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PREFACE

-This report is one of a series documenting the results of the Swedish-American cooperative research
program in which the cooperating scientists expiore the geological, geophysical, hydrological, geo-
chemical, and structural effects anticipated from the use of a large crystalline rock mass as a geologic
repository for nuclear waste. This program has been sponsored by the Swedish Nuclear Power Utilities
through the Swedish Nuclear Fuel Supply Company (SKBF), and the U.S. Department of Energy (DOE) through
the Lawrence Berkeley Laboratory. o

The hrincmpal investigators are L.B. Nilsson and 0. Degerman for SKBF, and N.G.W. Cook,
P.A. Witherspoon, and J.E. Gale for LBL. Other participants will appear as authors ot the individual
reports., - .

Previous technical reports in this series are listed below.

1. SwedishJAmeritan'CQgperative'Program on Radioactive Waste'Storage in Mined Caverns by
P.A. Witherspoon and O. Degerman. (LBL-7049, SAC-01). :

2. -Large Scale Permeability Test of the Granite in the Stripa Mine and Thermal Conductivity Test by
Lars Lundstrom and Haken Stille. (LBL-7052, SAC-02). .

3. The Mechanical Properties of the Stripa Granite bquraham Swan. (LBL-7O74;FSAC-03).

4.  Stress Measurements in the Stripé Granifé by Hans Car]sson."(LBL-7078, SAC-04).

5. Borehole Drilling and Related Activities at the Stripa Mine by P.J. Kurrurst, T. Hugo-Persson,
and G. Rudolph. (LBL-7080, SAC-05). .

6. A Pilot Heater Test in the Stripa Granite by Hans Carlsson. (LBL=7086, SAC-06).

7. An Analysis of Measured Values for the State of Stress in the Earth's Crust by Dennis B. Jamison
and Neville G.W. Cook. (LBL-7071, SAC-07). ' ' :

8. Mining Methods Used in the Underground Tunnels and Test Rooms at Stripa by B. Andersson and P.A.
Ha|en..(LBL-7081, SAC-08) .

9. Theoretical Temperature Fields for the Stripa Heater Project by T. Chan, Nevitle G.W. Cook, and
C.F. Tsang. (LBL-7082, SAC-09). - ' :

10. Mechanical and Thermal Design Considerations for Radioactive Waste Repositories in Hard Rock.
Part I: An Appraisal of Hard Rock for Potential Underground Repositories of Radioactive Waste
by N.G.W. Cook; Part II: In Situ Heating Experiments in Hard Rock: Their Objectives and Design
by N.G.W. Cook and P.A. Witherspuun. (LBL-7073, SAC-10).

11. rull-Scale and |ime-Scale Heating Experiments at Stripa: Preliminary Results by N.G.W. Cook and
M. Hood. (LBL-7072, SAC-11). _

12. Geochemistry and lsotope Hydrology of Groundwaters in the Stripa Granite: Results and Preliminary
Interpretation by P. Fritz, J.F. Barker, and J.E. Gale. (LBL-8285, SAC-12).

13. Electrical Heaters for Thermo-Mechanical Tests at the Stripa Mine by R.H. Burieigh, E.P. Binnail,
A.0. DuBois, D.0. Norgren, and A.R. Ortiz. (LBL-7063, >AC-13).

14. Data Acquisition, Handling, and Display for the Heater Experiments at Stripa by Maurice B. Mctvoy.
(LBL-7063, SAC-14). -

15.  An Approach to the Fracture Hydrology at Stripa: Preliminary Results by J.E. Gale and P.A. Wither-
spoon. (LBL-7079, SAC-15). _ - )

16. Preiiminary Report on Geophysical and Mechanical Borehole Measurements at Stripa by P. Nelson,
B. Paulsson, R. Rachiele, L. Andersson, 1. Schrauf, W. Hustrulid, 0. Duran, and K.A. Magnussen.
(LBL-8280, SAC-16).

17. OUbservations of a Potential Size-Effect in Experimental Determination of the Hydraulic Properties
of Fractures by P.A. Witherspoon, C.H. Amick, J.t. Gale, and K. Iwai. (LBL-8571, SAC-17).
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ABSTRACT

| Fractures, faults, and dikes have been mapped in great detail on
drift surfaces and in core to characterize the quartz monzonite rock mass
surrounding the two full-scale heater experiments at Stripa. From the |
presence of pegmatite and quartz dikes‘in the full-scale drift, several
well-defined N-S faults were determined fo have produced offsets of 1 to 6
meters, and an inferred E-W fault is assigned a comparable throw. Several of
the N-S faults and several dikes cut through the H9 experimental area, but

none are present in the immediate H10 area.

Chlorite, epidote, and calcite were commonly identified on fracture
surfaces, with chlorite preéent,in 60 to 70% of all fractures and calcite
being thé 1east.¢ommon. Because all closed as well as open fractures
in retrieved core were recorded, the observed ratios of open/closed fractures
permit a érude assessment of relative fracture strength among’the three
mineralization types. Only 10% of epidote-coated fractures were found open,
whereas some 70% of the calcite-coated fractures were open. Hence the core
data rank epidote, chlorite, and calcite in order of descending relative
strength. The open-to-closed ratios also permit some limited observations on

the effects of drilling and coring technidues upon core breakage.

The degree of fracturing in the full-scale drift is intense. Average
fracture spacing is 11 cm, with considerable local variation. Zones of
intense fracturing on a one-meter scale are common in the H10 area, but there
is no evidence for sfructura] control. In the H9 area, however, zones of
intense fracturing c]osevto the heater hole may be related to the north-south

faults present.
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- The data base resulting from fracture mapping and core logging in the
full-scale drift is available in several forms: as a computer-based listing
of individual fractures, taken from the original field logging forms; on maps
of the drift floor and walls; on eight vertical radial cross-sections through
each of the main heater boreholes; on 59 stereoplots of fracture plane poles,
categorized by hole orientation, hole location, fracture mineral type,vand
open or closed status; and in simplified form on a 1:20 scale plexiglass
model. This compilation of detailed fracture data is available for inter-
preting results from several experiments conducted in and near the full-scale
drift, including the in situ determination of state-of-stress, cross-hole
measurements of u]trasonic've1ocity and attenuation, and rock displacement

induced by the full-scale heater experiments.



I. INTRODUCTION

The Swedish-U.S. Cooperative Program to investigate radioactive waste
storage in mined caverns has been conducted at the Stripa mine in central
Sweden (Fig. 1.1) since June 1977. The Stripa mine is situated in thé
Bergslagen mining district, and the mining history Of'the area and of the
Stripa mine is centuries old. Iron ore prodUction at the mine ceased in
early 1977. Since then the mine has been operated as an underground experi-
" mental site by the Swedish Nuclear Fuel Safety Program (Karnbranslesakerhet--
KBS) under the auspices of its parent organization, the Swedish Nuclear Fuel
Supply Company (Svensk Karnbransleforsorjning--SKBF). The program has
several experimental tasks, which are described by Witherspoon, Cook, and

Gale (1980).

To achieve a better understanding of the behavior of the rock mass
under severe thermal stress and of groundwater flow through the fractured
mass, a comprehensive study of the geology and geological discontinuities has
been carried out in the underground test facilities at Stripa (Fig. 1.2).
The general geological and hydrogeological studies of the Stripa quartz
monzonite were done by the Swedish Geological Survey (SGU) and were published
by Olkiewfcz et al. (1978). A more detailed investigation of the geology and
fracture systems of the Stripa granite was jointly conducted by Swedish,
U.S., and Canadian scientists and is doéumented by Olkiewicz et al. (1979).
A very detailed study of the rock discontinuities in the time-scaled, full-
scale and extensometer drifts (Fig. 1.2) was carried out by scientists from
Lawrence Berkeley Laboratory (LBL). The results from the time-scaled drift
were published by Thorpe (1979), and the results of the study in the full-

scale and extensometer drifts are presented in this report.
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The common objectfve of the dual studies in the full-scale and time-
scaled drifts was to define and characterize the location, orientatjon, and
mineralogy of major and minor discontinuities in the granitic rock around the
heater experiment areas. The data base for the full-scale drift differs from
that for the time-scaled drift in several respects. Fir#t, the amount of
information is greater; while 32 vertical boreholes were drilled in the
time-scaled drift, a total of 102 boreho]es-were drilled for the full-scale

experiments. Kurfurst et al. (1978) describe the drilling in detail.

Second, as indicated in the plan map and section of Figs. 1.3 énd 1.4,
horizontal as well as vertical holes penetrate the full-scale experimental
areas: 38 horizonté] or sub-horizontal boreholes, drilled from the wall of
the extensometer drift, and 64 vertical borehd]es drilled from the floor of
the full-scale drift.' The higher density of bofeho]es in the full-scale
experiment ensures a']arger amount of fracture data, and the use of data from
horizontal holes also reduces the inherent tendency of vertical boreholes to

oversample horizontal fractures.

Third, the full-scale data base wasvgréatly enhanced by "relogging"
much of the core to 1nc1ude.closed fractures as well as fractures that were
open when the core was remerd-from the core barrel. The closed fracture
information, when summed with the open fracture logs, makes it possible to
plot the total fracture population as a function of borehole size, borehole
orientation, mineral infilling type, core diameter, etc. In addition, the
degree of "openness" of fractures can be examined with respect to these same

parameters.
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A11 planar discontinuities that could be mapped dr“Fecogniied in core,
including dikes, faults, shear zones; and fractures with no:evidence of
displacement are discussed in this report. The only dikes described in this
report are the pegmatite and quartz veins which intérsect the heater experi-

ment areas, although others have been recognized within the quartz monzonite.

The H9 and H10 exper1menta1 areas* in the fu11 sca]e dr1ft are.alhost
1dent1ca1 as far as the geo]og1ca1 data base is concerned but the H9 frac-
ture system has been interpreted in far more deta1]. The presence‘pf'qyart;
and pegmatite djye_?markefsé in the H9 area great]y faci]jtated tchingmthe
offsets eeused:by several epidote-coated faults that cut throqgh_the_aree,
and the potential inf]uence of ;uch through-going features on the thermo-

mechanical experiments required detailed documentation.

Another reason the H9 area received such close attention is that one of
the authors is conduciing cross-hole ultrasonic experiments in four of the H9
boreholes (Paulsson and King, 1980). One ultrasonic experiment was carried
out simultaneously with the heater experiment to map time-dependent changes;
other experiments have been carried out to detect and map fractures between
boreholes using ultrasonic techniques. To evaluate the feasibility of
fracture characterization with ultrasonic methods, the geology had to be

examined in the greatest detail possible.

*Throughout this report, the expressions "H9 area" and "H10 area" refer to
the volume of rock intersected by boreholes for each experiment and the
corresponding drift walls and floors which have been mapped. The plane
separating the two areas is the plane normal to the centerline in the full-
scale drift at a point halfway between the H9 and H10 heater holes.
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The field stage of this study, described in Section 3, involved mainly
the collection of fracture maps and photomosaics of the drift walls and
floors, along with the logs of fractures observed in core. After ca]culatiqn
of true fracture orientation, two approaches were used to interpret the data.
Using cross sections and a three-dimensional model, the fracture system is
reconstructed as fully as possible and presented in a series of cross
sections énd plan méps in Section 4. To.complete the analysis, an extensive
set of stereograms were compiled for the various borehole and minera] infill-
ing subsets. The resulting statistics and pole plots form the basis for
the comparisons énd conclusions given in Section 5. A final summary and a
compérison with the results of the time-scaled drift fracture study are

presented in Section 6.



2. GEOLOGY OF THE STRIPA MINE

2.1 Surface Geo]ogy

A number of reports have been written on the surface geology in the area
of the Stripa mine. The most pertinent to date is that by Geijer and
Magnusson (1973). Koark and Lundstrom (1979) have published a geologic map
of and area called the Lindesberg southwest quadrangle, that includes Stripa.
The surface geology around the mine is shown in Fig. 2.1. A recent report by
Wollenberg et al. (1980) describes the results of petrological and radio-

element studies on rock from the Stripa pluton and adjoining areas.

A11 bedrock units of the region are of late Precambrian age, the oldest
being leptite. Leptite is a general term for predominantly high-grade
metamorphic volcanic rock, high in Si02 and grain size of 0.5 -~ 0.05 mm.
Some of the leptite has a sedimentary origin, as evidenced by rippled marks
in the roof of the main drift. leading to the experiment area. The strongly
. banded iron'ore, predohinant]y interbedded quartz and hematite, is situated
in the leptite. The distinct banding, together with its association with the
leptite, suggesté that the ore is of sedimentary origin. The leptite is in
contact with apparently younger intrusive rocks. Both the supra-crustal and
the intrusive rocks show signs of at least two folding phases. Stripa is
situated within the NNE-trending Vikern syncline that was formed by an E-W
compression during the first main folding phase. The second phase was a N-S
compression that refolded the older one. The granitic rock at Stripa,
predominantly quartz monzonite, 1htruded the leptite near the end of this

folding period. The age of the quartz monzonite is reported as 1.69 x 10°

years (Wollenberg et al., 1980). The Stripa quartz monzonite is classified

as serogenic. It differs from the pre- or synorogenic granitic rocks because
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of its apparent homogeneity,and relative lack of foliation. The rock mass at
Stripa also contains pegmatites and aplites; the former occurs on many

cross sections of the full-scale drift. -

2.2 Mine Geology

The geology at the Stripa mine was described by'OTkieWici et al. (1978)
and is based on material in the mine archives, including P. Geijer's mono-
graph on Stripa (1938), A. Wesslen's mapping of the mine area (1956) and S.
Ljung's mapping of the mine workings (1966). The ore in Stripa is mainly a
quartz banded hematite with occasional occurrences of magnetic, 1rbn-bearihg
chert. The ore, which has an ironJCOhtent of 51% (there is:also'some phos- |
phorus), is stratiform with the leptite.‘The'onest }ockvtype is the sefies
of grey leptites, which is approximately 2;000>m11]ion years o]d.' The
leptite above the main ore is layered, while the leptite below is not. Many
diabase dikes in the mine are older than the quartz,mpnzonite.inuthe test
area. The quartz monzonite is associated with a series of pegmatite and
aplite dikes. The youngest dikes are the steeply dipping diabase dikes-with
a NNE strike. The test area is dominated by a reddish, medjumegrained
massive quartz monzonite. The grain size varies but averages 3.mm. The
composition of one sample of the reddish_quartz monzonite, determined by

point counting (WOllenberg et al., 1980) is:

Quartz o . 311
Partly sericitised plagioclase 32.0
Microcline L 22.2
Muscovite | o | 7.4
Chlorite : SR L3

Accessory minerals: opaques, carbonate, zircon
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The quartz monzonite in the experiment area is less deformed than
that near the ventilation shaft or in fhe northern part of the lower drift.
In places, the rock is strongly fractured and brecciated. Wollenberg et a],
(1980) emphasize that the high abundance of fractures extends down to the
grain-size scale, stating that "fractures ranging from well under a milli-
meter to several centimeters or more in width, as well as wider ones of
brecciation, "are readily visible in hand samp]e, but only in thin section
does the full extent of fracturing and brecciation become apparent. The
great majority of fractures have been completely sealed, but in some cases
| fine openings can be seen in thin section....Even in relatively unfractured

samples, fine discontinuous cracks within primary grains or along grain

boundaries are very common."

A]tﬁough the Stripa quartz monzonite haé been severely disrupted me-
chanically, displaying abundant fracturing and occasional faulting, it is
evident that most, if not all, of the discontinuities have been filled with
secondary minerals. Evidence for this is also p]entifuj on all observational
scales; in fact, the fractures described in this report and that by Thorpe
(1979) are distinguished by the type of mineral infilling, as identified in
mapping or inspection of core. Wollenberg et al. (1980) describe fracture
mineralogy based on thin section observations and note that stringers of
sericite and chlorite, quartz, and occasionally feldspars occur on the finest

scale, even filling cracks in primary grains and along grain boundaries.

The majority of the fractures mapped are steeply dipping towards the
north except in the northern part of the drift leading up to the experiment

area, where many south-dipping fractures have been found. Two strike
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" directions have been discovered: one evenly distributed from north to east,
and one more tightly confined between NW and W (Olkiewicz et al., 1979).
Most of the fractures are filled with chlorite. Epidote also occurs as a
fracture-filling mineral, and is especially abundant in the end of the
full-scale drift. Quartz and calcite are common fracture minerals in the

experiment area.

Despite the pervasive fracturing, laboratory and field measurements
have shown that in many respects the rock does not differ much from other
competent igneous rocks. Laboratory determinations of porosity are around
0.5% (Paulsson and King, 1980; Nelson et al., 1979). Both field and labora-
tory measurements of compressional wave velocity at ultrasonic frequencies
yield values of about 5,500 m/s. And at ambient pressure, laboratory deter-
minations of static mechanical moduli also are comparable to va1ﬁes obtained

on competent samples (Swan, 1978).
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3. SOURCES OF DATA
To characterize a complicated fracture system in three dimensions, a

comprehensive data set is required. Data were collected in two Wéygi first,
by photographing the drift walls and floors to get a péhﬁanent record of the
clean rock. surfaces, followed by mapping the f]oors,and_wa]ls_jn detail; and
second by logging core recovered from the 64 horizonta] and 38 vertical holes
to record rock type, fracture location .and orientation, condition ahd charac-
teristics of the'fracture surface, mineral 1nf111ing} and pergent_gore

recovery.

3.1 Floor and Wall Maps

The procedures used for mapping floors, walls, and roofs in the full-
scale ZFM) and extensometer (EX) drifts were those described by'Knili and
Jones (1965) and Kendorski and Mahtab (1976). ‘Mapbin@iwa§ unde}taken immed;i -
ately after the drifts were excavated.  The first step was a thorough clean-
ing and washing of the walls and floors of both drifts. "A 1 x 1 m square
base grid was painted on the floor in the fu]]—éca1e drift, with the center-

line of the drift as one axis of the grid. This made .it possible to tie the

local coordinate system in the FS drift with the mine's coordinate system.

The next step was to take a series of black-and-white overlapping photo-
graphs. The prints wére sized to match a 1:20‘sca]eiand'glhedﬂfogethef to
form a photomosaic of the drift f]oor."Practicaily'éﬁi fractures Tdnéer than
0.3 m on the floor were mapped. With the help of a1l x 1 m Woodéhfffame; the
tracings of floor fractures were transferred to a preliminary map. The
traces of the fractures represent the:average strike of the fractures found
on the drift floor. Pegmatites were mapped, with spééial attention given‘to

their faulting. While the type of fracture-filling minerals and the dip
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and the strike were recorded for all prominent fractures, only the dip
direction was recorded for minor fractures. The topography of the floor was
also surveyed at the grid intersection points and at every 0.5 m along all

lines in the H9 and H10 areas.

The actual mapping of the drift floor was done for each square of the
base grid, starting at the face of the drift and progressing toward its
entrance. The location of each fracture was visually estimated within each
square with an accuracy of + 5.0 cm. A1l features were then sketched onto a
1:20 base map, which showed the intersections of the fractures, veins, and
dikes with the drift surface. Changes in topography of the drift floor
tended to be reflected in the traces of gently dipping fractures. However,
nearly horizontal fractures proved to be difficﬁlt to map beéaUse of the
extent of their exposed surfaces. This was especially evident in the H10
heater area, which has an apparent low fracture_denéity at the surface. This

is caused by the sub-horizontal, chlorite-filled fractures that are exposed

in this part of the full-scale drift.

The side walls of the full-scale drift wefe'mapped, and the frac-
tufes that were continuous across the width of the drift were projected onto
a Vertica] plane through the centerline of the drift. The projections from
the H9 and H10 areas are shown at fhe top of Figs. 4.4A, and 4.5A respective-
ly. The fractures and the dikes found on the walls were assumed to be
planar, so they were projected directly onto the centerline b]ot. The
obvious features, such as pegmatites and quartz veins, were located and a
1ine drawn to connect two points of a fracture at equal elevations on oppo-

site drift walls. The intersection point with the centerline of the drift
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was then surveyed and piotted onto a field map. The success of this method
was proved by very good correlation of these features above and below
the drift floor. The pegmatite dikes, the quartz veins, and the wall frac-
tures were also prbjected onto the centerline of the map beéause these

features were continuous and considered important for fracture reconstruction.

The northwestern_wa11 of the gxtansometer drift, whjch was nearest the
experiment in the FS drift, was mapped by both visual inspection and pHoto-
mosaic. This combination proved to be fast and convenient, as the surface
was large and close inspection difficult because much of the wall surface—was
above eye level. The criteria for mapping fractures on the EX-drift wall
were that they be continuous and well-defined over several meters. The
mapped features, together with information on fracture-filling minerals,
matrix grain size, cblor strike, and dip, were then drawn on a 1:20 scale

field map.

The resulting floor maps, wall maps, and wall projections are presented

and discussed in Section 4.

3.2 Drilling Techniques

For the H9 (3.5 kW) heater experiment, 49 horizontal and vertical
boreholes of various diameters were drilled from the full-scale and extenso-
meter drifts, yielding a total -of 479 m of core. For the H10 (5.0 kW)
experiment, 53 horizontal and vertical boreholes were drilled, yielding
471 m of core. The total meterage is tabulated by hole diameter and experi-
ment location in fab]e 3.1. Borehole nomenclature is likewise summarized in
Table 3.2. Kurfurst et al. (1978) describe the drilling procedures and

survey results in detail.
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Table 3.1. Summary of drilling meterage for the full-scale drift heater

experiments.
Borehole
Diameter
(mm) H9 Vertical H9 Horizontal - H10 Vertical H10 Horizontal
406 | 5.5 —. 5.5 - -
76 75.48 1801 7484 107.32
56 40.58 - | . R
46 o 1122 | - 11.04
38 - 132.35 105.84 . 187.42 ' 85.71

ATl 253.91 225.07 267.76

204.07
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Table 3.2. Boreholes listed by diameter and location. Holes C9 and C13
were not drilled. A total of 102 boreholes were drililed and
cored for the full-scale heater experiments.

Borehole : . S E
Diameter Total
(mm) ~ H9 Vert. H9 Hor. "H10 Vert.  H10 Hor. number
406 H9 - H10 - 2
76 E6-E11 F18-E26  E12-E17, = E27-E35 31
o ‘ | Mo '
56 M6-M9 - - 4
46 - N3 - N4 | 2
38 (l-C2 C6-C8 3-C5 c10 63
U1-U10 C11-C12  U11-U20 C14-C15
T13-Ti8 U21-U22 - T19-T24 U23-U25
U26-U28  H11-H18 U29-U30
Total

number 29 20 35 ‘ 18 102
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During initial logging of the recovered core, it was noted that the
frequency of open fractures tended to vary with core size, drilling method,
and drill rig used. For this reason, the drilling techniques are summarized
in Table 3.3, which shows the drill rig and core barrel types used for each
hole size and location. The Toram rig was used for the 76 mm and 406 mm
holes, while the Diamec rig was used for holes of 56 mm diameter and Tless.
The small diameter holes were cored with a double tube core barrel, whereas a
triple tube was used in coring most of the 76 mm holes. The vertical 76 mm
holes in the H10 area were drilled with a double tube core barrel and hence

those open fracture statistics will differ from other 76 mm borehole results.

3.3 Core Logs

Continuoué core samples were recovered from 64 vertical and 38 hori-
'zonta1'instrumentation, monitoring, and heater borého]eé~in-therfu]]—sea1e :
and extensometer drifts. The length of the boreholes varied from 5 to 15 m
with an average length of about 10 m. Al1l core from boreholes 56 mm or
greater in diameter (E, M,'and H boreholes) was oriented with respect to
the drift centef]ine, but core samples from the 38 and 46 mm boreholes (T, U,

C, H11-H18, and N boreholes) were not oriented.

3.3.1 Core Orientation Procedure

A1l oriented core from the larger diameter holes (56 mm and greater)
was reassembled and logged immediately after drilling to ensure proper
reconstruction of the orientation. Hence, the first task upon recovery of
the core barrel was to check the orientation mark to ensure that it matched
the mark on the previous uptake. Next, a line was drawn along the length of

the core, matching the position of the orientation mark (B = 0). For the
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Table 3.3. Summary of drilling techniques used for different boreholes
in full-scale and extensometer drifts. The core diameter
in the second column is nominal, no better than + 1 mm.
Core from the 76 mm holes depended on core barrel type, the
triple tube barrel yielding 52 mm core.

Borehole " Core
Diameter Diameter . » o
(mm) (mm) H9 Vert. H9 Hor. H10 Vert. 'H10 Hor.
406 -- o osT - st -
76 52, 62 tT - tT T T
56 4 d - - -
46 . - CdD - dD
38 22 dD dDb . _ dD dD
sT = Single tube core barrel, Toram drill rig
dT = Double tube core barrel, Toram drill rig
7 tT = Triple tube core barrel, Toram drill rig
: dD = Double tube core barrel, Diamec 250 drill rig

*The first 3 m (out of 5.5) was drilled with the XF 60/90 H drill rig.
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‘vertical holes, this line corresponds to an imaginary line on the side of the
borehole wall closest to the opening of the full-scale drift (see Fig. 3.1).
The orientation for g = 0 was surveyed before the drilling of the borehole
started, and an orientation mark was cut with a grinder into the rock
surface. After each uptake, an orientation device was lowered into the
borehole, and the stub on the bottom, which would be the upper end of the
next core run, was marked in the same direction as the mafk on the floor
surface. For the horizontal and sub-horiiontal holes in the extensometer
drift, the reference line B = 0 was chosen to be downward; marking‘of the
core was done simply by inserting a rod with a-hard metal tip in the borehole
and marking the core stub before the drilling started again. This method was
generally quite accufate, as indicated by the excellent matching of orienta-

tion marks for successive uptakes.

With the reference line estab]fshed, two angles suffice to define the
orientation of a fracture plane with respect to the borehole. The angle a,
which ranges between 0 and 90 degrees, is the acute angle between the frac-
ture plane and the central axis of thé core or borehole. Thé angle g is the
azimuth of the apparent dip as measured clockwise from the reference line
while looking fn the drilling direction. The angle g ranges from 0 to 360
degrees because it is measured from the reference line to the lowermost

intercept of the fracture plane and the borehole wall.

3.3.2 Core Logging Procedures

After orientation was established, the core was logged at the drill
site, as soon as possible after drilling and in accordance with pfocedures

described by Kurfurst et al. (1978) and Thorpe (1979). The geologist took
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Vertical holes - .., . Horizontal holes

-

180°

Magnetic L :
n(?rth 1180° .

270°  90° 270°

: Orientation mark

B=0°

g=0°

XBL 811-2556

Fig. 3.1. Orientation conventions for vertical and horizontal holes in
full scale drift. For vertical holes; the zero angle is on
drift centerline and nearest the drift opening. For horizontal
holes, the zero angle is on the downward edge of the perimeter.
In both cases the view is from the drift looking towards the
collar. ’ '
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core direcf]y from the barrel for examination, to avoid disturbing the core
by excess handling and fransportation to the surface. For ready reference, -
the logging specifications and a sample logging form used in the field are
included in Appendix A. These field logs of fracture location and character-

istics formed an important part of the data base presepted in this report.

Only open fractures were logged at the drill site, and, as a]feady
mentioned, it was soon noticed that the frequency of open fractures)yaried
with dril]ing‘pr0cedures. To correct this sampling problem and.té obtain a
more completeirecord of the total population of planar and suprlanar fea-
tures intersected by the borehole, the core was brought up to the surface and
re]Ogged. This time, closed fractures wéré recorded, fo]]owing>the proce-
dures used for open fracture 1ogging. The second logging increased the
number of fractﬁrés recorded in the H9 area from 1,055 to 3,385, markedly
changing some of the fracture population statistics, asiwi11 be discussed in

Section 5.

.Table 3.4 summarizes the logging procedgres used in the full-scale
.drift. Ag can be seen; all of the H9 core wasvrelogged. For the H10

area, only the 76 mm core was relogged, and as;the table indicates;'only the
vertical holes weré entirely relogged. Td Save'timé,»dnly the lowermost

3 mof thé.horizontal 76 mm-holes in the H10 aréa‘ﬁere ré]ogged; that is, the

3 m from each hole lying closest to the H10 heater hole.

In this report, the term "open fracture" simply refers to that class of
fractures which were open when the core was retrieved and first logged;
“closed fractures" refers to a fracture intersected in a core interval which

was intact when retrieved from the core barrel.
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Summary of fracture logging procedures in the full-scale

Table 3.4.

“drift and extensometer drift boreholes. Core was logged
in two passes. Open fractures were logged at the drill site
while closed fractures. were recorded during relogging.

vBoreho]e
Diameter Oriented _

(mm) core H9 Vert. H9 Hor. H10 Vert. H10 Hor.

406 Y ~0c . - : oc o -

76 Yy o o o oc, ¢
56 Y 0c - - -

46 N - 0 - 0

38 N o« 0 0 o

2<0O0

Open fractures logged
Closed fractures logged
Core oriented

Core not oriented
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3.3.3 Mineral identification

When the core was logged, a number of dffferéht»fractu%e-1nfi]1fng
minerals could be distinguished visually. Ch]o?ite,-epidote, and calcite
(one of these three was always present) were distinguished as the three
dominant minerals coating the fracture surfaces. Calcite can be identified
visually, but epidote and chlorite are more fe]iably distinguished by a
scratch test with hardened steel; it scratches chlorite but not epidote.

A Although identification in hand specimen is always subject to error, the
petrological study by Wollenberg et al. (1980) has in.general confirmed the

field identification of these minerals:

"In megascopic appearance, the following generalizations are useful,
though not foolprodf: dark green or black fractures are usually dominated by
“chlorite; white or‘near-white?fractures'by quartz-and/or carbonate. - Light S
green fractures are more ambiguous, as they may be a mixture of the above
types, or they may be filled mainly wifh serfcitei(fine f%actures, particu-
larly), or with epidote, or, in wide brecciated zoneé,'with a clay-fich fault

gouge."

Throughout this report the terms chlorite, epidote, and calcite refer to

the visual identification of these minerals in core.

3.3.4 Core Log Availability

The core log data, an example of which is included in Appendix A of this
report, have been entered into two computer files at LBL. The format and
coding are similar to that given in Appendix A of Thorpe (1979). To access

the files, use the control commands
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GETTAPE ,TAPE1=FULLSCALE/CLOSEFRAC/DATA,11883
and

GETTAPE ,TAPE1=FULLSCALE/OPENFRAC/DATA,11883.
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4. CHARACTERIZATION OF DISCONTINUITIES

4.1 Introduction

The field observations and the resu1t1ng’interpreted fracture network
are presented in this section 5n a series of maps and sections. The detailed
floor map of the full-scale drift (upper.portion of Fig.-4.1), the exten-
sqmeter“ghift wall map (Fig. 4.2) and the map of the‘fu]1-s¢a1e drift wall
{dppgr;ﬁbktion of Fig. 4.4A) are all based directly on field mépping,
<Edééc;fbed‘in Section 3.1. In add%tion‘to these three maps, two interpretive
~man§ are also shown. From the detéi1ed floor map, floor photomosaic, and
direét'observation, the major prominent continuous fractures and fracture
‘zones were identified and plotted Eh the simplified floor map shown in the
- Tower part of Fig. 4.1. A plan map thrdhgh the H9 heater midplane, shown in
Fig. 4.3, was constructed by projecting fractures énd dikes encountered in
| vérticaT.and horizontal borehd]es onto the horizontal surface at the mid-

. p]ane elevation. No comparable map was éompleied for thé H10 midplane,

although some data necessary for its construction have been compiled.

Eigﬁt vertical cross sections displaying fracture intercepts and inter-
_preted continuous fractures afé'shown jn Fig. 4.4 for the H9 area. A comple-
mentary set of eight sections around'the H10 area_is shown in Fig. 4.5. To
intersectAthe iargest possib]e number of bofehoiéﬁivfﬁe cross sections
(origina]iy drawn at a 1:20 scale) were drawn a]bng fhe planes of symmetry in
the H9 and ‘H10 areas, as shown on the floor map of Fig. 4.1. Table 4.1 gives

the strike direction and orientation of the cross sections.
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Table 4.1. Orientation of fracture'cross-setfions. The H9 and H10
cross-sections have the same strike, so these angles apply
for both experimental areas. ' '

Angle from drift

Section Strike Direction centerline, Bp
A N51E ; 0.0
B ONT3E s
C N84 o 45.0
D N6IW | 675
E N39W £ 90.0
F N16W : 112.5
6 NOGE 135.0
H 5

N29E ' 157.
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The results presented in this chapter are based mainly on graph1ca1
techniques such as cross sections and pole plots using all ava11ab1e fracture
information. Alternatively, computer-aided mathematical methods could have
been used to reconstruct the fracture network. However, a graphical method
was judged to be faster and more effective in working with the complex
fracture systems in the H9 and H10 areas. Most fractures are not continuous
and are not traceable even between two closely spaced boreholes. To charac-
terize a rock mass, a statistical approach is necessary to complement

the graphical method. This approach is further discussed in Section 5.

4.1.2 Plexiglass model

As an additional tool for reconstructing the fracture system, a three-
dimensional model was built using all the cross-sections from H9 and H10.
Sections A-H, the mapped floor and walls of the FS drift, and the mapped
walls of the EX drift were all reproduced at a scale of 1:20. The model,
shown in Fig. 4.6, helps to synthesize all fracture information and gives an
overall picture of the strike and dip of fractures and variations in fracture
densities within the experiment area. It was, for instance, very helpful in
lining up large features such as the pegmatite dikes and the epidote-coated
faults. It showed that pegmatite A was faulted 6 meters between the full-
scale and the extensometer drifts. Pegmatites E and B were a]go lined up

with the help of the model.

4.2 Prominent Faults and Dikes

The pegmatite and quartz veins, readily identified by observation
underground, provide excellent markers to define the offsets induced by

the epidote-coated faults. Hence, all the prominent features that could be
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CBB 802-2342

Fig. 4.6. Plexiglass model (1:20 scale) for the fracture system in the
H9 area. The H10 area is not shown here. Model is 0.7 m wide
x 1.0 m high x 2.1 m Tong.
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extrapolated successfuT]y between drifté; or between a drift surface and

seVeré] borehole.intercepts, have been labelled in Figs. 4.1, 4.2, 4.3 and
4.4A. In addition, Table 4.2 gives the strike, dip, and relative displace-
ment of each dike and fault * as measured onvone of the exposed surfaces or

in a sequence of borehole intercepts.

Some discontinuities appear as arcuate features on the floor and wall
maps. This apparent lack of planarity is atfributed to the irregular nature
of the floor and wall surfaces, rather than to curvature of the fault planes.
Examp]es are Qz C and H9-7 on both the detailed and sihp]ified versions of

the floor map (Fig. 4.1).

Thg key marker in the H9 area is pegmatjte A. Its apparent truncated
extent on the full-scale floor (Fig. 4.1) iS}due'to the offset induced very
near to the floor by the main fau]t'labelled’HQ-lé Fig. 4.4A shows this
offset more clearly, and also shows that pegmatite A is easily identified in
the wall of the full-scale drift. Its measured thickness is about 20 cm.
Note that this pegmatite cuts thrqugh the H9'heater hole about 2.5 m below
the drift floor. Itsvdispiacement can also be seen by comparing the floor

map and the midplane map.

Pegmatite B, with a strike of approximately N60W and a dip of about 50E,
is identified in a number of locations in the maps and sections. It is first

found at 11 m depth in section H9 A, continuous with its projection on the

*By "faults" we mean a fracture with a documented offset. By "epidote
faults" we simply mean a fault with epidote mineralization. The faults we
have been able to trace -over the whole experiment volume we term "major _
faults". A1l faults are well healed, competent features with little or no
water seepage.
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midplane map (Fig. 4.3). Other segments, displaced by an E-W fault, are
found on the extensometer drift wall, on the midplane map near the exten-

someter drift, and in the center of the FS drift,floor,mab.

Pegmatite D is less useful as a marker because its near-vertical dip
meant that it was rarely intercepted by the vertical bqreholes. Its inter-
preted position can be seen in the midplane map (Fig. 4.3) and its interpre-

ted intercept on the extensometer drift wall in Fig. 4.2.

The pair of parallel faults, H9-1 and H9-2, strike abhut N5E and dip
60W. Their apparent offset can be.viewéd on the various exposed»surfaces
which also reveal that these ahe obiidue reverse, rather than normal faults.
The sectional view in Fig. 4 4A shows a combined apparent of fset of about
2 m for the two faults. D1sp1acement in the horizontal p]ane (Fig. 4.1)
is 1 m, although extrahh]at1ons in the m1dp1ane (Fig. 4. §5M;hd1cate that
d1sp1acement is a fraction of a meter. Their true dip and re]at1onsh1p

to the H9 heater hole is best viewed in vertical section H9C (Fig. 4.4C)

.which is almost perpendicu]ér to the strike of H9-1 and H9-2.f,

Signi%itant faulting must have'pccurred between the full-scaie and
extensometer'driffs,lbecause none of the pegmatites are found on the EX
drift wall where simple projection would place them. The mid-plane map shows
a plausible solution. An E-W fault labeled H9-8 is shown with 5 m of hori-
zontal displacement and a likely Vertica1.displacemeht,component of several
meters. fhe existence of H9-8 is in accord with féultstmapped on the
full scale floor and extensometer drift Wall (see Figs. 4.1 and 4.2); how-
ever, it could also be shown as a series of en eche]on faults of total

equ1va1ent d1sp1acement Tab1e 4.2 gives an approx1mate E-W strike and
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a dip of 66N to this major fault. The resulting interpretation of individual
- dikes and faults found on the extensometer drift wall appears satigfactory,
as pegmatite A, fault H9-1, and pegmatite D are found there with similar
strikes, dips, and're1ative separations as in the full-scale drift. Fault
H9-2 has disabpeéred, however, and the exposure of pegmatfte D is complicated

by the convergente—of pegmatite B and other fhulfing.

Other . offsets in the H9 éfea,are induced by faults H9-3 through H9-7, as
well as by;lesser,,uhnamed fau1ts.‘tDisplécement magnitudes of these five
faults appear tokbe on the order of 1 to 2 m. Fault H9-7, which is exposed
on the extensometer drift wall (Fig.j4.2),‘is difficult tb frace:because of
its near-vertiéa] dip and‘its4predicted intersection with only a few bore-
ho]es. Because its 1ocatibn has not been confirmed, its projected position

has been omitted from the midplane map.

The offsets shown fn the midp1ane,mapvofAFig. 4.3 revea]bthe relative
age of the faults. The E-W striking fault designated H9-8 must postdate the
movement along the N-S faults (H9-1,2,3,4,7) andvprobably also postdafes
movement alﬁng the N6OW fauits (H9-5 and 6). It is noteworthy that both the

N-S and E-W faults are reverse faults (Table 4.2).

1h the H10 aréa;fthe mdét prominent features are the pair of.péra11e1
faults, H10-2 and H1043 (See Fig. 4.1). The apparent offsets of pegmatite
cauéed by faults H10-2 énd‘-3 in the horizontal b]anéAof the FS-dfift.floor
is about 3 m. Direction of,horizonta] motion‘aldng.the'two_fau]ts could not
be determined, butvit is ]ikely‘that the total offsets acfoss the two paral-
lel faults is 6 m or more. In vertical section (Fjg._4.5A), they are shown

~ to be reverse faults. Both of these Nfs striking planes project to, and have
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been identified in, the wall of the extensometer drift,'aé shown in Fig. 4.2.
Thus there is no evidence for E-W faulting in the H10 ‘area as there is in the

H9 area.

The orientatjon_qf_a]l major faults and dikes identified in the full-
scale and éxtensometer drifts are summarized.in the pdle plot of Fig. 4.7.
The quadrant labels such as W/E serVe as a reminder that the poles ih the
southwest quadrant of the pole plot represent fault planes striking NW and
dipping to the east. Note the lack of consistent grouping of the pegmatite
dike and quartz vein oriéntationé, and the consistent Orientatidﬁ of the N-S
striking, 60W faults H9-1 and -2, and H10-1, -2, and -3. Their orientation
is remarkably consistent with the four discontindity planes determined in the
time-scaled drift by Thorﬁe (1979) .

4.3 The Fracture Cross Sécfions”

" The fracture cross sections presented in Fig. 4.4 (H9) and Fig. 4.5
(H10) are unusual in that they‘are”d?awn'along'rédTéT planes with a common
point of intersection 4t each central heater borehole. A good technique for
becoming familiar with the cross sections ié to view the H9 sections sequen-
tially, keeping in mind the p0§itf0n of the key pegmatite'A’While moving from
section to section. 1In so doing, the effect_of changing_perspective upon
observed dip wi]] become readily apparent, Beware,of the 1¢ft-right reversal

of view in progressing from section H9 B to H9 C.

4.3.1. Calculation of apparent dip
‘The two measured angles « and B (see Section 3.3) describé the orienta-
tion of a fracture plane with respect to the borehole in which an oriented

core was obtained. To extrapolate fracture planes in vertical cross sections,
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SChmldT equol areaq po|e plot Pegmaﬁte dikesond fGUHS in The
. fullscale and extensometer drifts
Lower hemusphere mineralization
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Fig. 4.7. Pole plot of major dikes and faults -in full scale and extensometer
drifts, along with poles T-1 through T-4 identified in time scale
- drift by Thorpe:(1979). Str1ke/d1p directions are noted in each
quadrant. For example pole H9-3 in quadrant W/W represents a
plane with strike-dip of NO9W/35W.- :
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an apparent»dip_ang]e must be computed for each fractyre:jntercept. The

appareht dipve is defined as the angle between a horizontal plane and a

second line established by the intersection of the vertical cross-section and

the fracture plane. For vertical boreholes the apparent dip is related to
the measured angTes a and g by using expressioni

tan 6, = tan (90° - a«) cos(B - Bp) ,
where gp is the angle between the reference line and the vertical cross
section (refer to Table 4.1). The corresponding expression for horizontal

boreholes is:

2

tan 6, = ﬁV&anza + tang cos(a sing)

It was later‘found_thaf a simpler expression,

Cot b, = COta COSE - e

produces nearly identical results for horizontal boreholes. An additional
correction of about 6 degrees was added or subtracted as appropriate to

compensate for the upward incline of the horizontal boreholes.

4.3.2. Display of fracture data

The apparent dip of a fracture intercept is plotted with a short line
segment on the vertical cross sectibns (Figs. 4.4 and 4.5). The orientation,
thickness and dominant mineral type'of each fracture intercept are also
posted next to each line segment. Symbols were put on only for fractures
filled wifh epidote or calcite minera]ization. To minimize clutter, frac-
tures filled with.ch1orite_are plotted Withput any symboi, although many

fractures filled with epidote or calcite have chlorite infilling as well.
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4.3.2 Fracture Reconstruction

Because the fracture réconstruction for the H9 heater area is so de-
tailed, the plots became'dﬁite cluttered when therinterpreted fracfure planes
were overlain on the raw data. For this reason the raw data cross sections
are relegated tojAppéndii B and the iﬁtérpréted H9 area cross sections are
shown in Fig. 4.4,wathout the SUbéidiafy information. The reconstfdctethlo
heater area cross sections were far less complicated,’howevef. COnsequehtly,
the 1nterpreted fracture pos1t1ons in the H10 area are shown overlain on

or1entat1on and m1neralog1ca1 1nformat1on in Fig. 4, 5

For each cross~§éctibn, the boreholes with oriented core constitute the
host important source of information for’characteriaing and mapping'discon—
tinuities in the H9 and HlO‘experimentaI‘areas: The‘uﬁofiented core from
the 46 and the 38 mm héles waslused maih]y to check the oriented cbre heQ
sults. In a few cases it was apparent ‘that the same fracture was samp]ed in
neighboring 38 mm ho]es. The fractures were then connected on the cross “
section and assumed terx1st between the boreholes, to verify that such
fractures indeed belonged to the same discontinuity, the actual core and the
fracture 1ogs; In such combarisons;’oné must remember that even if the
fractures are p]anar over a distance of tens of meters, the fracture surfaces
undulate on a scale of de;imeters,and therefore strike and dip vary locally.
Other uncertainties are the accqra;y»of the orientation mark, which is about
+5°, and the accuracy of the_mgasured strike and dip, which is also estimated

to be +5°.

Fractures were extrapo]ated between boreholes based on the d1p, strike,

fracture infilling type and th1ckness, and proximity of fractures in adjacent
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boreholes. The most important criterion was the néar-equa]ity of the azimuth
of fracture intercepts in adjacent borehoies."lntersééting pegmatite veins
and highly fractured,ionésvwereiglso_used. A1l distinctive discontinuities
were then extrapolated along each cross section to a maximum depth of about
13 m below the drift'floor,and 1atera11y from the northwestern wall of the
extensometer drift fo the downward projections of the northwestern and end

walls of the full-scale drift.

4.3.2.1. Cross-section H9 A (Fig. 4.4A). The pegmatites and faults

with epidote mineralization are the dominant features présented in Fig.;4.4A.
Pegmatites A, B, and D, and quartz vein C are identified in the cross sec-
tion, and four fau]ts--HQ-l, -2, -3, and. -4, representing the major discon-
tinuities--are identified in the boreholes. . Since the orientation of these
four faults is similar_(see Table 4l2)ﬁthey are_assigned_to the_same fracture
set. Faults H9-1 and H9-2 offset,pegmatjte A in the vertical plane by
approximately 1 m fqr a total disp]acement_qf more than 2 m. The offset
caused'by the minor parallel or sub-parallel epidote-filled faults is
generally 1ess than O;5 m. The horizontaT displacement caused by faults

H3-1 and H9-2 in the plane of the full-scale drift floor is only 1 m..

Pegmatite B, present at the bottom of bofeho]es E6, E7 and E8, is
intersected by discdntfnuity H9-4 in boreholes E6 and E7. This discontinuity
was extkapo]ated to the epiddte-fi]]ed frécture'in the bottom of borého]e.U3;
the absence of pegmatite A in this borehole indicates that this pegmétite is

also offset by H9-4.
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- The quartz vein C; prominent in the drift floor between.boreholes
E7 and E8, was found in three places in ‘borehole E7. This has been inter-
preted as an "en echelon"‘fau]ting,'Which,agrees‘welluwith interpretation of

the offset of pegmatites A and B.

Although the small pegmatfte'D ts clear]y_seenvon the FS-drift f]oor
(Fig. 4.1), where it is intersected and offset 1 m by discontinuities H9-1
and H9-2, -it was difficult to‘1ocate.it;jnvboreho1es_because of its near-
vertical dip. ‘It is shown_in .Fig. 4.4A between boreholes E6 and E7 on

the basis of the pegmatite;intercepts;in those two boreholes.

The ep1dote fw]led fau]t H9-3 a]though present in th1s cross sect1on,
is not we]] deve]oped and therefore w11] be d1scussed in more detail in

cross section H9 B.

To obtain the extent of subsurface d1scont1nu1tes above the drift floor,
both wa]]s were mapped the resu1t1ng fracture map was prOJected on the
center11ne of the dr1ft. This projection shows clear]y that pegmat1tes A and
B, also present in both'drift.walls,‘are-intersected by fau1ts.H9-5 and H9-6.
These two discontinuities have orientations N54W/48E.and N68W/14N respec-
tively and belong to a different fracture set than discontinuities H9-1

through H9-4.

A number of ca]c1te f111ed fractures were found in both or1ented and
non-oriented boreho]es in the cross sect1on Ca1c1te f111ed fractures
present in or1ented boreho]es E6, E7 and E8 seem to correspond we]] w1th
calcite-filled fractures extrapo]ated between non-or1ented boreho]es ul, uz,

U3, T13, and T14. Severa] 1ntersect the ep1dote-f11]ed fault, thus
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providing the sequence of faulting which followed the intrusion of the
pegmatite. An epidote-filled fracture being intersected by the calcite- |
filled fracture is shown in the thin-section photograph of Fig. 4.8. The
first fault in the sequence was the intrusion of pegmatite,'followed by the
appearance of ep1dote f111ed faults in the pegmat1te The 1ast in this

series was the deve]opment of ca1c1te f111ed fractures and fau]ts

4.3.2.2 Cross Section H9 B (Fig. 4.4B). The epidote-filled faults H9-1

and H9-2 are present”in boreholes U4 ‘and U5 at depths z = 342 m and z = 344 m
respectively. Two additional discontinuities, H9-3 and ‘H9-4, intersect -
boreho]es Cl and M6, where th1s d1sp1acement was measured as O 3 m for H9-3
and 0.4 m for H9-4. A number of minor ep1dote f111ed fau]ts in boreho]e M6
are interpreted to be para]le] to the fracture set H9-1, -2, -3, -4, shown in

cross section H9 A.

4.3.2.3 Cross Section H9 C (Fig 4 4C)' Five vertica] and fiue hori-

zontal boreho]es, wh1ch are 1nc1uded 1n the H9 C Ccross sect1on, prov1de a

good data base for reconstruct1ng the fracture system

Pegmatite A is present in the middle of vertical boreholes H9 and T15
and at the bottom of horizontal boreholes U26 and E23. It is offset by the
epidote-filled faults H9-1 and H9-2, which intersect boreholes T17, E9 and
E10 at the depths of z = 340 m, Z=341m and z = 342 m respectively.
Orientation of discontinuities H9—1_ande9-2 is NiOE/GOWr _Ancther set of
epidote-filled fractures parallel to fau]ts H9-1 and H9-2 intersect‘horizon-
tal boreholes from the extensometer drift. vFaulting of pegmatitebA in
horizontat borehole E23 is associated wfthVcalcite.mineratization in the.

fractures. This is most likely because the fault plane reopened and the
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fracture was filled with calcite long after the actual faulting.

Some of the calcite-filled fractures can be extrapolated between
three or four boreholes; the most prominent of these exfends from borehole
E21 through boreholes E22, E23, T15, E9 and E10. The location of other

concentrations of calcite-filled fractures will be discussed in Sect. 4.4.

4.3.2.4 Cross Section H9 D (Fig{ 4.4D). Lack of data, which is due_to

the small number of boreholes in the cross section, a]lbws only begmatite A

to be extrapolated between boreholes H9 and Cll.

4.3.2.5 Cross Section H9 E (Fig. 4.4E). Pegmatite A intersects verti-

cal borehole H9 and horizontal boreholes E19, U27, and E20. Faults with
offsets less than 1 m have been interpreted to account for hole-to-hole
variations in apparent strike and dip. A majqr unfeso]ved.probiem_in the
reconstruction of the pegmatite intercepts is the presence of a 3.2'm long
intercept of pegmatite in horizontal borehole E20; it commences about 2.3 m
from the collar. This could be.a local widening of pegmatite A; however, its
presence has been virtually ignored in thé fault interpretation. Pegmatite A
is again seen in section H9 E near the wall of the extensometer drift, where
it is displaced by 6 m. The interpreted fault mechanism for this relatively
large offset has already been‘discussed in connection with fault H9-8 in

Fig.4.3.

Several epidote-filled fractures, found in horizontal boreholes E19,
U27, and E20, can be traced to vertical borehole E11. This borehole is also

1ntefsected by epidote-filled discontinuities H9-1 and H9-2.
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4.3.2.6 Cross Section H9F. (Fig. 4.4F). Two distinct zones of epidote-

filled fractures were found in borehole M7 at depths z = 339-341 m and
344-349 m. Borehole M7 a]so inc]udes severa1'ca1cite-fi11ed fracture zones
Cat depths 2 344 m, 345 m, 347 and 348 m. Except for the pegmatites A and
D, no other maJor d1scont1nu1t1es ‘were detected in any boreho]e of this cross

sect1on.

4.3.2.7 Cross Section H9 G (Fig. 4.4G). Pegmatite A intersects verti-

ca1 boreho]es ug, u7, U6 T18 and H9. Because this cross section is nearly
para]]e] w1th the str1ke of Pegmat1te A the apparent d1p is near]y hori-
zontal A1though traces of pegmat1te were also found a few meters from the
end of boreho1e 524, 1t is uncerta1n whether th1s pegmat1te 1s part of

pegmat1te A.

;-LTwo'pegmatites, B and E, were found in horizontal boreho]eS;E24,iC8,
E25, U18 and E26.- Although the apparent dip. of the dikes varies due to the
d1fferent sectional or1entat1ons, pegmat1te B in this cross sect1on corre-
1ates well w1th pegmat1te B 1n cross- sect1on H9 A found in the 1ower end of
the boreho1es E6 E7 & E8. Pegmat1te E in this cross sect1on cou]d not be
successfu]]y correlated w1th other pegmat1te occurrences, but 1t may connect
to one of the un1dent1f1ed d1kes 1ocated on the dr1ft floor between the HI
and H10 heater (Fig. 4.1). Pegmat1te B strikes perpend1cu1ar to cross
section H9G and so if the pegmatite is extrapolated from its location in
E24-E26 to the-f]oor in the full scale drift it can be seen that the correla-

tion, -in fact, is quite good.:

Four ep1dote f111ed fractures 1ntersect boreho1es E24 08 E25 ul8, and

E 26 and another three fractures can be traced between boreho]es E?24, C8 and
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E25. Calcite-filled fractures are concentrated mainly in the horizontal

holes (see Sect. 4.4),

4.3.2.8 Cross-section‘HQ H (Fig. 4.4H). Pegmatite A intersects bore-

holes U10, U9, H9 and C2 and is faulted in four places. While discontinui-
ties H9-1 and H9-2 in boreholes H9_and C2 correlate well with other cross
sections, the two in boreholes Ul0 and U9 cannot so be correlated with any

degree of confidence.

4.2.3.9 The H10 Cross Sections (Fig. 4.5). Cross sections A-H from the

H10 area, comparable in orientation and convention to those of the H9 area,
are presented in Figs. 4.5A-4.5H. However, as discussed earlier, much less
interpretive effort has been expended on results from the H10 area. The

primary content of these cross sections is the apparent dip and strike data
posted a]éngside the boreholes. These cross sections are therefore comple-

mentary to the H9 data cross sections presented in Appendix B.

Interpretation of the H10 area fractures and faults is inherently more

| difficult than it‘is_for'the H9 area becauée of the relative scarcity bf
pegmatite and quartz markers. More information could be interpreted from the
available data if it appears to be warranted by the requiremenfs for the

thermomechanical analysis in the H10 heater area.

4.4 Zones of Intense Fracturing

Because of the potential importance of localized zones of intense
fracturing to the displacements induced by the H9 and H10 heater experiments,
some of the outstanding aspects of these zones in the heavily drilled areas

are discussed here. Fracture intensity can be examined in the floor maps of
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Figs. 4.1 and 4.3 and in the cross-sections of Figs. 4.4 and 4.5. However,
in Fig. 4.4 the extended lines denotinnghe'}hterreted extent of the epidote
fractures reduce the apparent significance of the chlorite and calcite
fracturéé. For~this reaéohzthé fjguréﬁ‘of Appendix.B are better suited for

examining zones:of high fracthre intéhsity in the H9 area.

In addition, fracture 1hféhsity is shoﬁn in é séquence of elevation
plan maps encompassing 2-m intervals in Figs. 4.9'and 4.10.- These were
compiled from ai]vfractures posted on the cross sections, and then contoured
to give the general trend of fracture fréquency.  fhe H9 data of Fig. 4.9 are
self-consistent in that both open and closed fractures are included; however,
the H10 plots of Fig. 4.10 are from a mixed data base (Table 3.4). Some
short core intervals were sb infehsé]y.fractured that no count was made. In
such cases a value of 1 fraciure périémlwas assigned to the fractured length.
For example, in fhe 340-342 m interval, hole E6 contained 25 single fractures

plus a 34-cm fracturedvzone; hence an entry 59* is posted in Fig. 4.9.

4.4.1 H9 Area.

The detailed floor mapvof Fig, 4.1 shows an area of high fracture
intensity that seems to strike N-S and?]ieé_immediate]y adjacent to, and
west of, héater hole H9. This ﬁrﬁdeitrend iS confirmed by the fracture
intensity map in Fig. 4.9, which- shows a roth]y N-S'stéiking zone of high
fracture intensity. Five boreholes with'fraéfure frequencies exceeding 40

per 2-m interval are within this trend.

It might be'expected that this zone is controlled by the major epidote
faults H9-1 and H9-2, which dip to the.west. Such an association seems

apparent in cross éeqtioﬁ'HQAv(Fig; B;i). fihspéction;of_thé three vertical
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Fracture intensity as a function of elevation in vertical boreholes
in H9 area. H9 heater midplane is at 343 m. Data and contours
give number of open + closed fractures in 2 m interval. Asterisk
indicates that a fractured zone is included, pro-rated at 1
fracture per cm. Isolated single data points are not accounted
for in the contouring. View is toward extensomiter drift.
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Fig. 4.10. Fracture intensity in vertical boreholes in H10 area, given as
number of fractures per 2 m interval. Data from 76 mm holes
(small circles) are from open + closed fractures; data from 38 mm
holes (small x) are open fractures only. For other details,
refer to Fig. 4.9.
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Locations of calc1te-coated boreho]e fractures (where there are 3

Table 4.3.

" or more fractures per meter of borehole). Asterisk (*) denotes
frequencies of six or more. Intervals (meters) are given in the
mine z-coordinate for vertical holes; in dlstance from the collar
for horizontal holes. o

H 9 Area o o ~H 10 Area .-

Section - Hole Interval (m) - =~ =~ - - Section ' Hole Interval (m)
H9A U3 .342-343 o ; - HI0A E13 343-346%
. ~ 344-345 B : S El2 339-340 - -
v2 - 341-342 . o - o : N 343-344% - - ..
' - - 343-344*% ' ' ...+ 347-348
ul .343-345 ... Teo 340-341
- T13 343-344 ) S 1 342-345*
- E6 349-350 ¢ e . 386-347*
. E7  --350-351* - .. . L - -T2z 342-343
- E8 - 349-351* - _ T ' - -344-347*
' : . o C U1l . - 341-342
H9B o | --339-340 N o 344-345

: 344-345 . » - El4 . 349-350*

HIC E10. = 340-341 R _H10B . C4.  344-346
347-348 . » €3  342-344

M3 ‘340-341 - . - e L o HI1L 340-341

 342-343 T S ¢ 343-344

347-348 . oL - H1S 339-340
. B9 T 346-347 o L o o 343-345*

- 361-352 - o T - Ul4 340-341

T15 344-345 ST I

E21 ~ 2-3 - e "~ H10C . ule . 341-342

56 : e s o 343-344%

c6 -~ 0-1 ' A T23 343-345

.34 : e T21 . 339-341*

: © B-G* .. . ‘ N . 345-347*
E22 4-6 : L - . . E30 0-5
9-10 R , . 8-9

u26 4-6 S 11-13* -

E23 0-3* - " : S - u23. 1-2
, 12-13 o . o 7-10

— _ A , ' " E31  7-8 _

H9E - E1l - 340-341 = . B 10-11
. - - 346-348 . R .. E32 3.5-4.5 .
E20 - 6-10%. S L 7-8
‘ - g o , ' 12-13*
HIF U222 - 2-3: o _ A

c1z2 1-2 L H10D c5 340-341
: T . u29 4-5*

H9G - U7 343-345 - ' o : g

T18  342-343 R . HI0E - EIS 344-345%

_ . 344-345 o L L . 346-348 -
. E24  0-2 . - 350-351* .
- . 825 ; o ‘E27 °  8-9 :

c8 1-2 . _ - . U8  1-2

E25. 4-5. = - : ; : - . .Cl14 . -2-3

—— 9-10 ’ - : 7-8

uls  ~10-12 ' E29 6-8

E26 - 0-2* - . . - . 10-11
11-13. L o
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Table 4.3. (continued)

o H 10 Arga

H 9 Area
Section Hole Interval (m) Section Hole Interval (m)
H10F H17 340-341*
. €10 2.5-3.5
U3  4-5
~ H106 El7  339-341
o 3042347%
El6 341-342
344-345
uz2s - 1-2 '
| 5-6
E34 1-2
6-7
: 10-12
Cl5 - 1-4
E35 2-5
s . 8-9
_ 11-13
H10H ul9 344-346
' ‘ uls8 '344.5-345.5
H18 340-341

H14 ~ 341-342
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extensometer holes E6, E7, and E8 shows fractures concentrated in the
footwall of the H9-1/H9-2 fault system. Although this association probably
persists, it doeé nbt'dominate the overall picture, as cén be seen in the
342-344‘m (midpiane)vfrécfune infensity contour hép‘nf Fig. 4.9. Instead of
migrating to the wéét, thevcontour pattern has broadened and even shifted to
the east. The pattern seems to be compiicated by the east-dipping pegmatite

A or by an unidentified E-w"striking feature.

The lowermost of the three fracture maps in Fig. 4.9 shows that fractur-

ing has decreased below the heater H9 heater midplane.

4.4.2 HLO Area

Of the 15 exfensoneter holes in the H10 area, six have zones of high
fracture frequency within reasonable proximity of the heater borehole.
These‘zones.can be'distinguisned by visual inspections of the cross sections.
Verticq]_bbrého]e.ElZ, located 2 m from H10, has a zone of predominantly
calcite fractures between the midplane and 1-m. Both E12 and its neighbor
E13 have a high fracture density from the midplane to about 4 m below the
midplane. Hole E14, also in cross section HIOA; has a 1-m zone of chlorite
fractures from 1 to 2 m below the midplane at a radial distance of 2.5 m.
Likewise, borehole E15 at 2 m radial distance also contains a 1-m zone of
calcite-filled fractures between -1 and -2 m. Fracturing in the vertical
E-holes tends to be more concentrated immediately below the midplane rather

than immediately above it.

The sonic waveform logs presented in Appendix D providé an independent
visual indication of the degree of fracturing in the vertical E-holes. Four

zones in holes E12, E13, and E14 are the most anomalous, based on perturba-
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tions of the shear-wave portion of the record. The waveform record of hole

E15 appears to be the most generally disrupted throughout its length.

Figure 4.10 shows that progréssive increase of fracturing with depth
is a Qeneral.feature of the H10 area, as observed‘in mdst of the vertical
- boreholes. In the 340-342 m interval, fracture density»exceeding 20 per 2-m
interval is present only in a limited area which inciudes the H10 heater
holes. In thé 342-344 and thé'344-346 m intervals the area enclosed by the
- 20 pef m fracture density contour broadehsvconsiderably énd the overall"

fracture density increases.

During examination of the fracture density in the HlOZhorizohta] holes,
only 3 m of core from the ends of the horizontal ho]es‘weré relogged to
include the closed ffactures (Sect. 3.3), This makeé holes E27, E32, and E34
appear to be the most intensely fractured. _Of these three, only E34 lies in
fhe heater midplane. Its 2-m-zone of'mofe intense fracturing lies 2 to 4 m

from H10,

4.4;3 Calcite Fractures

Discussion in Section 5.3 will show that the calcite-coated fractureé
are mechanically the weakest of the‘three minef&]ogfca]{types present,
as indicated by the open-versus-closed fracture statistics. Hence calcite
fractures are high]ighted by'showing their brbjeéted lTocations on the H9
midplane map of Fig. 4.3,.and by 5ummarizihg the 1-m core intervals with
three or more ca]citeAfréctures'in Table 4.3. The table was compiled by

scanning the cross sections of Fig. 4.5 and Appendix B.

Occurrences of calcite fractures can be described as dispersed.

However, the most cohcentrated zones occur at the bottom of holes E6 and E7
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(Fig. B.l and Table 4.3) in the H9 area. A number-of intercepts are found
close to pegmatite A -in holes U3, U2, Ul and T13 (also in Fig. B.l).- Calcite
fractures seem to be almost completely absent in the first few meters on the

hanging wall side of faults H9-1 and H9-2.

In the H10 area, calcite fractures are well distributed throughout
the cross sections. Ho]es-E12,aat 343-344 m, and hoie E15, at 344-345 m,
show particu]arlvaell defined zones of calcite fractures. The cross sec-
tions show more calcite fractures occur in the H10 area than in the H9. This
observation is confirmed by the statistical summary in Table 5.2, presented

in the next section.
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5. STATISTICAL ANALYSIS OF DISCONTINUITIES.

5.1 ;Methodo]ogy
5.1.1 Introduction.

In the previous chapter, the vast majority of fractures were shown to be
discontinuous and not . traceable between two boreholes- despite the high-
drilling density. To complete the picture of the fracture system, it was
necessary to‘complement'the'mapping approach with-a statistical analysis.
‘The discussion in_this chapter is based largely:on stereonet pole plots
compiled separately according to fracture mineralization, hole location, hole
orientation, and whether the fracture was open or closed when core was
retrieved Although this approach has 1ts 11m1tat1ons, 1t does allow exam-
1nat1on of the influence of a var1ety of parameters on fracture character and

comparison of observat1ons between the exper1ment areas.

In addition to the stereographjc,plotsgga Rock Quality Mesignation
Index (RQD) was calculated and p]otted forraTl.vertiCa1 E and M boreholes in
the fu]]escale drift RQD 1s def1ned as the sum of the length of all core
p1eces 10 cm or 1arger over a g1ven 1nterva1 1ength ROD 1s consequent]y
between 0. 0 and 1 0 with 1.0 mean1ng that all core p1eces are larger than 10
cm. A further d1scuss1on of RQD is g1ven by Deere (1963). A report by
01k1ew1cz, et ‘al. (1070 Append1x D) presents the RQD resu]ts 1n 1og fash1on
a]ongs1de p1ctor1a1 1ogs of fracture location. | The RQD resu]ts for the
E- ho1es also appear in Append1x D of th1s report but for most purposes they
have been superseded by the cross sect1ona1 d1agrams of Sect1on 4 of th1s
report. Although the ROD values may prove to be useful for engineering |

purposes, our analysis is based on stereonets only.
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5.1.2 The Equal-Area Stereonet

Stereographic projections are commonly used to present the strike and
dip of planar surfaces (Goodman, 1976). The example of Fig. 5.1 shows an
epidote fault in the H9 area projected onto the lower hemisphere of an
equatorial equal-area stereonet. The dashed line represents the intersection
of the fault plane with the Tower hemispherical surface, projected back to
the equatorial plane. However, it is preferable to plot the stereographic. :
projection of the normal to the plane rather than the plane itselif. The pole
-projection in Fig. 5.1 includes arrows show1ng the area spanned by * 5 degree

variations in strike and d1p.

The method of prOJect1on determ1nes the propert1es of the stereogram
For stat1st1ca1 purposes, it 1s advantageous to use the equal area projec-
tion, often ca]]ed the Schm1dt stereonet wh1ch preserves so]1d -angle areas
but distorts angles of intersection (Goodman, 1976). Al1 stereograms in this

report aré equal-area projections.

The two ang]esva and B (see Section 3'3 for definftions) must be
converted to true str1ke and dip before the data can be plotted on stereo-
grams. For vert1ca1 boreholes, where the measured ang]e a is the comp]e-.
ment of true d1p, the procedure is straightforward, as Tab]e 5.1 demon-
strates. This_conversion is more comp]jcated for honfvertica1 boreho]es.
The conversions uere done by University ofrwaterloo personne] using an
existing computer code, fo}]owing‘the procedure describeo by Lau and Gale

(1976).

Fig. 5.2 demonstrates a good agreement between the data base and conver-.

sion algorithms. The poles of quartz veins encountered in horizontal
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& Full scale .
drift A geographic +

- NSIPE - mine 92| magnetic north

north

Epidote
fault

—3\0

\0\0
1000

XBL 811-2558A

An epidote fault plane and its normal projected onto the lower
lower hemisphere of an equal area stereonet. The plan map of

the fullscale drift shows the mine coordinates rotated 10 degrees
to account for the offset with respect to true north.
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Table 5.1. Sample convers1oﬁs of measured
orientation angles to geo]og1c
strike and dip.

_a B Geologic strike and dip

30° 0 N39W/60W

30 45 N 6E/60M

30 90 N51E/60w

30 135 N24W/60E

30 180 N39W/60E

30 225 N 6E/60E

30 270;_ N51E/60E

30 315 NSAW/6OW

30 366 K N39W/60W
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and vertical holes fall within the same zones on the pole plots. The quartz
veins furnish good control because they were limited in number and were

relatively easy to distinguish in core.

A1l fractures from oriented core were hand-plotted, using a separate
plot for each mineral in each hole. The holes were then divided into four
groups corresponding to the horizontal and vertical holes in the H9 and H10
areas. Each of these groups was divided further into mineral subgroups for
chlorite, calcite and epidote. The plotted poles in each subgroup were
summed up over each 10 x 10 degrees area and the number was recorded in the
middle of the area. After the data base was established, different subgroup

categories were summed, or results were presented as a percentage of total.

5.1.3 Description of Pole Plots and Statistics

A total of 3,248 individual fracture intercepts are shown on the pole
plots of Appendix C. Table 5.2 éerves as an index to the pole plots and also
summarizes the statistical data for each p]ot.' As shown by Tables 5.2a and
5.2b,'the four major groupings are vertical H9, vefticai H10, horizontal H9
and horizontal H10. A third setvof plots listed in Tab]é 5.2c sums the
vertical and horizontal statistics for the H9 and H10 holes. However, no
pole plots exist for the H10 holes in this third category because of the more
restricted sampling of the closed fractures from horizontal H10 holes (see

Section 3.3).

The finer subdivisions in Table 5.2 are organized, first, by whether
a fracture was open or closed when the core was retrieved and, second, by
the dominant mineral coating the fracture surface. In Appendix C, cor-

responding plots from the two areas are placed side by side for easy
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comparison.

Table 3.4 shows the relationship between the core inventory and data
used in the pole p]ots; Only the oriented core.retrieved from the 56 mm and
76 mm diameter holes could be used tofconstruét_the pole plots. The core
from 406 mm heater holes is not included. The headings in Table 5.2 also
designate the pref1x of the hole type 1ncorporated into the data base:

Ey des1gnates the vert1ca1 76 mm extensometer ho]es, EH the horizontal 76

mm extensometer holes, and M the 56 mm monitor holes.

" The pole p]ots in Append1x C are presented in two formats, determined by
the number of fractures counted in a given sub-group. If more than 100
fractures occur on a given pole p]ot, the number in each 10 x 10 degree area
is entered as a percentage of the tofe] for that plot, and the result is
contoured. If less than 100 fractures were counted, then the number of

fractures in a 10 x 10 degree area is given, and no contours are drawn.

The core length, number of fractures, and the average fracture frequency
are listed on each pole plot. The latter two data entries ere repeated
in the Table 5.2 summary. Table 5.2 also includes the strike and dip
of fracture planes with the most prominent poles, accompanied'by the percen-
tage of fractures comprising that pole. Usually the three most prominent
poles are listed, although it was sometimes difficult or impossible to find

more than one well-defined cluster.

Bar graph summaries of the statistfca] data are shown in Figs. 5.3 and
5.4. Fig. 5.3, showing the open fractures as a bercentage of total frac-

tures, contains data from Table 5.2 with the addition of statistics for the
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38 mm holes. _Statistics of the vertical boreholes in the H9 area are graphed
separately forvEV and M boreholes, whereas in thevpole plots and in Table

5.2 these data are combined. The second set ofibar graphs given in Fig. 5.4,
which are taken directly from Table 5.1, display fhe fracture density,
'mineral, and core condition c1assifications for each borehole. Both Figs.

5.3 and 5.4 and Table 5.2, as well as se]ected po]e plots will be referred to

in the following discussion.

5.2 L1m1tat1ons of the Po]e Plots

5.2.1 Samp11qg Bias Due to Drilling D1rect10n

A true representation of the joint frequency is obtained only when the
drilling is pefpendjcular to a particular joint set. Fractures intersected
at less than normal incidente tend to be underrepresented. Goodman (1976)
and Terzaghi (1965) state that the Corréction factor is given by the cosine
of the angle of intersectiqn, If Ny is the number of joints observed at an
angle o, with o being the angle between the dri]i axis and the normal to the
fracture surface, then the correct number of joints N. is given by expres-
sion | )

Nc =N, / cosa

To correct the observations a weighting factor of cosa would have to be
applied to data collected from single, isolated boreholes. No such correc-

tion has been applied to the data in this report.

Figure 5.5 demonstrates clearly that the resulting directional bias is
readily observable in'many of the poie'p]ots. The calcite-coated fractures
from the H10 area were about equally sampled by the vertical and the horizon-

tal boreholes. The tendency of the vertical holes to intersect a greater
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number of horizontal fractures is shown clearly by the grouping of the
fracture po]es'towards the center of the pole plot. Likewisg, horizontal
holes produce a plot with the fracture poles clustered around the perimeter.
Although the sample data have not been weighted to reduce this bias, when thé
twd pole plots afe summed, the bias is greatly reduced. The tight clustering
of the boreholes of several orientatfons in the sample volume (as opposed to
a single borehole sample) a]éo tends to reduce the directional bias. Because
the sample geometry is complex the directional bias thefeby introduced has
~not been ana1yzed.v This problem is.not a§ severe as it might seem because
the dri]]ing'geometries ih the H9 and H10 areas are almost identical, and

hence comparisons between the two areas are valid.

5.2.2 Overrepresentation of Continuous Fractures

Because of the dense cdncentration of boreholes used in the H9 and H10
areaé, different holes will indeed sample a fracture more than once if its
1éngth much exceeds the mean borého]é spacing. Mofeover, because the hori-
zontal holes converge toward the‘centrallheater holes, multiple sampling will
depend on absolute fracture 1ocation. A continuous fracture near the heater

~hole will intersect more holes one several meters farther away.

‘A pole plot of the epidote-filled c]psed fractures from the H§ area
(Fig. 5.6) shows ovefrepreséntation of the dominant epidote faults. Profile
H9A (Fig 4.4) shows a sectional view of the éontinuous epidote features. The
prominent contoured highs in Fig. 5.6 and the high incidence of epidote
fractures (2.78/meter in H9 area compared with 0.59/ meter in H10 area) are

largely attributed to oversampling of continuous features in the H9 area.



-90-

" €3 0Y340q

[e43A3S UL S3dnided) 930pLda SNONULIUOD M3J e 4O UOLLD3S
-433ul 3ay3 Aq pasned bul[dwes-u3A0 03 pajngiulle L|abuae| si
30|d a1od eade gH dy3 ul 3ead 4nojuod jusutwodd sy - (FybLd)

seade Jd3edy QTH Pue (349]) 6H WO4} Saunidesy pajeod-azopidl g-¢ *Hi4

v2262-0108 18X

" wyo0y 660 _ s

c:ow

9409 ko W b8vL
sjuiod t¥

$84N400J; PAsO|)

uoIjD2ZI|043uIW BlopId3

. OIH *sa|oy 3 [02113A 10} joid 3j0d DAID-|ONDB |pIWYdS

vctoz Juaubow
: aaydsiway 13m0

w/o04 272

,::ow _

2100 Jow 909l
sjutodglg
$81n4014 Pasol)
uo1{0Z!1|DJBUIW ajopidy ]
33U81IN230 %, GH *S3|0Y [091J3A 10} 40jd 910d DIIO-|ONbY JPIWYIS

yiaop 9133ubopy
213yds|way JamoT



-91-

Such "overrepresentation" would be misleading only if each data point
were considered as an individual fracture. For representing overall fracture

density, it is probably quite equitable.

5.2.3 Effects of Coring'and'Drilling Procedures

In considering the effects of hole diameter, it was found that the
percentage of open'ffactures in the 38 mm vertical boreholes was the highest,
both' for fractures with each type of miheré]-infi]]ing material and for all
fractures combined (Fig. 5.3). This result is caused by the small diameter
of the retrieved core, and by the use of the double-tube core barrel. The
percentages of open fractures'from the 56 ahd 76 mm_veftica],boreho]es did
not differ much, despité_the different coring techniques and drilling ma-
chines used. This is attributed primarily_to the special care exercised in

the recovery of the 56 mm (M-hole) core.

Cores from the vertical 76 mm holes ihvthe H9 and H10 areas do show a |
substantial difference in the number of open fractureé. Table 5.2 shows that
48% of fractures from the H10 Vertica] Efﬁolesvwere opened by drilling, while
only 20% were opened in the H9 area. When the open/cTosed fracture data are
examined by mineral type, as in Figs. 5.3 and 5.4, the same results are
obtained: in the H10 area, open1fractUre percentages are significantly
higher than in the H9 area, regardiess of infilling. The difference is
explained by the différent’cOring techniques used for the vertical E-holes in
the H9 and H10 areas. In the H9 area, a triple-tube barrel retrieved core; in
the H10 area, a conventional thin-walled, double-tube core barrel was used.
The double tube produced larger core than the trip]e-tube-barrel, and thus

it should be less susceptible to breakage. In fact, there are approximately
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2.5 times more fractures opened during drilling with the double tube (H10
area) than with the triple (H9). The reduced handling and vibration achieved

with triple-tube core recovery produced the better results. - - - -

Also noteworthy is the higher. number of open_fractures-in the H9 and H10
76-mm horizonta]lboreholes.‘ These»bofeho]ééiyie]dédvhigher peécentages than
the 76-mm vertical boreholes in the H9 area (see Table 5.2 or Fig. 5.4),
even though the coriﬁg and drilling techniques were the same in all three
cases. (triple-tube core barrel and Toram dri]l.rig). For example, consider
the ch]oritghfracturesvin Fjg,‘5.4: »49% of‘ffactures in.core>from_the H9 and
41% from the H10yhorizonta1_boreho1es wereAppened, while only 28% of frac-_
tures from the H9 vertical holes were opened. While this result could be
an effect of ofientation--perhaps_due_to'horizonta}_bpreho}es intergecting
weaker fracture sets than vertical oneg,‘qrbto,diffgrent angles of incidence
between borehole and fracture plane--it seems more likely thét some mechani-
cal effect associated with'driiling’ﬁbr{ibhtal holes is the cause. Our data
thus suggesté that‘the'quality of fhé cére retrieved from a borehole is a
function of driﬂ]ing angle. As boFého]e'iné1inétion increases, the qda]ity

of thé'tdre samples decreases.

5.3 Discussion of Pole Plots and Statistics

5.3.1 Relative Mineral Abundances

Chlorite is found coating the majority of fracture surfaces, while
epidote and calcite are present on less than half the fracture surfaces. In
the H9 heater area, a total of 3,385 open and closed fractures were logged,
including core .from the 38 mm boreholes. In this large samp]ing, chlorite

was noted on 72%, epidote on 21%, and calcite on 12% of the fracture surfaces.
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This total exceeds 100% because more than one minera{ was counted on fracture
surfaces. Table 5.2 gives the number of fractures coated with the three |
minerals in both horizontal and vertical boreho]eé. In the H9 area, chlor-
ite, calcite and epidote are the dominant mineral on 60%, 14%, and 26% of the
fractures, respective]y. In the H10 area, the respecfive percentages are
70%, 25% and 5%. This shift in relative abundances is attributed in large
part to the abundahce of epidote-coated faults in the H9 area, as discussed

below.

5.3.2 Relative Strength of Fracture Coatings

The type of fracture infilling mineral is reflected in the percentage of
fractures opened during_the.drilling process. To eliminate any bias due to
variation in core size and borehole orientation, the pefcentages of epidote,
chlorite, and calcite-filled open fractures were calculated separately for
horizontal and vertical boreholes and for various borehole diameters. The

results are plotted in the bar gfaph shown in Fig. 5.3.

When compi]ing.Fié. 5.3 it was realized that the H10 area data base was
1éss comp]ete than for the H9 area, dhe to the double-tube core recovery and
the smaller amount of horizontal core rélogged. For these reasons, Fig. 5.3
emphasizes H9 data and includes data from the vertical boreholes in the H1O0
areé for refergnce. The conclusions are therefore based mainly on the H9
results. Figure. 5ﬂ3 shows that 90% of the epidote-fj]]ed fractures, 63% of
the chlorite-filled fractures, and 31% of calcite-filled fractures are
ﬁ]osed. The drilling-induced breakage clearly indicates that the calcite-
coated fractures are considerably weaker and the epidote-coated fractures

considerably stronger than average. It is concluded that these significant
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differences in fracture strength are caused by the type of mineral filling.

5.3.3 Re]atidnship of Chlorite and'Epidoté Fractures to Faulting

The most important feature in"thé‘HQ area is the prominent cluster of'
poles in the south-east quadrant of most H9 pole plots, as shown in Fig. 5.7.
The floor map (Fig..4.1) shows that the drilling for the H9 experiment
intersected one of the majof fault zones found throughbdt the experimental
drifts (also shown in the extensometer drift wall map, Fig. 4.2). When a
fault zone is intersected by drilling, as in the H9 area, a large cluster of

poles oriented normal to}the fault occurs.

Only a few epidote-coated fracturés are found in the H10 area,'as can be
seen in the pole plots or in the numerical summary (Table 5.2c). The floor
map (Fig. 4.1) confirms that there are fewer faults with epidote mineraliza-

tion in the H10 area than in the H9 area.

5.3.4 Mineralization Type and Orientation (H9 area).

The effects of diffefent mineralization types show ﬁp most clearly when
compafing open with closed fractures, or when discussing differences'between
the H9 and H10 areas. Howéver; there i§ also some'depéndence of fracture
orientation upon mineralization type. This is best examined in the H9 pole
p]ots,vwhiéh have an adequate population of epidoté-filled fractures. The
pole p]ofs for the vertical borého]eé in'thé H9 heater area are reproduced in
Fig. 5.7. Similar ‘observations were made in the horizontal holes (Figs. C41,
C43, and C45) and in the summaries of borehole orientations (Figs. C57, C58,
C59 of Appendix C). | o
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Figure 5.7 sﬁows that the dominant po1es»of epidote - and ch]drite frac-

~ tures coincide, indicating fracture planes with strikes of N30E (j85 and with
dips of about 30W. The contour péttgrns_qf epidote and chlorite are fairly
concordant throughout.fhe po]e»piot, sﬁdwihg'fhé génera] coincidence of the
two fracture types.v’The ca]cite_pbpu1at10n is more wjde]y distfibuted,
althﬁugh many ca]c{ée fracfdres have thg same dip and strike as the dominant

chlorite and epidote fractures. “In generé1; the calcite fracture orienta-

tions ‘are more dispersed than the epidote and chlorite fractures.

' 5.3.5 Comparisons Between H9 and H10.Areas

It is instructive to-compare the pole plots from the two heater arrays.
Although only 22 m apart and situated in the same drift, they have marked
differences in fracture orientation and, as discussed elsewhere, in fracture

infilling minerals.

“Because thethumber of chlorite ffactures 1dgged in the H9 and H10 areas
are comparable, the chlorite fracture pole plots (Fig. 5.8) are used fo
discuss the differences ih fracture_offentation between the two areas. In
Fig. 5.8 we retain the separéte preSehfatfons for vertica} and horizontal
holes. Differences bétweén the di;tributibns for H9 and H10 are not too
obvious at first 1ns§eqtion; -Howéver, when.considering the vertical bore-
holes (upper portion of Fig. 5.8), it‘can be seen that the H10 area does not
display a cluster of poies ét_the Same‘orientation (N32E/30W) for the plane
as the dominant H9 pole cluster; fhis is‘attributedrto the through¥going
epidote faults. The two clusters of poles in‘the HA” area indicate ﬁhat the
fractures are more nearly ﬁgrizonta1 aﬁd closer to the north-south strike.

Table 5.2 gives the fracture plane orientations as N20W/16E and N20E/16W.
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- The drift floor map (Fig. 4;1) confirms that fractures in the H10 area are
more nearly horizontal than in the H9.area. Since the two areas are only

22 m apart, this change is rather remarkable.

Compérative statements about the horizontal holes are more difficult to
~make (see lower half of Fig. 5.8). A cluster of fracture planes in the

H9 plot oriented NO6E/76W does not reappear'in the H10 pole plot. Other
contour maxima, which designate near-vertical planes striking N55W and N20W,
appear in both H9 and H10 pole p]ots. None of the contour maxima of the
vertical holes reappear in the horizontal holes. The fracfures in the H10
heater area are-probably too nearly horizontal to be sampled by horizontal
holes. In the H9 afea the epidote faults and their associated chlorite
fractures are nof intersected by any of the horizontal holes (see Fig. 4.1

and Fig. 4.3).

The fracture density statistics (Fig. 5;8), showing 7.7 fractures per
meter in H10 area compared with 5.43 fractures per meter in HQ area, reflect
the differences in orientation to some extent. When considered with the
fracture density values from the horizontal boreholes (Table 5.2c), the
respective values are 9.67 and 8.41 fractures per meter, showing the fracture

density in the H10 area to be 15% greater than in the H9 area.

Besides the fact that the H10 area is somewhat more fractured, the

fractures in this area are less continuous than in H9.

5.3.6 Comparison with Time-Scaled Pole Plot

Figure 5.8 includes a summary pole plot adapted from Fig. 14 of Thorpe's

(1979) fracture study in the time-scaled drift. Since Thorpe used the mine
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coordinate system rather than geographic north, his pole plot has been
rotated 10 degrees to coincide with the geographid,north convention used in
this report. At Stripa, geographic north and magnetic north coincide within
+0.2 degrees, with mine coordinate north ofiented 10 degrées west of geo-
graphic north. (Some of the po]e plots in the report by Thorpe erroneously
1nd1cate "Mag. N at the top, rather than "Mine N"--these are Fig. 23, Fig.

24, and the po]e plots of Append1x C. )

To assure that the data sets are compatjb]e, Fig. 5.9 includes only open
fractures for all mineralization types. Of the four fracture sets identi-
fied in the contour dfagram by Thorpe, only sets 1 and 4 are consistent with
the full-scale (FS) fracture plots. Set 3 of the time-scaled drift is not
reflected in the H9 and H10 pole plots. Set 2 is only weakly found in the H9
and the H10 area pole plots. However, examination of FS plots in which
horizontal sampling is included, such as Fig. C56, does not demonstrate the
presence of this fradture set in the FS drift. Evidence for set 3 is com-
pletely lacking in the FS plots. - Thorpe comments that set 3, although the
dominant cluster in the time-scaled drift in terms of fracture frequency, is
comprised largely bf shdft joints with trace lengths less than 0.5 m, and is

poorly represented. in the time-scaled floor map.

_The side lobe in the contour patterh of fracture set 1 from the time-
scaled drift correspohds to the directiod of the four major fracture planes
identified in the floor map of the FS drift. The corresponding lobe in the
H9 area pole plot includes the major through-going epidote-coated faults
identified on the wall and floor of the H9 area. The lobe is less developed

in the H10 area plot, but is still identifiable. The continuity in strike
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and dip of this set of epidote faults (Fig. 4.7) has already been discussed

in section 4.2.

Fracture set 4 identifies horizontal fractures in the time-scq]ed drift.
Horizontal and sub-horizontal fractures comprise the dominant population
sampled by vertical holes in the FS drift, where the strike skews about a N-S
dfrection to considerable extent. In the time-scaled drift, the strike of

sub-horizontal features is obscured by the fracture set 3 population.
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6. . SUMMARY |
| (1) Fractures have been mapped on drift surfaces and in core to charac-
terize the rock mass surrounding the two full scale heater experiments at
Stripa. HMapping.qf_the drif@ floor was carried out_atAan unusual level of
detail, with discontinuities only a fraction of a meter in Iength.recorded.
The_drift_waljs wehg“mqpped.in less detail, only prominent features with
exposed lengths of a meter 6r more beihg recorded.v}Compared with interpreta-

tion of core data, mapping is quicker and prpduces a superior product for

visualizing the spatial character of the fracture network.

Virtually all discoqtinuitieﬁ.occurrjng in core were logged for orienta-
~tion, thickness; and mineral type, first by recqrding;open fractures at the
time of core recovery, and second by (elogging the core to record all

closed fractures. Reconstruction of the subsurface fractdre system from this
data was time-consuming, tedious, and subject to interpretive judgment
déspité the'high ihténSity'of drilling coverage and the excellent quality of
core recovery and 1ogging}"The certainty with which major discontinuities
could be located depended on fheir intersection with exposed surfaces and
with offset pegmatite dikes. Only a small fraction of the total number of
fractures observed in core could be interpolated between boreholes. However,
the core data were invaluable for locating fractures, defining their orienta-
tion, examining effects of mineral infilling, and comparing drill and core
recovery techniques._ The resu]ting data base wi]] beAusefu1 in interpreting
results from experiments carried out in and near the.full-sca]e drift, such
as the cross-ho]e.ultrasonic measurements, borehole determinations of the

state-of-stress, and thermomechanical results from the heater experiments.



-106-

(2) Several prominent pegmatite dikes and quartz veins were found on
~drift surfaces and in boreholes; their presence made it possible to define
the extent and magnitude of several major faults. The dominant set of
through-going faults, striking N-S and dipping about 60W, is consistent with
‘the four prominent discontinuities present in the time-scaled drift (Fig.
4.7). Epidote is the dominant mineral coating the fault surfaces. Offsets
"determined by the positions of dikes range between 1 and 6 m. A1l faults

appear to have reverse verticél'components of disp]acemént.

A second prominent fault, striking E-W and dipping 60W, has been infer-
red on the basis of the observed offset of dikes'on'thé extensometer drift
wall relative to the full-scale drift. This fault post-dates the N-S fault-

ing, its inferred offset is about 6 m, and it also is a reverse fault.

Pegmatites and N-S faults cut through many of the boreholes in the H9
area, including the H9 heater hole itself. Tn the H10 area, however, there
is no evidence that either dikes or major faults cut through the vertica]

holes.

(3) Ch]orite, epidote, and calcite were identified as the three most
common minerals coating fracture surfaces; statistics on their relative
abundances are summarized in Table 5.2 and Figs. 5.3 and 5.4. Chlorite is
ubiquitous and fs the dominant mineral on 60 to 70% of the fracture surfaces.
‘Calcite is rarest, being found on 15 to 25% of the fractures. In the major
faults, epidote is the dominant mineral, butvit is Tess common where faults
are not present. Stereoplots show that the orientaiions of chlorite and
epidote fractures are concordant, with a single prominent concentration of

fracture planes oriented N30E/30W. Calcite fracture orientations are more
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diffuse, lacking even the single prominent ‘pole of the chlorite -and epidote

fractures.

- The separate recording of closed and‘'open fractures provides a crude
ranking of relative fracture strength (Fig. 5.3). Few (~10%) epidote frac-
tures are open in retrieved core, while most calcite fractures (~70%)
are found to be open. About 30 to 40% of the ch1orite-coated fractures were
open in the retr1eved core. Hence the core data rank the re]at1ve strength
of the three fracture types as fo]]ows ep1dote > ch]or1te > ca1c1te.( There
is no ev1dence, however that th1s rank1ng actua]]y depends on m1nera1 type.

Ca1c1te fractures are the youngest of the three types.

(4) _Our'obserVations»in the full-scale drift agree with those of others
who report-that the degree of fracturing'at the Stripa experimental drifts is
intense. This can be seen by -a ‘cursory inspection of the detailed floor mapv
(Fig. 4.1). - Several zones with intense fracturing where individual features
could not be mapped are indicated by hatching in ‘the FS-drift floor and the
extensometer drift wall maps. The fracture statistics:.compiled from the core
data confirm these observations: : the bottom line of Table 5.2c shows that
the average fracture'density for all fracture -types is 9.1 fractures per
meter, for a typfca] spac1ng of ll cm. Th1s va]ue of fracture frequency is
comparab]e to an est1mate made by Thorpe (1979) from a somewhat d1fferent

data base comp1]ed in the time-scaled drift.

In the H10 area boreho]es,vlocal concentrat1ons of 1ntense fractur1ng of
about 1 m extent could be 1ocated in the cross sections, but no patterns
indicative of structural control were evident. In the H9 area, on the other

hand, fracturing is more intense in some boreholes immediately west of the H9
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heater hole, and may be related to the major N-S faults located there.

.(5) Despite the high intensity of fracturing, the Stripa quéftz ﬁon-
zonite is generally quitev¢ompetent, as reflected by the quality of core
recovery. The dgenerally intact nature of recovered core is reflected in the
RQD values (Olkiewicz et a1., 1978, and Appendix-D of this reporf), which

only occasionally drop below -100%.

Othef evidencé that thé fracturéé in thé undérgroﬁﬁd driftsbare well
sealed comes from a series of sohic bdrehoie logs écquiréd in the vertical
éitensometer ho]eé (AppendfoD).' Compressiénal fravel'time and SOhic.Qave-
form logs yielded very fé& ;hbmalfeg in the full-sba]e and time-scaled
drifts, even though all discernibleideviations were picked. 'In the 17
vertical E holes, only 17 cases were found in which both cqmpressional and
shear ‘arrival times were perturbed; an additional 23 cases wére distinguished
in which only shear wéve arrival times varied. This yielded an average
spacing between waveform anomalies of about 4.3 m. In contrast, core data
(Table 5.2a) show that the spacings between fractures are 10 to 11 cm for aill
fractures and 20vto 50 :cm for open fractures. Only,a small pefcentage of the

fractures, therefore, -registers on the sonic waveform -logs.

(6) The daté base resuiting from fracture mapping and core logging

in the fu]l-scé]e and exténsoheter'driffs is'availéble as follows:

e A computer-based Tisting of individual fractures, both open and

c]oSed, taken from the brigiha] field logging forms (Sect. 3.3).
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Detailed and simplified floor maps of the full-scale drift (Fig.
4.1), a map of the full-scale wall (upper portions of Figs. 4.4A and

4.5A), and a map of the extensometer drift wall (Fig. 4.2).

Eight vertical radial sections spaced 22.5 degrees apart, through the

H9 area (Fig. 4.4 and Appendix B) and through the H10 area (Fig. 4.5).

Pictorial logs of open and closed fractures, RQD, and stereoplots for
the vertical E and M holes in the full-scale drift (Appendix D of
Olkiewicz et al. 1979).

Stereoplots of fracture plane poles, categorized by hole orienta-
tion, hole location, mineral type, and whether the fracture was open

or closed (Appendix C of this report).

A three-dimensional plexiglass model at 1:20 scale, 0.7 m x 1.0 m x
2.1 m, showing prominent dikes, faults, and all borehole locations

(Fig. 4.6).
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APPENDIX A: FORMAT FOR FRACTURE LOGS

The following explanation of fracture logs is modified from Appendix A

of Thorpe (1979).
A.l.
Depth

The headings apply to the sample fracture logs of Fig.

Length from collar to midpoint of fracture surface
(nearest cm).

Description of Strata - The term "granite" is a general descriptor here,

- referring more correctly to quartz monzonite.

Variations in color and texture are also noted.

Structures and Discontinuities

Natural

Induced

Uncertain
Open/Closed
Other

Roughness

Amount of

Mineralization

Naturally occurring fracture; usually open in situ
and containing some mineralization.

Break caused by drilling.

May be a natural fracture; however, its openness in
situ is very questionab]e

Refers to condition of fracture in core and by
inference, to its cond1t1on in situ.

Refers to a d1scont1nu1ty other than a fracture.
Amplitude of small-scale irregularities with wave-
lengths < 1-2 cm. Larger scale roughness is denoted
as "“irregular."

Amount of coating of wall rock:

HW - A lot of minéra]ization '
_Mw - Moderate mineralization
SW - Slight mineralization

NW - No mineralization

Coded by occurrence, not predominance. Main types
are chlorite, calcite, epidote and pyrite.
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Thickness |

Hardness

Planar Features

Dip Direction

Angle of dip

Remarks
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- Approximate thickness in mm; "hairline" fractures are
about 1/2 mm thick.

- Soft(S) - scratch with thumbnail.
~ Moderately hard (MH) - scratch with steel.

Hard.(H) - cannot scratch with steel.

- Azimuth of apparent dip, looking down hole.

- Acute angle between fracture plane and core axis.

- As required. -
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APPENDIX B: COMPILATION OF H9 FRACTURE DATA ON VERTiCAL CROSS SECTIONS

Orientation and dip measurements based on the original fracture logs are
posted in the vertical cross seétions of Figs. B1-B8. On each cross section
the apparent dip of a gi{en fracture plane is plotted with shqrt line seg-
ments. If the core was not oriented, then fhe line segment is horizontal.

Both open and closed fractures are posted.

If the core was 6riented, then both dip‘and beta angle are given in
parentheses; for unoriented core only the dip angle is given. Note that the
dip angle is the'angle betWeen'the horizontal and the fracture plane rather
than the alpha angle originally recorded in the core logs. In vertical
borehd]es; the dip is 90-a.  The key on each figure indicates fhe beta
ranges which distinguish bétween fracture planes projecting»downwards

towards the front and rear of a given cross section.

The key also indicates the dominant mineral fype on a fracture surface.
In addition, a letter desigﬁating mineral type is posted next to the line
segments if the dominant mineral is other than chlorite. Occasionally an
"s" appears to designate the presence of slickensides. The estimate of

vfracture.thickness is ‘also posted.

There are a few peculiarities in the cross sections. Sections H9A (Fig.
Cl) and H9H (Fig C8) include projections of through-going features; the other
cross sections do not. These sections were compiled before it was realized
that the clutter was too great to display both the raw data and the recon-
“struction on a single fractdre. A second peculiarity is the reversal of view

between cross sections B and C. An imaginary viewer walking counterclockwise
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around H9 will see cross sections H9H through HIC in a consistent orientation,
but must reverse his direction of travel to view H9A and HQB in fhe same

orientation.
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APPENDIX C: FRACTURE POLE PLOTS

This appendix contains 59 fracture po]e plots frdm the H9 and H10
heater experiment areas in the.Stripa full;sca1e drift. Comparable plots
from the H9 and H10 areas appear side by side. If the number of fractures in
a given category is less than 100, then the number of fraéfures iﬁ a 10 x 10
degree area is given explicitly; if there are more than 100, then each entry
indicates the percenfage of the total and contours have been drawn. Subsi-
diary information on each plot is sélf—explanatory. Taﬁle C.1 serves as an

index for the plots.



-134-

Table C.1. Index of fracture pole plots grouped by location, mineralization,
and whether open or closed.

Vertical and

~ Vertical:Boreholes - - ‘Horizontal Boreholes - _Horizontal

Fracture Type - ---H9 Area H10 Area -~ H9 Area : ~HI10 Area - H9 Area
Closed Chlorite = :CL - ~C2 .« --. . C25 . ~ . - (C26 - - : C49
Calcite C3 c4 c27 c28 C50
Epidote - . C5 .- €6~ . - C29. -~ €30 : c51
A1l c7 - (8 c31 | C32 c52
Open  Chlorite €9  cl0 €33 €34 c53
e .Calcite - Cl1 c12 .o+ - €35:: . .- -C36 , C54
Epidote C13 Cl4 C37 C38 €55
A1l C15 Cle6 C39 C40 . - - (b6
Closed Chlorite Cl7 C18 C41 C42 C57
plus Calcite cl9 c20 c43 C44 _ C58
Open Epidote c21 C22 c45 C46 C59

ATl C23 C24 C47 ---a €60

a Figure C48 was not drawn due to insufficient core length in this category.
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APPENDIX D: SONIC WAVEFORM AND OTHER BOREHOLE LOGS IN VERTICAL EXTENSOMETER
HOLES S

.Introduction | |

During January-February,.1978, six months before heater experimenté
began, a suite of'geophysjca1 borého]e logs was acquired from the underground
holes at Stripa. Nélson et aif (1979) 1ist'th§se logs and their results,

although much Qf the djscuSsiQn is preliminary and incomplete.

‘For example, the sonic waveform logs required further inspection to see
if the cause ‘of waveform features could be found by examining the cores.
This appendix'documen%s our efforts‘at'correlating the sonic waveform logs

with the cores taken from the extensometer boreholes.

- The figures contain all borehole logs run in each extensometer hole, E-1
- E-17, as well as the sonic records. Also shown are the installed instru-
ment locations, pictorial fracture logs, TV fracture logs, and RQD (rock

quality designation) plots.

Sonic Data Acquisition

The sonic pr0be>c0nsjsts of a single transmitter and a single receiver
one foot apart, operating at a frequency of about.30 kHz (see Nelson et al.,
1979, for further defai]). The probe diameter is 60 mm and could be operat-
ed only in the'75'mm extensometer holes and the larger heater holes.
Waveforms were recorded on film at an oscilloscope time scale of 20 micro-
seconds per centimeter, as'disp1ayed in the attomp&nyihg.figures.‘ In addi-
tion, fhe time of the first compressional wave arrival was recorded as an
analog trace and is also included in the figures. The other logs, although

included in the figures, are not discussed here.
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The sonic waveforms were recorded in the following manner.:To record
~"the alternating dark and light bands shown in the figﬁfés, the ampliffer gain
is increased and the conventional "wiggle-trace" becomes ;‘squafe wave which
is used to modilate fhé‘i-ax{s'intensity'on‘thé oscflldécope. The oscillo-
scope display is’théhZﬁhotdgFaphed by stepﬁing‘tﬁé’film along at a rate
c0nfro]1ed'5yltﬁe mdfi;n of thé p;abe.‘ This r;su1f§ in the black bands
representihd‘ihe'wnEQétiVé-gaiﬁQ.aﬁd'fhe wﬁitekﬁands the positive-going
.portjons.Qf_the_wayetrain.A;The first three black bands are comprised of
~acoustic energy traveling along the borehole wall in a compressional mode;
the fourth and fifth bands are a mix of .the decaying compressional mode plus

shear and surface modes.. These later bands are often called "shear."

Since the transmitter-receiver spacing is -about 30 cm, the delineation
of anomalies is about *+ 15 cm. The only exceptions occurred where the film
failed to step properly near the bottom of the boreholes, resulting in a
broken series of dashes (record from borehole E12). In these cases, accurate
depth control was lost for the waveform recordings and a]ignment_re]ied'on
the upper depth reading and upon correlation with the travel time log ac-

quired on a separate run.

Anomalous zones were selected visually from the distortions which had
some consistency on two or more adjacent bands. . The first column in Tables
D1-D3 gives the depfh of those zones where a discernable offset is present in
the first band, usually accompanied by smaller offsets in bands two and
three. Similarly, the second column jin the tables records the depth for
anomalous shear wave arrivals based upon bands four and five. In cases
where the distortion pattern is greater than the tool spacing, the.center of

the distortion pattern is given.
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Column 4 of Tab]eé D1-D3 gfyes the nuhber'of Qpen fractures in core, as
tabulated in the original core 1695, which lie within'a 20-cm length centered
on the anomaly. In addition, ‘after the Waveform anomalies were selected, the
core in the immediate vicinity of each'anoma1&'1bcafion was carefully in-
spected. Column 5 in the tab]es.]ists,the total fracture density per 10 cm
length of core, determinéd by visual observation of a length of core equiva-
Tent to the transmitter-receiver separation. The 1asf column contains a
brief description of the core‘within +10 cm of the anomaly. Where no
description is given, the rock was intact, usually with a‘few chlorite-

filled fractures intersecting the interval.

"-Comments - H9 Area -

: Twelve sonic wavefqrm anomaiies were picked as discernable features from
the extensometer borehole logs in the H9 area, as listed in Tab]é D1. Of
tﬁeéé twe]Ve:n | »i ; | | | |

K eight aﬁoma]fes éofrespond to éﬁ open (éhd_hinefa]izea) fracture as
noted in the original coré logs. Four others occur/where unbroken

core was recovered. '’

° ‘fwo anomalies in'borehole E8 aré the most difficult to explain --
there is neither an open fracture nor any unusual feature visible in

the core.

® only three of the twelve waveform anomalies occur below 6 m, in the
lower parts:of the boreholes. . Seven anomalies occur within four

meters of the drift -floor.
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e two distinct differential electrical resistance peaks occurred close
to pyrite veins Iogged in core. |

o three boreholes along the centerline of -the drift (E6, E7, and
*-E8) produce all but one of the twelve waveform anomalies. The log

~ from borehole E10 is especially free of anomalies.

Comments - H10 Afea -

In the H10 area, 19 sonic waveform anomalies were selected and the

correspondingvcore'examined;(Table D2.) Of these 19:-

o sixteen occur near an opén (ahd mineré]iied)‘fracture as noted in the
original core logs. Three other anomalies occur where unbroken core
was recovered.

o of these latter three, two (bofeho1e§ El2, 2.4 m and E13, 2.4 m)
occur near a pyritic fracture and the third (borehole E12, 10.6 m) is

unexplained.

o there are fewer waveform anomalies in the lower part of the boreholes
than in the upper; however, the depth dependence is not as convincing

as it is in the H9 area.

o three boreholes along the drift centerline (E12, E13, and E14)

produce 13 of the 19 anomalies.

“o -although only one sonic anomaly was recorded in borehole E15, the

later time portions of the waveform are more consistently disrupted
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‘than in any of the other E-holes.  The resulting impression that
borehole E15 contains mOre‘séé1éd'fra€tufés iS‘Supporfed by (1)
inspection ‘of the core, which appears to be fkéctdréd"thfoughout more
of its length than core for 6thér’ho1es;'especiéf1y below 4.0 m

and (2) inspection of the fracture plots based on logs of all frac-
tures, both open and closed. It is also apparent that borehole E15
'is more consistently fractured a]on§ its length than any other

E-holés.

® in these 6 holes, four zones produce shear wave disturbance over a
Tength of about one meter:

E12, 4.0-4.9 m -- high angle calcite fractures with about 12
" open breaks ‘ "
El2, 8.0-8.8 m -- high density of chlorite fractures, 4 open
R ‘breaks - ' ‘
E13,

5.4-5.9 m -- six open, calcite-coated breaks
El4, 5.2-5.5 ) ' ‘ B ’ :
~and 6.2-7.0 m -- few open breaks, but core over 4.0-7.4 m is

highly fractured, both chlorite and some
epidote

In terms of the sonic waveform data, these four zones are the most

anomalous.

Comments -- Time}Sca]e Area

Nine waveform anomalies (Table D-3) were recorded in 5 extensometer
boreholes in the time scale drift.
© although there are fewer anomalies recorded in the time scale drift.
holes (9‘vs. 12 and }9 in H9_and H10,heater qreas),.thgre was also
less meterage drilled (5 holes vs. 6 and 6). Neither the number
nor the character of the waveform anomalies differ much between the

two experimental areas.
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o .five of the nine anomalous zones occur where a high density of
chlorite fractures occur in the core. Of the remaining four anoma-
~lies, two occur near open, calcite-coated fractures and two (borehole

E3, 8.0m and E4, 2.9-3.5 m) have np,obvious assqciated features.

Summary

(1) Despite the high incidence of fractures observed in cdre, the sonic
waveform logs indicate'that the rock in the experimental drifts is quite
competent. . The visual threshold for énoma]y selection was low in ordef to
inchde'thé Téfgést possible ﬁumber of waveform diéruptions.‘ Even so, in the
17 vertical extensometer boreholes, only 40 anomalies could be bicked with
confidence. Of thesé, 17 disrupted both compressidna] and shear wave arri-
vals while the remainder were appafent only in the.shear wave records. The
averége incidence of'anomalieS'is'Only one for every 10 m for compréssiona]
plus sheér diSruptidhs, and oné_every 4.3 m for all waveform anomalies. .This
indication of genefa] rock competence in the experimental drifts is in accord
with the sonic Wavéform,data from’bofeho]e_SBH-l, which ihdicated a decline

in fracture population below 225 m vertical depth (Nelson et al., 1979).

V(2) Our success in "explaining" individual waveform anomalies by visual
1nspeétion is mixed: |
(a) With only a few exceptions,.the waveform anomalfes could be
attributed to §gm§_feature in the rock; that is, only three or four
of the anomalies occurred in sections of boreholes free of fractur-

ing;: ’



.171-

(b) Thirty of the'41"waveform anomalies occurred close to frac-
tures found to be open in the core, however, open fractures are
're]at1vely common,, 50 the corre]at1on 1s not very convincing.
Moreover, most of ‘the observed 0pen fractures did not produce

waveform anoma11es

(c) AN well deflned waveform anoma11es occurred at zones of
pronounced geolog1ca1 features such as ca1c1te coated fractures,
a sequence of open breaks or a high den51ty of chlorite-coated
fractures. However, none of these types of geo1og1ca1 features
consistently produced sonic anomalies; such features were also

present where the sonic waveform was quite uniform.

(3) The later time arrivals of the waveform records, referred to as
"shear," exhibit considerably more character than the first, or compres-
sional, energy This can easily be seen 1n a qu1ck exam1nat1on of the
records. A11 compress1ona1 wave d1stort1ons produced shear wave distortions,
but the converse 1s obviously not-true. Sens1t1v1ty of shear wave arrivals
to fracturing has beeh known for some time; such results furnish motiva-
tion for continuing develophenta] work wfth shear_wave»propagation in bore-

hole probes.
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This report is part of a cooperative Swedish-Amer-
ican project supported by the U.S. Department of
Energy and/or the Swedish Nugclear Fuel Supply
Company. Any conclusions or opinions expressed
in this report represent solely those of the author(s)
and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley
Laboratory, the Departmént of Energy, or the
Swedish Nuclear Fuel Supply Company.

Reference to a company or product name does not
imply approval or recommendation of the product
by the University of California or the U.S. Depart-
ment of Energy to the exclusion of others that may
be suitable.



L

~ 'y
w

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA |
BERKELEY, CALIFORNIA 94720

'y





