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ABSTRACT
We evaluate the covariance matrix of the matter power spectrum using perturbation theory up
to dominant terms at 1-loop order and compare it to numerical simulations. We decompose the
covariance matrix into the disconnected (Gaussian) part, trispectrum from the modes outside
the survey (supersample variance) and trispectrum from the modes inside the survey, and
show how the different components contribute to the overall covariance matrix. We find the
agreement with the simulations is at a 10 per cent level up to k ∼ 1 h Mpc−1. We show that
all the connected components are dominated by the large-scale modes (k < 0.1 h Mpc−1),
regardless of the value of the wave vectors k, k′ of the covariance matrix, suggesting that
one must be careful in applying the jackknife or bootstrap methods to the covariance matrix.
We perform an eigenmode decomposition of the connected part of the covariance matrix,
showing that at higher k, it is dominated by a single eigenmode. The full covariance matrix
can be approximated as the disconnected part only, with the connected part being treated as
an external nuisance parameter with a known scale dependence, and a known prior on its
variance for a given survey volume. Finally, we provide a prescription for how to evaluate the
covariance matrix from small box simulations without the need to simulate large volumes.

Key words: cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

The distribution of matter in the Universe contains a wealth of infor-
mation about the energy content of the Universe, its properties and
evolution. Initial distribution is thought to be a Gaussian random
field, but as a result of the gravitational instability, the tiny fluc-
tuations in the initial matter distribution evolve non-linearly and
produce non-Gaussian correlations. The simplest statistic for data
analysis is the two-point correlation function, or its Fourier trans-
form, the power spectrum. This contains significant cosmological
information since it is sensitive to many parameters, and much of
the information comes from deeply in the non-linear regime. The
two-point analysis is the prime focus of many cosmological ob-
servables like weak lensing (WL) or galaxy clustering, which are
the key observable probes in the current and future generation sur-
veys like Dark Energy Survey (DES),1 Dark Energy Spectroscopic

� E-mail: mohammed@fnal.gov
1 http://www.darkenergysurvey.org

Instrument (DESI),2 Large Synoptic Survey Telescope (LSST),3

Euclid4 etc.
Our ability to extract useful constraints on the cosmological pa-

rameters from these surveys depend on our ability to model the
statistical properties of the distribution of matter in the Universe,
particularly the matter power spectrum, in the non-linear regime
(k > 0.2 h−1 Mpc). In recent years, there have been many efforts in
providing accurate estimates of the matter power spectrum for var-
ious cosmological models and redshifts using perturbation theory
(Bernardeau et al. 2002), the halo model (Cooray & Sheth 2002),
simulations (Smith et al. 2003; Heitmann et al. 2009, 2010;
Lawrence et al. 2010; Takahashi et al. 2012) and semi-analytic
models (Mohammed & Seljak 2014; Seljak & Vlah 2015). The cur-
rent precision from simulations is at 1 per cent up to k ∼ 1 h Mpc−1,
and can potentially be improved further with simulations, if nec-
essary. There are additional complications such as the baryonic
effects (Semboloni et al. 2011; van Daalen et al. 2011; Semboloni,

2 http://desi.lbl.gov
3 https://www.lsst.org
4 http://www.euclid-ec.org
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Hoekstra & Schaye 2013; Mohammed et al. 2014), which redis-
tribute the matter within the halo centres and change the power
spectrum at high k, and it is likely that WL will not be able
to extract much reliable information at high k (or �) without in-
cluding these effects. The same also applies to massive neutrinos,
which suppress structure formation as they free stream. We will
not model these processes here and focus on the dark matter part
only.

While the matter power spectrum predictions, in the absence of
baryonic effects, are under control, for a complete analysis, one
also needs its covariance matrix. The covariance matrix of the mat-
ter power spectrum is important in order to perform any statistical
inference analysis on the cosmological data. Therefore, future sur-
veys would require an accurate estimation of the covariance matrix
of the matter power spectrum in order to perform the cosmological
parameters estimation. An accurate quantification of the covariance
matrix is crucial in order to derive constraints on the cosmolog-
ical parameters using observables modelled on the matter power
spectrum. Failing to do so will mislead the interpretation of the
data.

In the linear regime, computing the covariance matrix is reason-
ably straightforward, even if it can be computationally expensive
for surveys with complicated masks. Because of the non-linear
evolution of the matter density field, the Fourier modes become
correlated, and this generates a non-Gaussian component to the co-
variance matrix (Scoccimarro, Zaldarriaga & Hui 1999; Cooray
& Hu 2001; Hu & White 2001), which we also call the con-
nected part. It affects both diagonal and non-diagonal elements
of the covariance matrix. Its characterization has been developed in
terms of the physically motivated halo model (Takada & Hu 2013;
Mohammed & Seljak 2014), or numerical simulations (Takahashi
et al. 2009; Sato et al. 2011; Harnois-Déraps & Pen 2012; Dodel-
son & Schneider 2013; Li, Hu & Takada 2014a; Blot et al. 2016,
2015).

Another approach is using perturbation theory (PT), which is the
focus of the work here. Our approach is to identify the perturbative
terms that dominate the covariance matrix, and PT can be used to
understand better the structure of the covariance matrix. This paper
is organized as follows. In Section 2, we review the approach and de-
scribe the perturbation theory up to partial 1-loop calculations for the
full covariance matrix of the matter power spectrum. In Section 3,
we outline a comparison of our model with two sets of cosmologi-
cal simulations. In Section 4, we decompose the covariance matrix
based on simulations and the analytic model into a vector that fully
describes the full covariance matrix using a principal component
analysis (PCA). In Section 4.1, we study the degeneracies between
covariance matrix model and other cosmological parameters and
perform a Fisher information matrix analysis. We also address the
question of how to evaluate covariance matrix from small box simu-
lations. Finally, we conclude with a discussion in Section 5. During
the completion of our work, an independent analysis including all
PT terms up to 1-loop has been presented by Bertolini et al. (2016a),
with results comparable to ours.

2 C OVA R I A N C E M AT R I X I N P E RTU R BAT I O N
T H E O RY

The simplest of the statistics is the two-point correlation function
of the matter density perturbations δ, or its Fourier transform matter
power spectrum P(k),

〈δ̃(k)δ̃�(k′)〉 = (2π)3δD(k − k′)P (k), (1)

where δD is the Dirac delta function, k is the magnitude of the wave
vector k and δ̃(k) is the Fourier transform of the matter density
perturbations δ, defined as

δ̃(k) =
∫

δ(x)eik·xd3x. (2)

For a given survey volume V, one can compute δ̃(k) using equa-
tion (2). Then the power spectrum can be estimated by dividing the
survey volume into shells centred at ki as

P (ki) = Vf

∫
ki

d3k
Vs(ki)

δ̃(k)δ̃(−k), (3)

where Vs(ki) = 4πk2
i �k is the volume of the ith shell, �k is the

width of the k shell and Vf = (2π)3/V is the volume of the funda-
mental cell in Fourier space.

The matter power spectrum is a two-point function, its statistical
properties defining its uncertainties and statistical properties, preci-
sion to which it can be measured, and correlations at various scales
can be quantified in terms of a covariance matrix Cov(ki, kj), which
is a four-point function and defined as

Cov(ki, kj ) ≡ 〈P (ki)P (kj )〉 − 〈P (ki)〉〈P (kj )〉, (4)

where the angle brackets represent an ensemble average. We inter-
changeably use the notation Cov(ki, kj) and Covij. Similarly, we also
interchangeably use P(ki) or Pi for the matter power spectrum.

A full covariance matrix can be decomposed into

CovFull
ij = CovG

ij + CovNG
ij . (5)

The first contribution is the disconnected contribution, also known
as the Gaussian contribution, and is always present due to the ran-
dom phases of the modes of the density field. As the matter power
spectrum is computed by averaging over those Fourier modes, a
smaller number of modes give larger statistical uncertainty over
the mean power spectrum. Therefore, this contribution is inversely
proportional to the number of modes. As we have only one sur-
vey volume to observe, the largest scale modes are very few, and
hence the covariance matrix is dominated by this part for low k.
When noise can be ignored, it is known as the sampling variance.
It dominates along the diagonal elements of the covariance matrix:
for a finite volume of the survey the modes are mixed, but if we bin
the modes with binning �k > 2π/R, where R3 = V is the survey
volume, then the window is diagonal. The Gaussian contribution
can be estimated as

CovG
ij = 2

Nk

δijP (ki)P (kj ), (6)

where Nk = Vs/Vf is the total number of k modes in the correspond-
ing shell, and δij is the Kronecker delta function which is unity for
i = j, and zero otherwise. It scales inversely with the fourth power
of the growth factor for its redshift evolution.

The second contribution is the connected part, or the non-
Gaussian part, and can be expressed in terms of the trispectrum as

CovNG
ij = T̄ (k1, −k1, k2,−k2)

V
, (7)

where T̄ is the bin averaged trispectrum, the fourth-order connected
moment of the density perturbation, given by

T̄ (k1, −k1, k2, −k2) =
∫

Vki

∫
Vkj

d3k1

Vki

d3k2

Vkj

T (k1, −k1, k2, −k2),

(8)

where the two integral on the right are across the ith and jth shell.

MNRAS 466, 780–797 (2017)
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The Gaussian part of the covariance depends on the binning
scheme in the k shells, whereas the non-Gaussian part is fairly
independent of any binning scheme, except for a small dependence
for low k (see Section 2.2 for details). However, both terms scale
inversely with the survey volume.

We split the non-Gaussian contribution into the parts that come
from modes outside the survey (SSC) and inside the survey, and we
further split the latter into tree-level and 1-loop terms,

CovNG
ij = CovSSC

ij + Covtree−level
ij + Cov1−loop

ij (9)

where the terms on the right are the supersample covariance (SSC),
tree-level and 1-loop contributions, respectively. The first two terms
are both tree-level contributions, and their split is motivated by the
different calculational approach to the two terms. To this, we add a
specific 1-loop term because it significantly improves the results. In
principle, we should include all 1-loop terms as well as add counter-
terms to 1-loop, but we will not explore these extensions here (see
Bertolini et al. 2016a,b).

2.1 Supersample covariance

The first NG contribution is known as the supersample covariance
(SSC). It is caused by the coupling between all k modes that are
larger than the survey, and the modes inside the survey. It is caused
by the survey window effects mixing the modes and does not show
up in periodic box simulations. Its leading effect can be derived as
a tree level trispectrum in the squeezed limit. This contribution was
first pointed out by Hamilton, Rimes & Scoccimarro (2006), and fur-
ther studied by Sefusatti et al. (2006), Sato et al. (2009), Takahashi
et al. (2009), Kayo, Takada & Jain (2013), Takada & Bridle (2007),
Takada & Jain (2009) and de Putter et al. (2012). Because this contri-
bution comes from the mode that is constant across the survey, it can
be viewed as a local curvature term within the survey, which can fur-
ther be mimicked by a change in the background density δb. There-
fore, this term can be modelled completely by the response of the
matter power spectrum to the change in background density (Takada
& Hu 2013; Li et al. 2014a; Li, Hu & Takada 2014b). Further, this
response can be accurately calculated using the separate universe
simulations, where the same effect can be mimicked by a change in
cosmological parameters (Sirko 2005; Baldauf et al. 2011, 2016b;
Gnedin, Kravtsov & Rudd 2011; Wagner et al. 2015). This term
is the dominant contribution in the quasi-linear regime, and can be
modelled as

CovSSC
ij = σ 2

b

∂P (ki)

∂δb

∂P (kj )

∂δb
, (10)

where ∂P (ki)/∂δb is the response of the matter power spectrum to
the change in the background density δb, and σ 2

b is the variance of
the mean density field in the survey window, defined as

σ 2
b ≡ 〈δ2

b〉 = 1

V 2

∫
d3q

(2π)3
W̃ (q)2P (q), (11)

where W̃ (q) is the survey window function (with units of volume).
The responses depend on whether we divide by the local density
(SSC-local), in which case the low k limit is

d ln P (k)

dδb SSC−local
= 5

21
− 1

3

d ln P (k)

d ln k
, (12)

or we do not divide by the local density (SSC-global), which gives
low k limit of

d ln P (k)

dδb SSC−global
= 47

21
− 1

3

d ln P (k)

d ln k
. (13)

We will use numerical derivative obtained from separate universe
simulations (Li et al. 2014a). In general, SSC term is well under-
stood and can easily be computed by running two separate universe
simulations.

2.2 Tree-level covariance

In the tree-level perturbation theory, and ignoring the window func-
tion effects that lead to SSC term above, the full trispectrum can be
written as

T (k1, k2, k3, k4)

= 4
[
F2(k12, −k1)F2(k34, k4)P (k1)P (k34)P (k3) + cyc.

]
+ 6

[
F3(k1, k2, k3)P (k1)P (k2)P (k3) + cyc.

]
, (14)

where kij = ki + kj , and cyc. denotes the cyclic permutations of
the arguments. The kernels F2 and F3 are the solutions to the equa-
tions of motion of gravitational instability to second and third order,
respectively. Although this is the full expression for the trispectrum,
only parallelogram configurations contribute to the non-Gaussian
covariance, as in equation (8). Therefore, the parallelogram con-
figuration of the trispectrum that contributes to the non-Gaussian
covariance is given by (Scoccimarro et al. 1999)

T̄ (ki, kj ) =
∫

ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj )

×(12F
(s)
3 (k1,−k1, k2)PL(k1)2PL(k2)

+ 8F
(s)
2 (k1 − k2, k2)2PL(k2)2PL(k2 − k1)

+ 8F
(s)
2 (k1 − k2, k2)F (s)

2 (k2 − k1, k1)PL(k2)PL(k1)PL

× (k2 − k1) + {k1 ↔ k2}), (15)

where F
(s)
2 and F

(s)
3 are the standard Eulerian PT kernels (see e.g.

Bernardeau et al. 2002). The diagonal part can now be explicitly
written as

T̄ (ki, ki)

[PL(ki)]
3 = −44

63
+ 1

49

∫ 1

−1
dμ (3 + 10μ)2 PL

(
k
√

2(1 − μ)
)

PL(ki)
.

(16)

Using the approximation suggested in Scoccimarro et al. (1999),
one gets T̄ (ki, ki)/ [PL(ki)]

3 
 232/441, although somewhat better
approximation (at low k) can be obtained T̄ (ki, ki)/ [PL(ki)]

3 

454/441 − 62/343 ns 
 2620/3087.

Fig. 1 shows the trispectrum contribution to the covariance for
few different binning schemes. Binning makes essentially no effect,
as expected. This would appear to be in conflict with Takahashi et al.
(2008), where they studied binning dependence of the ratio between
non-linear and linear mode, finding strong dependence. However,
this is caused by division with the linear mode, which induces
Gaussian fluctuations in the ratio.

2.3 1-Loop covariance

In this section, we describe the calculations of the 1-loop non-
Gaussian covariance contribution. A full calculation has been re-
cently presented in Bertolini et al. (2016a,b). Here, we will instead
do a simplified calculation, where we first derive a functional deriva-
tive of high k power to the low q power. In the next step, we compute
the fluctuations of low q power due to the finite volume effects, i.e.
the sampling variance fluctuations. Finally, we obtain the covariance
by combining the two.

MNRAS 466, 780–797 (2017)
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Figure 1. The trispectrum contribution to the covariance for different binning schemes in different colours. Blue, green, red and black correspond to a linear
bin width (�k) of 0.01, 0.025, 0.05 and 0.001, respectively.

The 1-loop PT on the power spectrum has been intensively studied
in previous works such as Juszkiewicz (1981), Vishniac (1983),
Juszkiewicz, Sonoda & Barrow (1984), Coles (1990), Suto & Sasaki
(1991), Makino, Sasaki & Suto (1992), Jain & Bertschinger (1994),
Baugh & Efstathiou (1994), Lokas et al. (1996), Scoccimarro &
Frieman (1996) and Bernardeau et al. (2002). Here, we briefly
review these results. In perturbation theory framework, one can
describe the full matter power spectrum as

P (k, z) = P (0)(k, z) + P (1)(k, z) + · · · + P (n)(k, z), (17)

where the superscript n denotes the n-loop contribution. P(0)(k, z), or
the 0-loop contribution, is just the linear power spectrum, such that
P(0)(k, z) = PL(k)D2(z). The 1-loop contribution, P(1)(k, z), consists
of two terms and can be written as

P (1)(k, z) = P13(k, z) + P22(k, z)

= 6
∫

F
(s)
3 (k, q̃, −q̃)PL(k, z)PL(q̃, z)d3q̃

+ 2
∫ (

F
(s)
2 (k − q̃, q̃)

)2
PL(|k − q̃|, z)PL(q̃, z)d3q̃.

(18)

Here Pij denotes the amplitude given by a connected diagram rep-
resenting the contribution from 〈δiδj〉c to the power spectrum. We
have assumed Gaussian initial conditions, for which Pij vanishes
if i + j is odd. The two contributions, P13 and P22, have different
structure. P13 is, in general, negative and describes the decorrelation
of the propagator, while P22 is positive definite and describes the
effects of mode coupling between modes with wave vectors k − q
and q.

The functional derivatives of these function with respect to the
linear power spectrum yields

N
δP13(k)

δPL(q)
= 3PL(k)

∫
d3q̃ F

(s)
3 (k, q̃, −q̃)δD(q − q̃)

+ 3δD(k − q)
∫

d3q̃

(2π)3
F

(s)
3 (k, q̃,−q̃)PL(q̃)

= 3F
(s)
3 (k, q,−q)PL(k)+3P13(k)/PL(k)δD(k − q),

N
δP22(k)

δPL(q)
= 4

∫
d3q̃

[
F

(s)
2 (k − q̃, q̃)

]2
PL(k − q)δD(q − q̃)

= 4
(
F

(s)
2 (k−q, q)

)2
PL(k − q), (19)

where N is the normalization pre-factor to be chosen below. Drop-
ping the δ function part of the result we have for the total 1-loop
result:

N
δP1−loop(k)

δPL(q)
= N

δP22(k)

δPL(q)
+ 2N

δP13(k)

δPL(q)

= 4
(
F

(s)
2 (k − q, q)

)2
PL(|k − q|)

+ 6F
(s)
3 (k, q, −q)PL(k). (20)

Performing the angle averaging 〈X(q)〉� = ∫ d�q
4π

X(q), we get

2N

〈
δP1−loop(k)

δPL(q)

〉
�

= 2
∫

dμ
(
F

(s)
2 (k − q, q)

)2
PL(|k − q|)

+ 3
∫

dμF
(s)
3 (k, q, −q)PL(k). (21)
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784 I. Mohammed, U. Seljak and Z. Vlah

Figure 2. The 1-loop functional derivatives 2N〈δP1−loop(k)/δPL(q)〉� (black dashed lines) given in equation (21) at redshift z = 0.0. Values of q are from
left to right are { 0.01, 0.018, 0.032, 0.056, 0.10, 0.18, 0.32, 0.56, 1.0, 1.8, 3.2}[h−1 Mpc]. Red lines correspond to contributions in the limiting cases k � q in
equation (22).

It is instructive to look at the limiting cases. From above, it readily
follows (Sherwin & Zaldarriaga 2012):

2N

〈
δP1−loop(k)

δPL(q)

〉
�

∼ 2519

2205
PL(k) − 47

105
kP ′

L(k)

+ 1

10
k2P ′′

L (k), as k � q, (22)

and similarly

2N

〈
δP1−loop(k)

δPL(q)

〉
�

∼ 9k4

49q4
PL(q) −

(
61k2

315q2
− 4k4

105q4

)

× PL(k), as k � q. (23)

The result of the fill one-loop functional derivative given in equa-
tion (21) and the corresponding k � q expansion is shown in Fig. 2.

We can introduce the normalized functional derivative, V (q, k),
by dividing the expression above by the power per mode �2(q) =
4πq3P (q)/(2π)3 as in Nishimichi, Bernardeau & Taruya (2014),

V (q, k) = PL(q)

�2(q)

〈
δP1−loop(k)

δPL(q)

〉
�

. (24)

In the low q limit, i.e. q � k, the functional derivative becomes
independent of q:

lim
q/k→0

V (q, k) = W (k)P (k), (25)

where

W (k) = 2519

2205
− 47

105

d ln P (k)

d ln k
+ 1

10

d2 ln P (k)

d ln k2
. (26)

The expressions above give the mean response at a given k to the
power at a given q. At low q, the power at a given q will fluctuate due
to the finite volume. The Gaussian part of the covariance scales as
2P2/Nk and number of modes Nk scales as Nk = V k3� ln k/(2π)3.

Figure 3. The 1-loop variance S as a function of qmax (defined in equa-
tion 28) for a volume of 1(h−1 Gpc)3. The integral converges to a few per
cent at qmax ∼ 0.3 h Mpc−1. We also show the effect of damping for z = 0
(qnl = 0.3 h Mpc−1) and for z = 1 (qnl = 0.7 h Mpc−1).

The full expression for 1-loop covariance contribution can now be
written as

Cov1−loop
ij =

(
1

V π2

∫
P 2

L (q)q2V (q, ki)V (q, kj )dq

)
. (27)

Equation (27) is an integral of the term P 2
L (q)q2 and the functional

derivatives. We can define

S =
(

1

V π2

∫
P 2

L (q)q2dq

)
. (28)

Fig. 3 shows the integral of S to qmax, showing that the
scales at which this contribution is important are mostly linear
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Table 1. Specifications for the two sets of the cosmological simulations used for comparison.

Parameter Number of simulations Box size (h−1 Mpc) �m σ 8 h ns �b w

L14 3584 500 0.286 0.82 0.7 0.96 0.047 −1.0
B15 12 288 650 0.257 0.801 0.72 0.963 0.044 −1.0

(q < qnl ∼ 0.2 h Mpc−1).This suggests the non-linear corrections
are likely to be small, especially at higher redshifts.

In the low q limit, the 1-loop contribute separates into

Cov1−loop
ij = SW (ki)P (ki)W (kj )P (kj ). (29)

We will also explore simple extensions beyond the 1-loop.
Since the integral in equation (28) extends into the non-linear
regime, its high q contribution may not be reliable. We expect
the response to high q modes to be suppressed in functional
derivatives, so their effect is reduced (Nishimichi et al. 2014).
The transition is governed by the non-linear scale qnl where
�2(q) = ∫

q2dqP (q)W 2
R(q)/2π2 = 1.352, where WR is a Gaussian

window WR = exp [−(0.46q/qnl)2/2], so the expectation is that
qnl ∼ 0.3 h Mpc−1 at z = 0. Following Nishimichi et al. (2014).
we will assume a Lorentzian damping form and explore the 1-loop
expression:

CovNL
ij =

(
1

V π2

∫
P 2

L (q)

(1 + (q/qnl)2)2
q3V (q, ki)V (q, kj )d ln q

)
.

(30)

Fig. 3 also shows the integral of S along with the damping for z = 0.
We see that damping slightly reduces the value of S at z = 0. The
damping effect is even smaller for higher redshifts. In the subsequent
figures, we refer the non-linear model to the sum of all contributions
to covariance where 1-loop term is given by equation (30).

3 C O M PA R I S O N W I T H SI M U L ATI O N S

We used two sets of cosmological simulations, from Blot et al.
(2015, hereafter B15) and Li et al. (2014a, hereafter L14), to com-
pare with our model. For both simulations, the cosmology is the flat
� cold dark matter (�CDM) with particular cosmological param-
eters values listed in Table 1. The simulation suite from L14 also
contains an explicit calculation of the SSC term measured using a
corresponding separate universe simulation. B15 have a much larger
volume, with a total effective volume greater than 3000 h−3 Gpc3.
L14 gives 3584 matter power spectra at redshift zero, which we use
to generate a full covariance matrix. B15 provides their covariance
matrix at four different redshifts: 0.0, 0.5, 1.0, 2.0.

Figs 4–7 show the comparison of our model for the covariance
matrix to B15 covariance matrix at redshifts 0.0, 0.5, 1.0, 2.0, respec-
tively. Each panel shows various contributions (1-loop, tree-level,
Gaussian) to the covariance, a full model and the corresponding
simulation output.

At redshift zero, there is a good agreement in quasi-linear regime
up to k ∼ 0.2 h−1 Mpc, but as we go to the non-linear regime,
the 1-loop term becomes large and overestimates the covariance.
We have explored the non-linear model of equation (30) with one
free parameter and found that with qnl = 0.2 we find a good agree-
ment even for higher k. A similar trend can also be seen for a
comparison with L14 covariance at redshift zero in Fig. 8.

As we go higher in redshift, the 1-loop term scales inversely with
the eighth power of the growth factor whereas both tree level terms
scale inversely with the sixth power of the growth factor. Therefore,
the 1-loop contribution to the covariance decreases more rapidly

than other contributions. Fig. 5 also shows the non-linear model of
equation (30) with qnl = 0.6. In addition, we expect the correction
to S from non-linear scales to become less important, because qnl

increases. As a result, we find a much better agreement between our
model and the simulations up to much higher k.

In Figs 9 and 10, we show the comparison of the covariance of
L14 data set, with local and global SSC term, respectively, added to
the calculation. For large scales, nearly quasi-linear scales, global
SSC term dominates, and the 1-loop contribution is subdominant.
Therefore, the agreement with the simulations is better than without
SSC contribution even without additional non-linear correction. For
higher redshifts, the 1-loop term is suppressed relative to SSC, and
we expect an even better agreement with simulations.

4 E I G E N M O D E D E C O M P O S I T I O N O F T H E
C OVA R I A N C E M AT R I X

The SSC part of the covariance is a rank 1 tensor (equation 10),
which means that it has a single non-zero eigenvalue. The 1-loop
term expression in equation (27) also suggests a similar form. While
the tree level trispectrum does not decompose like that, it is mostly
important at low k, where the Gaussian contribution dominates.
It is thus interesting to ask about the eigenvalue structure of the
entire covariance matrix (Harnois-Déraps & Pen 2012). Here, we
use a PCA on the non-Gaussian part of the covariance. We start
by calculating the covariance matrix of global SSC version of L14
(total 3584 power spectra) data set using equation (4). We perform
a PCA of the matrix Cij, such that

Cij = Covfull
ij − CovGauss

ij

P (ki)P (kj )
. (31)

The eigenvalues of the matrix Cij are shown in the left-hand panel
of Fig. 11. Clearly, one eigenvalue is much larger than all of the
others. Therefore, the full matrix Cij can be well approximated
using a single principal component d1 = √

λ1v1, where λ1 is the
largest eigenvalue and v1 is the corresponding eigenvector, such
that Cij = did

†
j . The right-hand panel of Fig. 11 shows the first two

principal components (d1 and d2 = √
λ2v2).

In order to show the dominance of the first component explicitly,
we perform another exercise by removing the first eigenvector from
the underlying data set. To do so, we subtract a contribution from
each of the power spectra, such that the new power spectra (P ′

i (k))
are

P ′(ki) = P (ki) − αd1(ki)〈P (ki)〉. (32)

Here α is the best-fitting coefficient when fitting Pi(k) to
(1 + αd1(k))〈P(k)〉. Fig. 12 shows the distribution of α, which
is very Gaussian. This is not surprising, since it is dominated by the
SSC term variance on the scale of the survey box, which is Gaussian
distributed. We computed the covariance matrix of the new reduced
data set P′(ki). The corresponding eigenvalues can be seen in the
left-hand panel of Fig. 11. It can be noticed that the largest eigen-
value of the reduced covariance matrix is very close to the second
largest eigenvalue of the original covariance. Similar trend can also
be seen in the eigenvectors in the right-hand panel of Fig. 11.
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Figure 4. Comparing analytic model with B15 covariance using 1-loop exact functional derivatives at redshift 0.0. The total curve (red) is the sum of all
contributions with 1-loop given by equation (27), whereas non-linear curve (dashed green) is the sum of all contributions with 1-loop given by equation (30).
Similar convention applies to the subsequent figures.

We also performed the diagonal decomposition of the analytic
matrix (using equation 30), i.e. using the covariance from our an-
alytic model. Fig. 13 shows the comparison of the analytic and
numerical covariance matrix decomposition, particularly for the
first eigenvector and the diagonal part of the covariance. The left-
hand panel shows the comparison without the SSC term whereas
the right-hand panel shows the comparison with global SSC term.
As expected, the agreement improves for the full covariance matrix
with SSC term. Fig. 14 shows a comparison of the single eigenvector

model of the full covariance matrix with the L14 simulations, as well
as the diagonal. We see that analytic model makes about 20 per cent
error at k ∼ 1 h Mpc−1 without SSC, and about 10 per cent error with
SSC. The non-linear model where high q modes are damped reduces
this error to a few per cent only in the SSC case, in agreement with
previous figures.

Having the decomposition of the analytic form of the covariance
matrix gives us a handle to perform the redshift evolution of the
principle component without explicitly computing the covariance
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Covariance matrix of the matter power spectrum 787

Figure 5. Comparing analytic model with B15 covariance using 1-loop exact functional derivatives at redshift 0.5. For non-linear curve (dashed green), we
used qmax = 0.6.

at each redshift. Fig. 15 shows the first eigenvector at five different
redshifts (with global SSC).

4.1 Degeneracies with cosmological parameters

The analysis above suggests that instead of using a full covariance
matrix, one can use the Gaussian covariance, and replace the non-
Gaussian part with a fictitious external parameter α, whose response
is given by the first eigenvector d1(k)P(k), as in equation (32). The
parameter α has zero expected mean, with 〈α2〉 determined by the

covariance matrix calculations above. However, one can also try to
determine it from the data. In this section, we explore the degenera-
cies between the first eigenvector of the full covariance matrix with
SSC contribution to the response of various cosmological parame-
ters to the matter power spectrum. A related analysis with just SSC
has been performed in Li et al. (2014b). We use the eigenvector of
the full covariance matrix of the L14 data set.

The left-hand panel of Fig. 16 shows the comparison of this re-
sponse to the cosmological parameters responses. At low k, there is
a degeneracy between the d1(k) and the amplitude of the fluctuations
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Figure 6. Comparing analytic model with B15 covariance using 1-loop exact functional derivatives at redshift 1.0.

(σ 8) to the matter power spectrum. In this regime, the covariance
matrix calculation of the first eigenvalue gives a prior, shown as the
horizontal dashed line on the right-hand side. However, this degen-
eracy is broken in the highly non-linear regime (k > 0.3 h Mpc−1),
suggesting that the data may determine the covariance matrix am-
plitude if one uses high k information.

To explore the effects of this degeneracy on cosmological pa-
rameter estimation, we performed a Fisher matrix analysis for the
two cases: (i) when α is fixed, and hence, only the response of the
cosmological parameters plays a role, (ii) while marginalizing over

α, incorporating the response of the α. The full fisher matrix can be
written as

Fμν = ∂P (ki)

∂pμ

CGauss
ij

∂P (kj )

∂pν

, (33)

where p is a set containing cosmological parameters and α. We used
three cosmological parameters for this analysis – amplitude of the
fluctuations σ 8, spectral index ns and Hubble constant in the units
100 km s−1 Mpc−1 h. Therefore,

p ≡ {σ8, ns, h, α}. (34)
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Covariance matrix of the matter power spectrum 789

Figure 7. Comparing analytic model with B15 covariance using 1-loop exact functional derivatives at redshift 2.0.

For this particular exercise, we used only the Gaussian part of
the covariance matrix. We carried out this exercise for different
kmax (from 0.1 to 1.2) and computed the expected errors on each
parameter.

The right-hand panel of Fig. 16 shows the expected errors on
the parameters. The solid lines represent the expected errors on
the parameters when marginalized over α and dashed lines when α

kept fixed. Because of the strong degeneracy between α and σ 8, the
marginalization errors are large for small k. However, as we increase
kmax this degeneracy is broken, giving improved constraints on all
cosmological parameters including α. We note that this analysis
is still somewhat idealized since in a typical WL survey a given

angular scale receives contributions from a projection over a wide
range of scales, and their relative contribution changes with angle.
Our analysis is most directly applicable to a tomographic analysis
of WL data, where one isolates the lensing effects from a localized
volume so that projection effects are minimized.

4.2 Convergence of the covariance matrix and the required
volume of simulations

As we argued the non-Gaussian covariance is dominated by a single
eigenmode, whose k dependence is fixed, and only its amplitude
α varies from a realization to a realization. By the central limit
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Figure 8. Comparing analytic model with L14 covariance using 1-loop exact functional derivatives at redshift 0.0.

theorem, we expect the distribution of αs to be close to a Gaussian.
This is shown in Fig. 12, normalized to its variance. We see that the
distribution is indeed very close to a Gaussian.

In the context of this model, we can ask how many simulations
are needed to fully determine the covariance matrix. To determine
the k dependence of the eigenvector d1(k), we just need two simu-
lations: the difference in P(ki) between the two simulations will be
proportional to d1(ki)P(ki). The proportionality factor is not relevant
if we use the method described in the previous subsection, where
k dependence is used to determine the amplitude and remove the

non-Gaussian part of the covariance matrix. The right-hand panel
of Fig. 13 shows the relative deviations of the two power spec-
tra from two simulations for few different pair of simulations. All
curves look similar except for their normalization and agree with
the shape of the eigenvector itself, but the realization noise at lower
k is significant.

If we wish to determine the full covariance matrix including
its normalization, we also need to determine 〈α2〉. Since α has a
Gaussian distribution, we can obtain a fractional error of (2/N)1/2

on its variance with N simulations. While Gaussian distribution is
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Covariance matrix of the matter power spectrum 791

Figure 9. Comparing analytic model with L14 covariance using 1-loop exact functional derivatives at redshift 0.0 with local SSC term. The SSC term
contributes to simulations (thin black line), total (solid red line) and non-linear model (dashed green line).

the best case scenario, it is still a relatively slow convergence: if
one wishes to determine covariance matrix to 10 per cent one needs
200 simulations, while 1 per cent requires 20 000 simulations. As
all our results are shown as Covij/(PiPj), any resolution issue for
different simulations should cancel out.

However, we can also exploit the scalings of individual terms of
covariance matrix with volume. The Gaussian term is analytic and
the SSC term can be well determined by a response to a constant
curvature (separate universe methods), and the value of σ 2

b on the
scale of the survey given by equation (11). Note that this term does

not scale simply as 1/V, it also depends on the power spectrum
P(q).

We are thus left with the modes inside the volume of the sur-
vey. Equation (7) states that the covariance is given by the trispec-
trum divided by the volume V. One can compute the trispectrum
using a small volume simulations and scale by the survey vol-
ume. But one must include all of the trispectrum contributions. The
mode contribution to the simplified version of the 1-loop integral
is shown in Fig. 3. Modes with q < 0.02 h Mpc−1 contribute about
1 per cent of the total integrand. If we are willing to tolerate 1 per cent
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Figure 10. Comparing analytic model with L14 covariance using 1-loop exact functional derivatives at redshift 0.0 with global SSC term. The SSC term
contributes to simulations (thin black line), total (solid red line) and non-linear model (dashed green line).

error, then the required box size to get all the contributing modes
is V ∼ (300 h−1 Mpc)3. In general, we, therefore, expect that the
minimal volume per simulation is roughly of this size.

If the desired error of the covariance is 10 per cent, then we can
run 200 simulations of V ∼ (300 h−1 Mpc)3, i.e. a total volume of
V ∼ 5 (h−1 Gpc)3. If the desired error is 1 per cent, then the required
volume is V ∼ 500 (h−1 Gpc)3. To reduce the disconnected part of
the covariance matrix, which is effectively noise for the connected
part, one can simply take broader bins of k. As shown in Fig. 1, the
covariance is expected to be very insensitive to the binning scheme.

Note that the effective volume of future surveys is of the order
of tens to hundreds of (h−1 Gpc)3, so the required volumes are of
the order of a single survey volume. But the simulations still need
to be done on periodic boxes, to eliminate the SSC term, which
would otherwise dominate the covariance of sub-boxes (although
see below for an alternative method where this is not needed). SSC
term is added separately to the total covariance matrix, using the
correct value of σ 2

b from equation (11).
To test this, we compare the two covariance matrices at our dis-

posal, which have been simulated at different volumes. We rescale
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Covariance matrix of the matter power spectrum 793

Figure 11. Showing eigenvalues and eigenvectors (only two largest) for the covariance matrix (with SSC) and the reduced covariance matrix of L14 data set.
Dotted horizontal lines are the reference to the flatness.

Figure 12. Distribution of α as in equation (32).

them by the volume ratio, which is (650 h−1 Mpc)3 for B15 and
(500 h−1 Mpc)3 for L14, a factor of 2.2. We see in Fig. 17 that this
gives a very good agreement between the two. There are residual
differences at the level of 10 per cent. At low k these are probably
due to noise fluctuations. It is unclear if the remaining differences
are due to the differences in the cosmological model, or due to some
differences in the simulations.

Finally, we mention that one may be able to get the covariance
matrix simply from the survey data itself. As we argued above, the
volumes of typical future surveys are tens of (h−1 Gpc)3, which is not
too different from the volume needed to reliably simulate covariance
matrix. One can divide a survey into many subvolumes of a typical
size of (300 h−1 Mpc)3 and measure the power spectrum in each
subvolume. To reduce the fluctuations for the disconnected part one
should use relatively broad k bins, and remove the disconnected part
(including any possible window function effects that induce mixing
between the bins). The main remaining issue is that dividing an
observed volume into subvolumes also induces SSC term on the
subvolume (same is true for jackknife or bootstrap methods that use
a similar subdivision). This requires thus to estimate and remove
the SSC term from the subvolumes. This can be done by corre-
lating the spatially dependent subvolume power spectrum with the
mean density on the subvolume, which is a form of a squeezed limit
bispectrum (Chiang et al. 2014). Once the mean SSC response is de-
termined, one can multiply it with the subvolume mean density and
subtract it out of the subvolume power spectrum, thereby removing
SSC term from the subvolumes. From the remaining power spectra,
one can now compute the covariance matrix whose connected term
will be dominated by the modes inside the subvolume, and which
is expected to scale as 1/Vsubvolume. Once the connected part of the
covariance matrix is determined, one can scale it as Vsubvolume/V to
get the corresponding covariance of the whole survey from modes

Figure 13. The first eigenvector d1 (in dashed lines) and the diagonal component of the covariance matrix for analytic (1-loop and damped 1-loop, which we
call non-linear) versus numerical approach, at z = 0. The left-hand panel shows the covariance without SSC term, the middle panel with global SSC term. We
see that analytic model makes about 20 per cent error at k ∼ 1 h Mpc−1 without SSC, and about 10 per cent error with SSC. The non-linear model reduces
this error to a few per cent only in the SSC case, in agreement with previous figures. The right-hand panel shows the relative deviations between two different
realizations of the power spectrum (different pair in different colours). This shows that the shape of the eigenvector can be recovered with only two simulations
at higher k.
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Figure 14. Comparing analytic model with L14 covariance (global SSC case). We compare the single eigenvector model (dashed green) and total 1-loop
predictions (solid thick red) against simulations (thin black). The residual covariance after subtracting the single eigenvector component is shown with dotted
line.

inside the subvolume. To this, one needs to add SSC term by com-
puting σ 2

b from equation (11) using the window function defined
by the whole survey, multiplied by the response as derived from
the squeezed limit bispectrum. Finally, one adds the disconnected
part of the covariance matrix, including the survey window func-
tion effects. It is a straightforward technique in order to estimate the
covariance directly from data, however, yet to be verified. We leave
this analysis to future work.

4.3 Connecting perturbation theory to the halo model

The halo model has been a very successful model for non-linear
clustering of the dark matter power spectrum (see e.g. Cooray &
Sheth 2002 for a review). It decomposes the non-linear power spec-
trum into the correlations between haloes, the so-called two-halo
term, and correlations within the haloes, the so-called one-halo term.
The two-halo term has been originally modelled as a linear power
spectrum smoothed on the virial radius scale of the haloes. This
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Covariance matrix of the matter power spectrum 795

Figure 15. Redshift evolution of the first eigenvector of the full covariance
matrix (analytic) using L14 cosmological model including SSC covariance.

does not capture effects like the smoothing of baryonic acoustic
peaks. A simple generalization has been presented in Seljak & Vlah
(2015), where the two-halo term is instead replaced by a Zel’dovich
approximation (ZA) power spectrum. The difference between the
full power spectrum and ZA is defined to be the one-halo term. This
difference has to vanish for k → 0, meaning that the one-halo term
needs to be compensated and is not a constant, which happens at
very low k. The one-halo term on large scales is given by Poisson
fluctuations at zero lag and can be calculated as the second moment
of mass integrated over the halo mass function.

An alternative description pursued here is to use perturbation the-
ory. PT has been applied to the power spectrum and at 1-loop order, it
is expected to do well only at very low k, while at higher k it requires
modest EFT corrections, which make 1-loop sufficiently accurate
up to k ∼ 0.2 h Mpc−1 (Baldauf, Schaan & Zaldarriaga 2016a; Fore-
man, Perrier & Senatore 2016; Vlah et al. 2016). In Seljak & Vlah
(2015), it was argued that we can define a regime where both halo
model and 1-loop PT (with EFT) are equally valid so that one can
calibrate the one-halo term on PT, and then use the halo model to
extend it to higher k. This allows a smooth continuation from PT to a
high k regime where the halo model is valid. When compared to the
halo model predictions in terms of the second moment integrated

over the halo mass function, this requires a halo mass definition that
is somewhat higher than the standard virial mass definition M200.

A similar discussion applies to the covariance matrix. In the halo
model, the covariance at high k arises from Poisson fluctuations.
A particularly simple form has been developed in Mohammed &
Seljak (2014), where the connected term has been derived as

Covconnected
ij = P (ki)P (kj )V −1δ2

A0
. (35)

In the halo model, δ2
A0

can be related to the fourth moment of
mass integrated over the halo mass function. This calculation some-
what overpredicts the true value when compared to simulations
(Mohammed & Seljak 2014), but it is reasonably close.

One can see that the form of the halo model prediction is identi-
cal to PT calculation in the limit where there is a single eigenvector
that does not depend on k, which is approximately valid, as seen
in Fig. 13. In PT, the variance is given by the value of S in equa-
tion (28). This is replaced by δ2

A0
in the halo model. If we insist that

the two descriptions agree with each other in the regime of overlap
(k ∼ 0.2 h Mpc−1), then this determines the value of δ2

A0
from PT.

Hence, the fourth moment of the halo mass function is determined
by equation (28), just as the second moment of halo mass func-
tion is determined by 1-loop PT (Seljak & Vlah 2015). This is a
consistency that restricts the form of the halo mass function. Note
that the agreements are not perfect: while for the power spectrum,
the standard one-halo term calculation underpredicts PT (unless the
halo mass is increased), it slightly overpredicts it for the covariance,
but these differences could also be caused by uncertainties in the
halo mass function and halo mass definitions. This picture allows a
convenient connection of PT to the halo model on small scales. For
covariance, we expect the small scale clustering to be dominated
by one-halo term from lower mass haloes, which are less rare, and
hence we expect Covconnected

ij /P (ki)P (kj ) to decrease as we go to
higher k.

Ultimately, this agreement is just a justification for the halo model
being applicable to both the power spectrum and its covariance.
While the one halo term has to be the dominant term at high k
in the power spectrum, essentially by definition of the halo mass
function, for higher order moments the halo model needs to be
justified case by case. We have seen that it works well for co-
variance. For variance of covariance, the halo model prediction
is given by the eighth moment of the mass integrated over the
halo mass function, and predicts very large relative fluctuations,

Figure 16. Left: the response of the cosmological parameters and the covariance parameter to the matter power spectrum. Right: showing the forecast errors
on each parameter for fixed α (in dashed lines) and marginalizing over α (in solid lines).
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Figure 17. Comparing L14 covariance (solid black) to that of B15 (red dashed), where B15 covariance has been renormalized to the same volume as L14, i.e.
by a factor (650/500)3. Unrescaled B15 is shown as red solid.

of order 30 per cent for a volume of 1 (Gpc h−1)3 (Mohammed &
Seljak 2014). The corresponding 1-loop PT calculation is given
by 112π3

∫
P (q)4d3q/[

∫
P (q)2d3q]2/V and it gives two orders of

magnitude lower variance of covariance, suggesting Poisson fluc-
tuations are not very important, as also explicitly verified by sim-
ulations in Fig. 12 (note that this figure includes SSC term). This
suggests that the halo model cannot be reliably applied to the cal-
culations of the eighth moment.

5 C O N C L U S I O N S

In this paper, we developed a perturbative model for the covariance
matrix of the power spectrum, going up to 1-loop in PT, but without
including all the 1-loop terms (see Bertolini et al. 2016a for the
full 1-loop calculation). In addition, we go beyond 1-loop by in-
cluding the non-linear damping of response functions (Nishimichi
et al. 2014), which improves our results at higher k. Overall, our
approach predicts the results from simulations to about 10 per cent
accuracy in the quasi-linear regime. The largest contribution to the
covariance is SSC, which arises due to the coupling of the modes
to the ones which are larger than the survey scale and which has
been extensively studied previously (Li et al. 2014a,b). This effect
comes from the modes outside the survey and cannot be captured
by the jackknife or bootstrap methods, which subdivide the full
volume into many smaller volumes. In fact, these methods over-
estimate the covariance terms because they generate SSC from the
smaller regions. We propose an alternative approach which removes
this problem. On large scales, the second largest contribution comes
from tree-level terms from modes inside the survey, while on smaller
scales 1-loop terms dominate. The dominant 1-loop term, and the
only one we include, comes from the sampling variance fluctuations
of large-scale modes within the survey volume, which induce a co-
herent response by small-scale modes which we model using 1-loop
power spectrum. When we allow for a damped non-linear response
to modes that are highly non-linear (Nishimichi et al. 2014), we
obtain some additional improvements, especially at lower redshifts.

Damping does not affect results at higher redshifts because all of
the modes that have significant sampling fluctuations are linear.

We explore the structure of the covariance matrix and find that
its non-Gaussian part is strongly dominated by a single eigenmode.
This suggests that the non-Gaussian response has always the same
shape, only its amplitude varies. We analyse the probability distribu-
tion of this amplitude and find that it is close to a Gaussian. Thus, the
convergence rate of covariance matrix simulations scales as a Gaus-
sian, with (2/N)1/2 giving the relative error after N simulations. One
possible alternative approach is to ignore the non-Gaussian covari-
ance in the analysis and instead include the eigenvector response
as a fictitious external parameter in the analysis. This parameter
can, in principle, be determined from the data itself, but it is quite
degenerate with other cosmological parameters.

While the analysis given in this paper provides several important
insights into the nature of the covariance matrix of the two-point
correlators, our results cannot be directly applied to the data. For WL
observations, which are measuring the dark matter correlations, one
needs to perform the projection along the line of sight. This leads
to a decorrelation of the non-Gaussian covariance because differ-
ent l correspond to different effective redshift, and hence different
effective volume. This differs from our analysis where all modes
are maximally correlated because they are coupled to the same long
wavelength modes within the given volume. So far, this has only
been addressed in the context of the halo or SSC model (Schaan,
Takada & Spergel 2014; Krause & Eifler 2016).

The 3D analysis performed here is more likely to be of immediate
application to the galaxy clustering, but this would require adding
biasing and redshift space distortions to the model, and it is unclear
whether successful analytic models can be built. Nevertheless, the
decomposition of the covariance matrix into the three components,
disconnected, connected but generated from modes outside the sur-
vey and connected and generated from modes inside the survey,
allows one, in principle, to build the full covariance matrix from
relatively small simulation volumes, and possibly even from the
data itself, by subdividing into subvolumes and determining each of
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the three components separately. It is worth pursuing this further to
determine the optimal approach that delivers the highest accuracy
with this technique.
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