients for womawwo ages later than the initial
loading age of 14 days are computed by Eg. (3.44). Based on
_the experimental data, hyperbolic shrinkage function is used.
Specific creep curves for different loading ages and the
shrinkage curve used in the analysis are shown in Fig. 8.5.c.
In the experiment, measurements of deflections, reactions
and strains were taken 3, 7, 28, 90, 180, 270, 365, 545, 730,
and 910 days after loading. In the analysis, 19 time steps
were used after loading, i.e. 1, 3, 7, 12, 17, 22, 28, 40,
60, 90, 120, 150, 180, 210, 270, 365, 545, 730, and 910 days
after loading. Since most of the creep and shrinkage takes
place prior to 6 months after lcading, closer time intervals
were used during the earlier period. At each time step, in-
cluding the first time step when the load was applied, analysis
was performed with one load step with the displacement ratio
nOFmennm of 0.01. For the initial loading 14 and 19 itera-
rions were required to arrive at the eguilibrium for Beam X1

and X3, respectively. The average number of iterations for

each time step after initial loading was 2 for Beam X1 and 3
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for Beam X3.

In table 8.4, a summary of experimental andg nsmommnwnmw
results for the changes in deflections, reactions and strains
due to creep and shrinkage are given. And in Figs. 8,5.4d no.
8.5.9, variations of deflections, strains, reactions and bend=
ing moments due to creep and shrinkage with nwrm are plotted
up to 2% years after loading. The following facts can be
observed.

{1} All the changes wzm to creep and shrinkage occur at
a decreasing rate ag time elapses after loading. By 6 months
after loading most of the changes takes place,

(2} The effacts of creep and shrinkage are reduced
anxn%ww by the presence of nomﬁnmuqum umwamonnmamunu in the
pesitive moment region. .

{3) Ummwmnmwou due to nnmmv and shrinkage 2% years after
Howawna are greater than the immediate deflection at locading.

(4) Midlength reaction is »:nwmmmmm due to the redistri-
bution of internal forces. As a result, wSm bending moment
at the maximum negative Boamun location N is increased while
the moment at the maximum vomwnwfm moment location P is de-
creased.

{(3) ,nosnnmmmh<m strain of the beam increases due to
creep and shrinkage much more than tensile strain does. The
increase ¢of the compressive strain in the positive moment re-
gion is greater wrwu the increase in the negative moment re-
@Mouw

{6} Theoretical results from ﬂvo_vﬂmmmnn analysis are



generally lower than experimental results at loading, and the
reverse is true for the increase due to creep and shrinkage.
The average discrepancies between experimental and theocretical
results for the deflection, the midlength reaction, the strain
at compressive steel level at the maximum positive moment lo=-
cation and at the maximum negative moment location, respec-
tively are ; 3%, 1%, 37% and 38% at loading ; 6%, 32%, 13%
and 23% for the increase due to creep and shrinkage at 2%
vears after loading ; 4%, 2%, 2% and 5% for the total wvalue
2% years after HON&Wbm. The discrepancy of the results at
loading might have been resulted from not taking sufficient
number of elements in the analytical model. The discrepancy
of results due to creep and shrinkage is expected since ap=-
pProximate creep and shrinkage data are used. The degree of
accuracy for the present analytical nmodel to predict the ef-
fects of creep and shrinkage cannot be measured directly in
this example because of the absence ¢of the experimentazl creep
and shrinkage data. However, present model predicts the time
dependent behavior of a reinforced concrete contsinuous bean
fairly well qualitatively, and considering the uncertainties
inherent in the creep and shrinkage data, the guantitative
results are also guite satisfactory.

The effects ©f creep on the time dependent behavior of
the present continuous beam will be briefly discussed gquali-
tatively. Fig. 8.5.h shows total strain distributions between
the compressive steel level and the tensile steel level at

maximum positive and negative moment locations P and N, re-
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spectively at loading and 2% years after loading for beams

X1 and X3. Analytical stress distributions at loading and

2% wnonr after loading at locations P and N are shown in Fig.

8.5.i. We first note that the neutral axis of the beam cross

section is located between nww c.g.c. and the compressive

mnmmw‘wmcmw at loading. The portion of the nm:nnmﬁm on the

tension side beyond the c.,g.c. is nnmnwmm. hence most of the

tensile force is carried by nwm.nmumwwm steel. Since Boum

of the concrete creep takes vwmnw on the compression side

due to the sustained compressive strass on concrete, and

only small amount o©f the noauwwn creep takes place, it can

be expected that strain Munﬂmwuo.twﬂﬁ mwan will occur mainly

on compression side., This nmu‘UnHOUmmndmm to be true in Fig.

8.5.h. As a result of ﬁﬁ%m difference in the change of

strain at compression and tension wwamr ﬁrn nectral axis

shifts toward the c.g.c. At 2% years after loading the neu-

tral axis mHHOWﬁ coincides with the ¢.g.c. exgept for the

Beam xu.un location P where ne ooavﬁomu»cm steel is present.
We also note in Fig. 8.5.i that the concrete stress dis-

tribution at 2% years mwnmﬂ‘wommwsm is drastically changed.

The amount of no&uummqum stress is markedly reduced and the

resultant compressive and mmnmwwm forces for concrete are

almost identical. The reduction of the compressive concrete

gstress can be mwimhunm as follows. Tensile force in the

cross section is mostly carried by the tensile steel, and

the tensile force is increased only slightly with time since

the tensile strain is increased by a small amount as already
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mentioned. Compressive force is carried by both compressive
steel and concrete. Since the compressive force carried by
the compressive steel is increased by a large amount due to
the large increase of compressive strain, the compressive
stress of concrete has to be reduced to maintain the hori-
zontal equilibrium of foerces in the cross section, The re-
duction ©f the compressive stress in concrete with time is
shown in Fig. 8.5.3j fér Beam X1. The reduction of the con-
crete stress was assumed to mmwwos the straight-line load
reversal vmnw‘snnw the initial modulus as shown in Fig. 2.8,
The mwnw that the resultant compressive and tensile forces
for concrete are almost identical is consistent with the
fact that the neutral axis is located almost at the €.g.C.
As a result of this redistribution of the internal forces,
the bending moment in negative moment region is increased and
the moment in positive moment region is decreased accompa-
_uwua by the increase of the midlength reaction.

Ancother point worth noting in FPig. 8.5.3 is the nonlin-
‘ear wwummm distribution at 2% years after loading despite
the mnnﬁ.nuwn the stress nwmﬂnwuﬁﬂwo: at loading is almost
linear. This is & result of the nonlinear creep effect, i.e.
concrete creep at higher stress levels is no longer propor-
tional no.mnnmmm_»anmsmwnw. but increases at an increasing
rate. The incorporation ef this nonlinear creep effect in
the present analytical study was discussed in section 3.3.
The concrete stress is computed as a function of the mechan-

ical strain mBAnv. obtained by subtracting the non-mechanical
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{(a) Concrete Properties

s - I . LN = - =
waﬁav 5T £a(28) 4 fl(28) ummm psi, a=4., bw0.85
B, (1) = uu.s“.u‘nmaav psi ; w=146 pcf
£2(T) = £1(7)
£2(1) = x:wmmﬂav

k| PP
€(T,t=T) = I a (1)(1 - ¢ 10 (E°T),
iy

E. (T )
- BT S - X -0,1t8
n»nau uwﬁﬂou m»adv AA j

a (1) = 4.9660%x10"7
ay(t ) = 6.4962x10"7 ) per psi .
aj(r)) = 0.8142x%0" 7

.‘a01aa days
-]

xr, = 0.35, r, = 1.865 in Eqs. (3.37) to (3.39)

1 2
s T _.su su -b
n. (1) = 35+ T ¢ } E =7,.71x10
&moa 1 T i) ¥ L L) L]
@ Cy o— - %
4000 ‘ )
: .EI@I-%-'?.E.I@.IJI-.!.I!‘I@!‘ o}
pog
3500 D3 umﬁdv psi i
O = mwauw ksi
3000 i . : . : 4 A
0 1M 3M €M 9 1Y 1.5% 2Y 2.5Y

Time after Loading at 14 Days (M=Months, Y=Ysars)

{b) Steel Properties

Steel muwﬁvu»v mudﬁvuwu m-uﬁvu»v m-c

#5 Bars | 62.0x10° | 30.0x10% | 3.53%x10° | 0. 14
46 Bars | 56.2x10% | 30.0%x10%{ 2.01x105 | ¢0.18

Fig. 8.5.b. Example 8.,3.2 - Material Properties
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Baam At After 6 Months | After 2% Yesrs
Type Loadin & §C+58 8 §C+ 58
X1 Exp. 0.56 1.06 0.50 1.14 0.58

Th. G.59 1.14 0.55 1.18 0.59
X3 Exp. 0.62 .32 0.70 1.4%9 0.87
Th. 0.61 1.47 0.86 1.587 0.%96

(a)

Deflection 8{in) at Max.

Deflection Location D

Beam At After 6 Months | After 2% Ysars
Type Loading R % Inc. R % Inc.
X1 Exp. 4880 49490 2.2 4960 1.6

Th. 4828 4872 0.9 4872 6.9
X3 Exp. 4850 5050 4.1 S070 4.6
Th. 48136 5084 5.1 5118 5.8

(b} Reaction R{lbs}

at Midlength Support
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Comp. Steel Level Tans. Steel Lavel
Beam
At After 2% Years At After 2% Years
Type
Loading £ e€+e® | Loading £ eCec®
Nﬂ m*vo -N-M 'm.q ‘“im *Od m.d ﬂlo
Huc -drﬁc 'moqa lw.wa m-mm m.mo °tmm
x3 Exp. -2.8 -12.4 -9,.6 4.6 4.8 0.2
H-Hwo 'acqm 'd”‘ﬂﬂ .I.molhd m-mo “oww 'O-md
(c) Strainm €X10" at Max. Positive Moment Location P
Conp. Steel Level Tens. Steal Leval
Baam
At After 2k Years At Aftar 2% Years
Type
Loading € €S+e% | Loading E eC+c?
Rﬂ N“vt I.WQW '@ou .IWO“ -NOQ OOQ d-Q
Th. -2.47 -8.59 -8.,12 6.78 8.00 1.22
X3 Exp. -4.2 -9.8 -5.6 6,7 8,0 2.3
Th. -2.5¢C -2,99 -7.49 6.84 18,01 3.17

(d) Strain e€x10" at Max. Negative Moment Location N

Table 8.4.

Example 8,3.2 -~ Summary of Experimental
d Theoretical Results
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Fig. 8.5.h. Example 8.3.2 ~ Comparison of Experimental and Theoretical Strains
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Fig. 8.5.j. Example 8.,3.2 -~ History of Maximum Compree¢sive Stress at Locations
P and N for Beam X1 (Theoretical Results Only)
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c
Bﬁnv which include the creep strain € (t) from the

strains m:
total strain e€(t), as expressed in Egs. (2.1) te (2.3).
Since the creep strain increases at a higher rate with the
increase of strass intensity, the corresponding mechanical
strain and the mnnmmw is reduced at an increasing rate mnor

the ¢.g.c. to the compression face of the cross section as

shown in the figure,

8.3.3 England-Ross Beam ~ Temperature Dependent Creep and

Shrinkage Analysis of a Plexurally Restrained Beam

Many reinforced nounﬂmﬁm mnunmnnnnu are subjected to
thermal gradients. Chimneys, floor slabs under boilers, the
biological shields of nuclear power stations are a few of
the examples. Under the restraint of displacements or rota-
nwonm.nﬁmnamw,nnﬂmmuon mmquOﬁ in thege structures, and the
stresses undergo changes due to the creep angdg u:ﬂwnxwwm of

concrete., However, it has bean widely reccnized by engi-

.neers that the creep and shrinkage of concrete are tempera=-

ture dependent. Creep and shrinkage generally increase with
the increase of temperature, but the relationship is not
linear.

Cne of the earliest experimental and mnwwwwwnmw studies
on the effects of temperature dependent creep and shrinkage

on reinforced concrete structures was conducted by England

‘and Rogss (76). They tested flexurally restrained reinforced

concrete beams subjected to a linear thermal gradient. They

also obtained creep and shrinkage curves at different temper-



atures ranging frem 20 deg € to 140 deg C.

.baonﬂ the sealed and unsealed beams tested, the unsealed
beam is selected for this study. The reinforced concrete
beam, as shown in FPig. 8.6.a, is restrained against bending,
but free to displace longitudinally. The beam is left un-
sealed at the laboratory temperature of 16 deg C until Z2¢C
days after casting of concrete, when the linear temperature
gradient is applied by heating the top face of the beam to
110 deg C and the bottom face to 65 deg €. Since the strain
remains constant Mwown the length of the bezm only one ele-
ment is used in the analysis. The cross section is divided
inte 10 concrete layers.

The material properties used in the analysis are sum-
marized in Fig. 8.6.a. ACI formulas for time dependent con-
crete properties are used, Temperature dependent experi-
mental shrinkage data shown in the figure are used directly
in the analysis. Uniform shrinkage throughout the depth of
the Umwﬂ is assumed. Temperature dependent creep is incor-
porated with the following specific creep function as de-

scribed in detail in chapter 3.

3 -3
-1 -
c(T,t-T,T) = L m»navMJ - e 0 Te(mi(e avm {8.2)
i=1
Temperature shift function ¢(T) is approximated by the fol-
lowing function ebtained muoHAnwm specific creep versus log-

arithmic time curves for different temperatures shown in Fig.

m.m.v.
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p(T} = meﬁeu : Y(T) = -T7%/2400 + 4T/30 - 8 {8.3)

where T -is in deg C and the reference temperature is 80 deg C.
We note the close resemblance of specific creep curves for
different temperatures.

mxnmnwamnnmw and w:monmnwnmw results wnm.mcﬂamﬁwumn in
table 8.5. Experimental steel stress, theoretical steel
stress, concrete stress, strain and bending moment are tabu-
lated up to 150 days after casting of concrete. In Fig. 8.
6.c the history of steel stress wmAvwonnmm. Results from
experiment, present analysis and the analysis made by England
and Ross are shown together for noavwnwuou. The result from
the present analysis can be observed to be very close to the
experimental result and it mﬁﬂuostwnom the experimental
result better than the uﬂmH%nwnmw result obtained by England
and Ross, in which they used a step-by-step method without
considering nwm,mnmob recovery and the effect of the concrete
age on its mmmn»mwn creep. In Fig. 8.6.d, history of the
concrete stress at ! in, from the top face is plotted., Stress
distributions at 80 days and 130 days after casting of con-
nnwnm are shown in Fig. 8.6.e,

The umrw<wmn of the flexurally restrained beam subjected
to temperature gradient will be Uﬂwmmpw.uwmncmmma; Up to 80
days mmﬂmw casting of concrete, shrinkage of concrete takes
place, .Huo mmmmnn.wm.mn m&cw¢uwmﬁn compressive force acting
on the beam. As a result compressive stress develops in the

steel and tensile stress amqmwmvu in the concrete since the
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net axial force is zereo. When the temperature gradient is
applied, the beam will bend concave downward if it was laeft
free tc bend. However, since the bending is restrained,
tensile stress develops in the lower part of the beam and
compressive stress develops in the upper part of the beam.
As shown in Fig. B.6.e, 2/5 of the beam on the lower part of
the cross section is cracked as a result. The heorizontal
displacement of the beam is increased due to the overall in-
crease of the temperature in the beam.

The stress distribution within the beam undergoes a
drastic change due to the creep of concrete as time elapses.
Fig., B.6.e shows that nosﬂnwmmw<w concrete wwnmmm is anmnmma
at the top face of the beam, and the top face is subjected
to the maximum temperature. Creep strain is proportion to
stress intensity at low stress wmqmw as in this case, and it
increases twnu,ﬂwm increase of temperature. Thus the com=~
pressive creep strain ww anmnanﬁ at the top face and de-
creases toward the c.g.c. If the beam was left free to bend,
this c¢reep strain distribution tmcwm produce an upward bend-
ing. As a ﬂmmcpﬁ of the flexural ﬂmmnﬂww:ﬂ tensile stress
develops in the rvvmn part of the beam and compressive stress
develops in the lower part of the beam. The amount of this
stress redistribution aﬁm to creep is so great that the ten-
sile steel stress becomes nmannmmmwdm as shown in Fig. B8.6.d.
Shrinkage of concrete also contributes to the same effect as
already mentioned. HNote that tensile creep strain has little

effect in this stress redistribution since tensile stresses
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-B0O0 -600 =400 =200 e
1 1

i Top Face

OO At 80 Days
EB—{f] At 130 Days

c.g.ce.

Steel
O =wg4il4{ O D 0 =317%
8 s

Bottom Face l.

Fig. 8.6.e. Example 8.3.3 = Stress Distribution {psi)
at 80 Days and 130 Days

Age 04 (Exp) 04 (Th) 0. {(Th) | e{Th) H{Th)
(days)| (psi) (psi) {psi) | x10°® {in<1b)
20 | -1220 | -1017 5 -34 «150
40 | -2440 | -2561 13 ~85 -376
60 | -3540 | -3609 18 -120 -531

-4200 | ~4366 21 ~-146 | -842
%0 4200 4171 | -310 816 5775
85 | -1460 -2886 | =82 581 1051
80 | -4310 -3819 | -68 550 690
100 | -4780 ~4875 | =53 515 404
110 | «5490 -5565 | -42 492 61
130 | -5850 -6434 | =38 463 85
150 | -6100 -6992 | =25 445 ~565

* Qo t Concrete Stress at ! in from Top Facs

* Temperature Gradient Applied at T = B0 days

Table 8.5, Example 8.3.3 - Summary of Results
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above and bSelow the c.g.c. have comparable values when the
temperature gradient is applied, as shown in Fig. 8.6.e, and
their mwmmnnm are more or less balanced.

The stress redistribution in concrete is shown in Fig.
B.6.e. Mote that both compressive and tensile stresses are
reduced. The reduction of stress is propertional to the
amount of creep strain since the stress is a function of the
mechanical strain which decreases as the creep strain in-
creases. We also note in the figure that the ratio of the
stress reduction ww greatest on the top concrete fiber.
Since the top fiber is subjected to the maximum temperature
its creep strain is correspondingly magnified by the largest

amount due to the temperature dependence of concrete creep.

B.4. Prestressed Concrete Frames

8.4.1 Lin Beam - Ultimate Load Analysis of a Post-tensioned

Bonded Continuous Beam

Lin (114) tested a series of post-tensioned bonded con-
tinuous beams under static and repeated loads up to failure

to determine their cracking and ultimate strengths. Twe of

the beams tested for static loads are selected for this study.

The structure and its material properties are shown in
Fig. 8.7.a. The continuous beam is symmetric about its cen=
ter support. The prestressing steel tendon has a concordant
profile, and consists of a straight part which extends from

the end of the beam to the point where the concentrated lcad



188

is applied, and a nwwcmm rart over the center support, The
tendon c¢onsists of a 32 parallel wires of 0.196 in. diameter.
Beam B is reinforced with mild steel bars while Beam A is not
reinforced. One half of the beam is analyzed with 10 elements
and the cross section is divided inte 10 concrete lavers,
The prestressing steel tendon is mHmo‘awﬁwamﬂ.wnno 10 seg=-
ments corresponding to each element.

At 14 days after casting of concrete the tensioning op-
eration is performed with the initial 3umwnﬂmum of {hu ksi
and the beam is subjected to its dead load. Approximately
tWwo weeks thereafter, the concentrated load P is applied with
increments up to failure. The usuwwﬂwnuw results after the
tensioning operation and befocre the nmnnmunﬂmnmm load is ap-~-
plied are summarized in table 8.6. The upward deflection at
midspan, the end reaction and the mﬂnmwumu for each prestress~
ing steel mmwamuw are tabulated. Due to friction and the
anchorage slip, about 14% of the initial prestress is lost.
.m=m<mn distribution of prestress along the tendon due to
friction can be noted. During the two week period before
loading, & slight increase in the deflection and the reaction,
and a decrease in the prestress take place due to the creep
and shrinkage of concrete and the relaxation of prestress.
Standard ACI creep and shrinkage data given in nmnmwos 2.2.3
was used for the analysis,

In the analysis for the concentrated load, the aim is
taken at studying the behavior of the prestressed concrete

- continuous beam as the load is applied up to failure, rather
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than determining the exact values of the cracking load and
rhe ultimate load. Thus the structure is analyzed with a
Hmwmnw<mww crude mesh layout and large locad increments are
taken. With the average load increment of 5 kips, Beam A is
analyzed up to P = 35 kips, and Beam B is analyzed up to P =
40 kips. The ultimate load measured in the experiment was
39.2 kips for Beam A and 45.8 kips for Beam B. The analysis
showed failure of Beam A at 40 kips and Beam B at 45 kips.
With the displacement increment ratio tolerance of 0.02, the
average number of iterations per load step was 5.

In table 8.7.(a) the experimental and analytical values
of the midspan deflection and the end reaction due to load
are tabulated. These values are plotted in Fig. 8.7.b and
8.7.c. Although the analytical values are slightly stiffer
than the experimental values, excellent comparison between
two results can be noted. Due to the presence of the rein-
monnwnm steel, the results for Beam B are stiffer than those
for Beam A, thus the addition of mild steel bars increases
the load carryving capacity. &after the cracking of concrete
takes place, the internal forces are redistributed such that
the rate of increase of the bending moment with the increase
of the load in the positive moment region becomes greater
compared to the rate prior to the cracking. In the negative
moment region, the rate becomes smaller. Correspondingly,
the ratio of the end reaction to the applied load increases
after cracking, as shown in Fig. 8.7.c.

The analytical results for the increase of the stress



in the prectressing steel due to load is tabulated in tzkble
8.7.{b) and plotted in Fig. 8.7.d. Segments No. 5 and 10
represent the maximum positive and negative moment locations,
respectively., 3ince the tendon is hbonded with concrete the
stress increases with the increase of the strain at the lo-
cation of the tendon within the cross section. The increasge
0f stress with the increase of load for segment No., 10 is
greater than that for segment No. 5 sincte segment No. 10 is
located farther apart from.the c.g.c. and the absolute wvalue
of the maximum ummmﬁwdm bending moment is greater than that
of the maximum positive moment, The increase of beam stiff-
ness due to mild steel bars for Beam B can also be nocted.

The analytical stress distributions at maximum positive
and negative moment locations at P = 0 and P = 35 kips are
shown in Fig. B.7.e for both beams, Prestressing and rein-
forcing steel stresses are plotted in different wnwwm from
concrete stresses. At P = 0, steeper concrete stress distri-
vﬁwwos.nwb be noted at the maximum negative moment location
due to greater eccentricity of the tendon compared to the
maximum positive moment location,. Total compressive forces
are almost the same at both locaticons since the prestressing
steel stresses are only slightly different. At P = 35 kips,
both concrete and prestressing steel stresses are reduced for
Beam B due to mild steel bars compared to Beam A although the

magnitudes of the bending moment for two beams are comparable,
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{c) Cross Section

{d) Concrete Properties

At 14 Days {(Tensiocnong Operation)
£*=5428 psi, m»-m.dox_o. psi, £f'=800 pai, £ =0,0014
at 28 Days (Application of the vonm,mv u
£7=5990 psi, B, =6.13x10% pei, £'w800 psi, ¢ =0.0034
wa15§ pcf i . t v
{e}] Reinforcing Steel Properties
£,,=45.5 ksi, €_ =0.16, E,,=28.4%10% kxsi, E
(f) Prestressing Steel Properties
A=0,963 in?, 0,142 ksi (P _=136.746 kips)
Anchorage Slip : 2.0% in
Priction Coefficients : u=0,3, K=5x10"% rad/ft
Discrete Points in the Stress-Strain Curve
Quluom.m ksi, mulo.ooqw- E,=2%000 ksi
0,=227.8 ksi, €,=0.01, o,=344.4 ksi, €,=0.02
Q&!nmo.o ksi, malo.ow. leumm.o ksi, mmla.ou

aundou.an

Fig. B.7.a. Example 8.4.%t - Lin Bean



Beam A Beam B

14 uuWL 28 pays 14 UnwL 28 Daysd
6 (in) | =0.059 | «0.099 | -0,052 | ~0.086
R (k) 1.264 | 1,266 1.255 1.259
o v 121,90 121,85 121,90 121.85
m 2 121.88 | 121.81 | 121.88 | 121.81
m, 3 121.86 | 121.69 | 121,86 | 121.78
mi 4 | 121.85}121.53 | 121.85 | 121.65
sl s 121,84 | 121.38 | 121.84 | 129.53
= 6 121.78 | 121,34 | 121.78 | 121.49
m 7 121.68 { 121,53 ] 121.68 | 121.62
= 8 121.62 | 121,57 | 121,621} 121.64
m 9 ] 121.58 | 121.01 | 121.58 | 121.18
m 10 121.56 | 120.49 | 121,56 | 120.74 |

* At 14 days after casting

operation is performed.
¢ & is the upward deflection at midapan.

Table B8.6. Example 8.4.1

Results Befo

183

of concrete the tensioning

R is the upward end reaction.
* Preatressing steel ssgment numbers coincide with the
¢lement numbers in which they are embedded.

Summar
re lLoading

of Analytical
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Load Midspan Deflection (in) End Reaction (kips)
4 Beam A .mnua B Beam A Baam B

(XiP8) pyp. | Th. | Exp. | Th. Exp. | Th. | Exp. | Th.
10 j0.11 0,100,911 (6.90)1.61 ] 1.62) 1.61 ] 1.61
1S | 0.18 | 0.16 | 0.18 | 0.15 | 2.39 | 2.43 | 2.39 | 2.42
20 {0.26{0.22 | 0.26[0.22{3.35 3.34) 3.34] 3.33
35 |0.38/0.330.36/0.30 |4.43|4.49|4.43 4.40
30 [ 0.62[0.59|0.50 ) 0.46 |5.43 ] 5.34{5.37|5.20
35 | 1.00{0.96)0.70 |{ 0.67 | 6.35 | 6.17|6.22!6.12
37.5) — — lo0.85]0.82| — — | 6.74 | 6.59
40 — ¢ — | 1.00]0.99]| — ~ 17.26] 7.15

(a) Compariscn of HMidspan D

aflections and End

P.S. Segment 5 P.S. Segment 10

rMpa Beam A _ Beam B Beam A Beam B
nw»vnvmnnanL Inc. mnncuL Inc. mnuouL wan. m«uo-L Ine.,

(ksi) | (%) [(ksd) | (%) lixsd) | (o) lexed) | (&)

o | 121.4 121, 5 120. 5 120.7

10 122. 0.7 ] 122.3 0.7 | 122, 2.0 123.0 1.9
35 [ 122.7 1.1 122.7 1.0 | 1241 3.0 | 124.1] 2.8
30 123.2 1.5 123.9 1.3 wnm.¢ 4.9 126.3 4.6
25 | 125.9 3.7 | 124, 2.4 ] 134,39 11.3 ,ud.L 8.8
36 { 138.6 14.2 | 130,9 7.7 133.6 27.2 | 142.2 17.7
35 | 154.9 27.5( 137.6 13.2 | 178.9 48.0 ] 153.6 27,1
37.8 | — — | 140.9% 5.9 } — — | 163.9 35,5
40 —— — j145.0 19,3 | — — [ 173.9 43.4

Table 8.7.

Example 8.4.1 - Summary of Results Due to Leading
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8.7.¢c. Example 8.4.1 - Comparison of End Reactions
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Fig. 8.7.8, Example 8.4.1 - Percent Increase of
Prestressing Steal Stress Dus to

Positive and Negative Moment Regions
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0 At P = 0

] At P = 35 kips
P.85. 1 Prestressing Steal
R.8. & Reinforcing Steel
e Unit of Stress ¢ ksi

- C.Q.C. '

121.4  154.8
M POSQ

- Beam A
|} LA T i ————

- 45.5
-8,80r——{] R.S.

120.7 153.6

H ptSo
E;c.q.c. _c.g.c,
] PoB .
- 121,5 .
29,6 /
sl Y R. . .
Beaam B 7.1 h 5 ; ' Beam B
-4 -2 0
{a) Max. Positive Moment Location (b) Max, Negative Moment Location

{Center of Element No. %)

(Canter of Elament No. 10)

Fig. 8.7.e. Example 8.4.1 - Stress Distribution at Max. Positive and Negative Moment
Locations (Center of Elements No. 5 and 10)
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§.4.2 Sinno-Furr Beam =~ Camber Analysis of a Pre-tensioned

[}

Simple Beam

Sinno and Furr (115,116} tested a series of pre-tensioned
simple beams to study the growth of camber and the prestress
loss with time in the absence of live load after release.
They also presented analytical methods to predict the amount
of the increase of the camber and the vaWnHmmm loss with
time.

Among the beams tested, Beam L4-5 is selected for the
present analytical study. The mﬁﬂwnwcﬂm and its material
properties are shown in Fig. 8.8.a. One half of the struc-
ture 1s divided into 10 elements. Closer element divisions
wnn.ammm for the three locations where strains were measured
in the experiment. The I-shaped cross section is divided
into 14 concrete lavyers.

The initial modulus of the lightweight concrete at 1 day
after casting is computed by a procedure described in the
section B.3,1 uuumﬂ on the secant modulus E = 2,95 x 10% psi
at o.mmm. Creep coefficients are generated by the least-
square method based on the given experimental creep curve.
Experimental shrinkage values are also used, and its uwmwnw:
bution is assumed to be uniform throughout the depth of the
beam.

The prestressing steel tendon has a constant eccentrice
ity in the Hwamvmm region, and the eccentricity decreases
linearly toward supports. The prestress is released 1 day

after casting of concrete with the initial prestressing force,
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mo = 564.6 kips. In the analysis the relaxation of prestress
with time is accounted for by Egq. {(6.13). The dead load of
the beam was 300.26 1ib/ft.

Ten time steps were taken for the present analysis, i.e.
at the release of the prestress, and 5, 106, 15, 203, 34, 40,
99, 180, 300 days after release. The experimental and ana-~
lytical results for the camber, prestress loss and the tetal
strain at midspan up to 30C days after release are tabulated
in table 8.8. The predicted values represent the results
obtained by Sinne wna Furr by the rate of creep metheod. The
midspan camber and the prestress leoss at location B are plot-
ted in Fig. 8.8.b and 8.8.¢, respectively. The experimental
and predicted values in the figures are taken from the fig~
ures in the reference 116 for Beam L4=-5. Both analytical
results can be observed to be in good agreement with the ex-
perimental results.  Present analytical solution show better
agreement with the experimental results at locations A and B
noavmﬂma to those at midspan.

Time dependent variations of the camber and the prestress
due to the creep and shrinkage of concrete and the relaxation
after release will be briefly discussed. When the prestress
ig released the beam is subjected the eccentric compression
and its dead load. Some of the prestress is lost due to the
shortening of concrete and the beam bends upward since the
negative moment produced by the eccentric compression is big-
ger than the dead load moment. For the present example the
experiment shows 11.7% loss of prestress, and the present

analysis shows 12.2% loss at midspan. The loss at the mid-
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span is greater than the loss at other locations due to the
larger bending strain,

Due to the compressive creep of concrete the prestressed
is de¢reased, which in ﬂsnn.mmnnmmmmm the camber. However,
Creep alsc increases the camber due to the uneven distribu-
tion of the compressive stress nrnocm? the amvw: of the beam.
The compressive stress is the smallest at the top face of
the beam and the largest at the bottom face. Hence the creep
strain also increases toward the bottom of the beam, which
results in the increase of the camber. The net effect of the
treep is an increase of the camber. Shrinkage of concrete
and the relaxation of the vnmmnﬂmmm decreases the prestress,
and the camber is decreased nonummvonmwsaw%.

The most dominant mmmmnn on the nwsvmﬂ.wm the creep of
concrete. This can be observed in the similarity of the cam=-
ber curve with the creep curve in which large amount of the
creep takes place at an earlier period and the rate of in-
¢crease with time is mmwnmmuwbm. The shape of nmm pPrestress
loss curve has similar properties since the shapes of the
nwmmv curve, shrinkage curve and the relaxation curve have
above mentioned properties. Thus, most of the increase in
the ntUmH.mnm the prestress loas after release can be ob-
served to nmwm place by 30 days after release. ﬂVm ratio of
the midspan camber increase at 30 days after release wo the
increase at 300 days after release is mMmq in the experiment,
mwu 0.92 by the present analysis. The mxvmwwam:ﬂmw and ana-

lytical ratios for the prestress loss at midspan after release



}

23! 10 23

b e v l
2 ras

1 54.29" |

I a4
{a} Structure

Strain Gage Locations i cL

1 2 >w_c B 7 m$ il

0 O Y N S !

2 3 8 5 $ ? $ 3 19
1y q_mLmu 5,34° ..rml 5 1m,._u 4.34" L_u 4° %h.uh. .mu‘.“
.855% .66° .66° .66°

Z2.145°
{b) FPinite Element Meshk Layout
12°%
m.w‘ I
& 8 m:
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{c) Cross Section

{d} Concrete Properties

NMluaua pei, mwlu.ammx“oa pai at 1 Day

3 -1
-10" Y (e-1)
c{T,t=T) = »m*u».ﬂumd e |
Coefficiants np per psi at 1 Day:
udnu.,u.dxaoaqu a»uu.ouuoxdonq, a =0.7911x10"7

3
auuav - a“Hwa x 10~%, 1 2 Age of Concreta in Days

(e} Prestressing Steal Properties

A=3,27 »uu. E=28,5x%10% psi, P,=564.6 kips before Release

nntnua ksi in Bq., (6.13}) for Relaxation

w»a. 8.8.a, Example 8,4.,2 - Sinno-Furr Beanm




Days After rauunnon Fredicted Present r:up%u»L
Relasase Values | Values | ¢ Errorn <rwsnc % Brror
0] 1.33 1.33 0.0 1.44 8.3
W | 10| 1.82 2.06 13.2 2.04 12.1
m m 30| 1.98 2.24 13,1 2.28 15,2
J 30 | 2.06 2.32 12.6 2.31% 12.1
300 | 2.11 2,35 11.4 2.135 11.4
0] 11.73 [ 11.99 2.2 | 12.24 4.3
m | 10l18.57 | 19.77 6.5 | 20.68 11.4
m ol 30 [20.43 21.81 6.8 | 23.59 15.5
k¥ 3| 90|21.03 |22.7s 8.2 | 24.139 15.0
300 | 22.65 | 23.11 2.0 | 24.64 8.8
. 0 75 40 | -46.7 27 | -64.0
el 1o 190 183 -3.7 195 2.6
S| 10 240 224 -6.7 251 4.6
m 90 250 244 -2.4 270 8.0
. 300 290 255 | ~12,1 280 -3.4
- el o 415 413 =0.5 405 -2.4
” 8! 10 700 736 5.1 727 3.9
m m 30 780 823 5.8 843 8.1
a m 90 | 820 863 5.2 870 6.1
m 300 | 900 881 -2.1 889 -1,2
& e 0 770 783 1.7 784 1.8
m 10| 1210 1290 6.6 1259 4.0
8 30 1315 1421 8.1 1435 9.1
m 90 { 1380 1482 7.4 1470 6.5
1300 | 1470 1508 2.6 1498 1.9

203

* Measured and predicted wvalues for camber represent

the averags of 5 beans.

of Results at Midspan

aouw. 8.8. Example §.4,2 - Summar
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Example 8.4.2 ~ Prestress Loss at Location B
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are 0.80 and 0.%91, respectivealy. It is alse to be noted that
the increases in the camber and the prestress loss at 300

cdays after release are comparable to the values at release.

8.4.3 Breckenridge-Bugg Beam -~ Time Dependent Analysis of

Post-~tensioned Beonded and Unbonded Simple Beams

Among a series of post-tensioned simple beans tested by
Breckenridge and Bugg (117} up to & years after leoading,
bonded and unbonded beams having an I ¢ross section and post-
tensioned with twe 1.25 inch diameter high-strength steel
bars are analyzed for wsm nummnrn study.

The structure is shown in Fig. w.m.m. One half o¢f the
40 foot span beam is divided inte 10 mwoamamn. The rectangu-~
lar cross section at the support regions is divided intoc 10
concrete layers and the I cross section is divided into 15
concrete wmwmnm. 8 #3 bars are modeled by 3 reinforcing steel
layers. Two prestressing steel tandons have a curved profile
near the support region and they are straight with constant
eccentricities elsewhere. Each tendon is divided into 10 pre-
stressing steel segments. Segment numbers for the upper ten~-
don correspond ¢to the element ucuumﬂu,wn which they are embed-
ded. The segments for the lower tendon are numbered consecu-
tively fron 11 to 20, starting from the end support.

The material properties utilized in the analysis are
summarized in Fig, 8.%.b. The variation of the compressive
strength and the modulus ¢of concrete with nwso,wm measured in

the experiment. The tensile strength is assumed for the ana-
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lysis. Since the experimental creep data is not given, the
standard ACI creep data given in section 2,2.3 was used in

the analysis. The ultimate creep coefficient nc computed by
EgQ3. 2.19) and (2.20) was 2.01., The correction factors were
computed based on the following experimental data ; average
humidicy H = 73%, slump S = 3.6 in, minimum thickness of the
member T = 4 in. The specific creep curve for the loading

age T = 8 days, when the prestress was applied, was obtained
by dividing Eg. (2.18) Dby mwﬁﬂv. Then, the creep coefficients
owﬁav shown in mwm“ mAm.u ware cozputed by the least-square
.amnuon. £Eqg. {3.44) was used for the creep voefficients for
the loading age wwwmn than 8 days. Shrinkage was simulated by
a hyperbolic function in which the ultimate shrinkage %Y was
assumed based on the average experimental shrinkage data for

3 years.

mhe beam was post-tensioned on 8 days after casting of
nounnwmn. The initial prestressing force mo was 197 kip for
+he two tendons, and the total dead load of the beam was 2.47
kips. At 14 days after the transfer of prestress, the con-
centrated live load was applied at wto quarter points of the
beam.

The inalysis was performed up to 7 years after %the trans-
fer of pr:stress with 13 time steps. Bonded beam was analyzier
for three load cases ; 0P, 1.0P and 1.5P, where P = 15.2 kips
Unbonded beam was analyzed for 1,0P. 3Since the shrinkage of
bonded and unbonded beams were different an additional ana-

lysis was performed for the unbonded beam, in whic¢h the



~J

ta
<3

shrinkage data for the bonded beam was used, for cemparison.
suxmmary ©¢f the midspan deflection and the compariscon of
some of the Key values between the experiment mum the analy-
$is are given in table 8.9. For the bonded beam without the
live load, the ratio of the 7-year camber to the initial came
ber is 1.9%6 for the mxvmnwsmnn. and 1.91 for mwm analysis.
For other cases, the ratio of the 7~-year deflection to the
instantaneous deflection due to wowmvba is compared. The
average of this ratio for mwmmmumsn cases is 2,39 for both
experiment and analysis. The experimental and analytical
nidspan deflection for the bonded beam is plotted in Fig. B,
2.¢. w‘mooa agreement batween the two results can be ob-
served. With ﬁrm same shrinkage data, analysis shows slightly
larger deflection for the cnronaom beam compared to the bonded
beam.

Fig. 8.9.4 shows the analytical results for the pPre-
Stress loss with time in segments 3 and 20 for the bonded
Beam with LL = 1,0P. Fig. B.%9.e shows the results for the
unbonded beam with the same shrinkage data as the bonded beam.
Segment 3 is located near the support and close to the c.g.c.,
and segment 20 is located at midspan and has the largest ec-
centricity. Thus, the effect of bending on the variation of
the prestress is negligible for segment 3 while the effact is
maximum for segment 20 for the bonded beam. However, for the
unbonded beam, the change in the vnuunﬁmmm is evenly distri-
buted along the length of each tendon. Thusg, rvm results for

segments 3 and 20 represent the average values for the upper



and lower tendon, respectively. Variaticns in the total-
strain and the stress at midspan for the bonded beam with
LL = 1,0P are plotted in Fig. 8,9.f.

ocuw:n the tensioning operation prestress wm.HOmn due to
friction. The loss due to friction is larger for segment 20
compared %o segment 3. But the positive moment due to tne
dead load increases the prestress for segment 20. The net
effect is the smaller prestress loss for segment 20. The
average initial prestress loss is 3.8%.

After the prestress is transferred the compressive strain
increases due to cresp and shrinkage, and ceonsequently pre-
stress Loss takes place. The strain increase is larger for
the bottom fiber compared to the top fiber due to the larger
creep strain corresponding to the larger compressive stress.
As a result the prestress loss for segment 20 becomas larger
than that for segment 3 at 14 days after the transfer for the
bonded beam, As the amount of the prestress is reducged, con~
crete stressgs is alse reduced. A slight increase in the top
fiber stress is the result ¢f the reduction in the bending
moment due tO prestress. .

When the live load is applied, the resulting upward
bending increases the compressive strain and stress for the
top fiber ind ammemumu those for the bottom fiber. For the
bonded bean, prestress loss for segment 20 is decreased cor-
respondingly, but segment 3 is not affected by bending. For
tne unbonded beanm msn change is c:wmoni along each tendon.

The larger decrease nm the prestress loss for the lower ten-



den is due to larger eccentricity.

After the loading the noavnmmmw<m strain for the top
fiver is again increased due to creep and shrinkage. For the
bottom fiber, the increase is neglible since the smaller in-
crease of the compressive strain is counteracted by the in-
creased positive bending. Prestress loss mwmo,wnnnmwmmm ag-
cempanied by the decrease in the compressive stress. We note
in the figures that the nOanmmmw<m.mnnwwa for the bottom
fiver and the prestress loss for scgment 20 are beth decreased
up to 2 weeks after loading. This results from a large in-
crease of the positive bending during this period due to the
large increase of creep in the earlier period follewing load-
ing., &Afterwards, the net w%nnumum of the compressive strain
due to creep and shrinkage Tua the relaxation increases the
vnwmnnmmm,womu.

At 7 years after the transfer of prestress the average
prestress loss for all the segments is 19% mom both bonded
and unbonded beams. The average loss due to relaxation is
6.9%,. Thus, subtracting the initial loss.-and the relaxation
loss from the total wowu. creap wn&.uunwaxmom of concrete ac-
counts for the loss of 8,3%. 1In the absence of the live 1loagd,
the analysis shows the total loss om.nma. The loss due o

creep and shrinkage is 193,
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{a)

{b)

(c}

rPig.

r
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Concrete Properties

Time | ¢t Egx107Y 2 £ €u

Step (xai) (ksi) (ksi)
1 ¢ 3.38 $.10 0.60 0.0038
2 7D 3.44 5.50 0.63 0.0038
3 14D 3,50 5,80 0.64 0.0038
4 21D 3.53 6.00 0.66 0.0038
5 18 1,586 6.10 0.66 0.0038
€ 2M 3,59 6,30 0.67 0.0038
7 4N 3.63 6.40 0.68 0.0038
8 8M 3.75 6,90 0.70 6.0038
9 1Y 3.81 7.10 0.71 ¢.0038
10 2Y 3.88 7.30 | 0.72 0.0038
11 3y 3.94 7.40 0.73 0.0038
12 5Y 4.13 7.60 0.74 c.0038
13 7Y 4.25 7.80 0.75 0.0038

* £t 3 Time after the Tensicning Operation at 8 Days
after Casting of Concreta

Creep Coefficients t»xdoq per pal at t,=8 Days

ia Bq. {8.1) 1 aym2,7247, az»2.6202, a3%1,6390
Eq. (3.44) for aj's at Loading Ages Later Than To»
ﬂd.acum- “N'ﬂom@m u.wn Nﬂ-o AUOUQU Lo &quww

es(7) = umHa.nuc ) £%U=366x10"% for Bonded Beanm
€®V=258x10"" for Unbonded Bean

Reinforcing Steel Propertias (#3 Bars)

£4y"45 k3L, €,,%0.16, E,q~29000 Xai, By ,=100 kai
Arsa(in®) and the Distance frem c¢.g.c. of 3 Steel Layers
’.ﬂ!O-UU. ”IN’D-NNh ’.UlOOWW
Yeg1®"11.3125, yg2=-6.2%, yg3®=9.3125 (in iaches)

Prestressing Steel Properties (1,125"¢ Bars)

A=0.994 in?
Po=197 Xkips (0,=99,.09 ksi) )
Priction Coefficients : u=0.2, K=2.5%x10°% rad/in
fy=130 xsi in Bg. (6.13) for Relaxation
umnnnonu Points in the Stress-Strain Curve :
Cy»110.25 k=i, £120,.0045, Z4=24500ksi
F2=130 ksi, €£2%0.006, O3=146 xsi, €3=0.05

8.9 .b. Examplie 8.84.3 -~ Material Properties
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Time Bonded Beams UnbondedUnbondad
Time
Stap LL=Q LL=1.0R LL=1.5PBeam (1)Beam (2)
] 0 G.70 0.70 6.7¢ 6.70 .70
2 70 0.94 0.94 0.94 0.94 0.94
1.03 1.03 1.04 1.04
3 14D 1.0% :
-0.03 -0.63 -0.03 '} 0,04
5 M 1.16 «0.65 -1.69 -0.67 «0.68
6 2M 1.15 -0,88 -2,07 -0,.89 -0.91
7 4M " 1.20 -1,02 -2.33 -1.04 -1,06
10 2Y 1.30 -1.29 -2.86 -1.30 -1.34
11 3y 1.31 | =1.34 | =~2,96 | -1.3¢4 | =1.38
12 SY 1.33 -1.38 -3,23 -1.39 -1.43
13 7¢ 1.34 -1.41 -3.33 -1.42 -1,46
5 EXp. 0.69 1.01 1.81% 1.03 —
i ™h, 8.70 1.06 1.69 1.07 1.08
& m“‘o ﬂowu Nc&m bc Um Nl wm ——
2 | on, 1.34 2.44 4.36 | 2.46 2.50
§2 Exp. 1.96 2.46 2,42 2.28
mﬂ .N-’o du@ﬂ Nowo Ntmm Ntwo No“d

* Live load for both unbonded beams is 1.0P. Unbondaed
beam (2) is analyzed with the sane shrinkage data as
bonded beanms.

L] m“ and mu represent the initial camber and the quw.on
camber :Or LLe0. Por other cases, they represent the
instantinecus deflection and the 7=-year aonwonn»os
due to ..cading, respactively.

Table 8.9, Example 8.4.3 = Summary of Midspan Deflection
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9.c. Example 8.4.3 - Comparison of Midspan Deflection for Bonded
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Pig. 8.9.a. Example 8.4,3 - Prestress Loss in Segments No. 3
and 20 for ths Unbondad Beam with LL = 1.QP
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>

8.,9.4 Aroni Column =- Geometric and Material Nonlinear

Analysis of a Pre-tensioned Column

Aroni (63,64) tested a series of eccentrically loaded
pre=-tensioned concrete columns to study their behavior under
various conditions of eccentricity, slenderness and the mamcan
of prestress. He also presented an analytical procedure to
predict the strength of these columns. Qne of the columns,
designated by wuuonm. is apalyzed nm test the accuracy of the
present gecometric nonlinear analysis procedure,

The structure and its material properties are shown in
Fig. B.10.a. The 60 in. long coclumn was axially pre-tensioned
with four 0.198 in. diameter high tensile steel twnmu._ The
prestress -was released at 14 nmwm after omnnw:m of concrete,
then cured under water until 28 days after casting, when the
eccentric load was applied up nm failure. The amount of in=
itial prestress is not specified in the references. However,
the initial compressive stress of 2265 psi for the concreste
at loading was recorded in the experiment. Thus it is as-
wcama in the analysis that the prestress was released wheaen
the load was mvvwwmm with the wnwﬂwmw prestress which would
produca the recorded concrete stress. The initial prestress-
ing force vo is computed as follows ¢onsidering the elastic
shortening of concrete : P, P/¢Y - muwu\mnyov = 15600 lbs,
where P is the axial force of concrete after transfer. .

One half of the column is analyzed with 10 elements. Tha

eccentric compression is simulated by the equivalent concen-

tric compression and the bending momant. The cross section
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{a} Structure and Loading

le 3"
i
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(b)) Pinite Element Mezh Lavout

vy,
L))
Sy,

Concrete Properties

Xy = 4.94x10° psi ; £2 » 5585 psg
€y = 0.006 i £ = 558.5 psi

(c) Prestressing Steel Properties (0.198"¢ Wirea)

Area = 0.0308 in? ; E, = 29.34x10% psi
Discretes Points in the Stress=-Strain Curve:
Oy = 1.46%10° psi, €, = 4.976%10™?

O, = 1.96%x30° psi, €, = 6.900%x10"7?
gy = 2.18%10° psi, €3 = 8.630%x1077
O4 = 2.40%10° pai, €, = 3.000%x70"?
Gg = 2.51x10% psi, €5 = 5.600x1072

Fig. 8.10.a. Example B8.4.4 - Aronl Column




P Zxp. >uoaw.u.mnouo=¢.vnaua:n
{lbs} . AnalysisiAnalysisinalysis
400 0.05 0.09 0.08 0.08
700 0.1 0.17 0,14 0.14
1100 0.20 0.27 0.23 0,22
1500 0.34 a.uw 0.34 0.31
. 1800 | 0.55 | 0.57 | 0.53 | o0.s2
2060 e c.B84 .79 0.53

- i 9

* Present analysis neglecting gecmetric nonlinearity

Table 82.10, Example 8,4.4 =~ Midaspan Deflections
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13 divided into 10 concrete layers. The prestressing steel
wires are modeled by two prestressing steel tendons each of
which is divided into 10 segments.

6 load steps are used to analyze the celuma up to P =
2000 lbs. The average number of iterations per load step
with the displacement ratio telerance of 0.01% ww 4, To study
the effect of the geometric nonlinearity the column i3 also
analyzed with the material bomwwnmnwwnw only. The experimen-
tal man.unwWWﬂwnmw results for the midspan deflection are
tabulated in table 8.10 and nwownmm in Pig. 8.10.k. Good
agreement between ﬁwo axvnwwamanmw result and the analytical
results for both the praesent analysis and Arcni's analysis
can be observed. The significance of the geometric nonline-
arity for the column can be noted from the result obtained

by considering the material nonlinearity only.

8.5. Summary of the Computer Time and Cost for the Examples

The examples presented in this chapter were run on the
COC 6400 computer at the University of California, Berkeley
during the summer of 1976, In Bo»a.nwmom. load modyles pro-
duced from nra.momeww% source programs RCFRAME and PCFRAME
described in chapter 7 were used. The central processor time,
the periph:ral vnonmmmon time and the ¢co0s5t are tabulated in
table 8.11% mHOJa with the parameters which affect the solu~-
tion nwamu

Among the parameters listed in the nmUHm.,nwm numbers of

jeints, elements and layers dictate the storage size, and the
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total number of iterations dictates the time required for the
tormation of the stiffness and the solution of egquilibrium
eguations.

mon.nﬁo 10 examples presented in this n:mnnmw. the av-
erage central processor time was 30 umno:am and the averags

cost was $4.5.



Table 8.11%,

Summary of the Computer Time and Cost for the Examples

(1) | (2) | (3)] (4} (5)] (6)] (7)] (8} (9] (10) (11) (12) (13)

Examplel MN GH | NJ | HE | NCL{ NSL§ NPSI HTS] NLS| NIT . cp{sec)PP{s8ec)COST(S)
8.2.1 HO | YES 6 5110 0 0 t]12 3.3 6.5 6.1 1.5
8.2.2 1 YES | YES 11 10 14 1 4] 1 10 5.0 21.7 8.5 1.9
8.2.3{YES|{ NO| 7| 6] 10 2] o0 1|20 11,5 45.2 7.7 5.6
8.3.1 | YES NO [ 17 16 ]| 19 4 0 | 10 5.5 59.6 25.6 10.2
8.3.2 | YES NHO |16 | 15 | 5 3 0§20 ] 20 2.7 76,4 27.4 8.6
8.3.3 ves| wmo| 2| s]r0o] 1] o2 |2 ] 2.2 4.6 | 12,6 1.6
8.4.1 ] YES NOJ] 1% ] tO}] 10 b | 10 2110 4.8 22.0 9.6 2.6
8.4.2 | YES HO | 11 ] 10| 14 0| to} 10| %0 3.4 26.0 9.7 4.3
8.4.3 ] YES NO| t4] 10} 15 3| 20 13 ] v4 2.9 38.13 24,2 6.7
8.4. 4| YES | YES | ¥1 ] 10} 10 0] 20 2 7 3.9 20.% | 10.6 2.2
(1) HN 5 Material Ronlinsarity

(2) GN 1 Gecmetric Honlinearity

{3) NJ 1 NHumberxr of Joints

{4) NE : Numbar of Elements

. {5) HCLs Huwmber of Concrete Layers

{6) MSL: Number of Reinforcing Steel Lavers

(7) NPS: Number of Prestressing Steel Segments

{8) NTS: Number of Time Staps

{9) NLSs Total Number of Load Step

{10) KITs Humber of Iterations per Load Step

{11) CP 1 Central Procassor Time

{(12) PP s Paripheral Procassor Timae
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9. CONCLUSIONS

g.1 mcaamﬂm

An mmnwnwmsn numerical procedure for the material and
geometric nonlinear analysis of planar reinforced and pre-
stressed concrete frames including the time dependent effects
due to load history, temperature history, creep, shrinkage
and aging of concrete, relaxation of prestress has been pres-
ented. The method is capable of predicting the displacements,
internal forces, stresses and strains of these structures
thrxoughout their service load history as well as throughout
elastic, inelastic and ultimate load ranges,

For the gquasi-static time dependent analysis a step for-
ward integration is performed by dividing the time domain
into a discrete number of waﬁaﬂqum., For each time interval
nonlinear equilibrium equations are set up and solved by the
finite element method based on the displacement formulation.
Total, incremental and tangential mOﬂE of equilibrium equa-~
tions which are valid for the current geometry and material
properties at any instant of nwlm.mum derived by the principle
©f virtual work. An incremental load method combined fwnr
the unbalanced load iterations for each load increment is u-
tilized for the solution of the nonlinear equilibrium equa-
tions.

Time dependent variation of the concrete mwﬂmban: is
recognized. Concrete mﬁnwws is assumed to consist of the

mechanical and non-mechanical components. The mechanical
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strain is the instantaneous strain due to short-time loading,
and is the wbmmﬁmnmmsn‘ﬁmuwwwwm in the nonlinear stress-strain
relationship. The non-mechanjical strain is due to creep,
shrinkage, aging and temperature wvariation. Stregs-strain
curve of concrete is approximated by a vmnmdowvnwwwnmmﬂ fune-
tion. Bilinear and multilinear forms of stress-strain curves
are utilized for the reinfercing steel and the prestressing
steel, respectively. Simple unloading and reloading models
are incorperated in the stress~strain curves for the three
materials to account for the Howu‘ﬂm<mﬂwww.

An efficient numerical procedure for the evaluation of
creep strain is developed with uu.»sﬂonnmp.nonncwﬂnwos in
which the history mmmmnn is accounted for by successively
updating the values of only two variables instead of storing
all the previous stress or strain histeories. The effacts of
concrete age and temperature on cresen is included. HNonlinear
creep effect due to high stress intensity is alsoc considered.

In order to account for varied material properties within
a frame element, the element is divided into a discrete num-~
ber of concrete and reinforcing steel layers which are assumed
to be perfectly bonded together, The integrations required
to evaluate the slement properties such as the stiffness ma-
trix or the internal resisting load vector, are then performed
layer by layer through the depth of the nwo%mnnr Gaussian
guatrature is used for the integration along the length of
the element. By the use of the layer system non-uniform

cross sections nml be modeled,
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Three distinct stages of loading are distinguished in
the wanwmwm of pre-tensioned and post~tensioned bonded and
cnuo:mmm.mnmamm 1 i.e. before, at and after the transfer of
prestress. Prestressing steel tendons are divided into a
discrete number of linear segments each of which is assumed
to span an element and have a constant stress along its
length. The contribution of the prestressing steel to the
element properties are added directly. An iterative method
is developed for the unbonded structures to account for the
displacement incompatibility,

Finally, a series of numerical examples analyzed by the
computer programs developed are presented to investigate the
4mwhmwww and applicability of the present method. The results

are compared with experimental data and other theoretical

rasults.

9.2 Conclusions

1. The present numerical procedure has been demonstrated
to predict the response of planar reinforced mlm vnmuwummmmu
concrete frames Mauumnnmm to both short-time and long=-time
load including the load due to environmental variations
fairly accurately.

2. The present modelling of aman»mH properties is ca-
pable of capturing the dominant flexural behavior of nmwnr
forced and prestressed concrete frames in elastic, inelastic
and ultimate load ranges.

3. The present time dependent analysis procedure in~

cluding the efficient numerical formulation of creep predicts
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the long-time behavior of concrete frames fairly well.
Substantial redistribution of internal moanmm takes place
due to time dependent loads. Temperature induced stresses
are often damaging to structures and the effect of tempera-
ture on g¢reep is substantial.

4. The accuracy of the present mm05mnﬂwn.:omwwsmWH
analysis procedure has been demonstrated.

5. The present method incorporates the prestressing
steel as an wuﬂmmwmw part of the frame and the internal
forces and deformations of both concrete and prestressing
steel are determined in one complete analysis throughout var-

ious stages loading, Prestress loss is accurately predicted.
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APPENDIX

Input Instructions for the Programs RCFRAME and PCFRAME

* The input data is key punched on cards as specified below.
The mmﬁamanwww order of the input cards must be strictly ad-
hered to and consistent units must be used throughout a
problem. When ACI formulas for the time dependent concrete
properties are used the pound=inch system must be used.

* Maximum allowed numbers of joints, members, etc. were set
according to the minimum nmﬁcwnmamvnm for running the examples
in chapter 8 to save the storage space. For bigger problenms,
"the maximum allowed numbers can be easily increased in the

source program.

RCFRAME 1Input Instructions

1. Title (8A10) - one card

1~80 Title of the problem (HEAD)

2. Control Information (8I5,3F10.0) ~ one card

1=« 5 No. of joints (NJ, max. 20)
6-10 No. of supported joints (NSJ, max. 5)
11-1% No. of members {(NM, max, 20)
16-20 No. of different cross sections (NSEC, max. 10)
21=-25 No. of load cases (NLC)
26=30 Concrete preperties input code (KCNC)
KCNC=0 if there is no concrate
KCNC=1 if concrete properties are input according
to ACI formulas
KCNC=2 if concrete properties are input directly
at each time step
31-35 No, of different concretes (NCNC, max. 5)
Leave blank if there is no concrete.
36-40 No., of different steels (NSTL, max. 5}
Leave blank if there is no steel,
41-50 Age of concrete in days at the time of initial
loading (AGE)
51-60 Reference temperature (TZERO) USE RCC FOR 94uw
61-70 Coefficient of thermal expansion assumed to be



constant and equal for both concreteand steel
{(ALPHA) )

Joint coordinates {I5,2F10.0) - One card for each joint

i= 5 Joint number (I)
£-15 X-coordinate of joint I (X{(I})
15=25 Y~coordinate of joint I {¥Y{I}}

F-3

Supported Joint Information {(I5, hmﬁo 0) - one card for

each supported joint

1- 5 Joint number of Ith supported joint (JS{I})

6-15 5Stiffness along A axis ({(SP(I,1})}

16=25 Stiffness along B axis (SP{I,2)})}

26~45 Rotaticonal Stiffness (SP(I,3})

36=45 Angle between X-and A axes measured counterclock-
wise from X axis to A axis in degrees. A and B
axes form a rectangular CArtesian coordinate
systen. {SP(I,4})

Material Properties

5.1. Concrete Properties - skip if NCNC=0

If XCNC=1 (4F10.0,4F5.0,F10.0}) ~ one card for each

different concrete

1-10 28 day strength in psi (FCP28{I})

Enter with negative sign.

11-20 tWeight per unit veolume in 1lb/cu.ft (WGT(I))

21-30 Coefficient a to compute fg(t) (ACNC(I))

31-40 Coefficient b to compute £i(t) (BCNC(I))

41<45 Ratio ro in f8=r *f. (RCMP(I))

46-50 Ratio r, in fl=r,*VWwIl (RTNS(I))

51=55 Ratio ry=£Z/0 up to which 0.,=0 in nnmmv calcula~-
tion (RCRP1T(I))

56=-60 Ratio ro=0,/0 when g=£2 in creep calculation
{RCRP2(I1))

61-70 Ultimate conmpressive strain g, (ECU(I)}))

If XCNC=2 {6E10.0) - one card for each different concrete

1=10 Initial modulus Ej at the age of initial loading

{ECI(I))

11-20 Compressive strength £g (FCDP(I))
Enter with negative sign.

21-30 Tensile strength f£{ (FTP(I})

31-40 Ratio r4=£./C up to which Ug=0 in creep calcula-
tion (RCRP1(I})

41-50 Ratio r,=0,/C when O=£f_ in creep calculation
{RCRP2(X)}

51-60 Ultimate compressive strain €, (ECU(I)]
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5.2. Steel Properties {4E10.0) = one card for each
different steel, skip if NSTL=0

1-10 Yield stress mmw (FSY(I))
11=-20 Ultimate strain egy (ESU(I))
21-30 First modulus Egqy in the bilinear stress-strain
curve (ES1({I})
31-40 Second modulus Eg; in the bilinear stress-strain
curve (ESZ2(I})

Member data (415) - one card for sach member

1- 5 HMember number (I)

6=-10 Node i of member I (NODI(I})

11=15 NHode 3 of member I (NODJ{I)})

16=-20 Section number of member I (MSEC{I))

Section Data - The following data are input for each
different cross section in section number order.

7.1. Section Information (4I5) - one card

1= 3 Section number {I)
6-10 No. of concrete layers (NCL{I)), max. 20)
Leave blank if there is no concrete layer.
11=15 No. of steel layers (NSL(I), max. 5)
Leave blank if there is no concrete layer.
16-20 Concrete material No. (MCNC{I))
Leave blank if there is no concrete layer.

7.2. Concrete Layer Data = skip if NCL(I) = 0

ACL (I,J):;J=1,HCL(I)(8F10.0) = one or more cards
Areas of concrete layers J in layer No., order

YCL(I,J3);J=1,NCL{(I})(8F10.0) -~ one or more cards
Y coordinates of concrete layers J from member
reference plane in layer No. order

7.3, Steel Layer Data - skip if NSL(I)=0

MSTL(E,J);J3=1,NSL{1)(5I5) - one card
Steel numbers of steel layers J in layer No. order

ASL(I;J):;J=1,NSL({I)(5F10.0) =~ one card
Areag of steel layers J in layer No. order

YSL{I,J);J=1,NSL{I)(5F10.0) - one card
¥ coordinates of steel layers J from member
reference plane in laver No. order

Load Control Data ~ The fecllowing data are input for each
load case. .




5.1. Title (8A10) -~ one card

1=80 Title of the load case (HEAD)

8.2. Contrel Data (9I5) - ones card

1= 5 No. of time steps {NTIME)
Enter 1 for short-time loading
6«10 ©Qutput code for iterations (KOUT)
XoUuT=0 if output is given for eazh load step
KOUT=1 if ocutput is given for each iteration
11~153 OCutput code for lavers (LCUT
LoUT=0 1if layver output is not given
LOUT=1 1f output is given £for each Gaussian
guadrature point
LOUT=2 if output is given only at the center of
the member
16=20 Geometric nonlinearity code (XGN)
¥Gu=0 if geometric nonlinearity is not considered
KGHN=1 if geometric nonlinearity is considered
21-25 Geometric stiffness code (KGS)
KGS=0 if geometric stiffness is not included
KGS=1 if geometyric stiffness is included
26=-30 Temperature code (KTEMP)
KTEMP=0 if temperature variation is not considered
KTEMP=1 if temperaturxe is varied uniformly over
the structure
KTEMP=2 if temperature is varied unevenly for each
member and layer
31~35% Shrinkage code (KSHRNK)
KSHRENK=0 if no shrinkage is considered
KSHRNK=1 if shrinkage occurs uniformly for concrete
KSHRHK=2 if shrinkage cccurs unevenly for each
) member and layer
36-40 Max. No. of iterations allowed for final load
step (NITF)}
41-45 Max. No. of iterations allowed for intermediczte
load steps {(NITI)

8.3. Tolerance Data {(7F10.0) - one card

Four kinds of convergence tolerances will be preovided
in addition to the number of iteraticns alloweZ for each
load step.’ ’ ’

| The first is the maximum displacement ratio |Ar;/ri|
allowed for each locad step where Ari is the displacement
increment for the current iteration and rji is the total
displacement increment foxr the current load step up to
previous iteration dnd i represents the component of
displacement vector which has the maximum displacement
increment at the first iteration ©f the current load step.
The tolerance for the final load step is TOLF and that
for intermediate load steps is TOLI.

The second is the maximum displacement ratic _DHH\H»_



240

allowed for each iteration feor chancing stiffness {(TOLZ).
If the displacement ratio ig larger than TOLC the stiff-
ness is updated for the next iteration and if the ratio
is smaller than TOLC previously formed and reduced stiff-
nesg is used for the next iteration.

The third is the absolute value of displacement
{TOLD}) and rotation (TOLR) increment allowed for each
iteratien. These are provided in case of overshoot or
load reversal. If maximum displacement increment exc=eds
this tolerance all the other components of displacement
increment vector will be scaled down such that the maxi-
mum value is egqual te TOLD or TOLR.

1-10 Displacement ratio tolerance for final leoad

step (TOLF)

11~20 Displacement ratic tolerance for intermediate
load steps (TOLI)

21-30 Displacement ratio teolerance for changing
stiffness {(TOLC)

3t-40 Maximum allowed unbalanced load {TOLL}

41-50 Maximum allowed unbalanced moment (TOLM)

51-60 Maximum allowed displacement increment (TOLD)

61=-70 Maximum allowed rotation increment {(TOLR)

Load Data - The following data are input for each time
step.

9.1. Control Data {(3153) - one card

1= 5 Time step No. (ITIME)

6«10 No. of load steps {NLS, max. 20)
11-15 No. of loaded joints (NLJ)

9.2, Load Step Data = two or more cards

FLSI(I};I=1,NLS (8F10.0) =« one or more cards
Fraction of total loads due to non-mechanical
strains during this time step for each lcad step
in load step No. corder

PLSJ(I);I=1,NLS {(8F10.0) - one or more cards
Fraction of totul joint loads during this time
step for each load step in load step No. order

9.3. Joint Load Data (I5,3F10.0) - one card for each
locaded jeoint, skip if NLJ=0

1= 5 Joint number (LJT)

6-15 X-load for the time step (BX)
16-25 Y-locad for the time step (BY)
26«35 Moment for the time step {BM)

9.4, Time Increment {F10.0) - one card, skip for the
first step




1«10 Time increment in days (DTIME, th = thoyl

9.5, Creep Data (3E10.0) =~ one card for each different
concrete, skip if NCNC=0 or for the first time step

1-10 Creep coefficient a4 for the time step tn-1

(XA21(1))

11=-20 Creep coefficient as for the time step thet
{XA2(I)3

21-30 Creep coefficient a3 for the time step t,.4
{XA3(1))

9.6. Current Cocncrete Properties {3E10.08) - one card for

each different concrete, skip if XCNC=0 eor 1 or for
the first time step

1-10 Current Eji (ECI(I))}
11-20 Current £2 (FCDP{I})
Enter with negative sign
21-30 Current £ (FTP(I))}

2.7. Shrinkage Strain Increments - skip if NCNC=0 or
NSHRNK=0 '

If XSHRNK=1 (E10.0) - one card
1-10 Shrinkage strain increment (DEPSS)

If KSHRNK=2 (8E10.0) -~ one or more cards for each member
No. order :
Shrinkage strain increments of concrete layers
J in layer No. order, skip if JCL=0
DEPSS(I1,J)33=1,3CL {JCL=NCL{K), K=MSEC(I)}
K
9.8. Temperature Increments - skip if (DTEMP=Q]

If KTEMP=1 (F10.0) - one card
1=10 Temperature increase {(DTEMP)

If KTEMP=2 « The following cards are input for each
member I in member No. order

DTEMPC(I,J);Jd=1,JCL (8F10.0} (JCL=NCL({(K), K=MSEC(I))

Temperature increments of concrete lavers J in
layer No. order, skip if JCL=0

DTEMPS {I,J):J=1,J5L {8F10.0) {ISL=NSL(K) ,X=MSEC(I))

Temperature increments of steel layers J in lavyer
No. order, skip if JSL=0
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10. Next Froblem

Following the data for this problem, the data for
@ new problem may be begun. Any number of prob-
lems may be entered. To terminate the data. deck
add two blank cards.

PCFRAME Input Instructions

The following informations are input in addition to those
for the program RCFRAME

2.2. Prestress Control Information (4I5,3F10.0) - one card

1= 5 Prestressing type code {KPS)
KPS=0 if pre~tensioned
KPS=1 if post-tensioned

6-10 No. of prestressing steel tendons each of which
has a given profile, initial tensioning force
and a constant cross=-rectional area along its
length (NTND, max. 5)

11=15 No. of prestressing steel segments each of which
is straight, spans a concrete member and has a
constant force (NP3, max. 60)

16~20 No., of points used to specify stress-strain curve
0f prestressing steel excluding the origin
(NPT, max. 5)

21=30 O0.1% offset yield stress of prestressing steel
(FPSY)

31-40 Time in days elapsed from initial tensioning
operation until transfer for pre-tensioned case
{AGEPS)

41-50 Coefficient for the calculation of relaxation loss
(CRPS) Enter 10. for ordinary prestressing steels.

2.3. Post-tensioned Frame Information (2I5,2E810.0) =~ one
card, skip 1if KPS=0

1- 3 Bond code (KBOND)
KEOND=0 if unbonded
KBOND=1 if honded
6-10 Symmetry code (KSYM)
KSY4=0 if the structure or locading is not symmetric
KsyiM=1 if the structure and loading are symmetric
11-20 Wobble friction coefficient K {CXPS)
21-30 Curvature friction cocefficient B {(CMUPS)
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2.4, Prestressing Steel Tendon Information
-~ one card for each prestressing tendon

1= 5 Tendon No. {(I)

6=10 Secgnent No., of the first prestressing steel
segment of the tendon (NFRST(I)})

11=-15 Segment No. of the last prestressing steel
segment of the tendon (NLAZTI{I})

16-25 Area of the tendon (ATHD(I})

26=35 Initial tensioning force o©f the tendon (PZZEC{I))
For symmetric post-tensioned case enter halfi of
the total tensioning force since it is assumed
that tensioning operaticn 1s performed symmetri-

cally from both ends

36-45 Anchorage slip of the tenden (SLIP(I})
For symmetric post-tensiconed case enter half of
the total slip.” Leave blank for pre-tensioned

case.
5.3. Prestressing Steel Properties (10ES8.0) = cne card

1-80 Stress and strain values of each peint in stress-
strain curve in point No. order excluding the
erigin (PSF(I),PSE(I);I=1, NPT)

6.2. Prestressing Steel Segment Data {3I5,3E10.0) - one
card for each prestressing steel segment

1= 5 Prestressing steel segment No. 9I0

6~10 No. of concrete member in which the segment is
embedded (MPS(I1})

11=15 ©No. of prestressing steel tendon to which the
segment belongs {(NTPS(1))

16=25 Eccentricity of the prestressing steel segment at

. joint i of the member MPS(I) in member cocordinates,

i.e, positive upward from member reference axis
{ECCI{I1)}

26-35 Eccentricity at joint j (ECCJI(I))

36-45 Total angle change of the prestressing steel
segment in radians. {THPS(I))
Leave blank for pre-tensioned case








