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Abstract

High‐resolution spectroscopy can be used to measure leaf chemical and 
structural traits. Such leaf traits are often highly correlated to other traits, 
such as photosynthesis, through the leaf economics spectrum. We measured
VNIR (visible‐near infrared) leaf reflectance (400–1,075 nm) of sunlit and 
shaded leaves in ~150 dominant species across ten, 1 ha plots along a 3,300
m elevation gradient in Peru (on 4,284 individual leaves). We used partial 
least squares (PLS) regression to compare leaf reflectance to chemical traits,
such as nitrogen and phosphorus, structural traits, including leaf mass per 
area (LMA), branch wood density and leaf venation, and “higher‐level” traits 
such as leaf photosynthetic capacity, leaf water repellency, and woody 
growth rates. Empirical models using leaf reflectance predicted leaf N and 
LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, 
photosynthesis, and branch density (r2 between 10 and 35% and %RMSE 
between 10% and 65%), and did not predict leaf water repellency or woody 
growth rates (r2<5%). Prediction of higher‐level traits such as photosynthesis
and branch density is likely due to these traits correlations with LMA, a trait 
readily predicted with leaf spectroscopy.

1 Introduction

The distribution of traits within individual trees and between species may 
help indicate resilience of forests to future climate change (Diaz & Cabido, 
1997; Lavorel & Garnier, 2002; Westoby & Wright, 2006) and enable the 
estimation of ecosystem fluxes (Enquist et al., 2015). Understanding these 
trait distributions on a regional scale could therefore improve predictions of 



carbon cycling in tropical forests. Many leaf traits are associated with and 
can be predicted by other leaf traits. The most famous example of this is the 
leaf economics spectrum, which found that 82% of all variation in 
photosynthetic capacity (Amass), leaf mass per area (LMA), and nitrogen 
content (Nmass) across species from a variety of global biomes, lay along the 
first principal axis in three‐trait space on a log‐log scale (Wright et al., 2004).
Other studies found that LMA could predict mass‐based assimilation and 
respiration rates and that leaf life span could predict many other traits 
(Poorter & Bongers, 2006). Woody growth rates can also be predicted by 
traits. For example, seed mass, LMA, wood density, and tree height have 
been predicted to be low for light‐demanding species with rapid growth and 
mortality and high for shade‐tolerant species with slow growth and mortality 
(Wright et al., 2010). Low LMA reflects the “live fast and die young” strategy 
because it expresses a trade‐off within the leaf itself between the energetic 
cost of leaf construction and the light captured per area (Diaz et al., 2016; 
Poorter et al., 2009).

Foliar chemical and morphological traits, such as nitrogen (N) concentration 
and LMA, can be estimated remotely using high‐resolution spectroscopy 
(either VNIR (400–1,100) or VSWIR (400–2,500 nm) spectral properties) in 
combination with the partial least squares (PLS) regression technique 
(Richardson et al., 2002; Serbin et al., 2014). Remote measurement of leaf 
chemistry and structure is possible because leaf spectral reflectance 
signatures vary based on the concentrations of N, chlorophylls, carotenoids, 
lignin, cellulose, leaf mass per unit area (LMA), soluble carbon (C), and water 
(Curran, 1989a, 1989b; Sims & Gamon, 2002; Smith, Kelly, et al., 2003; 
Smith, Martin, et al., 2003). For example, a leaf's N concentrations are 
associated with wavelengths absorbed by chlorophyll a and b in the visible 
part of the spectrum (400–700 nm), the spectral red edge (700–760 nm), and
proteins in the shortwave infrared (1,300–2,500 nm) (Gitelson & Merzlyak, 
1997; Kokaly, 2001; Smith, Martin, et al., 2003). In the shortwave infrared 
(SWIR; 700–1,300 nm), structures such as palisade cell density are important
controls on the spectral reflectance because of the very low effective photon 
penetration distance at these wavelengths. LMA can now be accurately 
measured using high‐spectral‐resolution sampling techniques at both the 
leaf (one nm bandwidth) (Curran, 1989a, 1989b; Jacquemoud et al., 2009; 
Kokaly et al., 2009), canopy and landscape scales (at 10 nm bandwidth) 
(Asner et al., 2016, 2015). Even chemicals not directly expressed in the 
spectrum, such as phosphorus (P), base cations (calcium (Ca), potassium (K),
and magnesium (Mg)) and other micronutrients, show relationships with the 
spectrum, possibly through a stoichiometric relationships with other 
chemicals (Ustin et al., 2004, 2006).

Another goal of imaging spectroscopy is to quantify photosynthetic capacity 
and woody growth capacity of forests, since woody growth and carbon 
sequestration can impact global climate by modifying atmospheric CO2 
concentrations. The relationship between leaf properties such as LMA and 



woody growth rates could enable the prediction of mean woody growth rates
via a leaf's spectral signature (Poorter et al., 2009). Year to year variation in 
growth rates is dominated by environmental variation, but long‐term growth 
strategies are possibly associated with leaf traits (Diaz et al., 2016, Wright et
al., 2004). Therefore, leaf traits associated with growth strategies could allow
spectroscopy to predict these growth trends. Previous work has shown that 
leaf spectral properties can predict traits or attributes beyond leaf chemistry 
or structure. For instance, leaf age has been predicted with high‐resolution 
leaf spectroscopy (400–2,500 nm) and leaf age is not directly expressed in a 
leaf's spectral signature (Chavana‐Bryant et al., 2017). Previous work has 
also shown that other leaf properties such as photosynthetic capacity that 
may not directly influence leaf spectral signatures can also be predicted with
spectroscopy (Doughty et al., 2011).

Spectroscopy may also provide a useful field estimate of many difficult‐to‐
measure plant traits associated with a leaf's carbon uptake and hydraulic 
strategies indirectly through correlations. In principle, spectroscopy could 
potentially be used to quickly estimate leaf vein density (VD), which is often 
correlated to photosynthetic capacity and conductance (Brodribb et al., 
2007). Likewise, spectroscopy could potentially predict structural traits 
related to hydrophobic leaf waxes interacting with a water droplet (a data set
we use in this paper called leaf water repellency and more fully described in 
Goldsmith et al., 2016). Such traits currently require difficult or time‐
consuming laboratory analyses to measure. Can we instead use leaf spectral 
properties to rapidly estimate such leaf traits in the field or use remote 
sensing of the spectral properties to better predict carbon and hydraulic 
strategies?

In this study, we ask whether leaf spectroscopy can predict forest functional 
traits and higher‐level properties by focusing on a 3,300 m elevation 
gradient in Peru with some of the highest levels of species, trait, and 
environmental diversity in the world. A previous study on a nearby elevation 
gradient demonstrated how sunlit leaf spectral patterns change with 
elevation and used leaf spectral properties to accurately predict 21 leaf 
chemical and physical traits (Asner, Martin, et al., 2014). It also found 
interspecific variation in spectral and chemical traits dominated over 
intraspecific variation among sun leaves of canopy trees. However, that 
study did not address shaded foliage, which constitutes the majority of 
canopy leaves, nor traits not directly associated with foliar chemical 
properties. Without shade leaf spectral data it is unknown how whole canopy
spectra will vary since shaded leaf spectra have a strong influence on total 
canopy reflectance in the NIR wavelengths. For this paper, our main question
of interest is the following:

Can VNIR reflectance of sun and shade leaves predict tree traits and higher‐
level properties such as woody growth along a tropical forest elevation 
gradient?



We also ask the following specific questions:

Do shade leaves show equally high levels of interspecific variation in leaf 
reflectance to sun leaves?

Can VNIR spectral properties (400–1,075 nm) predict leaf chemical and 
structural traits as well as full VSWIR spectral properties (400–2,500 nm)? 
Can underside spectral signature predict traits as well as the top‐of‐leaf?

Is there a relationship between leaf spectral properties and nonfoliar traits 
such as photosynthesis, woody NPP, and wood density? What are the 
structural and chemical drivers of these relationships?

2 Materials and Methods

2.1 Field Sites

These measurements were made as part of the CHAMBASA (CHallenging 
Attempt to Measure Biotic Attributes along the Slopes of the Andes) 
campaign from April to November 2013 along an elevation gradient (from 
3,500 m to 220 m elevation) in the Peruvian Amazon (Table S1 in the 
supporting information). The plots are part of a long‐term research effort 
coordinated by the Andes Biodiversity Ecosystems Research Group (ABERG, 
http://www.andesconservation.org) and are part of the ForestPlots 
(https://www.forestplots.net/) and Global Ecosystems Monitoring Network 
(http://gem.tropicalforests.ox.ac.uk/projects/aberg). Plots were established 
between 2003 and 2013 in areas with minimal evidence of human 
disturbance. Within each plot, all stems ≥10 cm diameter at breast height 
are tagged and identified to species level. There is a negative linear 
relationship in the gradient between mean annual temperature and elevation
with a mean annual temperature of 24.4°C in the warmest lowland 
Amazonian site and 9.0°C at the Amazonian treeline in the Andes. Mean 
annual precipitation varies from 1,560 to 5,302 mm yr−1 along the elevation 
gradient. Soils at elevations >600 m are composed of relatively high‐fertility 
Inceptisols and Entisols. In the lowlands (<600 m above sea level), soils vary 
among Ultisols on low‐fertility terra firme clay substrates and Inceptisols on 
inactive high‐fertility floodplains. We describe characteristics of the plots in 
Table S1. All data in this paper can be found in a data repository with the 
following DOI: https://ora.ox.ac.uk/objects/uuid:4101e249-3cf5-443f-9c29-
9204604c667b.

2.2 Leaf Collections Sampling Strategy

In each 1 ha plot (N = 10 plots), we sampled the most abundant species as 
determined through basal area weighting (enough species generally to cover
80% of the plot's basal area, although in the diverse lowland plots only 60–
70% of plot basal area were sampled). For each species, we sampled the five
(three in the lowlands) largest trees (based on diameter at breast height 
(DBH)) and tree climbers with extended tree pruners removed one branch 
grown in sun and one grown in shade conditions. These branches were 



quickly recut underwater to restore hydraulic conductivity. On each of these 
branches, we choose five random leaves. These five leaves were each 
sampled for photosynthesis, leaf spectral properties (generally measured 
within 1 h of being cut), and Leaf Mass Area (LMA—leaves scanned for area 
immediately after collection using a digital 476 scanner (Canon LiDE 110) 
and oven‐dried at 72°C until constant weight reached) and leaf water 
repellency (see below for methods) later that day. On three of the five 
leaves, we later measured leaf chemistry (% N, C, and P). Total phosphorus 
content was determined using persulfate oxidation followed by the acid 
molybdate technique, and phosphorus concentration was then measured 
colorimetrically with a spectrophotometer (Thermo Scientific Genesys20, 
USA). Carbon and nitrogen content were measured on a continuous‐flow gas‐
ratio mass spectrometer (Finnigan Delta PlusXL) coupled to an elemental 
analyzer (Costech). On approximately one leaf per branch, we measured leaf
venation. The rest of the leaves from the branch were used for a bulk 
chemical analysis following the protocol outlined below.

2.3 Leaf Photosynthesis

We used a portable gas exchange system (LI 6400, Li‐Cor Biosciences, 
Lincoln, NE, USA) to measure light‐saturated leaf photosynthesis (Asat; 1,200 
μmol m−2 s−1 PPFD, 400 ppm CO2, at the MAT of the plot) and maximum 
photosynthesis (Amax; 1,200 μmol m−2 s−1 PPFD, 1,000 ppm CO2, at the MAT of
the plot). Photosynthetic capacity in most tropical leaves saturate above 
light levels of 1,200−μmol m−2 s−1 PPFD (Doughty & Goulden, 2008). Most 
physiological measurements were collected between 07:00 and 14:00 local 
time, and branches were cut from tree between 06:00 and 13:00 local time.

2.4 Vein Density

We prepared a slide of each leaf's venation network by chemically clearing 
and staining pressed dried leaf material (Pérez‐Harguindeguy et al., 2013). 
We then photographed the leaf using an Olympus SZX‐12 microscope setup 
for trans‐illumination. We then traced all veins within a polygonal region of 
interest of each image (mean area 36 ± 23 s.d. mm2). We calculated vein 
density (VD) in MATLAB by dividing the total length of the skeletonized 
traced veins by the total area of the region of interest, then correcting for 
any shrinkage of the leaf imposed by drying. For further information see the 
Methods of Blonder et al. (2017) and Figure 1.



2.5 Leaf Water Repellency

Each leaf was first secured flat to a horizontal surface. A 5 μl droplet of water
was then placed on the adaxial side of the leaf using a micropipette, and a 
photograph was taken of the horizontal profile of the droplet using a digital 
camera. We removed epiphylls by hand or using a tissue when necessary. 
We measured the contact angle (θ) as the angle between the line tangent at 
the edge of the water droplet and the horizontal line of contact of the water 
droplet on the leaf surface (Figure 1). Higher leaf water repellency has a 
larger contact angle (Rosado & Holder, 2013). We outlined the water droplet 
as an ellipse to help more accurately identifying the tangent prior to 
determining contact angle. Analysis was conducted in ImageJ v1.47 (U. S. 
National Institutes of Health, Bethesda, Maryland). For further details see 
Goldsmith et al. (2016) and Figure 1.

2.6 Bulk Leaf Chemistry

Leaves from branches not selected for photosynthesis measurements were 
used for a bulk chemical analysis with methodology detailed in Asner, 
Anderson, et al. (2014) and in documents available on the Carnegie 
Spectranomics website (http://spectranomics.ciw.edu) (Table S2). Foliage 
was dried and ground in a 20 mesh Wiley mill, and concentrations of 
Phosphorus (P), Calcium (Ca), Potassium (K), Magnesium (Mg), Boron (B), 
Iron (Fe), Manganese (Mn), and Zinc (Zn) were measured using coupled 
plasma spectroscopy (ICP‐OES; Therma Jarrel‐Ash,Waltham, MA, USA) after 
microwave digestion (MARSXpress; CEM, Matthews, NC, USA). We 
determined carbon fractions of cellulose, lignin, hemicellulose, and soluble C 



(composed of amino acids, pectins, simple sugars, starch, and waxes) in 0.5 
g of dry ground leaf tissue with sequential digestion in a fiber analyzer 
(Ankom Technology, Macedon, NY, USA). These results are shown in Table 
S2.

2.7 Woody NPP and Branch Wood Density

All trees >10 cm DBH at the 10 plots have had periodic census 
measurements of their DBH. We used the change in DBH during the longest 
available interval (ranging between 1 and 30 years) to estimate the mean 
growth rate of that tree. We divided this growth rate by the tree's DBH to 
estimate a yearly percentage growth rate. For branch wood density, we 
measured six branch sections per tree (approximately 1 cm in diameter and 
5 cm in length). Bark was removed from three of the samples. They were 
weighed wet, and volume measured by immersing in water and converting 
weight to volume. The branches were then dried in an oven to a constant 
weight and reweighed. For further details see Malhi et al. (2017).

2.8 Leaf Spectroscopy

We measured hemispherical reflectance near the midpoint between the main
vein (avoiding large primary or secondary veins) and the leaf edge on the 
top and bottom (Figure S1) surface of five randomly selected leaves within 
an hour of each branch being cut. We collected the spectra with an ASD 
Fieldspec Handheld 2 with a fiber optic cable, contact probe which has its 
own calibrated light source and a leaf clip (Analytical Spectral Devices High 
Intensity Contact Probe and Leaf Clip, Boulder, Colorado, USA). The 
spectrometer records 750 bands spanning the 325–1,075 nm wavelength 
region. Measurements were collected with 136 ms integration time per 
spectrum. To ensure measurement quality, the spectrometer was optimized 
after every branch, spectra for every leaf were calibrated for dark current, 
stray light and white referenced to a calibration panel (Spectralon, Lasphere,
Durham, New Hampshire, USA). In each measurement spot (on each side of 
the leaf) 25 spectra were internally averaged to increase the signal‐to‐noise 
ratio of the data.

2.9 Data Processing

We calculated coefficient of variation (CV) of our spectral data as the 
standard deviation divided by the mean. To predict leaf traits with the 
spectral information, we used the Partial Least Squares Regression (PLSR) 
modeling approach (Geladi & Kowalski, 1986; Wold et al., 2001). This 
approach incorporates the full spectral information within each leaf 
reflectance measurement versus a single band analysis (Kokaly et al., 2009),
thus reducing our large predictor matrix (675 spectral bands—400–1,075 
nm) down to a relatively few, uncorrelated latent factors. This approach has 
been previously demonstrated to yield accurate and consistent results for 
predicting plant traits within and across vegetation types and ecosystems 
(Asner & Martin, 2008; Richardson et al., 2002 ; Serbin et al., 2014). To 



establish predictive models for chemical, structural and higher‐level leaf 
traits, we used the PLSregress command in Matlab (Matlab, MathWorks Inc., 
Natick, MA, USA). We avoided overfitting the number of latent factors we 
used for each analysis by minimizing the mean square error with cross 
validation (on 70% of the data, and then tested the model on an independent
30% of the data). This process removes one sample from the input data set 
until we minimize the mean square error. For each trait model, we selected 
the number of latent vectors by choosing the number that minimized the 
root‐mean‐square error (RMSE). To compute the mean square error of 
prediction, we use K‐fold cross validation. To create a completely 
independent testing data set, we use 70% of our data to calibrate our model 
and then the remaining 30% to test the accuracy of our model. We evaluated
the accuracy of our modeled estimates using two main metrics: r2 and root‐
mean‐square error (RMSE).

3 Results

Mean visible (400–700 nm) leaf reflectance for all the plots was 0.050 for sun
leaves and 0.046 for shade leaves, with greater visible CV in the sun leaves 
(0.232 versus 0.197). In the NIR (800–1,075 nm), mean leaf reflectance was 
0.514 for sun leaves and 0.511 for shade leaves, with similar CV (0.098 
versus 0.099) (Table 1 and Figures 2 and 3). There were no differences with 
elevation when we subtracted sun from shade leaves (Figure 2 insets). 
Overall significant differences between sun and shade leaves are shown in 
Figure S1. There were no significant (P > 0.05) linear trends in reflectance or 
CV with elevation (Table 1) in either the visible or the NIR. CV between 
leaves of the same species (intraspecific variation) was less than CV between
species (interspecific variation) in sun leaves (0.25 versus 0.10 maximum CV
in the visible) and shade leaves (0.20 versus 0.08 maximum CV in the 
visible). Interspecific variation peaked in the visible wavelengths (25% CV for
sun and 21% CV for shade leaves) (Figure 3).





We then used the PLS regression technique to compare individual leaf 
spectral characteristics to leaf chemical values for LMA, %N, and %P (Figure 
4 and Table 2) measured on the same leaves (results for the PLSR for bulk 
chemistry are shown in Table S2). The predictions of the empirical models 
generally matched the measured estimates with high accuracy and 
precision. The primary principal component weighting demonstrates which 
regions of the spectra are most important for the empirical model (as 
measured by deviation away from zero) (Figure 4). LMA had the strongest 
predicted relationship with an r2 of 0.76 and a RMSE/mean of 0.27 (Table 2), 
indicating that leaf spectral characteristics can accurately predict LMA, a 
finding supported by several other studies (Jacquemoud et al., 2009; Kokaly 
et al., 2009). As expected, the weightings indicate that the spectral region 
most important for predicting LMA is in the NIR region. Leaf spectral 
properties also predicted %N accurately (r2 = 0.64) and with precision 
(RMSE/mean = 0.23). The most important spectral regions for %N are in the 
visible, but especially the red edge, with less spectral importance in the NIR. 
%P was predicted with an r2 of 0.35, a RMSE/mean of 0.47 and most spectral 
information in the visible and the red edge regions.





Next, we used leaf reflectance to predict more complex traits (Figure 5). We 
generally found poorer relationships between these traits than for less 
complex traits such as leaf chemistry or LMA. Leaf spectra predicted Amax 
(light and CO2 saturated photosynthesis) with an r2 of 0.17 and a RMSE/mean
of 0.62. The primary principal component for both Asat (light saturated) and 
Amax (light and CO2 saturated) photosynthesis had peaks in the NIR and the 
red edge. This is not surprising as %N and LMA have been shown to be 
related to Amax through the leaf economics spectrum (Wright et al., 2004). Asat

demonstrated a similar fit with the spectra as Amax, with an r2 of 0.15 and a 
RMSE/mean of 0.57. Leaf spectra showed a reasonably strong relationship 
with leaf minor vein density (r2 of 0.47 and a %RMSE of 0.26 for sun leaves) 
and leaf vein surface area (r2 of 0.43 and a %RMSE of 0.59 for sun leaves). 
The important spectral regions for predicting leaf vein density have peaks in 
the red edge and in the NIR. Leaf water repellency was not predicted using 
the spectra possibly because it did not vary much across the elevation 
gradient, nor did it vary consistently with taxa and there was much 
unexplained variance (Goldsmith et al., 2016). Results for the PLSR for both 
sun and shade leaves are detailed in Table 2.





Finally, we measured whether leaf spectra could be used to predict broader 
forest characteristics that might be correlated with leaf traits such as branch 
wood density and mean tree growth rate because long‐term growth 
strategies are possibly associated with leaf traits (Diaz et al., 2016; Wright et
al., 2004) (Figure 6). All trees in each plot >10 cm DBH have measured 
woody NPP using periodic census measurements, and we compare individual
tree growth to average leaf reflectance for that tree. We show empirical 
relationships for sunlit leaves in Figure 6 and for shade leaves in Table 2. 
Branch wood density demonstrated a strong relationship with the spectra (r2 
of 0.41 and 0.66 and a % RMSE of 0.08 and 0.10 sun/shade). However, 
woody growth showed no relationship with the spectral signature (r2 of 0.04 
and 0.01 and a % RMSE of 1.37 and 1.43 sun/shade). The important spectral 
regions for predicting branch wood density are mainly in the NIR, which is 
similar to leaf structural traits such as LMA.

To further investigate why there may be relationships between leaf spectra 
and nonfoliar properties, we then compared mean tree sunlit LMA to branch 
wood density and mean tree growth rate and found strong significant 
relationships (P < 0.005, but with low variance explained—r2 = 0.03) 



between LMA and branch wood density but not mean tree growth rate 
(Figure 7). This result is similar to the PLS regressions showing predictions of 
branch wood density using spectra but not mean tree growth rate. The 
ability of leaf spectral properties to predict branch wood density is likely due 
to the correlation of these properties to LMA since wood density has been 
weakly (i.e., r2 = 0.13 in Wright et al., 2010) correlated with LMA (Diaz et al., 
2016; Wright et al., 2010).

4 Discussion

Many previous papers have shown that VNIR reflectance of sun leaves can 
predict leaf chemistry and structure such as LMA (Curran, 1989a, 1989b; 
Sims & Gamon, 2002; Smith, Kelly, et al., 2003; Smith, Martin, et al., 2003). 
However, here we show for the first time that VNIR reflectance of tropical sun
and shade leaves can also predict other traits such as leaf venation, 
photosynthesis, and branch density (explaining between ~10–35% of the 
variance—Table 2 and SOM) but cannot predict other parameters such as 
woody growth rates or leaf water repellency. These parameters are not 
directly estimated from the leaf spectral signature but instead are (weakly) 
correlated with other leaf chemical and physical traits such as LMA and leaf 
N (Diaz et al., 2016; Wright et al., 2004) that are directly predicted from leaf 
spectral properties (Jacquemoud et al., 2009; Kokaly et al., 2009).

Leaf spectroscopy could predict several forest properties not directly 
expressed in the leaf spectra, such as branch wood density (Figure 6 and 
Table 2). The PLS weightings of branch wood density are very similar to LMA 
with most of the signal in the NIR wavelengths. This indicates that the 
prediction of these parameters (correlation coefficients in Table 2) may 
actually rest with an accurate prediction of LMA. In other words, Figure 4 
demonstrates that leaf spectral properties can strongly predict LMA and 



Figure 7 shows that branch wood density and LMA are correlated, which is 
why there is any predictability of nonfoliar properties by leaf spectral 
properties. Our prediction of branch wood density using spectroscopy was 
sufficient to potentially differentiate between large, heavy wood density 
trees with thick long‐lived leaves and smaller, light wood density trees with 
thin short‐lived leaves. This interpretation is reinforced by the significant 
relationships between LMA and branch wood density (Figure 7). This finding 
suggests that optical remote sensing could help estimate woody biomass 
because wood density estimates are key for such estimates. Another 
example is our empirical models predicting vein density. They do not directly
measure veins but rather a cross‐sectional area of solute and water relative 
to mesophyll chemistry that is associated with veins or the fraction of the 
leaf's volume/biomass that is lignified. Overall, predictions of leaf veins, 
photosynthesis, and wood density had lower (Table 2) yet still reasonable 
precision and accuracy comparable to such compounds as tannins, 
hemicellulose, K, B, Fe, Mn, and Zn (Table S2).

We did not find a relationship between leaf spectral reflectance and mean 
woody growth rate for a given tree. We had initially hypothesized that there 
may have been a correlation based on the relationship between LMA and 
light‐demanding pioneer species with rapid growth and mortality (Wright et 
al., 2010). However, our study was in old growth closed canopy forests, 
which may have impacted our results. Outside of pioneer species, woody 
growth rates can be difficult to predict because they are a function of 
photosynthesis, carbon use efficiency, and the differential allocation of NPP 
to woody biomass (Doughty et al., 2015, 2014; Malhi et al., 2011, 2015). 
Such woody NPP growth rates have proven very difficult to accurately 
estimate even with complicated vegetation models (Cleveland et al., 2015).

Field‐based leaf spectroscopy could potentially serve as a replacement for 
time consuming, lab measurements of traits. For instance, estimation of leaf 
traits is a time‐consuming process that involves manually tracing leaf veins. 
The RMSE/mean for leaf vein density is <30% with an r2 of ~50% which can 
broadly distinguish between low and high values of these traits. This would 
likely provide a meaningful, though not highly precise, rough field estimate 
of vein density. As with forest properties such as branch wood density, this 
may be due to correlations between vein density and the leaf's 
volume/biomass that is lignified. Thus, the promise of remote sensing for 
these time‐intensive traits may soon be realized.

In this study, empirical models predicting leaf chemical, structural, and 
photosynthetic parameters were strong overall but less accurate (based on 
mean r2) and less precise (based on %RMSE) than those measured in 
previous studies (Asner & Martin, 2008; Asner et al., 2009; Doughty et al., 
2011; Richardson & Reeves, 2005; Serbin et al., 2014). On average, there is 
a reduction in r2 of ~0.2–0.3 and a reduction of %RMSE of 20–30% compared 
with previous studies (specifically comparing Table S2 to Table 2 in Asner, 
Martin, et al., 2014). For instance, we did find a relationship between Asat and 



leaf spectral properties but much weaker (r2 = 0.14–0.24 versus r2 = 0.74) 
than previously observed (Doughty et al., 2011). In both studies, Amax was less
accurate and precise than Asat. There are several potential reasons for this. 
First of all, we used spectral bands between 400 and 1,075 nm (VNIR) while 
previously studies used 400–2,500 nm (VSWIR) (Asner, Martin, et al., 2014). 
Many chemicals, such as N, are strongly expressed in the near‐infrared and 
SWIR portion of the reflectance spectrum (Kokaly, 2001; Smith, Martin, et al.,
2003), a spectral region missing in our study. However, this does not 
completely explain the difference because a previous study made predictions
using less spectral data (400–1,100 nm) and found that predictions of 
photosynthesis were still strong, with mean RMSE declining by only 10% 
(from 3.2 to 2.9 when spectral data were reduced from 400–2,500 to 400–
1,100 nm) (Doughty et al., 2011). Interestingly, the part of the leaf measured
(whether top or bottom of the leaf) does not strongly affect our ability to 
predict LMA from leaf reflectance spectra (Figure S2).

This study was also unique because we measured shade leaf reflectance 
along with traits, while few previous studies had measured shade tropical 
leaf reflectance. Ideally, we could scale our leaf level predictions of higher‐
level traits to the canopy level with drone, aircraft, or even satellite 
hyperspectral data. However, to do so, it is important to understand the 
spectral properties of shade leaves as well since these will be expressed in 
the NIR of canopy measurements. Our results show equally strong 
relationships predicting shade leaf traits as they do for predicting sun leaf 
traits (Table 2).

In addition, our shade leaf data set was also able to resolve another mystery.
Interspecific (between species) spectral variability in our data set was higher 
than in other ecosystems ( Asner et al., 2000; Castro‐Esau et al., 2004; 
Roberts et al., 1998). Interspecific variation in leaf reflectance peaked in the 
visible at ~25% (expressed as coefficients of variation CVs) (Figure 2 and 
Table 2). These high levels of interspecific variation match a previous 
campaign, which measured 1,449 canopy tree species and found a 
maximum CV of 23% in sunlit leaf reflectance (Asner, Martin, et al., 2014). 
Previous studies hypothesized that interspecific variation was large because 
they just focused on canopy exposed sun leaves. However, our data show 
that shaded leaf interspecific variation was still very high but slightly lower 
than for sunlit leaves, with a mean visible CV of ~21%. Asner, Martin, et al. 
(2014) hypothesized that interspecific variation in western Amazonian 
forests dominates over intraspecific variation in this region because the 
upper canopy foliage is much drier and less susceptible to epiphylls (they 
estimated epiphylls are present in 9% of the cases in sufficient quantities to 
affect reflectance), herbivory, and other factors that may increase 
intraspecific variation in leaf spectral signatures (Asner, Martin, et al., 2014; 
Vourlitis et al., 2008). However, we show that shade leaves, which are 
generally more susceptible to epiphylls, also have high levels of interspecific 
variation compared to intraspecific variation (~0.03 CV lower than the sun 



leaves). This indicates that phylogenetic expression in the spectra occurs at 
the whole canopy‐volume scale, a finding reflected in recent work on sunlit 
versus shade leaves and the chemistry of 21 different compounds. This 
increases the likelihood that our method could successfully scale to the 
canopy level.

The western Amazon may have uniquely high levels of interspecific spectral 
variability. This high spectral diversity may be an intrinsic function of high 
biological diversity in tropical forests and due to the evolution of high 
chemical defense levels in response to host‐specific pest and pathogen 
pressure (Asner, Martin, et al., 2014). These high levels of spectral diversity 
may enable us to use remote sensing to estimate 10–35% of the variation in 
important forest properties such as photosynthesis and wood density. This 
accuracy and precision may only allow a binary type detection process 
distinguishing between low and high values. However, we hypothesize that 
accuracy and precision will only improve when using the VSWIR instead of 
just the VNIR and when scaled to the canopy level, as canopy spectroscopy 
may amplify the leaf‐level chemical and physiological signals via the process 
of effective photon penetration depth (EPPD; (Asner, 2008). Next steps are to
test predictions of higher‐level traits with high‐resolution aircraft systems, 
such as the Carnegie Airborne Observatory (Asner et al., 2012), or possibly 
even satellites (Lee et al., 2015). If such systems show similar results to 
those seen at the leaf level, then we could greatly improve understanding of 
tropical forests.
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