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ABSTRACT OF THE DISSERTATION 

Developmental Trajectory and Sex Differences in Auditory Processing in Two Different 
Mouse Models of Autism Spectrum Disorders 

by 

 

Katilynne Nichole Croom 

 

Doctor of Philosophy, Graduate Program in Neuroscience 
University of California, Riverside, June 2024 

Dr. Khaleel Razak, Chairperson 
 

 

Autism spectrum disorder (ASD) is currently diagnosed in approximately 1 in 44 

children in the United States, based on a wide array of symptoms, including sensory 

dysfunction and abnormal language development. Auditory temporal processing is 

crucial for speech recognition and language development. Abnormal development of 

temporal processing may account for ASD language impairments. Sex differences in the 

development of temporal processing may underlie the differences in language outcomes 

in male and female children with ASD. To understand mechanisms of potential sex 

differences in temporal processing requires a preclinical model. However, there are no 

studies that have addressed sex differences in temporal processing across development 

in any animal model of ASD. My dissertation research utilizes two different mouse 

models of ASD that display sensory abnormalities: the Fmr1 (Fragile X Messenger 

Ribonucleoprotein 1) knock-out (KO) mouse model of fragile X syndrome (FXS) and a 

Pten-deletion (phosphatase and tensin homolog missing on chromosome 10) model of 

autism. I utilized a 40 Hz gap-in-noise ASSR (auditory steady state response) paradigm 

and in vivo electrophysiology to measure the cortex's reliability in phase locking to brief 
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gaps in noise at varying modulation depths to assess temporal processing acuity. The 

Fmr1 study results show gap-ASSR deficits in the frontal (FC), but not auditory (AC), 

cortex in early development (p21, “postnatal day 21”) in male and female KO mice. 

Unlike male KO mice, female KO mice show wild type-like temporal processing at p30. 

This research also utilizes a conditional PTEN KO model that displays a specific gene 

KO pattern, occurring exclusively in the hippocampus and layers III-V of the cortex. 

Results show that abnormal PTEN expression significantly impacts oscillatory activity in 

male and female mice, including abnormal resting power distributions and decreased 

phase-locking compared to controls. Overall, deficits become more prominent in adult 

mice. Notably, in both ASD models, female KO mice showed increased auditory 

hypersensitivity compared to males, reflected as increased ERP amplitudes. This 

dissertation research has identified similarities and differences between two different 

autism models. Further unraveling these circuits may be the key to understanding and 

treating ASD pathology.
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Chapter 1 

 

Introduction 

 

Autism Spectrum Disorder 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is 

characterized by a lack of social interactions, impaired verbal and nonverbal 

communication, and repetitive behaviors [Park et al., 2016; Ratajczak, 2011]. The 

disorders included in this spectrum are autistic disorder, Asperger’s disorder, Rett 

syndrome, childhood disintegrative disorder, and pervasive developmental disorder not 

otherwise specified [Kirkovski et al., 2013; Pickett & London, 2005]. The rate of ASD 

diagnoses has increased dramatically in the past decade and is currently diagnosed in 

approximately 1 in 44 children in the United States. [Christensen et al., 2018]. This 

spectrum of disorders has traditionally been diagnosed within the first three years of life, 

when differences from age-matched children start to become apparent. ASD is mostly 

diagnosed behaviorally because no reliable early developmental biomarkers have been 

identified. Some of the earliest signs recognized in infants include irritability, passivity, 

difficulties sleeping and eating, and delays in language and social engagement [Park et 

al., 2016]. By one year of age, abnormalities in visual attention, social responses, motor 

control, and reactivity become prevalent [Zwaigenbaum et al., 2005]. The core 

symptoms of ASD are expressed by age 3, making the distinction between ASD and 

other psychosocial disorders apparent [Park et al., 2016]. Although typically diagnosed in 

late preschool/early school years, there has been a significant increase in the number of 
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adults diagnosed, which may be due to the broadened diagnostic criteria in recent years 

[Park et al., 2016].  

The core deficits seen in individuals with ASD include impaired/delayed 

communication and social interaction as well as sensory hypo- and/or hypersensitivity 

[Pickett & London, 2005]. Although recognized as a consistent and core abnormality, 

very little is known about the underlying mechanisms of sensory processing deficits. 

Moreover, neither developmentally consistent nor robust sensory processing biomarkers 

have been established for early diagnosis of ASD. A biomarker, or ‘biological marker,’ is 

a biological variable associated with the disease of interest that can be measured 

directly in a patient using sensitive and reliable quantitative measures [Persico et al, 

2014]. Identifying biomarkers for ASD has proven to be challenging due to the 

complexity of the disorder. More specifically, proposed biomarkers may reflect genetic, 

neurobiological, or epigenetic processes that are not consistent throughout the lifespan, 

demonstrating a more transient expression pattern. Another potential pitfall in these 

types of studies is that biomarkers may not actually represent the disorder, but rather the 

processes that led to it or compensatory responses [Goldani et al., 2014]. Although 

challenging, the identification of reliable and translatable biomarkers could progress the 

field by unraveling circuit pathophysiology and underlying mechanisms of ASD, 

promoting earlier and more reliable diagnoses, predict developmental trajectories, and 

optimize treatment strategies [Persico et al., 2014].  

 

Language impairments in ASD 

 Abnormal expressive and receptive language development is consistently 

reported in humans with ASD. While expressive language refers to the ability to produce 
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language, receptive language is the ability to comprehend language [Frazier, 2011]. 

Notably, impairments with language processing, including the phonologic, syntactic, 

semantic, prosodic, and pragmatic aspects, have been identified [Foss-Feig et al., 2017; 

Tager-Flusberg & Caronna, 2007; Rapin & Dunn, 2003; Jeste & Nelson, 2009]. Overall, 

the prosodic and pragmatic aspects of speech are impaired to a greater extent than 

syntax and semantics in humans with ASD [Sigman & Kim, 1999].  

Phonology 

 Phonology refers to the sound patterns of language. More specifically, the 

sounds and pronunciation rules that make up a language [Kostyuk et al., 2010]. 

Phonological speech deficits have been identified in ASD. One study found that that 

roughly a third of school-age children with ASD demonstrate speech production 

problems [Shriberg et al., 2001]. Specifically, children with ASD presented with 

substantially higher rates of speech errors, such as dentalized sibilants (a fricative 

consonant sound in which the tongue is brought near the roof of the mouth and air is 

pushed past the tongue to make a hissing sound) and distortions of “r” [Shriberg et al., 

2010].  Although these and other abnormalities have been observed, including an MRI 

study that demonstrated that autistic children process sounds slower than typically 

developing children, phonology is the area of language least likely impaired in humans 

with ASD [Redcay & Courchesne, 2008]. 

Grammar 

 The research regarding grammar deficits in ASD is inconsistent. Some studies 

suggest that relatively few problems are present, while others provide evidence that 

grammar is severely impaired in children with ASD [Eigsti et al., 2007; Eigsti & Bennetto, 

2009; Kjelgaard & Tager-Flusberg 2001; Fisher et al., 2005]. One specific deficit 
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consistently reported across studies is pronoun reversal, which occurs when individuals 

confuse the first and second pronouns in speech (“you” versus “me”) [Kostyuk et al., 

2010; Stefanatos & Baron, 2011]. Other abnormalities seen in humans with ASD include 

decreased likelihood of producing grammatical morphemes, difficulty with reflexive 

pronoun interpretation, and using short and long passive verbs [Bartolucci, 1982; 

Bartolucci et al., 1980; Shulman & Guberman, 2007]. Overall, these abnormalities 

suggest the inability to process syntactic relationships and interpret syntactic chains. The 

physiological mechanism behind these deficits are not clear, but it has been reported 

that the function of processing implicit syntactic relationships is significantly dependent 

on the hippocampus [Opitz & Friederici, 2007].   

Semantic 

 Children with autism have difficulties with the sematic processing of words. 

Semantics is the aspect of language that relates to understanding the meaning of words, 

phrases, and sentences as well as using words appropriately when we speak [Kostyuk 

et al., 2010]. Specifically, these individuals struggle with abstract words, those that relate 

to feeling or emotions, and also words that refer to status [Lopez & Leekam, 2003]. 

These deficits are typically seen as idiosyncratic word use and neologisms in place of 

generally accepted words for specific objects or events [Stefanatos & Baron, 2011]. 

Possible explanations have been proposed for these abnormalities. When learning new 

words, it is likely that children with ASD are not fully attended in the situation and are 

therefore unable to develop the proper associations between words and objects 

[Stefanatos & Baron, 2011]. Furthermore, children with ASD also struggle with social 

referencing, affect sharing, and gaze tracking which would likely impact their ability to 
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make correct associations between words and objects [Baron-Cohen et al., 1997; Grice 

et al., 2005].  

Pragmatic 

Pragmatic language skills are crucial for communicating personal thoughts, 

ideas, and feelings. These skills include being able to participate in a conversation by 

taking turns with the other speaker and reacting appropriately to the other person’s body 

language, mood and words. Additionally, pragmatic skills include the ability to maintain a 

topic or change topics appropriately, maintain appropriate eye-contact during a 

conversation and the ability to distinguish between informal and formal communication 

scenarios how to talk and behave formally with some individuals and informally with 

others [Kostyuk et al., 2010; Kerbel & Grunwell, 1998]. Deficits in this aspect of language 

are highly correlated with ASD. Specifically, these individuals demonstrate deficiencies in 

the reciprocity of social communication, unusual or inadequate expression and 

understanding of ideas, as well as other abnormalities indicative of impaired 

understanding of social norms and expectations [Stefanatos & Baron, 2011; Rapin & 

Dunn, 2003; Surian et al. 1996]. These pragmatic impairments have been suggested to 

be a result of problems with social perception and comprehension [Shields et al., 1996].  

Prosodic 

Prosody is an important aspect of language and includes the intonation and 

rhythm of speech [Applebaum et al., 2014]. This key aspect of communication is highly 

impacted in ASD. Specifically, speech may be inappropriately loud or soft, fast or slow, 

have no emotional tone and may be generally high pitched. The cadence, rhythm or 

tempo of verbal productions may also be abnormal, such as misplaced stress on words 

and increased repetitions [Stefanatos & Baron, 2011]. The neural correlates of prosody 
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are not fully characterized, but it has been shown that prosody is right hemisphere 

dominant in children but becomes more bilaterally represented with development 

[Trauner et al., 1996].  

Echolalia 

Echolalia is the repetition of words, signs, phrases or sentences spoken by other 

people. This behavior is highly common in children with ASD, such that a reported 75% 

of all children with ASD have gone through a phase of echolalic production [Belger et al., 

2011]. Although echolalia was once seen as a negative behavior, others have speculated 

that it may serve specific functions. For example, some individuals may use this 

repetitive behavior as a way of communication, while others may use the repetition to 

regulate their own behavior [Kostyuk et al., 2010]. Furthermore, echolalia has also been 

suggested to serve a variety of pragmatic and linguistic functions as a turn filler, 

processing aid, self-regulator, or as having expressive communicative intent outside the 

direct meaning of the echolalic production [Prizant & Duchan, 1981; Stefanatos & Baron, 

2011]. The underlying mechanisms of this behavior are beginning to be understood as it 

is speculated that echolalia may represent compensatory disinhibition of audio-motor 

processing due to receptive and expressive language deficits [Linetsky et al., 2000; 

Stefanatos & Baron, 2011]. Although echolalia has been heavily correlated with ASD 

cases, not all humans with ASD show this behavior nor is it only seen in ASD. Other 

instances of echolalia include individuals with other language impairments or blindness 

as well as older individuals with dementia [Yule & Rutter, 1987]. 
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Receptive language 

 Abnormalities in receptive language are highly reported in individuals with ASD 

[Chen et al., 2024; Hannant, 2018; Hundry et al., 2010]. However, it is important to note 

that the severity of these deficits are highly dependent on the type of measurements 

being used (caregiver reports versus standardized measures versus experimental 

approaches [Chen et al., 2024]. Furthermore, studies have demonstrated greater 

impairment in comprehension rather than production skills in toddlers and children with 

ASD [Luyster et al., 2018; Kjelgaard & Tager-Flusber, 2001]. When looking at the earliest 

stages of development, the average toddler who understands more than 200 words 

typically produces only around 45 words [Fenson et al. 1994]. Children with ASD, on the 

other hand, do not demonstrate this level of comprehension until they can produce an 

average of 57-126 words, suggesting that children with ASD appear to understand 

proportionately fewer words than expected based on their expressive vocabularies 

[Luyster et al., 2008; Charman et al., 2003; Hundry et al., 2010]. Interestingly, this 

receptive language gap between typically developing children and those with ASD has 

been shown to widen with age [Chen et al. 2024]. 

 

The role of auditory temporal processing in language impairments 

It is hypothesized that auditory temporal processing deficits may be the root of 

these language impairments seen in ASD described above. The ability to make fine 

temporal discriminations of sound is critical to a wide range of processes including 

speech recognition, language development and sound localization [Michalewski et al., 

2005]. The capacity to follow rapid temporal cues on the order of milliseconds is critical 

for distinguishing and parsing speech sounds. For example, phoneme discrimination is 
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critically dependent on the temporal features of speech, including voice-onset time, the 

duration of frequency transitions, and the silent time between constants and vowels 

[Mauk & Buonomano, 2004; Lisker & Abramson, 1964; Liberman et al., 1956; Dorman et 

al., 1979]. Indeed, severe temporal processing impairments have been identified in 

language disorders, including dyslexia and specific language impairment (SLI) [Tallal & 

Piercy, 1973; Heath et al., 1999]. Therefore, it is hypothesized that deficits in the ability 

to process acoustic information presented in rapid succession is disrupting phonological 

processes and may be responsible for the language impairments seen in individuals with 

ASD.  

Temporal processing of sound can be divided into two categories: temporal 

integration and temporal acuity/resolution [Eddins & Green, 1995]. Temporal integration 

describes processing in which the intensity and/or duration of the signal affects the 

summation of neuronal activity, and temporal acuity/resolution is the minimum time 

interval within which the auditory system can discriminate between two signals 

[Eggermont, 2015; Jesteadt et al., 1976; Shinn & Musiek, 2003]. Individuals with ASD 

show impairments with these temporal aspects of sensory processing, including auditory 

stimuli duration, onset and offset, and rapid changes within them [Kwakye et al., 2011; 

Lepistö et al., 2006; Oram Cardy et al., 2005; Orekhova et al., 2009]. One study found 

that children with ASD had difficulties reproducing the lengths of auditory and visual 

stimuli while another demonstrated that both children and adults with ASD produced 

abnormal neural responses to fluctuations in pitch of repeated, sequential auditory 

stimuli [Szelag et al., 2004; Tecchio et al., 2003; Gomot et al., 2006]. Oram Cardy et al. 

(2005) demonstrated via magnetoencephalography (MEG) that children with ASD fail to 

respond to a second stimulus when duos of pure tones are presented in rapid 
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succession, supporting the idea that rapid temporal processing is impaired in ASD. 

Additionally, increased gap-detection thresholds have been reported in patients with 

ASD, a paradigm commonly used to assess auditory temporal processing. Notably, it 

was shown that impaired gap detection thresholds in children were associated with lower 

phonological processing scores [Foss-Feig et al., 2017]. These human studies provide 

support for the hypothesis that auditory temporal processing is critical for many aspects 

of speech and deficits may be responsible for language impairments seen in ASD. 

However, very little is known about temporal processing in any animal model of autism. 

Specifically, it remains unknown if and when the deficits occur across development, what 

the underlying mechanisms are, and whether the deficits can be targeted with 

therapeutics.  

 

Sex differences in ASD 

A sex bias in ASD diagnosis is well established, with the male:female ratio of 

diagnosis being ~4:1 [Werling & Geschwind, 2013]. Males with ASD more commonly 

show externalizing behavior problems, such as aggression, hyperactivity and restricted 

behaviors, while females show greater internalizing symptoms, including anxiety and 

depression [Hattier et al., 2011; Mandy et al., 2012; Szatmari et al., 2012; Bolte et al., 

2011; Giarelli et al., 2010; Solomon et al., 2012]. Typically developing boys have been 

shown to have a “weaker” or “slower” capacity for language acquisition, representing 

more than 70% of late talkers [Adani & Cepanec, 2019]. This sex difference in language 

development is mirrored in ASD children. For example, Harrop et al. (2021) found 

significant sex differences in parent-reported early developmental milestones, with 

females meeting their language milestones earlier than males. These findings align with 
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what was previously shown by Eriksson et al. (2012), with females developing ahead of 

males in early communicative gestures, productive vocabulary, and combining words. 

Additionally, Zubrik et al. (2007) demonstrated that boys with ASD have a greater risk for 

late language emergence.  Although multiple studies have reported a strong link 

between fetal or early postnatal sex hormone levels and communication and language 

development, the developmental trajectory and mechanism of this sex difference is not 

well understood [Lutchmaya et al., 2002; Lombardo et al., 2012; Auyeung et al., 2009; 

Friederici et al., 2008; Hollier et al., 2013; Schaadt et al., 2015].  

 

ASD-linked genes: 

Although most ASD cases are idiopathic, studies have shown that strong genetic 

components, together with environmental factors present in the early stages of 

development, can contribute to the pathogenesis of ASD. It is estimated that a genetic 

cause can be identified in up to 25% of ASD cases, with chromosomal rearrangements 

and coding-sequence mutations making up ∼10–20% and ∼5–10% of ASD patients, 

respectively [Guang et al., 2018; Huguet et al., 2013; Ziats & Rennert, 2016]. A study 

conducted in 2009 presented a list of 1,237 human genes that have potential links to 

autism; however, a 2015 study claims that there is strong evidence for a total of 65 ASD 

candidate genes in addition to syndromic genes that cause syndromes comorbid with 

ASD [Ziats & Rennert, 2016; Basu et al., 2009; Sanders et al., 2015]. Functions of these 

genes include cell adhesion molecules, scaffolding proteins, regulators of protein 

synthesis and degradation, and regulators of chromatin remodeling and transcription 

[Ziats & Rennert, 2016]. Two genes that exhibit a strong link and comorbidity with ASD 

include PTEN and Fmr1.  
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PTEN 

 Phosphatase and tensin homolog deleted on chromosome 10 (Pten) was first 

identified as a tumor suppressor gene frequently lost from a region of chromosome 

10q23 in multiple cancers, including brain, breast, and prostate, in 1997 [Hopkins et al., 

2014; Sansal & Sellers, 2004; Li et al., 1997]. Shortly after its identification, germline 

Pten mutations were linked to a group of inherited clinical syndromes now referred to as 

PTEN Hamartoma Tumor Syndrome (PHTS) [Endersby & Baker, 2008; Blumenthal & 

Dennis, 2008]. PTEN is a dual protein and lipid phosphatase that serves as a negative 

regulator of the PI3K/AKT/mTOR pathway, a pathway known to influence cellular 

processes including growth, proliferation, survival, apoptosis, metabolism, and cell 

migration [Endersby & Baker, 2008].  In the brain, components of the PI3K/AKT/mTOR 

pathway are present at synapses and are essential for synaptogenesis and regulation of 

dendritic spine morphology [Sawicka & Zukin, 2012]. Growing evidence across fields 

suggests that dysregulation of this critical pathway may be the underlying cause of 

numerous diseases, including autism.  

 Associations between PTEN and autism were discovered as early as 2003, when 

patients carrying germline Pten mutations displayed autistic behavior [Eng, 2003; 

Reardon et al., 2001; Goffin et al., 2001; Zori et al., 1998]. A small cohort study in 2005 

showed an intriguing number of Pten mutations in ASD cases with macrocephaly [Butler 

et al., 2005]. Larger cohorts reflected this initial finding, with Pten mutations being found 

in 17% of macrocephalic ASD cases, further supporting a link between the two [Hobert 

et al., 2014; Klein et al., 2013; McBride et al., 2010; Varga et al., 2009; Herman et al., 

2007; Buxbaum et al., 2007]. PTEN-ASD phenotype characterization was later carried 

out in humans across an age range of 2-25 years old and was compared to the following 



12 
 

conditions: idiopathic ASD, idiopathic macrocephalic ASD and healthy controls [Tilot et 

al., 2015]. MRI data collected for the PTEN-ASD group revealed a global increase in 

white matter volume as well as increased corpus collosum volume [Tilot et al., 2015; 

Frazier et al., 2015; Frazier, 2019]. This cohort study also found that the PTEN-ASD 

group had a significantly larger head size compared to the other three as well as lowered 

IQs, decreased processing speed, working memory, and impaired language 

development. Specifically, significant delays were identified in their first words and 

phrases, with some remaining mute or minimally verbal until after 4 years of age [Tilot et 

al., 2015]. Speech and language delays have been reported across PTEN studies, with 

prevalence rates between 27 and 57% [Balci et al., 2018; Busa et al., 2015; Lynch et al., 

2009]. Given the strong link previously described between temporal processing and 

speech, these findings suggest that auditory temporal processing deficits may be 

occurring in Pten-deleted individuals. However, further characterization of these deficits 

and their developmental trajectory has not yet been done in human nor mouse model 

studies.   

 A sex-bias in PTEN mutations has been reported in human cohort studies. 

Notably, females carrying a PTEN mutation had significantly higher cancer risks than 

males, including thyroid and breast cancers [Nieuwenhuis et al., 2014; Campbell et al., 

2001]. Mutations of Pten are the most common cause of breast cancers due to their 

negative regulation of the PI3K/AKT/mTOR pathway, a cancer that is predominately 

diagnosed in women [Campbell et al., 2001]. This sex-bias is due to the expression of 

estrogen receptor α (ERα) in 70-80% of breast cancers [Vilgelm et al., 2006]. 

Hyperactivation of the PI3K/AKT/mTOR pathway in breast cancer cells results in 

enhanced phosphorylation and the subsequent hyperactivation of ERα, so dual 
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therapeutics inhibiting both PI3K/AKT/mTOR and ERα are the primary treatments used 

for breast cancers [Yamnik et al., 2009; Ishida et al., 2018; Ciruelos, 2014; Page et al., 

2009]. Furthermore, an interaction between ERα and Group 1 metabotropic receptors 

(mGluR1 and mGluR5) has been identified specifically in female neurons in multiple 

brain regions [Martinez et al., 2014; Tabatadze et al., 2015; Tonn Eisinger et al., 2018; 

Santollo & Daniels, 2019]. In the hippocampus, estradiol acts via ERα to initiate 

postsynaptic mGluR1-dependent mobilization of the endocannabinoid anandamide to 

suppress GABA release [Huang & Woolley, 2012]. Additionally, this dual interaction 

mediates the estradiol effects on hippocampal memory consolidation [Boulware et al., 

2013]. ERα-mGluR5 signaling was seen exclusively in female striatal neurons as well 

[Grove-Strawser et al., 2010]. The hyperactivity of mGluR5 and its subsequent 

downstream signaling is a mechanism that has been implicated in multiple ASD mouse 

models, suggesting that an underlying mechanism may be conserved [D’Antoni et al., 

2014; Bear et al., 2004]. Whether this mechanism leads to similar phenotypes in these 

ASD models, such as auditory temporal processing deficits, is yet to be determined. 

Furthermore, the literature suggests that an ERα-mGluR5 interaction is driving the 

observed sex-biases seen in various brain regions.  

 Because germline Pten homozygous knockouts are embryonically lethal, 

numerous mouse models of PTEN mutations have been established to gain a better 

understanding of how this mutation is related to the autistic phenotypes seen in humans 

[Di Cristofano et al., 1998]. These models include germline heterozygous loss-of-

function, germline homozygous cytoplasm-predominant knock-in, and conditional 

homozygous loss-of-function [Clipperton-Allen & Page, 2020]. Although all the mouse 

models developed provide useful information about ASD-relevant cellular and behavioral 
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deficits, this research will use a conditional Pten knock-out (KO) model that utilizes a 

neuron-specific enolase (Nse) promoter-driven cre [Kwon et al., 2006a]. Nse is a 

glycolytic enolase that is expressed exclusively in neurons. More specifically, the timing 

of expression for Nse is correlated with the differentiation and maturation of neuronal 

cells in both the rodent and monkey brain [Marangos et al., 1980]. This model of Pten 

deletion displays a unique KO pattern [Kwon et al., 2006a]. Cre activity is first detectable 

by embryonic day (E)11 in the spinal accessory nerve. The activity is then spread into 

the spinal cord and peripheral nervous system by E13.5, followed by the ventral spinal 

cord and dorsal root ganglion at postnatal day (p)0. Cre activity becomes detectable in 

the brain at p2, only in differentiated neurons located within the cortex and hippocampus. 

At four weeks of age, cre activity remains restricted to the following regions and 

percentage of neurons in the brain: layers III-V of the cortex (54.5%), dentate gyrus 

(48.7%), CA3 (37.6%) and polymorphic layer (PML) (58.3%) in the hippocampus. No cre 

activity is detected in glial cells [Kwon et al., 2006a].  

The Nse-cre mouse model has been characterized in a variety of autism studies, 

ranging from cellular to behavioral. A consistent finding across studies is hypertrophy 

and the subsequent enlargement of the deep cortical layers, dentate gyrus, and PML, 

causing compression and neuronal loss of the CA1 region [Takeuchi et al., 2013]. 

Synaptic dysregulation was identified in the hippocampus, with theta burst-induced long-

term potentiation (TBS-LTP) being enhanced and mGluR long-term depression (mGluR-

LTD) impaired at perforant path-to-dentate granule cell synapses [Takeuchi et al., 2013]. 

Additionally, Nse-cre PTEN mutants develop abnormalities reminiscent of autism, 

including macrocephaly, reduced social activity, increased anxiety, and sporadic seizures 

[Ogawa et al., 2007; Kwon et al., 2006b]. Another study in this model demonstrated 
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hyperexcitable local neocortical circuits (prolonged, spontaneous persistent activity 

states known as ‘UP states’) in female, but not male, PTEN KO mice [Molinaro et al., 

2024]. Notably, these UP states were successfully rescued by the antagonism of 

mGluR5 and ERα and an increased interaction was seen between the two receptor 

types. The Nse-cre KO model has also been used to assess ultrasonic vocalizations 

(USVs). Binder et al. (2020) demonstrated that KO mice emitted vocalizations of a lower 

peak frequency, shorter duration, and higher peak amplitude compared to WT mice. KO 

animals also showed a significantly different distribution of call-types relative to controls, 

including increased complex and short calls. Overall, this study concluded that Nse-cre 

KO mice display communication deficits compared to WT controls [Binder et al., 2020].  

This research will use this PTEN model due to its unique KO pattern. By 

eliminating PTEN in this manner, we have the ability to assess the region- and cell-

specific contributions that give rise to overall phenotypes. More specifically, this research 

aims to determine whether deleting PTEN from a portion of cells in layers III-V of the 

cortex and hippocampal structures impacts auditory temporal processing and sensory 

responses across development using EEG.  

Fmr1 

 A mutation of the Fragile X Messenger Ribonucleoprotein gene (Fmr1) causes 

fragile X syndrome (FXS), the leading monogenic cause of ASD. Fmr1 contains a 

trinucleotide CGG expansion in the 5’ untranslated region (UTR) within the first exon of 

the gene that ranges from 6-54 repeats in normal individuals [Penagarikano et al., 2007; 

Wang et al., 2012]. A premutation is caused when the repeat number increases to 60-

200 and a full mutation when above 200 [Wang et al., 2012]. This level of expansion 

causes hypermethylation and silencing of Fmr1, thus decreasing expression of fragile X 
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mental retardation protein (FMRP), the protein product of Fmr1. FMRP is an mRNA-

binding protein associated with polyribosomes that typically inhibits protein translation 

[Huber et al., 2002; Leigh & Hagerman, 2020; Darnell et al., 2011]. The targets of FMRP 

are widespread, placing this protein in an optimal position to cause anomalous neural 

and circuit function in its absence.  

Humans affected by FXS demonstrate intellectual impairment, increased anxiety, 

cognitive deficits, repetitive behaviors, and abnormal sensory processing [Wisniewski et 

al., 1991; Cordeiro et al., 2011; Van der Molen et al., 2010; Oakes et al., 2016; Miller et 

al., 1999; Abbeduto & Hagerman, 1997]. Clinical, behavioral and electrophysiological 

studies have demonstrated sensory hypersensitivity in humans with FXS across multiple 

domains, including enhanced electrodermal, tactile, taste, smell, visual, and auditory 

sensations [Miller et al., 1999; Rogers et al., 2003; Crane et al., 2009; Marco et al., 2011; 

Takarae et al., 2016; Ethridge et al., 2016]. This phenotype of hypersensitivity is 

consistent with the Fmr1 KO mouse model of FXS [Bakker et al., 1994; Bernardet & 

Crusio, 2006; Mineur et al., 2006; Rotschafer & Razak, 2014]. Notably, Fmr1 KO mice 

display abnormal responses to visual, tactile and auditory stimuli similarly to humans, 

providing a translationally relevant platform to study mechanisms of sensory deficits in 

humans with FXS [Rotschafer & Razak, 2014; He et al., 2017; Chen & Toth, 2001; Dölen 

et al., 2007; Arnett et al., 2014; Rais et al., 2018]. EEG recordings from humans with 

FXS have exhibited altered cortical oscillatory activity that may result in sensory 

hypersensitivity [Ethridge et al., 2017]. More specifically, increased broadband gamma 

frequency power was seen in humans with FXS compared to healthy controls [Wang et 

al., 2017]. When time varying auditory stimuli were used, there was a deficit in 

narrowband (~40 Hz) evoked gamma synchronization.  There is also enhanced 
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amplitude and reduced habituation of auditory event related potentials (ERPs) in 

humans with FXS [Ethridge et al., 2019].  These results suggest elevated baseline 

cortical activity in FXS that disrupts the ability of cortical generators to synchronize their 

oscillations to time varying stimuli.  Enhanced responses to repeated stimuli also 

indicate elevated ongoing cortical activity.  Remarkably similar EEG phenotypes are also 

seen in the Fmr1 KO mice: elevated broadband gamma power, reduced narrowband 

gamma synchronization, increased cortical responses to repeated stimuli, and a longer 

duration of responses to transient stimuli have been identified in the cortical activity of 

Fmr1 KO mice [Rotschafer & Razak, 2013, 2014; Lovelace et al., 2018; Wen et al., 

2019].Taken together, the similarities in sensory hypersensitivity behaviors and in 

sensory EEG phenotypes across humans and mice provide the basis for identification of 

robust biomarkers and mechanisms that predict impairments in sensory-cognitive 

functions in FXS.  

Humans with FXS show speech deficits, language impairment and delayed 

language development [Rice et al., 2005; Martin et al., 2013]. Neurophysiology studies 

have revealed that both children and adults exhibit cortical deficits in auditory temporal 

processing, a phenotype that is consistent in Fmr1 KO mice [Castrén et al., 2003; Knoth 

& Lippé, 2012; Rojas et al., 2001; St Clair et al., 1987; Van der Molen et al., 2012a; Van 

der Molen et al., 2012b]. More specifically, humans and Fmr1 KO mice show deficits in 

both the auditory (AC) and frontal cortex (FC) to produce temporally precise responses 

to auditory stimuli [Ethridge et al., 2017; Wang et al., 2017; Lovelace et al., 2018]. How 

and when these auditory temporal processing deficits develop and whether they 

fluctuate throughout development is incompletely characterized in human and rodent 

models of FXS. An important finding across developmental studies suggests that many 
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phenotypes associated with FXS are either seen only transiently or show fluctuations 

during development [Razak et al., 2020]. These fluctuations throughout development 

make it difficult to establish consistent biomarkers for diagnoses and determine the 

optimal time windows for treatment. Preliminary evidence suggests that auditory 

temporal processing deficits may serve as a consistent biomarker for FXS, as Fmr1 KO 

mice demonstrate abnormalities across development. My dissertation research aims to 

provide insight into critical aspects of FXS that are currently lacking, including 

identification of robust biomarkers and the optimal time window for treatment. 

Furthermore, this research will probe the limits of auditory temporal processing in Fmr1 

KO mice across development using EEG. Studying the developmental trajectory will 

provide insight into the mechanisms of pathophysiology as well as assist in the 

development of effective therapeutic approaches for optimal treatment. 

 

Converging pathways: mTOR signaling and ASD 

 Although genetic linked forms of ASD arise as a consequence of mutations in 

genes with a wide array of molecular functions, the research shows convergence of 

these varying forms on a common biological pathway (Figure 1.1A). The PI3K/Akt/mTOR 

pathway is involved in a diverse array of cellular processes, including growth, 

proliferation, survival, and protein translation that requires a modified guanosine, termed 

a ‘cap’, at the 5’ end of the RNA [Huber et al., 2015]. Additionally, components of the 

mTOR pathway are located at synapses where they regulate both dendritic spine 

morphology and synaptogenesis [Sawicka & Zukin, 2012]. Disruption of this crucial 

pathway causes a variety of consequences including abnormal synapse formation, 

neuroinflammation, downregulation of protein synthesis at dendritic spines, and 
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increased total brain volume [Thomas et al., 2023; Khadem-Reza & Zare, 2022; Winden 

et al., 2018]. In mammals, mTOR is ubiquitously expressed in all cell types and is 

recognized as the master regulator of protein synthesis [Thomas et al., 2023].  

 The schematic in Figure 1.1B (Adapted from Thomas et al., 2023) shows the 

PI3K/Akt/mTOR pathway. The binding of 

growth factors to tyrosine kinase 

receptors activates the phosphoinositide 

3-kinase (PI3K). This results in the 

phosphorylation of phosphatidylinositol-

4,5-phosphate (PIP2) to generate 

phosphatidylinositol-3,4,5-triphosphate 

(PIP3) [Weinberg, 2016]. The second 

messenger PIP3 recruits protein kinase 

B (Akt) and stimulates its 

phosphorylation. This phosphorylation 

causes the inhibition of the tuberous 

sclerosis complex (TSC) and the 

subsequent activation of mTORC1. 

Activation of mTORC1 leads to the 

phosphorylation of both S6 kinase 

(p70S6K) and 4EBP1 (eukaryotic initiation factor 4E-binding protein) [Galvin & Hart, 

2016; Filomeni et al., 2015]. The S6 kinase activation stimulates protein translation and 

synthesis. 4EBP1 is bound to eukaryotic translation initiation factor 4E (eIF4E) and 

inhibits protein translation. Phosphorylation by mTORC1 releases eIF4E from 4EBP1 

 

A.

B.

Figure 1.1. Converging pathways: mTOR 

signaling and ASD. (A) The PI3K/Akt/mTOR 

pathway. PTEN (upstream) and FMRP 

(downstream) are negative regulators of mTOR. 

(B) ASD-linked genes associated with pathway 

dysfunction. Figure adapted from Thomas et al., 

2023. 
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and allows for translation [Chandran et al., 2013]. Activation of this pathway is necessary 

for the rapid translation of new proteins as well as the induction of translation-dependent 

long-term synaptic plasticity in response to Gq-coupled receptors, including the mGluR5 

receptors [Huber et al., 2015; Hou & Klann, 2004; Volk et al., 2007]. 

 Both PTEN and FMRP serve as negative regulators of this critical pathway. 

However, PTEN serves as an upstream antagonist while FMRP function is further 

downstream (Figure 1.1A). PTEN is a lipid phosphatase and de-phosphorylates PIP3 

back to PIP2, inhibiting the PI3K/Akt/mTOR pathway from the start. Indeed, autistic 

behavioral deficits observed in PTEN mutants were reversed following treatment with 

rapamycin, an mTORC1 inhibitor, suggesting that upregulation of mTOR is impacting 

these behavioral abnormalities [Zhou et al., 2009]. Furthermore, Zhou et al. (2009) 

demonstrated that chronic administration of rapamycin prevented both macrocephaly 

and neuronal hypertrophy in PTEN KO mice. FMRP, on the other hand, works 

downstream of mTOR and binds to CYFIP1 (cytoplasmic FMRP-interacting protein 1). 

This will form the FMRP-CYFIP1 complex that inhibits translation by binding to eIF4E. 

Overactivated mTOR signaling is correlated with elevated cap-dependent translation and 

impaired synaptic plasticity in Fmr1 KO mice [Sharma et al, 2010]. Furthermore, PIKE, 

an upstream activator of mTOR, is an identified target of FMRP [Darnell et al., 2011]. 

Loss of FMRP releases inhibition of PIKE and causes upregulated levels in KO mice 

[Gross et al., 2010; Sharma et al., 2010]. PIKE will then stimulate PI3K and 

subsequently cause the activation of mTOR signaling [Darnell et al, 2011]. Additionally, 

increased PTEN activity was also identified in Fmr1 KO mice. Sharma et al. (2010) 

suggested that the increased PTEN activity may serve as feedback inhibition to 

compensate for the increased mTOR activity.  
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 Although the current research focuses on PTEN and FMRP, abnormal 

PI3K/Akt/mTOR signaling has been identified in other ASD mouse models including 

those of tuberous sclerosis and Rett syndrome (Figure 1.1B) [Auerbach et al., 2011; 

Ricciardi et al., 2011]. The identification of key signaling pathways is critical for the 

development of ASD therapeutic targets and the consistency of mTOR dysfunction 

across ASD models is a promising approach to investigate further.   

 

Characterizing developmental trajectories and sex differences in auditory 

processing in two different mouse models of ASD 

The main goal of this research was to identify robust biomarkers of sensory 

processing disorders in two different models of ASD. These studies provide novel 

insights into the developmental trajectory of genotypic- and sex-dependent differences 

affecting auditory temporal processing in ASD. Additionally, this research utilizes 

targeted treatments to gain insight into potential therapeutics, critical windows of 

treatment and underlying mechanism. We recorded EEG responses from freely moving 

mice as this method is commonly used in humans and therefore makes the research 

and findings more translatable. Mice were implanted with epidural screw electrodes at 

various time points throughout development and we recorded brain activity as well as 

responses to a variety of stimuli designed to assess auditory system function. 

Chapter 2:  Developmental Delays in Cortical Auditory Temporal Processing in a Mouse 

Model of Fragile X Syndrome 

We quantify auditory temporal processing throughout development in the Fmr1 

knock-out (KO) mouse model of Fragile X Syndrome (FXS), a leading genetic cause of 

intellectual disability and ASD-associated behaviors. Using epidural electrodes in awake 



22 
 

and freely moving wildtype (WT) and KO mice, we recorded auditory event related 

potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady 

state response (gap-ASSR) paradigm.  Mice were recorded at three different ages in a 

cross-sectional design: postnatal (p)21, p30 and p60. We present evidence that the 

frontal (FC), but not auditory (AC), cortex shows significant temporal processing deficits 

at p21 and p30, with poor ability to phase lock to rapid gaps in noise. Temporal 

processing was similar in both genotypes in adult mice.  ERP amplitudes were larger in 

Fmr1 KO mice in both AC and FC, consistent with ERP data in humans with FXS. 

Chapter 3: Sex Differences During Development in Cortical Temporal Processing and 

Event Related Potentials in Wild-Type and Fragile X Syndrome Model Mice 

 We compared the development of auditory temporal processing in male and 

female WT and Fmr1 KO mice.  Using epidural screw electrodes, we recorded auditory 

ERP and auditory temporal processing with the gap-in-noise ASSR paradigm at p21 and 

p30, and p60 ages from both AC and FC of awake, freely moving mice. The results show 

that ERP amplitudes were enhanced in both sexes of Fmr1 KO mice across 

development compared to WT counterparts, with greater enhancement in adult female 

than adult male KO mice.  Gap-ASSR deficits were seen in the FC, but not AC, in early 

development (p21) in female KO mice. Unlike male KO mice, female KO mice show WT-

like temporal processing at p30.  There were no temporal processing deficits in the adult 

mice of both sexes. Male KO mice show slower maturation of temporal processing than 

females. Female KO mice show stronger hypersensitive responses than males later in 

development. 
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Chapter 4: Developmental Trajectory and Sex Differences in Auditory Processing in a 

PTEN-deletion model of Autism Spectrum Disorders 

 We recorded epidural EEG signals from the FC and AC cortex in developing (p21 

and p30) and adult Nse-cre PTEN mice. We quantified resting EEG spectral power 

distribution, auditory ERP and temporal processing from awake and freely moving male 

and female mice. Temporal processing is measured using the gap-in-noise-ASSR 

paradigm. Male and female KO mice have significantly increased beta power but 

decreased high frequency oscillations in the AC and FC. Both male and female PTEN 

KO mice show diminished gap-ASSR responses in the AC and FC compared to control 

mice. Overall, deficits become more prominent in adult (p60) mice, with KO mice having 

significantly increased sound evoked power and decreased ASSR responses compared 

to controls. While both male and female KO mice demonstrated severe temporal 

processing deficits across development, female KO mice showed increased 

hypersensitivity compared to males, reflected as increased N1 and P2 amplitudes. 

Chapter 5: Impact of acute administration of an mGluR5 antagonist, CTEP, on cortical 

auditory processing in a PTEN-deletion model of Autism Spectrum Disorders 

 We aimed to determine whether the group 1 metabotropic receptor mGluR5 was 

involved in the mechanisms driving these phenotypes, as it has been implicated in 

several models of ASD, including the Nse-cre Pten deletion model. We acutely treated 

adult PTEN KO mice with CTEP, a specific mGluR5 antagonist, and recorded epidural 

EEG signals from the FC and AC. We quantified resting EEG spectral power distribution, 

auditory ERP and temporal processing from awake and freely moving vehicle and CTEP 

treated male and female mice. The results show that CTEP treatment shifts the resting 

power distribution in males, such that CTEP treated mice have decreased alpha power 
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and increased gamma power in the AC compared to vehicle treated males. CTEP 

treatment showed no significant impact on auditory temporal processing in either sex or 

cortical region. We also found no treatment effect on ERP amplitudes in males or 

females. Non-phase locked single trial power is significantly elevated in the AC and FC 

of CTEP treated females but not males, suggesting a sex specific increase in ‘on-going 

background activity’ following CTEP treatment. 
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Chapter 2 
 
 
Developmental Delays in Cortical Auditory Temporal Processing in a Mouse Model 

of Fragile X Syndrome 

 

Abstract 

Autism spectrum disorders (ASD) encompass a wide array of debilitating symptoms, 

including sensory dysfunction and delayed language development. Auditory temporal 

processing is crucial for speech perception and language development.  Abnormal 

development of temporal processing may account for the language impairments 

associated with ASD. Very little is known about the development of temporal processing 

in any animal model of ASD. In the current study, we quantify auditory temporal 

processing throughout development in the Fmr1 knock-out (KO) mouse model of Fragile 

X Syndrome (FXS), a leading genetic cause of intellectual disability and ASD-associated 

behaviors. Using epidural electrodes in awake and freely moving wildtype (WT) and KO 

mice, we recorded auditory event related potentials (ERP) and auditory temporal 

processing with a gap-in-noise auditory steady state response (gap-ASSR) paradigm.  

Mice were recorded at three different ages in a cross-sectional design: postnatal (p)21, 

p30 and p60. Recordings were obtained from both auditory and frontal cortices. The 

gap-ASSR requires underlying neural generators to synchronize responses to gaps of 

different widths embedded in noise, providing an objective measure of temporal 

processing across genotypes and age groups. We present evidence that the frontal, but 

not auditory, cortex shows significant temporal processing deficits at p21 and p30, with 

poor ability to phase lock to rapid gaps in noise. Temporal processing was similar in both 

genotypes in adult mice.  ERP amplitudes were larger in Fmr1 KO mice in both auditory 
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and frontal cortex, consistent with ERP data in humans with FXS. These data indicate 

cortical region-specific delays in temporal processing development in Fmr1 KO mice.  

Developmental delays in the ability of frontal cortex to follow rapid changes in sounds 

may shape language delays in FXS, and more broadly in ASD.   

 

Introduction 

Auditory temporal and spectral modulation cues shape speech recognition [Zeng 

et al., 2005; Shannon et al., 1995].  Ability to discriminate temporal fine structure is 

critical for speech processing [Moore, 2008], and the ability to encode subtle differences 

in temporal modulations is present from a very young age in humans [Cabrera & Gervain 

et al., 2020]. The inability of the auditory system to process rapidly changing acoustic 

input during development may disrupt perception of speech, phonological processing 

and cause language impairments [Tallal et al., 1998].  Temporal processing acuity in 

infancy predicts language development in ~2 yr old children [Trehub & Henderson, 

1996]. Abnormal sensory processing and language development is consistently reported 

in children with autism spectrum disorders (ASD) [Abbeduto & Hagerman, 1997, Foss-

Feig et al., 2017; Tager-Flusberg & Caronna, 2007; Rain & Dunn, 2003; Jeste & Nelson, 

2008]. Individuals with ASD show deficits in detection of sound duration, onset and 

offset, and rapid changes in spectrotemporal properties [Kwakye et al., 2001; Lepistö et 

al., 2006; Oram Cardy et al., 2005; Orekhova et al., 2009; Meilleur et al., 2020]. Children 

with ASD show difficulties reproducing the lengths of auditory stimuli, and both children 

and adults with ASD produce abnormal neural responses to fluctuations in pitch of 

repeated, sequential auditory stimuli [Szelag et al., 2004; Tecchio et al., 2003; Gomot et 

al., 2006]. Increased gap-detection thresholds, a paradigm commonly used to assess 
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auditory temporal processing, are seen in humans with ASD. Notably, impaired gap 

detection thresholds in children were associated with lower phonological processing 

scores [Foss-Feig et al., 2017]. These studies in humans provide support for the 

hypothesis that auditory temporal processing deficits may shape abnormal speech and 

language function in ASD.  A link between abnormal temporal processing and 

developmental dyslexia has also been proposed, suggesting broader consequences in 

development [Farmer et al., 1995].  

While speech and language function cannot be directly studied in animal models, 

temporal processing can be quantified.  However, the developmental trajectory and 

underlying neural mechanisms of temporal processing deficits in neurodevelopmental 

disorders remain unclear and would require a translation-relevant animal model.  

Identifying when temporal processing deficits arise is critical for determining optimal 

treatment windows for potential therapeutic tests in pre-clinical models and in clinical 

studies.  Here we present a novel method to assess rapid gap-in-noise temporal 

processing using EEG recordings in an ASD model mouse, which can be translated 

relatively easily to humans, and we show robust cortical region-specific developmental 

delays in auditory temporal processing.  

Fragile X syndrome (FXS) is a leading cause of inherited intellectual deficits and 

ASD-associated behaviors such as repetitive behaviors, sensory, cognitive and social 

impairments [Wisniewski et al., 1991; Cordeiro et al., 2010; Van der Molen et al., 2010; 

Oakes et al., 2015; Miller et al., 1999]. Humans with FXS show speech deficits and 

language impairments [Abbeduto et al., 2007; Abbeduto & Hagerman, 1997; Finestack 

et al., 2009; Rice et al., 2005]. FXS affects up to 1 in 4000/7000 male/female individuals, 

respectively, and results from the silencing of the Fragile X Messenger 
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Ribonucleoprotein (Fmr1) gene on the X chromosome [Hall et al., 2009; Wang et al., 

2017]. This leads to a partial or complete loss of the Fragile X Messenger 

Ribonucleoprotein (FMRP) and consequent alterations in synaptic development and 

plasticity in the brain [Darnell et al., 2011; Huber et al., 2002]. Clinical, behavioral and 

electrophysiological studies have demonstrated sensory hypersensitivity in humans with 

FXS across multiple domains [Rogers et al., 2003; Crane et al., 2009; Marco et al., 2011; 

Takarae et al., 2016; Ethridge et al., 2016; Miller et al., 1999].  

Sensory hypersensitivity is also consistently seen in the Fmr1 KO mouse model 

of FXS [Bakker et al., 1994; Bernardet & Crusio, 2006; Mineur et al., 2006; Rotschafer & 

Razak, 2014]. Notably, Fmr1 KO mice display abnormal responses to auditory stimuli 

similar to humans, providing a translational platform to study developmental profiles and 

neural mechanisms of sensory circuit pathophysiology [Razak et al., 2021]. EEG 

recordings from humans with FXS show altered cortical oscillatory activity that may 

result in sensory hypersensitivity [Ethridge et al., 2017]. More specifically, increased 

broadband gamma frequency power was seen in humans with FXS compared to healthy 

controls [Wang et al., 2017]. When time-varying auditory stimuli were used, there was a 

deficit in narrowband (~40 Hz) evoked gamma synchronization.  There is also enhanced 

amplitude and reduced habituation of auditory ERPs in humans with FXS [Ethridge et 

al., 2019].  These results suggest elevated baseline cortical activity in FXS that disrupts 

the ability of cortical generators to synchronize their oscillations to dynamic stimuli.  

Enhanced responses to repeated stimuli also indicate elevated ongoing cortical activity. 

Similar EEG phenotypes are seen in the Fmr1 KO mice: elevated broadband gamma 

power, reduced narrowband gamma synchronization and increased cortical responses to 

repeated stimuli have been identified in Fmr1 KO mice [Rotschafer & Razak, 2013, 
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2014; Lovelace et al., 2018; Wen et al., 2019; Jonak et al., 2020]. Taken together, the 

similarities in sensory hypersensitivity behaviors and in EEG phenotypes across humans 

and mice indicates that the Fmr1 KO mouse is a useful model to address sensory 

dysfunction in FXS.  

Developmental abnormalities in cell size and expression of synaptic markers are 

seen in the auditory brainstem of the Fmr1 KO mice, a region strongly implicated in high 

resolution temporal processing [Rotschafer & Cramer, 2017].  This suggests that 

auditory temporal processing abnormalities may emerge early in development.  

However, the development of temporal processing has not been studied in the Fmr1 KO 

mice, or indeed in any animal model of ASD. The current study tested the hypothesis 

that both cortical temporal processing and auditory sensitivity deficits are present in the 

Fmr1 KO mice from early development.  We recorded EEG signals from both the 

auditory and frontal cortex (AC, FC) in Fmr1 KO and wildtype (WT) mice at three ages: 

p21, p30 and p60. To quantify temporal processing fidelity, we utilized a 40 Hz gap-in-

noise ASSR (auditory steady state response, henceforth, gap-ASSR) paradigm to 

assess the cortex’s ability to consistently respond to brief gaps in noise at varying 

modulation depths [Rumschlag & Razak, 2021].  Gap stimuli have been used widely in 

both humans and mice to study auditory temporal acuity, and EEG recordings can be 

conducted in humans and mice relatively more easily than single unit recordings [Green, 

1971; Anderson & Linden, 2016].  Children with autism show reduced ability to integrate 

information present in temporal gaps in background sound, providing additional rationale 

to use gaps-in-noise stimuli to evaluate temporal processing [Groen et al., 2009].  

Regional differences in cortical phenotypes are present in Fmr1 KO mice. In particular, 

multiple mouse model studies suggest auditory temporal processing abnormalities may 
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be larger in the FC than AC. For example, Wieczerzak et al. reported reduced recovery 

of ASSR in FC, compared to AC, following noise induced hearing loss [Wieczerzak et al., 

2021].  Lovelace et al. reported a deficit in ASSR in the FC, but not AC, of the adult Fmr1 

KO mouse [Lovelace et al., 2020].  Temporal processing impairments are seen in an 

auto-immune disorder mouse model with neocortical ectopias in the FC [Clark et al., 

2000].  It is not known if these regional differences in any mouse model are present 

across development, or only at specific ages.  Therefore, we compared FC and AC in 

terms of temporal processing across 3 different ages. Additionally, we assessed the 

response magnitude of auditory ERP, as they are well characterized in humans with FXS 

and consistently show enhanced amplitudes. We hypothesized that Fmr1 KO mice 

would show a deficit in auditory temporal processing and increased ERP amplitudes 

compared to WT in both the AC and FC across all 3 developmental time points.  

 

Methods 

Mice: All procedures were approved by the Institutional Animal Care and Use Committee 

at the University of California, Riverside. Mice were obtained from an in-house breeding 

colony that originated from Jackson Laboratory (Bar Harbor, ME). The mice used for the 

study are sighted FVB wild-type (Jax, stock# 004828; WT) and sighted FVB Fmr1 knock-

out (Jax, stock# 004624; Fmr1 KO).  The FVB background strain was chosen (and not 

C57bl6/J) because our prior developmental work examining cortical parvalbumin and 

perineuronal nets as well as single unit responses in the auditory cortex and the inferior 

colliculus have used the FVB strain [Rotschafer & Razak, 2013; Nguyen et al., 2020].  

Significant developmental deficits were observed in Fmr1 KO mice in the FVB strain of 

mice, predicting temporal processing deficits.       
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One to five mice were housed in each cage under a 12:12-h light-dark cycle and 

fed ad libitum. A cross-sectional, as opposed to a longitudinal, design was used in this 

study as it is impractical to place epidural screw electrodes in brains and skulls that are 

still developing.  The following age ranges and sample sizes were used in this study: WT 

[p21 (n=10), p30 (n=10), p60 (n=11)] and Fmr1 KO [p21 (n=10), p30 (n=10), p60 (n=11)]. 

The ages were selected for this study based on previous findings. Decreased PNN 

expression surrounding parvalbumin-positive interneurons and cortical hyperexcitability 

are observed in Fmr1 KO mice at p21 [Wen et al., 2018]. Additionally, the p14-21 age 

corresponds to the critical period for responses to simple tones and maturation of 

tonotopic maps in the auditory cortex [Oswald & Reyes, 2010; Kim et al., 2013]. P30 was 

chosen because response selectivity to complex sounds has not matured in the auditory 

cortex until this age [Carrasco et al., 2013]. We chose p60 age group to represent young 

adulthood.  Only male mice were studied.  

Surgery: Different groups of mice underwent epidural electrode implant surgery at three 

developmental timepoints: p18-20, p27-p29, p57-p66. Mice were anesthetized using 

intraperitoneal (i.p.) injections of either 80/20 mg/kg of ketamine/xylazine (young mice) 

or 80/10/1 mg/kg ketamine/xylazine/acepromazine (adult mice). The anesthetic state 

was monitored closely throughout the procedure by toe pinch reflex every 10-15 

minutes. Ketamine supplements were given if necessary. ETHIQA-XR (1-shot 

buprenorphine, 3.25 mg/kg body weight) was administered via subcutaneous injection 

prior to surgery. Following the removal of fur and skin, and sterilization (alcohol and 

iodine wipes) of the scalp, an incision was made to expose the scalp. A Foredom dental 

drill was used to drill ~1mm diameter holes in the skull over the right AC, right FC, and 

left occipital cortex. The screw positions were determined using skull landmarks and 
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coordinates previously reported [Wen et al., 2019; Rumschlag & Razak, 2021; Lovelace 

et al., 2020; Rumschlag et al., 2020] and were based on single unit mapping [Lovelace 

et al., 2020; Rumschlag et al., 2020; Trujillo et al., 2011; Rumschlag & Razak, 2021; 

Wen et al., 2019; Rotschafer & Razak, 2014]. The wires extending from three-channel 

posts were wrapped around 1 mm screws and driven into the pre-drilled holes. Dental 

cement was applied around the screws, on the base of the post, and exposed skull, to 

secure the implant. Mice were placed on a heating pad until fully awake and were 

allowed 48-72 hours for recovery before EEG recordings were made. 

EEG recordings: All EEG recordings were obtained from awake and freely moving mice. 

EEG recordings were performed at three developmental time points: p20-23, p29-31, 

p59-p70, which we refer to as p21, p30 and p60, respectively. Recordings were obtained 

from the AC and FC electrodes, using the occipital screw as reference. Mice were 

placed in an arena where they could move freely during the recording. The arena was 

inside a Faraday cage placed on a vibration isolation table in a sound-insulated and 

anechoic booth (Gretch-Ken, OR). Mice were attached to an EEG cable via the 

implanted post under brief anesthesia with isoflurane. The EEG recording set-up has 

been previously reported [Rumschlag & Razak, 2021; Rumschlag et al., 2020]. Briefly, 

the attached cable was connected via a commutator to a TDT (Tucker Davis 

Technologies, FL) RA4LI/RA4PA headstage/pre-amp, which was connected to a TDT 

RZ6 multi-I/O processor. OpenEx (TDT) was used to simultaneously record EEG signals 

and operate the LED light used to synchronize the video and waveform data. TTL pulses 

were utilized to mark stimulus onsets on a separate channel in the collected EEG data. 

The EEG signals were recorded at a sampling rate of 24.414 kHz and down-sampled to 

1024 Hz for analysis. All raw EEG recordings were visually examined prior to analysis for 
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artifacts, including loss of signal or signs of clipping, but none were seen.  Therefore, no 

EEG data was rejected. Sound evoked EEGs were recorded as follows.   

Auditory ERP: After a 25 minute habituation to the recording arena with no stimuli, 

narrowband noise pulses (6-12 kHz) were presented at 75 dB SPL (120 repetitions, 100 

ms duration, 5ms rise/fall time, 0.25 Hz repetition rate) using a speaker (MF1, Tucker 

Davis Technologies, FL) situated 20 cm above the floor of the arena. ERP analysis and 

statistics have been previously described [Rumschlag & Razak, 2021; Rumschlag et al., 

2020]. Briefly, the EEG trace was split into trials, using the TTL pulses to mark sound 

onset. Each trial was baseline corrected, such that the mean of the 250 ms baseline 

period prior to sound onset was subtracted from the trial trace for each trial. Each trial 

was then detrended (MATLAB detrend function) and all trials were averaged together. 

Time-frequency analysis was performed with a dynamic complex Morlet wavelet 

transform with Gabor normalization.  The wavelet parameter was set for each frequency 

to optimize time-frequency resolution. The non-baseline normalized single trial power 

(STP) does not correct for mean baseline power levels, allowing for the identification of 

ongoing ‘background activity’ during stimulus presentation. To compare the responses 

across genotype at each developmental time point, a non-parametric permutation test 

was used, to find clusters of significant values [Maris & Oostenveld, 2007]. First, a t-test 

was run on each time-frequency point for the two groups being compared, yielding the T-

values for all points. T-values corresponding to p<0.025 were considered significant. 

Clusters of significant T-values were found and their area was measured. Next, the 

group assignments were shuffled randomly, and the t-tests and cluster-measurements 

were run again on the surrogate groups. This surrogate analysis was performed 2000 

times to generate a distribution of cluster sizes that we would expect to find by chance. 



52 
 

Originally identified clusters that were larger than 95% of the surrogate clusters were 

considered significant. This method allows for the identification of significant differences 

between groups without performing excessive comparisons. 

Gap-ASSR: The stimulus used to assess auditory temporal processing is termed the ’40 

Hz gaps-in-noise ASSR’ (auditory steady state response, henceforth, ‘gap-ASSR’) 

[Rumschlag & Razak, 2021]. The stimulus contains alternating 250 ms segments of 

noise and gap interrupted noise presented at 75 dB SPL. The gaps are strategically 

placed 25 ms apart, resulting in a presentation rate of 40 Hz, a rate that produces the 

strongest ASSR signal when measured from the AC and frontal regions and may reflect 

the resonance frequency of the underlying neural circuits [Galambos et al., 1981; Pastor 

et al., 2002; Llinás, 1988; Llinás et al., 1991; Rosanova et al., 2009; Kim et al., 2015; 

Hwang et al., 2019]. For each gap in noise segment, the gap width and modulation 

depth are chosen at random. Gaps of 2, 4, 6, 8, 10, or 12 ms widths and modulation 

depths of 75 and 100% were used. To measure the ability of the cortex to consistently 

respond to the gaps in noise, inter-trial phase clustering (ITPC) at 40 Hz was measured 

[Cohen, 2014]. The EEG trace was transformed using a dynamic complex Morlet 

wavelet transform. The trials corresponding to each parametric pair (gap duration + 

modulation depth) were grouped together. The ITPC was calculated for each time-

frequency point as the average vector for each of the phase unit vectors recorded across 

trials (trial count >100 trials per parametric pair). The ITPC values at 40 Hz were 

averaged to extract the mean ITPC for the parametric pairs in the AC and FC.  

Statistics:  Statistics were performed on GraphPad Prism (ERP) or R (gap-ASSR). To 

evaluate the effects of genotype (2 levels) and age (3 levels), two-way ANOVA was used 

for ERP analysis. Post hoc comparisons were carried out with Tukey’s and Bonferroni’s 
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multiple comparisons test. The ERP data was tested for normality using Shapiro-Wilk 

test.  A three-way repeated measures ANOVA was used for gap-ASSR analysis, with the 

three factors being genotype (2 levels) X age (3 levels) X gap duration (6 levels). A 

repeated measures ANOVA was chosen as multiple gap duration data points were 

collected from a single mouse in a recording session. Mauchly Tests for Sphericity were 

utilized and corrected for using the Greenhouse-Geisser corrections if necessary. Post 

hoc contrasts with Sidak corrections for multiple comparisons were used. Cortical 

regions (AC, FC) and modulation depths (75%, 100%) were analyzed separately. We 

evaluated the appropriateness of the data for analysis via ANOVA, in particular the 

assumption of the normality of the residuals. None of the residuals had measures of 

skewness or kurtosis that exceeded ±2, which is one indication of acceptable normality 

[West et al., 1995]. Moreover, the residuals were evaluated via quantile-quantile plots. In 

each of the analyses, the correspondence between the theoretical normal distribution 

and the obtained residuals was within acceptable bounds.  

 

Results 

 The main goal of this study was to compare the developmental trajectory of 

auditory temporal processing and ERPs in WT and Fmr1 KO mouse auditory and frontal 

cortex. We predicted that Fmr1 KO mice would show a deficit in phase locking to rapid 

gaps in noise and larger ERP amplitudes compared to WT mice across all 3 ages in both 

AC and FC as markers of temporal processing and hypersensitivity phenotypes, 

respectively, in FXS.  
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Abnormal temporal processing is seen in the FC, but not AC, during development 

 Auditory temporal processing was assessed using a 40 Hz gap-in-noise ASSR 

stimulus to probe the limits of the auditory and frontal cortices’ ability to consistently 

respond to brief gaps in noise. Decreasing the duration and modulation depth of the 

gaps reduces the likelihood of consistent response from the cortex, allowing for the 

detection of deviations between WT and KO mice responses and to track developmental 

changes. Both AC and FC in mice and humans produce robust 40 Hz ITPC to this type 

of stimulus, but how the response develops is not known in either species, nor is it 

known if there is a deficit in FXS [Rumschlag & Razak, 2021; Hwang et al., 2019; 

Lustenberger et al., 2018].   

Figure 2.1 shows gap-ASSR heat maps of ITPC in example WT (Figure 2.1A, C) 

and Fmr1 KO (Figure 2.1B, D) mice.  In the AC, at p21, or in both AC and FC at p60, 

there are no clear qualitative differences in the ITPC.  However, deficits are clearly seen 

in the FC at p21, with the KO ITPC barely emerging above background at 40 Hz. Table 

2.1 and Figure 2.2 shows the results of full statistical analyses using gap duration, age 

and genotype as factors.   
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Auditory Cortex 

Gap-ASSR ITPC is significantly impacted by gap duration in the AC at both 

modulation depths. This is expected because it is easier for neural generators to phase 

lock responses to long gaps compared to short.  There was no main effect of age in the 

AC at either 75% or 100% modulation, but there is an interaction of gap duration x age 

at 75%, suggesting that ITPC improves with age for longer gaps.  Importantly, the 

genotype comparisons were not significant at any age or modulation depth in the AC 

(Figure 2.2, 75% modulation – p21: p=0.9223, p30: p=0.9568, p60: p=1.000; 100% 

modulation – p21: p=0.8664, p30: p=0.6906, p60: p=1.000). Taken together, these data 

suggest developmental improvement in temporal processing, but no effects of the loss of 

FMRP, in the auditory cortex at any age.   

 

 

 

 

 
Figure 2.1. Abnormal auditory temporal processing during development in the Fmr1 KO 
mice. Individual example heatmaps of ITPC generated at 40Hz at multiple gap durations in 
p21 and p60 WT (A: AC, C: FC) and Fmr1 KO (B: AC, D: FC) mice. Qualitative observations 
of these examples show deficits in cortical temporal processing at p21, but not at p60, in the 
KO mice.  All panels show 100% modulation depth.  The onset of the gap-ASSR stimulus is at 
0 msec in each panel.  
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Frontal Cortex 

 Similar to the AC, the frontal cortex showed main effects of gap duration, as 

expected.  However, in contrast to the AC, FC gap-ASSR showed main effects of both 

age and genotype (Figure 2.2) and a number of relevant interactions (Table 2.1).  At both 

modulation depths, FC responses showed improvement with age indicating a strong 

developmental regulation of temporal processing in this region.  At both modulation 

depths, Fmr1 KO neurons showed significant deficits in ITPC compared to WT mice.  

The genotype X age interactions suggest a delay in ITPC development with adult FC 

showing no significant deficits.  These results indicate a significant delay in the 

development of temporal processing in the Fmr1 KO mice.  

 

 

Figure 2.2. Population analysis shows temporal processing deficits in the FC 
during development in Fmr1 KO mice. Each plot represents the group average ITPC 
values. Each row represents a different age group: p21 (top), p30 (middle), and p60 
(bottom). The left columns represent AC and FC data at 75% modulation depth and the 
right columns represent AC and FC data at 100% modulation depth. ITPC increases with 
gap widths in both genotypes, as expected. Fmr1 KO mice show significant deficits in the 
FC, but not the AC, at p21 and p30.  Full data analysis is shown in Table 2.1.   
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Evidence of a developmental delay in the FC is shown more directly by 

collapsing across gaps (Figure 2.3). When collapsed across gap durations, KO mice 

show a significant ITPC deficit at p21 and p30 in the FC at both modulation depths that 

is not seen at p60 (75% modulation – p21: p<0.0001, p30: p=0.0022, p60: p=0.8372; 

100% modulation – p21: p<0.0001, p30: p=0.0548, p60: p=0.6410). Taken together, 

these data show improvement in phase locking to gap-ASSR stimuli with development in 

both AC and FC, and an FC-specific delay in temporal processing in Fmr1 KO mice.   

 
 
 
 
 

 

 

Figure 2.3. Auditory temporal processing improves with age in AC and FC, with 
developmental delay in the FC. Each plot represents the group average ITPC values 
collapsed across gap widths. Columns represent different modulation depths and rows 
represent different cortical regions (Columns – left = 75% modulation, right = 100% 
modulation; Rows – top = AC, bottom = FC). KO mice show a significant ITPC deficit at 
p21 and p30 in the FC at both modulation depths, but not at p60. A genotype difference 
was not seen at any age or modulation depth in the AC. 
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Table 2.1. Full statistical analysis of gap-ASSR data. 

Cortical 
Region 

Modulation 
Depth 

Factor/Interaction ANOVA Results Adjusted 
p-value 

AC 100% Genotype F(1,56)=0.8631 0.3568 

  Age F(2,56)=2.5463 0.0874 

  Gap Duration F(5,280)=24.0444 <0.0001 

  Genotype x Gap Duration F(5,280)=1.5849 0.1986 

  Age x Gap Duration F(10,280)=1.7898 0.1106 

  Genotype x Age F(2,56)=0.3026 0.7401 

  Genotype x Age x Gap 
Duration 

F(10,280)=0.6989 0.6392 

AC 75% Genotype F(1,56)=1.1929 0.2794 

  Age F(2,56)=1.7843 0.1773 

  Gap Duration F(5,280)=21.2106 <0.0001 

  Genotype x Gap Duration F(5,280)=2.5458 0.0571 

  Age x Gap Duration F(10,280)=3.2468 0.0046 

  Genotype x Age F(2,56)=0.0719 0.9307 

  Genotype x Age x Gap 
Duration 

F(10,280)=0.5839 0.7444 

FC 100% Genotype F(1,56)=23.7897 <0.0001 

  Age F(2,56)=12.3904 <0.0001 

  Gap Duration F(5,280)=20.6491 <0.0001 

  Genotype x Gap 
Duration 

F(5,280)=6.6448 <0.0001 

  Age x Gap Duration F(10,280)=5.3246 <0.0001 

  Genotype x Age F(2,56)=3.2364 0.0467 

  Genotype x Age x Gap 
Duration 

F(10,280)=3.5686 0.00096 

FC 75% Genotype F(1,56)=31.7872 <0.0001 

  Age F(2,56)=16.0560 <0.0001 

  Gap Duration F(5,280)=29.1751 <0.0001 

  Genotype x Gap 
Duration 

F(5,280)=10.6887 <0.0001 

  Age x Gap Duration F(10,280)=5.7920 <0.0001 

  Genotype x Age F(2,56)=3.9569 0.0247 

  Genotype x Age x Gap 
Duration 

F(10,280)=1.0704 0.3839 

Three-way repeated measures ANOVA results for gap-ASSR analysis. Mauchly Tests for Sphericity were utilized and p-
values were corrected for multiple comparisons using the Greenhouse-Geisser corrections if necessary. See text for post 
hoc results. Bold text indicates statistical significance (p = or < 0.05). 
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Development of gap-ASSR single trial power phenotypes in the Fmr1 KO mice  

It Is possible that the reduced ITPC in developing Fmr1 KO mouse FC arises 

from stimulus induced increases in non-phase locked activity (background noise) as 

suggested in humans with FXS [Ethridge et al., 2017, 2019].  Therefore, we examined 

the single trial power (STP) during gap-ASSR stimulation across development and 

genotypes (Figures 2.4, 2.5 and 2.6).  At p21, there was no difference in STP across any 

of the gaps or cortical regions (Figure 2.4).  However, at p30, there was a significant 

elevation of STP in the KO, compared to the WT mice, and this was seen in both cortical 

regions (Figure 2.5).  The elevation in STP affected gamma band frequencies (25-80 

Hz), with no differences in lower frequencies.  In the adult group, the direction of STP 

differences was reversed in the AC, such that the Fmr1 KO mice showed reduced STP, 

significantly affecting frequencies <25 Hz (Figure 2.6).  However, there were no STP 

 

 
Figure 2.4. No genotype difference in single trial power (STP) of p21 mice during gap-ASSR 
stimulation. The heatmaps show non-baseline corrected normalized power, where red hues 
represent increased ongoing background activity, and blue hues represent a decrease. The 
smaller panels show group average STP at each gap width in WT and Fmr1 KO mice.  The larger 
panels show the difference between KO and WT.  No significant differences were found in STP 
during the gap-ASSR stimulus in (A) AC or (B) FC at p21. 
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differences in the FC. These data provide evidence for fluctuating single trial power gap-

ASSR phenotypes through development. The lack of concurrence between the STP 

deficits and the gap-ASSR deficits across both cortical region and age indicates that the 

temporal processing deficit is not due to sound-induced increases in ongoing 

background activity.    

 

 

 Figure 2.5. Significant elevation of STP in p30 Fmr1 KO mice during gap-ASSR stimulation. 
The format of this figure is identical to that of Figure 2.4.  Significant differences between 
genotypes were found using a non-parametric permutation testing approach (see methods). 
Outlined regions (typically between 25-80 Hz) indicate clusters which are significantly different 
between WT and KO. Fmr1 KO mice have increased gamma STP during the gap-ASSR stimulus 
in (A) AC and (B) FC at p30. 
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Fmr1 KO mice show enhanced ERP amplitude in the AC and FC across 

development 

ERPs consist of a series of voltage fluctuations, referred to as ‘waves’ (P1, N1, 

P2), which are evoked at specific latencies after sound onset. Each of the waveforms 

are associated with the population activity in specific brain regions. Measuring the 

amplitudes and latencies of these waves allow for the assessment of response 

synchrony or hypersensitivity to sound presentation. We also characterized non-baseline 

normalized STP in response to narrowband noise bursts as abnormal power has been 

identified in humans with FXS during auditory stimulus presentation [Ethridge et al., 

2017, 2019].  Table 2.2 and Figures 2.7 and 2.8 show the complete ANOVA analyses of 

 

 
Figure 2.6. No difference or decreased STP in p60 Fmr1 KO mice during gap-ASSR 
stimulation. The format of this figure is identical to that of Figure 2.4 and 2.5.  Outlined 
regions (typically <30 Hz) indicate clusters which are significantly different between WT and 
KO. Fmr1 KO mice show decreased STP at some gaps during the gap-ASSR stimulus in (A) 
AC but show no significant clusters in (B) FC at p60. Unlike at p30, there was no increase in 
STP in KO mice.  
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ERP data across development and genotypes.  The major results in the two cortical 

regions are highlighted below.  

 

Auditory Cortex 

ERP P1 amplitude in the AC significantly increases in Fmr1 KO mice with 

development (interaction effect: p=0.0002; main effect of age: p=0.0005; KO p21-p60: 

p<0.0001; KO p30-p60: p=0.0001). These mice also have significantly higher P1 

amplitudes compared to WT at p60 (main effect of genotype: p=0.0113; post hoc: 

p<0.0001). We found a main effect of genotype on N1 amplitudes. Additionally, we report 

a significant main effect of age on P2 amplitude (p=0.0575). P1 latencies are impacted 

by age specifically in WT mice, with latencies decreasing with age (main effect of age: 

p=0.0053; WT p21-p60: p=0.0537). These data show increased ERP amplitudes in the 

AC of Fmr1 KO mice as observed consistently in humans with FXS, but indicate early 

emergence of hypersensitivity.   
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Frontal Cortex 

Similar to the AC, Fmr1 KO mice show a significant increase in P1 amplitude with 

development in the FC (interaction effect: p=0.034). N1 amplitudes were increased 

significantly in adult Fmr1 KO mice (main effect of genotype: p=0.0031; WT-KO p60: 

p=0.0251). Additionally, P2 amplitudes decrease with age in KO mice (main effect of 

age: p=0.0159; KO p30-p60: p=0.0510). P2 latency was slower in adult Fmr1 KO mice 

 

 
Figure 2.7. Age and genotype impact ERP amplitudes and latencies in the AC. (A) 
Average ERPs recorded in the AC for WT and KO mice at p21 (left), p30 (middle), and p60 
(right). (B) Population averages of AC ERP wave amplitudes. P1 amplitude significantly 
increases in KO mice with development, but not WT mice. Adult KO mice have increased P1 
amplitudes compared to WT. Genotype impacts N1 amplitudes. P2 amplitude are affected by 
age, but not genotype. (C) AC ERP wave latencies. P1 latency decreases with age in WT 
mice.  Full analysis is shown in Table 2.2.  
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(main effect of age: p=0.0045; WT-KO p60: p=0.0030). These data indicate that Fmr1 

KO mice have abnormally elevated N1/P1 ERP amplitudes in the frontal cortex.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.8. Age and genotype impact ERP amplitudes and latencies in the FC. (A) Average 
ERPs recorded from the FC for WT and KO mice at p21 (left), p30 (middle), and p60 (right). (B) 
FC ERP wave amplitudes. KO mice show a significant increase in P1 amplitude with 
development. N1 amplitudes are increased in adult KO mice. P2 amplitudes decrease with age 
in KO mice. (C) FC ERP wave latencies. P2 latency is increased in adult KO mice. Full analysis 
is shown in Table 2.2.  
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Table 2.2. Full statistical analysis of ERP data. 

Cortical 
Region 

ERP Component Factor ANOVA Results  p-value 

AC P1 Amplitude: Age F(2,56)=8.807 0.0005 

  Genotype F(1,56)=6.863 0.0113 

  Age x Genotype F(2,56)=9.972 0.0002 

 N1 Amplitude: Age F(2,56)=2.565 0.0859 

  Genotype F(1,56)=9.680 0.0029 

  Age x Genotype F(2,56)=0.4776 0.6228 

 P2 Amplitude: Age F(2,56)=3.007 0.0575 

  Genotype F(1,56)=0.8885 0.3499 

  Age x Genotype F(2,56)=0.9607 0.3888 

FC P1 Amplitude: Age F(2,56)=0.9323 0.3997 

  Genotype F(1,56)=2.582 0.1137 

  Age x Genotype F(2,56)=3.595 0.0340 

 N1 Amplitude: Age F(2,56)=1.229 0.3002 

  Genotype F(1,56)=9.559 0.0031 

  Age x Genotype F(2,56)=0.6309 0.5359 

 P2 Amplitude: Age F(2,56)=4.461 0.0159 

  Genotype F(1,56)=3.105 0.0835 

  Age x Genotype F(2,56)=0.1059 0.8997 

AC P1 Latency: Age F(2,56)=5.764 0.0053 

  Genotype F(1,56)=1.320 0.2555 

  Age x Genotype F(2,56)=0.1276 0.8804 

 N1 Latency: Age F(2,56)=2.884 0.0643 

  Genotype F(1,56)=0.2235 0.6382 

  Age x Genotype F(2,56)=0.1730 0.8416 

 P2 Latency: Age F(2,56)=1.095 0.3417 

  Genotype F(1,56)=6.018e-005 0.9938 

  Age x Genotype F(2,56)=1.667 0.1981 

FC P1 Latency: Age F(2,56)=2.283 0.1114 

  Genotype F(1,56)=2.459 0.1225 

  Age x Genotype F(2,56)=0.0603 0.9415 

 N1 Latency: Age F(2,56)=2.809 0.0688 

  Genotype F(1,56)=0.0073 0.9323 

  Age x Genotype F(2,56)=1.123 0.3325 

 P2 Latency: Age F(2,56)=0.1817 0.8343 

  Genotype F(1,56)=8.761 0.0045 

  Age x Genotype F(2,56)=2.412 0.0989 
Two-way ANOVA results for ERP analysis. Post hoc comparisons were done using Tukey’s and Bonferroni’s multiple 
comparisons tests and p-values were adjusted accordingly. See text for post hoc results. Bold text indicates statistical 
significance (p = or < 0.05). 
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Development of ERP single trial power phenotypes in the Fmr1 KO mice  

 In addition to ERP peak amplitude and latency, we analyzed STP during the 

stimulus train used for ERP measurement (Figures 2.9, 2.10). The STP phenotypes 

were similar to those found with the gap-ASSR paradigm.  There was no genotype 

difference in STP at p21 in either AC (Figure 2.9) or FC (Figure 2.10). At p30, KO mice 

showed elevated STP in both AC and FC, with effects limited to frequencies between 25-

80 Hz.  At p60, the KO mouse AC showed reduced STP at frequencies below 60 Hz, but 

there was no difference in the FC.  These results support the idea of developmental 

fluctuations in background power phenotypes in FXS.  

 

 

 

 
Figure 2.9. Non-baseline normalized STP during ERP stimulation is altered in Fmr1 KO 
in the AC during development. The format is similar to Figures 2.4-6, except these are 
obtained during ERP stimulation. Outlined regions indicate clusters which are significantly 
different between WT and KO. (A) Young Fmr1 KO mice show no difference in STP at p21. 
(B) KO mice have increased background activity in the gamma range at p30. (C) Adult KO 
mice show decreased STP in the beta and gamma frequency ranges compared to WT.  
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Discussion 

The major and novel contribution of this study is the identification of 

developmental trajectories of auditory temporal processing in two cortical regions of WT 

and Fmr1 KO mice.  We recorded 40 Hz gap-in-noise ASSR from the AC and FC at 

three different ages as a measure of temporal processing.  We also quantified ERP 

amplitudes/latencies and sound evoked single trial power to determine if abnormally 

elevated EEG power is developmentally correlated with temporal processing deficits.  

The results show genotype, cortical region- and age-specific abnormalities in gap-ASSR 

responses and ERPs. Interestingly, significant developmental delay was seen in gap-

ASSR responses in the FC, but not the AC, of Fmr1 KO mice.  ERP N1 amplitudes were 

larger across development in both AC and FC of the KO mouse.  The non-phase locked 

STP phenotypes showed developmental fluctuations.  Between p21 and p30 there was 

an increase in STP during both gap-ASSR and ERP recordings in the Fmr1 KO mice, 

 

 
Figure 2.10. Non-baseline normalized STP during ERP stimulation is altered in Fmr1 
KO in the FC during development. Figure format is the same as in Figure 2.4-6. (A) Young 
Fmr1 KO mice show no difference in STP at p21. (B) KO mice have increased background 
activity in the gamma frequencies at p30. (C) Adult Fmr1 KO mice show no significant 
difference in STP at p60. 
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and at P60 there was a reversal of this phenotype.  Taken together, these data provide 

novel evidence for abnormal development of temporal processing in the frontal cortex, 

and hypersensitive responses in both auditory and frontal cortex in the Fmr1 KO mouse 

model of FXS.  The data do not support the notion that hypersensitive cortical responses 

underlie temporal processing deficits in developing Fmr1 KO mice as there was no 

developmental correlation between the two measures.  These phenotypes may arise 

from independent mechanisms. The robust developmental delays in gap-ASSR EEG 

responses in KO mice provide physiological tools to evaluate underlying mechanisms 

and identify treatment targets and windows.   

The WT mouse shows significant developmental improvement in gap-ASSR EEG 

responses, providing a reference for other mouse models of other ASD and 

neurodevelopmental disorders.  This is consistent with findings in the rat auditory cortex 

in which the percentage of neurons with short neural gap detection thresholds increases 

from juveniles to adults [Zhao et al., 2014].  These neural improvements in gap 

processing may underlie perceptual improvement in gap detection thresholds in children, 

a factor that is correlated with improved language in development [Werner et al., 1992; 

Friedman et al., 2004; Smith et al., 2006; Benasich & Tallal, 2002; Trehub & 

Henderson,1996].  

Expressive and receptive language deficits are consistently reported in FXS, but 

the underlying mechanisms are unclear [Roberts et al., 2001]. Children with FXS 

express developmental delays in multiple cognitive categories necessary for language 

maturation, such as auditory short-term memory and attention [Freund & Reiss, 1991; 

Ornstein et al., 2008; Bregman et al., 1988; Cornish et al., 2007; Mazzocco et al., 1993; 

Scerif et al., 2007]. In addition to these cognitive factors, delayed temporal processing 



69 
 

and auditory hypersensitivity may underlie speech and language delays in FXS [4-5]. In 

developmental disorders and in aging, gap processing has been used to analyze 

auditory temporal acuity across groups [Bhatara et al., 2013; Gordon-Salant & 

Fitzgibbons, 1993; Rumschlag & Razak, 2021; Rumschlag et al., 2020].  Increased gap-

detection thresholds are seen in children with ASD and impaired gap detection 

thresholds in children correlate with lower phonological scores [Foss-Feig et al., 2017]. 

The 40 Hz gap-in-noise-ASSR paradigm used here tests the ability of neural generators 

of EEGs in the AC and FC to phase lock consistently across trials and can be used in 

humans with FXS to determine if similar cortical region-specific temporal processing 

deficits are present in patients.  By varying the modulation depth and gap widths, it is 

possible to compare temporal processing acuity of auditory systems across groups 

[Green, 1971; Anderson & Linden, 2016].  The cortical mechanisms of gap processing 

are also beginning to be understood [Weible et al., 2014; Keller et al., 2018].  Future 

EEG studies in children with FXS should examine if temporal gap processing deficits are 

present early in development, and if they are related to development of language 

abilities.  This may provide the basis for adaptive training of children with rapidly 

changing stimuli, including gaps, to improve speech recognition and language 

[Merzenich et al., 1996].   

The current study focused on 40 Hz ASSR for multiple reasons.  Gamma band 

deficits have been consistently observed in humans with FXS and Fmr1 KO mice across 

strains and ages [Wang et al., 2017; Ethridge et al., 2017,2019; Lovelace et al., 2018; 

Wen et al., 2019; Jonak et al., 2020].  There is also a developmental delay in the 

maturation of parvalbumin-expressing inhibitory neurons and the perineuronal nets that 

surround them [Wen et al., 2018].  As these structures are involved in generating gamma 
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band oscillations, we predicted 40 Hz ASSR deficits.  Another reason for focusing on the 

40 Hz ASSR is that the auditory cortex has a resonance at that frequency, and therefore, 

produces the largest power in EEG responses at that frequency [Hwang et al., 2019; 

Baltus & Herrmann, 2015; Hwang et al., 20206].  In addition, the mechanisms of 40 Hz 

ASSR have been studied, including descriptions of topography across regions and the 

role of basal forebrain neurons and NMDA receptor function [Sivarao et al., 2016; Kim et 

al., 2015].   

More relevant to speech processing, there is a strong link between gamma band 

oscillations and phoneme processing, with gamma oscillations parsing speech input in 

the phoneme range. The slower oscillations (delta-theta) may be more relevant to 

aspects of intonation and syllabic rates, and other aspects of speech with slower 

evolution. Based on such observations, the ‘asymmetric sampling in time’ hypothesis for 

speech processing has been proposed in which gamma oscillations play a significant 

role in phoneme processing [Luo & Poeppel, 2012; Giraud & Poeppel, 2012; Peña & 

Melloni, 2012].  Gamma resolution parsing may provide sufficient cues in separating 

closely spaced inputs (eg., voice onset time, formant transitions), facilitating speech 

recognition.  It will be very interesting in future studies to examine 10 and 20 Hz ASSRs 

in the Fmr1 KO and WT mice, that may allow a prediction of the nature of speech deficits 

in humans with FXS.  

 

ERP deficits in Fmr1 KO mice 

The P1-N1-P2 ERP complex marks the pre-attentive detection of sound and can 

vary with stimulus features.  Consistent with a number of studies in humans with FXS, 

and our previous studies in adult and developing mice, ERP component amplitudes were 
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higher in the Fmr1 KO mice compared to WT mice [Humans: Castrén et al., 2003; Knoth 

& Lippé, 2012; Rojas et al., 2001; St Clair et al., 1987; Van der Molen et al., 2012a, 

2012b; Mice: Lovelace et al., 2018; Wen et al., 2019; Kulinich et al., 2020].  We found N1 

amplitude, which are generated from frontal and temporal lobes [Näätänen & Picton, 

1987] and marks synchronous activity within the cortex, to be higher in both AC and FC 

of the KO mice.  This is consistent with calcium imaging studies that showed abnormally 

high synchronous activity in the Fmr1 KO mouse cortex, and may arise from abnormal 

activity of parvalbumin positive inhibitory interneurons [Gonçalves et al., 2013; Wen et 

al., 2018; Assaf & Schiller, 2016].  Reduced habituation of responses in mice [Lovelace 

et al., 2016] and humans [Ethridge et al., 2016] may also contribute to larger N1 

amplitudes because the reported amplitude is the average of responses to multiple trials.  

We also observed a main effect of genotype and/or genotype X age interactions for P1 

amplitude, with KO mice showing larger amplitudes.  P1 amplitudes mark 

thalamocortical input activity, suggesting enhanced input drive of the cortex in the KO 

mice.  This may arise from reduced input layer 4 thalamocortical drive of fast-spiking 

(putative parvalbumin positive) inhibitory interneurons in the KO cortex as shown by 

Gibson et al. and Patel et al. [Gibson et al., 2008; Patel et al., 2013].  P2 amplitudes are 

thought to be related to arousal as auditory input to the mesencephalic reticular 

activating system contributes to P2 generation [Crowley & Colrain, 2004].  There was no 

genotype difference in the AC.  In the FC, however, there was a trend towards 

decreased P2 amplitude in the KO mice, suggesting the potential for reduced arousal 

and attention during development.  The enhanced evoked responses and reduced 

habituation in FXS may lead to reduced ability for auditory change detection as shown 

by Van der Molen et al. [Van der Molen et al., 2012a]. Such sensory discrimination 
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deficits may lead to speech and language abnormalities in FXS. A recent study in 

humans demonstrated a link between habituation and language abilities in children with 

FXS [An et al., 2022]. Specifically, it was shown that weaker P1 responses to later 

stimuli in a habituation train as well as larger habituation of P1 was associated with 

increased receptive and expressive language abilities, suggesting that habituation to 

repeated tones impacts language abilities in children with FXS.  

 

Enhanced gamma band power in background activity in Fmr1 KO mice 

The single trial power (STP) allows for the identification of ongoing ‘background 

activity’ during stimulus presentation as it does not correct for mean baseline power 

levels. It has been suggested that this non-phase locked power reflects relatively slow 

integrative processes that may impact stimulus or response processing [McKewen et al., 

2020]. These processes include top-down and sustained attention, decision-making, and 

perceptual inference, and are suggested to result from intrinsic network interactions 

rather than external stimuli [Donner & Siegel, 2011; Seigel & Donner, 2010]. Our results 

show developmental fluctuations in STP phenotypes in Fmr1 KO mice, with adolescent 

KO mice (p30) having increased STP during ERP and gap-ASSR stimuli in the AC and 

FC compared to WT mice. The increase in STP was seen in the gamma band (30-80 

Hz), consistent with data from Ethridge et al. from humans with FXS compared to 

typically developing control [Ethridge et al., 2019].  Human data, recorded from 

adolescents and young adults, also shows elevated gamma band STP across multiple 

stimulus types.  Importantly, the elevated gamma power showed correlations with IQ and 

distractibility.  These data suggest increased on-going activity that may be a result of 

hyperactive network connections across species, and with potential clinical implications 
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in humans.  The reasons why the phenotypes fluctuate over development is unclear.  It 

is also not know if similar age-effects are seen in humans with FXS.  With 

neurodevelopmental disorders, it is sometimes difficult to disambiguate the direct effect 

of the mutation from the effect of potential compensatory (e.g., homeostatic) adjustments 

in activity levels.  

 A previous study (Wen et al., 2019) reported increased resting EEG gamma 

power in the frontal cortex of adult Fmr1 KO mice (FVB strain, the same used here)[Wen 

et al., 2019].  We did not observe increased gamma power in the STP data in the 

present study.  While both resting EEG and sound evoked STP can be considered as 

background activity, the differences across the two studies can be explained by how 

these measures are calculated.  Resting EEGs are recorded in the absence of any 

sound stimuli, but the STP calculated is background during sound stimulation.  The 

animal is likely in a different state of arousal in the presence of sounds compared to the 

resting condition leading to observed differences between the different measures of 

background gamma activity.  

 

Delayed development of temporal processing in Fmr1 KO mouse frontal cortex 

Perhaps the most surprising result of the study is that developmental delays in 

temporal processing were seen in the FC, but not the AC.  These data suggest that FC 

does not simply inherit auditory responses from the AC, but that additional local 

processing within the FC and/or auditory pathways that bypass the AC may be involved 

in producing phase locked responses in the FC.  Very little is known regarding 

mechanisms of auditory processing in the FC.  Robust frontal cortex ASSR power is 

seen in both human [Lustenberg et al., 2018] and mouse EEG recordings [Hwang et al., 
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2019].  Indeed, topographical distribution of ASSR power and precision favors more 

frontal regions in both species. Kim et al. (2015) and Hwang et al. (2019) showed that 

optogenetic stimulation of GABAergic parvalbumin neurons in the mouse nucleus 

basalis preferentially increased frontal cortex 40 Hz ASSR oscillations.  This suggests 

independent modulation of ASSR in the FC that may be abnormal in early development 

in FXS.   The idea that FC can robustly mount ASSR, and independently show deficits, is 

supported by two other lines of evidence.  Clark et al. showed in an autoimmune 

disorder mouse model that gap processing is affected in the FC, while remaining normal 

in the AC [Clark et al., 2000]. Wieczerzak et al. reported reduced recovery of ASSR in 

FC, rather than AC, following noise induced hearing loss [Wieczerzak et al., 2021].  The 

fact that the temporal processing deficits are seen in early development in the FC, and 

the not the AC in Fmr1 KO mice, suggests temporal processing deficits may be present 

across multiple sensory modalities.  If a similar developmental regional difference in 

temporal processing is seen in humans with FXS, this would suggest speech processing 

and language function may be affected across multiple modalities [Rosenblum, 2008].   

An important consequence of abnormal temporal processing in the FC may be 

related to how FC-AC top-down interactions function during development.  FC induces 

top-down modulation of AC responses in a task- and attention-dependent fashion. Fritz 

et al. hypothesized that the FC modulates AC neuron receptive fields depending on the 

task and selective attention [Fritz et al., 2010]. FC-AC connection and its modulation of 

speech have also been evaluated in humans with FXS. Speech production depends on 

feedforward control and the synchronization of neural oscillations between the FC and 

AC. Specifically, the interactions of these two regions allow for comparison of the 

corollary discharge of intended speech generated from an efference copy of speech to 
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the actual speech sounds produced, a process essential for making adaptive 

adjustments to optimize future speech [Schmitt et al., 2019]. A study of humans utilizing 

a talk-listen paradigm found that in the time window prior to speech production, 

individuals with FXS have decreased pre-speech activity, including frontotemporal 

connectivity, as well as increased frontal gamma power compared to controls. These 

discrepancies brought about less intelligible speech and correlated with increased social 

communication deficits [Schmitt et al., 2019. Abnormal functional connectivity between 

FC and AC is also suggested by Zhe et al., (2021) who showed reduced long-range 

connectivity in Fmr1 KO mice [Zhang et al., 2021].  Future studies will examine phase 

connectivity between FC and AC during different sound stimulation paradigms including 

the gap-ASSR.  Taken together, the connections between the FC and AC are essential 

for shaping sensory responses and disruptions may cause speech and language 

impairments.  A mismatched development pattern between these two regions in humans, 

as seen in the present study of mice, could possibly give rise to language abnormalities 

in FXS. 

 

Conclusions 

We have identified a developmental delay in auditory temporal processing in the 

FXS model mouse. The p21-p30 window is a critical period of development in Fmr1 KO 

mice that is marked by cortical hyperexcitability and reduced inhibitory interneuron 

function [Wen et al., 2018,2019; Kulinich et al., 2020]. This delayed development is 

similar to other studies in Fmr1 KO mice. For example, in the somatosensory cortex, 

Fmr1 KO mice show delayed maturation of GABAergic inhibition and decreased synaptic 

connectivity that eventually normalize to WT levels in adults [Daw et al., 2007; Bureau et 
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al., 2008]. Brain development is a precise process that is determined by accurately cued 

stages of gene expression, molecular guidance cues and intrinsic neuronal activity 

[Chilton, 2006; Marín et al., 2010]. The timing of these developmental stages, known as 

critical periods, is imperative for accurate neuronal migration, circuit formation and 

synaptic refinement [Meredith, 2015]. Disruptions of critical period timelines cause long 

term impairments in behavioral phenotypes. Even though responses may be normalized 

in the adult, abnormal critical period development will have long-term consequences for 

behaviors that build on normal development of responses.  For example, developmental 

delay in FC temporal processing may lead to long term abnormalities in behaviors that 

depend on accurate temporal processing such as speech, language and binaural 

processing.  In order to effectively treat humans with FXS, it is imperative to understand 

the developmental trajectory of phenotypes that are likely to be used as clinical outcome 

measures, as opposed to just adult comparisons. Future studies should evaluate 

temporal processing across age to determine if similar delays in development are 

present in humans with FXS, and if the delay relates to language function.   
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Chapter 3 

 

Sex Differences During Development in Cortical Temporal Processing and Event 

Related Potentials in Wild-Type and Fragile X Syndrome Model Mice 

 

Abstract 

Autism spectrum disorder (ASD) is currently diagnosed in approximately 1 in 44 children 

in the United States, based on a wide array of symptoms, including sensory dysfunction 

and abnormal language development. Boys are diagnosed ~3.8 times more frequently 

than girls. Auditory temporal processing is crucial for speech recognition and language 

development.  Abnormal development of temporal processing may account for ASD 

language impairments. Sex differences in the development of temporal processing may 

underlie the differences in language outcomes in male and female children with ASD.  To 

understand mechanisms of potential sex differences in temporal processing requires a 

preclinical model.  However, there are no studies that have addressed sex differences in 

temporal processing across development in any animal model of ASD. To fill this major 

gap, we compared the development of auditory temporal processing in male and female 

wildtype (WT) and Fmr1 knock-out (KO) mice, a model of Fragile X Syndrome (FXS), a 

leading genetic cause of ASD-associated behaviors.  Using epidural screw electrodes, 

we recorded auditory event related potentials (ERP) and auditory temporal processing 

with a gap-in-noise auditory steady state response (ASSR) paradigm at young (postnatal 

(p)21 and p30) and adult (p60) ages from both auditory and frontal cortices of awake, 

freely moving mice. The results show that ERP amplitudes were enhanced in both sexes 

of Fmr1 KO mice across development compared to WT counterparts, with greater 
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enhancement in adult female than adult male KO mice.  Gap-ASSR deficits were seen in 

the frontal, but not auditory, cortex in early development (p21) in female KO mice.  

Unlike male KO mice, female KO mice show WT-like temporal processing at p30.  There 

were no temporal processing deficits in the adult mice of both sexes. These results show 

a sex difference in the developmental trajectories of temporal processing and 

hypersensitive responses in Fmr1 KO mice.  Male KO mice show slower maturation of 

temporal processing than females.  Female KO mice show stronger hypersensitive 

responses than males later in development. The differences in maturation rates of 

temporal processing and hypersensitive responses during various critical periods of 

development may lead to sex differences in language function, arousal and anxiety in 

FXS.   

 

Introduction 

Abnormal sensory processing and delayed language development are core 

symptoms of ASD [Abbeduto & Hagerman, 1997; Foss-Feig et al., 2017; Tager-Flusberg 

& Caronna, 2007; Rapin & Dunn, 2003; Jeste & Nelson, 2008]. This spectrum of 

disorders has traditionally been diagnosed within the first three years of life, when 

differences from age-matched typically developing children start to become apparent, 

particularly with sensory issues and language development [Riva et al., 2018]. Deficits in 

sensory processing have been reported in up to 87% of patients and correlate with 

autism-related social difficulties [Le Couteur et al., 1989; Lord, 1995; Baum et al., 2015; 

Hilton et al., 2010; Watson et al., 2011].  A sex bias in ASD diagnosis is well established, 

with the male:female ratio of diagnosis being ~3.8:1 [Werling & Geschwind, 2013]. Sex 

differences seen in the maturation rate of language function in typically developing 
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children [Zubrick et al., 2007; Adani & Cepanec, 2019; Maccoby, 1966; Ramer, 1976; 

Huttenlocher et al., 1991; Özçalışkan &Goldin-Meadow, 2010] are further enhanced in 

children with ASD with males showing slower development and/or more impairments 

[Harrop et al., 2020; Darley & Winitz, 1961; Nelson, 1981]. While multiple studies have 

suggested a link between fetal or early postnatal sex hormone levels and language 

development, the developmental trajectory and mechanisms of this sex difference are 

not well understood [Lutchmaya et al., 2002; Lombardo et al., 2012; Knickmeyer et al., 

2008; Auyeung et al., 2009; Friederici et al., 2008; Hollier et al., 2012; Schaadt et al., 

2015].  

Mutations in the Fmr1 (Fragile X Messenger Ribonucleoprotein) gene show a 

strong link and comorbidity with ASD. The silencing of Fmr1 results in a loss of the 

Fragile X Messenger Ribonucleoprotein (FMRP) and Fragile X Syndrome (FXS) [Darnell 

et al., 2011; Huber et al., 2002]. The loss of FMRP causes altered synaptic development 

and brain plasticity, intellectual deficits, and behaviors related to ASD, including 

repetitive behaviors, sensory, cognitive, and social impairments [Wisniewski et al., 1991; 

Cordeiro et al., 2010; Van der Molen et al., 2010; Oakes et al., 2015; Miller et al., 1999; 

Hall et al., 2009]. Individuals with FXS show abnormal sensory sensitivity and speech 

and language impairments [Miller et al., 1999; Abbeduto et al., 2007; Finestack et al., 

2009; Rice et al., 2005; Martin et al., 2013; Rogers et al., 2003; Crane et al., 2009; 

Marco et al., 2011; Takarae et al., 2016; Ethridge et al., 2016; Abbeduto & Hagerman, 

1997]. As FXS is an X-linked disorder, a strong sex bias is present with ~1 in 4000 males 

and ~1 in 7000 females affected [Bartholomay et al., 2019].  Males with FXS are on 

average more impaired in language development than females, but the developmental 
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mechanisms of sex-differences in language function in FXS are unclear [Kover & 

Abbeduto, 2010; Abbeduto et al., 2003, 2007; Brady et al., 2004].      

Abnormal development of auditory temporal processing may underlie impaired 

language function.  Auditory temporal modulation cues aid speech recognition [Zeng et 

al., 2005; Shannon et al., 1995], and humans’ ability to discriminate temporal cues in 

sounds is present at a very young age [Moore, 2008; Cabrera & Gervain, 2020]. The 

inability to process rapidly changing acoustic input during development may interfere 

with speech perception and phonological processing and may result in language 

disorders [Tallal et al., 1998].  Individuals with ASD show deficits in detecting sound 

duration, onset and offset, and rapid spectrotemporal changes [Kwakye et al., 2011; 

Lepistö et al., 2006; Oram Cardy et al., 2005; Orekhova et al., 2009; Meilleur et al., 

2020]. Issues with reproducing auditory stimuli lengths are evident in children with ASD, 

and both children and adults with ASD display atypical neural responses to pitch 

fluctuations in sequential, repeated auditory stimuli [Szelag et al., 2004; Tecchio et al., 

2003; Gomot et al., 2006]. Increased gap-detection thresholds, commonly used to 

evaluate auditory temporal processing, are seen in ASD. Importantly, children with 

poorer gap detection scores were also associated with lower phonological processing 

scores [Foss-Feig et al., 2017]. These studies provide evidence that deficiencies in 

auditory temporal processing may influence atypical language function in ASD.  

The Fmr1 KO mouse, an animal model of FXS, exhibits abnormal sensory 

responses similar to humans, providing a useful platform for studying the developmental 

patterns and neural mechanisms of sensory circuit dysfunction [Razak et al., 2021].  

However, very little is known in terms of sex differences in sensory responses in the 

Fmr1 KO mice, or in humans with FXS.  Indeed, very little is known about sex 
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differences in the developmental trajectory of sensory responses in any non-human 

species, including mice of any genotype.  To fill this major gap, we recorded sensory 

electrophysiological responses in female Fmr1 KO mice across development in this 

study and compared the responses to previously published data from male Fmr1 KO 

mice using identical methods and ages [Croom et al., 2023].  We tested the hypothesis 

that sex differences in sensory deficits such as auditory cortical temporal processing and 

auditory sensitivity emerge in Fmr1 KO mice from early developmental stages.  

We acquired EEG signals from the auditory and frontal cortex (AC, FC) in both 

Fmr1 KO and wildtype (WT) mice at three different ages: p21, p30, and p60. A 40 Hz 

gap-in-noise ASSR (auditory steady state response, hereinafter referred to as gap-

ASSR) paradigm was used to measure the cortex's reliability in phase locking to brief 

gaps in noise at varying modulation depths to assess temporal processing acuity 

[Rumschlag & Razak, 2021]. Gap stimuli have been used extensively to evaluate 

auditory temporal precision, and EEG recordings are more readily executed in humans 

compared to single-unit recordings, and thereby facilitate translational relevance [Green, 

1971; Anderson & Linden, 2010].  The gap-ASSR paradigm requires the neural 

generators to synchronize responses to gaps of different widths in noise, providing an 

objective measure of temporal processing across genotypes and age groups.  Auditory 

event related potentials (ERPs) are consistently of larger amplitudes in humans with 

FXS, but potential sex differences in FXS are not known.  Therefore, we recorded 

auditory ERPs in mice to examine possible sex differences in hypersensitive responses 

during development in the AC and the FC.  Our data show earlier maturation of temporal 

processing in Fmr1 KO female mice compared to male mice, and a larger enhancement 
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of ERP amplitudes in KO female than male mice across development, compared to WT 

mice.     

 

Methods 

The following age ranges and sample sizes were used in this study: WT-

Females: p21 (n=11), p30 (n=9), p60 (n=8) and Fmr1 KO-Females: p21 (n=8), p30 

(n=9), p60 (n=8)].  The data collected on females were compared to previously 

published WT and Fmr1 KO male data [Croom et al., 2023].  None of the female data, or 

sex comparisons, have been previously published.   

All procedures were approved by the Institutional Animal Care and Use 

Committee at the University of California, Riverside. Mice were obtained from an in-

house breeding colony that originated from Jackson Laboratory (Bar Harbor, ME). The 

mice used for the study are sighted FVB wild-type (Jax, stock# 004828; WT) and sighted 

FVB Fmr1 knock-out (Jax, stock# 004624; Fmr1 KO).  This background strain was 

chosen because our prior developmental work examining cortical parvalbumin and 

perineuronal nets as well as single unit responses in the auditory cortex and the inferior 

colliculus have utilized this same strain [Rotschafer & Razak, 2013; Nguyen et al., 2020].  

One to five mice were housed in each cage under a 12:12-h light-dark cycle and fed ad 

libitum. A cross-sectional, as opposed to a longitudinal, design was used in this study as 

it is impractical to place epidural screw electrodes in brains that are still growing.  

The ages selected for the sex difference comparison were based on previous 

findings. Decreased PNN expression surrounding parvalbumin-positive interneurons and 

cortical hyperexcitability are observed in Fmr1 KO mice at p21 [Wen et al., 2018]. 

Additionally, the p14-21 age corresponds to the critical period for responses to simple 
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tones and maturation of tonotopic maps in the auditory cortex [Oswald & Reyes, 2010; 

Kim et al., 2013]. P30 was chosen because response selectivity to complex sounds has 

not matured in the auditory cortex until this age [Carrasco et al., 2013]. We chose the 

p60 age group to represent young adulthood.  Our previous study in males also showed 

significant genotype differences in temporal processing at p21 and p30, and 

normalization at p60.  Here we compared developmental trajectories of male and female 

Fmr1 KO mice.    

Surgery: Different groups of mice underwent epidural electrode implant surgery at three 

developmental timepoints: p18-20, p27-p29, p57-p66. Surgical procedures have been 

previously published [Croom et al., 2023; Rumschlag & Razak, 2021; Rumschlag et al., 

2020]. Briefly, mice were anesthetized using intraperitoneal (i.p.) injections of either 

80/20 mg/kg of ketamine/xylazine (young mice) or 80/10/1 mg/kg 

ketamine/xylazine/acepromazine (adult mice). The anesthetic state was monitored 

closely throughout the procedure by toe pinch reflex every 10-15 minutes. ETHIQA-XR 

(1-shot buprenorphine, 3.25 mg/kg body weight) was administered via subcutaneous 

injection prior to surgery. An incision was made to expose the scalp following the 

removal of fur and sterilization (alcohol and iodine wipes) of the scalp. A Foredom dental 

drill was used to drill ~1mm diameter holes in the skull over the right AC, right FC, and 

left occipital cortex. The screw positions were determined using skull landmarks and 

coordinates previously reported [Croom et al., 2023; Rumschlag & Razak, 2021; 

Rumschlag et al., 2020; Wen et al., 2019; Lovelace et al., 2018].  The wires extending 

from three-channel posts were wrapped around 1 mm screws and driven into the pre-

drilled holes. Dental cement was applied to secure the implant. Mice were placed on a 
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heating pad until fully awake and were allowed 48-72 hours for recovery before EEG 

recordings were made. 

EEG recordings: All EEG recordings were obtained from awake and freely moving 

female mice, using methods identical to those published for male mice [Croom et al., 

2023]. EEG recordings were performed at three developmental time points: p20-23, p29-

31, p59-p70, which we refer to as p21, p30 and p60, respectively. Recordings were 

obtained from the AC and FC electrodes, using the occipital screw as reference. All 

recordings were obtained inside a sound-insulated and anechoic booth (Gretch-Ken, 

OR). Mice were briefly anesthetized with isoflurane and connected to an EEG cable via 

the implant. Mice were habituated to the recording arena with no stimuli prior to sound 

evoked recordings. The attached cable was connected via a commutator to a TDT 

(Tucker Davis Technologies, FL) RA4LI/RA4PA headstage/pre-amp, which was 

connected to a TDT RZ6 multi-I/O processor. OpenEx (TDT) was used to simultaneously 

record EEG signals and operate the LED light used to synchronize the video and 

waveform data. TTL pulses were utilized to mark stimulus onsets on a separate channel 

in the collected EEG data. The EEG signals were recorded at a sampling rate of 24.414 

kHz and down-sampled to 1024 Hz for analysis. All raw EEG recordings were visually 

examined prior to analysis for artifacts, including loss of signal or signs of clipping. No 

EEG data were rejected after examination.   

Auditory ERP: Narrowband noise stimuli (6-12 kHz bandwidth, 120 repetitions, 100 ms 

duration, 5ms rise/fall time, 0.25 Hz repetition rate) were presented at 75 dB SPL using a 

speaker (MF1, Tucker Davis Technologies, FL) situated 20 cm above the floor of the 

arena. ERP analysis and statistics have been previously described [Croom et al., 2023; 

Rumschlag & Razak, 2021; Rumschlag et al., 2020]. Briefly, the EEG trace was split into 
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epochs using the TTL pulses to mark sound onset. Each trial was baseline corrected, 

such that the mean of the 250 ms baseline period prior to sound onset was subtracted 

from the trial trace for each trial. Each trial was then detrended (MATLAB detrend 

function) and all trials were averaged together. 

Gap-ASSR: The stimulus used to assess auditory temporal processing is termed the ‘40 

Hz gaps-in-noise ASSR’ (auditory steady state response, henceforth, ‘gap-ASSR’) 

[Rumschlag & Razak, 2021]. The stimulus contains alternating 250 ms segments of 

noise and gap interrupted noise presented at 75 dB SPL. The gaps are placed 25 ms 

apart, resulting in a presentation rate of 40 Hz, a rate that produces the strongest ASSR 

signal when measured from the AC and frontal regions [Galambos et al., 1981; Pastor et 

al., 2002; Llinás, 1988; Llinás et al., 1991; Rosanova et al., 2009; Kim et al., 2015; 

Hwang et al., 2019]. For each gap-in-noise segment, the gap width and modulation 

depth are chosen at random. Gaps of 2, 4, 6, 8, 10, or 12 ms widths and modulation 

depths of 75 and 100% were used. To measure the ability of the cortex to consistently 

respond to the gaps in noise, inter-trial phase clustering (ITPC) at 40 Hz was measured 

[Cohen, 2014]. The ITPC is based on the distribution of phase angles in the EEG 

response at 40 Hz (because the stimulus is a 40 Hz train) across all trials and reflects 

the precise timing of 40 Hz activity in the underlying neural generators.  ITPC can be 

interpreted independently of power.  ITPC ranges between 0 and 1, with 0 indicating 

high variability (uniform distribution) of phase angles across trials, and 1 indicating the 

same phase angle for every trial. Because ITPC is sensitive to temporal jitter of 

responses from one trial to the next, this is a useful measure of temporal reliability of 

responses.  The EEG trace was transformed using a dynamic complex Morlet wavelet 

transform. The trials corresponding to each parametric pair (gap duration + modulation 
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depth) were grouped together. The ITPC was calculated for each time-frequency point 

as the average vector for each of the phase unit vectors recorded across trials (trial 

count >100 trials per parametric pair). The ITPC values at 40 Hz were averaged to 

extract the mean ITPC for the parametric pairs in the AC and FC.  

Statistics:  Statistics were performed on GraphPad Prism (ERP) or R (gap-ASSR). To 

evaluate the effects of genotype (2 levels) and age (3 levels), or sex (2 levels) and age 

(3 levels), two-way ANOVA was used for ERP analysis. Post hoc comparisons were 

carried out with Tukey’s and Bonferroni’s multiple comparisons test. ERP data were 

tested for normality using Shapiro-Wilk tests.  A three-way repeated measures ANOVA 

was used for the female development gap-ASSR analysis, with the three factors being 

genotype (2 levels) X age (3 levels) X gap duration (6 levels). Mauchly Tests for 

Sphericity were utilized and corrected for using the Greenhouse-Geisser corrections if 

necessary.  A two-way repeated measures ANOVA was used for within-genotype sex 

comparisons at each age, with the two factors being sex (2 levels) X gap duration (6 

levels). The Geisser and Greenhouse epsilon hat method was utilized to correct p-

values for lack of sphericity using the Greenhouse-Geisser corrections if necessary. A 

repeated measures ANOVA was chosen as multiple gap duration data points were 

collected from a single mouse in a recording session. Post hoc contrasts with Sidak 

corrections for multiple comparisons were used. Cortical regions (AC, FC) and 

modulation depths (75%, 100%) were analyzed separately. Data were evaluated to 

ensure ANOVA assumptions were met, in particular the assumption of the normality of 

the residuals. None of the residuals had measures of skewness or kurtosis that 

exceeded ±2, which is one indication of acceptable normality [West et al., 1995]. 

Moreover, the residuals were evaluated via quantile-quantile plots. In each of the 
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analyses, the correspondence between the theoretical normal distribution and the 

obtained residuals was within acceptable bounds. 

 

Results 

The main goals of this study were to record the developmental trajectory of 

auditory temporal processing and ERPs in female WT and Fmr1 KO mouse auditory and 

frontal cortex and compare these data with previously published data from male 

counterparts [Croom et al., 2023].  The aim was to determine whether sex differences in 

evoked responses were present in WT and KO mice throughout development.  

Delayed development of temporal processing in the FC of female Fmr1 KO mice 

 Auditory temporal processing was assessed using a 40 Hz gap-in-noise ASSR 

stimulus to determine the ability of auditory and frontal cortex (AC, FC) to consistently 

phase lock to brief gaps in noise. Manipulating the duration and modulation depth of the 

gaps allows for the identification of differences in temporal acuity between WT and KO 

mice and to track developmental changes. Figure 3.1 shows inter-trial phase clustering 

(ITPC) heat maps in the 40 Hz gap-ASSR from example female WT (Fig. 3.1A, C) and 

Fmr1 KO (Fig. 3.1B, D) mice (modulation depth of 100%). The y-axis of each panel 

shows the ITPC at a specific gap generated with the 40 Hz signal, with increasing gaps 

across columns.  Each row marks a different age. In each panel, zero (faint vertical 

dashed line) on the x-axis marks the onset of the gap ASSR stimulus.  The expected 

ITPC is at 40 Hz because the stimulus is a 40 Hz train.  Therefore, the warm colors 

indicating higher ITPC (see ITPC scale at the right of Figure 3.1) are seen at 40 Hz.  

Cooler colors indicate relatively low ITPC and are mostly seen for very short gaps, KO 

mice, and at spectral bands outside 40 Hz. 
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As expected, both AC and FC are better able to synchronize their responses to 

longer gaps compared to short gaps (left to right in each row). Across genotypes, there 

are no qualitative ITPC differences in the AC throughout development (Fig. 3.1A, B). 

However, in the FC, deficits are clearly seen at p21, with the Fmr1 KO mice ITPC barely 

emerging above background at 40 Hz (Fig. 3.1C, D). Genotype differences were not 

observed at p30 or p60 in female mouse AC and FC.   

Quantitative analyses across the population of female mice recorded support 

these suggestions (Figure 3.2 and Table 3.1).  Statistical analyses using gap duration, 

age and genotype as factors show a main effect of gap duration in the AC and FC.  This 

is not surprising as the cortex responds with more consistent phase angles (less 

temporal jitter) across trials to the 40 Hz stimulus with longer gap durations.  No 

genotype differences were identified at any age or modulation depth in the AC, similar to 

 
Figure 3.1. Delayed development of temporal processing in the frontal cortex of female 
Fmr1 KO mice. Individual example heatmaps of ITPC generated at 40Hz at multiple gap 
durations in p21, p30, and p60 WT (A: AC, C: FC) and Fmr1 KO (B: AC, D: FC) female mice. 
Qualitative observations of these examples show deficits in cortical temporal processing at 
p21, but not p30 or p60, in the FC KO mice. No deficits are seen in the AC at any age. All 
panels show 100% modulation depth. The onset of the gap-ASSR stimulus is at 0 msec in 
each panel.  
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our previously published male data (Figure 3.2, Table 3.1) [Croom et al., 2023]. Figure 

3.3 shows average ITPCs collapsed across all the gap durations. In the AC, there are no 

statistical differences between WT and KO mice at any age.  Taken together, these data 

suggest developmental improvement in temporal processing of female mice, but no 

effects of the loss of FMRP, in the AC at any age.   

In the frontal cortex, however, significant genotype effects were seen (Figure 3.2, 

Table 3.1). ITPC increased with age in both WT and Fmr1 KO females. At both 

modulation depths, our results show a significant reduction of ITPC in female KO mice at 

p21 compared to WT female mice (75% MD – p=0.0068; 100% MD – p=0.0026). This 

deficit is not present at p30 or p60 (p30 – 75% MD p=1.000, 100% MD p=1.000; p60 – 

75% MD p=0.9973, 100% MD p=0.3909). Evidence of a developmental delay is shown 

 
Figure 3.2. Population analysis shows temporal processing deficits in the FC during 
development in Fmr1 KO female mice. Each plot represents the group average ITPC 
values. Each row represents a different age group: p21 (top), p30 (middle), and p60 (bottom). 
The left columns represent AC and FC data at 100% modulation depth, and the right columns 
represent AC and FC data at 75% modulation depth. Fmr1 KO female mice show significant 
deficits in the FC, but not the AC, at p21. No genotype differences are seen at p30 or p60. Full 
data results are shown in Table 3.1.  
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more directly by collapsing across gaps, as no significant genotype effect can be seen in 

the FC at p30 or p60, but a significant reduction is seen in the KO females at P21 

(Figure 3.3). Overall, these data show improvement in phase locking to gap-ASSR 

stimuli during development in both AC and FC in both genotypes, but there is a FC-

specific delay in temporal processing in female Fmr1 KO mice.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3. Developmental delay in auditory temporal processing in the FC of female 
Fmr1 KO mice. Each plot represents the group average ITPC values collapsed across gap 
widths. Columns represent different modulation depths, and rows represent different cortical 
regions (Columns – left = 100% modulation, right = 75% modulation; Rows – top = AC, 
bottom = FC). KO mice show a significant ITPC deficit only at p21 in the FC at both 
modulation depths, but not at p60. A genotype difference was not seen at any age or 
modulation depth in the AC. 
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Table 3.1. Full statistical analysis of female WT and KO gap-ASSR data. 

Cortical 
Region 

Modulation 
Depth 

Factor/Interaction ANOVA Results Adjusted 
p-value 

AC 100% Genotype F(1,47)=0.9628 0.3315 

  Age F(2,47)=2.5722 0.0870 

  Gap Duration F(5,235)=3.7481 0.0165 

  Genotype x Gap Duration F(5,235)=0.4926 0.6642 

  Age x Gap Duration F(10,235)=1.2445 0.2913 

  Genotype x Age F(2,47)=1.9964 0.1471 

  Genotype x Age x Gap Duration F(10,235)=1.2189 0.3033 

AC 75% Genotype F(1,47)=0.3658 0.5482 

  Age F(2,47)=2.1187 0.1315 

  Gap Duration F(5,235)=2.4164 0.0715 

  Genotype x Gap Duration F(5,235)=0.2511 0.8530 

  Age x Gap Duration F(10,235)=1.5942 0.1562 

  Genotype x Age F(2,47)=0.7530 0.4765 

  Genotype x Age x Gap Duration F(10,235)=0.3116 0.9250 

FC 100% Genotype F(1,47)=6.0378 0.01774 

  Age F(2,47)=3.6924 0.0324 

  Gap Duration F(5,235)=1.3452 0.2644 

  Genotype x Gap Duration F(5,235)=3.9951 0.0130 

  Age x Gap Duration F(10,235)=1.9202 0.0935 

  Genotype x Age F(2,47)=1.9326 0.1560 

  Genotype x Age x Gap 
Duration 

F(10,235)=2.5717 0.0286 

FC 75% Genotype F(1,47)=6.0071 0.0180 

  Age F(2,47)=6.7788 0.0025 

  Gap Duration F(5,235)=4.6730 0.0037 

  Genotype x Gap Duration F(5,235)=2.5335 0.0589 

  Age x Gap Duration F(10,235)=4.0257 0.0009 

  Genotype x Age F(2,47)=1.4508 0.2446 

  Genotype x Age x Gap Duration F(10,235)=1.0932 0.3694 

Three-way repeated measures ANOVA results for gap-ASSR analysis. Mauchly Tests for sphericity were utilized and p-
values were corrected using the Greenhouse-Geisser method where necessary. See text for post hoc results. Bold text 
indicates statistical significance (p ≤ 0.05). 

 

Temporal processing matures faster in Fmr1 KO females than males 

 Figure 3.4 compares Fmr1 KO female and male data [Croom et al., 2023]. The 

results show no significant sex difference in the AC at any modulation depth or gap 

duration.  There is a sex difference in the FC at both modulation depths at p30 (p30: 



104 
 

100% MD – p=0.0160; 75% MD – p=0.0034), with female KO mice having significantly 

higher ITPC compared to males, suggesting that female KO mice have more consistent 

temporal responses than males across trials at this age.  There is no sex difference in 

Fmr1 KO mice at p21 or p60. These results show a faster maturation of auditory 

temporal processing in the FC of KO females compared to males. We also compared 

male and female WT gap-ASSR responses to test whether this sex difference is unique 

to Fmr1 KO mice or is a normative pattern (Figure 3.5). No sex difference was seen in 

WT mice at any modulation depth in either cortical region. This confirms that female 

Fmr1 KO mice show improved auditory temporal processing by p30, while males do not 

reach WT levels until after p30. Full statistical analysis for WT and KO sex difference 

gap-ASSR analyses can be found in Tables 3.2 and 3.3.  

 
Figure 3.4. Temporal processing matures faster in Fmr1 KO females than males. Each 
plot represents the group average ITPC values. Each row represents a different age group: 
p21 (top), p30 (middle), and p60 (bottom). The left columns represent AC and FC data at 
100% modulation depth, and the right columns represent AC and FC data at 75% modulation 
depth. No significant sex difference in the AC at any modulation depth or gap duration.  
Female KO mice have significantly higher ITPC in the FC at both modulation depths at p30, 
but not p21 or p60. Full data results are shown in Table 3.2.  
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Figure 3.5. No sex difference in auditory temporal processing in WT mice at any in the 
AC or FC. Each plot represents the group average ITPC values. Each row represents a 
different age group: p21 (top), p30 (middle), and p60 (bottom). The left columns represent AC 
and FC data at 100% modulation depth, and the right columns represent AC and FC data at 
75% modulation depth. No significant sex difference in the AC or FC at any modulation depth 
or gap duration. Full data results are shown in Table 3.3.   
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Table 3.2. Full statistical analysis of male and female KO gap-ASSR data. 

Age Cortical 
Region 

Modulation 
Depth 

Factor/Interaction ANOVA Results Adjusted 
p-value 

P21 AC 100% Interaction F(5,80)=0.3211 0.8989 

   Gap Duration F(2.708,43.34)=11.06 <0.0001 

   Sex F(1,16)=0.02711 0.8713 

P21 AC 75% Interaction F(5,80)=0.8956 0.4882 

   Gap Duration F(3.233,51.73)=8.822 <0.0001 

   Sex F(1,16)=0.0053 0.9424 

P21 FC 100% Interaction F(5,80)=0.1754 0.9711 

   Gap Duration F(3.740,59.84)=7.125 0.0001 

   Sex F(1,16)=0.6813 0.4213 

P21 FC 75% Interaction F(5,80)=0.5624 0.7285 

   Gap Duration F(3.847,61.55)=16.67 <0.0001 

   Sex F(1,16)=0.4218 0.5252 

P30 AC 100% Interaction F(5,85)=1.187 0.3225 

   Gap Duration F(2.628,44.67)=14.42 <0.0001 

   Sex F(1,17)=2.700 0.1187 

P30 AC 75% Interaction F(5,85)=0.8130 0.5436 

   Gap Duration F(3.024,51.41)=9.528 <0.0001 

   Sex F(1,17)=2.037 0.1716 

P30 FC 100% Interaction F(5,85)=3.911 0.0031 

   Gap Duration F(3.160,53.73)=26.73 <0.0001 

   Sex F(1,17)=7.150 0.0160 

P30 FC 75% Interaction F(5,85)=3.967 0.0028 

   Gap Duration F(2.962,50.36)=21.45 <0.0001 

   Sex F(1,17)=11.53 0.0034 

P60 AC 100% Interaction F(5,85)=0.2513 0.9381 

   Gap Duration F(2.405,40.88)=29.66 <0.0001 

   Sex F(1,17)=0.1049 0.7500 

P60 AC 75% Interaction F(5,85)=0.1959 0.9633 

   Gap Duration F(2.455,41.73)=30.59 <0.0001 

   Sex F(1,17)=0.2712 0.6092 

P60 FC 100% Interaction F(5,85)=0.9318 0.4647 

   Gap Duration F(2.910,49.46)=28.83 <0.0001 

   Sex F(1,17)=0.0223 0.8831 

P60 FC 75% Interaction F(5,85)=0.4046 0.8444 

   Gap Duration F(3.577,60.81)=64.18 <0.0001 

   Sex F(1,17)=0.2619 0.6154 

Two-way repeated measures ANOVA results for gap-ASSR analysis comparing male and female Fmr1 KO mice. Sex 
differences are only seen at p30 in the FC. Degrees of freedom and p-values were corrected for lack of sphericity using 
the Greenhouse-Geisser method. Bold text indicates statistical significance (p < 0.05). 
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Table 3.3. Full statistical analysis of male and female WT gap-ASSR data. 

Age Cortical 
Region 

Modulation 
Depth 

Factor/Interaction ANOVA Results Adjusted 
p-value 

P21 AC 100% Interaction F(5,95)=0.7051 0.6210 

   Gap Duration F(1.855,32.25)=13.45 <0.0001 

   Sex F(1,19)=3.482e-005 0.9954 

P21 AC 75% Interaction F(5,95)=0.8763 0.5001 

   Gap Duration F(2.294,43.58)=6.872 0.0017 

   Sex F(1,19)=0.0296 0.8650 

P21 FC 100% Interaction F(5,95)=0.2110 0.9571 

   Gap Duration F(2.161,41.07)=21.59 <0.0001 

   Sex F(1,19)=0.2328 0.6350 

P21 FC 75% Interaction F(5,95)=0.7227 0.6080 

   Gap Duration F(1.762,33.49)=29.02 <0.0001 

   Sex F(1,19)=0.6102 0.4444 

P30 AC 100% Interaction F(5,85)=1.923 0.0989 

   Gap Duration F(4.066,69.12)=26.12 <0.0001 

   Sex F(1,17)=0.6887 0.4181 

P30 AC 75% Interaction F(5,85)=0.2505 0.9385 

   Gap Duration F(2.749,46.74)=13.02 <0.0001 

   Sex F(1,17)=0.0496 0.8264 

P30 FC 100% Interaction F(5,85)=0.7688 0.5748 

   Gap Duration F(3.748,63.72)=12.81 <0.0001 

   Sex F(1,17)=0.5620 0.4637 

P30 FC 75% Interaction F(5,85)=0.6334 0.6748 

   Gap Duration F(3.708,63.04)=38.15 <0.0001 

   Sex F(1,17)=0.3719 0.5500 

P60 AC 100% Interaction F(5,85)=0.6398 0.6699 

   Gap Duration F(2.576,43.80)=32.67 <0.0001 

   Sex F(1,17)=0.6390 0.4351 

P60 AC 75% Interaction F(5,85)=0.7737 0.5714 

   Gap Duration F(2.294,39.00)=35.44 <0.0001 

   Sex F(1,17)=0.2400 0.6304 

P60 FC 100% Interaction F(5,85)=0.7762 0.5696 

   Gap Duration F(3.919,66.63)=44.83 <0.0001 

   Sex F(1,17)=0.1551 0.6986 

P60 FC 75% Interaction F(5,85)=1.598 0.1694 

   Gap Duration F(3.677,62.51)=76.88 <0.0001 

   Sex F(1,17)=0.0253 0.8754 

Two-way repeated measures ANOVA results for gap-ASSR analysis comparing male and female WT mice. No sex 
differences were present at any age. Degrees of freedom and p-values were corrected for lack of sphericity using the 
Greenhouse-Geisser epsilon-hat method. Bold text indicates statistical significance (p < 0.05). 
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Female Fmr1 KO mice show enhanced cortical ERP amplitudes across 

development 

ERPs consist of a series of voltage fluctuations, referred to as ‘waves’ (P1, N1, 

P2). These waves are evoked at specific latencies after sound onset and are associated 

with the population activity in specific brain regions. Measuring the amplitudes and 

latencies of these waves allow for the assessment of neuronal response synchrony or 

hypersensitivity to sound presentation. Table 3.4 and Figures 3.6-3.7 show the complete 

ANOVA results of female WT and Fmr1 KO ERP data across development and 

genotypes. 

Auditory Cortex ERP 

 All three peaks (P1, N1 and P2) show a larger increase with age in the Fmr1 KO 

female mice compared to WT females, resulting in significant age-dependent ERP 

amplitude differences (Figure 3.6A).  ERP P1 amplitude increases with age in female 

Fmr1 KO mice (interaction effect: p=0.0507; main effect of age: p<0.0001; KO p21-30: 

p=0.0202; KO p21-60: p<0.0001). P1 amplitude is also significantly increased in KO 

females compared to WT at p30 and p60 (main effect of genotype: p=0.0010; p30: 

p=0.0341; p60: p=0.0054) (Figure 3.6B). N1 amplitude increases with age in KO mice, 

but only shows a significant genotype effect at p60 (main effect of age: p<0.001; KO 

p21-60: p=0.0006; KO p30-60: p=0.0006; main effect of genotype: p=0.0005; p60: 

p=0.0048) (Figure 3.6B). Similarly, P2 amplitude increased with age in KO mice and was 

significantly elevated compared to WT at p60 (main effect of age: p=0.0257; KO p30-60: 

p=0.0058; main effect of genotype: p=0.0059; p60: p=0.0226) (Figure 3.6B). No 

genotype or age differences were seen in P1 or P2 latencies, but N1 latency decreased 

with age in WT females (main effect of age: 0.0059; WT p21-30: p=0.0504; WT p21-60: 
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p=0.0010) (Figure 3.6C). These data show increased ERP amplitudes in the AC of 

female Fmr1 KO mice as observed consistently in humans with FXS. Furthermore, this 

hypersensitivity increases with age in female KO mice. 

 

 

 

 

 

 

 

 

Figure 3.6. Age and genotype impact ERP amplitudes and latencies in the AC of 
female mice. (A) Average ERPs recorded in the AC for WT and KO female mice at p21 (left), 
p30 (middle), and p60 (right). (B) Population averages of AC ERP wave amplitudes. P1 
amplitude significantly increases in KO mice with development, but not WT mice. KO mice 
have increased P1 amplitudes compared to WT at p30 and p60. N1 and P2 amplitudes are 
enhanced in adult KO females compared to WT and increase with age. (C) AC ERP wave 
latencies. N1 latency decreases with age in WT mice. Full data results are shown in Table 
3.4.   
 



110 
 

Frontal Cortex ERP 

 As in the AC, frontal cortex ERP amplitudes show a more pronounced 

developmental increase in female KO mice, compared to WT females (Figure 3.7A).  

ERP P1 and N1 amplitudes increase with age in KO female mice (P1 – interaction effect: 

p=0.0318; main effect of age: p=0.0021; KO p21-p60: p=0.0002; KO p30-p60: p=0.0277; 

N1 – interaction effect: 0.0109; main effect of age: p<0.0001; KO p21-60: p<0.0001; KO 

p30-p60: p=0.0011) (Figure 3.7B). N1 and P2 amplitudes increase with age in WT 

female mice (N1 – main effect of age: p<0.0001; WT p30-p60: p=0.0314; P2 – main 

effect of age: p=0.0283; WT p21-60: p=0.0249) (Figure 3.7B). Female KO mice have 

increased N1 amplitudes at p30 and p60 compared to WT (main effect of genotype: 

0.0014; p30: p=0.0354; p60: p=0.0019) (Figure 3.7B). N1 and P2 latencies showed 

developmental fluctuations in WT and KO mice, respectively (N1 – main effect of age: 

0.0020; WT p30-p60: 0.0440; P2 – main effect of age: 0.0365; KO p21-30: p<0.0001; 
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KO p21-60: p=0.0034) (Figure 3.7C). These data show increased ERP amplitudes, 

specifically N1, in the FC of female Fmr1 KO mice. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.7. Age and genotype impact ERP amplitudes and latencies in the FC of female 
mice. (A) Average ERPs recorded in the FC for WT and KO female mice at p21 (left), p30 
(middle), and p60 (right). (B) Population averages of FC ERP wave amplitudes. P1 amplitude 
significantly increases in KO mice with development, but not WT mice. N1 amplitudes are 
enhanced in KO females at p30 and p60. N1 amplitudes increase with age in WT and KO 
females. P2 amplitudes increase with age in WT mice. (C) FC ERP wave latencies. N1 latency 
decreases with age in WT mice. P2 latency fluctuates with age in KO mice. Full data results 
are shown in Table 3.4.  

 
Figure 3.7. Age and genotype impact ERP amplitudes and latencies in the FC of female 
mice. (A) Average ERPs recorded in the FC for WT and KO female mice at p21 (left), p30 
(middle), and p60 (right). (B) Population averages of FC ERP wave amplitudes. P1 amplitude 
significantly increases in KO mice with development, but not WT mice. N1 amplitudes are 
enhanced in KO females at p30 and p60. N1 amplitudes increase with age in WT and KO 
females. P2 amplitudes increase with age in WT mice. (C) FC ERP wave latencies. N1 latency 
decreases with age in WT mice. P2 latency fluctuates with age in KO mice. Full data results 
are shown in Table 3.4.  
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Table 3.4. Full statistical analysis of female development ERP data. 

Cortical 
Region 

ERP Component Factor ANOVA Results  p-value 

AC P1 Amplitude: Interaction F(2,47)=3.179 0.0507 

  Age F(2,47)=12.03 <0.0001 

  Genotype F(1,47)=12.39 0.0010 

 N1 Amplitude: Interaction F(2,47)=1.292 0.2843 

  Age F(2,47)=12.50 <0.0001 

  Genotype F(1,47)=13.94 0.0005 

 P2 Amplitude: Interaction F(2,47)=2.022 0.1438 

  Age F(2,47)=3.960 0.0257 

  Genotype F(1,47)=8.327 0.0059 

FC P1 Amplitude: Interaction F(2,47)=3.713 0.0318 

  Age F(2,47)=7.045 0.0021 

  Genotype F(1,47)=1.562 0.2175 

 N1 Amplitude: Interaction F(2,47)=4.987 0.0109 

  Age F(2,47)=14.40 <0.0001 

  Genotype F(1,47)=11.60 0.0014 

 P2 Amplitude: Interaction F(2,47)=0.8274 0.4434 

  Age F(2,47)=3.851 0.0283 

  Genotype F(1,47)=0.1218 0.7287 

AC P1 Latency: Interaction F(2,47)=2.187 0.1235 

  Age F(2,47)=1.931 0.1564 

  Genotype F(1,47)=0.6171 0.4361 

 N1 Latency: Interaction F(2,47)=2.009 0.1455 

  Age F(2,47)=5.729 0.0059 

  Genotype F(1,47)=0.0706 0.7916 

 P2 Latency: Interaction F(2,47)=1.445 0.2461 

  Age F(2,47)=0.4215 0.6585 

  Genotype F(1,47)=2.342 0.1327 

FC P1 Latency: Interaction F(2,47)=0.0354 0.9643 

  Age F(2,47)=2.823 0.0695 

  Genotype F(1,47)=0.9239 0.3414 

 N1 Latency: Interaction F(2,47)=0.8245 0.4447 

  Age F(2,47)=7.105 0.0020 

  Genotype F(1,47)=1.141 0.2909 

 P2 Latency: Interaction F(2,47)=11.18 0.0001 

  Age F(2,47)=3.555 0.0365 

  Genotype F(1,47)=1.494 0.2277 
Two-way ANOVA results for ERP analysis. Post hoc comparisons were done using Tukey’s and Bonferroni’s multiple 
comparisons tests. See text for post hoc results. Bold text indicates statistical significance (p = or < 0.05). 

 

Development of WT and Fmr1 KO male and female ERP phenotypes 

Auditory cortex – WT mice  

ERP P1 amplitudes were not impacted by age or sex in the AC. However, both 

N1 and P2 amplitudes were affected by age (N1 – main effect of age: p=0.0188; P2 – 
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main effect of age: p=0.0264) (Figure 3.8B). Specifically, female and male N1 and P2 

amplitudes increased with age, respectively (N1 – female p21-p60: p=0.0330; P2 – male 

p21-p60: p=0.0309) (Figure 3.8B). N1 and P2 latencies were also impacted by age (N1 

– main effect of age: p=0.0004; P2 – main effect of age: p=0.0519) (Figure 3.8C). N1 

latency decreased with age in female mice (p21-p30: p=0.0233; p21-p60: p=0.0002) 

(Figure 3.8C). P2 latency decreased with age in males (p21-p60: p=0.0316) (Figure 

3.8C). No sex differences were seen in any wave amplitude or latency. Overall, these 

results suggest that responses are similar in male and female WT mice throughout 

development in the AC. Table 3.5 shows the complete ANOVA analyses of male and 

female WT AC ERP data across development. 

 

 

 

 

 

 

 

 

Figure 3.8. No sex difference in ERP amplitudes or latencies in the AC of WT mice. (A) 
Average ERPs recorded in the AC for WT male and female mice at p21 (left), p30 (middle), 
and p60 (right). (B) Population averages of AC ERP wave amplitudes. N1 amplitudes 
increase with age in females. P2 amplitudes increase with age in males. (C) AC ERP wave 
latencies. N1 latency decreases with age in females. P2 latency decreases with age in 
males. Full data results are shown in Table 3.5.  
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Frontal cortex – WT mice  

ERP wave amplitudes were not affected by age or sex in the FC (Figure 3.9B). 

N1 latency showed developmental fluctuations in female mice (main effect of age: 

p=0.0002; p21-p30: p=0.0253; p30-p60: p=0.0009) (Figure 3.9C). A significant sex 

difference was identified in P2 latencies at p21 (main effect of sex: p=0.0011; p21: 

p=0.0379) (Figure 3.9C). These results suggest no significant sex difference in ERP 

peak amplitudes in the FC of WT mice during development. Table 3.5 shows the 

complete ANOVA analyses of male and female WT FC ERP data across development. 

 
 
 
 
 
 

 
 

 

Figure 3.9. Sex difference in ERP latencies in the FC of WT mice. (A) Average ERPs 
recorded in the FC for WT male and female mice at p21 (left), p30 (middle), and p60 
(right). (B) Population averages of FC ERP wave amplitudes. No impact of age or sex on 
any ERP wave amplitude. (C) FC ERP wave latencies. N1 latency fluctuates with age in 
females. P2 latency is increased in female WT mice compared to males. Full data results 
are shown in Table 3.5.  
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Table 3.5. Full statistical analysis of WT development ERP data. 

Cortical 
Region 

ERP Component Factor ANOVA Results  p-value 

AC P1 Amplitude: Interaction F(2,53)=2.202 0.1206 

  Age F(2,53)=1.729 0.1873 

  Sex F(1,53)=0.0689 0.7939 

 N1 Amplitude: Interaction F(2,53)=0.8576 0.4300 

  Age F(2,53)=4.289 0.0188 

  Sex F(1,53)=0.9495 0.3343 

 P2 Amplitude: Interaction F(2,53)=0.3466 0.7087 

  Age F(2,53)=3.895 0.0264 

  Sex F(1,53)=0.1412 0.7086 

FC P1 Amplitude: Interaction F(2,53)=1.460 0.2415 

  Age F(2,53)=0.0029 0.9971 

  Sex F(1,53)=1.067 0.3062 

 N1 Amplitude: Interaction F(2,53)=2.609 0.0830 

  Age F(2,53)=1.770 0.1803 

  Sex F(1,53)=0.6039 0.4405 

 P2 Amplitude: Interaction F(2,53)=2.569 0.0862 

  Age F(2,53)=2.502 0.0916 

  Sex F(1,53)=0.8089 0.3725 

AC P1 Latency: Interaction F(2,53)=1.142 0.3268 

  Age F(2,53)=1.935 0.1544 

  Sex F(1,53)=2.848 0.0974 

 N1 Latency: Interaction F(2,53)=2.322 0.1080 

  Age F(2,53)=9.198 0.0004 

  Sex F(1,53)=0.2755 0.6018 

 P2 Latency: Interaction F(2,53)=0.6371 0.5328 

  Age F(2,53)=3.130 0.0519 

  Sex F(1,53)=2.747 0.1034 

FC P1 Latency: Interaction F(2,53)=0.078 0.9250 

  Age F(2,53)=1.919 0.1568 

  Sex F(1,53)=0.6243 0.4330 

 N1 Latency: Interaction F(2,53)=1.279 0.2867 

  Age F(2,53)=9.972 0.0002 

  Sex F(1,53)=0.7294 0.3969 

 P2 Latency: Interaction F(2,53)=0.4331 0.6508 

  Age F(2,53)=1.793 0.1764 

  Sex F(1,53)=11.90 0.0011 
Two-way ANOVA results for ERP analysis. Post hoc comparisons were done using Tukey’s and Bonferroni’s multiple 
comparisons tests. See text for post hoc results. Bold text indicates statistical significance (p < 0.05). 

 

Auditory cortex – Fmr1 KO mice  

 ERP P1 amplitudes increased with age in male and female KO mice (main effect 

of age: p<0.0001; male – p21-p60: p<0.0001, p30-p60: p=0.0008; female – p21-p60: 
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p=0.0004) (Figure 3.10B). N1 amplitude significantly increased with age only in females 

(main effect of age: p=0.0010; p21-p60: p=0.0036; p30-60: p=0.0039) (Figure 3.10B). P2 

amplitude was significantly elevated in adult female KO and increased with age 

(interaction effect: p=0.0285 main effect of sex: p=0.0378; p60: p=0.0156) (Figure 

3.10B). P1 latency significantly decreased with age in females (main effect of age: 

p=0.0055; p21-p60: p=0.0532; p30-60: p=0.0106), but no sex or age difference was 

seen in N1 or P2 latencies (Figure 3.10C). The results suggest that adult female Fmr1 

KO mice have increased hypersensitivity, based on ERP amplitudes, compared to adult 

males in the AC. Table 3.6 shows the complete ANOVA analyses of male and female 

Fmr1 KO AC ERP data across development. 

 

 

Figure 3.10. Sex difference in ERP amplitudes in the AC of Fmr1 KO mice. (A) 
Average ERPs recorded in the AC for Fmr1 KO male and female mice at p21 (left), p30 
(middle), and p60 (right). (B) Population averages of AC ERP wave amplitudes. P1 
amplitudes increase with age in male and female KO mice. N1 amplitudes increase 
with age in females. P2 amplitudes are significantly higher in adult female KO mice. (C) 
AC ERP wave latencies. P1 latency decreases with age in KO females. Full data 
results are shown in Table 3.6.  
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Frontal cortex – Fmr1 KO mice   

 Both P1 and N1 amplitudes increased with age in female KO mice (P1 – main 

effect of age: p=0.0001; p21-60: p=0.0006; p30-p60: p=0.0475; N1 – main effect of age: 

p<0.0001; p21-p60: p<0.0001; p30-p60: p=0.0002) (Figure 3.11B). However, only P1 

amplitudes significantly increased with age in male KO (p21-p60: p=0.0424) (Figure 

3.11B). Female KO have significantly increased N1 and P2 amplitudes compared to 

males, which increases age (N1 – interaction effect: p=0.0026; main effect of sex: 

p=0.0478; p60: p=0.0004; P2 – interaction effect: p=0.0376; main effect of sex: 

p=0.0027; p60: p=0.0011) (Figure 3.11B). Main effects of age were identified in P1 and 

P2 latencies, with P2 latencies increasing during development in females (P1 – main 

effect of age: 0.0570; P2 – interaction effect: p=0.0273; main effect of age: p=0.0004; 

p21-p30: p=0.0001; p21-60: p=0.0068) (Figure 3.11C). Overall, these results suggest 

that ERP amplitudes increase with age in both males and females, but female Fmr1 KO 

mice develop increased hypersensitivity with age compared to males in the FC. Table 

3.6 shows the complete ANOVA analyses of male and female Fmr1 KO FC ERP data 

across development. 
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Figure 3.11. Sex difference in ERP amplitudes in the FC of Fmr1 KO mice. (A) 
Average ERPs recorded in the FC for Fmr1 KO male and female mice at p21 (left), p30 
(middle), and p60 (right). (B) Population averages of FC ERP wave amplitudes. P1 
amplitudes increase with age in male and female KO mice. N1 amplitudes increase with 
age in females. N1 and P2 amplitudes are significantly higher in adult female KO mice. 
(C) FC ERP wave latencies. P1 latency is impacted by age. P2 latency increases with age 
in KO females. Full data results are shown in Table 3.6.  
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Table 3.6. Full statistical analysis of KO development ERP data. 

Cortical 
Region 

ERP Component Factor ANOVA 
Results 

 p-value 

AC P1 Amplitude: Interaction F(2,50)=0.7898 0.4595 

  Age F(2,50)=21.28 <0.0001 

  Sex F(1,50)=0.9544 0.3333 

 N1 Amplitude: Interaction F(2,50)=2.486 0.0935 

  Age F(2,50)=7.916 0.0010 

  Sex F(1,50)=1.747 0.1922 

 P2 Amplitude: Interaction F(2,50)=3.825 0.0285 

  Age F(2,50)1.903 0.1598 

  Sex F(1,50)=4.555 0.0378 

FC P1 Amplitude: Interaction F(2,50)=1.002 0.3743 

  Age F(2,50)=10.83 0.0001 

  Sex F(1,50)=0.3887 0.5358 

 N1 Amplitude: Interaction F(2,50)=6.737 0.0026 

  Age F(2,50)=16.96 <0.0001 

  Sex F(1,50)=4.119 0.0478 

 P2 Amplitude: Interaction F(2,50)=3.507 0.0376 

  Age F(2,50)=0.8073 0.4518 

  Sex F(1,50)=9.931 0.0027 

AC P1 Latency: Interaction F(2,50)=2.242 0.1168 

  Age F(2,50)=5.773 0.0055 

  Sex F(1,50)=0.0156 0.9008 

 N1 Latency: Interaction F(2,50)=0.2806 0.7565 

  Age F(2,50)=1.695 0.1940 

  Sex F(1,50)=0.0838 0.7734 

 P2 Latency: Interaction F(2,50)=0.7940 0.4576 

  Age F(2,50)=0.4282 0.6540 

  Sex F(1,50)=0.0013 0.9714 

FC P1 Latency: Interaction F(2,50)=0.5262 0.5941 

  Age F(2,50)=3.034 0.0570 

  Sex F(1,50)=0.1518 0.6984 

 N1 Latency: Interaction F(2,50)=0.8430 0.4364 

  Age F(2,50)=1.986 0.1479 

  Sex F(1,50)=0.1684 0.6833 

 P2 Latency: Interaction F(2,50)=3.872 0.0273 

  Age F(2,50)=9.160 0.0004 

  Sex F(1,50)=2.031 0.1603 
Two-way ANOVA results for ERP analysis. Post hoc comparisons were done using Tukey’s and Bonferroni’s multiple 
comparisons tests. See text for post hoc results. Bold text indicates statistical significance (p < 0.05). 

 
Discussion 
 
 The major novel contribution of this study is the identification of sex differences in 

the developmental trajectories of auditory temporal processing and auditory ERP 

amplitudes in Fmr1 KO mice (summary in Table 3.7). The results show genotype, cortical 

region and age-specific abnormalities in gap-ASSR responses and ERPs in female 
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mice. A significant developmental delay was seen in gap-ASSR responses in the FC, but 

not the AC, of female Fmr1 KO mice compared to WT female mice. However, when 

compared to male Fmr1 KO mice, female Fmr1 KO mice show faster maturation of 

temporal processing. ERP amplitudes were significantly higher in Fmr1 KO females than 

WT females throughout development in the AC and FC, compared to female WT mice. 

However, adult Fmr1 KO mice displayed sex differences, with females showing 

increased N1 and P2 amplitudes compared to males.  There were no sex differences in 

temporal processing or ERP amplitudes in WT mouse cortex indicating that the KO sex 

differences are not normative, and are related to the loss of FMRP.  Taken together, 

these data show diverging trajectories of ERP and temporal processing phenotypes in 

female Fmr1 KO mice, with earlier normalization of temporal processing, but more 

hypersensitive responses with development, compared to KO males.  

  p21 p30 p60 
Stimuli Cortical 

Region 
Male Female Male Female Male Female 

Gap-ASSR AC NO NO NO NO NO NO 

 FC YES YES YES NO NO NO 

ERP AC NO NO NO YES YES YES 

 FC NO NO NO YES YES YES 
Table 3.7. Summary of genotype differences of both sexes in gap-ASSR/ERP measures across development. ‘Yes’ and 
‘No’ indicates whether a genotype effect was present between WT and Fmr1-KO mice.  

 
EEG recordings from humans with FXS demonstrate altered cortical oscillatory 

activity, including elevated broadband gamma power and reduced phase locking to 

auditory spectrotemporal modulations, particularly ~40 Hz.  Increased ERP amplitudes 

are also commonly seen across studies of humans with FXS [Ethridge et al., 2019; 

Castrén et al., 2003; Knoth & Lippé, 2012; Rojas et al., 2001; St Clair et al., 1987; Van 

der Molen et al., 2012a, 2012b].  Sex differences in EEG responses in FXS have not 

received much attention, however, compared to behavioral studies [Petroni et al., 2022; 
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Nolan et al., 2017; Quin et al., 2005; Schmitt et al., 2023].  Ethridge et al. (2019) showed 

that in the resting state, females with FXS showed increased alpha power relative to 

typically-developing females, whereas a reduction in alpha power is seen in male FXS 

patients [Ethridge et al., 2019; Van der Molen & Van der Molen, 2013; Wang et al., 

2017]. In a follow-up study, Smith et al. (2021) show that males with FXS have a lower 

peak alpha frequency, but not females [Smith et al., 2021]. Additionally, females with 

FXS show stronger phase locking to spectrotemporally modulated sounds than FXS 

males [Ethridge et al., 2019]. These findings suggest sex differences in EEG responses 

in humans with FXS. Our findings of a female advantage in temporal processing in Fmr1 

KO mice is consistent with the human studies. 

One major finding of this study is the elevated ERP amplitudes in female Fmr1 

KO mice compared to WT females, and compared to male Fmr1 KO mice, in both 

cortical regions. The P1-N1-P2 ERP complex marks the pre-attentive detection of sound 

and can vary with stimulus features. P1 and N1 amplitudes mark initial sound detection, 

including thalamocortical input and primary auditory cortex activity, respectively. P2 

amplitudes are thought to be related to arousal as auditory input to the mesencephalic 

reticular activating system contributes to P2 generation [Crowley & Colrain, 2004]. 

Because N1 and P2 are generated by structures involved in early auditory processing, 

their enhancement, which is commonly seen in FXS, may reflect altered perception of 

auditory stimulus [Näätänen et al., 2007]. Our data shows that female KO mice have 

significantly larger P2 amplitudes in both AC and FC compared to male KO mice.  This 

suggests enhanced activation of the arousal component in female Fmr1 KO mice. 

Arousal, along with anxiety and avoidance, represent three key behaviors exhibited in 

response to acute, potential, and sustained threats. Furthermore, these are the typical 
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responses to aversive or dangerous stimuli. Previous studies suggest that the 

dysregulation of these responses can result in clinical manifestation of emotional 

disorders, including anxiety and depression [Bartholomay et al., 2019]. It is possible in 

humans with FXS that evoked sensory responses are larger in female patients 

compared to males. Gesi et al., (2021) found that adult females with ASD reported 

significantly higher scores than men in the hyper/hyporeactivity to sensory input domain, 

but clearly additional studies are needed to determine if robust sex differences are seen 

in abnormal sensory sensitivity in humans with ASD, as suggested by our preclinical 

data [Gesi et al., 2021].  While males with ASD more commonly show externalizing 

behavior problems, such as aggression, hyperactivity and restricted behaviors, females 

with FXS show greater internalizing symptoms, including anxiety and depression, as well 

as social difficulties [Hattier et al., 2011; Mandy et al., 2011; Szatmari et al., 2011; Bölte 

et al., 2011; Giarelli et al., 2010; Solomon et al., 2011]. These opposing symptomologies 

may be due in part to increased activation of the arousal system in females with FXS. 

Increased N1 amplitudes were seen in female FC (and a trending increase of N1 in AC), 

compared to male KO mice suggesting that hypersensitive cortical responses are further 

enhanced in female mice. No sex differences were seen in WT ERP amplitudes 

suggesting a deviation in KO females from a normative trajectory. The difference 

between male and female KO mice in ERP amplitude is largest in the P60 group, 

suggesting a late developing sex difference in hypersensitivity.  

A second major finding of this study is that temporal processing matures faster in 

the female Fmr1 KO mice, compared to males. In male KO mice, reduced ITPC is seen 

in the FC at both p21 and p30, but in the female KO mice, reduced ITPC is only present 

at p21.  While tonotopic maps and the balance between excitatory and inhibitory inputs 
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are established earlier in development (<p21), the p30-40 window is a critical period for 

development of selectivity for spectrotemporally complex sounds in the mouse auditory 

cortex [Oswald & Reyes, 2008, 2010; Kim et al., 2013; Carrasco et al., 2013; 71-73, 

Meng et al., 2019; Bhumika et al., 2019; Nakamura et al., 2020].  Impairments in 

temporal processing during this time window in male Fmr1 KO mice will lead to 

abnormal development of cortical selectivity for complex sounds, and consequently to 

long-term abnormalities in auditory processing.  In female Fmr1 KO mice, temporal 

processing is WT-like before p30 and this earlier maturation may result in less severe 

long term consequences in processing of complex sounds.  Disruptions of critical period 

timelines cause long term impairments in behavioral phenotypes. Although these 

behaviors might appear normalized by adulthood, any irregularities during key 

developmental phases will have long-term consequences for behaviors that build on 

normal development of responses. For example, developmental delay in FC temporal 

processing may lead to long term abnormalities in behaviors that depend on accurate 

temporal processing such as speech, language and binaural processing. Given the 

importance of selectivity to spectrotemporal cues in the development of human speech 

and language function, a similar delay in development of normal temporal processing in 

males with FXS, compared to females, will result in sex differences in long term deficits 

in language function.  Studies of development of temporal processing and associations 

with language function are needed in male and female children with FXS. 

The development of temporal response properties in the primary auditory cortex 

of both mice and rats has been shown to be cell-type specific [Froemke et al., 2011; Cai 

et al., 2017]. Although inhibitory responses mature later than excitatory responses, 

regular-spiking neurons (putative excitatory cells) demonstrate weaker stimulus-following 
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ability compared with fast-spiking (putative inhibitory) neurons [Cai et al., 2017; Knipper 

et al., 2022]. Postsynaptic current duration also differs in the developing auditory cortex, 

such that inhibitory currents are prolonged compared to excitatory and cause a slower 

following capacity of two closely timed stimuli [Cai et al., 2017; Kotak et al., 2008; 

Takesian et al., 2012; Oswald & Reyes, 2010].  Although the inhibitory duration gradually 

shortens with development, the longer durations could cause overlap and summation of 

inhibitory inputs evoked by closely following stimuli, such as in the beginning and end of 

a gap. Inhibitory dysfunction in FXS is well-established. Nomura et al. (2017) 

demonstrated a delay in the maturation of the intrinsic properties of fast-spiking 

interneurons in the sensory cortex as well as a deficit in the formation of excitatory 

synaptic inputs on to these neurons in Fmr1 KO mice at p9 [Nomura et al., 2017]. 

Inhibitory circuits have been implicated in gap detection, however it has been suggested 

that they provide dynamic gain control over local activity rather than play a specialized 

role in gap detection. Specifically, Keller et al. (2018) showed that parvalbumin-positive 

interneurons have stronger on- and off-responses as well as post-response suppression 

compared to pyramidal neurons. Similar properties were seen for white noise bursts, 

suggesting that these are generalized response properties of parvalbumin-positive cells 

[Keller et al., 2018]. Given the impairment of inhibition in FXS, future studies should 

investigate the role of inhibitory cell types using gap detection paradigms. While these 

mechanisms may underlie improved temporal processing with age, there appears to be 

no sex differences in the WT mice.  How sex differences emerge in the Fmr1 KO mice 

has not been explored in terms of cell-type specific responses. However, it should be 

noted that temporal processing deficits may arise purely from local cortical circuit deficits 

and/or from subcortical deficits (including brainstem deficits) [Nguyen et al., 2020; 
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McCullagh et al., 2020].  FMRP is normally expressed along most of the auditory 

pathway, and future studies should examine the effects of regional FMRP loss along the 

auditory pathway on temporal processing development in male and female mice.   

A consistent phenotype seen in both male and female Fmr1 KO mice is that 

developmental delays in temporal processing are seen in the FC, but not the AC. These 

findings suggest two key points. Firstly, a lack of deficit in the AC suggests that the FC 

does not simply inherit auditory responses from the AC, but rather additional local 

processing within the FC and/or auditory pathways that bypass the AC may be involved 

in producing phase locked responses in the FC. Secondly, the dichotomy of maturation 

in males and females could bring about long-term consequences in the FC related to 

top-down interactions and could possibly give rise to the opposing timelines of language 

development seen in humans with FXS. The FC induces top-down modulation of AC 

responses in a task- and attention-dependent manner [Fritz et al., 2010]. FC-AC 

connection and its modulation of speech have also been evaluated in humans with FXS. 

Speech production depends on feedforward control and the synchronization of neural 

oscillations between the FC and AC. Specifically, the interactions of these two regions 

allow for comparison of the corollary discharge of intended speech generated from an 

efference copy of speech to the actual speech sounds produced, a process essential for 

making adaptive adjustments to optimize future speech [Schmitt et al., 2019]. 

Furthermore, top-down corticothalamic projections to the medial geniculate body have 

been shown to influence temporal processing and stimulus encoding [Kommajosyula et 

al., 2021].  Atypical regional connectivity patterns, with both hyper- and hypo-connectivity 

are observed in ASD [Müller et al., 2011; O’Reilley et al., 2017].  Long-range connectivity 

appears to be reduced, while local connectivity may be increased. The few studies in 
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FXS that have examined cross-regional or cross-frequency coupling show abnormal 

connectivity. However, even fewer studies have examined sex differences in 

connectivity. Wang et al. (2017) used both males and females with FXS and found 

increased theta-to-gamma but decreased alpha-to-gamma band amplitude coupling in 

resting EEG signals in both sexes [Wang et al., 2017]. Schmitt et al. (2022) also reported 

gamma band hyper-connectivity and alpha band hypo-connectivity within frontal cortex 

in individuals with FXS, but once again found there to be no sex difference [Schmitt et 

al., 2022].  Future studies should examine sex differences in FC-AC functional 

connectivity during development in humans with FXS to identify potential correlations 

with abnormal language development. 

The mechanisms responsible for the earlier maturation of temporal processing in 

the female Fmr1 KO mice are unclear. A recent human study discovered a prolonged 

alpha state during the pre-stimulus period of an auditory evoked task in females with 

FXS. Norris et al. (2022) hypothesized that the length of time spent in alpha may reflect 

a compensatory mechanism that could potentially ‘rescue’ sensory processing abilities 

[Norris et al., 2022]. Therefore, the sustained alpha state identified in females could 

account for improvements seen in females versus males with FXS. Another potential 

mechanism involves a sex-specific interaction between Group 1 metabotropic receptors 

(mGluR1 and mGluR5) and estrogen receptor α (ERα). This is an intriguing hypothesis 

as elevated mGluR5 signaling is heavily reported in FXS [Huber et al., 2002; Bear et al., 

2004; Darnell & Klann, 2013]. This sex-specific interaction between Group 1 

metabotropic receptors and ERα has been identified specifically in female neurons in 

multiple brain regions [Martinez et al., 2014; Tabatadze et al., 2015; Tonn Eisinger et al., 

2018; Santollo & Daniels, 2019]. In the hippocampus, estradiol acts via ERα to initiate 
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postsynaptic mGluR1-dependent mobilization of the endocannabinoid anandamide to 

suppress GABA release [Huang & Woolley, 2012]. Additionally, this dual interaction has 

been shown to mediate the estradiol effects on hippocampal memory consolidation 

[Boulware et al., 2013]. ERα-mGluR5 signaling was seen exclusively in female striatal 

neurons as well [Grove-Strawser et al., 2010]. This interaction of receptors has not been 

investigated in rodent models of FXS. Future studies should evaluate this sex-specific 

mechanism in female neurons as it could provide an explanation for the sex differences 

seen in Fmr1 KO mice. 

 

Conclusions 

  This is the first study to test and report sex differences during development in 

sensory processing in any ASD animal model.  In terms of temporal processing, we used 

the 40 Hz ASSR paradigm, which models phonemic rates in speech [Luo & Poeppel, 

2012]. Slower oscillations (delta to theta) may be more relevant to aspects of intonation 

and syllabic rates, and other aspects of speech with slower rates. Future studies will 

examine 10 and 20 Hz ASSRs in the Fmr1 KO and WT mice, that may allow a prediction 

of the nature of speech deficits in humans with FXS. Given the robust sex differences 

and different trajectories of temporal processing versus hypersensitivity phenotypes in 

male and female mice with an identical gene knockout, future studies should examine 

possible role of gonadal hormones in the emergence of sex differences, either with 

gonadectomy at specific ages, or implants to release hormones over a specific time 

window.  The peri-pubertal window is a critical period of development in Fmr1 KO mice 

that is marked by cortical hyperexcitability and reduced inhibitory interneuron function 

[Wen et al., 2018, 2019; Kulinich et al., 2020]. However, these studies were carried out 



128 
 

only in male mice.  Future studies will characterize these developmental milestones in 

female Fmr1 KO mice. In order to effectively treat humans with FXS, it is imperative to 

understand the sex differences and the developmental trajectory of phenotypes that are 

likely to be used as clinical outcome measures, as opposed to just adult male 

comparisons. The differing trajectories of temporal processing and hypersensitivity in 

female compared to male KO mice suggests that more developmental studies of human 

females with FXS are needed.   Future studies in humans with FXS should evaluate 

temporal processing across age in both males and females to determine if similar delays 

in development are present, and if the delay relates to language function.  
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Chapter 4 

 

Developmental Trajectory and Sex Differences in Auditory Processing in a PTEN-

deletion model of Autism Spectrum Disorders 

 

Abstract 

Autism Spectrum Disorders (ASD) encompass a wide array of debilitating symptoms, 

including severe sensory deficits and abnormal language development. Sensory deficits 

early in development may lead to broader symptomatology in adolescents and adults.  

The mechanistic links between ASD risk genes, sensory processing and language 

impairment are unclear.  There is also a sex bias in ASD diagnosis and symptomatology.  

The current study aims to identify the developmental trajectory and genotype- and sex-

dependent differences in auditory sensitivity and temporal processing in a Pten-deletion 

(phosphatase and tensin homolog missing on chromosome 10) mouse model of ASD. 

Auditory temporal processing is crucial for speech recognition and language 

development and deficits will cause language impairments.  However, very little is known 

about the development of temporal processing in ASD animal models, and if there are 

sex differences. To address this major gap, we recorded epidural 

electroencephalography (EEG) signals from the frontal (FC) and auditory (AC) cortex in 

developing and adult Nse-cre PTEN mice, in which Pten is deleted in specific cortical 

layers (layers III-V) and the dentate gyrus (PTEN KO). We quantified resting EEG 

spectral power distribution, auditory event related potentials (ERP) and temporal 

processing from awake and freely moving male and female mice. Temporal processing 

is measured using a gap-in-noise-ASSR (auditory steady state response) stimulus 
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paradigm. The experimental manipulation of gap duration and modulation depth allows 

us to measure cortical entrainment to rapid gaps in sounds. Temporal processing was 

quantified using inter-trial phase clustering (ITPC) values that account for phase 

consistency across trials. The results show genotype differences in resting power 

distribution in PTEN KO mice throughout development. Male and female KO mice have 

significantly increased beta power but decreased high frequency oscillations in the AC 

and FC. Both male and female PTEN KO mice show diminished ITPC in their gap-ASSR 

responses in the AC and FC compared to control mice. Overall, deficits become more 

prominent in adult (p60) mice, with KO mice having significantly increased sound evoked 

power and decreased ITPC compared to controls. While both male and female KO mice 

demonstrated severe temporal processing deficits across development, female KO mice 

showed increased hypersensitivity compared to males, reflected as increased N1 and 

P2 amplitudes. These data identify a number of novel sensory processing deficits in a 

PTEN-ASD mouse model that are present from an early age. Abnormal temporal 

processing and hypersensitive responses may contribute to abnormal development of 

language function in ASD.  

 

Introduction 

Autism spectrum disorders (ASD) are characterized by reduced social 

interactions, impaired verbal and nonverbal communication, and repetitive behaviors 

[Park et al., 2016; Ratajczak, 2011; Kirkovski et al., 2013; Pickett & London, 2005]. The 

rate of ASD diagnoses is ~ 1 in 44 children in the United States [Christensen et al., 

2018]. ASD has traditionally been diagnosed within the first three years of life, with some 

of the earliest signs recognized in infants being delays in language and social 
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engagement [Park et al., 2016]. The core symptoms of ASD such as abnormal sensory 

sensitivity and processing [Picket & London, 2005], may lead to speech and language 

deficits, but very little is known about the underlying mechanisms of language deficits in 

ASD. 

 Language impairments in ASD include syntactic, semantic, and pragmatic 

aspects [Foss-Feig et al., 2017; Tager-Flusberg & Caronna, 2007; Rapin & Dunn, 2003; 

Jeste & Nelson, 2009]. It is hypothesized that auditory spectrotemporal processing 

deficits may be at the root of speech and language impairments. The ability to make fine 

temporal discriminations of sound is critical to speech recognition, language 

development and sound localization [Michalewski et al., 2005]. Temporal processing of 

sound can be broadly divided into two categories: temporal integration and temporal 

acuity/resolution [Eddins & Green, 1995]. Temporal integration describes processing in 

which the sound level and/or duration of the signal affects the summation of neuronal 

activity, and temporal acuity/resolution is the minimum time interval within which the 

auditory system can resolve two signals [Eggermont, 2015; Jesteadt et al., 1976; Shinn 

& Musiek, 2003]. Individuals with ASD show impairments with both these temporal 

aspects, including discrimination of sound duration, onset and offset, and rapid changes 

within them [Kwakye et al., 2011; Lepistö et al., 2006; Oram Cardy et al., 2005; 

Orekhova et al., 2009]. Children with ASD show difficulties reproducing the lengths of 

auditory and visual stimuli. Children and adults with ASD produce abnormal neural 

responses to fluctuations in pitch of repeated, sequential auditory stimuli [Szelag et al., 

2004; Tecchio et al., 2003; Gomot et al., 2006]. Additionally, increased gap-detection 

threshold has been reported in ASD, a paradigm commonly used to assess auditory 

temporal acuity. Impaired gap detection thresholds in children were associated with 
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lower phonological processing scores [Foss-Feig et al., 2017]. These studies suggest 

that temporal processing is critical for many aspects of speech recognition, and deficits 

may lead to impaired language development in ASD.  

A genetic cause may be identified in up to 25% of ASD, with chromosomal 

rearrangements and coding-sequence mutations responsible for ∼10–20% and ∼5–10% 

of ASD cases, respectively [Guang et al., 2018; Huguet et al., 2013; Ziats & Rennert, 

2016]. One gene that exhibits a strong link and comorbidity with ASD is phosphatase 

and tensin homolog deleted on chromosome 10 (PTEN). PTEN is a negative regulator of 

the PI3K/AKT/mTOR pathway that influences cellular processes including growth, 

proliferation, survival, apoptosis, metabolism, and cell migration [Endersby & Baker, 

2008]. In the brain, components of the PI3K/AKT/mTOR pathway are present at 

synapses and are essential for synaptogenesis and regulation of dendritic spine 

morphology [Sawicka & Zukin, 2012]. Growing evidence suggests that dysregulation of 

this critical pathway may be the underlying cause of numerous neurodevelopmental 

disorders, including ASD.  

 Humans carrying germline PTEN mutations display ASD-related behaviors [Eng, 

2003; Reardon et al., 2001; Goffin et al., 2001; Zori et al., 1998]. A small cohort study 

showed a number of PTEN mutations in ASD cases with macrocephaly [Butler et al., 

2005]. Larger cohort studies reflected this initial finding, with PTEN mutations being 

found in 17% of macrocephalic ASD cases [Hobert et al., 2014; Klein et al., 2013; 

McBride et al., 2010; Varga et al., 2009; Herman et al., 2007; Buxbaum et al., 2007]. 

Humans with PTEN-ASD have significant intellectual impairment, decreased working 

memory and impaired language development [Tilot et al., 2015; Frazier et al., 2015; 

Frazier, 2019]. The underlying mechanisms of abnormal or delayed language function in 
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PTEN-ASD, or indeed in other forms of ASD, remain unclear. The link between auditory 

temporal processing and speech and language indicates that studying temporal 

processing in animal models is a feasible and important bridge to understand 

mechanisms of language dysfunction in ASD. Therefore, the first major goal of this study 

was to quantify the development of temporal processing in a PTEN mouse model of 

ASD.   

 Mutations of PTEN are the most common cause of breast cancers due to their 

negative regulation of the PI3K/AKT/mTOR pathway, a cancer that is predominantly 

diagnosed in women [Campbell et al., 2001]. This sex bias is due to the expression of 

estrogen receptor α (ERα) in 70-80% of breast cancers [Vilgelm et al., 2006]. 

Hyperactivation of the PI3K/AKT/mTOR pathway in breast cancer cells results in 

enhanced phosphorylation and the subsequent hyperactivation of ERα [Yamnik et al., 

2009; Ishida et al., 2018; Ciruelos, 2014; Page et al., 2009]. Furthermore, an interaction 

between ERα and Group 1 metabotropic receptors (mGluR1 and mGluR5) has been 

identified specifically in female neurons in multiple brain regions, including the 

hippocampus and striatum [Martinez et al., 2014; Tabatadze et al., 2015; Tonn Eisinger 

et al., 2018; Santollo & Daniels, 2019]. A recent study demonstrated hyperexcitable local 

neocortical circuits in female, but not male, PTEN KO mice, observed as prolonged, 

spontaneous persistent activity states (UP states) [Molinaro et al., 2024]. However, it is 

currently unclear if this sex bias in PTEN deletions promote abnormal phenotypes in the 

sensory responses of females in vivo. Therefore, the second major goal of this study 

was to determine if sex differences are present in the development of temporal 

processing and sensory sensitivity in the PTEN mouse model of ASD.  
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We studied the Nse-cre PTEN mouse model (hereafter referred to as ‘PTEN KO’) 

in which PTEN is reduced in layers III-V of the neocortex and the dentate gyrus of the 

hippocampus. Nse-cre PTEN mutants develop ASD-related abnormalities, including 

reduced social activity, increased anxiety, and seizures [Ogawa et al., 2007; Kwon et al., 

2006b]. Furthermore, PTEN KO mice demonstrate increased activity in response to 

sensory stimuli in a pre-pulse inhibition paradigm [Kwon et al., 2006b]. Reminiscent of 

human macrocephaly, a consistent finding across studies of this mouse model is 

hypertrophy and the subsequent enlargement of the deep cortical layers and dentate 

gyrus causing compression and neuronal loss [Takeuchi et al., 2013].  More specifically, 

this model provides us with the opportunity to test whether and how sex-differences in 

sensory processing abnormalities may arise during development in an ASD model with 

cortical abnormalities. Here we test the hypothesis that PTEN KO mice show abnormal 

oscillatory activity and greater auditory sensitivity and temporal processing 

abnormalities.  We also quantified sex differences by recording from male and female 

mice. Our data show that abnormal PTEN expression in the cortex significantly impacts 

oscillatory activity in male and female mice at rest and during sound-evoked responses. 

Overall, we report considerable genotype differences across development in both male 

and female mice, with increasing impairments in the adult mice, compared to early 

development.     

  

Methods 

Mice: All procedures were approved by the Institutional Animal Care and Use Committee 

at the University of California, Riverside (Reference number: 20220020; Approval date: 

07/19/2022). Because germline PTEN homozygous knockouts are embryonically lethal, 
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mice with non-lethal PTEN mutations have been established to study cellular/circuit 

dysfunctions and ASD phenotypes [Di Cristofano et al., 1998]. These models include 

germline heterozygous loss-of-function, germline homozygous cytoplasm-predominant 

knock-in, and conditional homozygous loss-of-function [Clipperton-Allen & Page, 2020]. 

The present study used a conditional PTEN knock-out (KO) mouse model that utilizes a 

neuron-specific enolase (Nse) promoter-driven cre [Kwon et al., 2006a]. This PTEN 

model provides the ability to assess the region- and cell-type specific contributions that 

give rise to overall phenotypes.  Nse is a glycolytic enolase that is expressed exclusively 

in neurons. Cre activity becomes detectable in the brain at p2 in differentiated neurons 

located within the cortex and hippocampus. At four weeks of age, cre activity remains 

restricted to the following regions and percentage of neurons in the brain: layers III-V of 

the cortex (54.5%), dentate gyrus (48.7%), CA3 (37.6%) and polymorphic layer (PML) 

(58.3%) in the hippocampus. No cre activity is detected in glial cells [Kwon et al., 2006a].  

PTEN-mutant mice (Nse-cre; Ptenflox/flox) were generated by breeding male 

PTENflox/flox mice (JAX, stock #006440) and female Nse-cre; PTENflox/WT mice on the 

C57bl6/J background (Provided by Dr. Kimberly Huber, UTSW). This breeding 

arrangement produces litters containing three different genotypes: control (cre negative), 

PTEN-heterozygous (Nse-cre; Ptenflox/WT), and PTEN-KO (Nse-cre; Ptenflox/flox). Male and 

female control and PTEN-KO mice were used for the current study. All mice were 

genotyped via toe clipping (Transnetyx) and studies were done before the onset (<p80) 

of functional age-related hearing loss in the C57bl6/J strain of mice [Johnson et al., 

1997]. One to five mice were housed in each cage under a 12:12-h light-dark cycle and 

fed ad libitum. A cross-sectional, as opposed to a longitudinal, design was used in this 

study as it is impractical to place epidural screw electrodes in brains and skulls that are 
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still developing. The following age ranges and sample sizes were used in this study:  

Control [Males: p21 (n=15), p30 (n=15), p60 (n=12); Females: p21 (n=11), p30 (n=11), 

p60 (n=15)] and PTEN KO [Males: p21 (n=12), p30 (n=10), p60 (n=10); Females: p21 

(n=12), p30 (n=10), p60 (n=12)].  

Surgery: Different groups of mice underwent epidural electrode implantation surgery at 

three age ranges: p18-20, p27-p29, p57-p66. Surgical procedures have been previously 

published [Croom et al. 2023, Rumschlag et al., 2021; Rumschlag & Razak, 2021]. 

Briefly, mice were anesthetized using intraperitoneal (i.p.) injections of either 80/20 

mg/kg of ketamine/xylazine (young mice) or 80/10/1 mg/kg 

ketamine/xylazine/acepromazine (adult mice). The anesthetic state was monitored 

throughout the procedure by toe pinch reflex every 10-15 minutes. ETHIQA-XR (1-shot 

buprenorphine, 3.25 mg/kg body weight) was administered via subcutaneous injection 

prior to surgery. An incision was made to expose the scalp following the removal of fur, 

and sterilization (alcohol and iodine wipes) of the scalp. A Foredom dental drill was used 

to drill ~1mm diameter holes in the skull over the right AC, right FC, and left occipital 

cortex. The screw positions were determined using skull landmarks and coordinates 

previously reported [Wen et al., 2019; Rumschlag & Razak, 2021; Lovelace et al., 2018; 

Lovelace et al., 2020; Rumschlag et al., 2021] and were based on single unit recordings 

[Rotschafer & Razak 2014; Wen et al., 2019; Trujillo et al., 2011]. The wires extending 

from three-channel posts were wrapped around 1 mm screws and driven into the pre-

drilled holes. Dental cement was applied to secure the implant. Mice were placed on a 

heating pad until fully awake and were allowed 48-72 hours for recovery before EEG 

recordings were made. 
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EEG recordings: All EEG recordings were obtained from awake and freely moving mice. 

EEG recordings were performed at three developmental time points: p20-23, p29-31, 

p59-p70, which we refer to as p21, p30 and p60, respectively. Recordings were obtained 

from the AC and FC electrodes, using the occipital screw as reference. Mice were 

placed in an arena inside a Faraday cage. The cage was located on a vibration isolation 

table in a sound-insulated and anechoic booth (Gretch-Ken, OR). Mice were briefly 

anesthetized with isoflurane and attached to an EEG cable via the implanted screws and 

then habituated to the recording arena with no stimuli for 15 minutes prior to sound 

evoked recordings. The EEG recording set-up has been previously reported [Rumschlag 

et al., 2021; Rumschlag & Razak, 2021; Croom et al., 2023]. Briefly, the attached cable 

was connected via a commutator to a TDT (Tucker Davis Technologies, FL) 

RA4LI/RA4PA headstage/pre-amp, which was connected to a TDT RZ6 multi-I/O 

processor. OpenEx (TDT) was used to simultaneously record EEG signals and operate 

the LED light used to synchronize the video and waveform data. TTL pulses were 

utilized to mark stimulus onsets on a separate channel in the collected EEG data. The 

EEG signals were recorded at a sampling rate of 24.414 kHz and down-sampled to 1024 

Hz for analysis. All raw EEG recordings were visually examined prior to analysis for 

artifacts, including loss of signal or signs of clipping. No EEG data collected in this study 

was rejected after examination.   

Resting: For resting EEGs (no sound stimulus presented), mice were habituated in the 

arena for 15 minutes followed by 5 minutes of recording. Power spectral densities were 

analyzed in both AC and FC. The traces were split into Hanning-windowed 1-second 

segments with 50% overlap to avoid edge artifacts and spectral splatter and then 

transformed to the frequency domain via Fourier transform [Rumschlag et al., 2021]. The 
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average power was calculated by averaging the spectra from each of the 1-second 

segments and were then split into frequency bands (theta: 3-7 Hz, alpha: 8-13 Hz, beta: 

14-29 Hz, low gamma: 30-59 Hz, high gamma: 61-100 Hz, and high-frequency 

oscillations (HFO): 101-250 Hz). Gamma power was split to low and high ranges as 

studies have suggested that rhythms in the 30–60 Hz band and higher frequency 

broadband gamma (>50 Hz) are distinct and generated by different mechanisms [Dvorak 

& Fenton, 2014; Balakrishnan & Pearce 2015]. The lower gamma frequency rhythm may 

reflect parvalbumin cell activity while the higher gamma frequency and HFO may be 

related to spiking activity near the electrodes [Ray & Maunsell 2011; Buzsáki & Wang 

2012]. The relative power of each frequency band was used in the analysis, representing 

the power within each frequency band relative to the total power. 

Auditory ERP: Narrowband noise stimuli (6-12 kHz, 120 repetitions, 100 ms duration, 

5ms rise/fall time, 0.25 Hz repetition rate) were presented at 75 dB SPL using a speaker 

(MF1, Tucker Davis Technologies, FL) situated 20 cm above the floor of the arena. The 

EEG trace was split into trials, using the TTL pulses to mark sound onset [Croom et al., 

2023; Rumschlag & Razak 2021; Rumschlag et al., 2021]. Each trial was baseline 

corrected, such that the mean of the 250 ms baseline period prior to sound onset was 

subtracted from the trial trace for each trial. Each trial was then detrended (MATLAB 

detrend function) and all trials were averaged together. Time-frequency analysis was 

performed with a dynamic complex Morlet wavelet transform with Gabor normalization.  

The wavelet parameter was set for each frequency to optimize time-frequency 

resolution. The non-baseline normalized single trial power (STP) does not correct for 

mean baseline power levels, allowing for the identification of ongoing ‘background 

activity’ during stimulus presentation. To compare the responses across genotype at 
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each developmental time point, a non-parametric permutation test was used, to find 

clusters of significant values [Maris & Oostenveld, 2007]. First, a t-test was run on each 

time-frequency point for the two groups being compared, yielding the values of the t 

statistic for all points. The values of the t statistic corresponding to p<0.025 were 

considered significant. Clusters of significant t values were found and their area was 

measured. Next, the group assignments were shuffled randomly, and the t-tests and 

cluster-measurements were run again on the surrogate groups. This surrogate analysis 

was performed 2000 times to generate a distribution of cluster sizes that we would 

expect to find by chance. Originally identified clusters that were larger than 95% of the 

surrogate clusters were considered significant. This method allows for the identification 

of significant differences between groups without performing excessive comparisons. 

Gap-ASSR: The stimulus used to assess auditory temporal processing is termed the ‘40 

Hz gaps-in-noise ASSR’ (auditory steady state response, henceforth, ‘gap-ASSR’) 

[Rumschlag & Razak, 2021; Croom et al., 2023]. The stimulus contains alternating 250 

ms segments of noise and gap interrupted noise presented at 75 dB SPL. The gaps are 

placed 25 ms apart, resulting in a presentation rate of 40 Hz, a rate that produces the 

strongest ASSR signal when measured from the AC and frontal regions and may reflect 

the resonance frequency of the underlying neural circuits [Galambos et al., 1981; Pastor 

et al., 2002; Llinas, 1988; Llinas et al., 1991; Rosanova et al., 2009; Kim et al., 2015; 

Hwang et al., 2019]. For each gap in noise segment, the gap duration and modulation 

depth are chosen at random. Gaps of 2, 4, 6, 8, 10, or 12 ms durations and modulation 

depths of 75 and 100% were used. To measure the ability of the cortex to consistently 

respond to the gaps in noise, inter-trial phase clustering (ITPC) at 40 Hz was measured 

[Cohen, 2014]. ITPC measures the phase consistency of the recorded signal across 
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multiple trials.  The ITPC is based on the distribution of phase angles in the EEG 

response at 40 Hz across all trials and reflects the precise timing of 40 Hz activity in the 

underlying neural generators. If the cortical regions are consistently responding to a 

specific gap width across multiple trials, the ITPC values will be high (maximum of 1). If 

the response phase angle is not consistent across trials, the expected ITPC value will be 

significantly lower (minimum of zero). The EEG trace was transformed using a dynamic 

complex Morlet wavelet transform. The trials corresponding to each parametric pair (gap 

duration + modulation depth) were grouped together. The ITPC was calculated for each 

time-frequency point as the average vector for each of the phase unit vectors recorded 

across trials (trial count >100 trials per parametric pair). The ITPC values at 40 Hz were 

averaged to extract the mean ITPC for the parametric pairs in the AC and FC.  

Statistics:  Statistics were performed on GraphPad Prism (ERP) or R (gap-ASSR). To 

evaluate the effects of genotype (2 levels), age (3 levels) and sex (2 levels), three-way 

ANOVA was used for resting and ERP analysis. Post hoc comparisons were carried out 

using the estimated marginal means and p-values with adjusted with Bonferroni 

correction. The resting and ERP data was tested for normality using Shapiro-Wilk tests.  

A four-way repeated measures ANOVA was used for gap-ASSR analysis, with the four 

factors being genotype (2 levels) X age (3 levels) X sex (2 levels) X gap duration (6 

levels). A repeated measures ANOVA was chosen as multiple gap duration data points 

were collected from a single mouse in a recording session. Mauchly Tests for Sphericity 

were utilized and corrected for using the Greenhouse-Geisser corrections if necessary. 

Post hoc contrasts with Sidak corrections for multiple comparisons were used. Cortical 

regions (AC, FC) and modulation depths (75%, 100%) were analyzed separately. We 

evaluated the appropriateness of the data for analysis via ANOVA, in particular the 
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assumption of the normality of the residuals. None of the residuals had measures of 

skewness or kurtosis that exceeded ±2, which is one indication of acceptable normality 

[West et al., 1995]. Moreover, the residuals were evaluated via quantile-quantile plots. In 

each of the analyses, the correspondence between the theoretical normal distribution 

and the obtained residuals was within acceptable bounds. 

 

Results 

ASD-linked genes, such as PTEN, may interact with sex-specific pathways, 

leading to the different behavioral and neuroanatomical phenotypes in males and 

females [Ferri et al., 2018; Werling et al., 2016; Evans et al., 2019].  However, very little 

is known about development or sex differences in sensory processing in PTEN 

mutations, or indeed in other ASD animal models.  The main goal of this study was to fill 

this major gap by characterizing the developmental trajectory of cortical resting EEG and 

sound-evoked responses in the Nse-cre PTEN-deletion model. We tested the hypothesis 

that sex-specific cortical hyperexcitability, abnormal resting power distributions, and 

temporal processing deficits would be present in PTEN model mice compared to control 

mice throughout development.  

 

Male and female PTEN KO mice have increased beta power and decreased high 

gamma power and high frequency oscillations 

We quantified resting (no stimulus) spectral power distribution in male and female 

control and PTEN KO mice in the auditory cortex (AC) and frontal cortex (FC) at three 

developmental time points (p21, p30 and p60). Figure 4.1 and Tables 4.1-4.2 show the 

results of the full statistical analyses of resting spectral power. Post hoc comparisons 
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can be found in Supplementary Tables 4.1-22. The major genotype difference in both 

cortical regions is increased beta power and a reduction in high gamma power and high 

frequency oscillations.  

 

Auditory Cortex 

 There is a significant impact of age across all frequency bands in the AC (Figure 

4.1, top row; Supplementary Tables 4.1-6). Beta power was significantly enhanced in 

both male and female KO mice compared to their respective controls across 

development (Age x Genotype interaction: p<0.0001) (Figure 4.1C). This genotype effect 

was present in females as early as p21, but only became significant in males at p30 and 

p60 (Supplementary Table 4.7). Similar phenotype differences between KO males and 

females were seen in low gamma power (Figure 4.1D). Female KO mice showed 

significantly increased low gamma power compared to female controls at p21 and p30, 

while male KO mice showed increased power at p30 and p60 (Supplementary Table 

4.8). A sex difference between KO males and females was also identified in low gamma 

power, which differed across ages (Age x Sex interaction: p=0.0082). Notably, adult KO 

males have significantly increased low gamma power compared to KO females 

(Supplementary Table 4.9). An age x sex x genotype interaction was also identified, 

suggesting that genotype differences in low gamma power varied between the sexes 

across development (Age x Sex x Genotype interaction: p=0.0149). Age and sex 

significantly impacted high gamma power (Age main effect: p=0.0136; Sex main effect: 

p=0.0424) (Figure 4.1E, Supplementary Table 4.10). Power in the high gamma 

frequency band was lower in adult KO females compared to control females 

(Supplementary Table 4.11). No genotype differences in high gamma power were seen 
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in males at any age. HFO were also impacted by age (Age main effect: p=0.0031) 

(Figure 4.1F). Both male and female KO mice showed a significant decrease in HFO 

compared to their respective controls at p30 and p60, but only males showed decreased 

levels at p21 (Figure 4.1F, Supplementary Table 4.12). Taken together, these results 

suggest a shift in the relative spectral power distribution in KO mice in the AC, such that 

beta power increases with age while higher frequencies (high gamma and HFO) 

decrease. Furthermore, phenotype differences between KO males and females are seen 

in beta, low and high gamma power, as well as HFO.  

 

Frontal cortex 

 Similarly to the AC, age significantly impacted all the frequency bands (Figure 

4.1, bottom row; Supplementary Tables 4.13-18). Theta power was affected by genotype 

in the FC (Genotype main effect: p=0.0470) (Figure 4.1G, Supplementary Table 4.19). 

An age x genotype interaction was identified for alpha power, suggesting that the effect 

of genotype differed across ages (Age x Sex interaction: p=0.0108) (Figure 4.1H). 

Similarly to the AC, beta power was significantly enhanced in both male and female KO 

mice compared to their respective controls across development (Age x Genotype 

interaction: p<0.0001) (Figure 4.1I). This genotype effect was present in females as early 

as p21, but only became significant in males at p30 and p60 (Supplementary Table 

4.20). Power in the high gamma frequency band was lower in both male and female KO 

mice throughout development (Age x Genotype interaction: p=0.0109) (Figure 4.1K). 

Notably, high gamma power was significantly lower in adult male and female PTEN KO 

mice (Supplementary Table 4.21). A similar trend was identified in HFO, such that HFO 
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decreased with age in male and female KO mice, dropping below control levels by p30 

(Age x Genotype interaction: p=0.0290)(Figure 4.1L, Supplementary Table 4.22).  

Taken together, with reduced PTEN expression in the cortex, a major outcome in 

both AC and FC, is the increase in resting EEG beta power and a decrease in high 

gamma power and high frequency oscillations. In both male and female control mice, 

beta power remained relatively stable across development, but PTEN mutation leads to 

an increased beta power with age and this effect was observed earlier in females, as 

compared to males. High frequency oscillations remain stable throughout development 

in control mice. However, the power in high frequency oscillations steadily decline with 

age in PTEN mutant mice.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1. Abnormal resting spectral power distributions in the auditory and frontal 
cortices in Male and female PTEN KO mice. Relative resting spectral power distribution in male 
and female control and PTEN KO mice in the AC (A-F) and FC (G-L) across development. Panels 
indicate main and interaction effects. Male and female PTEN KO mice have increased beta power 
(AC: C, FC: I) and decreased high gamma power (AC: E, FC: K) and high frequency oscillations 
(AC: E, FC: L) compared to control mice. Error bars show SEM. Full ANOVA analysis can be found 
in Tables 4.1 and 4.2. Post hoc comparisons can be found in Supplementary Tables 4.1-22. 
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Table 4.1. Full statistical analysis of resting data from the AC. 

Cortical Region Frequency Factor ANOVA Results  p-value 

AC Theta: Age F(2,133)=16.37 <0.0001 

  Sex F(1,133)=1.519 0.2199 

  Genotype F(1,133)=1.458 0.2293 

  Age x Sex F(2,133)=1.467 0.2343 

  Age x Genotype F(2,133)=0.1502 0.8606 

  Sex x Genotype F(1,133)=0.6565 0.4193 

  Age x Sex x Genotype F(2,133)=2.012 0.1378 

 Alpha: Age F(2,133)=6.468 0.0021 

  Sex F(1,133)=2.544 0.1131 

  Genotype F(1,133)=0.5771 0.4488 

  Age x Sex F(2,133)=0.4667 0.6281 

  Age x Genotype F(2,133)=0.3303 0.7193 

  Sex x Genotype F(1,133)=1.189 0.2776 

  Age x Sex x Genotype F(2,133)=2.030 0.1354 

 Beta: Age F(2,133)=25.34 <0.0001 

  Sex F(1,133)=0.1268 0.7224 

  Genotype F(1,133)=211.1 <0.0001 

  Age x Sex F(2,133)=1.510 0.2246 

  Age x Genotype F(2,133)=24.94 <0.0001 

  Sex x Genotype F(1,133)=0.4319 0.5122 

  Age x Sex x Genotype F(2,133)=0.9978 0.3714 

 Low Gamma: Age F(2,133)=27.68 <0.0001 

  Sex F(1,133)=3.832 0.0524 

  Genotype F(1,133)=28.02 <0.0001 

  Age x Sex F(2,133)=4.986 0.0082 

  Age x Genotype F(2,133)=0.9753 0.3798 

  Sex x Genotype F(1,133)=0.3737 0.5420 

  Age x Sex x Genotype F(2,133)=4.340 0.0149 

 High Gamma: Age F(2,133)=4.443 0.0136 

  Sex F(1,133)=4.198 0.0424 

  Genotype F(1,133)=6.728 0.0106 

  Age x Sex F(2,133)=0.5232 0.5938 

  Age x Genotype F(2,133)=2.690 0.0716 

  Sex x Genotype F(1,133)=0.0107 0.91770 

  Age x Sex x Genotype F(2,133)=1.797 0.1699 

 HFO: Age F(2,133)=6.037 0.0031 

  Sex F(1,133)=1.231 0.2692 

  Genotype F(1,133)=41.59 <0.0001 

  Age x Sex F(2,133)=0.2642 0.7682 

  Age x Genotype F(2,133)=2.816 0.0634 

  Sex x Genotype F(1,133)=0.0899 0.7648 

  Age x Sex x Genotype F(2,133)=0.8485 0.4304 
Three-way ANOVA results for resting EEG analysis. Bold text indicates statistical significance (p = or < 0.05). 
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Table 4.2. Full statistical analysis of resting data from the FC. 

Cortical Region Frequency Factor ANOVA Results  p-value 

FC Theta: Age F(2,133)=18.13 <0.0001 

  Sex F(1,133)=0.6159 0.4340 

  Genotype F(1,133)=4.021 0.0470 

  Age x Sex F(2,133)=2.310 0.1033 

  Age x Genotype F(2,133)=0.5568 0.5744 

  Sex x Genotype F(1,133)=0.4694 0.4945 

  Age x Sex x Genotype F(2,133)=0.7431 0.4776 

 Alpha: Age F(2,133)=7.336 0.0010 

  Sex F(1,133)=1.597 0.2085 

  Genotype F(1,133)=0.3974 0.5295 

  Age x Sex F(2,133)=0.5227 0.5941 

  Age x Genotype F(2,133)=4.684 0.0108 

  Sex x Genotype F(1,133)=1.671 0.1984 

  Age x Sex x Genotype F(2,133)=0.8859 0.4148 

 Beta: Age F(2,133)=16.04 <0.0001 

  Sex F(1,133)=0.0059 0.9387 

  Genotype F(1,133)=126.9 <0.0001 

  Age x Sex F(2,133)=0.7933 0.4545 

  Age x Genotype F(2,133)=21.05 <0.0001 

  Sex x Genotype F(1,133)=0.3149 0.5756 

  Age x Sex x Genotype F(2,133)=0.2766 0.7588 

 Low Gamma: Age F(2,133)=23.35 <0.0001 

  Sex F(1,133)=2.653 0.1057 

  Genotype F(1,133)=2.323 0.1298 

  Age x Sex F(2,133)=2.961 0.0552 

  Age x Genotype F(2,133)=0.8676 0.4223 

  Sex x Genotype F(1,133)=0.0242 0.8765 

  Age x Sex x Genotype F(2,133)=1.010 0.3668 

 High Gamma: Age F(2,133)=13.04 <0.0001 

  Sex F(1,133)=1.957 0.1642 

  Genotype F(1,133)=10.55 0.0015 

  Age x Sex F(2,133)=1.284 0.2804 

  Age x Genotype F(2,133)=4.676 0.0109 

  Sex x Genotype F(1,133)=0.0041 0.9487 

  Age x Sex x Genotype F(2,133)=1.049 0.3532 

 HFO: Age F(2,133)=6.889 0.0014 

  Sex F(1,133)=0.4948 0.4830 

  Genotype F(1,133)=19.58 <0.0001 

  Age x Sex F(2,133)=0.7790 0.4609 

  Age x Genotype F(2,133)=3.637 0.0290 

  Sex x Genotype F(1,133)=0.0004 0.09828 

  Age x Sex x Genotype F(2,133)=0.6476 0.5250 
Three-way ANOVA results for resting EEG analysis. Bold text indicates statistical significance (p = or < 0.05). 
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Auditory cortical temporal processing deficits are present in PTEN KO males and 

females across development 

Auditory temporal processing was quantified using a 40 Hz gap-in-noise ASSR 

stimulus to assess the ability of the cortex to consistently phase lock to brief gaps in 

noise. Manipulating gap duration and modulation depth of the ASSR stimulus allows for 

a comparison of temporal processing across experimental groups and development. 

Figure 4.2 shows example gap-ASSR heat maps of AC and FC ITPC for individual 

control (Figure 4.2A and 4.2C) and PTEN KO (Figure 4.2B and 4.2D) mice. Each panel 

shows the ITPC at a specific gap generated with the 40Hz stimulus, with increasing gaps 

across columns and each row showing a different age. In each panel, zero on the x-axis 

(faint dashed line) marks the onset of the gap ASSR stimulus. The expected ITPC is at 

40 Hz because the stimulus is a 40 Hz train. Therefore, the warm colors indicating 

higher ITPC are seen at 40 Hz. Cooler colors indicate relatively low ITPC and are mostly 

seen for very short gaps, the KO mouse data, and at spectral bands outside 40 Hz. As 

expected, both AC and FC in control mice are better able to synchronize their responses 

to longer gaps compared to short gaps (Figure 4.2A and 4.2C). However, major deficits 

are seen in both cortical regions of the PTEN KO mouse, with the ITPC not emerging 

above background at 40 Hz at any age or gap duration (Figure 4.2B and 4.2D). The 

complete four-way ANOVA analysis of this data (age x sex x genotype x gap duration) 

are shown in Tables 4.3-4.4. Post hoc comparisons are shown in Supplementary Table 

4.23.  
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Auditory Cortex 

As expected, there is a significant impact of gap duration on ITPC in the AC. 

Three interaction effects were identified at both modulation depths: genotype x gap 

duration, genotype x age x gap duration, and genotype x sex x gap duration. These 

interactions suggest that the genotype differences between control and PTEN KO mice 

vary across the ages and sexes at different gap durations. At 100% modulation, male 

PTEN KO have impaired temporal processing across development compared to control 

 
Figure 4.2. Impaired temporal processing in PTEN KO mice. Individual example heatmaps 
of ITPC generated at 40Hz for different gap durations in p21, p30, and p60 control (A: AC, C: 
FC) and PTEN KO (B: AC, D: FC) female mice. The same example mouse is used for the AC 
and FC. Each panel shows the ITPC (scale is seen at the right edge of the figure, warmer colors 
mean greater ITPC) obtained at a specific gap width.  Sound onset in each panel is at 0msec.  
Each column shows ITPC for the same gap width, with the gap width increasing from left to 
right. As expected, ITPC increases with increasing gap width.  The y-axis of each panel is the 
range of frequencies analyzed for ITPC. ITPC is maximum around 40 Hz, which was the 
repetition rate of ASSR stimulus train. Qualitative observations of these examples show clear 
deficits in cortical temporal processing across development in both cortical regions. All panels 
show 100% modulation depth. The onset of the gap-ASSR stimulus is at 0 msec in each panel.  
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males (Figure 4.3, right AC column). A significant impairment was only seen at p21 and 

p60 in KO males at 75% modulation (Figure 4.3, left AC column). Deficits in KO females 

show a different developmental trajectory in the AC. Young KO females show a 

significant decrease in ITPC compared to control females at p21 with 75% modulation 

(Figure 4.4, left AC column). No difference between female control and KO were seen at 

p30 at either modulation depth, demonstrating a phenotype difference between male 

and female KO mice. Notably, both male and female adult PTEN KO mice have severely 

impaired temporal processing in the AC compared to their respective controls (Figures 

4.3 and 4.4). This genotype effect can be seen in Figure 4.5A, which shows average 

ITPCs collapsed across all the gap durations. Overall, no significant sex differences 

were seen in control or PTEN KO mice (Figure 4.6). Taken together, these results 

suggest that temporal processing is impaired in the AC of young male and female PTEN 

KO mice, and the impairment worsens with age.  

 

Frontal Cortex 

 Similar to the AC, ITPC improves with increasing gap duration in the FC. An age 

x gap duration and genotype x gap duration interaction were seen at 100% modulation, 

but not 75%. Notably, at 100% modulation, both male and female KO mice showed 

significantly decreased ITPC compared to their respective controls across development 

in the FC. This genotype effect can be seen in Figure 4.5B, which shows average ITPCs 

collapsed across all the gap durations. KO males demonstrated the same severity in 

deficits at 75% modulation (Figure 4.3, left FC column). However, ITPC was significantly 

decreased at p21 and p60 in Female KO mice but not p30 at 75% modulation (Figure 

4.4, left FC column). These results suggest developmental fluctuations in female PTEN 
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KO mice temporal processing. Much like the AC, no sex differences were identified in 

control or PTEN KO mice (Figure 4.6). Taken together, these results suggest that 

temporal processing is significantly impaired in the FC of male KO mice across 

development. Although these deficits are present in young and adult female KO, the 

temporal processing capacity of KO females fluctuates with age. Overall, ITPC deficits 

worsen with age in male and female KO mice in the AC and FC.   

 

 

 
 
 
 
 

 

Figure 4.3. Population analysis shows temporal processing deficits in the AC and FC 
during development in PTEN KO male mice. Each plot represents the group average 
ITPC values. Each row represents a different age group: p21 (top), p30 (middle), and p60 
(bottom). The left columns represent AC and FC data at 75% modulation depth, and the 
right columns represent AC and FC data at 100% modulation depth. PTEN KO male mice 
show significant deficits in both cortical regions across development. Error bars show SEM. 
The complete four-way ANOVA analysis of this data is shown in Tables 4.3 and 4.4. Post 
hoc comparisons are shown in Supplementary Table 4.23. 
 



165 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 4.4. Population analysis shows temporal processing deficits in the AC and FC 
during development in PTEN KO female mice. Each plot represents the group average 
ITPC values. Each row represents a different age group: p21 (top), p30 (middle), and p60 
(bottom). The left columns represent AC and FC data at 75% modulation depth, and the 
right columns represent AC and FC data at 100% modulation depth. PTEN KO female mice 
show significant deficits in both cortical regions across development. No significant 
difference between PTEN KO and control females were seen in the AC at p30. Error bars 
show SEM. The complete four-way ANOVA analysis of this data is shown in Tables 4.3 and 
4.4. Post hoc comparisons are shown in Supplementary Table 4.23. 
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Figure 4.5. Impaired auditory 
temporal processing in the AC 
and FC of male and female PTEN 
KO mice. Each plot represents the 
group average ITPC values from 
the AC (A) and FC (B) collapsed 
across all the gap widths. Columns 
represent different modulation 
depths, and rows represent the 
different sexes (Columns – left = 
75% modulation, right = 100% 
modulation; Rows – top = males, 
bottom = females). KO mice show 
a significant ITPC deficit across 
development in the AC and FC. 
Significance was not reached in 
females in the AC at p30. Error 
bars show SEM. 
 

Figure 4.6. No sex difference in 
auditory temporal processing in 
control or PTEN KO mice at any 
age in the AC or FC. Each plot 
represents the group average (A: 
control, B: PTEN KO) ITPC values 
collapsed across all the gap widths. 
Columns represent different 
modulation depths, and rows 
represent different cortical regions 
(Columns – left = 75% modulation, 
right = 100% modulation; Rows – 
top = AC, bottom = FC). No 
significant sex difference in either 
genotype in the AC or FC at any 
age. Error bars show SEM.  
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Table 4.3. Full statistical analysis of gap-ASSR data from the AC. 

Cortical 
Region 

Modulation 
Depth 

Factor/Interaction ANOVA Results Adjusted 
p-value 

AC 100% Age F(2,132)=3.0068 0.0528 

  Sex F(1,132)=1.0611 0.3048 

  Genotype F(1,132)=3.2258 0.0747 

  Gap Duration F(5,550)=7.6570 0.0001 

  Age x Sex F(2,132)=0.2437 0.7840 

  Age x Genotype F(2,132)=0.7152 0.4909 

  Age x Gap duration F(10,660)=0.8579 0.5115 

  Genotype x Sex F(1,132)=0.8735 0.3517 

  Genotype x Gap duration F(5,660)=4.0893 0.0106 

  Sex x Gap Duration F(5,660)=1.2697 0.2846 

  Genotype x Age x Sex F(2,132)=0.2129 0.8085 

  Genotype x Age x Gap 
Duration 

F(10,660)=3.3271 0.0056 

  Genotype x Sex x Gap 
Duration 

F(5,660)=2.8518 0.0458 

  Age x Sex x Gap Duration F(10,660)=0.4911 0.7866 

  Age x Sex x Genotype x Gap 
Duration 

F(10,660)=0.9340 0.4603 

AC 75% Age F(2,132)=0.7366 0.4806 

  Sex F(1,132)=0.6214 0.4319 

  Genotype F(1,132)=12.586 0.0005 

  Gap Duration F(5,550)=7.4050 <0.0001 

  Age x Sex F(2,132)=0.3193 0.7272 

  Age x Genotype F(2,132)=0.9153 0.4029 

  Age x Gap duration F(10,660)=1.7239 0.1114 

  Genotype x Sex F(1,132)=0.2398 0.6251 

  Genotype x Gap duration F(5,660)=4.0176 0.0071 

  Sex x Gap Duration F(5,660)=0.4914 0.6944 

  Genotype x Age x Sex F(2,132)=0.2209 0.8021 

  Genotype x Age x Gap 
Duration 

F(10,660)=2.3487 0.0289 

  Genotype x Sex x Gap 
Duration 

F(5,660)=2.9083 0.0328 

  Age x Sex x Gap Duration F(10,660)=0.7466 0.6165 

  Age x Sex x Genotype x Gap 
Duration 

F(10,660)=0.8829 0.5098 

Four-way repeated measures ANOVA results for gap-ASSR analysis. Mauchly Tests for Sphericity were utilized and p-
values were corrected for multiple comparisons using the Greenhouse-Geisser corrections if necessary. Bold text 
indicates statistical significance (p = or < 0.05). 
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Table 4.4. Full statistical analysis of gap-ASSR data from the FC. 

Cortical 
Region 

Modulation 
Depth 

Factor/Interaction ANOVA Results Adjusted 
p-value 

FC 100% Age F(2,132)=2.5674 0.0805 

  Sex F(1,132)=0.1366 0.7122 

  Genotype F(1,132)=10.9466 0.0012 

  Gap Duration F(5,660)=19.1439 <0.0001 

  Age x Sex F(2,132)=0.5827 0.5598 

  Age x Genotype F(2,132)=0.2345 0.7913 

  Age x Gap duration F(10,660)=2.4168 0.0210 

  Genotype x Sex F(1,132)=0.3709 0.5435 

  Genotype x Gap duration F(5,660)=3.3317 0.0156 

  Sex x Gap Duration F(5,660)=0.7452 0.5395 

  Genotype x Age x Sex F(2,132)=0.0566 0.9450 

  Genotype x Age x Gap 
Duration 

F(10,660)=0.7967 0.5855 

  Genotype x Sex x Gap 
Duration 

F(10,660)=0.4271 0.7555 

  Age x Sex x Gap Duration F(10,660)=1.5914 0.1392 

  Age x Sex x Genotype x Gap 
Duration 

F(10,660)=0.7403 0.6322 

FC 75% Age F(2,132)=0.8067 0.4485 

  Sex F(1,132)=0.3269 0.5684 

  Genotype F(1,132)=7.7696 0.0061 

  Gap Duration F(5,660)=20.3753 <0.0001 

  Age x Sex F(2,132)=1.0442 0.3548 

  Age x Genotype F(2,132)=0.5831 0.5595 

  Age x Gap duration F(10,660)=1.9025 0.0682 

  Genotype x Sex F(1,132)=0.0395 0.8428 

  Genotype x Gap duration F(5,660)=1.5913 0.1836 

  Sex x Gap Duration F(5,660)=0.5591 0.6672 

  Genotype x Age x Sex F(2,132)=0.0735 0.9291 

  Genotype x Age x Gap 
Duration 

F(10,660)=1.5141 0.1611 

  Genotype x Sex x Gap 
Duration 

F(5,550)=1.0601 0.3711 

  Age x Sex x Gap Duration F(10,660)=1.1000 0.3619 

  Age x Sex x Genotype x Gap 
Duration 

F(10,660)=0.7646 0.6159 

Four-way repeated measures ANOVA results for gap-ASSR analysis. Mauchly Tests for Sphericity were utilized and p-
values were corrected for multiple comparisons using the Greenhouse-Geisser corrections if necessary. Bold text 
indicates statistical significance (p = or < 0.05). 
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Male and female PTEN KO mice exhibit abnormal ERP amplitudes in the AC and 

FC 

ERPs consist of a series of voltage fluctuations, referred to as ‘waves’ (P1, N1, 

P2) (Figures 4.7A and 4.7C). These waves are evoked at specific latencies after sound 

onset and are associated with the population activity in specific brain regions. Measuring 

the amplitudes of these waves allows for the assessment of hypersensitivity to sound 

presentation. We also characterized non-baseline normalized STP in response to 

narrowband noise bursts, as abnormal power (‘background activity’) during sound-

evoked responses show clinical correlations in humans with autism [Ethridge et al., 

2017; Ethridge et al., 2019]. Figures 4.7-9 and Table 4.5 show the complete ANOVA 

analyses of control and PTEN KO male and female ERP data across development and 

genotypes. Post hoc comparisons for the AC and FC are shown in Supplementary 

Tables 4.24-29 and Supplementary Tables 4.30-33, respectively.  

 

Auditory Cortex 

P1 amplitude was significantly impacted by both genotype and sex in the AC. 

Specifically female and male PTEN KO mice had significantly decreased P1 amplitudes 

at p21 and p30, respectively, compared to their controls (Figure 4.7B, Supplementary 

Table 4.24). Sex differences were only seen in control mice, such that females had 

increased P1 amplitudes at p21 and p60 (Figure 4.7B, Supplementary Table 4.25). N1 

amplitudes were increased in young male KO mice, but no significant genotype effect 

was seen in females at any age (Supplementary Table 4.26). Additionally, KO males 

showed a decrease in N1 amplitude with age (Figure 4.7B, Supplementary Table 4.27). 

Sex differences were identified in control and KO mice. Specifically, control females had 



170 
 

increased N1 amplitudes compared to control males at p60 (Figure 4.7B, Supplementary 

Table 4.28). KO females showed increased N1 and P2 amplitudes compared to males at 

p30 and p60, respectively (Figure 4.7B, Supplementary Tables 4.28-29). In addition to 

ERP peak amplitudes, we analyzed non-baseline normalized single trial power (STP) 

during the stimulus train used for ERP measurement. No changes in power were seen at 

p21 in either sex (Figures 4.8A and 4.9A). However, STP was significantly increased in 

PTEN KO males and females at p30 and p60 in the AC, suggesting a developmental 

increase in ongoing ‘background activity’ in PTEN KO mice (Figures 4.8A and 4.9A).  

 

Frontal Cortex 

 Similar to the AC, P1 amplitude was significantly impacted by both genotype and 

sex in the FC (Figure 4.7D, Supplementary Tables 4.30-31). Additionally, P1 amplitude 

was also significantly decreased in young female PTEN KO mice (Figure 4.7D, 

Supplementary Table 4.30). Phenotype differences between the sexes were also 

identified for N1 amplitudes, such that N1 amplitude was increased in KO males at p21 

and in females at p60 (Figure 4.7D, Supplementary Table 4.32). KO males also showed 

developmental fluctuations in N1 amplitude (Figure 4.7D, Supplementary Table 4.33). An 

age x genotype interaction was identified for P2 amplitudes, suggesting that the effect of 

genotype changes across ages (interaction effect: p=0.0032). FC STP results were 

similar to the AC with PTEN KO males and females showing significantly increased STP 

at p30 and p60, but no genotype difference at p21 (Figures 4.8B and 4.9B).  
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Figure 4.7. Age, genotype, and sex impact ERP amplitudes in the AC and FC. (A) 
Average ERPs recorded in the AC for control and KO male (left) and female (right) mice at 
p21 (top), p30 (middle), and p60 (bottom). (B) Population averages of AC ERP wave 
amplitudes. Female and male PTEN KO mice have decreased P1 amplitudes at p21 and 
p30, respectively, compared to their controls. Control females have increased P1 amplitudes 
at p21 and p60 compared to control males. N1 amplitudes are increased in young male KO 
mice but decrease with age. Control females have increased N1 amplitudes compared to 
control males at p60. KO females show increased N1 and P2 amplitudes compared to KO 
males at p30 and p60, respectively. (C) Average ERPs recorded in the FC for control and KO 
male (left) and female (right) mice at p21 (top), p30 (middle), and p60 (bottom). (D) 
Population averages of FC ERP wave amplitudes. P1 amplitude was significantly decreased 
in young female PTEN KO mice. N1 amplitude was increased in KO males at p21 and in KO 
females at p60. KO males show developmental fluctuations in N1 amplitude. An age x 
genotype interaction was identified for P2 amplitudes. Error bars show SEM. The complete 
ANOVA analysis can be found in Table 4.5. Post hoc comparisons for the AC and FC are 
shown in Supplementary Tables 4.24-29 and Supplementary Tables 4.30-33, respectively. 
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Figure 4.8. Elevated background noise power in PTEN KO male mice.  
Non-baseline normalized STP during ERP stimulation is altered in PTEN KO 
males in the AC and FC during development. The heatmaps show non-
baseline corrected normalized power from the AC (A) and FC (B), where 
warm hues represent increased ongoing background activity, and cooler 
hues represent a decrease. The smaller panels show group average STP for 
control and PTEN KO mice. The larger panels show the difference between 
KO and control.  Outlined regions indicate clusters which are significantly 
different between control and KO. (A) STP was significantly increased in 
PTEN KO males p30 and p60 in the AC. (B) STP was significantly increased 
in PTEN KO males at p30 and p60 in the FC. 
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Figure 4.9. Elevated background noise power in PTEN KO female mice.  Non-
baseline normalized STP during ERP stimulation is altered in female PTEN KO mice 
in the AC and FC during development. The heatmaps show non-baseline corrected 
normalized power from the AC (A) and FC (B).  Color scheme, scale and implication 
of contour lines are the same as in Figure 8.  (A) STP was significantly increased in 
PTEN KO females p30 and p60 in the AC. (B) STP was significantly increased in 
PTEN KO females at p30 and p60 in the FC. 
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Table 4.5. Full statistical analysis of ERP data. 

Cortical 
Region 

ERP 
Component 

Factor ANOVA Results  p-value 

AC P1 Amplitude: Age F(2,133)=1.448 0.2386 

  Sex F(1,133)=5.105 0.0255 

  Genotype F(1,133)=15.02 0.0002 

  Age x Sex F(2,133)=0.6202 0.5394 

  Age x Genotype F(2,133)=0.0371 0.9636 

  Sex x Genotype F(1,133)=0.8076 0.3704 

  Age x Sex x Genotype F(2,133)=1.693 0.1879 

 N1 Amplitude: Age F(2,133)=5.001 0.0081 

  Sex F(1,133)=8.122 0.0051 

  Genotype F(1,133)=5.309 0.0228 

  Age x Sex F(2,133)=1.357 0.2609 

  Age x Genotype F(2,133)=1.648 0.1964 

  Sex x Genotype F(1,133)=0.4325 0.5119 

  Age x Sex x Genotype F(2,133)=1.192 0.3067 

 P2 Amplitude: Age F(2,133)=0.1637 0.8492 

  Sex F(1,133)=8.176 0.0049 

  Genotype F(1,133)=2.250 0.1360 

  Age x Sex F(2,133)=2.218 0.1128 

  Age x Genotype F(2,133)=0.4778 0.6212 

  Sex x Genotype F(1,133)=0.2052 0.6513 

  Age x Sex x Genotype F(2,133)=2.500 0.0859 

FC P1 Amplitude: Age F(2,133)=0.4910 0.6131 

  Sex F(1,133)=5.073 0.0259 

  Genotype F(1,133)=6.657 0.0110 

  Age x Sex F(2,133)=0.3230 0.7246 

  Age x Genotype F(2,133)=0.7765 0.4621 

  Sex x Genotype F(1,133)=0.8935 0.3462 

  Age x Sex x Genotype F(2,133)=1.157 0.3177 

 N1 Amplitude: Age F(2,133)=8.117 0.0005 

  Sex F(1,133)=1.159 0.2836 

  Genotype F(1,133)=12.32 0.0006 

  Age x Sex F(2,133)=1.813 0.1672 

  Age x Genotype F(2,133)=2.843 0.0618 

  Sex x Genotype F(1,133)=0.3717 0.5431 

  Age x Sex x Genotype F(2,133)=1.825 0.1652 

 P2 Amplitude: Age F(2,133)=1.065 0.3477 

  Sex F(1,133)=1.163 0.2828 

  Genotype F(1,133)=0.6117 0.4356 

  Age x Sex F(2,133)=1.838 0.1631 

  Age x Genotype F(2,133)=5.986 0.0032 

  Sex x Genotype F(1,133)=0.0657 0.7980 

  Age x Sex x Genotype F(2,133)=1.288 0.2792 
Three-way ANOVA results for ERP EEG analysis. Bold text indicates statistical significance (p = or < 0.05). 
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Discussion  

Examination of sensory processing in the Nse-cre based PTEN KO mice reveal a 

number of major and novel genotype-, developmental- and sex-dependent differences. 

The first major result of this study is the significant impact of cortical PTEN loss on 

oscillatory activity in the AC and FC. In resting conditions, the overall relative power 

spectrum is shifted in male and female KO mice, such that beta power is increased, and 

high frequency oscillations are decreased (Figure 4.1). Second, there is a significant 

impairment of auditory temporal processing in male and female KO mice across 

development (Figures 4.2-5). Third, PTEN KO mice displayed abnormal cortical ERP 

amplitudes throughout development (Figure 4.7)   ERP amplitude results also showed 

sex differences in the KO, but not WT, mice (Figure 4.7). Lastly, the non-phase locked 

single trial power is elevated in male and female KO mice compared to their respective 

controls at p30 and p60, suggesting a developmental increase in on-going ‘background 

activity’ in the AC and FC of KO mice (Figures 4.8-9). Overall, these data suggest that 

irregular oscillatory activity and auditory processing deficits in PTEN ASD model mice 

are present from an early age and continue to worsen with age. These data identify a 

number of sensory processing biomarkers that can be tested in humans with PTEN 

mutations in future studies. Objective electrophysiological biomarkers may lead to more 

robust translational approaches for treatments.  

A potential explanation for the dramatic decline with age of EEG phenotypes in 

PTEN KO mice is macrocephaly. The Nse-cre PTEN model creates a mosaic knock-out 

pattern in excitatory neurons of layers III-V of the cortex and hippocampal regions 

(dentate gyrus, CA3, and polymorphic layer) [Kwon et al., 2006a]. The cre activity, driven 

by a neuron-specific enolase promoter, is first detectable by embryonic day (E) 11.5 in 
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the cranial/spinal accessory nerve and evident by p2 in the cerebral cortex and 

hippocampus, specifically in postmitotic neurons [Kwon et al., 2006a]. By four weeks of 

age, the Nse-cre activity is most abundant in the sensory cortex [Kwon et al., 2006a]. 

The loss of PTEN causes the upregulation of the PI3K/AKT/mTOR pathway, a pathway 

shown to promote processes linked to cell growth [Kim & Guan, 2019]. Without the 

negative regulation of PTEN, progressive macrocephaly occurs by p60 in Nse-cre mice, 

making the brains significantly larger than those of littermate controls [Kwon et al., 

2006b]. At the cellular level, soma enlargement, and eventual hypertrophy, as well as 

neuronal outgrowth are observed in areas with cre activity. This causes the compression 

of surrounding areas, including the CA1 region of the hippocampus. Since these 

structural changes develop over time, it is likely that the anatomical changes bring about 

significant functional abnormalities in Nse-cre PTEN KO brains, causing the most severe 

deficits to be seen in adult KO. However, it is important to note that synaptic plasticity 

deficits were still identified in young Nse-cre PTEN KO mice prior to the onset of visible 

morphological abnormalities [Takeuchi et al., 2013]. Specifically, Takeuchi et al. (2013) 

reported that theta burst-induced long-term potentiation and mGluR-dependent long-

term depression are dysregulated at medial perforant path-to-dentate gyrus synapses of 

Nse-Cre PTEN KO mice before the onset of visible morphological abnormalities. This 

suggests that other mechanisms, such as abnormal synaptic plasticity, may be 

responsible for the deficits seen in younger mice at p21 and p30. Indeed, the 

PI3K/AKT/mTOR pathway has been implicated in synaptic plasticity, such that PI3K is 

associated with both long-term depression (LTD) and long-term potentiation (LTP) 

[Sánchez-Castillo et al., 2022]. Removing PTEN regulation from this pathway is likely 
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causing significant dysfunction in both young and adult Nse-cre KO mice and may 

contribute to abnormal phenotypes.  

 A homozygous PTEN deletion is embryonically lethal, causing death before E8 in 

developing mice [Di Cristofano et al., 1998]. This has led to the development of 

numerous PTEN deletion mouse models, including, but not limited to, a PTEN 

heterozygous, Nkx2.1-cre, CamKIIα-cre, and GFAP-cre [Clipperton-Allen & Page, 2015; 

Fraser et al., 2008; Sperow et al., 2012; Vogt et al., 2015]. This is the first time in vivo 

sensory EEG responses have been recorded in PTEN mice across development, so a 

direct comparison across models is not possible.  It appears that the impact of PTEN 

loss in each of these models depends on the timeline in which PTEN is deleted. For 

example, PTEN deletion in the CamKIIα-cre model occurs between the age of 2-8 weeks 

in excitatory forebrain neurons. Loss of PTEN at this developmental stage does not 

result in the aberrant neuronal growth and macrocephaly consistently seen in other 

models, but instead causes synaptic dysfunction including decreased LTP and LTD 

[Sperow et al., 2012]. Another commonly used approach to study the loss of PTEN 

utilizes viral injections, providing a more localized knock-out pattern. Xiong et al. (2012) 

conditionally knocked-out PTEN in the auditory cortex and found that PTEN deletion 

caused both local and long range hyperconnectivity.  

A key finding of this study is the overall shift in the relative power spectrum during 

rest in PTEN KO mice.  Our data show that beta power significantly increases with age 

in the AC and FC while high gamma power and high frequency oscillations decline. 

These shifts differ from the typical ASD resting power distribution. Interestingly, the 

power distributions in humans and mouse models of ASD demonstrate an opposing 

pattern, such that beta power does not change, and gamma power is significantly 
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increased [Neo et al., 2023; Wang et al., 2013; Lovelace et al., 2018]. The cognitive 

implications of these resting power distribution abnormalities are not well understood. 

Beta oscillations are associated with task engagement, motor control, and general 

alertness [Neuhaus et al., 2021]. It has been shown that decreased beta power in 

humans causes less engagement in information processing as well as decreased 

attention [Pitchford & Arnell, 2019]. Abnormally elevated beta power at rest may reduce 

the dynamic range of task-dependent changes in this spectral band.  Busch et al. (2019) 

found that humans with PTEN-ASD demonstrated reduced performance on measure of 

attention as well as motor control, however EEG phenotypes were not characterized 

[Busch et al., 2019]. Because attention influences sensory processing, the increased 

beta power seen here in PTEN KO mice could impact overall alertness and attention 

during the sound presentations, and ultimately cause abnormalities in responses [Fritz et 

al., 2010; Price & Moncrieff, 2021]. High frequency oscillations represent local spiking 

activity and the decrease seen in KO males and females may be a result of the 

morphological changes and compression occurring with age in the cortex, making 

neurons in those regions less functional. High frequency oscillations have also been 

implicated in other physiological processes. For example, it was shown in humans that 

high frequency oscillations are associated with memory encoding and recall [Kucewicz 

et al., 2014]. Another study hypothesized that these oscillations are reflective of 

information processing, specifically local GABAergic networks responding to 

thalamocortical input [Hashimoto et al., 1996].  Taken together, the dramatic decrease of 

high frequency oscillations seen in PTEN KO mice may reflect processing deficits at the 

cortical circuit level.  
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Cortical beta and gamma band oscillations have been linked to the activity of 

subtypes of inhibitory interneurons. Specifically, the beta frequency band has been 

linked to somatostatin (SOM) interneurons and the gamma frequency band to 

parvalbumin (PV) interneurons in the visual cortex [Chen et al., 2017]. Furthermore, PV 

interneurons play a role in de-synchronization of neural activity, whereas SOM 

interneurons promote the synchronization of neural activity. There are currently very few 

studies that have investigated the relationship between PTEN and PV/SOM 

interneurons, none of which were carried out in the Nse-cre PTEN model. One 

behavioral study found that deleting PTEN in PV and SOM expressing interneurons 

gave rise to ASD behaviors, including hyperactivity and anxiety [Shin et al., 2021]. Vogt 

et al. (2015) utilized a Nkx-2.1-cre PTEN model which causes embryonic deletion of 

PTEN in the medial ganglionic eminence (MGE). The majority of interneurons arise from 

the MGE and the loss of PTEN led to altered distribution of MGE-derived cells. 

Specifically, the study showed a preferential loss of SOM interneurons and increased PV 

interneurons, shifting the PV/SOM ratio in the cortex [Vogt et al., 2015]. These studies 

suggest a link between PTEN and PV/SOM interneurons that may underlie the EEG 

impairments we discovered here. Furthermore, if there are changes in PV or SOM 

neurons in the NSE-Cre model, they are non-cell autonomous. It is possible that the 

output from Pten deleted L5 neurons onto PV or Som neurons are irregular and 

impacting beta power. Future studies should test PV/SOM interneuron development and 

function in PTEN KO mice.  

 Auditory temporal processing is critical for development of speech processing 

and language function in humans. Testing temporal processing in mice may provide a 

bridge to understand dysfunctions in complex auditory processing in ASD.  A major 
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finding of our study is that auditory temporal processing is impaired in PTEN KO mice 

throughout development. These results align with symptoms displayed in humans with 

PTEN-ASD. Specifically, a cohort study found that individuals with PTEN-ASD had 

decreased processing speed and impaired language development. Significant delays 

were identified in their first words and phrases, with some remaining mute or minimally 

verbal until after 4 years of age [Tilot et al., 2015; Frazier et al., 2015; Fraiser, 2019]. In 

developmental disorders and in aging, gap processing has been used to analyze 

auditory temporal acuity across groups [Rumschlag & Razak, 2021; Rumschlag et al., 

2020; Bhatara et al., 2013; Gordon-Salant & Fitzgibbons, 1993]. Increased gap-detection 

thresholds are seen in children with ASD and impaired gap detection thresholds in 

children correlate with lower phonological scores [Foss-Feig et al., 2017]. The 

mechanism behind gap induced ASSR is not clear, however studies have suggested that 

subcortical regions may be involved in this response. For example, optogenetic 

stimulation of GABAergic parvalbumin neurons in the mouse basal forebrain 

preferentially increased frontal cortex 40 Hz ASSR oscillations [Kim et al., 2015; Hwang 

et al., 2019]. Additionally, top-down corticothalamic projections to the medial geniculate 

body influence temporal processing and stimulus encoding [Kommajoysula et al., 2021]. 

Another study identified a cortico-collicular gap detection circuit that amplified cortical 

gap responses, specifically for brief gaps [Weible et al., 2020]. In the Nse-cre PTEN 

deletion model, the loss of PTEN and the subsequent anatomical and functional deficits 

that occur in layer V could be impacting the circuitry necessary to consistently respond 

to the brief gaps in noise, as corticofugal projections from layer V of the auditory cortex 

extend to the midbrain [Games & Winer, 1988].   
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 The gap-ASSR stimulus at 40 Hz was chosen for this study due to its relevance 

to aspects of speech processing. Gamma oscillations may parse speech input in the 

phoneme range. Oscillations in the delta and theta frequency ranges may relate to 

slower rhythms in speech such as intonation and syllabic rates. Based on such 

observations, the ‘asymmetric sampling in time’ hypothesis for speech processing has 

been proposed in which gamma oscillations play a significant role in phoneme 

processing [Luo & Poeppel, 2012; Giraud & Poeppel, 2012; Pena & Melloni, 2012] by 

separating inputs that require high temporal resolution such as voice onset time and 

formant transition.  Speech abnormalities have not been fully characterized in individuals 

with PTEN-ASD, however the findings of our study suggest future studies should 

characterize auditory acuity in humans with PTEN related ASD.  

 The P1-N1-P2 ERP complex marks the pre-attentive detection of sound and can 

vary with stimulus features. P1 and N1 amplitudes correlate with initial sound detection, 

including thalamocortical input and primary auditory cortex activity, respectively. PTEN 

KO mice displayed abnormal cortical ERP amplitudes throughout development. 

Specifically, P1 amplitudes were decreased in KO mice compared to their respective 

controls. These results suggest a decrease in thalamocortical input to cortical regions. 

The development of corticothalamic projections begins as early as E12 in mice, as 

thalamocortical axons begin extending towards the cortex [Huerga-Gomez et al., 2023]. 

These projections invade the cortical plate at E17, and reach their final destination in the 

cortex, primarily layers IV and Vb, during the first postnatal week of life. Because cre 

becomes active in the Nse-cre model by p2 in the brain, it is possible that neurons in 

layer IV are not receptive to the incoming thalamic projections and are unable to make 

the appropriate connections, therefore causing decreased P1 amplitudes in KO mice. 



182 
 

We also found that N1 amplitudes, which mark synchronous activity within the cortex, 

increased in KO mice. Specifically, N1 amplitudes were increased in young male KO 

mice in the AC and FC, but only in adult KO females in the FC. This opposing 

relationship between P1 and N1 amplitudes in KO mice could possibly reflect cortical 

gain at the cortical level in response to abnormally reduced thalamocortical input [Resnik 

& Polley, 2021]. The enhancement of N1 amplitudes also suggests increased 

hypersensitivity to the stimuli and is a consistent phenotype seen in numerous ASD 

studies including in Fragile X Syndrome (FXS), in both humans and mice [Castren et al., 

2003; Knoth & Lippe, 2012; Rojas et al., 2001; St. Clair et al., 1987; Van de Molen et al., 

2012a; Van de Molen et al., 2012b; Kulinich et al., 2020; Lovelace et al., 2018; Wen et 

al., 2019; Jonak et al., 2020]. Although PTEN and FXS forms of ASD are caused by two 

different genes, a common mechanism may underlie these similar phenotypes. 

Abnormal sensitivity has been reported in both human and animals with PTEN deletion. 

Notably, humans with PTEN-ASD showed severely impaired sensory functioning 

compared to age-matched controls, particularly these individuals tested as under-

responsive and show decreased taste and smell sensitivity [Busch et al., 2019]. The 

Nse-cre PTEN model mice also demonstrate exaggerated responses to sensory stimuli 

in a pre-pulse inhibition paradigm. Specifically, mutants exhibited increased startle 

responses to a white noise stimulus [Kwon et al., 2006b]. PTEN loss in the Nse-cre 

model has been shown to increase axonal growth in the dentate gyrus, such that axonal 

processes were more abundant and projected to a broader area [Kwon et al., 2006b]. 

Furthermore, this excessive growth led to abnormal synapses, including an increase in 

presynaptic vesicle numbers compared to controls. Although these phenotypes have not 

been studied in the cortex, it is likely that similar abnormalities occur, and increased 
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synapses or aberrant connections could cause increased N1 amplitudes in KO mice. 

Taken together, P1 and N1 are generated by structures involved in early auditory 

processing and differences in their amplitudes compared to controls may ultimately 

reflect altered perception of auditory stimulus. 

 The single trial power (STP) allows for the identification of ongoing ‘background 

activity’ during stimulus presentation as it does not correct for mean baseline power 

levels. It has been suggested that this non-phase locked power reflects relatively slow 

integrative processes that may impact stimulus or response processing [McKewen et al., 

2020]. These processes include top-down and sustained attention, decision-making, and 

perceptual inference, and are suggested to result from intrinsic network interactions 

rather than external stimuli [Donner & Siegel, 2011; Siegel & Donner, 2010]. Our results 

show a developmental increase in STP in PTEN KO mice compared to controls. 

Specifically, no STP phenotype differences were seen at p21 in either sex but STP was 

significantly increased in PTEN KO mice at p30 and p60 in the AC and FC. Increased 

STP has been seen in humans with FXS and the Fmr1 KO mouse model [Ethridge et al., 

2019; Wen et al., 2019; Croom et al., 2023]. In humans with FXS, elevated STP showed 

correlations with IQ and distractibility. These data suggest elevated on-going background 

activity from hyperactive networks in ASD may have clinical implications in humans. 

Future studies should be carried out in humans with PTEN deletion to determine 

whether similar correlations exist.   

 A key hypothesis of this study was female PTEN KO mice would show greater 

auditory sensitivity and processing abnormalities than PTEN KO males. This hypothesis 

was supported by previous work done in the Nse-cre model. Molinaro et al., (2024) 

showed prolonged and spontaneous persistent activity states (UP states) in female but 
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not male KO mice at P21, suggesting sex-specific circuit hyperexcitability. Furthermore, 

sex differences were also seen in social behavior and seizure-induced mortality in 

adults. In the current study, we show significant sex differences in PTEN KO mice 

auditory cortex in resting and sound-evoked EEG phenotypes. Specifically, young, P21, 

female KO mice show increases in resting beta power and adult male KO mice have 

increased low gamma power compared to adult females. Abnormalities in resting EEG 

power have also been identified in other genetically linked forms of ASD in humans, 

including FXS and Rett syndrome. Specifically, males with FXS and Rett syndrome show 

increased and decreased gamma power compared to females, respectively [Smith et al., 

2021; Sysoeva et al., 2023].  The current study also identified sex differences in evoked 

responses, such that female KO mice show increased N1 and P2 amplitudes compared 

to males at p30 and p60, respectively. Although N1 amplitudes were increased in both 

KO males and females compared to their respective controls, no sex difference was 

seen in control mice at that age. This suggests that hypersensitive cortical responses 

are further enhanced in female KO mice compared to males. P2 amplitudes are 

suggested to be related to arousal as auditory input to the mesencephalic reticular 

activating system contributes to P2 generation [Crowley & Colrain, 2004]. Furthermore, 

KO females show increased locomotor activity compared to males, which may be a 

result of increased activation of this arousal circuit [Molinaro et al., 2024]. These results 

are similar to sex differences seen in FXS model mice, such that female Fmr1 KO mice 

have increased N1 and P2 amplitudes compared to KO males [Croom et al., 2024]. The 

similarities in sex difference between these different ASD models provide evidence that 

there may be a fundamental issue at the circuit level that is shared among autisms. 

Several lines of evidence, both in human and animal models, suggest inhibitory circuit 
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dysfunction may be a fundamental issue [Maloney et al., 2013; Voineagu et al., 2011]. 

For example, one of the most commonly observed copy number variations in ASD is 

located on the chromosome 15q11 to q13 region, which contains several genes coding 

for subunit variants for GABA receptors [Coghlan et al., 2012]. Deletions involving these 

regions have been associated with Angelman or Prader–Willi syndromes which show a 

high comorbidity with ASD. Additionally, disruption of the GABAergic system is sufficient 

to generate the Rett syndrome phenotype in Mecp2−/− mice [Chao et al., 2010]. Taken 

together, the similarities between different autism models suggest shared mechanisms 

and unraveling these circuits may be the key to understanding and treating ASD 

pathology.  

 

Conclusion 

 This is the first study to comprehensively characterize resting and sound-evoked 

EEG phenotypes as well as sex differences during development in a mouse model of 

ASD with PTEN loss of function. ASD manifests differently in females and males, 

however little progress has been made in understanding underlying mechanisms due to 

a lack of robust and objective outcome measures in animal models. Here we 

demonstrate that loss of PTEN in cortical layers III-V and the hippocampus cause 

abnormal relative resting power distribution as well as sensory responses in a sex-

specific manner. Female KO mice showed increased hypersensitivity compared to 

males. These studies now provide specific physiological probes to examine sex 

differences from a mechanistic perspective in an ASD model.  
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Supplementary Table 4.1. Post hoc testing for the effect of age on relative theta power in AC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 .087 .043 .136 

   p60 .105 .040 .030 

  p30 p21 -.087 .043 .136 

   p60 .018 .040 1.000 

  p60 p21 -.105 .040 .030 

   p30 -.018 .040 1.000 

 Male p21 p30 .098 .037 .028 

   p60 .080 .039 .131 

  p30 p21 -.098 .037 .028 

   p60 -.018 .039 1.000 

  p60 p21 -.080 .039 .131 

   p30 .018 .039 1.000 

PTEN KO Female p21 p30 .049 .043 .791 

   p60 .046 .041 .806 

  p30 p21 -.049 .043 .791 

   p60 -.003 .043 1.000 

  p60 p21 -.046 .041 .806 

   p30 .003 .043 1.000 

 Male p21 p30 .171 .043 <.001 

   p60 .182 .043 <.001 

  p30 p21 -.171 .043 <.001 

   p60 .011 .045 1.000 

  p60 p21 -.182 .043 <.001 

   p30 -.011 .045 1.000 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.2. Post hoc testing for the effect of age on relative alpha power in AC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 .022 .018 .722 

   p60 -.010 .017 1.000 

  p30 p21 -.022 .018 .722 

   p60 -.032 .017 .194 

  p60 p21 .010 .017 1.000 

   p30 .032 .017 .194 

 Male p21 p30 -.008 .016 1.000 

   p60 -.039 .017 .066 

  p30 p21 .008 .016 1.000 

   p60 -.031 .017 .194 

  p60 p21 .039 .017 .066 

   p30 .031 .017 .194 

PTEN KO Female p21 p30 -.012 .018 1.000 

   p60 -.052 .018 .012 

  p30 p21 .012 .018 1.000 

   p60 -.040 .018 .094 

  p60 p21 .052 .018 .012 

   p30 .040 .018 .094 

 Male p21 p30 -.003 .018 1.000 

   p60 -.010 .018 1.000 

  p30 p21 .003 .018 1.000 

   p60 -.007 .019 1.000 

  p60 p21 .010 .018 1.000 

   p30 .007 .019 1.000 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.3. Post hoc testing for the effect of age on relative beta power in AC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 .015 .016 1.000 

   p60 .005 .015 1.000 

  p30 p21 -.015 .016 1.000 

   p60 -.010 .015 1.000 

  p60 p21 -.005 .015 1.000 

   p30 .010 .015 1.000 

 Male p21 p30 .014 .014 .936 

   p60 .000 .015 1.000 

  p30 p21 -.014 .014 .936 

   p60 -.014 .015 1.000 

  p60 p21 .000 .015 1.000 

   p30 .014 .015 1.000 

PTEN KO Female p21 p30 -.024 .016 .424 

   p60 -.082 .016 <.001 

  p30 p21 .024 .016 .424 

   p60 -.058 .016 .002 

  p60 p21 .082 .016 <.001 

   p30 .058 .016 .002 

 Male p21 p30 -.042 .016 .034 

   p60 -.130 .016 <.001 

  p30 p21 .042 .016 .034 

   p60 -.088 .017 <.001 

  p60 p21 .130 .016 <.001 

   p30 .088 .017 <.001 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.4. Post hoc testing for the effect of age on relative low gamma power in AC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 -.026 .014 .206 

   p60 -.037 .013 .016 

  p30 p21 .026 .014 .206 

   p60 -.011 .013 1.000 

  p60 p21 .037 .013 .016 

   p30 .011 .013 1.000 

 Male p21 p30 -.038 .012 .005 

   p60 -.040 .013 .006 

  p30 p21 .038 .012 .005 

   p60 -.001 .013 1.000 

  p60 p21 .040 .013 .006 

   p30 .001 .013 1.000 

PTEN KO Female p21 p30 -.031 .014 .090 

   p60 -.010 .013 1.000 

  p30 p21 .031 .014 .090 

   p60 .020 .014 .437 

  p60 p21 .010 .013 1.000 

   p30 -.020 .014 .437 

 Male p21 p30 -.070 .014 <.001 

   p60 -.090 .014 <.001 

  p30 p21 .070 .014 <.001 

   p60 -.020 .015 .532 

  p60 p21 .090 .014 <.001 

   p30 .020 .015 .532 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.5. Post hoc testing for the effect of age on relative high gamma power in AC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 -.021 .011 .144 

   p60 -.022 .010 .081 

  p30 p21 .021 .011 .144 

   p60 -.001 .010 1.000 

  p60 p21 .022 .010 .081 

   p30 .001 .010 1.000 

 Male p21 p30 -.014 .009 .380 

   p60 -.014 .010 .440 

  p30 p21 .014 .009 .380 

   p60 .000 .010 1.000 

  p60 p21 .014 .010 .440 

   p30 .000 .010 1.000 

PTEN KO Female p21 p30 -.001 .011 1.000 

   p60 .018 .010 .244 

  p30 p21 .001 .011 1.000 

   p60 .020 .011 .219 

  p60 p21 -.018 .010 .244 

   p30 -.020 .011 .219 

 Male p21 p30 -.025 .011 .066 

   p60 -.010 .011 1.000 

  p30 p21 .025 .011 .066 

   p60 .015 .011 .525 

  p60 p21 .010 .011 1.000 

   p30 -.015 .011 .525 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.6. Post hoc testing for the effect of age on relative HFO in AC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 -.078 .037 .109 

   p60 -.041 .034 .687 

  p30 p21 .078 .037 .109 

   p60 .036 .034 .870 

  p60 p21 .041 .034 .687 

   p30 -.036 .034 .870 

 Male p21 p30 -.053 .031 .289 

   p60 .012 .033 1.000 

  p30 p21 .053 .031 .289 

   p60 .064 .033 .167 

  p60 p21 -.012 .033 1.000 

   p30 -.064 .033 .167 

PTEN KO Female p21 p30 .018 .037 1.000 

   p60 .080 .035 .075 

  p30 p21 -.018 .037 1.000 

   p60 .062 .037 .292 

  p60 p21 -.080 .035 .075 

   p30 -.062 .037 .292 

 Male p21 p30 -.034 .037 1.000 

   p60 .052 .037 .489 

  p30 p21 .034 .037 1.000 

   p60 .086 .039 .084 

  p60 p21 -.052 .037 .489 

   p30 -.086 .039 .084 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.7. Post hoc testing for the effect of genotype on relative beta power in AC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 -.055 .016 <.001 

 p30 -.094 .017 <.001 

 p60 -.142 .015 <.001 

Male p21 -.027 .015 .074 

 p30 -.082 .016 <.001 

 p60 -.157 .016 <.001 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.8. Post hoc testing for the effect of genotype on relative low gamma power in AC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 -.033 .014 .017 

 p30 -.038 .014 .009 

 p60 -.006 .013 .622 

Male p21 -.005 .013 .695 

 p30 -.037 .013 .007 

 p60 -.055 .014 <.001 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.9. Post hoc testing for the effect of sex on relative low gamma power in AC. 

Genotype Age Mean 
Difference 

Standard Error Adjusted 
p-value 

Control p21 -.002 .013 .867 

 p30 -.015 .013 .249 

 p60 -.005 .013 .694 

PTEN KO p21 .026 .013 .056 

 p30 -.014 .015 .345 

 p60 -.054 .014 <.001 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.10. Post hoc testing for the effect of sex on relative high gamma power in AC. 

Genotype Age Mean 
Difference 

Standard Error Adjusted 
p-value 

Control p21 -.014 .010 .157 

 p30 -.007 .010 .489 

 p60 -.006 .010 .531 

PTEN KO p21 .009 .010 .392 

 p30 -.015 .011 .194 

 p60 -.019 .011 .083 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.11. Post hoc testing for the effect of genotype on relative high gamma power in AC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 -.010 .011 .362 

 p30 .010 .011 .346 

 p60 .031 .010 .002 

Male p21 .013 .010 .170 

 p30 .003 .010 .797 

 p60 .018 .011 .095 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.12. Post hoc testing for the effect of genotype on relative HFO in AC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 .017 .036 .643 

 p30 .113 .038 .003 

 p60 .138 .033 <.001 

Male p21 .078 .033 .021 

 p30 .097 .035 .007 

 p60 .118 .037 .002 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.13. Post hoc testing for the effect of age on relative theta power in FC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 .065 .044 .436 

   p60 .095 .041 .067 

  p30 p21 -.065 .044 .436 

   p60 .030 .041 1.000 

  p60 p21 -.095 .041 .067 

   p30 -.030 .041 1.000 

 Male p21 p30 .111* .038 .012 

   p60 .096 .040 .054 

  p30 p21 -.111 .038 .012 

   p60 -.014 .040 1.000 

  p60 p21 -.096 .040 .054 

   p30 .014 .040 1.000 

PTEN KO Female p21 p30 .063 .045 .484 

   p60 .082 .042 .166 

  p30 p21 -.063 .045 .484 

   p60 .019 .045 1.000 

  p60 p21 -.082 .042 .166 

   p30 -.019 .045 1.000 

 Male p21 p30 .201 .045 <.001 

   p60 .169 .045 <.001 

  p30 p21 -.201 .045 <.001 

   p60 -.033 .046 1.000 

  p60 p21 -.169 .045 <.001 

   p30 .033 .046 1.000 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.14. Post hoc testing for the effect of age on relative alpha power in FC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 .054 .017 .007 

   p60 .010 .016 1.000 

  p30 p21 -.054 .017 .007 

   p60 -.044 .016 .024 

  p60 p21 -.010 .016 1.000 

   p30 .044 .016 .024 

 Male p21 p30 .028 .015 .177 

   p60 -.021 .016 .569 

  p30 p21 -.028 .015 .177 

   p60 -.049 .016 .007 

  p60 p21 .021 .016 .569 

   p30 .049 .016 .007 

PTEN KO Female p21 p30 -.006 .017 1.000 

   p60 -.035 .017 .112 

  p30 p21 .006 .017 1.000 

   p60 -.029 .017 .296 

  p60 p21 .035 .017 .112 

   p30 .029 .017 .296 

 Male p21 p30 -.015 .017 1.000 

   p60 -.023 .017 .597 

  p30 p21 .015 .017 1.000 

   p60 -.008 .018 1.000 

  p60 p21 .023 .017 .597 

   p30 .008 .018 1.000 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.15. Post hoc testing for the effect of age on relative beta power in FC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 .011 .018 1.000 

   p60 .015 .017 1.000 

  p30 p21 -.011 .018 1.000 

   p60 .004 .017 1.000 

  p60 p21 -.015 .017 1.000 

   p30 -.004 .017 1.000 

 Male p21 p30 .009 .015 1.000 

   p60 .001 .016 1.000 

  p30 p21 -.009 .015 1.000 

   p60 -.008 .016 1.000 

  p60 p21 -.001 .016 1.000 

   p30 .008 .016 1.000 

PTEN KO Female p21 p30 -.029 .018 .332 

   p60 -.089 .017 <.001 

  p30 p21 .029 .018 .332 

   p60 -.060 .018 .003 

  p60 p21 .089 .017 <.001 

   p30 .060 .018 .003 

 Male p21 p30 -.057 .018 .006 

   p60 -.117 .018 <.001 

  p30 p21 .057 .018 .006 

   p60 -.060 .019 .006 

  p60 p21 .117 .018 <.001 

   p30 .060 .019 .006 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



209 
 

Supplementary Table 4.16. Post hoc testing for the effect of age on relative low gamma power in FC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 -.039 .016 .044 

   p60 -.041 .015 .017 

  p30 p21 .039 .016 .044 

   p60 -.002 .015 1.000 

  p60 p21 .041 .015 .017 

   p30 .002 .015 1.000 

 Male p21 p30 -.055 .013 <.001 

   p60 -.051 .014 .001 

  p30 p21 .055 .013 <.001 

   p60 .005 .014 1.000 

  p60 p21 .051 .014 .001 

   p30 -.005 .014 1.000 

PTEN KO Female p21 p30 -.026 .016 .320 

   p60 -.006 .015 1.000 

  p30 p21 .026 .016 .320 

   p60 .020 .016 .643 

  p60 p21 .006 .015 1.000 

   p30 -.020 .016 .643 

 Male p21 p30 -.075 .016 <.001 

   p60 -.055 .016 .002 

  p30 p21 .075 .016 <.001 

   p60 .020 .016 .665 

  p60 p21 .055 .016 .002 

   p30 -.020 .016 .665 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.17. Post hoc testing for the effect of age on relative high gamma power in FC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 -.026 .009 .019 

   p60 -.031 .009 .002 

  p30 p21 .026 .009 .019 

   p60 -.005 .009 1.000 

  p60 p21 .031 .009 .002 

   p30 .005 .009 1.000 

 Male p21 p30 -.031 .008 <.001 

   p60 -.022 .009 .038 

  p30 p21 .031 .008 <.001 

   p60 .009 .009 .864 

  p60 p21 .022 .009 .038 

   p30 -.009 .009 .864 

PTEN KO Female p21 p30 -.006 .009 1.000 

   p60 .009 .009 .988 

  p30 p21 .006 .009 1.000 

   p60 .015 .009 .335 

  p60 p21 -.009 .009 .988 

   p30 -.015 .009 .335 

 Male p21 p30 -.030 .009 .006 

   p60 -.007 .009 1.000 

  p30 p21 .030 .009 .006 

   p60 .023 .010 .066 

  p60 p21 .007 .009 1.000 

   p30 -.023 .010 .066 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.18. Post hoc testing for the effect of age on relative HFO in FC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 -.067 .026 .032 

   p60 -.049 .024 .124 

  p30 p21 .067 .026 .032 

   p60 .017 .024 1.000 

  p60 p21 .049 .024 .124 

   p30 -.017 .024 1.000 

 Male p21 p30 -.064 .022 .013 

   p60 -.005 .023 1.000 

  p30 p21 .064 .022 .013 

   p60 .059 .023 .038 

  p60 p21 .005 .023 1.000 

   p30 -.059 .023 .038 

PTEN KO Female p21 p30 .003 .026 1.000 

   p60 .039 .025 .348 

  p30 p21 -.003 .026 1.000 

   p60 .036 .026 .511 

  p60 p21 -.039 .025 .348 

   p30 -.036 .026 .511 

 Male p21 p30 -.028 .026 .842 

   p60 .028 .026 .828 

  p30 p21 .028 .026 .842 

   p60 .056 .027 .117 

  p60 p21 -.028 .026 .828 

   p30 -.056 .027 .117 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.19. Post hoc testing for the effect of genotype on relative theta power in FC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 .052 .043 .232 

 p30 .050 .045 .274 

 p60 .039 .040 .337 

Male p21 -.031 .040 .439 

 p30 .059 .042 .164 

 p60 .041 .045 .358 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.20. Post hoc testing for the effect of genotype on relative beta power in FC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 -.036 .018 .045 

 p30 -.076 .018 <.001 

 p60 -.140 .016 <.001 

Male p21 -.015 .016 .371 

 p30 -.081 .017 <.001 

 p60 -.132 .018 <.001 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.21. Post hoc testing for the effect of genotype on relative high gamma power in FC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 -.008 .009 .417 

 p30 .012 .010 .207 

 p60 .032 .009 <.001 

Male p21 .007 .009 .444 

 p30 .008 .009 .404 

 p60 .021 .009 .026 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.22. Post hoc testing for the effect of genotype on relative HFO in FC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 -.008 .025 .748 

 p30 .062 .026 .021 

 p60 .080 .023 <.001 

Male p21 .022 .023 .348 

 p30 .058 .025 .020 

 p60 .055 .026 .034 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.23. Post hoc testing for the effect of genotype on gap-ASSR data. 

Cortical 
Region 

Modulation 
Depth 

Sex Age Mean 
Difference 

Standard 
error 

Adjusted 
p-value 

AC 100% Female p21 -0.0228 0.00876 0.1988 

   p30 -0.0221 0.00893 0.2771 

   p60 -0.0400 0.00792 <0.0001 

  Male p21 -0.0388 0.00792 <0.0001 

   p30 -0.0263 0.00835 0.0388 

   p60 -0.0409 0.00876 0.0001 

 75% Female p21 -0.0363 0.00876 0.0008 

   p30 -0.0166 0.00893 0.7937 

   p60 -0.0280 0.00792 0.0099 

  Male p21 -0.0295 0.00792 0.0047 

   p30 -0.0185 0.00835 0.4754 

   p60 -0.0339 0.00876 0.0026 

FC 100% Female p21 -0.0405 0.00876 0.0001 

   p30 -0.0373 0.00893 0.0007 

   p60 -0.0482 0.00792 <0.0001 

  Male p21 -0.0305 0.00792 0.0029 

   p30 -0.0347 0.00835 0.0008 

   p60 -0.0442 0.00876 <0.0001 

 75% Female p21 -0.0335 0.00876 0.0032 

   p30 -0.0240 0.00893 0.1587 

   p60 -0.0417 0.00792 <0.0001 

  Male p21 -0.0303 0.00792 0.0032 

   p30 -0.0294 0.00835 0.0103 

   p60 -0.0448 0.00876 <0.0001 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted using Sidak 
method. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.24. Post hoc testing for the effect of genotype on P1 amplitude in the AC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 9.094 3.178 .005 

 p30 3.808 3.327 .254 

 p60 5.411 2.949 .069 

Male p21 .773 2.949 .794 

 p30 6.985 3.109 .026 

 p60 3.660 3.260 .264 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.25. Post hoc testing for the effect of sex on P1 amplitude in AC. 

Genotype Age Mean 
Difference 

Standard Error Adjusted 
p-value 

Control p21 5.936 3.023 .052 

 p30 .416 3.023 .891 

 p60 5.762 2.949 .053 

PTEN KO p21 -2.385 3.109 .444 

 p30 3.594 3.405 .293 

 p60 4.011 3.260 .221 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.26. Post hoc testing for the effect of genotype on N1 amplitude in the AC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 1.651 6.481 .799 

 p30 2.796 6.784 .681 

 p60 8.430 6.013 .163 

Male p21 14.568 6.013 .017 

 p30 -4.067 6.338 .522 

 p60 12.665 6.648 .059 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.27. Post hoc testing for the effect of age on N1 amplitude in the AC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 -5.679 6.620 1.000 

   p60 -6.155 6.163 .959 

  p30 p21 5.679 6.620 1.000 

   p60 -.476 6.163 1.000 

  p60 p21 6.155 6.163 .959 

   p30 .476 6.163 1.000 

 Male p21 p30 -4.902 5.669 1.000 

   p60 -10.735 6.013 .229 

  p30 p21 4.902 5.669 1.000 

   p60 -5.834 6.013 1.000 

  p60 p21 10.735 6.013 .229 

   p30 5.834 6.013 1.000 

PTEN KO Female p21 p30 -4.534 6.648 1.000 

   p60 .624 6.338 1.000 

  p30 p21 4.534 6.648 1.000 

   p60 5.157 6.648 1.000 

  p60 p21 -.624 6.338 1.000 

   p30 -5.157 6.648 1.000 

 Male p21 p30 -23.537 6.648 .002 

   p60 -12.638 6.648 .178 

  p30 p21 23.537 6.648 .002 

   p60 10.898 6.943 .357 

  p60 p21 12.638 6.648 .178 

   p30 -10.898 6.943 .357 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.28. Post hoc testing for the effect of sex on N1 amplitude in AC. 

Genotype Age Mean 
Difference 

Standard Error Adjusted 
p-value 

Control p21 -7.877 6.163 .203 

 p30 -7.100 6.163 .251 

 p60 -12.458 6.013 .040 

PTEN KO p21 5.039 6.338 .428 

 p30 -13.964 6.943 .046 

 p60 -8.223 6.648 .218 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.29. Post hoc testing for the effect of sex on P2 amplitude in AC. 

Genotype Age Mean 
Difference 

Standard Error Adjusted 
p-value 

Control p21 8.427 5.793 .148 

 p30 9.679 5.793 .097 

 p60 6.247 5.652 .271 

PTEN KO p21 -8.831 5.958 .141 

 p30 12.588 6.527 .056 

 p60 13.935 6.249 .027 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.30. Post hoc testing for the effect of genotype on P1 amplitude in the FC. 

Sex Age Mean Difference Standard Error Adjusted 
p-value 

Female p21 12.892 4.437 .004 

 p30 2.101 4.644 .652 

 p60 3.884 4.117 .347 

Male p21 2.453 4.117 .552 

 p30 4.861 4.339 .265 

 p60 1.440 4.551 .752 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.31. Post hoc testing for the effect of sex on P1 amplitude in FC. 

Genotype Age Mean 
Difference 

Standard Error Adjusted  
p-value 

Control p21 7.736 4.219 .069 

 p30 2.243 4.219 .596 

 p60 7.143 4.117 .085 

PTEN KO p21 -2.702 4.339 .534 

 p30 5.003 4.753 .294 

 p60 4.698 4.551 .304 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Supplementary Table 4.32. Post hoc testing for the effect of genotype on N1 amplitude in the FC. 

Sex Age Mean Difference Standard Error Adjusted  
p-value 

Female p21 4.588 4.995 .360 

 p30 2.731 5.229 .602 

 p60 10.163 4.635 .030 

Male p21 17.536 4.635 <.001 

 p30 -2.287 4.886 .640 

 p60 9.583 5.124 .064 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 

 
Supplementary Table 4.33. Post hoc testing for the effect of age on N1 amplitude in the FC. 

Genotype Sex Age Age Mean 
Difference 

Standard 
Error 

Adjusted 
p-value 

Control Female p21 p30 -4.357 5.103 1.000 

   p60 -3.353 4.750 1.000 

  p30 p21 4.357 5.103 1.000 

   p60 1.004 4.750 1.000 

  p60 p21 3.353 4.750 1.000 

   p30 -1.004 4.750 1.000 

 Male p21 p30 -4.554 4.370 .898 

   p60 -2.719 4.635 1.000 

  p30 p21 4.554 4.370 .898 

   p60 1.836 4.635 1.000 

  p60 p21 2.719 4.635 1.000 

   p30 -1.836 4.635 1.000 

PTEN KO Female p21 p30 -6.214 5.124 .682 

   p60 2.223 4.886 1.000 

  p30 p21 6.214 5.124 .682 

   p60 8.437 5.124 .306 

  p60 p21 -2.223 4.886 1.000 

   p30 -8.437 5.124 .306 

 Male p21 p30 -24.378 5.124 <.001 

   p60 -10.672 5.124 .118 

  p30 p21 24.378 5.124 <.001 

   p60 13.706 5.352 .035 

  p60 p21 10.672 5.124 .118 

   p30 -13.706 5.352 .035 
Post hoc comparisons were carried out using the estimated marginal means and p-values were adjusted with Bonferroni 
correction. Bold text indicates statistical significance (p = or < 0.05). 
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Chapter 5 

 

Impact of acute administration of an mGluR5 antagonist, CTEP, on cortical 

auditory processing in a PTEN-deletion model of Autism Spectrum Disorders  

 

Abstract 

Symptoms of Autism Spectrum Disorders (ASD) include severe sensory sensitivity and 

processing deficits which may lead to broader symptomology including delayed 

language. The mechanistic links between ASD risk-genes and sensory processing 

remain unclear. Abnormal temporal processing may lead to speech and language 

deficits in ASD.  The developmental trajectories and genotype- and sex-dependent 

differences in auditory temporal processing are beginning to be elucidated in transgenic 

animal models of ASD. We recently showed in the Nse-cre Pten-deletion model 

(phosphatase and tensin homolog missing on chromosome 10) of ASD that deleting 

PTEN in the cortex significantly impacts oscillatory activity and auditory temporal 

processing. Specifically, loss of PTEN in cortical layers III-V and the dentate gyrus 

results in genotype differences in resting electroencephalograph (EEG) recordings and 

sound evoked responses in both males and females. The underlying mechanisms 

behind these abnormalities are not well understood. In the current study, we tested 

whether abnormal activity of group 1 metabotropic receptor mGluR5 was involved in 

these phenotypes. mGluR5 has been implicated in several models of ASD, including the 

Nse-cre Pten deletion model (PTEN KO). We acutely treated adult PTEN KO mice with 

CTEP, a specific mGluR5 antagonist, and recorded epidural EEG signals from the frontal 

(FC) and auditory (AC) cortex. Resting EEG spectral power distribution, auditory event 
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related potentials (ERP) and temporal processing were quantified from awake and freely 

moving vehicle- and CTEP-treated male and female mice. Temporal processing was 

measured using a gap-in-noise-ASSR (auditory steady state response) stimulus 

paradigm. The experimental manipulation of gap duration and modulation depth allows 

us to measure cortical entrainment to rapid gaps in sounds. Temporal processing was 

quantified using inter-trial phase clustering (ITPC) values that account for phase 

consistency across trials. The results show that CTEP treatment shifts the resting power 

distribution in males, such that CTEP treated mice have decreased alpha power and 

increased gamma power in the AC compared to vehicle treated males. CTEP treatment 

showed no significant impact on auditory temporal processing in either sex or cortical 

region. The results also show no treatment effect on ERP amplitudes in males or 

females. Lastly, non-phase locked single trial power is significantly elevated in the AC 

and FC of CTEP treated females but not males, suggesting a sex specific increase in 

‘on-going background activity’ following CTEP treatment. Overall, these data 

demonstrate that the irregular oscillatory activity and auditory processing deficits 

previously identified in the Nse-PTEN ASD model are not significantly improved by 

CTEP treatment, indicating that abnormal mGluR5 activity alone may not drive the EEG 

phenotypes. However, the differential impact of treatment across the sexes suggests 

that mGluR5 may be involved in sex-specific mechanisms that underlie the abnormal 

oscillatory activity. 

 

Introduction 

Autism spectrum disorders (ASD) are characterized by reduced social 

interactions, impaired verbal and nonverbal communication, and repetitive behaviors 
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[Park et al., 2016; Ratajczak, 2011; Kirkovski et al., 2013; Pickett & London, 2005]. The 

rate of ASD diagnoses is ~ 1 in 44 children in the United States [Christensen et al., 

2018]. ASD has traditionally been diagnosed within the first three years of life, with some 

of the earliest signs recognized in infants being delays in language and social 

engagement [Park et al., 2016]. Sensory abnormalities are consistently associated with 

ASD and are considered a core diagnostic criterion [Picket & London, 2005]. Early 

developmental sensory deficits may lead to speech and language deficits, but very little 

is known about the underlying mechanisms of language deficits in ASD.  

Auditory temporal processing is a critical aspect of speech processing and 

normal development of language function. We recently showed significant 

developmental deficits in auditory temporal processing along with hypersensitive 

responses and increased cortical background noise in a mouse model of Phosphatase 

and Tensin homolog deleted on chromosome 10 (PTEN) associated ASD.  PTEN is a 

negative regulator of the PI3K/AKT/mTOR pathway that influences cellular processes 

including growth, proliferation, survival, apoptosis, metabolism, and cell migration 

[Endersby & Baker, 2008]. In the brain, components of the PI3K/AKT/mTOR pathway 

are present at synapses and are essential for synaptogenesis and regulation of dendritic 

spine morphology [Sawicka & Zukin, 2012]. Humans carrying germline PTEN mutations 

and abnormal PI3K/AKT/mTOR signaling display ASD-related behaviors [Eng, 2003; 

Reardon et al., 2001; Goffin et al., 2001; Zori et al., 1998]. Butler et al., (2005) showed a 

number of PTEN mutations in ASD cases with macrocephaly. PTEN mutations were 

found in 17% of macrocephalic ASD cases [Hobert et al., 2014; Klein et al., 2013; 

McBride et al., 2010; Varga et al., 2009; Herman et al., 2007; Buxbaum et al., 2007]. 

Humans with PTEN-ASD have significant intellectual impairment, decreased working 
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memory and impaired language development [Tilot et al., 2015; Frazier et al., 2015; 

Frazier, 2019].  

 A sex-bias in PTEN mutations has been reported in human cohort studies. 

Notably, females carrying a PTEN mutation had significantly higher cancer risks than 

males, including thyroid and breast cancers [Nieuwenhuis et al., 2014; Riegert-Johnson 

et al., 2010]. Mutations of PTEN are a common cause of breast cancers due to their 

negative regulation of the PI3K/AKT/mTOR pathway, a cancer that is predominately 

diagnosed in women [Campbell et al., 2001]. This sex-bias is due to the expression of 

estrogen receptor α (ERα) in 70-80% of breast cancers [Vilgelm et al., 2006]. 

Hyperactivation of the PI3K/AKT/mTOR pathway in breast cancer cells results in 

enhanced phosphorylation and the subsequent hyperactivation of ERα, so dual 

therapeutics inhibiting both PI3K/AKT/mTOR and ERα are the primary treatments used 

for breast cancers [Yamnik et al., 2009; Ishida et al., 2018; Ciruelos, 2014; Page et al., 

2009]. Furthermore, an interaction between ERα and Group 1 metabotropic receptors 

(mGluR1 and mGluR5) has been identified specifically in female neurons in multiple 

brain regions [Martinez et al., 2014; Tabatadze et al., 2015; Tonn Eisinger et al., 2018; 

Santollo & Daniels, 2019]. In the hippocampus, estradiol acts via ERα to initiate 

postsynaptic mGluR1-dependent mobilization of the endocannabinoid anandamide to 

suppress GABA release [Huang & Woolley, 2012]. Additionally, this dual interaction has 

been shown to mediate the estradiol effects on hippocampal memory consolidation 

[Boulware et al., 2013]. ERα-mGluR5 signaling was seen exclusively in female striatal 

neurons as well [Grove-Strawser et al., 2010]. This interaction has recently been 

reported in the cortex of the Nse-cre PTEN mouse model (hereafter referred to as ‘PTEN 

KO’) in which PTEN is reduced in layers III-V of the neocortex and the dentate gyrus of 
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the hippocampus. Specifically, hyperexcitable local neocortical circuits (prolonged, 

spontaneous persistent activity states known as ‘UP states’) were found in female, but 

not male, PTEN KO mice [Molinaro et al., 2024]. Notably, these UP states were 

successfully rescued by the antagonism of mGluR5 and ERα and an increased 

interaction was seen between the two receptor types. These results suggest that a 

PTEN-linked sex-differences occur in the cortical responses, promoting abnormal 

phenotypes in females in vitro, and the underlying mechanism involves mGluR5 and 

ERα. 

 In a recent study, we recorded sensory electrophysiological responses (EEG) in 

control and PTEN KO mice across development and found that decreased PTEN 

expression in the cortex significantly impacted resting EEG oscillatory activity in male 

and female mice and during sound evoked responses [Croom et al., 2024b]. Sex 

differences were found in relative resting power distributions and sound evoked 

responses.  In particular, adult female PTEN KO mice showed larger evoked responses 

compared to male KO mice and WT mice. Elevated mGluR5 activity may underlie 

abnormal auditory responses [Molinaro et al., 2024].  We tested this hypothesis in the 

current study using acute injections of a potent mGluR5 antagonist, CTEP (chloro-4-

((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine) in adult 

PTEN KO mice prior to EEG recordings. Our data show that the effects of acute CTEP 

treatment on oscillatory activity are minimal in both sexes, suggesting that mGluR5 

activity alone is not likely not responsible for the deficits seen in KO mice. 
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Methods 

Mice: All procedures were approved by the Institutional Animal Care and Use Committee 

at the University of California, Riverside. Because germline PTEN homozygous 

knockouts are embryonically lethal, mice with non-lethal PTEN mutations have been 

established to study cellular/circuit dysfunctions and ASD phenotypes [Di Cristofano et 

al., 1998]. The present study used a conditional PTEN knock-out (KO) mouse model that 

utilizes a neuron-specific enolase (Nse) promoter-driven cre [Kwon et al., 2006a; 

Molinaro et al., 2024; Croom et al., 2024b]. Nse is a glycolytic enolase that is expressed 

exclusively in neurons. Cre activity becomes detectable in the brain at p2, in 

differentiated neurons located within the cortex and hippocampus. At four weeks of age, 

cre activity remains restricted to the following regions and percentage of neurons in the 

brain: layers III-V of the cortex (54.5%), dentate gyrus (48.7%), CA3 (37.6%) and 

polymorphic layer (PML) (58.3%) in the hippocampus. No cre activity is detected in glial 

cells [Kwon et al., 2006a].  

PTEN-mutant mice (Nse-cre; Ptenflox/flox) were generated by breeding male 

PTENflox/flox mice (JAX, stock #006440) and female Nse-cre; PTENflox/WT mice on the 

C57bl6/J background (Provided by Dr. Kimberly Huber, UTSW). This breeding 

arrangement produces litters containing three different genotypes: control (cre negative), 

PTEN-heterozygous (Nse-cre; Ptenflox/WT), and PTEN-KO (Nse-cre; Ptenflox/flox). Male and 

female PTEN-KO mice were used for the current study. Data collected on vehicle and 

CTEP treated KO mice were compared to previously published naïve male and female 

KO data [Croom et al., 2024b].  All mice were genotyped via toe clipping (Transnetyx) 

and studies were done before the onset (<p80) of functional age-related hearing loss in 

the C57bl6/J strain of mice [Johnson et al., 1997]. The following sample sizes were used 
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in this study:  Vehicle treated [Males: n=10, Females: n=11], CTEP treated [Males: n=10, 

Females: n=11].  To ensure that vehicle treated PTEN KO mice exhibited abnormal 

auditory responses as seen in naïve PTEN KO mice, we compared data from these two 

groups of mice.  The data for naïve PTEN KO mice used for this comparison has been 

published previously [n=10 males and 12 females, Croom et al., 2024b].  

Surgery: Adult mice underwent epidural electrode implantation surgery at ~p58-p65. This 

specific age range was chosen as the largest deficits were seen in adult PTEN KO mice, 

and female KO mice showed larger amplitudes of event related potentials (ERP) than 

male KO mice at this age. Surgical procedures have been previously published [Croom 

et al. 2023, 2024a, 2024b; Rumschlag et al., 2021; Rumschlag & Razak, 2021]. Briefly, 

mice were anesthetized using intraperitoneal (IP) injections of 80/10/1 mg/kg 

ketamine/xylazine/acepromazine adult mice. The anesthetic state was monitored 

throughout the procedure by toe pinch reflex every 10-15 minutes. ETHIQA-XR (1-shot 

buprenorphine, 3.25 mg/kg body weight) was administered via subcutaneous injection 

prior to surgery. An incision was made to expose the scalp following the removal of fur, 

and sterilization (alcohol and iodine wipes) of the scalp. A Foredom dental drill was used 

to drill ~1mm diameter holes in the skull over the right AC, right FC, and left occipital 

cortex. The screw positions were determined using skull landmarks and coordinates 

previously reported [Wen et al., 2019; Rumschlag & Razak, 2021; Lovelace et al., 2018; 

Lovelace et al., 2020; Rumschlag et al., 2021] and were based on single unit recordings 

[Rotschafer & Razak 2014; Wen et al., 2019; Trujillo et al., 2011]. The wires extending 

from three-channel posts were wrapped around 1 mm screws and driven into the pre-

drilled holes. Dental cement was applied to secure the implant. Mice were placed on a 
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heating pad until fully awake and were allowed 48-72 hours for recovery before EEG 

recordings were made. 

Drug procedures: The mGluR5 specific negative allosteric modulator CTEP was chosen 

for these experiments due to its crossing of blood-brain barrier, selective binding and 

long half-life of 18 hours [Lindemann et al., 2011]. Adult mice were acutely administered 

either 2 mg/kg CTEP (prepared fresh daily) or vehicle (0.9% NaCl, 0.3% Tween-80) via 

IP injection 90 minutes prior to EEG recording, as previously published [Molinaro et al., 

2024].  

 EEG recordings: All EEG recordings were obtained from awake and freely moving mice. 

EEG recordings were performed at ~p59-p70. Recordings were obtained from the AC 

and FC electrodes, using the occipital screw as reference. Mice were placed in an arena 

inside a Faraday cage. The cage was located on a vibration isolation table in a sound-

insulated and anechoic booth (Gretch-Ken, OR). Mice were briefly anesthetized with 

isoflurane and attached to an EEG cable via the implanted screws and then habituated 

to the recording arena with no stimuli for 15 minutes prior to sound evoked recordings. 

The EEG recording set-up has been previously reported [Rumschlag et al., 2021; 

Rumschlag & Razak, 2021; Croom et al., 2023, 2024a, 2024b]. Briefly, the attached 

cable was connected via a commutator to a TDT (Tucker Davis Technologies, FL) 

RA4LI/RA4PA headstage/pre-amp, which was connected to a TDT RZ6 multi-I/O 

processor. OpenEx (TDT) was used to simultaneously record EEG signals and operate 

the LED light used to synchronize the video and waveform data. TTL pulses were 

utilized to mark stimulus onsets on a separate channel in the collected EEG data. The 

EEG signals were recorded at a sampling rate of 24.414 kHz and down-sampled to 1024 

Hz for analysis. All raw EEG recordings were visually examined prior to analysis for 
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artifacts, including loss of signal or signs of clipping. No EEG data collected in this study 

was rejected after examination.   

Resting EEG: For resting EEGs (no sound stimulus presented), mice were habituated in 

the arena for 15 minutes followed by 5 minutes of recording. Power spectral densities 

were analyzed in both AC and FC. The traces were split into Hanning-windowed 1-

second segments with 50% overlap to avoid edge artifacts and spectral splatter and then 

transformed to the frequency domain via Fourier transform [Rumschlag et al., 2021]. The 

average power was calculated by averaging the spectra from each of the 1-second 

segments and were then split into frequency bands (theta: 3-7 Hz, alpha: 8-13 Hz, beta: 

14-29 Hz, low gamma: 30-59 Hz, high gamma: 61-100 Hz, and high-frequency 

oscillations (HFO): 101-250 Hz). Gamma power was split to low and high ranges as 

studies have suggested that rhythms in the 30–60 Hz band and higher frequency 

broadband gamma (>50 Hz) are distinct and generated by different mechanisms [Dvorak 

& Fenton, 2014; Balakrishnan & Pearce 2015].  

Auditory ERP: Narrowband noise stimuli (1-12 kHz, 120 repetitions, 100 ms duration, 

5ms rise/fall time, 0.25 Hz repetition rate) were presented at 75 dB SPL using a speaker 

(MF1, Tucker Davis Technologies, FL) situated 20 cm above the floor of the arena. The 

EEG trace was split into trials, using the TTL pulses to mark sound onset [Croom et al., 

2023, 2024a, 2024b; Rumschlag & Razak 2021; Rumschlag et al., 2021]. Each trial was 

baseline corrected, such that the mean of the 250 ms baseline period prior to sound 

onset was subtracted from the trial trace for each trial. Each trial was then detrended 

(MATLAB detrend function) and all trials were averaged together. Time-frequency 

analysis was performed with a dynamic complex Morlet wavelet transform with Gabor 

normalization.  The wavelet parameter was set for each frequency to optimize time-
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frequency resolution. The single trial power (STP) measurement does not correct for 

mean baseline power levels, allowing for the identification of ongoing ‘background 

activity’ during stimulus presentation. To compare the responses across treatment 

conditions and sexes, a non-parametric permutation test was used, to find clusters of 

significant values [Maris & Oostenveld, 2007]. First, a t-test was run on each time-

frequency point for the two groups being compared, yielding the T-values for all points. 

T-values corresponding to p<0.025 were considered significant. Clusters of significant T-

values were found and their area was measured. Next, the group assignments were 

shuffled randomly, and the t-tests and cluster-measurements were run again on the 

surrogate groups. This surrogate analysis was performed 2000 times to generate a 

distribution of cluster sizes that we would expect to find by chance. Originally identified 

clusters that were larger than 95% of the surrogate clusters were considered significant. 

This method allows for the identification of significant differences between groups 

without performing excessive comparisons. 

Gap-ASSR: The stimulus used to assess auditory temporal processing is termed the ‘40 

Hz gaps-in-noise ASSR’ (auditory steady state response, henceforth, ‘gap-ASSR’) 

[Rumschlag & Razak, 2021; Croom et al., 2023, 2024a, 2024b]. The stimulus contains 

alternating 250 ms segments of noise and gap interrupted noise presented at 75 dB 

SPL. The gaps are placed 25 ms apart, resulting in a presentation rate of 40 Hz, a rate 

that produces the strongest ASSR signal when measured from the AC and frontal 

regions and may reflect the resonance frequency of the underlying neural circuits 

[Galambos et al., 1981; Pastor et al., 2002; Llinas, 1988; Llinas et al., 1991; Rosanova et 

al., 2009; Kim et al., 2015; Hwang et al., 2019]. For each gap in noise segment, the gap 

duration and modulation depth are chosen at random. Gaps of 2, 4, 6, 8, 10, or 12 ms 
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durations and modulation depths of 75 and 100% were used. To measure the ability of 

the cortex to consistently respond to the gaps in noise, inter-trial phase clustering (ITPC) 

at 40 Hz was measured [Cohen, 2014]. ITPC measures the phase consistency of the 

recorded signal across multiple trials.  The ITPC is determined by the distribution of 

phase angles in the EEG response across trials at each gap duration and reflects the 

precise timing of 40 Hz activity in the underlying neural generators. If the cortical regions 

are consistently responding to a specific gap duration across trials, the ITPC values will 

be high, reaching a maximum of 1. If the response is not consistent across trials, the 

expected ITPC value will be significantly lower (minimum of zero). The EEG trace was 

transformed using a dynamic complex Morlet wavelet transform. The trials 

corresponding to each parametric pair (gap duration + modulation depth) were grouped 

together. The ITPC was calculated for each time-frequency point as the average vector 

for each of the phase unit vectors recorded across trials (trial count >100 trials per 

parametric pair). The ITPC values at 40 Hz were averaged to extract the mean ITPC for 

the parametric pairs in the AC and FC.  

Statistics:  Statistics were performed on GraphPad Prism. To evaluate the effects of 

treatment (2 levels) and sex (2 levels), two-way ANOVAs were used for resting and ERP 

analysis. Post hoc comparisons were carried out with Bonferroni’s multiple comparisons 

test and p-values were adjusted accordingly. The resting and ERP data was tested for 

normality using Shapiro-Wilk tests. Unpaired t-tests were used for resting and ERP data 

to compare naïve male and female KO to vehicle treated male and female KO. A three-

way repeated measures ANOVA was used for vehicle vs CTEP treated gap-ASSR 

analysis, with the three factors being treatment (2 levels) X sex (2 levels) X gap duration 

(6 levels). A two-way repeated measures ANOVA was used for naïve vs vehicle treated 
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gap-ASSR analysis, with the two factors being gap duration (6 levels) X condition (2 

levels). A repeated measures ANOVA was chosen as multiple gap duration data points 

were collected from a single mouse in a recording session. Mauchly Tests for Sphericity 

were utilized and corrected for using the Greenhouse-Geisser corrections if necessary. 

Cortical regions (AC, FC) and modulation depths (75%, 100%) were analyzed 

separately.  

 

Results 

 Our previous study characterized the developmental trajectory of cortical resting 

EEG and sound-evoked responses in the Nse-cre PTEN-deletion model (Croom et al., 

2024b). Results of that study showed abnormal relative resting power distributions, 

auditory temporal processing deficits, and hypersensitivity. While both male and female 

KO mice demonstrated temporal processing deficits across development, adult female 

KO mice showed increased ERP amplitudes compared to males. The main goal of this 

study was to determine whether an antagonist of mGluR5 receptor improves these 

phenotypes in adult PTEN KO mice. We hypothesized that mGluR5 antagonism with 

CTEP would improve EEG phenotypes to a greater extent in KO females, compared to 

males, due to the sex-bias seen in mGluR5-ERα interactions. 

Male KO mice have decreased alpha and increased gamma power in the AC 

following CTEP treatment 

We quantified resting (no stimulus) spectral power distribution in naïve (no 

injection) adult male and female KO mice to vehicle-treated male and female KO mice to 

ensure vehicle treatment alone was not impacting phenotypes in the auditory cortex 

(AC) and frontal cortex (FC). Figure 5.1 and Table 5.1 show the results of the full 
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statistical analyses of resting spectral power. We then compared adult vehicle treated 

male and female PTEN KO mice to age- and sex-matched KO mice who were acutely 

treated with CTEP. Figure 5.2 and Table 5.2 show this analysis.  

When comparing vehicle treated and naïve mice, no differences were seen in the 

AC of males or females (Figure 5.1A-F). The subsequent analysis showed that CTEP 

treatment did alter resting power distributions in the AC (Figure 5.2). The major 

treatment effect was decreased alpha and increased gamma power in the AC of male, 

but not female, mice. Alpha power was significantly impacted by both drug treatment and 

sex. Specifically, CTEP treated PTEN KO males had decreased alpha power compared 

to CTEP treated KO females (p=0.0068) (Figure 5.2B). CTEP treatment also caused a 

significant reduction of alpha power in KO males (Figure 5.2B). Low gamma power was 

impacted by sex (main effect: p=0.0435) (Figure 5.2D). CTEP treated males had 

significantly more power in the low and high gamma frequency bands compared to 

vehicle treated males (low gamma: p=0.0162; high gamma: p=0.0270) (Figure 5.2D-E). 

Additionally, CTEP treated males had increased high gamma power compared to CTEP 

treated females (p=0.0260) (Figure 5.2E). A main effect of sex was also seen for high 

frequency oscillations (main effect: p=0.0310) (Figure 5.2F). These data show that CTEP 

treatment alters male KO mice relative resting power distributions in the AC, compared 

to vehicle.  

Similarly to the AC, no differences were seen between naïve and vehicle treated 

male and female KO mice in the FC (Figure 5.1G-L).  When comparing vehicle and 

CTEP treated mice, a significant main effect of drug treatment was seen in the alpha and 

low gamma frequency bands (alpha: p=0.0504; low gamma: p=0.0143) (Figure 5.1H, 

5.1J). Additionally, high gamma power was significantly impacted by sex (p=0.0466) 
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(Figure 5.1K). Taken together, these results show that CTEP caused sex and region-

specific actions on relative resting power distributions. Specifically, CTEP treatment 

lowered alpha power and increased high gamma power in the AC, but not FC, of male 

KO mice.   

 
Figure 5.1. No impact of vehicle treatment on resting spectral power distribution in 

PTEN KO mice. Relative resting spectral power distribution in male and female naïve and 

vehicle treated PTEN KO mice in the AC (A-F) and FC (G-L). No effect of vehicle treatment can 

be seen in either sex or cortical region. 

 

Figure 5.2. Male KO mice have decreased alpha and increased gamma power in the AC 

following CTEP treatment. Relative resting spectral power distribution in male and female 

vehicle and CTEP treated PTEN KO mice in the AC (A-F) and FC (G-L). Panels indicate main 

effects and post hoc comparisons. CTEP treatment decreased alpha (B) and increased gamma 

power (D,E) in the AC of male mice. CTEP treated PTEN KO males have decreased alpha 

power compared to CTEP treated KO females (B). Low gamma power and high frequency 

oscillations were impacted by sex in the AC (D,F). CTEP treated males have increased high 

gamma power compared to CTEP treated females (D). A significant main effect of drug 

treatment is seen in the alpha and low gamma frequency bands in the FC (H,J). High gamma 

power significantly impacted by sex in the FC (K). 
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Table 5.1. Full statistical analysis of resting EEG data for naïve and vehicle treated mice. 
Sex Cortical 

Region 
Frequency (t,df)  p-value 

Female AC Theta: t(21)=0.6917 0.4967 

  Alpha: t(21)=0.3932 0.6981 

  Beta: t(21)=0.6182 0.5431 

  Low Gamma: t(21)=1.053 0.3045 

  High Gamma: t(21)=1.551 0.1358 

  HFO: t(21)=0.7255 0.4761 

 FC Theta: t(21)=0.4873 0.6311 

  Alpha: t(21)=0.2091 0.8364 

  Beta: t(21)=0.2082 0.8371 

  Low Gamma: t(21)=1.081 0.2921 

  High Gamma: t(21)=1.682 0.1074 

  HFO: t(21)=0.8522 0.4037 

Male AC Theta: t(18)=0.1488 0.8834 

  Alpha: t(18)=0.7412 0.4681 

  Beta: t(18)=1.154 0.2636 

  Low Gamma: t(18)=1.168 0.2579 

  High Gamma: t(18)=0.2542 0.8022 

  HFO: t(18)=0.9360 0.3617 

 FC Theta: t(18)=0.7602 0.4570 

  Alpha: t(18)=1.239 0.2314 

  Beta: t(18)=0.4404 0.6649 

  Low Gamma: t(18)=0.7119 0.4856 

  High Gamma: t(18)=0.2690 0.7910 

  HFO: t(18)=1.308 0.2073 
Unpaired t-tests were used to compare naïve male and female KO to vehicle treated male and female KO. Bold text 
indicates statistical significance (p = or < 0.05). 
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Table 5.2. Full statistical analysis of resting EEG data for vehicle and CTEP treated mice. 
Cortical 
Region 

Frequency Factor ANOVA Results  p-value 

AC Theta: Treatment F(1,38)=2.096 0.1559 

  Sex F(1,38)=3.284 0.0779 

  Treatment x Sex F(1,38)=0.0965 0.7577 

 Alpha: Treatment F(1,38)=9.499 0.0038 

  Sex F(1,38)=8.865 0.0050 

  Treatment x Sex F(1,38)=2.068 0.1586 

 Beta: Treatment F(1,38)=0.0746 0.7861 

  Sex F(1,38)=0.0029 0.9568 

  Treatment x Sex F(1,38)=0.2059 0.6526 

 Low Gamma: Treatment F(1,38)=9.243 0.0043 

  Sex F(1,38)=4.361 0.0435 

  Treatment x Sex F(1,38)=1.009 0.3215 

 High Gamma: Treatment F(1,38)=4.878 0.0333 

  Sex F(1,38)=4.593 0.0386 

  Treatment x Sex F(1,38)=2.380 0.1312 

 HFO: Treatment F(1,38)=0.7940 0.3785 

  Sex F(1,38)=5.017 0.0310 

  Treatment x Sex F(1,38)=0.3631 0.5504 

FC Theta: Treatment F(1,38)=1.26e-
006 

0.9991 

  Sex F(1,38)=0.4670 0.4985 

  Treatment x Sex F(1,38)=0.2001 0.6572 

 Alpha: Treatment F(1,38)=4.084 0.0504 

  Sex F(1,38)=0.5227 0.4741 

  Treatment x Sex F(1,38)=0.4257 0.5180 

 Beta: Treatment F(1,38)=0.0877 0.7686 

  Sex F(1,38)=0.2227 0.6397 

  Treatment x Sex F(1,38)=0.2409 0.6264 

 Low Gamma: Treatment F(1,38)=6.593 0.0143 

  Sex F(1,38)=0.7084 0.4052 

  Treatment x Sex F(1,38)=0.0096 0.9224 

 High Gamma: Treatment F(1,38)=3.883 0.0561 

  Sex F(1,38)=4.232 0.0466 

  Treatment x Sex F(1,38)=0.9191 0.3438 

 HFO: Treatment F(1,38)=0.1936 0.6624 

  Sex F(1,38)=3.762 0.0599 

  Treatment x Sex F(1,38)=0.1203 0.7307 
Two-way ANOVA results for resting EEG analysis. Bold text indicates statistical significance (p = or < 0.05). 

 
Auditory temporal processing deficits are not corrected by CTEP treatment 

Auditory temporal processing was quantified using a 40 Hz gap-in-noise ASSR 

stimulus to assess the ability of the cortex to consistently phase lock to brief gaps in 

noise. Manipulating gap duration and modulation depth of the stimulus allows for a 
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comparison of temporal processing across experimental groups.  Figure 5.3 shows 

example gap-ASSR heat maps of AC and FC ITPC for individual vehicle (Figure 5.3A 

and 5.3C) and CTEP treated (Figure 5.3B and 5.3D) mice. Each panel shows the ITPC 

at a specific gap generated with the 40 Hz stimulus, with increasing gaps across 

columns and each row showing a different age. In each panel, zero on the x-axis (faint 

dashed line) marks the onset of the gap ASSR stimulus. The ITPC is strongest at 40 Hz 

because the stimulus is a 40 Hz train. The warm colors indicating higher ITPC are at 40 

Hz. Cooler colors indicate relatively low ITPC and are expected for very short gaps and 

at spectral bands outside 40 Hz. Matching our previously published naïve KO results, 

major deficits are seen in both cortical regions of the vehicle and CTEP treated mice. 

Specifically, the ITPC does not emerge above background at 40 Hz for any gap duration 

in the vehicle or CTEP treated example (Figure 5.3). The complete three-way ANOVA 

analysis of this data (gap duration x drug x sex) is shown in Table 5.3. Table 5.4 shows 

the two-way ANOVA analysis for naïve and vehicle treated PTEN KO males and 

females. 
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Auditory Cortex 

 As expected, there was a significant impact of gap duration on ITPC in the AC at 

both modulation depths (p<0.0001). Although no interactions or main effects of treatment 

and sex were identified at 75% modulation, a gap duration x sex x drug interaction and a 

main effect of drug treatment were seen at 100%, suggesting that the impact of drug 

treatment may vary across the sexes at different gap durations (interaction effect: 

p=0.0006; main effect of drug treatment: p=0.0170) (Figure 5.4). This result is due to a 

significant difference between vehicle and CTEP treated females, specifically at longer 

gap durations (12ms), with ITPC decreasing in CTEP treated females (Figure 5.4, top 

row). No significant differences between vehicle and CTEP treated males were seen for 

either modulation depth or cortical region (Figure 5.4, bottom row). Similarly, no 

differences between naïve and vehicle treated males and females were identified in the 

AC (Figure 5.5).  

 
Figure 5.3. Auditory temporal processing deficits are not corrected by CTEP treatment. 

Individual example heatmaps of ITPC generated at 40Hz for different gap durations in vehicle 

(A: AC, C: FC) and CTEP treated (B: AC, D: FC) PTEN KO mice. The same example mouse 

is used for the AC and FC. Each panel shows the ITPC (scale is seen at the right edge of the 

figure, warmer colors mean greater ITPC) obtained at a specific gap width. Sound onset in 

each panel is at 0msec. Each column shows ITPC for the same gap width, with the gap width 

increasing from left to right. The y-axis of each panel is the range of frequencies analyzed for 

ITPC. ITPC is maximum around 40 Hz, which was the repetition rate of ASSR stimulus train. 

Qualitative observations of these examples show clear deficits in cortical temporal processing 

in both vehicle and CTEP treated mice in the AC and FC. All panels show 100% modulation 

depth.  
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Frontal Cortex 

 Similar to the AC, there was a significant effect of gap duration on ITPC in the FC 

at both modulation depths (p<0.0001). However, no interactions or main effects of 

treatment and sex were identified in the FC (Figure 5.4). No differences were seen 

between naïve and vehicle treated males and females in the FC (Figure 5.5). Taken 

together, these results suggest that temporal processing deficits are not improved by 

CTEP treatment in adult male or female KO mice. Overall, ITPC values remained low 

after treatment, resembling naïve KO phenotypes.  
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Figure 5.4. Population analysis shows no impact of CTEP treatment on temporal 
processing deficits in male or female PTEN KO mice. Each plot represents the group 
average ITPC values for vehicle and CTEP treated females (top row) and males (bottom 
row). The left columns represent AC and FC data at 100% modulation depth, and the right 
columns represent AC and FC data at 75% modulation depth. A gap duration x sex x drug 
interaction and a main effect of drug treatment are seen at 100% modulation depth in the 
AC. CTEP treatment significantly decreased ITPC in the AC of females at longer gap 
durations (100% modulation). No interactions or main effects of treatment and sex were 
identified in the FC. The complete three-way ANOVA analysis of this data is shown in Table 
5.3.  

 
Figure 5.5. No impact of vehicle treatment on auditory temporal processing in PTEN 
KO mice. Each plot represents the group average ITPC values for naïve and vehicle 
treated females (top row) and males (bottom row). The left columns represent AC and FC 
data at 100% modulation depth, and the right columns represent AC and FC data at 75% 
modulation depth. No differences are seen between naïve and vehicle treated males and 
females in either cortical region. The complete two-way ANOVA analysis of this data is 
shown in Table 5.4. 
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Table 5.3. Full statistical analysis of gap-ASSR data for vehicle and CTEP treated mice. 
Cortical 
Region 

Modulation 
Depth 

Factor/Interaction ANOVA Results Adjusted 
p-value 

AC 100% Gap Duration F(4.38,166.5)=15.41 <0.0001 

  Sex F(1,38)=1.164 0.2874 

  Treatment F(1,38)=6.231 0.0170 

  Gap duration x Sex F(5,190)=1.295 0.2677 

  Gap duration x 
Treatment 

F(5,190)=0.4546 0.8096 

  Sex x Treatment F(1,38)=2.749 0.1056 

  Gap duration x Sex x 
Treatment 

F(5,190)=4.566 0.0006 

AC 75% Gap Duration F(4.033,153.2)=20.10 <0.0001 

  Sex F(1,38)=1.552 0.2204 

  Treatment F(1,38)=0.1109 0.7410 

  Gap duration x Sex F(5,190)=0.6264 0.6798 

  Gap duration x 
Treatment 

F(5,190)=0.9194 0.4695 

  Sex x Treatment F(1,38)=0.4452 0.5086 

  Gap duration x Sex x 
Treatment 

F(5,190)=0.5673 0.7250 

FC 100% Gap Duration F(3.086,144.6)=29.21 <0.0001 

  Sex F(1,38)=0.2537 0.6174 

  Treatment F(1,38)=0.4092 0.5262 

  Gap duration x Sex F(5,190)=0.4202 0.8343 

  Gap duration x 
Treatment 

F(5,190)=1.720 0.1319 

  Sex x Treatment F(1,38)=0.5536 0.4614 

  Gap duration x Sex x 
Treatment 

F(5,190)=1.918 0.0932 

FC 75% Gap Duration F(4.171,158.5)=26.28 <0.0001 

  Sex F(1,38)=1.256 0.2694 

  Treatment F(1,38)=0.0939 0.7609 

  Gap duration x Sex F(5,190)=0.8828 0.4937 

  Gap duration x 
Treatment 

F(5,190)=0.2803 0.9235 

  Sex x Treatment F(1,38)=1.183 0.2835 

  Gap duration x Sex x 
Treatment 

F(5,190)=1.626 0.1549 

Three-way repeated measures ANOVA results for gap-ASSR analysis. P-values were corrected for multiple comparisons 
using the Greenhouse-Geisser corrections if necessary. Bold text indicates statistical significance (p = or < 0.05). 
‘Treatment’ indicates vehicle vs CTEP comparisons.  
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Table 5.4. Full statistical analysis of gap-ASSR data for naïve and vehicle treated mice. 

Sex Cortical 
Region 

Modulation 
Depth 

Factor/Interaction ANOVA Results Adjusted 
p-value 

Female AC 100% Gap Duration F(3.452,72.49)=13.97 <0.0001 

   Condition F(1,21)=0.3741 0.5473 

   Gap x Condition F(5,105)=1.062 0.3858 

  75% Gap Duration F(3.558,74.73)=7.409 <0.0001 

   Condition F(1,21)=0.0697 0.7943 

   Gap x Condition F(5,105)=0.7817 0.5651 

 FC 100% Gap Duration F(4.474,93.94)=20.27 <0.0001 

   Condition F(1,21)=0.1082 0.7454 

   Gap x Condition F(5,105)=1.460 0.2093 

  75% Gap Duration F(3.669,77.05)=25.33 <0.0001 

   Condition F(1,21)=0.0297 0.8647 

   Gap x Condition F(5,105)=0.2993 0.9123 

Male AC 100% Gap Duration F(4.040,72.73)=5.833 0.0004 

   Condition F(1,18)=1.055 0.3180 

   Gap x Condition F(5,90)=2.911 0.0175 

  75% Gap Duration F(3.411,61.39)=6.975 0.0002 

   Condition F(1,18)=2.174 0.1576 

   Gap x Condition F(5,90)=0.7791 0.5674 

 FC 100% Gap Duration F(3.595,64.72)=14.60 <0.0001 

   Condition F(1,18)=2.174 0.1576 

   Gap x Condition F(5,90)=1.432 0.2204 

  75% Gap Duration F(3.559,64.07)=13.36 <0.0001 

   Condition F(1,18)=3.404 0.0815 

   Gap x Condition F(5,90)=0.9235 0.4697 

Two-way repeated measures ANOVA results for comparisons. P-values were corrected for multiple comparisons using the 
Greenhouse-Geisser corrections if necessary. Bold text indicates statistical significance (p = or < 0.05).  ‘Condition’ 
indicates vehicle vs naïve comparisons.  

 
CTEP treatment does not affect ERP amplitudes but differentially impacts single 

trial power in females 

ERPs consist of a series of voltage fluctuations, referred to as ‘waves’ (P1, N1, 

P2). These waves are evoked at specific latencies after sound onset and are associated 

with the population activity in specific brain regions. Measuring the amplitudes of these 

waves allows for the assessment of auditory response magnitudes and synchrony. We 

previously showed that P1 amplitudes were decreased and N1 amplitudes were 
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increased in naïve adult PTEN KO mice. We found there to be no significant difference 

between naïve and vehicle treated KO mice in the AC or FC (Figure 5.6, Table 5.5). 

CTEP injection had no impact on any ERP component in the AC or FC, suggesting that 

abnormalities may not involve greater mGluR5 activation (Figure 5.7, Table 5.6). 

Additionally, no sex differences were seen in either cortical region (Figure 5.7, Table 5.6).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. No impact of vehicle 

treatment on ERP amplitudes in 

PTEN KO mice. (A) Average ERPs 

recorded for naïve and vehicle 

treated PTEN KO females in the 

AC (top) and FC (bottom). (B) 

Average ERPs recorded for naïve 

and vehicle treated PTEN KO 

males in the AC (top) and FC 

(bottom). (C) Population averages 

of AC ERP wave amplitudes. No 

significant difference between 

naïve and vehicle treated KO mice 

in the AC. (D) Population averages 

of FC ERP wave amplitudes. No 

significant difference between 

naïve and vehicle treated KO mice 

in the FC. 
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We characterized non-baseline normalized STP in response to narrowband noise 

bursts, as abnormal power (‘background activity’) during sound-evoked responses show 

clinical correlations in humans with autism [Ethridge et al., 2017; Ethridge et al., 2019]. 

We previously showed that STP was significantly increased in naïve adult PTEN KO 

males and females compared to controls [Croom et al., 2024b]. Additionally, we found 

there to be no significant difference between naïve and vehicle treated KO mice in either 

cortical region (Figures 5.8 and 5.9). CTEP treatment does not affect STP in male and 

female PTEN KO mice compared to vehicle in the AC (Figure 5.10) or FC (Figure 5.11). 

We also compared the STP of vehicle treated males and females as well CTEP treated 

males and females to determine whether CTEP treatment was affecting the sexes 

differentially. In both the AC and FC, there was no difference between vehicle treated 

 

Figure 5.7. CTEP treatment 

does not affect ERP 

amplitudes in PTEN KO mice. 

(A) Average ERPs recorded for 

vehicle and CTEP treated PTEN 

KO females in the AC (top) and 

FC (bottom). (B) Average ERPs 

recorded for vehicle and CTEP 

treated PTEN KO males in the 

AC (top) and FC (bottom). (C) 

Population averages of AC ERP 

wave amplitudes. No significant 

difference between vehicle and 

CTEP treated KO mice in the 

AC. (D) Population averages of 

FC ERP wave amplitudes. No 

significant difference between 

vehicle and CTEP treated KO 

mice in the FC. 
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males and females (Figure 5.12A, Figure 5.13A). However, CTEP treated females 

showed significantly increased STP compared CTEP treated males in both cortical 

regions (Figure 5.12B, Figure 5.13B). Taken together, the ERP results suggest that 

overall synchrony of responses is not impacted by CTEP treatment in PTEN KO mice, 

but treatment does differentially impact STP in the sexes. Specifically, females show 

increased ongoing background activity following CTEP treatment.  

 

 

 
 
 
 
 

 

Figure 5.8. No impact of vehicle treatment on STP in the AC PTEN KO mice. The 

heatmaps show non-baseline corrected normalized power, where warmer hues represent 

increased ongoing background activity, and cooler hues represent a decrease. The smaller 

panels show group average STP in naïve (left) and vehicle treated (right) female (A) and 

male (B) PTEN KO mice. The larger panels show the difference between vehicle treated 

and naïve mice. No significant differences were found in STP in females (A) or males (B) in 

the AC. 
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Figure 5.9. No impact of vehicle treatment on STP in the FC PTEN KO mice. The 

heatmaps show non-baseline corrected normalized power, where warmer hues represent 

increased ongoing background activity, and cooler hues represent a decrease. The smaller 

panels show group average STP in naïve (left) and vehicle treated (right) female (A) and 

male (B) PTEN KO mice. The larger panels show the difference between vehicle treated 

and naïve mice. No significant differences were found in STP in females (A) or males (B) in 

the FC. 
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Figure 5.10. CTEP treatment does not affect STP in the AC of PTEN KO mice. The 

heatmaps show non-baseline corrected normalized power, where warmer hues represent 

increased ongoing background activity, and cooler hues represent a decrease. The smaller 

panels show group average STP in vehicle (left) and CTEP treated (right) female (A) and 

male (B) PTEN KO mice. The larger panels show the difference between CTEP and vehicle 

treated mice. No significant differences were found in STP in vehicle and CTEP treated 

females (A) or males (B) in the AC. 
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Figure 5.11. CTEP treatment does not affect STP in the FC of PTEN KO mice. The 

heatmaps show non-baseline corrected normalized power, where warmer hues represent 

increased ongoing background activity, and cooler hues represent a decrease. The smaller 

panels show group average STP in vehicle (left) and CTEP treated (right) female (A) and 

male (B) PTEN KO mice. The larger panels show the difference between CTEP and vehicle 

treated mice. No significant differences were found in STP in vehicle and CTEP treated 

females (A) or males (B) in the FC. 
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Figure 5.12. CTEP treatment significant increases STP in the AC of female PTEN KO 

mice. The heatmaps show non-baseline corrected normalized power, where warmer hues 

represent increased ongoing background activity, and cooler hues represent a decrease. 

The smaller panels show group average STP in the male (left) and female (right) vehicle (A) 

and CTEP treated (B) PTEN KO mice. The larger panels show the difference between the 

sexes. Outlined regions indicate clusters which are significantly different between males 

and females. No sex difference were found in STP following vehicle treatment (A). CTEP 

treatment significantly increased STP in PTEN KO females (B).  
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Table 5.5. Full statistical analysis of ERP EEG data for naïve and vehicle treated mice.  

Sex Cortical 
Region 

Frequency (t,df)  p-value 

Female AC P1 Amplitude t(21)=0.1080 0.9151 

  N1 Amplitude t(21)=0.9625 0.3468 

  P2 Amplitude t(21)=1.366 0.1864 

 FC P1 Amplitude t(21)=0.2436 0.8099 

  N1 Amplitude t(21)=0.8779 0.3899 

  P2 Amplitude t(21)=0.3843 0.7046 

Male AC P1 Amplitude t(18)=0.8461 0.4086 

  N1 Amplitude t(18)=0.3323 0.7435 

  P2 Amplitude t(18)=0.7582 0.4581 

 FC P1 Amplitude t(18)=1.437 0.1678 

  N1 Amplitude t(18)=0.1370 0.8926 

  P2 Amplitude t(18)=1.547 0.1393 
Unpaired t-tests were used to compare naïve male and female KO to vehicle treated male and female KO. Bold text 
indicates statistical significance (p = or < 0.05). 

 
 
 

 

Figure 5.13. CTEP treatment significant increases STP in the FC of female PTEN KO 

mice. The heatmaps show non-baseline corrected normalized power, where warmer hues 

represent increased ongoing background activity, and cooler hues represent a decrease. 

The smaller panels show group average STP in the male (left) and female (right) vehicle (A) 

and CTEP treated (B) PTEN KO mice. The larger panels show the difference between the 

sexes. Outlined regions indicate clusters which are significantly different between males 

and females. No sex difference were found in STP following vehicle treatment (A). CTEP 

treatment significantly increased STP in PTEN KO females (B).  
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Table 5.6. Full statistical analysis of ERP EEG data for vehicle and CTEP treated mice.   

Cortical 
Region 

Frequency Factor ANOVA Results  p-value 

AC P1 Amplitude Treatment F(1,38)=0.9635 0.3325 

  Sex F(1,38)=1.183 0.2837 

  Treatment x 
Sex 

F(1,38)=0.2126 0.6474 

 N1 Amplitude Treatment F(1,38)=1.464 0.2337 

  Sex F(1,38)=2.438 0.1267 

  Treatment x 
Sex 

F(1,38)=0.9485 0.3363 

 P2 Amplitude Treatment F(1,38)=0.0348 0.8530 

  Sex F(1,38)=0.8176 0.3716 

  Treatment x 
Sex 

F(1,38)=1.096 0.3017 

FC P1 Amplitude Treatment F(1,38)=0.0714 0.7907 

  Sex F(1,38)=0.0044 0.9474 

  Treatment x 
Sex 

F(1,38)=0.1878 0.6672 

 N1 Amplitude Treatment F(1,38)=1.272 0.2664 

  Sex F(1,38)=0.6661 0.4194 

  Treatment x 
Sex 

F(1,38)=1.912 0.1749 

 P2 Amplitude Treatment F(1,38)=1.190 0.2822 

  Sex F(1,38)=2.534 0.1197 

  Treatment x 
Sex 

F(1,38)=0.0629 0.8032 

Two-way ANOVA results for ERP EEG analysis. Bold text indicates statistical significance (p = or < 0.05). 

 
Discussion 

 The present study tested the hypothesis that abnormal mGluR5 receptor activity 

in Nse-cre PTEN KO mice causes abnormal auditory responses. We tested the 

prediction that an mGluR5 receptor antagonist, CTEP, will increase ITPC to gap-ASSR 

stimuli, reduce ERP amplitudes and alter power spectral distributions.  However, we 

found that CTEP treatment shows minimal effects on auditory processing and resting 

cortical EEG measures in Nse-cre PTEN KO mice. The impact of treatment does differ 

across the sexes. In resting conditions, the overall relative power spectrum is shifted in 

males, such that CTEP treated mice have decreased alpha power and increased 

gamma power in the AC. Adult PTEN KO mice have severe auditory temporal 

processing deficits, shown as decreased ITPC during the gap-ASSR stimulus, and 
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CTEP treatment showed no improvement of these abnormalities in either cortical region. 

The results also show no treatment effect on ERP amplitudes in males or females. 

Lastly, non-phase locked single trial power is significantly elevated in the AC and FC of 

CTEP treated females but not males, suggesting a sex specific increase in ‘on-going 

background activity’ following CTEP treatment. Additionally, we found there to be no 

difference between naïve and vehicle treated mice in resting or sound evoked 

responses, showing that CTEP treatment is causing these differences. Overall, the data 

suggests that irregular oscillatory activity and auditory processing deficits identified in the 

Nse-PTEN ASD model are not occurring in vivo via abnormal mGluR5 activity alone. 

However, the differential impact of treatment across the sexes suggests that mGluR5 

may be involved in sex-specific mechanisms that underlie the abnormal oscillatory 

activity.  

 We previously showed that irregular oscillatory activity and auditory processing 

deficits in PTEN ASD model mice are present from an early age and continue to worsen 

with age. We hypothesized that this significant decline with age may be due to severe 

macrocephaly occurring in these mice. The cre activity in this conditional model is driven 

by a neuron specific enolase promoter and is first detectable by embryonic day (E) 11.5 

in the cranial/spinal accessory nerve. It becomes evident by p2 in the cerebral cortex 

and hippocampus, specifically in postmitotic neurons, and becomes most abundant in 

the sensory cortex by four weeks of age [Kwon et al., 2006a]. The loss of PTEN causes 

the upregulation of the PI3K/AKT/mTOR pathway, a pathway shown to promote 

processes linked to cell growth [Kim & Guan, 2019]. Without the negative regulation of 

PTEN, progressive macrocephaly occurs by p60 in Nse-cre mice, making the brains 

significantly larger than those of littermate control [Kwon et al., 2006b]. At the cellular 
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level, soma enlargement, and eventual hypertrophy, as well as neuronal outgrowth is 

observed in areas with cre activity. This causes the compression of surrounding areas, 

including the CA1 region of the hippocampus. Since these structural changes develop 

over time, it is likely that the anatomical changes bring about significant functional 

abnormalities in Nse-cre PTEN KO brains, causing the most severe deficits to be seen in 

adult KO. Although acute CTEP treatment did increase the latency of seizure behavior in 

adult KO females, it is possible that the oscillatory activity in the brain cannot be rescued 

at this late state [Molinaro et al., 2024]. Future studies should analyze the impact of 

acute CTEP treatment earlier in development, prior to the onset of these gross 

morphological changes.    

 A key finding from this study was the impact of CTEP treatment on the relative 

resting power distribution in males. Specifically, the results show decreased alpha power 

and increased gamma power. Alpha waves are seen during a normal wakeful state and 

have been linked to attention, perceptual processing, and semantic memory [Knyazev et 

al., 2006]. Gamma band activity has been linked to a variety of cortical functions, 

including perception, attention, memory, synaptic plasticity, and motor control [Uhlhaas 

et al., 2008]. Interestingly, both the alpha and gamma frequencies have sparked great 

interest in autism research and have been proposed as viable biomarkers for diagnosis. 

For example, a recent literature review, including 1246 autistic and 1455 neurotypical 

individuals across 41 studies, found that autistic individuals exhibited reduced relative 

alpha and increased gamma power [Neo et al., 2023]. These two frequency bands are 

also implicated in fragile X syndrome, another genetically linked form of ASD. 

Specifically, resting state studies of humans and mouse models of FXS have 

demonstrated reduced alpha and increased gamma power compared to controls [Van 
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der Molen & Van der Molen, 2013; Lovelace et al., 2018; Jonak et al., 2020; Wang et al., 

2017]. We previously showed that adult PTEN KO mice had significantly decreased 

gamma power compared to controls [Croom et al., 2024b]. Because we found there to 

be no difference between the gamma power in naïve and vehicle treated KO mice, 

CTEP treatment may be rescuing the deficit. No effect of genotype on alpha power was 

seen in our previous study, however a recent study did demonstrate that alpha power 

was decreased in mGluR5 KO mice, suggesting that this result may be due to the 

blocking mGluR5 activity by CTEP [Aguilar et al., 2020].   

 Both male and female PTEN KO mice show severe auditory temporal processing 

deficits [Croom et al., 2024b]. Specifically, we showed that developing (p21 and p30) 

and adult (p60) KO mice have significantly decreased ITPC compared to age-matched 

controls in both the AC and FC. Our current study found no significant impact of CTEP 

treatment in adult mice, suggesting that mGluR5 function is not necessary for the 

temporal fidelity of cortical responses. Several studies have inquired about mGluRs’ role 

in auditory processing as they are widely expressed along the auditory pathway [Tang & 

Lu, 2018; Lu, 2014; Ferraguti & Shigemoto, 2006; Shigemoto et al., 1993]. For example, 

Voytenko & Galazyuk (2011) demonstrated that group I mGluRs modulate neuronal firing 

in a facilitating manner in the inferior colliculus. Additionally, mGluR-triggered temporally 

patterned activity was seen in the medial nucleus of the trapezoid body (MNTB), a 

phenomenon that was eliminated in mGluR5 KO mice [Wang et al., 2023]. These 

findings propose a potential role for mGluRs in temporal processing modulation, 

boosting the rationale for the current study. The underlying mechanism of the gap-ASSR 

is currently not completely characterized. Several studies have shown evidence for the 

contribution of frontal generators towards 40 Hz ASSRs. For example, Kim et al. (2015) 
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and Hwang et al. (2019) showed that optogenetic stimulation of GABAergic parvalbumin 

neurons in the basal forebrain preferentially increased frontal cortex 40 Hz ASSR 

oscillations. Another proposed mechanism relies on the glutamatergic N-methyl-D-

aspartate (NMDA) receptors.  Specifically, the NMDA receptor activation on parvalbumin 

interneurons appears to be critical for the 40 Hz ASSR. Evidence for this hypothesis was 

found in pharmacological studies. Sivarao et al. (2016) utilized ketamine, an NMDA 

receptor antagonist, and found that receptor channel occupancy is related to the 

modulation of both power and phase-locking of 40-Hz ASSRs, such that lower ketamine 

dosages cause an increase in spectral power and ITPC, while higher doses caused 

decreased 40-Hz ASSRs. Indeed, structural and functional interactions between mGluRs 

and NMDA receptors have been identified. Specifically, activation of NMDA receptors 

provides faciliatory regulation of mGluR5 responses [Chen et al., 2011; Alagarsamy et 

al., 2002; Mao & Wang, 2002]. Additionally, activation of mGluR5 induce a selective 

potentiation of NMDA-evoked currents [Awad et al., 2000; Pisani et al., 2001]. It is 

possible that blocking mGluR5 activity with CTEP depresses NMDA receptor activity in 

PTEN KO mice. Taken together, future studies should investigate these mechanisms to 

determine not only their role in gap-ASSR, but also whether mechanistic abnormalities 

are present in PTEN KO mice.  

 The single trial power (STP) allows for the identification of ongoing ‘background 

activity’ during stimulus presentation as it does not correct for mean baseline power 

levels. It has been suggested that this non-phase locked power reflects relatively slow 

integrative processes that may impact stimulus or response processing [McKewen et al., 

2020]. These processes include top-down and sustained attention, decision-making, and 

perceptual inference, and are suggested to result from intrinsic network interactions 
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rather than external stimuli [Donner & Siegel, 2011; Siegel & Donner, 2010]. We 

previously showed a developmental increase in STP in PTEN KO mice compared to 

controls. Specifically, no STP phenotype differences were seen at p21 in either sex but 

STP was significantly increased in PTEN KO mice at p30 and p60 in the AC and FC 

[Croom et al., 2024b]. Our current study identified a treatment x sex interaction, such 

that CTEP treatment differentially impacted males and females. Specifically, CTEP 

treated females had increased STP compared to CTEP treated males. No significant 

differences were seen between vehicle treated males and females or naïve and vehicle 

treated animals, suggesting that this increase in STP in females is due to CTEP. 

Increased levels of background activity are not seen as a positive phenotype in other 

autism models. For example, increased STP has been seen in humans with FXS and 

the Fmr1 KO mouse model of FXS [Ethridge et al., 2019; Wen et al., 2019; Croom et al., 

2023]. In humans with FXS, elevated STP showed correlations with IQ and distractibility. 

Overall, these data suggest that CTEP treatment is increasing STP, specifically in 

females, and enhancing ASD phenotypes. 

 The current study aimed to determine whether mGluR5 dysfunction was involved 

in the abnormal oscillatory activity of PTEN KO mice. This hypothesis was based on 

recent literature suggesting a sex bias in PTEN mutations as a result of mGluR5 and 

ERα interactions. Molinaro et al., (2024) showed prolonged and spontaneous persistent 

activity states (UP states) in female but not male Nse-cre PTEN KO mice at p21, 

suggesting sex-specific circuit hyperexcitability. In adults, sex differences were seen in 

social behavior and seizure-induced mortality. Furthermore, female PTEN deleted 

cortical neurons demonstrated an increase in mGluR5 levels and mGluR5-driven protein 

synthesis rates as well as mGluR5-ERα complexes [Molinaro et al., 2024]. Abnormalities 
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were able to be rescued with CTEP and MTEP treatment, another mGluR5 negative 

allosteric modulator. We previously showed that male and female Nse-cre PTEN KO 

mice also have significant irregularities in resting power distributions and sound evoked 

responses. However, neither males or females in the cohort of mice used for the current 

study were able to be rescued with acute CTEP treatment. Indeed, CTEP treatment has 

been shown to be beneficial for other ASD models, including FXS, Rett’s syndrome, and 

tuberous sclerosis complex (TSC) [Tao et al., 2016; Stoppel et al., 2021; Kelly et al., 

2018]. It is possible that a more chronic dosage plan is necessary in order to see 

improvements in in vivo EEG phenotypes in PTEN KO mice. For example, Kelly et al. 

(2018) demonstrated that chronic, but not acute, CTEP treatment significantly reduced 

seizure frequency and total seizure time in the Tsc2 mutant mouse model of ASD. 

Furthermore, sex differences in dosage amounts have also been identified with CTEP. 

Specifically, Li et al. (2022) demonstrated in a mouse model of Huntington’s disease that 

female mice required a longer treatment duration with CTEP than male mice to show 

improvement in certain phenotypes, suggesting that sex has an impact on the efficacy of 

CTEP treatment. Overall, these findings suggest that a more chronic approach in CTEP 

treatment may be beneficial in PTEN KO mice. Additionally, the current study did not 

investigate the role of ERα and its interactions with mGluR5. Molinaro et al. (2024) 

demonstrated that genetic reduction of ERα in PTEN KO cortical neurons also rescued 

circuit excitability. Future studies should examine the impact of ERα on cortical EEG 

phenotypes as well as its association with mGluR5.   
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Chapter 6 

 

Conclusion 

 

 Autism Spectrum Disorders (ASD) encompass a wide array of debilitating 

symptoms, including severe sensory deficits and abnormal language development. 

Sensory deficits early in development may lead to broader symptomatology in 

adolescents and adults. The mechanistic links between ASD risk genes, sensory 

processing and language impairment are unclear.  There is also a sex bias in ASD 

diagnosis and symptomatology that is not fully understood. Additionally, very little is 

known about the development of temporal processing in any animal model of ASD. To fill 

these gaps in the field, my dissertation research is centered on sensory processing in 

two different mouse models of ASD. However, these approaches and stimuli could have 

an impact in furthering our understanding of other neurodevelopmental disorders. The 

need for physiologically relevant and easily measurable biomarkers is critical for 

progressing the field, including diagnosis and treatment development. Furthermore, the 

methodology (EEG) used to obtain them is easily replicable in human work. 

 Chapters 2 and 3 characterized the auditory temporal processing capabilities of 

male (Chapter 2) and female (Chapter 3) Fmr1 KO mice across development. Chapter 2 

presented evidence that the frontal (FC), but not auditory (AC), cortex of male KO mice 

shows significant temporal processing deficits at p21 and p30, with poor ability to phase 

lock to rapid gaps in noise. However, temporal processing was similar in both genotypes 

in adult mice, suggesting a cortical region-specific delay. ERP amplitudes were also 

significantly larger in male Fmr1 KO mice compared to controls in both auditory and 
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frontal cortex, consistent with ERP data in humans with FXS. Chapter 3 focused on 

female Fmr1 KO phenotypes across development as well as sex differences. Gap-ASSR 

deficits were seen in the FC, but not AC, in early development (p21) in female KO mice. 

Unlike male KO mice, female KO mice show WT-like temporal processing at p30, 

providing evidence that temporal processing matures slower in male KO mice. ERP 

amplitudes were also enhanced in female KO across development compared to WT 

counterparts. Additionally, female KO mice showed stronger hypersensitive responses 

than males later in development. The differences in maturation rates of temporal 

processing and hypersensitive responses during various critical periods of development 

may lead to sex differences in language function, arousal and anxiety in FXS. 

 Chapter 4 identified the developmental trajectory and genotype- and sex-

dependent differences in auditory sensitivity and temporal processing in a Pten-deletion 

mouse model of ASD. The results showed genotype differences in resting power 

distribution in PTEN KO mice throughout development, such that male and female KO 

mice have significantly increased beta power but decreased high frequency oscillations 

in the AC and FC. Both male and female PTEN KO mice showed diminished ITPC in 

their gap-ASSR responses in the AC and FC compared to control mice. Notably, deficits 

became more prominent in adult mice, with KO mice having significantly increased 

sound evoked power and decreased ITPC compared to controls. Female KO mice 

showed increased hypersensitivity compared to males, reflected as increased N1 and 

P2 amplitudes. Taken together, these data identified novel sensory processing deficits in 

a PTEN-ASD mouse model that are present from an early age and provide a strong 

foundation for future studies.  
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 Chapter 5 tested whether abnormal activity of group 1 metabotropic receptor 

mGluR5 is involved in the phenotypes identified in PTEN KO mice in Chapter 4. The 

results showed that acute CTEP treatment shifted the resting power distribution in 

males, such that CTEP treated mice had decreased alpha power and increased gamma 

power in the AC compared to vehicle treated males. CTEP treatment showed no 

significant impact on auditory temporal processing in either sex or cortical region. The 

results also showed no treatment effect on ERP amplitudes in males or females. Non-

phase locked single trial power was significantly elevated in the AC and FC of CTEP 

treated females but not males, suggesting a sex specific increase in ‘on-going 

background activity’ following CTEP treatment. Overall, these data demonstrated that 

the irregular oscillatory activity and auditory processing deficits previously identified in 

the PTEN ASD model were not significantly improved by CTEP treatment, indicating that 

abnormal mGluR5 activity alone may not be driving the EEG phenotypes. However, the 

differential impact of treatment across the sexes suggests that mGluR5 may be involved 

in sex-specific mechanisms that underlie the abnormal oscillatory activity. 

 Taken together, this dissertation characterized the developmental trajectories of 

EEG phenotypes in two different ASD mouse models and identified both genotype-, sex- 

and cortical region-specific differences. Although there are significant underlying model 

differences between the two (Global KO – FXS/Specific, conditional KO – PTEN), 

similarities were identified, including auditory temporal processing deficits early in 

development and increased hypersensitivity in adult females. These key findings provide 

evidence that there may be a fundamental issue at the circuit level that is shared among 

autisms. Overall, this dissertation research establishes a strong foundation for identifying 
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this core circuit deficit which would allow for earlier, more accurate diagnoses in patients 

as well as more effective therapeutic approaches.   

 

Future Studies 

 An important motivation for this dissertation research was translatability. The gap-

ASSR stimulus paradigm requires no behavioral training and can easily be replicated in 

humans at any age. The next step currently underway for the FXS mouse model is to 

use a 30-channel multielectrode array (MEA) system with the gap-ASSR stimulus. The 

use of this system versus the 2-channel system used for the current study will allow for 

more region- and hemispheric- specific analysis. Following the completion of MEA 

characterization, the same gap-ASSR stimulus can be used in humans as well, allowing 

for consistency across study methodologies. It is critical that temporal processing is 

evaluated across ages in both males and females with FXS to determine if similar delays 

in development are present, and if the delay relates to language function. Additionally, 

connectivity studies are currently being carried out for the Fmr1 KO male and female 

mice throughout development. The few studies in FXS that have examined cross-

regional or cross-frequency coupling show abnormal connectivity. However, even fewer 

studies have examined sex differences in connectivity. Given the cortical region-specific 

deficits seen in this dissertation research, understanding the connectivity between 

regions may elucidate potential mechanisms underlying abnormal phenotypes.  

This dissertation research is the first to characterize EEG phenotypes in the Nse-

PTEN KO mouse model and therefore provides numerous questions to explore further. 

First, we hypothesized that an interaction between mGluR5 and ERα was driving 

abnormal oscillatory and sound-evoked activity in female PTEN KO. Although this 
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research suggests that mGluR5 alone is not causing these phenotypes, future studies 

should examine the effects of CTEP treatment at an earlier stage of development, such 

as p21. Earlier intervention may bring about more beneficial results. Furthermore, the 

role of ERα should be investigated via pharmacological or genetic approaches. For 

example, MPP (methyl piperidino pyrazole) is a highly selective ERα antagonist and has 

been shown to have effects on PTEN KO mice in vitro. Additionally, utilizing a dual 

deletion mouse model in which both PTEN and ERα genes have been removed from the 

same neurons may provide insight into whether ERα activity is responsible for the 

abnormal female PTEN-mutated cortical oscillations and auditory temporal processing. 

Finally, the loss of PTEN in the Nse-cre model is limited to layers III-V of the cortex and 

likely disrupting both input and output connection to/from the auditory cortex. Future 

studies exploring these connections, such as tract tracings, would allow for a better 

understanding of the underlying mechanisms of the characterized EEG phenotypes. 

 




