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ABSTRACT OF THE DISSERTATION

Testing and Learning in High-Dimensions:

Monotonicity Testing, Directed Isoperimetry, and Convex Sets

by

Hadley Black

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Raghu Meka, Chair

This thesis studies testing and learning of monotone functions, k-monotone functions,

and convex sets over high-dimensional domains. Our primary focus is monotonicity testing,

which has been one of the central problems in the field of property testing since its beginnings

in the late 90’s. Monotonicity testing has generated a lot of interest, partially due to its

connection to isoperimetric inequalities, which are a fundamental tool in Boolean function

analysis. Our secondary focus is on testing and learning convex sets. Our contributions are

presented in four parts summarized as follows:

1. We present a nearly optimal non-adaptive monotonicity testing algorithm for Boolean

functions over d-dimensional hypergrids and continuous product spaces. Among other

technical contributions, a central tool in our proof is a new isoperimetric inequality for

Boolean functions over hypergrids.

2. Given the impact of isoperimetric inequalities for testing monotonicity of Boolean func-

tions, a natural question is whether these inequalities generalize to larger ranges. We

give a black-box reduction showing that the known inequalities in this area generalize

ii



to real-valued functions. We use this result to obtain nearly optimal bounds for (non-

adaptive, one-sided error) monotonicity testing parameterized by the range size and an

improved upper bound for approximating the distance to monotonicity of real-valued

functions on the hypercube.

3. We present nearly matching upper and lower bounds for sample-based testing and

learning of k-monotone functions over hypercubes and continuous product spaces.

4. Motivated by the limited understanding of convexity testing in high-dimensions we

initiate the study of convex sets over the ternary hypercube, {−1, 0, 1}d, which is

the simplest high-dimensional domain where convexity is a non-trivial property. We

obtain (i) nearly tight bounds on the edge-boundary of convex sets in this domain, (ii)

new upper and lower bounds for sample-based testing and learning, and (iii) nearly

matching upper and lower bounds for non-adaptive testing with one-sided error.
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CHAPTER 1

Introduction

“The work is mysterious and important.” - Mark Scout1

An emergent aspect of modern computer science is the massive growth in data which

our algorithms must consider. This quantity of data demands that we design algorithms

whose run-times are extremely fast compared to the size of their input. Often this means

our algorithms must run in sublinear time, meaning that they’re only allowed to examine

a tiny fraction of their input. To meet this run-time constraint, we are generally forced to

relax various other demands of our algorithm, such as the quality of the solution it produces,

or the class of inputs it is required to perform well on.

1.1 The Challenges of Massive Data

To illustrate the innate challenges of dealing with massive data, consider the following basic

algorithmic question:

Is the given array of N bits sorted, or not?

An algorithm which answers the above question correctly on all inputs must answer

differently on the following two arrays, which differ on a single bit.

1From Severance on Apple TV [SWC+22].
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Thus, answering the above question requires the algorithm to look at every bit of its input

and hence perform at least N operations. A conservative back-of-the-envelope calculation

shows that on a modestly sized 1 terabyte dataset using a modern 3.5 GHz CPU, this would

take on the order of roughly 5-10 minutes, which is far too long for many applications.

The inherent difficulty of the problem comes from the fact that we are asking our algo-

rithm to answer correctly on every input and with 100% probability. Suppose instead we

ask the following relaxed version of the question:

Is the given array of N bits sorted, or does it differ from every sorted N bit array on at

least 1% if its entries?

The following algorithm succeeds in answering the above question with 99% probability.

Check if the array is sorted on a sub-array of 10,000 randomly chosen locations. If so, output

“yes”, and otherwise output “no”.

Note that now the number of operations required has no dependence on N (the size of

the dataset), but instead depends on the desired probability of success (99%) and level of

tolerance it has for unsorted inputs (1%). Performing 10,000 operations on the same modern

CPU from the previous scenario would take less than 1 millisecond.
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1.2 Property Testing and Computational Learning Theory

Property testing, originally credited to [RS96, GGR98], is a subfield of theoretical computer

science (TCS) which aims to study the types of relaxed algorithmic decision problems posed

in Section 1.1. In general, decision problems pose a yes/no question about a problem instance,

e.g. “is this array sorted?”, or “does this graph contain a clique of size k”? Property testing

poses the following type of relaxed decision problem: “does this large object (input) have

the property P , or is it far from having the property P?”, where the notion of “far” is

prescribed by a distance metric and a proximity parameter. Some examples of commonly

studied objects are functions, graphs, and probability distributions. The property P is

formalized as some specific subset of the objects; for example monotone functions, bipartite

graphs, or uniform distributions. To answer such a question, a property testing algorithm is

given the power to locally inspect the object at various locations, which it is either allowed

to choose (query-based algorithms2) or which are given to it randomly according to some

underlying distribution (sample-based algorithms3). The goal is to design an algorithm which

makes as few inspections as possible.

Property testing is closely related to computational learning theory, in particular the

probably approximately correct (PAC) learning model introduced by Valiant [Val84]. A PAC

learning algorithm for a property P is given access to an input object X ∈ P and is required

to produce a hypothesis H which is “close” to X with “high probability”. Concretely, the

connection between testing and learning is due to the fact that a PAC learning algorithm

can always be transformed into a property testing algorithm for the same property which

makes roughly the same number of inspections to its input. Therefore, learning is always at

least as hard as testing.

Often times property testing and PAC learning algorithms are quite simple and intuitive.

The real depth in these areas comes from asking “what are the structural properties of this

2This is the standard algorithmic model in property testing.

3This is the standard algorithmic model in learning theory.
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class of objects that allow this intuitive algorithm to work efficiently?”. This type of question

has led to many interesting mathematical ideas in combinatorics and probability theory. A

notable example is Fourier analysis of Boolean functions (see [O’D14]) which has seen a lot

of attention recently due to being extremely useful for a broad class of learning problems.

Another example which is quite relevant to this thesis is that of isoperimetric inequalities for

Boolean functions, which have turned out to be essential for analyzing monotonicity testing

algorithms.

1.3 Contributions and Organization

This thesis studies testing, learning, and structural aspects of monotone functions, k-monotone

functions, and convex sets in high-dimensional domains. The thesis is divided into four parts.

We give a very brief introduction for each part below. In Chapter 2 we give a survey on

the monotonicity testing problem for Boolean functions over hypergrids. This serves as an

introduction for Parts I and II.

Part I: Monotonicity Testing of Boolean Functions over Hypergrids: The primary

topic studied in this thesis is monotonicity testing of Boolean functions over hypergrids,

f : [n]d → {0, 1}. This problem was first considered by [GGL+00] for the special case of

n = 2 (the hypercube) and for general n ≥ 2 (the hypergrid) by [DGL+99]. After a long

line of work, [KMS18] gave a non-adaptive upper bound of Õ(
√
d) for the hypercube setting,

and this is known to be optimal for non-adaptive testers [CWX17]. This breakthrough was

enabled by the development of new isoperimetric inequalities for Boolean functions in the

directed hypercube. At the time of this result, the best upper bound for hypergrids (even

n = 3) was Õ(d). In this thesis, we develop many new techniques for monotonicity testing

over hypergrids, culminating in a d1/2+o(1) query non-adaptive tester for all n [BCS23a],

thus resolving this question up to a o(1) factor in the exponent. This result also holds

for Boolean functions f : Rd → {0, 1} under any product measure over Rd. The material
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presented appeared in the following works:

• [BCS20]: “Domain Reduction for Monotonicity Testing: A o(d) Tester for Boolean

Functions in d-Dimensions”, with Deeparnab Chakrabarty and C. Seshadhri, appeared

in SODA 2020.

• [BCS23b]: “Directed Isoperimetric Theorems for Boolean Functions on the Hypergrid

and an Õ(n
√
d) Monotonicity Tester”, with Deeparnab Chakrabarty and C. Seshadhri,

appeared in STOC 2023.

• [BCS23a] “A d1/2+o(1) Monotonicity Tester for Boolean Functions on d-Dimensional

Hypergrids”, with Deeparnab Chakrabarty and C. Seshadhri, appeared in FOCS 2023,

and was invited to the SICOMP Special Issue.

Part II: Directed Isoperimetry and Monotonicity Testing of Real-Valued Func-

tions: Isoperimetric inequalities over the directed hypercube and hypergrid have been a

central tool for analyzing monotonicity testers for Boolean functions. Given the impact of

these inequalities, it is natural to ask whether they extend to broader classes of functions.

We give a black-box result showing essentially that any such inequality for Boolean-valued

functions f : D → {0, 1} over a partial order D in fact holds for all real-valued functions

f : D → R. In particular, we generalize all known directed isoperimetric inequalities for

f : {0, 1}d → {0, 1} and f : [n]d → {0, 1} to f : {0, 1}d → R and f : [n]d → R. We apply

these new inequalities to obtain new results for the tasks of monotonicity testing and ap-

proximating the distance to monotonicity of a function. The material presented appeared in

the following work:

• [BKR23]: “Isoperimetric Inequalities for Real-Valued Functions with Applications to

Monotonicity Testing”, with Iden Kalemaj and Sofya Raskhodnikova, appeared in

ICALP 2023.
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Part III: Sample-Based Testing and Learning of k-Monotone Functions: The

monotonicity testing literature has primarily focused on query-based algorithms, which are

allowed to request the value of the function on points of their choosing. Another natural

algorithmic model is that of sample-based algorithms, which are only allowed to see the

function’s value on points independently sampled from the underlying distribution. One

of the original works on monotonicity testing of [GGL+00] initially studied this question,

but their lower bound only covered a very specific parameter regime. We close this gap

in the literature by giving nearly matching upper and lower bounds for this problem in all

parameter regimes. In fact our results hold more generally for sample-based testing and

learning of k-monotone functions with image size r, f : {0, 1}d → [r]. We also provide nearly

matching upper and lower bounds for functions f : Rd → [r] when the underlying distribution

is any product measure. The material presented appeared in the following work:

• [Bla23] “Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone

Functions”, unpublished manuscript.

Part IV: Testing and Learning Convex Sets in the Ternary Hypercube: Convex

sets are extremely natural, appearing in a wide array of contexts. Somewhat surprisingly,

many open questions still remain regarding the complexity of testing set convexity, in par-

ticular in high-dimensional domains. The “simplest” such domain where convexity is a

non-trivial property is the ternary hypercube, {−1, 0, 1}d. We study the testing and learning

problems for convex sets in this domain. The material presented appeared in the following

work:

• [BBH23]: “Testing and Learning Convex Sets in the Ternary Hypercube”, with Eric

Blais and Nathaniel Harms, appearing at ITCS 2024.
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CHAPTER 2

Monotonicity Testing of Boolean Functions over

Hypergrids: A Short Survey

Monotonicity testing is one of the most classic problems in property testing. Naturally, the

most well-studied setting is that of testing monotonicity of Boolean functions f : {0, 1}d →

{0, 1} over the hypercube, first studied by [GGL+00], and the generalized problem over

the hypergrid, [n]d, first studied by [DGL+99]. Here [n] denotes the set {1, . . . , n} and the

partial order over the hypergrid is defined as: x ⪯ y iff xi ≤ yi for all i ∈ [d]. A function

f : [n]d → {0, 1} is monotone if f(x) ≤ f(y) whenever x ⪯ y.

The Hamming distance between two functions f and g, denoted ∆(f, g), is the fraction

of points where they differ. We say a function f : [n]d → {0, 1} is ε-far from monotone if

∆(f, g) ≥ ε for all monotone functions g : [n]d → {0, 1}. Given a proximity parameter ε and

query access to a function f , a monotonicity tester must satisfy the following criteria: (a)

if f is monotone, then the tester accepts with probability at least 2/3, and (b) if f is ε-far

from monotone, then the tester rejects with probability at least 2/3. If the tester accepts

monotone functions with probability 1, it is called one-sided. If the tester decides its queries

without seeing any responses, it is called non-adaptive.

Monotonicity testing of Boolean functions over the hypercube has attracted a great deal

of attention and the query complexity of this problem is still an outstanding open question,

with the current gap standing at Ω̃(d1/3) vs Õ(
√
d) [CWX17, KMS18]. The tester attaining

this upper bound is non-adaptive and in fact is optimal among non-adaptive testers due

to a matching lower bound of Ω̃(
√
d) also due to [CWX17]. The road to resolving the
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non-adaptive query complexity of this problem led to the development of novel techniques,

notably the notion of directed isoperimetric inequalities for Boolean functions.

After the resolution of the non-adaptive question over the hypercube, the more general

problem over the hypergrid, [n]d, remained open, even for n = 3. Recently, this question was

(nearly) resolved by [BCS23a], who gave an upper bound of d1/2+o(1) for all n, matching the

non-adaptive lower bound of Ω̃(
√
d) [CWX17] up to a do(1) factor. This upper bound was due

to the culmination of many techniques by the authors [BCS18, BCS20, BCS23b, BCS23a]

which also built upon a long line of results studying the hypercube case [GGL+00, CS14a,

CST14, KMS18] and the hypergid [Ras99, DGL+99, BRY14a, BKKM23]. The purpose

of this chapter is to give an overview and history of the ideas that eventually led to the

d1/2+o(1) non-adaptive tester for hypergrids, highlighting the connection with isoperimetric

inequalities. This serves as an introduction for the technical contents of parts I and II.

Domain Co-domain Lower Bound Upper Bound

{0, 1}d {0, 1} Ω̃(d1/3) a. 2-s [CWX17] Õ(
√
d) n.a. 1-s [KMS18]

Ω̃(
√
d) n.a. 2-s [CWX17] O(If ) a. 1-s [CS19]

Ω(
√
d) n.a. 1-s [FLN+02]

{0, 1}d [r] Ω(min{d, r2}) [BBM12] a. 2-s Õ(r
√
d) n.a. 1-s [BKR23]

Ω(r
√
d) n.a. 1-s [BKR23]

{0, 1}d R Ω(d) a. 2-s [BBM12, CS14b] O(d) n.a. 1-s [CS13]
[n]d {0, 1} - d1/2+o(1) n.a. 1-s [BCS23a]
[n]d [r] - -
[n]d R Ω(d log n) a. 2-s [CS14b] O(d log n) n.a. 1-s [CS13]

Table 2.1: Current state of the art for monotonicity testing over the d-dimensional hypercube and

hypergrid. All results are stated for constant ε. We use a./n.a. to denote adaptive/non-adaptive

and 1-s/2-s to denote one-sided/two-sided error.

Organization: In Section 2.1 we give a history of directed isoperimetric inequalities and

upper bounds for Boolean monotonicity testing over the hypercube. The remainder of the

sections pertain to the techniques developed for hypergrids: Section 2.2 discusses domain

reduction [BRY14a, BCS20, HY22] which is the topic of Chapter 3, Section 2.3 discusses

generalized directed isoperimetric inequalities over hypergrids [DGL+99, BCS18, BKKM23,
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BCS23b] which is the topic of Chapter 4, and Section 2.4 discusses the techniques from

[BCS23a] and the d1/2+o(1) tester which is the topic of Chapter 5. We conclude in Section 2.5

with a discussion of some open questions and final remarks.

2.1 Monotonicity Testing and Isoperimetry on the Hypercube

The directed hypercube is the DAG with vertex set {0, 1}d and edge set

E = {(x, y) : ∃i ∈ [d] such that xi < yi and xj = yj for all j ∈ [d] \ {i}}.

Given a function f : {0, 1}d → {0, 1}, we use Gf (Xf , Yf , Ef ) to denote the violation graph of

f which is the subgraph of the directed hypercube defined as follows: Xf = {x : f(x) = 1},

Yf = {y : f(y) = 0}, and Ef = {(x, y) ∈ E : x ∈ Xf , y ∈ Yf}. That is, Gf is the bipartite

subgraph consisting of all edges where f violates monotonicity. Observe that if a tester

manages to query points x ∈ Xf , y ∈ Yf for which x ≺ y, then it has found a certificate

of non-monotonicity of f and it may safely reject. All of the testers which we consider in

this survey are pair testers, meaning that they work by independently sampling pairs of

points (x, y) from a distribution D supported over {(x, y) : x ⪯ y}, rejecting if they ever see

a violation, and accepting otherwise. Note that if T is a pair tester using distribution D and

P(x,y)∼D[x ∈ Xf ∧ y ∈ Yf ] ≥ p(ε) whenever f is ε-far from monotone, then T is a O(p(ε)−1)

query tester since the probability of not seeing a violation across this many trials is at most

(1 − p(ε))O(p(ε)−1) ≤ 1/3. By definition, pair testers are non-adaptive and have one-sided

error.

Note that f is the characteristic function for the set Xf and Ef is the set of edges on the

boundary of Xf , or equivalently, of f . A central theme in the monotonicity testing literature

has been to prove theorems that relate the structural properties of these boundary edges to

the distance to monotonicity, εf , and to exploit this structure to analyze testers.
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2.1.1 The Edge Tester and the Directed Poincaré Inequality

The starting point for these results is the very natural edge tester considered by [GGL+00]:

sample a uniform random edge (x, y) ∈ E and reject if (x, y) ∈ Ef . The total number of

edges in the hypercube is |E| = d · 2d−1 and so the probability that this test finds a violation

is precisely |Ef |/(d·2d−1). Thus, the analysis of this tester amounts to proving a lower bound

on |Ef |. Another way to look at this quantity is in terms of influence.

Definition 2.1.1 (Influence). The influence and negative influence of a function f : {0, 1}d →

{0, 1} are defined as

If = 2−d · {(x, y) ∈ E : f(x) ̸= f(y)} and I−f = 2−d · {(x, y) ∈ E : f(x) > f(y)} = 2−d · |Ef |

(2.1)

The following bound on the negative influence was proven by [GGL+00].

Theorem 2.1.2 (Directed Poincaré, [GGL+00]). Every f : {0, 1}d → {0, 1} satisfies I−f =

Ω(εf ).

This bound immediately implies that the edge tester is a O(d/ε) query tester since it

implies a random edge violates monotonicity with probability at least 2I−f /d = Ω(ε/d)

whenever f is ε-far from monotone.

Corollary 2.1.3 (Edge tester bound, [GGL+00]). For every f : {0, 1}d → {0, 1}, the edge

test finds a violation of monotonicity with probability Ω(εf/d). Therefore, the edge tester is

a O(d/ε) query tester.

It was later observed by [CS14a] that Theorem 2.1.2 can be viewed as a directed analogue

to the following standard edge isoperimetric bound for the undirected hypercube attributed

to Poincaré.

Theorem 2.1.4 (Poincaré). Every f : {0, 1}d → {0, 1} satisfies If = Ω(var(f)).
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Going from Theorem 2.1.4 to Theorem 2.1.2, the influence If is replaced by the negative

influence I−f and var(f) is replaced by εf . The influence measures the quantity of edges in

the undirected hypercube which leave the set Xf = {x : f(x) = 1} and the negative influence

measures the quantity of edges in the directed hypercube which leave the set Xf . In this

sense Theorem 2.1.4 is an edge isoperimetric bound for the directed hypercube and hence

we refer to it as the “directed Poincaré inequality”.

Remark 2.1.5 (On εf as a directed analogue of var(f)). A useful viewpoint to appreci-

ate the analogy between εf and var(f) is the following. First, we note that var(f) is a

2-approximation of the distance of f to the nearest constant function, which we’ll denote by

d(f, const). This is because var(f) = E[f ](1− E[f ]), while d(f, const) = min(E[f ], 1− E[f ]).

Thus, Theorem 2.1.4 can be written as If = Ω(d(f, const)), which compares the number

of non-constant edges to the global distance of f to being constant. On the other hand,

Theorem 2.1.2 can be written as I−f = Ω(d(f,monotone)), which compares the number of

non-monotone edges to the global distance of f to being non-monotone. Non-constant edges

are those that “leave the set of 1’s”, f−1(1), in the undirected hypercube and non-monotone

edges are those that “leave the set of 1’s”, f−1(1), in the directed hypercube.

2.1.2 The Path Tester and the Directed Margulis Inequality

It is straightforward to see that the directed Poincaré inequality of [GGL+00] is tight by

considering an anti-dictator function AD1(x) = 1−x1 and observing that I−AD1
= εAD1 = 1/2.

Therefore, the edge tester requires Ω(d) queries. So, how can we achieve a o(d) query tester?

Consider the following more general type of test.

Definition 2.1.6 (τ -Length Path Test). Given τ ∈ N, the τ -length path test samples x ∈

{0, 1}d uniformly at random, chooses a set T ⊆ [d] of τ i.i.d. uniform random coordinates,

and then obtains y ⪰ x by setting yi = 1 for all i ∈ T and yj = xj for all j ∈ [d] \ T .

In other words, y is the upper endpoint of a τ -length random walk from x in the directed

hypercube. The edge tester corresponds to the case of τ = 1 and this test catches a violation
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for AD1 with probability O(1/d). Suppose instead we set τ =
√
d. In this case the τ -length

path test catches a violation as long as (i) x1 = 0 and (ii) T ∋ 1, and the probability of these

events both occurring is Ω(1/
√
d), a vast improvement over the edge test1. At an intuitive

level, the reason why this test works well for the family of anti-dicators is that, while these

functions have few boundary edges, they have many boundary vertices (in fact all vertices are

on the boundary). Thus, informally, at each step of the walk there is an Ω(1/d) probability

of crossing the boundary and the final success probability is the sum of these probabilities.

Inspired by the above reasoning, one may ask if there is a directed isoperimetric inequality

which says “when there are few boundary edges, there are many boundary vertices”. Such

an inequality was proven by [CS14a] which led to the first o(d) query tester. To state

their inequality we need to define the notion of directed vertex boundary, defined as Γ−f =

2−d |{x : ∃(x, y) ∈ Ef}|. I.e. Γ−f is the fraction of points which are the lower endpoint of

some edge violation.

Theorem 2.1.7 (Directed Margulis, [CS14a]). Every f : {0, 1}d → {0, 1} satisfies

I−f · Γ
−
f = Ω(ε2f ).

This inequality gives a tradeoff between the edge and vertex boundaries. In fact, [CS14a]

prove a stronger inequality implying that either Gf (Xf , Yf , Ef ) (i) contains many edges, or

(ii) contains a large matching. Formally, let Γ−f,matching denote the size of the largest matching

in Gf (Xf , Yf , Ef ) divided by 2d.

1The reader may wonder why not set τ ≫
√
d. The reason we are limited to τ = O(

√
d) is as follows.

Consider a truncated anti-dictator function: TAD1(x) = AD(x) if |x| ∈ [d−
√
d

2 , d+
√
d

2 ], TAD1(x) = 0 if

|x| < d−
√
d

2 and TAD1(x) = 1 if |x| > d+
√
d

2 . By standard concentration bounds, we still have I−TAD1
= O(1)

and εTAD1
= Ω(1), but now if τ >

√
d, then one of the endpoints of the walk will be outside of the middle

layers and we will not catch a violation. In fact, truncated anti-dictator functions were used by [FLN+02]
to prove an Ω(

√
d) lower bound for non-adaptive, one-sided testers.
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Theorem 2.1.8 ([CS14a]). Every f : {0, 1}d → {0, 1} satisfies

I−f · Γ
−
f,matching = Ω(ε2f ).

Theorem 2.1.8 enables us to achieve o(d) query complexity using the τ -length path test

for τ ≫ 1. Originally, [CS14a] gave a Õ(d7/8ε−3/2) tester and [CST14] later gave a Õ(d5/6ε−4)

tester. Later [KMS18] formalized the path tester as follows.

Definition 2.1.9 (Path test). Choose p ∈ [log d] uniformly at random and set τ = 2p. Run

the τ -length path test2.

Using Theorem 2.1.8 one can show the following bound for the path tester, as defined in

Definition 2.1.9.

Theorem 2.1.10 (Path tester bound from Margulis). For every f : {0, 1}d → {0, 1}, the

path test finds a violation of monotonicity with probability Ω̃(ε
4/3
f ·d−5/6). Therefore, the path

tester is a Õ(d5/6ε−4/3) query tester.

It turns out that Theorem 2.1.7 is a directed version of the following isoperimetric inequal-

ity due to Margulis [Mar74], and hence we refer to it as the “directed Margulis inequality”.

In the following theorem Γf denotes the vertex boundary of f in the undirected hypercube.

Theorem 2.1.11 (Margulis, [Mar74]). Every f : {0, 1}d → {0, 1} satisfies

If · Γf = Ω(var(f)2).

2.1.3 The Directed Talagrand Inequality

The directed Margulis inequality Theorem 2.1.7 tells us, informally, that “either the edge

boundary is large, or the vertex boundary is large”. One may ask if there is an inequality

2To be completely formal, the path test actually performs a random walk going up or down, each with
probability 1/2. We ignore this detail for clarity.
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which interpolates smoothly between these two cases and if this could lead to a better

analysis of the path tester. Both of these questions were answered in the affirmative by

[KMS18] (referred to henceforth as “KMS”) who proved the following. For a point x ∈ Xf ,

the negative influence at x, denoted I−f (x), is the number edges incident to x that violate

monotonicity. If x ∈ Yf , then I−f (x) = 0.

Theorem 2.1.12 (Directed Talagrand, [KMS18]). Every f : {0, 1}d → {0, 1} satisfies3

Ex

[√
I−f (x)

]
= Ω(εf ).

Again, Theorem 2.1.12 is a directed analogue of the following isoperimetric inequality in

the undirected hypercube due to Talagrand [Tal93]. For a point x ∈ Xf , the total influence

at x, denoted If (x), is the number of sensitive edges in the undirected hypercube incident

to x. If x ∈ Yf , then If (x) = 0.

Theorem 2.1.13 (Talagrand, [Tal93]). Every f : {0, 1}d → {0, 1} satisfies

Ex

[√
If (x)

]
= Ω(var(f)).

We can think of the square root function in Theorem 2.1.12 as interpolating smoothly

between the two extremes “the edge boundary is large” vs. “the vertex boundary is large”.

Two very useful examples that illustrate this tradeoff are the anti-majority function and the

anti-dictator function, for which we give a discussion in Fig. 2.1.

Structurally, the hope is that this gives an interpolation between the two cases “Gf (Xf , Yf , Ef )

contains many edges” vs. “Gf (Xf , Yf , Ef ) contains a relatively large matching”. To obtain

such a structural result [KMS18] actually show a much stronger, robust version of Theo-

rem 2.1.12. Note that in Theorem 2.1.12 all the edge violations are “charged” to the the

points x where f(x) = 1. Allowing for edges to be charged to different endpoints arbitrarily

3The original inequality due to [KMS18] had Ω(εf/ log d) on the RHS and this was improved to Ω(εf ) by
[PRW22].
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Figure 2.1: On the left is a pictorial representation of an anti-majority function on the hypercube,

AM(x) = 1(|x| ≤ ⌊d/2⌋). On the right is a pictorial representation of a anti-dictator function

AD(x) = 1 − x1. Both functions satisfy εAM = εAD = 1/2, while their edge-boundaries are quite

different. We have I−AD = 1/2 since the influential edges are exactly those crossing the first di-

mension cut, of which their are exactly 2d−1. On the other hand I−AM = Ω(
√
d) since there are(

d
⌊d/2⌋

)
= Ω(2d/

√
d) vertices on the boundary of f−1(1), each incident to ⌈d/2⌉ influential edges.

However, notice that both functions satisfy E[
√

I−AD(x)],E[
√
I−AM(x)] = Θ(1). Thus, both of these

functions are tight examples for the directed Talagrand inequality Theorem 2.1.12, which is not the

case for the directed Poincaré inequality Theorem 2.1.2.

can greatly reduce the quantity in the LHS, due to the the square root inside the expecta-

tion. As a simple example, suppose f(x) = 0 iff x = (1, 1, . . . , 1). Then charging edges to

the points where f(x) = 1 or where f(x) = 0 causes the LHS to equal d · 2−d or
√
d · 2−d,

respectively. [KMS18] are able to show that the inequality always holds regardless of how

the edges are charged. This charging is specified by an edge coloring: given χ : E → {0, 1},

let I−f,χ(x) denote the number of violating edges (x, y) incident to x such that χ(x, y) = f(x).

Theorem 2.1.14 (Robust directed Talagrand, [KMS18]). Every f : {0, 1}d → {0, 1} and

χ : E → {0, 1} satisfy3

Ex

[√
I−f,χ(x)

]
= Ω(εf ).

The following lemma describes the structural property of the violation graph implied by

Theorem 2.1.14.

Lemma 2.1.15 (Good subgraphs, informal, [KMS18]). Suppose f : {0, 1}d → {0, 1} is Ω(1)-

far from monotone. There exists ∆ ∈ [d] such that Gf (Xf , Yf , Ef ) contains a subgraph
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Ggood(X, Y,Egood) with max degree ∆ and |Egood| = Ω(
√
∆ · 2d).

If ∆ = 1, the good subgraph is a matching of size ≈ 2d and when ∆ = d the good

subgraph contains at least ≈
√
d ·2d edges. The analysis of the path tester (Definition 2.1.9)

given by [KMS18] proves that there is a choice of τ ≈
√
d/∆ for which the τ -length path

test finds a violation with probability ≈ d−1/2. This results in the following theorem since

the right choice of τ is selected with probability 1/ log d.

Theorem 2.1.16 (Path tester bound from Talagrand, [KMS18]). For every f : {0, 1}d →

{0, 1}, the path test finds a violation of monotonicity with probability Ω̃(ε2f/
√
d). Therefore,

the path tester is a Õ(
√
d/ε2) query tester.

2.1.4 The KMS Optimal Path Tester Analysis

The main ideas behind the KMS analysis of the path tester are best illustrated by the case

when the good subgraph is a matching, i.e. when ∆ = 1 in Lemma 2.1.15.

When the good subgraph Ggood(X, Y,Egood) is a matching from X to Y , KMS show that

a random walk of length τ ≈
√
d succeeds in finding a violation with ≈ d−1/2 probability. A

key definition in their analysis is the notion of τ -persistence: a vertex x is τ -persistent if a τ -

length directed random walk leads to a point z where f(x) = f(z) with constant probability.

Using a simple argument based on the influence of the function, KMS argue that an average

directed random walk has ⪅ τ/
√
d = o(1) influential edges. Using Markov’s inequality, at

most o(2d) points in {0, 1}d can be non-persistent. Thus, we can remove all non-persistent

points and their matched partners from X and Y and still maintain |X| = |Y | = Ω(2d).

Thus, going forward we will assume that all points in X ∪ Y are persistent.

With Ω(1) probability, the tester starts from x ∈ X. Note that f(x) = 1. Let y denote

x’s partner in the matching and note that f(y) = 0. Let i be the dimension of the edge (x, y).

With probability roughly τ/d ≈ d−1/2, the directed walk will cross the ith dimension. Let us

condition on this event. We can interpret the random walk as traversing the edge (x, y), and
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then taking a (τ − 1)-length directed walk from y to reach the destination y′. (Note that we

do not care about the specific order of edges traversed by the random walk. We only care

about the value at the destination.) Since y is τ -persistent4, with Ω(1) probability the final

destination y′ will satisfy f(y′) = f(y) = 0. Putting it all together, the tester succeeds with

probability ≈ d−1/2.

Undirected Directed Tester Queries
Poincaré If = Ω(var(f)) I−f = Ω(εf ) Edge test O(dε−1)

Margulis If · Γf = Ω(var(f)2) I−f · Γ
−
f = Ω(ε2f ) Path test Õ(d5/6ε−4/3)

Talagrand Ex

[√
If (x)

]
= Ω(var(f)) Ex

[√
I−f,χ(x)

]
= Ω(εf ) Path test Õ(

√
dε−2)

Table 2.2: This table displays the isoperimetric inequalities for Boolean functions on the hypercube,

f : {0, 1}d → {0, 1}, and the monotonicity testing results that follow from the directed versions. In

fact, all of the directed inequalities hold for real-valued functions f : {0, 1}d → R by [BKR23,

Theorem 1.3].

2.1.5 On the Relationships Between Isoperimetric Inequalities

In this section we briefly discuss the formal relationships between the isoperimetric inequal-

ities over the hypercube covered in this section. First, each directed inequality implies its

undirected analogue, e.g. Theorem 2.1.2 implies Theorem 2.1.4. A formal proof is given in

[KMS18, Section 9.4]. The idea is that one can express the total influence as the sum of the

negative and positive influences: If (x) = I−f (x) + I+f (x). Then, for example, the directed

Poincaré inequality yields If = I−f + I+f = Ω(ε+f + ε−f ) where ε
+
f , ε

−
f denote the distance of f

to being monotone increasing and monotone decreasing, respectively. Thus, one just needs

to show that ε+f + ε−f = Ω(var(f)), or equivalently ε+f + ε−f = Ω(d(f, constant)). See [KMS18,

Lemma 9.6] for a proof of this.

Second, we show how the directed Talagrand inequality (Theorem 2.1.12) implies the

directed Margulis inequality (Theorem 2.1.7), which implies the directed Poincaré inequality

(Theorem 2.1.2). The same chain of implications holds for the undirected inequalities by

4Technically, one needs (τ − 1)-persistence, which holds from τ -persistence.
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analogous arguments. These proofs are straightforward and can be originally attributed to

[KMS18, Section 1.1].

Proof. Margulis =⇒ Poincaré: Recall the definition of I−f (x) and let Γ−f (x) = 1(I−f (x) > 0).

We have

I−f = Ex[I
−
f (x)] ≥ Ex[1(I

−
f (x) > 0)] = E[Γ−f (x)] = Γ−f

and so I−f ≥
√

I−f · Γ
−
f which completes the proof.

Proof. Talagrand =⇒ Margulis : We have

I−f · Γ
−
f = Ex[I

−
f (x)] · Ex[1(I

−
f (x) > 0)] ≥ Ex

[√
I−f (x)

]2
where the last step follows from Cauchy-Schwartz.

2.2 Domain Reduction for Hypergrids

We turn now to the general case of hypergrids, [n]d. What is the effect of n on the mono-

tonicity testing problem? It is a folklore result that testing Boolean functions on the line,

f : [n]→ {0, 1}, can be done with O(ε−1) queries, independent of n: (i) sample a set T ⊆ [n]

of O(ε−1) random points and (ii) accept iff f |T is monotone. The analysis of this tester

exploits the fact that [n] is a total order and that the function is Boolean.

In contrast, testing real-valued functions on the line, f : [n] → R, requires Ω(log n)

queries (see e.g. [CS14b]). Essentially, this is because one can construct real-valued func-

tions where all violations exist at a certain distance: consider the function assigning values

[2, 1, 4, 3, 6, 5, . . . , n, n−1]. This function is 1/2-far from monotone while all violations occur

between adjacent entries. Boolean functions on the line are quite different in that it is not

possible to avoid “long-distance violations”. I.e., consider a Boolean function with two viola-

tions between adjacent entries, [. . . , 1, 0, . . . , 1, 0, . . .]. Here the left-most 1 and the right-most

0 also form a violation. Is it possible to exploit this structure for Boolean functions over
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the d-dimensional hypergrid, [n]d? In particular, is it possible to exploit this structure to

reduce monotonicity testing of f : [n]d → {0, 1} to monotonicity testing of f : [k]d → {0, 1}

for k ≪ n? We refer to this as the domain reduction problem.

Formally, consider sampling k i.i.d. uniform elements of [n] across each dimension and

restricting f to the resulting [k]d sub-grid. For k independent of n, can we lower bound

the expected distance to monotonicity of this restriction? Note that if one can prove a

lower bound of Ω(εf ), then this reduces the problem over general [n]d to the smaller domain

[k]d. It turns out that one needs k = Ω(
√
d) for this to hold [BCS20, Theorem 8.1] (and

Theorem 3.6.1 in this thesis). In particular, a reduction to the hypercube domain is not

possible using such a method. Nonetheless, we show that such a result indeed holds for

k = poly(d/εf ). We give a proof of this theorem in Chapter 3.

Theorem 2.2.1 (Domain Reduction Theorem for Hypergrids, [BCS20]). Let f : [n]d →

{0, 1} and k ∈ Z+. If T = T1× · · · × Td is a random sub-grid, where for each i ∈ [d], Ti is a

(multi)-set5 formed by taking k independent uniform samples from [n], then

ET

[
εf |T

]
≥ εf −

C · d
k1/7

where C > 0 is a universal constant. In particular, if k ≥
(

2Cd
εf

)7
, then ET [εfT ] ≥ εf/2.

For the d = 1 case (the line domain), [BRY14a] prove a stronger bound. More recently,

[HY22] achieved a domain reduction style result using only O((d/εf )
3) samples by choos-

ing a random “gridding” of the domain. Both the results of [BCS20, HY22] also hold for

measurable functions over continuous product spaces f : Rd → {0, 1}.

5We treat duplicate elements of a multi-set as being distinct copies of that element, which are then treated
as immediate neighbors in the total order.
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2.3 Monotonicity Testing and Isoperimetry on the Hypergrid

Domain reduction (Theorem 2.2.1) allows us to assume that n = poly(d/ε), but even so the

techniques discussed in Section 2.1 do not directly port to the hypergrid, even for n = 3.

The initial proofs for the directed isoperimetric inequalities spelled out in Section 2.1 were

all highly specific to the n = 2 case, and in fact it is not clear a priori what the right

generalizations are. In this section we discuss the generalizations of the inequalities in

Table 2.2 which have been proven for hypergrids and the resulting monotonicity testers.

All of the inequalities for hypercubes listed in Table 2.2 involve some notion of the

negative influence and it is not clear what the right generalization of this is for functions

f : [n]d → {0, 1}. The typical treatment of the hypergrid as a DAG considers (x, y) to be an

edge iff
∑d

i=1 |xi− yi| = 1. One may wonder why not define influence using this set of edges.

Consider the function f : [n] → {0, 1} defined as f(x) = 1 iff x ≤ n/2. We have εf = 1/2,

but only a single violating edge meaning that the influence would be only O(1/n), precluding

any inequality resembling those in Table 2.2 from holding. Thus, one needs to consider other

notions of influence which consider “long-distance interactions” between points on the same

line to obtain such inequalities.

2.3.1 The Line Tester and Dimension Reduction

Recall the directed Poincaré inequality Theorem 2.1.2 and the resulting bound for the edge

tester, Corollary 2.1.3. A natural generalization of the edge tester is the line test, first

considered by [DGL+99]: given f : [n]d → {0, 1}, sample a random axis-parallel line ℓ in [n]d

and run a d = 1 monotonicity tester on f |ℓ. A folklore result is that O(ε−1) queries suffice

to test monotonicity of Boolean functions on the line and so the query complexity of the line

test depends on the distance to monotonicity, εf |ℓ , of this random line restriction. A lower

bound on Eℓ[εf |ℓ ] was proven by [DGL+99], who referred to this inequality as dimension

reduction.
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Theorem 2.3.1 (Directed Poincaré for Hypergrids, [DGL+99]). Let f : [n]d → {0, 1} and

let ℓ denote a uniform random axis-parallel line in [n]d. Then Eℓ[εf |ℓ ] = Ω(εf/d).

Note that when n = 2 (the hypercube) an axis-parallel line ℓ in [n]d is an edge. Moreover,

if this edge is a violation, then εf |ℓ = 1/2 and otherwise εf |ℓ = 0. Thus, the above inequal-

ity generalizes the directed Poincaré inequality (Theorem 2.1.2). From Theorem 2.3.1 one

obtains the following bound using the line tester with some technical modifications.

Theorem 2.3.2 (Line tester bound, [DGL+99, BRY14a]). There is a Õ(dε−1) query mono-

tonicity tester for functions f : [n]d → {0, 1}.

2.3.2 The Directed Margulis Inequality for Hypergrids

In Section 2.1.2 we discussed how the edge tester requires Ω(d) queries and so to obtain

o(d) testers one needs to query pairs of points differing on more than one coordinate, i.e.

path testers. As we discussed in Section 2.1.2, more sophisticated directed isoperimetric

inequalities involving some notion of vertex boundary are needed to analyze path testers.

This was first achieved for hypergrids by [BCS18] who generalized the directed Margulis

inequality, Theorem 2.1.7. To capture long-distance interactions between points on the

same line, they used the following notion of the “augmented hypergrid”, which was first

considered by [CS13].

Definition 2.3.3 (The augmented hypergrid, [CS13]). Let n be a power of two. The aug-

mented hypergrid, denoted An,d, is the DAG with vertex set [n]d and edge set

E = {(x, y) : ∃i ∈ [d], m ∈ [log n] such that |xi − yi| = 2m and xj = yj for all j ̸= i}.

For f : An,d → {0, 1}, the negative influence I−f and directed vertex boundary Γ−f are

defined analogously to the hypercube setting, but with respect to the edge set given in

Definition 2.3.3. Similarly, let Γ−f,matching denote the size of the largest matching of decreasing

edges for f in An,d, divided by nd.
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Theorem 2.3.4 (Directed Margulis for Hypergrids, [BCS18]). Every f : An,d → {0, 1} sat-

isfies

I−f · Γ
−
f,matching = Ω(ε2f ).

In the hypercube setting, recall that the τ -length path test samples x uniformly at ran-

dom, chooses a set T of τ random coordinates, and then obtains y by incrementing xi for

all i ∈ T where xi = 0. In the hypergrid, we have a new issue to consider: by how much

should we increment xi? We will call this parameter the step size, which should also be

chosen randomly according to some distribution. Loosely speaking, we will consider a path

test in the hypergrid to be any generalization of Definition 2.1.9: choose x ∈ [n]d uniformly at

random, then “increment” x in τ = 2p coordinates where p is uniformly chosen from [log d].

In light of Theorem 2.3.4, [BCS18] choose the step size for the path tester as a random

power of two in the interval [1, n]. Combining Theorem 2.3.4 and an appropriate generaliza-

tion of the path tester analysis by [KMS18] (sketched in Section 2.1.4), [BCS18] show that

this version of the path test finds a violation with probability Ω( ε4/3

d5/6polylog (n,d,1/ε)
). Since the

dependence on n is poly-logarithmic, applying the domain reduction theorem, Theorem 2.2.1,

yields the following testing result for hypergrids, generalizing Theorem 2.1.10.

Theorem 2.3.5 (Path test bound for hypergrids from domain reduction and Margulis,

[BCS18, BCS20]). For every f : [n]d → {0, 1}, the path test using random-power-of-2 step

sizes finds a violation of monotonicity with probability Ω̃(ε
4/3
f d−5/6). Therefore, this is a

Õ(d5/6ε−4/3) query tester.

2.3.3 The Directed Talagrand Inequality for Hypergrids

The question now is whether it is possible to generalize the directed Talagrand inequalities

Theorems 2.1.12 and 2.1.14 to hypergrids. We achieve such a result in Chapter 4 (originally

published in [BCS23b]) using yet another way of capturing long-distance interactions on a

line, by what we call the fully augmented hypergrid.

22



Definition 2.3.6. The fully augmented hypergrid is the DAG with vertex set [n]d and edge

set

E = {(x, y) : ∃i ∈ [d] such that xi < yi and xj = yj for all j ∈ [d] \ {i}}.

Given a function f : [n]d → {0, 1}, we use Gf (Xf , Yf , Ef ) to denote the violation graph

of f which is the subgraph of the fully augmented hypergrid defined as follows: Xf =

{x : f(x) = 1}, Yf = {y : f(y) = 0}, and Ef = {(x, y) ∈ E : x ∈ Xf , y ∈ Yf}. An i-aligned

violation is an edge (x, y) ∈ E such that xi < yi and x ∈ Xf , y ∈ Yf .

Definition 2.3.7 (Thresholded Influence). Fix f : [n]d → {0, 1} and a dimension i ∈ [d]. Fix

a point x ∈ [n]d. The thresholded influence of f at x along coordinate i is denoted Φf (x; i),

and has value 1 if there exists an i-aligned violation (x, y). The thresholded influence of f

at x is Φf (x) =
∑d

i=1Φf (x; i).

Note that the thresholded influence coincides with the definition of negative influence in

the hypercube when n = 2. Also note that for any x, Φf (x) ∈ {0, 1, . . . , d} and is independent

of n.

Theorem 2.3.8 (Directed Talagrand for Hypergrids, [BCS23b]). Every f : [n]d → {0, 1}

satisfies

Ex∈[n]d

[√
Φf (x)

]
= Ω

(
εf

log n

)
.

As is the case in the hypercube setting, obtaining the right structural result for the

violation graph (recall Lemma 2.1.15) requires a robust version of Theorem 2.3.8. We achieve

this using the following colorful version of the thresholded influence.

Definition 2.3.9 (Colorful Thresholded Influence). Fix f : [n]d → {0, 1} and χ : E → {0, 1}.

Fix a dimension i ∈ [d] and a point x ∈ [n]d. The colorful thresholded influence of f at x

along coordinate i is denoted Φf,χ(x; i), and has value 1 if there exists an i-aligned violation

(x, y) such that χ(x, y) = f(x), and has value 0 otherwise. The colorful thresholded influence

of f at x is Φf,χ(x) =
∑d

i=1Φf,χ(x; i).
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In Chapter 4 we prove a robust directed Talagrand isoperimetry theorem for Boolean

functions on the hypergrid. It is a strict generalization of Theorem 2.1.14.

Theorem 2.3.10 (Robust Directed Talagrand for Hypergrids, [BCS23b]). Every f : [n]d →

{0, 1} and every χ : E → {0, 1} satisfies

Ex∈[n]d

[√
Φf,χ(x)

]
= Ω

(
εf

log n

)
.

From Theorem 2.3.10, one obtains a generalization of Lemma 2.1.15 in the fully aug-

mented hypergrid. Running the path tester with each step size chosen uniformly at random

from [n] yields the following testing result by following an appropriate generalization of the

KMS analysis sketch in Section 2.1.4.

Theorem 2.3.11 (Uniform-length path test for hypergrids, [BCS23b]). For every f : [n]d →

{0, 1}, the path test with uniformly random step sizes finds a monotonicity violation with

probability Ω̃
(

ε2

n
√
d

)
. Thus, this is a Õ(n

√
dε−2) query tester.

Notice that here the dependence on n is linear, meaning that the domain reduction

theorem, Theorem 2.2.1, by itself will not wash it away. Thus, a new set of ideas are required

and this is where the contents of Chapter 5 (originally published in [BCS23a]) comes in.

Directed Inequality Tester Queries

Dimension Reduction Eℓ[εf |ℓ ] = Ω(εf/d) Line test Õ(dε−1)

Margulis I−f · Γ
−
f = Ω(ε2f ) Path test in An,d Õ(d5/6ε−4/3)

Talagrand Ex

[√
Φf,χ(x)

]
= Ω(εf ) Shifted path test d1/2+o(1)ε−2

Table 2.3: This table displays the directed isoperimetric inequalities for Boolean functions on the

hypergrid, f : [n]d → {0, 1}, and the monotonicity testing results that follow from them. In fact,

all of these inequalities hold more generally for real-valued functions f : [n]d → R (by [BKR23,

Theorem 1.3], or Theorem 6.0.1 in this thesis). See Theorem 6.0.3 which generalizes the robust

directed Talagrand inequality in this table to real-valued functions.
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2.4 Nearly Optimal Path Tester Analysis for Hypergrids

The following question is the starting point for the most recent work of [BCS23a] for hyper-

grids: is it possible to remove the dependence on n from Theorem 2.3.11 with Theorem 2.3.10

being the isoperimetric inequality at the core of the analysis? We answer this question in

the affirmative in Chapter 5, proving the following result, using a modified version of the

path tester.

Theorem 2.4.1 (Shifted path test, [BCS23a]). There is a path tester for hypergrids which,

for every f : [n]d → {0, 1}, finds a monotonicity violation with probability at least ε2

d1/2+o(1) .

Thus, there is a d1/2+o(1)ε−2 query tester.

We defer a definition of the path test used to prove Theorem 2.4.1 for now (see Defini-

tion 2.4.2 and Definition 2.4.3), until after we’ve given some context. For a formal definition

see Section 5.1.

In addition to Theorem 2.3.10, the analysis leading to the above theorem requires many

new ideas that go beyond the analysis due to KMS sketched in Section 2.1.4 for the hypercube

case. This section is devoted to discussing the key challenges in analyzing path testers from

Theorem 2.3.10 without incurring a polynomial dependence on n and how we circumvent

these challenges in Chapter 5.

As we mentioned, Theorem 2.3.10 implies a similar structural result to Lemma 2.1.15

implying the existence of a “good subgraph” Ggood(X, Y,Egood) in the fully augmented hy-

pergrid. The simplest, most instructive case is again when this graph is a matching between

X and Y . As in our discussion for the hypercube case, let us assume that εf = Ω(1) and

so |X| = |Y | = Ω(nd). Note that the matched pairs (x, y) are axis-aligned, that is, differ in

exactly one coordinate i, but now yi − xi is an integer in {1, 2 . . . , n− 1}. The remainder of

this section is devoted to showing how we analyze path testers in the hypergrid under the as-

sumption that we have such a matching. First, we discuss briefly how one obtains an O(n
√
d)

tester by a natural extension of the KMS analysis for the hypercube case. Then we discuss
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how we improve this to O(log n
√
d) and the key challenges in doing so. Note that by domain

reduction, Theorem 2.2.1, we may assume n ≤ poly(d/εf ) and so O(log n
√
d) = Õ(

√
d).

An O(n
√
d) Tester in the Matching Case: Recall the KMS path tester analysis for

the matching case which we sketched in Section 2.1.4. One can generalize the hypercube

persistence arguments to again allow us to assume that every point participating in the

matching is persistent while still maintaining |X| = |Y | = Ω(nd).

The tester picks x ∈ X with Ω(1) probability. Let y be its matched partner, which differs

in the ith coordinate. If the number of steps is τ ≈
√
d, then with τ/d ≈ d−1/2 probability,

the walk will choose to move along the ith coordinate. Conditioned on this event, we would

like to relate the random walk to a persistent walk from y. However, there is only a 1/n

chance that the length jumped along that coordinate will be exactly yi−xi. Thus, this loses

an n factor, and indeed this is the argument leading to Theorem 2.3.11.

2.4.1 The BCS Shifted Path Tester Analysis for the Matching Case

In this section we sketch the arguments from [BCS23a] that lead to a O(log n
√
d) query

tester when the good subgraph is a matching of Ω(nd) violating edges in the fully augmented

hypergrid. In general, the good subgraph may not be a matching. This leads to another set

of challenges, which lead us to incur an extra do(1) factor. We briefly discuss these at the

end of the section.

Internal Points and the Issue of Persistence: Our first idea is to try conditioning the

random walk on passing through a random internal point between a matched pair (x, y).

Formally, let I(x, y) = {w : x ⪯ w ⪯ y}. For the random walk to pick a random point in

I(x, y) with large enough probability, one needs to first modify the way the step sizes are

chosen in each coordinate. Thus, the tester will generate walks according to the following

distribution. See Definition 5.1.1 for a formal definition.

26



Definition 2.4.2 (Random Walk Distribution, informal). A τ -step upwalk from a point

x ∈ [n]d generates a point z ⪰ x as follows. First choose T ⊂ [d] of τ coordinates at random

to increase. For each i ∈ T , the step size for coordinate i is chosen by picking qi ∈ [log n]

uniformly, then picking a uniform random step value ai ∈ [min(2qi , n−xi)]. Then, zi = xi+ai

for each i ∈ T and zi = xi for each i /∈ T . Downwalks are defined analogously.

The point of choosing step sizes in this way is as follows. Again, we set the walk length

as τ ≈
√
d and we may assume that every point in X ∪ Y is persistent with respect to our

new random walk distribution, Definition 2.4.2. Our tester will pick x ∈ [n]d uniformly at

random, generate z according to the new random walk distribution, and check if f(x) > f(z).

Again, our starting point x belongs to X with Ω(1) probability. Let y ∈ Y be x’s partner in

the matching. I.e. y = x+s·ei for some i ∈ [d], s ∈ [n]. Again, we have i ∈ T with probability

≈ d−1/2. For the step size, we have qi ∈ [s, 2s] with probability 1
logn

. Conditioned on these

events, the random walk passes through a uniform random internal point w ∈ I(x, y) with

constant probability. We may assume that at least half of w ∈ I(x, y) satisfy f(w) = 0,

for otherwise we may perform a symmetric tester analysis using the version of the tester

performing downwalks. Now, if we could argue that these internal points were persistent,

then we would be done. Unfortunately, this is not possible; even though these edges form a

matching, i.e. their endpoints are distinct, they may share internal points arbitrarily. Thus,

it is possible that the number of internal points is extremely small and so removing non-

persistent points may remove all internal points. This brings us to our main idea which

circumvents this issue. The following is an informal statement of the tester. We provide a

sketch for why this tester works well in the remainder of the section.

Definition 2.4.3 (Shifted Path Test, informal, [BCS23a]). Sample a pair of points according

to the following distributions, each with probability 1/2:

1. (Down-shifted Upwalk) Sample x ∈ [n]d uniformly at random and generate z according

to the τ -length upwalk distribution from x. Generate z′ by a (τ − 1)-length downwalk

from z and let s = z − z′. Return (x− s, z − s).

27



2. (Downwalk) Sample x ∈ [n]d uniformly at random and generate z according to the

τ -length downwalk distribution from x. Return (z, x).

Mostly-Zero-Below Points, and Red Edges: The following is a key definition: call a

point z mostly-zero-below for length τ−1, or simply (τ−1)-mzb, if a (τ−1)-length downwalk

from z leads to a zero with ≥ 0.9 probability. Suppose an upwalk of length τ−1 from a point

x ∈ X reaches an (τ − 1)-mzb point z. Then, a random shift (x − s, z − s) has a constant

probability of being a violation. The reason is (i) P[f(x − s) = f(x) = 1] ≥ 0.9 because x

is (τ − 1)-persistent, and (ii) P[f(z − s) = 0] ≥ 0.9 because z is (τ − 1)-mzb. By a union

bound, the tester will find a violation with constant probability (conditioned on discovering

the pair (x, z)).

To formalize this analysis, we call a matching edge (x, y) red if for a constant fraction

of the interior points w ∈ I(x, y), a (τ − 1)-length upwalk ends at a (τ − 1)-mzb point

with constant probability. If there are Ω(nd) red matching edges, one can argue that the

down-shifted upwalk test (item (1) of Definition 2.4.3) succeeds with the desired probability.

Firstly, with probability Ω(1), the tester starts the walk at an endpoint x of a red edge,

(x, y). With probability τ/d ≈ d−1/2, the walk will cross the dimension corresponding to

(x, y). Conditioned on this event, we can interpret the walk as first moving to a random

internal point w ∈ I(x, y) (with probability ≈ 1
logn

) and then taking a (τ − 1)-length upwalk

from w to get to the point z. (Refer to the left side of Fig. 2.2.) Since the edge was red,

with constant probability, z is (τ − 1)-mzb. Consider a random shift of (x, z), shown as

(x − s, z − s) in Fig. 2.2. As discussed in the previous paragraph, this shifted pair is a

violation with constant probability. All in all, the tester succeeds in finding a violation with

≈ 1√
d logn

probability. But what if there are no red edges? This brings us to the next key

idea.

Translations of Violation Subgraphs, and Blue Edges. Suppose a matching edge

(x, y) is non-red. So, for most internal points w ∈ I(x, y), a (τ − 1)-length walk will instead
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Figure 2.2: This figure shows the key argument that either the down-shifted upwalk test or the

downwalk test find a violation with probability ≈ 1√
d logn

when the good subgraph is a matching of

size Ω(nd). The left drawing illustrates how red edges enable the analysis of the down-shifted upwalk

test and the right drawing illustrates how blue edges enable the analysis of the downwalk test. In

both drawings, the edge (x, y) is in the initial violation matching.

reach a (τ−1)-mostly-one-below (mob) point, z. (Refer to the right side of Fig. 2.2). Fix one

such walk, which can be described by an “up-shift” s. I.e. the walk from w reaches z := w+s.

Consider the corresponding shift of the full edge (x, y) to (x′, y′), where x′ = x + s and

y′ = y+s. What can we say about this edge? Since both x and y are (τ−1)-persistent, with

high probability both f(x′) = f(x) = 1 and f(y′) = f(y) = 0. Observe that most internal

points z ∈ I(x′, y′) are (τ − 1)-mob. Now, performing a τ -length downward random walk

from y′ will pass through a mostly-one-below internal point from I(x′, y′) with probability

≈ 1√
d logn

. This motivates the definition of a blue edge. A violating edge is called blue if a

constant fraction of its internal points are (τ − 1)-mostly-one-below.

Red-blue Win-win Flow Argument: We now have two types of edges which are each

good for the tester (Definition 2.4.3) for different reasons; red edges are good for the down-

shifted upwalk test, and blue edges are good for the downwalk test. Again, if the matching

contains a large fraction of red edges, then the down-shifted upwalk test discovers a violation

with probability ≈ 1√
d logn

.

Suppose instead that most edges in the matching are non-red. Then informally, we argue
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that performing a random translation of the matching discovers another violation matching

consisting mostly of blue edges. What does it mean to translate “all edges together”?

Through the random translation, every non-red edge (x, y) in the original violation matching

leads to a distribution over blue edges (x′, y′). The idea is to treat this as a fractional flow

on these blue edges. If the original matching had few red edges, one can construct a large

collection of blue edges sustaining a large flow. Integrality of flow implies there must be

another large violation matching in the support of this distribution whose edges are blue.

This large blue matching implies that the downwalk test succeeds in discovering a violation

with probability ≈ 1√
d logn

. This concludes the proof sketch for the case when the good

subgraph is a matching.

Thresholded Degrees, Peeling, and the do(1) Loss: Another gnarly issue with hyper-

grids is the distinction between degree and “thresholded degree”. The relevant “degree” of

a vertex x (for the path tester analysis) in a violation subgraph is not the number of edges

incident to it, but rather the number of different dimensions i so that there is an i-edge

incident to it. This is the “thresholded degree” (coming from Definition 2.3.7), and it is

between 0 and d, whereas the standard degree could be as large as nd. It is critical one

uses thresholded degree for the path tester analysis, to avoid the linear dependence on n.

Observe that for the matching case, these degrees are identical, making the analysis easier.

While the path tester analysis works with thresholded degree, the flow-based transla-

tion arguments alluded to above need to use normal degrees. In particular, one can use

flow-arguments to relate the bound on the standard degree of the new violation subgraphs.

However, one cannot a priori do so for the thresholded degree. To argue about the thresh-

olded degree, we need a stronger notion of a good subgraph, satisfying specific conditions

for both thresholded and standard degrees of the vertices. It is in the construction of this

graph where we lose the do(1) factor.
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2.5 Open Questions in Monotonicity Testing

We conclude the chapter by discussing some of the open problems in monotonicity testing

which we find most notable.

Adaptivity: The most obvious question is to resolve the gap of Ω̃(d1/3) vs Õ(
√
d) for

adaptive testing.

Question 2.5.1. What is the adaptive query complexity of monotonicity testing of functions

f : {0, 1}d → {0, 1}?

So far, essentially all upper bounds for monotonicity testing use non-adaptive testers. The

state of the art non-adaptive testers of [KMS18, BCS23a] work by querying the endpoints of

a directed random walk. At a qualitative level, the longer the random walk the better, since

this increases the likelihood of the test leaving the set of 1’s. An important limitation of this

approach is that the walk length cannot be≫
√
d since otherwise one of the endpoints will be

outside of the middle layers of the hypercube. For any function f : {0, 1}d → {0, 1} one can

consider the “truncated” version of f which sets f(x) = 0 whenever |x| < d
2
−C

√
d log(d/ε)

and f(x) = 1 whenever |x| > d
2
+C

√
d log(d/ε). This truncation has a negligible effect on the

distance to monotonicity, but now querying points in the outer layers gives no information.

Thus, to increase the walk length beyond
√
d, one has to consider undirected random

walks: sample x uniformly and obtain y by incrementing or decrementing x on a random set

of τ coordinates. The problem is now that x and y are not comparable. To deal with this, one

may try to use adaptivity in various ways. For example, [CS19] gave an O(I)·poly(ε−1, log d)

query adaptive tester for functions with total influence If ≤ I, which uses adaptivity to

perform a binary search procedure which looks for violations on a long undirected random

walk. Another novel use of adaptivity is described by [CWX17] (see Section 7) who gave an

adaptive tester achieving O(d1/3) queries against the hard distribution which they used to

prove their Ω̃(d1/3) lower bound. This tester uses adaptivity to search for coordinates which

are “safe” to decrement.

31



Tolerant Testing: A tolerant monotonicity tester is given two proximity parameters

ε1 < ε2 ∈ (0, 1) and should (a) accept with probability ≥ 2/3 when εf ≤ ε1 and reject

with probability ≥ 2/3 when εf ≥ ε2. Tolerant monotonicity testing has seen some recent

attention [PRW22, BKR23, CDL+23]. Motivated by a direct connection with the problem

of approximating the distance to monotonicity, [PRW22] and [BKR23] obtain poly(n, 1/ε2)

query tolerant testers for the “large-gap” regime when ε1 ≤ ε2/Ω(
√
d log d) for Boolean

functions, and real-valued functions, respectively, over the hypercube. In general, agnostic

learning algorithms (e.g. [LV23]) imply 2Õ(
√

d/(ε2−ε1)) query testers and recently [CDL+23]

proved a 2Ω(d1/4/
√
ε2−ε1) lower bound for non-adaptive testers. Resolving this gap is an out-

standing open question.

Hypergrids: In light of our d1/2+o(1) tester for hypergrids, one may wonder if the o(1)

factor can be removed to obtain a bound more closely resembling the best upper of Õ(
√
d)

for hypercubes due to [KMS18].

Question 2.5.2. Is there an Õ(
√
d) query monotonicity tester for functions f : [n]d →

{0, 1}?

A possible approach towards answering this question was proposed by [BCS23b, Section

8] who conjectured a stronger directed isoperimetric inequality than Theorem 2.3.10 holds,

using a notion they called the weighted influence [BCS23b, Def. 8.1, 8.3]. In fact they prove

that the non-robust version of the directed Talagrand inequality using weighted influence

does hold [BCS23b, Theorem 8.6]. Interestingly, it follows quite easily from the robust

version of the Talagrand inequality using thresholded influence (Theorem 2.3.10). However,

to yield the desired monotonicity testing result we again require a robust version, which

seems much harder to prove [BCS23b, Conjecture 8.5].

Monotonicity Testing on General Posets: Another natural question which has re-

ceived little attention is that of monotonicity testing of Boolean functions over arbitrary
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partial orders (posets). ForN -element posets, [FLN+02] proved an upper bound of O(
√

N/ε)

and a lower bound of NΩ( 1
log logN

) for non-adaptive testers. It would be interesting to resolve

this gap. Towards this, it would be interesting to understand what structural properties of a

poset dictate the hardness of testing monotonicity. Given that directed isoperimetric theo-

rems have been central in the study of monotonicity testing over hypercubes and hypergrids,

it may be an interesting direction to explore the concept of directed isoperimetry for other

partial orders.

Real-Valued Functions: Recently [Fer23] studied monotoncity testing of Lipshitz fun-

tions with continuous domain and range f : [0, 1]d → R with respect to L1 distance. They

prove a version of the the directed Poincaré inequality (see [Fer23, Theorem 1.2]) for such

functions and conjecture that a version of the directed Talagrand inequality should also hold

(see [Fer23, Conjecture 1.8]).

Functions with Bounded Image Size: Monotonicity testing of functions whose image

consists of at most r distinct elements f : {0, 1}d → [r] is studied in Part II of this thesis

(originally published in [BKR23]) and also by [PRV18]. We prove a Boolean decomposition

theorem (see Theorem 6.0.1 or [BKR23, Theorem 1.3]) for functions f : D → R for any

partial order D which implies that all the directed isoperimetric inequalities discussed in

this chapter also hold for real-valued functions, even those over hypergrids (in particular,

see Theorem 6.0.3). Still, many aspects of the path tester need to be generalized and

the modified analysis incurs a loss of a factor of r. We generalize this analysis over the

hypercube in Chapter 7 and show matching upper and lower bounds of Θ̃(r
√
d) for one-

sided non-adaptive monotonicity testing of functions f : {0, 1}d → [r]. A natural question is

whether the tester analysis of [BCS23a] (Chapter 5 of this thesis) for f : [n]d → {0, 1} can be

generalized to functions with image [r]. We believe this is possible using Theorem 6.0.3 (our

robust directed Talagrand inequality for f : [n]d → R), but may require carefully generalizing

each step of the arguments in Chapter 5, which is quite involved and technical.
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Conjecture 2.5.3. There is a (r
√
d)1/2+o(1)ε−2 query monotonicity tester for functions

f : [n]d → [r].

Another natural open question is whether one can generalize the Ω̃(
√
d) lower bound for

non-adaptive two-sided testers of [CWX17].

Conjecture 2.5.4. Non-adaptive monotonicity testing of functions f : {0, 1}d → [r] requires

Ω̃(r
√
d) queries.
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Part I

Monotonicity Testing of Boolean

Functions over Hypergrids
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CHAPTER 3

Domain Reduction

In this chapter we prove domain reduction theorems for d-dimensional hypergrids and contin-

uous product spaces. These results were originally published in [BCS20]. We refer the reader

to Section 2.2 for a discussion on domain reduction. Our main result is the following domain

reduction theorem for hypergrids, which reduces monotonicity testing of Boolean functions

over [n]d for arbitrary n to the same problem over domain [k]d where k ≤ poly(d/ε).

Theorem 3.0.1 (Domain Reduction Theorem for Hypergrids). Let f : [n]d → {0, 1} be

any function and let k ∈ Z+ be a positive integer. If T = T1 × · · · × Td is a randomly

chosen sub-grid, where for each i ∈ [d], Ti is a (multi)-set formed by taking k i.i.d.

samples from the uniform distribution on [n], then

ET [εfT ] ≥ εf −
C · d
k1/7

where C > 0 is a universal constant. In particular, if k ≥
(

2Cd
εf

)7
, then ET [εfT ] ≥ εf/2.

The construction in Section 3.6 shows that such a theorem is impossible for k = o(
√
d),

and thus, domain reduction requires k and d to be polynomially related.

Continuous Domains. The independence of n in Theorem 3.0.1 suggests the possibility

of a domain reduction result for Boolean functions defined over Rd. We show that this is

indeed true if f : Rd → {0, 1} is measurable (formal definitions in Section 3.5) and defined

with respect to a (Lebesgue integrable) product distribution.
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Theorem 3.0.2 (Domain Reduction Theorem for Rd). Let f : Rd → {0, 1} be any mea-

surable function and let k ∈ Z+ be a positive integer. Let D =
∏d

i=1Di be a (Lebesgue

integrable) product distribution such that the distance to monotonicity of f w.r.t. D is

εf . If T = T1 × · · · × Td is a randomly chosen hypergrid, where for each i ∈ [d], Ti ⊂ R

is formed by taking k i.i.d. samples from Di, then ET [εfT ] ≥ εf − C·d
k1/7

, where C > 0 is

a universal constant. In particular, if k ≥
(

2Cd
εf

)7
, then ET [εfT ] ≥ εf/2.

The above theorem essentially reduces the continuous domain to a discrete hypergrid

[k]d where k is at most some polynomial of the dimension d, and this enables one to obtain

monotonicity testers for Boolean functions over Rd under product measures.

The main ingredient in the proof of Theorem3.0.2 is a discretization lemma (Lemma3.5.5).

Using standard measure theory, one can show that for any measurable Boolean function over

Rd and any δ > 0, there exists a large enough natural number N = N(f, δ) with the following

property. The domain Rd can be divided into an Nd sized d-dimensional grid, such that in

at least a (1− δ)-fraction of grid boxes, the function f has the same value. (In some sense,

this is what it means for f to be measurable.) Ignoring the δ-fraction of “mixed” boxes, the

function f can be thought of as a discrete function on [N ]d.

The only guarantee on N is that it is finite; as it depends on f , N could be extremely

large compared to d. This is where Theorem 3.0.1 shows its power. The sampling parameter

k is independent of N , and this establishes Theorem 3.0.2. We give a detailed proof in

Section 3.5.2.

3.1 Domain Reduction Proof Overview

Theorem 3.0.1 is a direct corollary of the following lemma, applied to each dimension.

Lemma 3.1.1 (Domain Reduction Lemma). Let f : [n]×
(∏d

i=2[ni]
)
→ {0, 1} be any func-

tion over a rectangular hypergrid for some n, n2, . . . , nd ∈ Z+ and let k ∈ Z+. Choose T to
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be a (multi-) set formed by taking k i.i.d. samples from the uniform distribution on [n] and

let fT denote f restricted to T ×
(∏d

i=2[ni]
)
. Then ET [εf − εfT ] ≤ C

k1/7
where C > 0 is a

universal constant.

This lemma is the heart of our results, and in this section we give an overview of its

proof. Let us start with the simple case of d = 1 (the line). Monotonicity testers for the

line immediately imply domain reduction for d = 1 [DGL+99, BRY14a]. A u.a.r. sample of

Õ(1/εf ) points in [n] contains a monotonicity violation with large probability (> 9/10, say),

and thus the restriction of f to this sample has distance Ω̃(εf ). However, Ω(εf ) is weak for

what we need since, even if one could generalize this argument to the setting of Lemma 3.1.1,

we would need to apply it d times to get the full domain reduction (Theorem 3.0.1). This

would imply a final lower bound of εf/C
d, for some constant C, which has little value towards

proving a sublinear-in-d query tester.

Fortunately, quantitatively stronger domain reduction exists for the line. BRY [BRY14a,

Theorem 3.1] proves that if one samples Θ(s2/εf ) points, then the expected distance of the

restricted function is at least εf (1 − 1/s). Numerically speaking, this is encouraging news,

since we could try to set s = Θ(d) and iterate this argument d times (over each dimension).

Of course, this result for the line alone is not enough to deal with the structure of general

hypergrids, but forms a good sanity check.

Consider the general case of Lemma 3.1.1. For brevity, we let D := [n]×
(∏d

i=2[ni]
)
and

DT := T ×
(∏d

i=2[ni]
)

denote the original and reduced domains, respectively. Note that

|DT | = k
n
|D|.

The standard handle on the distance to monotonicity is the violation graph of f , arguably

first formalized by Fischer et al. [FLN+02]. The graph has vertex set D and an edge (x, y) iff

x ≺ y and f(x) = 1, f(y) = 0. A theorem of [FLN+02] states that any maximum cardinality

matching M in the violation graph satisfies |M | = εf |D|. Fix such a matching M . For a

fixed sample T , we let MT denote a maximum cardinality matching in the violation graph

of fT . To argue about εfT , we want to give a lower bound on the expected size |MT |. To do
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so, we give a lower bound the expected number of endpoints of M that can still be matched

(simultaneously) in the violation graph of fT .

We use the following standard notions of lines and slices in D, with respect to the first

dimension. Refer to Fig. 3.1 and Fig. 3.2 for visual examples in two dimensions. In these

examples the rows represent the lines while the columns represent the slices. Below, for

x ∈ D, the vector x−1 is used to denote (x2, x3, . . . , xd).

• (Lines in D) L :=
{
ℓz : z ∈

∏d
i=2[ni]

}
where ℓz := {x ∈ D : x−1 = z}.

• (Slices in D) S := {Si : i ∈ [n]} where Si := {x ∈ D : x1 = i}.

We partition M into a collection of ”local” matchings for each line:

• (Line Decomposition of M) For each ℓ ∈ L: M (ℓ) := {(x, y) ∈M : x ∈ ℓ}.

We find a large matching in the violation graph of fT by doing a line-by-line analysis. In

particular, for each line ℓ ∈ L, we define the following matching M
(ℓ)
T in the violation graph

of fT .

• (The matchingM
(ℓ)
T ) For each ℓ ∈ L, consider the collection of all maximum cardinality

violation matchings w.r.t. fT on the set of vertices that (a) are matched by M (ℓ), and

(b) lie in some slice Si where i ∈ T . We let M
(ℓ)
T denote any such fixed matching.

We stress that M
(ℓ)
T is not a subset of M (ℓ), but the endpoints of the pairs in M

(ℓ)
T are

a subset of the endpoints of the pairs in M (ℓ). Thus, by the above definition, the union

MT := ∪ℓ∈LM (ℓ)
T is a valid matching in the violation graph of fT since M (ℓ) and M (ℓ′) have

disjoint endpoints for all ℓ ̸= ℓ′ ∈ L. We will lower bound the size of this matching, |MT |,

by giving a lower bound on |M (ℓ)
T | for each line ℓ.

Fix some ℓ ∈ L. By definition, the lower-endpoints of M (ℓ) all lie on ℓ, and thus are all

comparable. Let M (ℓ) = {(x1, y1), . . . , (xm, ym)} where x1 ≺ · · · ≺ xm and observe that, for
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any j ∈ [m], x1, . . . , xj ≺ yj, . . . , ym. Since the function is Boolean, every x ∈ {x1, . . . , xj}

forms a violation to monotonicity with every y ∈ {yj, . . . , ym}, and therefore these vertices

can be matched in M
(ℓ)
T , if their 1-coordinates are sampled by T .

Since all the xi’s lie on the same line ℓ, their 1-coordinates are distinct. Suppose that

the 1-coordinates of all the yi’s were also distinct and distinct from those of the xi’s too.

Under this assumption we can proceed with our analysis as if all the xi’s and yi’s lie on

ℓ, and the analysis becomes identical to the one-dimensional case. We could thus apply

[BRY14a, Theorem 3.1] to each ℓ ∈ L to prove Lemma 3.1.1. However, the assumption that

the yi’s have distinct 1-coordinates is far from the truth. As we explain below, there are

examples where all the yi’s have the same 1-coordinate, thereby lying in the same slice Sa

(for some a ∈ [n]). In this case, with probability (1 − k/n) we would have the size of M
(ℓ)
T

be 0 (if a /∈ T ), implying that ET

[
|M (ℓ)

T |
]
could be as small as (k/n)2 · |M (ℓ)|. Thus, if

there existed a function f such that a “collision of y’s 1-coordinates” could not be avoided

for a large number of lines, then this would preclude such a line-by-line approach to proving

Lemma 3.1.1. Unfortunately, there are examples of violation matchings where this happens.

Consider Ex. 3.1.4, and the left part of Fig. 3.2, shown at the end of this section. For the

lowest line, all the corresponding y’s in M (ℓ) have the same 1-coordinate.

Our main insight is that for any f , there always exists a violation matching M where

the problem above does not arise too often. This motivates the key definition of stacks; the

stacks are what determine the “shape” of a matching. Formally, for any ℓ ∈ L and S ∈ S,

the (ℓ, S)-stack is the set of pairs (x, y) ∈M , where x ∈ ℓ and y ∈ S.

• (Stacks) M (ℓ,S) := {(x, y) ∈M (ℓ) : y ∈ S} = {(x, y) ∈M : x ∈ ℓ, y ∈ S}.

We call |M (ℓ,S)| the “size of the stack (ℓ, S)”. To summarize the above discussion, small

stacks are good news while big stacks are bad news. This is formalized in Lemma3.1.3.

If there is a maximum cardinality matching M in the violation graph of f such that

all stacks have size at most 1, then the one-dimensional domain reduction can be directly
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applied. Unfortunately, this is not possible. We give an example in Fig. 3.1 of a function

where stacks of size at least 2 are unavoidable1. One reason for this difficulty may be that

there can be various maximum cardinality matchings in the violation graph that have vastly

different stack sizes (shapes); again consider Ex. 3.1.4. Nevertheless, we prove that there is

a matching M such that for every positive integer λ, the total number of pairs belonging to

stacks of size at least λ is at most |D|/poly(λ).

Figure 3.1: An example of a function f : [n] × [n − 1] → {0, 1} where stacks of size ≥ 2 are

unavoidable. Black (white, resp.) circles represent vertices where f = 1 (f = 0, resp.). First

observe that there exists a perfect violation matching as follows: perfectly match the two blocks of

size (n− 1)(n/2− 1) and then perfectly match the bottom line of 1’s to the right-most slice of 0’s.

Thus, any maximum cardinality violation matching, M , will match all of the (n − 1) 0’s in the

right-most slice. There are only n/2 lines containing 1’s and so by the pigeonhole principle M

contains at least n/2− 1 pairs belonging to stacks of size ≥ 2.

Lemma 3.1.2 (Stack Bound). There exists a maximum cardinality matching M in the

violation graph of f such that for every λ ∈ Z+, M satisfies
∑

(ℓ,S):|M(ℓ,S)|≥λ |M (ℓ,S)| ≤ 5√
λ
·|D|.

The main creativity to prove this lemma lies in the choice of M . Given a matching,

we define the vector Λ(M) that enumerates all the stack sizes in non-decreasing order. We

show that the maximum cardinality matching M with the lexicographically largest Λ(M)

serves our purpose. That is, we choose M that maximizes the minimum stack size, and then

1Interestingly, we don’t know of a function where stacks of size strictly larger than 2 can’t be avoided. In
fact, we can prove that for the grid (the d = 2 case) one can always find a maximum cardinality violation
matching M where |M (ℓ,S)| ≤ 3 for all (ℓ, S). The proof is cumbersome and so we exclude it since it is not
relevant to our main result.
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subject to this maximizes the second minimum, and so on. It may seem counter-intuitive

that we want a matching with small stack sizes, and yet our potential function maximize

the minimum. The intuitive explanation is that the sum of the stack sizes is |M |, which is

fixed, and so in a sense maximizing the minimum also balances out the Λ(M) vector. The

proof uses a matching rewiring argument to show that any large stack must be “adjacent”

to many moderate size stacks. If two stacks are appropriately “aligned”, one could change

the matching to move points from one stack to the other. Large stacks cannot be aligned

with small stacks, since one could rewire the matching to increase the potential. But since

the function is Boolean one can show that there are many opportunities for rewiring the

violation matching. Thus, there isn’t enough “room” for many large stacks. We then apply

some technical charging arguments to bound the total number of points in large stacks. The

full proof is given in Section 3.3.

With the stack bound in hand, we need to generalize the one-dimensional argument of

BRY (Theorem 3.1 [BRY14a]) to account for bounded stack sizes. Then, we bound |M (ℓ)
T |

for all ℓ, and get the final lower bound on the distance εfT .

Lemma 3.1.3 (Line Sampling). Suppose that M is a matching in the violation graph of f ,

such that for some λ ∈ Z+, |M (ℓ,S)| ≤ λ for all ℓ ∈ L and S ∈ S. Then, for any ℓ ∈ L,

ET

[
|M (ℓ)

T |
]
≥ k

n
· |M (ℓ)| − 3λ

√
k ln k.

The proof is a fairly straightforward generalization of the arguments in [BRY14a] for the

λ = 1 case. The idea is to control the size of the maximum cardinality matching M
(ℓ)
T by

analyzing the discrepancy of a random subsequence of a sequence of 1s and 0s. For the sake

of simplicity, we give a proof that achieves a weaker dependence on εf than in [BRY14a].

Our proof of Lemma3.1.3 is given in Section 3.4. We note that BRY give a stronger lower

bound (without the
√
ln k) and also bound the variance for the λ = 1 case. A more careful

generalization of BRY which removes the
√
ln k would yield an improved loss of C/k1/6

instead of C/k1/7 in Lemma3.1.1, but we prefer to give the simpler C/k1/7 exposition for
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the purpose of ease of reading.

Example 3.1.4 (A Two Dimensional Example). Consider the anti-majority function on

two dimensions. More precisely, let f : [n]2 → {0, 1} be defined as f(x, y) = 1 if x + y ≤ n,

and f(x, y) = 0 otherwise. We describe two maximum cardinality matchings with vastly

different stack sizes. The first matching R matches a point (x, y) with x+y ≤ n to the point

(n− y+1, n−x+1). For an illustration, see the left matching in Fig. 3.2 for the case n = 5.

Observe that whenever x+y ≤ n, we have (n−y+1)+(n−x+1) > n. The second matching

B matches a point (x, y) with x+ y ≤ n to the point (x+ y, n− x+1). Again, observe that

(x+ y) + (n− x+ 1) > n. For an illustration, see the right blue matching in Fig. 3.2 for the

case n = 5. Note that the stack sizes for the matching R are large; in particular, they are

n− 1, n− 2, . . . , 2, 1 for n− 1 stacks and 0 for the rest. On the other hand, any stack in B

is of size ≤ 1.

Figure 3.2: Accompanying illustration for Ex. 3.1.4 showing two different maximum cardinality

violation matchings for the anti-majority function f : [5]2 → {0, 1} which have very different stack

sizes. Black (white, resp.) circles represent vertices where f = 1 (f = 0, resp.) and connecting

lines represent pairs of the matching. Observe that for the left matching, the bottom line and the

right-most slice form a stack of size 4 while the right matching has stack sizes all ≤ 1.

3.2 Domain Reduction: Proof of Lemma3.1.1

In this section, we use Lemma3.1.2 and Lemma3.1.3 to prove Lemma3.1.1. Recall that

D := [n]×
(∏d

i=2[ni]
)
and DT := T ×

(∏d
i=2[ni]

)
denote the original and reduced domains,
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respectively. Note that |DT | = k
n
|D|. Let M be the matching given by Lemma3.1.2 and

consider λ =
⌈
25k2/7

⌉
. Clearly, λ ∈ [25k2/7, 26k2/7].

Thus, by Lemma3.1.2, we have
∣∣∣⋃(ℓ,S):|M(ℓ,S)|≥26k2/7 M

(ℓ,S)
∣∣∣ ≤ 5√

25k2/7
· |D| = |D|

k1/7
. Let

M̂ := M \

 ⋃
(ℓ,S):|M(ℓ,S)|≥26k2/7

M (ℓ,S)


denote the set of pairs in M which do not belong to stacks larger than 26k2/7; we therefore

have

∑
ℓ∈L

|M̂ (ℓ)| = |M̂ | ≥ |M | − |D|
k1/7

. (3.1)

In this proof, our goal is to construct a matching MT in the violation graph of fT whose

cardinality is sufficiently large. We measure ET [|MT |] by summing over all lines in L and

applying Lemma3.1.3 to each. Notice that M̂ is a matching in the violation graph of f

which satisfies |M̂ (ℓ,S)| ≤ 26k2/7 for all ℓ ∈ L and S ∈ S. Thus by Lemma3.1.3, for every

ℓ ∈ L,

ET

[
|M (ℓ)

T |
]
≥ k

n
· |M̂ (ℓ)| − 3 · (26k2/7) ·

√
k ln k ≥ k

n
· |M̂ (ℓ)| − 78k5/6 (3.2)

where we have used
√
ln k < k1/3−2/7. Now, using eq. (3.1) and eq. (3.2), we can calculate

ET [|MT |]. We use the fact that {M̂ (ℓ)}ℓ∈L is a partition of M̂ , apply linearity of expectation

and use Lemma3.1.3 to measure ET [|M (ℓ)
T |] for each ℓ. Also note that the number of lines is
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|L| = |D|/n.

ET [|MT |] = ET

[∑
ℓ∈L

|M (ℓ)
T |

]
=
∑
ℓ∈L

ET

[
|M (ℓ)

T |
]
≥
∑
ℓ∈L

(
k

n
· |M̂ (ℓ)| − 78k5/6

)
(by eq. (3.2))

=

(
k

n
·
∑
ℓ∈L

|M̂ (ℓ)|

)
−
(
78k5/6 · |D|

n

)
≥ k

n
·
(
|M | − |D|

k1/7

)
−
(
78k5/6 · |D|

n

)
(by eq. (3.1))

=
k

n
·
(
|M | − |D|

k1/7
− 78|D|

k1/6

)
≥ k

n
·
(
|M | − C · |D|

k1/7

)
(3.3)

for a constant C > 0, since 1
k1/7

dominates 1
k1/6

. eq. (3.3) gives the expected cardinality of

our matching after sampling. To recover the distance to monotonicity we simply normalize

by the size of the domain. Dividing by |DT | = k
n
|D|, we get ET [εfT ] ≥

|M |
|D| −

C
k1/7

= εf − C
k1/7

.

This completes the proof of Lemma3.1.1.

3.3 Stack Bound: Proof of Lemma3.1.2

We are given a Boolean function f : D → {0, 1} where D = [n]×
(∏d

i=2[ni]
)
is a rectangular

hypergrid for some n, n2, . . . , nd ∈ Z+. Lemma3.1.2 asserts there is a maximum cardinality

matching M such that
∑

(ℓ,S):|M(ℓ,S)|≥λ |M (ℓ,S)| ≤ 5√
λ
· |D| for all λ ∈ Z+.

Given a matching M , we consider the vector (or technically, the list) Λ(M) indexed

by stacks (ℓ, S) with Λℓ,S := |M (ℓ,S)|, and list these in non-decreasing order. Consider the

maximum cardinality matchingM in the violation graph of f which has the lexicographically

largest Λ(M). That is, the minimum entry of Λ(M) is maximized, and subject to that the

second-minimum is maximized and so on. We fix this matching M and claim that it satisfies∑
(ℓ,S):|M(ℓ,S)|≥λ |M (ℓ,S)| ≤ 5√

λ
· |D| for all λ ∈ Z+. Note that the inequality is trivial for

λ ≤ 100, since M itself is of size at most εf |D| ≤ 1
2
|D|. Thus, in what follows we prove

that the inequality is true for an arbitrary, fixed λ > 100. We first introduce the following

notation.
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• (Low Stacks) L := {(ℓ, S) ∈ L × S : |M (ℓ,S)| ≤ λ− 2}.

• (High Stacks) H := {(ℓ, S) ∈ L × S : |M (ℓ,S)| ≥ λ}.

Let V (H) denote the set of vertices matched by
⋃

(ℓ,S)∈H M (ℓ,S). Let B (for blue) be the

set of points in V (H) with function value 0, and R (for red) be the set of points in V (H)

with function value 1. M induces a perfect matching between B and R, and we wish to

prove |B| = |R| ≤ 5√
λ
· |D|. Indeed, define δ to be such that |B| = δ|D|. In the remainder of

the proof, we will show that δ ≤ 5√
λ
.

We make a simple observation that for any fixed line ℓ, there cannot be too many non-low

stacks (ℓ, S).

Claim 3.3.1. For any line ℓ, the number of non-low stacks ℓ participates in is at most n
λ−1 .

Proof. Fix any line ℓ and consider the set
⋃

S:(ℓ,S)/∈L
{
x1 : ∃(x, y) ∈M (ℓ,S)

}
. That is, the set

of 1-coordinates that are used by some non-low stack involving ℓ. The size of this set can’t

be bigger than the length of ℓ, which is n. Furthermore, each non-low stack contributes at

least λ−1 unique entries to this set. The uniqueness follows since the union
⋃

S:(ℓ,S)/∈LM
(ℓ,S)

is a matching.

We show that if the number of blue points |B| is large (> 5|D|/
√
λ), then we will find a

line participating in more than n/(λ− 1) non-low stacks. To do so, we need to “find” these

non-low stacks. We need some more notation to proceed. For a vertex z, we let ℓz (Sz, resp.)

denote the unique line (slice, resp.) containing z. For each blue point y ∈ B, we define the

following interval

Iy := {z ∈ ℓy : z1 ∈ [x1, y1]} ⊆ ℓy where (x, y) ∈M .

Note that Iy is the interval of ℓy whose endpoints are given by the projection of (x, y) onto

ℓy. Armed with this notation, we can find our non-low stacks. Our next claim, which is the
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heart of the proof and uses the potential function, shows that for every high stack (ℓ, S), we

get a bunch of other “non-low” stacks participating with the line ℓ. Refer to Fig. 3.3 for an

accompanying illustration of the proof.

Claim 3.3.2. Given y ∈ B, let x := M−1(y) and suppose (ℓ, S) ∈ H is such that (x, y) ∈

M (ℓ,S) (note that this stack, (ℓ, S), exists by definition of B). Then, for any z ∈ Iy ∩ B,

(ℓ, Sz) /∈ L.

Proof. The claim is obviously true if z = y, since this implies Sz = S (since y ∈ S) and

(ℓ, S) ∈ H by assumption. Therefore, we may assume z ̸= y, and we also assume, for

contradiction’s sake, (ℓ, Sz) ∈ L. Note that x ∈ ℓ and by definition of Iy, we get x ≺ z ≺ y.

Since z ∈ B, it is matched to some w ∈ R. Note w ≺ z ≺ y. Furthermore, the stack

(ℓw, Sz) ∈ H (by definition of B). Thus, note that if ℓw = ℓ (i.e., w ∈ ℓ), then we’re done and

so in what follows we assume ℓw ̸= ℓ. By assumption of the claim, (ℓ, S) ∈ H. In particular,

x,w, z, y ∈ V (H). Now consider the new matching N which deletes (x, y) and (w, z) and

adds (x, z) and (w, y). Note that the cardinality remains the same, i.e. |N | = |M |.

We now show that Λ(N) is lexicographically bigger than Λ(M). To see this, consider the

stacks whose sizes have changed from M to N . There are four of them (since we swap two

pairs), namely the stacks (ℓ, S), (ℓw, Sz), (ℓ, Sz), and (ℓw, S). For brevity’s sake, let us denote

their sizes in M as λ1, λ2, λ3, and λ4, respectively. In N , their sizes are λ1− 1, λ2− 1, λ3+1,

and λ4 +1. Note that λ3 ≤ λ− 2 and both λ1 and λ2 are ≥ λ. In particular, the “new” size

of stack (ℓ, Sz) is still smaller than the “new” sizes of stacks (ℓ, S) and (ℓw, Sz). That is, the

vector Λ(N), even without the increase in λ4, is lexicographically larger than Λ(M). Since

increasing the smallest coordinate (among some coordinates) increases the lexicographic

order, we get a contradiction to the lexicographic maximality of Λ(M).

The rest of the proof is a (slightly technical) averaging argument to prove that |B| is

small. We introduce some more notation to carry this through. For a blue point y ∈ B, let

βy := |Iy∩B|
|Iy | denote the fraction of blue points in Iy. For α ∈ (0, 1), we say that y ∈ B is
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Figure 3.3: Accompanying illustration for the proof of Claim 3.3.2. The black connecting arrows

represent the matching, M , while the dashed green arrows represent the new matching, N . The

bold orange segment of ℓy is the interval Iy.

α-rich if βy ≥ α. A point x ∈ R is α-rich if its blue partner y ∈ B (i.e. (x, y) ∈M) is α-rich.

We also call the pair (x, y) an α-rich pair. For what follows, recall that δ ∈ (0, 1) is defined

such that |B| = δ|D|.

Claim 3.3.3. At least δ|D|/2 of the points in B are δ/4-rich.

Proof. Let B(poor) ⊆ B be the points with βy < δ/4. We show |B(poor)| ≤ δ|D|/2 which

proves the claim. To see this, first observe B(poor) ⊆
⋃

y∈B(poor) (Iy ∩B). Now consider the

minimal subset B
(poor)
min ⊆ B(poor) such that

⋃
y∈B(poor)

min
Iy =

⋃
y∈B(poor) Iy. That is, given a

collection of intervals, we are picking the minimal subset covering the same points. Since

these are intervals, we get that no point is contained in more than two intervals Iy among

y ∈ B
(poor)
min . In particular, this implies

∑
y∈B(poor)

min

|Iy| ≤ 2 ·

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

Iy

∣∣∣∣∣∣∣ . (3.4)

Therefore,
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∣∣B(poor)
∣∣ ≤

∣∣∣∣∣∣
⋃

y∈B(poor)

(Iy ∩B)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

(Iy ∩B)

∣∣∣∣∣∣∣ ≤
∑

y∈B(poor)
min

|Iy ∩B|

<
δ

4

∑
y∈B(poor)

min

|Iy| ≤
δ

2
·

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

Iy

∣∣∣∣∣∣∣ ≤
δ

2
· |D|.

The first equality follows from the definition of B
(poor)
min (taking intersection with B), and the

third (strict) inequality follows from the fact that none of these points are δ/4-rich. The

fourth inequality is eq. (3.4). This completes the proof.

A corollary of Claim 3.3.3 is that there are at least δ|D|/2 red points which are δ/4-

rich. In particular, there must exist some line ℓ that contains ≥ δn/2 red points in it which

are δ/4-rich. Let this line be ℓ and let Rℓ ⊆ ℓ be the set of rich red points. Let Bℓ be

their partners in M . Let Sℓ =
{
S ∈ S : ∃z ∈ S ∩

(
∪y∈BℓIy ∩B

)}
denote the set of slices

containing blue points from the collection of rich intervals, {Iy : y ∈ Bℓ}. By Claim 3.3.2,

we know that all these stacks are non-low, that is, (ℓ, S) /∈ L for all S ∈ Sℓ. We now lower

bound the cardinality of this set.

Consider the set of blue points in our union of rich intervals from Bℓ,
⋃

y∈Bℓ Iy ∩ B.

There are precisely n slices in total, and for a vertex z ∈ D, Sz is the slice indexed by the

1-coordinate of z. Thus, we have |Sℓ| = |{z1 : z ∈
⋃

y∈Bℓ Iy ∩ B}|. That is, |Sℓ| is exactly

the number of unique 1-coordinates among vertices in
⋃

y∈Bℓ Iy ∩B.

Since we care about the number of unique 1-coordinates, we consider the “projections” of

our sets of interest onto dimension 1. For a setX ⊆ D, let o(X) := {x1 : x ∈ X} be the set of

1-coordinates used by points in X. In particular, note that for y ∈ B, o(Iy) := [x1, y1] ⊂ [n],

where x := M−1(y) and observe that |Sℓ| =
∣∣∣⋃y∈Bℓ o(Iy ∩B)

∣∣∣. Now, given that each interval

from {Iy}y∈Bℓ is a δ
4
-fraction blue, the following claim says that at least a δ

8
-fraction of the

union of intervals consists of blue points with unique 1-coordinates.
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Claim 3.3.4.
∣∣∣⋃y∈Bℓ o(Iy ∩B)

∣∣∣ ≥ δ
8

∣∣∣⋃y∈Bℓ o(Iy)
∣∣∣.

Proof. As in the proof of Claim 3.3.2, let Bℓ
min ⊆ Bℓ be a minimal cardinality subset of Bℓ

such that
⋃

y∈Bℓ
min

o(Iy) =
⋃

y∈Bℓ o(Iy). For any y ∈ B, y belongs to at most two intervals

from Bℓ
min.

∣∣∣∣∣∣
⋃
y∈Bℓ

o(Iy ∩B)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⋃

y∈Bℓ
min

o(Iy ∩B)

∣∣∣∣∣∣ ≥ 1

2

∑
y∈Bℓ

min

|o(Iy ∩B)|

≥ δ

8

∑
y∈Bℓ

min

|o(Iy)| ≥
δ

8

∣∣∣∣∣∣
⋃

y∈Bℓ
min

o(Iy)

∣∣∣∣∣∣ = δ

8

∣∣∣∣∣∣
⋃
y∈Bℓ

o(Iy)

∣∣∣∣∣∣ .
Now importantly, |o(Rℓ)| = |Rℓ| ≥ δ

2
· n since the 1-coordinates of elements of Rℓ are

distinct (since Rℓ is contained on a single line). Moreover, by definition of Iy, o(Rℓ) ⊆⋃
y∈Bℓ o(Iy) and so

∣∣∣⋃y∈Bℓ o(Iy)
∣∣∣ ≥ |o(Rℓ)| ≥ δ

2
·n. Finally, combining this with Claim 3.3.4,

we get

|Sℓ| =

∣∣∣∣∣∣
⋃
y∈Bℓ

o(Iy ∩B)

∣∣∣∣∣∣ ≥ δ

8

∣∣∣∣∣∣
⋃
y∈Bℓ

o(Iy)

∣∣∣∣∣∣ ≥ δ2

16
· n.

Therefore, ℓ participates in at least δ2

16
·n non-low stacks. Thus, by Claim 3.3.1, δ2

16
·n ≤ n

λ−1

and so δ ≤ 4√
λ−1 . Since λ > 100, we conclude that δ ≤ 5√

λ
. This concludes the proof of

Lemma3.1.2.

3.4 Line Sampling: Proof of Lemma3.1.3

We recall the lemma for ease of reading. Given a line ℓ ∈ L, we have definedM (ℓ) := {(x, y) ∈

M : x ∈ ℓ}. Given a stack S, we have defined M (ℓ,S) := {(x, y) ∈ M (ℓ) : y ∈ S}. Given a
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multi-set T ⊆ [n], recall M
(ℓ)
T is a maximum cardinality matching of violations (x, y) such

that (a) x and y are both matched by M (ℓ), and (b) x1 and y1 both lie in T . Given λ ∈ Z+

such that |M (ℓ,S)| ≤ λ for all ℓ ∈ L and S ∈ S, the line sampling lemma (Lemma3.1.3)

states

ET

[
|M (ℓ)

T |
]
≥ k

n
· |M (ℓ)| − 3λ

√
k ln k. (3.5)

We note that BRY (Theorem 3.1, [BRY14a]) prove a stronger theorem for the λ = 1 case

(that gets an additive error of Θ(
√
k)). Our proof follows a similar approach.

Consider an arbitrary, fixed line ℓ ∈ L. We use the matching M (ℓ) to induce weights

w+(i), w−(i) on [n] as follows. Initially w+(i), w−(i) = 0 for all i ∈ [n]. For each (x, y) ∈M (ℓ)

if x ∈ Si then we increase w+(i) by 1, and if y ∈ Sj then we increase w−(j) by 1.

Claim 3.4.1. We make a few observations.

1. For any i ∈ [n], w+(i) ≤ 1.

2. For any i ∈ [n], w−(i) ≤ λ.

3. For any t ∈ [n],
∑

s≤t(w
−(s)− w+(s)) ≤ 0.

Proof. The first observation follows since the lower endpoints of M (ℓ) all lie on ℓ, and

thus have distinct 1-coordinates. The second observation follows from the assumption that

|M (ℓ,S)| ≤ λ for all (ℓ, S) ∈ L × S. The third observation follows by noting that whenever

w−(j) is increased for some j, we also increase w+(i) for some i < j.

Define V + := {i : w+(i) > 0} and V − := {j : w−(j) > 0}. Given a multiset T ⊆ [n],

denote V +
T := V +∩T and V −T := V −∩T . Also, define the bipartite graphGT := (V +

T , V −T , ET )

where (i, j) ∈ ET iff i ≤ j. A w-matching A in GT is a subset of edges of ET such that every

vertex i ∈ V +
T has at most w+(i) edges of A incident on it, and every vertex j ∈ V −T has at
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most w−(j) edges of A incident on it. Let ν(GT ) denote the size of the largest w-matching

in GT .

Lemma 3.4.2. For any multiset T ⊆ [n] and any w-matching A ⊆ ET in GT , we have

|M (ℓ)
T | ≥ |A|. In particular, ET

[
|M (ℓ)

T |
]
≥ ET [ν(GT )].

Proof. Consider any w-matching A ⊆ ET . For any vertex i ∈ V +
T , there are at most w+(i)

edges in A incident on it. Each increase of w+(i) is due to an edge (x, y) ∈ M (ℓ) where

x1 = i. Thus, we can charge each of these edges of A (arbitrarily, but uniquely) to w+(i)

different x ∈ ℓ. Similarly, for any vertex j ∈ V −T , there are at most w−(j) edges in A incident

on it. Each increase of w−(j) is due to an edge (x, y) ∈ M (ℓ) with y1 = j. Thus, we can

charge each of these edges of A (arbitrarily, but uniquely) to w−(j) different y ∈ Sj, the jth

slice. Furthermore, any z ∈ ℓ with z1 ≤ j satisfies z ≺ y. To summarize, each (i, j) ∈ A

can be uniquely charged to an x ∈ ℓ with x1 = i and y ∈ Sj such that (a) (x, y) forms a

violation, (b) x, y were matched in M (ℓ), and (c) x1, y1 ∈ T . Therefore, |M (ℓ)
T | ≥ |A| since

the LHS is the maximum cardinality matching.

Lemma 3.4.3. For any T ⊆ [n], we have

ν(GT ) =
∑
j∈T

w−(j)−max
t∈T

∑
s∈T :s≤t

(
w−(s)− w+(s)

)
.

Proof. By Hall’s theorem, the maximum w-matching in GT is given by the total weight on

the V −T side, that is,
∑

j∈T w−(j), minus the total deficit

δ(T ) := max
S⊆V −T

∑
s∈S

w−(s)−
∑

s∈ΓT (S)

w+(s)


where for S ⊆ V −T , ΓT (S) ⊆ V +

T is the neighborhood of S in GT . Consider such a maximizer

S, and let t be the largest index present in S. Then note that
∑

s∈ΓT (S) w
+(s) is precisely∑

s∈T :s≤t w
+(s). Furthermore note that adding any s ≤ t from V −T won’t increase |ΓT (S)|.
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Thus, given that the largest index present in S is t, we get that δ(T ) is precisely the summa-

tion in the second term of the RHS. δ(T ) is maximized by choosing the t which maximizes

the summation.

Next, we bound the expectation of the RHS in Lemma3.4.3. Recall that T := {s1, . . . , sk}

is a multiset where each si is u.a.r. picked from [n]. For the first term, we have

ET

[∑
j∈T

w−(j)

]
=

k∑
i=1

n∑
j=1

P[si = j] · w−(j) = k

n
·

n∑
j=1

w−(j) =
k

n
· |M (ℓ)|. (3.6)

The second-last equality follows since si is u.a.r. in [n] and the last equality follows since∑
j w
−(j) increases by exactly one for each edge in M (ℓ). Next we upper bound the expec-

tation of the second term. For a fixed t, define

Zt :=
∑

s∈T :s≤t

(w−(s)− w+(s)) =
k∑

i=1

Xi,t where Xi,t =


w−(si)− w+(si) if si ≤ t

0 otherwise

.

Note that the Xi,t’s are i.i.d. random variables with Xi,t ∈ [−1, λ] with probability 1. Thus,

applying Hoeffding’s inequality we get

P [Zt > E[Zt] + a] ≤ 2 exp

(
−a2

2kλ2

)
. (3.7)

Now we use Claim 3.4.1, part (3) to deduce that

E[Zt] =
k∑

i=1

E[Xi,t] =
k∑

i=1

∑
s≤t

(w−(s)− w+(s)) · P[si = s] ≤ 0

since P[si = s] = 1/n. Therefore, the RHS of eq. (3.7) is an upper-bound on P[Zt ≥ a]. In
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particular, invoking a := 2λ
√
k ln k and applying a union bound, we get

P
[
max
t∈T

Zt > 2λ
√
k ln k

]
= P

[
∃t ∈ T : Zt > 2λ

√
k ln k

]
≤ k · e−2 ln k = 1/k

and since maxt∈T Zt is trivially upper-bounded by λk, this implies that

ET

[
max
t∈T

∑
s∈T :s≤t

(
w−(s)− w+(s)

)]
≤ λk · P

[
max
t∈T

Zt > a

]
+ a ≤ λ+ a ≤ 3λ

√
k ln k. (3.8)

Lemma 3.1.3 follows from Lemma 3.4.2, Lemma 3.4.3, eq. (3.6), and eq. (3.8).

3.5 The Continuous Domain

We start with measure theory preliminaries. We refer the reader to Nelson [Nel15] and

Stein-Shakarchi [SS05] for more background. Given two reals a < b, we use (a, b) to denote

the open interval, and [a, b] to denote the closed interval. Given d closed intervals [ai, bi]

for 1 ≤ i ≤ d, we call their Cartesian product
∏

i∈[d][ai, bi] a box. Two intervals/boxes are

almost disjoint if their interiors are disjoint (they can intersect only at their boundary). An

almost partition of a set S is a collection P of sets that are pairwise almost disjoint and⋃
P∈P P = S. A set U is open if for each point x ∈ U , there exists an ε > 0 such that the

sphere centered at x of radius ε is contained in U .

We let µ =
∏

i∈[d] µi be an arbitrary product measure over Rd. That is, each µi is described

by a non-negative Lebesgue integrable function over R, whose total integral is 1 (this is the

pdf). Abusing notation, we use µi([ai, bi]) = Px∼µi
[ai ≤ x ≤ bi] to denote the integral of µi

over this interval. Indeed, this is the probability measure of the interval. The volume of a

box B =
∏

i∈[d][ai, bi] is denoted µ(B) =
∏

i∈[d] µi([ai, bi]) = Px∼µ[x ∈ B].

We use the definition of measurability of Chapter 1.1.3 of [SS05]. Technically, this is

given with respect to the standard notion of volume in Rd. Chapter 6, Lemma 1.4 and

Chapter 6.3.1 show that the definition is valid for the notion of volume with respect to µ,
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as we’ve defined above. The exterior measure µ∗ of any set E is the infimum of the sum of

volumes of a collection of closed boxes that contain E.

Definition 3.5.1. Given a product measure µ =
∏

i µi over Rd, we say E ⊆ Rd is Lebesgue-

measurable with respect to µ if for any ε > 0, there exists an open set U ⊇ E such that

µ∗(U \ E) < ε. If this holds, then the µ-measure of E is defined as µ(E) := µ∗(E).

Given a function f : Rd → {0, 1}, we will often slightly abuse notation by letting f denote

the set it indicates, i.e. the set in Rd where f evaluates to 1. We say that f is a measurable

function w.r.t. µ if this set is measurable w.r.t. µ. Similarly, we use f to denote the set

where f evaluates to 0.

We are now ready to define the notion of distance between two functions. In Section 3.5.3,

we prove that all monotone Boolean functions are measurable (Theorem 3.5.6) with respect

to µ. Also, measurability is closed under basic set operations and thus the following notion

of distance to monotonicity is well-defined. Thus, the monotonicity testing problem for

functions f : Rd → {0, 1} is also well-defined.

Definition 3.5.2 (Distance to Monotonicity). Fix a product measure D on Rd. We define

the distance between two measurable functions f, g : Rd → {0, 1} with respect to µ, as

distD(f, g) := µ
({

z ∈ Rd : f(z) ̸= g(z)
})

= µ (f∆g) . (3.9)

The distance to monotonicity of f w.r.t. D is defined as

εf,D := inf
g∈M

distD(f, g) = inf
g∈M

µ (f∆g) (3.10)

whereM denotes the set of monotone Boolean functions over Rd.

3.5.1 Approximating Measurable Sets by Grids

We first start with a lemma about probability measures over R.
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Lemma 3.5.3. Given any probability measure D over R, and any N ∈ N, there exists an

almost partition of R into N intervals IN = {I1, . . . , IN} of equal µ-measure. That is, for

each j ∈ [N ], Px∼D[x ∈ Ij] = 1
N
. Furthermore, for any k ∈ N, IkN is a refinement of IN .

Proof. µ is a probability measure, and thus is described by a non-negative Lebesgue-integrable

function (it’s pdf). Chapter 2, Prop 1.12 (ii) of [SS05] states that the Lebesgue integral is

continuous and thus it’s CDF, F (t) := µ({x ∈ R : x ≤ t}), is continuous. Moreover

F is non-decreasing with range [0, 1]. Therefore, for every θ ∈ (0, 1) there is at least

one t with F (t) = θ. Thus, let’s define F−1(θ) to be the supremum over all t satisfying

F (t) = θ. Let F−1(0) = −∞ and F−1(1) = +∞. The lemma is proved by the intervals

Ij = [F−1((j − 1)/N), F−1(j/N)] for j ∈ {1, . . . , N}. The refinement is evident by the fact

that any interval in IN can be expressed as an almost partition of intervals from IkN (for

k ∈ N).

Thus, given a product distribution D =
∏d

i=1Di and any N ∈ N, we can apply the above

lemma to each of the d coordinates to obtain the set of Nd intervals
{
I(i)j : i ∈ [d] : j ∈ [N ]

}
for which µi

(
I(i)j

)
= 1/N for every i ∈ [d], j ∈ [N ]. We define

GN :=

{
d∏

i=1

I(i)zi
: z ∈ [N ]d

}

and observe that (a) GN is an almost partition of Rd and (b) GkN is a refinement of GN for

any k ∈ N. (Since d is fixed, we will not carry the dependence on d.) We informally refer to

GN as a grid. Since GN is an almost partition, we can define the function boxN : Rd → [N ]d

as follows. For x ∈ Rd, we define boxN(x) to be the lexicographically least z ∈ [N ]d such

that the box
∏d

i=1 I
(i)
zi , of GN , contains x. (Note that for all but a measure zero set, points

in Rd are contained in a unique box of GN .)

In the following lemma, we show that any measurable set can be approximated by a

sufficiently fine grid. In some sense, this is the definition of measurability.
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Lemma 3.5.4. For any measurable set E and any α > 0, there exists N = N(E,α) ∈ N

such that there is a collection B ⊆ GN satisfying µ(E ∆
⋃

B∈B B) ≤ α.

Proof. Chapter 1, Theorem 3.4 (iv) of [SS05] states that for any measurable set E and any

ϵ > 0, there exists a finite union
⋃m

r=1Br of closed boxes such that µ(E∆
⋃m

r=1 Br) ≤ ϵ. We

invoke this theorem with ϵ = α/2 to get the collection of boxes B1, . . . , Bm. Note that these

boxes may intersect, and might not form a grid. We build a grid by setting N = ⌈2md/α⌉

and considering GN . The desired collection B ⊆ GN is the set of boxes in GN contained in⋃m
r=1 Br. Observe that

µ

(
E∆

⋃
B∈B

B

)
≤ µ

(
E∆

m⋃
r=1

Br

)
+ µ

(
m⋃
r=1

Br \
⋃
B∈B

B

)
≤ α/2 +

m∑
r=1

µ

(
Br \

⋃
B∈B

B

)
(3.11)

by subadditivity of measure. We complete the proof by bounding µ(Br \
⋃

B∈B B) for an

arbitrary r ∈ [m].

Let Br :=
∏d

i=1[ai, bi] denote an arbitrary box from {B1, . . . , Bm} and let δi := µi([ai, bi]).

Observe that the interval [ai, bi] contains exactly ⌊δiN⌋ contiguous intervals from the almost

partition {I(i)j : j ∈ [N ]} of R. Let Ii denote the set of such intervals. Thus, µi([ai, bi] \⋃
I∈Ii I) ≤ δi − (1/N) (⌊δiN⌋) ≤ δi − (1/N) (δiN − 1) = 1/N . Thus, the total measure

of Br we discard is µ(Br \
⋃

B∈B B) ≤
∏

i δi −
∏

i(δi − 1/N). This quantity is maximized

when the δi’s are maximized; since δi ≤ 1 (each µi is a probability measure), we get that

µ(Br \
⋃

B∈B B) ≤ 1− (1− 1/N)d ≤ d
N
.

Finally, plugging this into eq. (3.11), we get µ(E∆
⋃

B∈B B) ≤ α/2 +m · d
N
≤ α, since

N ≥ 2md/α.

We are now ready to prove our main tool, the discretization lemma.

Lemma 3.5.5 (Discretization Lemma). Given a measurable function f : Rd → {0, 1} and

δ > 0, there exists N := N(f, δ) ∈ N, and a function fdisc : [N ]d → {0, 1}, such that
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Px∼D[f(x) ̸= fdisc(boxN(x))] ≤ δ.

Proof. By assumption, f and f are measurable sets. By Lemma3.5.4, there exists some

N1 and a collection of boxes Z1 ⊆ GN1 such that µ(f∆
⋃

B∈Z1
B) ≤ δ/6. (An analogous

statement holds for f , with some N0 and a collection Z0.) Since Lemma3.5.4 also holds for

any refinement of the relevant grid, let us set N = N0N1. Abusing notation, we have two

collections Z0,Z1 ⊆ GN such that µ(f∆
⋃

B∈Z1
B) ≤ δ/6 and µ(f∆

⋃
B∈Z0

B) ≤ δ/6.

For convenience, let us treat the boxes in Z0 ∪ Z1 as open, so that all boxes in the

collection are disjoint. Define h : Rd → {0, 1} as follows:

h(x) =


1 if x ∈

⋃
B∈Z1\Z0

B

0 if x ∈
⋃

B∈Z0\Z1
B

0 if x ∈
⋃

B/∈Z0∆Z1
B

.

Since f and f partition Rd, µ(
⋃

B∈Z0∩Z1
B) and µ(

⋃
B/∈Z0∪Z1

B) are both at most µ(f∆
⋃

B∈Z1
B)+

µ(f∆
⋃

B∈Z0
B) ≤ δ/3. Combining these bounds, we have µ(

⋃
B/∈Z0∆Z1

B) ≤ 2δ/3. Thus

distD(f, h) = Px∼D[f(x) ̸= h(x)] ≤ µ

 ⋃
B∈Z1\Z0

B ∩ f

+ µ

 ⋃
B∈Z0\Z1

B ∩ f

+ µ

( ⋃
B/∈Z0∆Z1

B

)

≤ δ/6 + δ/6 + 2δ/3 = δ.

By construction, h is constant in (the interior of) every grid box. Any z ∈ [N ]d indexes

a (unique) box in GN (recall the map boxN : Rd → [N ]d). Formally, we can define a func-

tion fdisc : [N ]d → {0, 1} so that ∀x ∈ Rn, fdisc(boxN(x)) = h(x). Thus, Px∼D[f(x) ̸=

fdisc(boxN(x))] = distD(f, h) ≤ δ.
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3.5.2 Domain Reduction for Continuous Space: Proof of Theorem3.0.2

Proof. Recall that T = T1× · · · × Td is a randomly chosen hypergrid, where for each i ∈ [d],

Ti ⊂ R is formed by taking k i.i.d. samples from Di. We need to show that

ET [εfT ] ≥ εf −
C ′ · d
k1/7

for some universal constant C ′ > 0. Set δ ≤ k−d · C·d
k1/7

, where C is the universal constant

in Theorem3.0.1. Applying Lemma3.5.5 to f with this δ, we know there exists N > 0 and

fdisc : [N ]d → {0, 1}, such that Px∼D[f(x) ̸= fdisc(boxN(x))] ≤ δ. Given a random T sampled

as described above, define T̂ := {boxN(x) ∈ [N ]d : x ∈ T }. Observe that (a) T̂ is a [k]d

sub-hypergrid in [N ]d which (b) can be equivalently defined as T̂ = T̂1 × · · · × T̂d where

each T̂i is formed by taking k i.i.d. uniform samples from [N ]. This is by construction of the

partition {boxz : z ∈ [N ]d} and by definition of boxN(x). Theorem3.0.1 and the observations

above imply

ET̂

[
εfdisc

T̂

]
≥ εfdisc − C · d

k1/7
(3.12)

where C is some universal constant. Next, we relate εfdisc and εf . Observe that there is

a bijection between T and T̂ (namely, boxN restricted to T ). We say fT = fdisc
T̂

if for all

x ∈ T , f(x) = fdisc(boxN(x)).

By a union bound over the kd samples,

PT

[
fT ̸= fdisc

T̂

]
= PT

[
∃x ∈ T : f(x) ̸= fdisc(boxN(x))

]
≤ δ · kd ≤ C · d

k1/7
=: δ′

since each x ∈ T has the same distribution as x ∼ D, and Px∼D[f(x) ̸= fdisc(boxN(x))] ≤ δ.

Thus, we get ET [εfT ] ≥ (1− δ′)ET̂

[
εfdisc

T̂

]
− δ′, since in the case fT ̸= fdisc

T̂
, the difference in

their distance to monotonicity is at most 1. Substituting in eq. (3.12), we get

ET [εfT ] ≥ (1− δ′) ·
(
εfdisc − C · d

k1/7

)
− δ′ ≥ εfdisc − 3C · d

k1/7
(3.13)
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by definition of δ′.

Now, let g : [N ]d → {0, 1} be any monotone function satisfying d(fdisc, g) = εfdisc . Define

the monotone function f̂(x) = g(boxN(x)) for all x ∈ Rd. Note that εf ≤ dist(f, f̂) ≤

Px∼D[f(x) ̸= fdisc(boxN(x))]+dist(fdisc, g) ≤ δ+ εfdisc . This, in turn, implies εfdisc ≥ εf − δ ≥

εf − C·d
k1/7

. Substituting in eq. (3.13), we get

ET [εfT ] ≥ εf −
4C · d
k1/7

which proves the theorem.

3.5.3 Measurability of Monotone Functions

Theorem 3.5.6. Monotone functions f : Rd → {0, 1} are measurable w.r.t. product mea-

sures µ =
∏d

i=1 µi.

Proof. The proof is by induction over the number of dimensions, d. For d = 1, the set f is

either [z,∞) or (z,∞) for some z ∈ R, since f is a monotone function. Any open or closed

set is measurable.

Now for the induction. Choose any ε > 0. We will construct an open set O such that

µ∗(O \ f) ≤ 8ε. Consider the first dimension, and the corresponding measure µ1. We use

µ−1 for the (d − 1)-dimensional product measure in the remaining dimensions. (We use

µ−1,∗ for the (d − 1)-dimensional exterior measure.) As shown in Lemma 3.5.3, there is

an almost partition of R into N = ⌈1/ε2⌉ closed intervals such that each interval has µ1-

measure at most ε2. Let these intervals be I1, I2, I3, . . . , IN . We will consider the set of

intervals I = {I1 ∪ I2, I2 ∪ I3, . . . , IN−1 ∪ IN} (let us treat these as open intervals). Observe

that ∪I∈II = R, and µ1(I) ≤ 2ε2 for all I ∈ I.

For any x ∈ R, let Sx be the subset of f with first coordinate x. We will treat Sx as a

subset of Rd−1 and use {x}×Sx to denote the corresponding subset of Rd. By monotonicity,

∀x < y, Sx ⊆ Sy. By induction, each set Sx is measurable in Rd−1 and thus there exists an
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open set Ox ⊆ Rd−1 such that µ−1,∗(Ox \ Sx) ≤ ε. Define the function h : R → [0, 1] such

that h(x) is the measure of Sx (in Rd−1). Crucially, h is monotone because f is monotone.

Call an interval (x, y) jumpy if h(y) > h(x)+ε and let J ⊆ I be the set of jumpy intervals

in I. For a non-jumpy interval I = (x, y) ∈ I \ J , define OI := I × Oy. Note that OI is

open and by monotonicity, OI ⊇
⋃

z∈I({z} × Sz) = {z ∈ f : z1 ∈ I}.

The open set O := (
⋃

J∈J J × Rd−1) ∪ (
⋃

I∈I\J OI) contains (the set) f . It remains to

bound

µ∗(O \ f) ≤ µ∗

(⋃
J∈J

J × Rd−1

)
+ µ∗

 ⋃
I∈I\J

OI \ f


≤
∑
J∈J

µ1(J) +
∑
I∈I\J

µ∗(OI \ f) ≤ 2ε2|J |+
∑
I∈I\J

µ∗(OI \ f). (3.14)

To handle the first term, note that there are at least |J |/2 disjoint intervals in J and each

such interval represents a jump of at least ε in the value of h. Thus, |J |/2 ≤ 1/ε and so

|J | ≤ 2/ε.

Now, consider I = (x, y) ∈ I \ J . We have OI = I × Oy. By monotonicity OI \ f ⊆

OI\(I×Sx) = (I×Oy)\(I×Sx) = I×(Oy\Sx). Since Sy ⊇ Sx, Oy\Sx = (Oy\Sy)∪(Sy\Sx).

By sub-additivity of exterior measure, µ−1,∗(Oy \ Sx) ≤ µ−1,∗(Oy \ Sy) + µ−1,∗(Sy \ Sx). The

former term is at most ε, by the choice of Oy. Because I is not jumpy, the latter term is

h(y)− h(x) ≤ ε. Thus,

∑
I∈I\J

µ∗(OI \ f) ≤
∑
I∈I\J

µ1(I) · (µ−1,∗(Oy \ Sy) + µ−1,∗(Sy \ Sx)) ≤ 2ε
∑
I∈I\J

µ1(I) ≤ 4ε.

All in all, we can upper bound the expression in eq. (3.14) by 2ε2(2/ε) + 4ε = 8ε.
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3.6 Lower Bound for Domain Reduction

In this section we prove the following lower bound for the number of uniform samples needed

for a domain reduction result to hold for distance to monotonicity. Recall the domain

reduction experiment for the hypergrid: given f : [n]d → {0, 1} and an integer k ∈ Z+, we

choose T := T1 × · · · × Td where each Ti is formed by taking k i.i.d. uniform draws from [n]

with replacement. We then consider the restriction fT .

Theorem 3.6.1 (Lower Bound for Domain Reduction). There exists a function f : [n]d →

{0, 1} with distance to monotonicity εf = Ω(1), for which ET [εfT ] ≤ O(k2/d). In particular,

k = Ω(
√
d) samples in each dimension is necessary to preserve distance to monotonicity.

3.6.1 Proof of Theorem 3.6.1

We define the function Centrist : [0, 1]d → {0, 1}. The continuous domain is just a matter of

convenience; any n that is a multiple of d would suffice. It is easiest to think of d individuals

voting for an outcome, where the ith vote xi is the ”strength” of the vote. Based on their

vote, an individual is labeled as follows.

• xi ∈ [0, 1− 2/d]: skeptic

• xi ∈ (1− 2/d, 1− 1/d]: supporter

• xi ∈ (1− 1/d, 1]: fanatic

Centrist(x) = 1 iff there exists some individual who is a supporter. The non-monotonicity

is created by fanaticism. If a unique supporter increases her vote to become a fanatic, the

function value can decrease.

Claim 3.6.2. The distance to monotonicity of Centrist is Ω(1).

Proof. It is convenient to talk in terms of probability over the uniform distribution in [0, 1]d.

Define the following events, for i ∈ [d].

62



• Si: The ith individual is a supporter, and all others are skeptics.

• Fi: The ith individual is a fanatic, and all others are skeptics.

Observe that all these events are disjoint. Also, P[Si] = P[Fi] = (1/d)(1 − 2/d)d−1 =

Ω(1/d). Note that ∀x ∈ Si, Centrist(x) = 1 and ∀x ∈ Fi, Centrist(x) = 0.

We construct a violation matching M :
⋃

i Si →
⋃

iFi. For x ∈ Si, M(x) = x + ei/d,

where ei is the unit vector in dimension i. For x ∈ Si, xi ∈ (1 − 2/d, 1 − 1/d], so M(x)i ∈

(1 − 1/d, 1], and M(x) ∈ Fi. M is a bijection between Si and Fi, and all the Si,Fi sets

are disjoint. Thus, M is a violation matching. Since P [
⋃

i Si] = Ω(d · 1/d), the distance to

monotonicity is Ω(1).

Lemma 3.6.3. Let k ∈ Z+ be any positive integer. If T := T1 × · · · × Td is a randomly

chosen hypergrid, where for each i ∈ [d], Ti is a set formed by taking k i.i.d. samples from

the uniform distribution on [0, 1], then with probability > 1−4k2/d, CentristT is a monotone

function.

Proof. Each Ti consists of k u.a.r. elements in [0, 1]. We can think of each as a sampling of

the ith individual’s vote. For a fixed i, let us upper bound the probability that Ti contains

strictly more than one non-skeptic vote. This probability is

1− (1− 2/d)k − k(1− 2/d)k−1(2/d) = 1− (1− 2/d)k−1(1− 2/d+ 2k/d)

≤ 1−
(
1− 2(k − 1)

d

)(
1 +

2(k − 1)

d

)
≤ 4k2/d2

where we have used the bound (1 − x)r ≥ 1 − xr, for any x ∈ [0, 1] and r ≥ 1. By the

union bound over all dimensions, with probability > 1 − 4k2/d, all Ti’s contain at most

one non-skeptic vote. Consider CentristT , some x ∈ T , and a dimension i ∈ [d]. If the ith

individual increases her vote (from x), there are three possibilities.

• The vote does not change. Then the function value does not change.

63



• The vote goes from a skeptic to a supporter. The function value can possibly increase,

but not decrease.

• The vote goes from a skeptic to a fanatic. If CentristT (x) = 1, there must exist some

j ̸= i that is a supporter. Thus, the function value remains 1 regardless of i’s vote.

In no case does the function value decrease. Thus, CentristT is monotone.

Theorem 3.6.1 follows from Claim 3.6.2 and Lemma 3.6.3.
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CHAPTER 4

The Directed Talagrand Inequality for Hypergrids

In this chapter we prove a generalization of the celebrated directed Talagrand inequality of

[KMS18] to the hypergrid. The results in this chapter were originally published in [BCS23b].

We refer the reader to Section 2.3 for a discussion on isoperimetric inequalities over hyper-

grids. Our results use the following notion of influence for a function f : [n]d → {0, 1}.

Definition 4.0.1 (Thresholded Influence). Fix f : [n]d → {0, 1} and a dimension i ∈ [d].

Fix a point x ∈ [n]d. The thresholded influence of x along coordinate i is denoted Φf (x; i),

and has value 1 if there exists an i-aligned violation (x,y). The thresholded influence of x

is Φf (x) =
∑d

i=1Φf (x; i).

Note that the thresholded influence coincides with the hypercube directed influence when

n = 2. Also note that for any x, Φf (x) ∈ {0, 1, . . . , d} and is independent of n. We

prove the following theorem, a directed Talagrand theorem for hypergrids, which generalizes

the [KMS18] result.

Theorem 4.0.2 (Directed Talagrand Inequality on the Hypergrid). Let f : [n]d →

{0, 1} be ε-far from monotone.

Ex∈[n]d

[√
Φf (x)

]
= Ω

(
ε

log n

)

We define the robust/colorful generalizations of the thresholded negative influence on

hypergrids. Consider the fully augmented hypergrid, where we put the edge (x,y) if x and

y differ on only one coordinate. Let E be the set of edges in the fully augmented hypergrid.
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Definition 4.0.3 (Colorful Thresholded Influence). Fix f : [n]d → {0, 1} and χ : E →

{0, 1}. Fix a dimension i ∈ [d] and a point x ∈ [n]d. The colorful thresholded negative

influence of x along coordinate i is denoted Φf,χ(x; i), and has value 1 if there exists an

i-aligned violation (x,y) such that χ(x,y) = f(x), and has value 0 otherwise. The colorful

thresholded negative influence of x is Φf,χ(x) =
∑d

i=1Φf,χ(x; i).

The main result of our paper is a robust directed Talagrand isoperimetry theorem for

Boolean functions on the hypergrid. It is a strict generalization of the KMS Talagrand

theorem for hypercubes.

Theorem 4.0.4 (Robust Directed Talagrand Inequality on the Hypergrid). Let f : [n]d →

{0, 1} be ε-far from monotone, and let χ : E → {0, 1} be an arbitrary coloring of the edges

of the augmented hypergrid.

Ex∈[n]d

[√
Φf,χ(x)

]
= Ω

(
ε

log n

)

The importance of being robust. We briefly explain why the robust Talagrand ver-

sion is central to the monotonicity testing application. All testers that have a o(d)-query

complexity are versions of a path tester, which can be thought of as querying endpoints of

a directed random walk in the hypercube. Consider a function f as the indicator for a set

1f , where the violating edges form the “up-boundary” between 1f and its complement. To

analyze the random walk, we would like to lower bound the probability that a random walk

starts in 1f , crosses over the boundary, and stays in 1f , that is, the set of 0’s. To analyze

this, one needs some structural properties in the graph induced by the boundary edges,

which [KMS18] express via their notion of a “good subgraph”. In particular, one needs that

there be a large number of edges, but also that they are regularly spread out among the

vertices. It doesn’t seem that the “uncolored” Talagrand versions (like Theorem 4.0.2) are

strong enough to prove this regularity, but the robust version can “weed out” high-degree

vertices via a definition of a suitable coloring function χ. In short, the robust version of the
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Talagrand-style isoperimetric theorem is much more expressive. Indeed, these style of robust

results have found other applications in distribution testing [CCK+21] as well.

4.1 Challenges

We explain the challenges faced in proving Theorem4.0.4. The KMS proof of the directed

Talagrand inequality for the hypercube is a tour-de-force [KMS18], and there are many parts

of their proof that do not generalize for n > 2. We begin by giving an overview of the KMS

proof for the hypercube case.

For the time being, let us focus on the uncolored case. For convenience, let T (f) =

Ex[
√

I−f (x)] denote the hypercube directed Talagrand objective for a f : {0, 1}d → {0, 1}.

To lower bound T (f), [KMS18] transform the function f to a function g using a sequence

of what they call split operators. The ith split operator applied to f replaces the ith

coordinate/dimension by two new coordinates (i,+) and (i,−). One way to think of the

split operator is that takes the ((0,x−i), (1,x−i)) edge and converts it into a square. (Here,

x−i denotes the collection of coordinates in x skipping xi.) The “bottom” and “top” corners

of the square store the original values of the edge, while the “diagonal” corners store the min

and max values (of the edge). The definition of this remarkably ingenious operator ensures

that the split function is monotone in (i,+) and anti-monotone in (i,−). The final function

g : {0, 1}2d → {0, 1} obtained by splitting on all coordinates has the property that it is either

monotone or anti-monotone on all coordinates. That is, g is unate (or pure, as [KMS18] call

them), and for such functions the directed Talagrand inequality can be proved via a short

reduction to the undirected case.

The utility of the split operator comes from the main technical contribution of [KMS18]

(Section 3.4), where it is shown that splitting cannot increase the directed Talagrand objec-

tive. This is a “roll-your-sleeve-and-calculate” argument that follows a case-by-case analysis.

So, we can lower bound T (f) ≥ T (g). Since g is unate, one can prove T (g) = Ω(εg) (the

distance of g to monotonicity). But how does one handle εg, or g more generally? This is
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done by relating splitting to the classic switch operator in monotonicity testing, introduced

in [GGL+00]. The switch operator for the ith coordinate can be thought of as modifying

the edges along the i-dimension: for any i-edge violation (x,y), this operator switches the

values, thereby fixing the violation. The switching operator has the remarkable property of

never increasing monotonicity violations in other dimensions; hence, switching in all dimen-

sions leads to a monotone function. [KMS18] observe that the function g basically “embeds”

disjoint variations of f , wherein each variation is obtained by performing a distinct sequence

of switches on f . The function g contains all possible such variations of f , stored cleverly so

that g is unate. One can then use properties of the switch operators to relate εg to εf . (The

truth is more complicated; we will come back to this point later.)

Challenge #1, splitting on hypergrids? The biggest challenge in trying to generalize

the [KMS18] argument is to generalize the split operator. One natural starting point would

be to consider the sort operator, defined in [DGL+99], which generalizes the switch operator:

the sort operator in the ith coordinate sorts the function along all i-lines. But it is not at all

clear how to split the ith coordinate into a set of coordinates that contains the information

about the sort operator thereby leading to a pure/unate function. In short, sorting is a much

more complicated operation than switching, and it is not clear how to succinctly encode this

information using a single operator.

We address this challenge by a reorientation of the KMS proof. Instead of looking at

operators on dimensions to understand effects of switching/sorting, we do this via what we

call “tracker functions” which are nd different Boolean functions tracking the changes in f .

We discuss this more in Section 4.2.

Challenge #2, the case analysis for decreasing Talagrand objective. As mentioned

earlier, the central calculation of KMS is in showing that splitting does not increase the

directed Talagrand objective. This is related (not quite, but close enough) to showing that

the switch operator does not increase the Talagrand objective. A statement like this is proven
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in KMS by case analysis; there are 4 cases, for the possible values a Boolean function takes

on an edge. One immediately sees that such an approach cannot scale for general n, since

the number of possible Boolean functions on a line is 2n. Even with our new idea of tracking

functions, we cannot escape this complexity of arguing how the Talagrand-style objective

decreases upon a sorting operation, and a case-by-case analysis depending on the values of

the function is infeasible.

We address this challenge by a connection to the theory of majorization. We show that

the sort operator is (roughly) a majorizing operator on the vector of influences. The concavity

of the square root function implies that sorting along lines cannot increase the Talagrand

objective. More details are given in the next section.

Challenge #3, the colorings. Even if we circumvented the above issues, the robust

colored Talagrand objective brings a new set of issues. Roughly speaking, colorings decide

which points “pay” for violations of the Talagrand objective, the switching/sorting operator

move points around by changing values, and the high-level argument to prove T (f) drops is

showing that these violations “pay” for the moves. In the hypercube, a switch either changes

the values on all the points of the edge or none of the points, and this binary nature makes

the handling of colors in the KMS proof fairly easy, merely introducing a few extra cases in

their argument. Sorting, on the other hand, can change an arbitrary set of points, and in

particular, even in the case of n = 3, a point participating in a violation may not change

value in a sort.

To address this challenge, as we apply the sort operators to obtain a handle on our

function, we also need to recolor the edges such that we obtain the drop in the T -objective.

Once again, the theory of majorization is the guide. This part of the proof is perhaps the

most technical portion of our paper.

Other minor challenges, the telescoping argument. The issues detailed here are not

really conceptual challenges, but they do require some work to handle the richer hypergrid
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domain.

Recall that the KMS analysis proves the chain of inequalities, T (f) ≥ T (g) = Ω(εg).

Unfortunately, it can happen that εg ≪ εf . In this case, KMS observe that one could redo

the entire argument on random restrictions of f to half the coordinates. If the corresponding

εg is still too small, then one restricts on one-fourth of the coordinates, so on and so forth.

One can prove that somewhere along these log d restrictions, one must have εg = Ω(εf ).

Pallavoor, Raskhodnikova, and Waingarten [PRW22] improve this analysis to remove a log d

loss from the final bound. We face the same problems in our analysis, and have to adapt the

analysis to our setting.

4.2 Main Ideas

We sketch some key ideas needed to prove Theorem 4.0.4 and address the challenges detailed

earlier. We begin with a key conceptual contribution of this paper. Given a function f :

[n]d → {0, 1}, we define a collection of Boolean functions on the hypercube called tracker

functions. We will lower bound the directed Talagrand objective on the hypergrid by the

undirected Talagrand objective on these tracker functions. Indeed, the inspiration of these

tracker functions arose out of understanding the analysis in [KMS18], in particular, the

intermediate “g” function in their Section 4. As an homage, we also denote our tracker

functions with the same Roman letter, even though it is different from their function.

4.2.1 Tracker functions gx for all x ∈ [n]d

Let us begin with the sort operator discussed earlier. Without loss of generality, fix the

ordering of coordinates in [d] to be (1, 2, . . . , d). The operator sorti for i ∈ [d] sorts the

function on every i-line. Given a subset S ⊆ [d] of coordinates, the function (S ◦ f) is

obtained by sorting f on the coordinates in S in that order.

Sorting along any dimension cannot increase the number of violations along any other
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dimension, and therefore upon sorting on all dimensions, the result is a monotone func-

tion [DGL+99]. Suppose f is ε-far from monotone. Clearly, the total number of points

changed by sorting along all dimensions must be at least εnd. While this is not obvious here,

it will be useful to to track how the function value changes when we sort along a certain

subset S of coordinates. The intuitive idea is: if the function value changes for most such

partial sortings, then perhaps the function is far from being monotone. To this end, for every

point x ∈ [n]d, we define a Boolean function gx : 2[d] → {0, 1} that tracks how the function

value f changes as we apply the sort operator a subset S of the coordinates. It is best to

think of the domain of gx as subsets S ⊆ [d].

Definition 4.2.1 (Tracker Functions gx). Fix an x ∈ [n]d. The tracker function gx :

{0, 1}d → {0, 1} is defined as

∀S ⊆ [d], gx(S) := (S ◦ f) (x)

We provide an illustration of this definition in Figure 4.1.

Note that when f is a monotone function, all the functions gx are constants. Sorting does

not change any values, so gx(S) is always f(x). On the other hand, if f is not monotone

along dimension i, then there are points such that gx({i}) ̸= f(x). Indeed, one would expect

the typical variance of these gx functions to be related to the distance to monotonicity of f

(technically not true, but we come to this point later).

The tracker functions help us lower bound the (colorful) Talagrand objective for thresh-

olded influence, in particular, the LHS in Theorem 4.0.4. Recall that the Talagrand objective

is the expected square root of the colorful thresholded influences on the hypergrid function

f . We lower bound this quantity by the expected Talagrand objective on the undirected (col-

orful, however) influence of the various gx functions. Note that gx functions are defined on

hypercubes. So we reduce the robust directed Talagrand inequality on hypergrids to robust

undirected Talagrand inequalities on hypercubes. This is the main technical contribution of
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Figure 4.1: The blue function f : [n]d → {0, 1} is defined in the middle using bold, gothic char-

acters. We have d = 2 and n = 2. For each of the 4 points of this square, we have four different

gx : {0, 1}2 → {0, 1} and they are described in the four green squares. For any S ⊆ {1, 2}, if

we focus on the corresponding corners of the four squares, then we get the function (S ◦ f). For

instance, if S = {2}, then if we focus on the top left corners, then starting from g00 and moving

clockwise we get (0, 1, 1, 0). These will precisely the function f (read clockwise from 00) after we

sort along dimension 2.

our paper. Let us define the (colored) influences of these gx functions.

Definition 4.2.2 (Influence of the Tracking Functions). Fix a x ∈ [n]d and consider the

tracking function gx : {0, 1}d → {0, 1}. Fix a coordinate j ∈ [d]. The influence of gx at a

subset S along the jth coordinate is defined as

I=j
gx (S) = 1 iff gx(S) ̸= gx(S ⊕ j) that is (S ◦ f)(x) ̸= (S ⊕ j ◦ f)(x)

In plain English, the influence of the jth coordinate at a subset S is 1 if the function value (the

hypergrid function) changes when we include the dimension j to be sorted. Once again, note

that the same sensitive edge (S, S ⊕ j) is contributing towards both I=j
gx (S) and I=j

gx (S ⊕ j).

We define a robust, colored version of these influences.

Definition 4.2.3 (Colorful Influence of the Tracking Functions). Fix a x ∈ [n]d and consider

the tracking function gx : {0, 1}d → {0, 1}. Fix any arbitrary coloring ξx : E(2[d]) → {0, 1}
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of the Boolean hypercube. Fix a coordinate j ∈ [d]. The influence of gx at a subset S along

the jth coordinate is defined as

I=j
gx,ξx

(S) = 1 iff gx(S) ̸= gx(S ⊕ j) and gx(S) = ξx(S, S ⊕ j)

The colorful total influence at the point S in gx is defined as

Igx,ξx(S) :=
d∑

j=1

I=j
gx,ξx

(S)

As before, for a sensitive edge (S, S⊕j) of gx, we count it towards the influence of the endpoint

whose value equals the color ξx(S, S ⊕ j). The main technical contribution of this paper is

proving that for any function f : [n]d → {0, 1} and any arbitrary coloring χ : E → {0, 1}

of the hypergrid edges, for every x ∈ [n]d there exists a coloring ξx : E(2[d])→ {0, 1} of the

Boolean hypercube edges, such that

TΦχ(f) := Ex∈[n]d

[√
Φf,χ(x)

]
⪆ Ex∈[n]dES⊆[d] [

√
Igx,ξx(S)] (H1)

We explain the ≈ in the above inequality in the next subsection.

Why is a statement like eq. (H1) useful? Because the RHS terms are Talagrand objectives

on colored influences on the usual undirected hypercube. Therefore, we can apply undirected

Talagrand bounds (known from KMS, Theorem 4.3.8) to get an upper bound on the variance.

Corollary 4.2.4 (Corollary of Theorem 1.8 in [KMS18]). Fix f : [n]d → {0, 1}. Fix an

x ∈ [n]d and consider the tracking function gx : {0, 1}d → {0, 1}. Consider any arbitrary

coloring ξx : E(2[d])→ {0, 1} of the Boolean hypercube. Then, for every x ∈ [n]d, we have

ES⊆[d] [
√

Igx,ξx(S)] = Ω(var(gx))
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The final piece of the puzzle connects var(gx)’s with the distance to monotonicity. Ideally,

we would have liked to have a statement such as the following true.

Ex∈[n]d [var(gx)] ≈ Ω(εf ) (H2)

We now see that eq. (H1), Corollary 4.2.4, and eq. (H2) together implies Theorem 4.0.4

(indeed without the log n).

4.2.2 High level description of our approaches

Addressing the ≈ in eq. (H1) via semisorting. As stated, we do not know if eq. (H1) is

true. However, we establish eq. (H1) for semisorted functions f : [n]d → {0, 1}. A function f

is semisorted if on any line ℓ, the restriction of the function on the first half is sorted and the

restriction on the second half is sorted. This may seem like a simple subclass of functions, but

note that all functions on the Boolean hypercube (n = 2) are vacuously semisorted. Thus,

proving Theorem 4.0.4 on semi-sorted functions is already a generalization of the [KMS18]

result. Theorem 4.4.2 is the formal restatement of eq. (H1).

We reduce Theorem4.0.4 on general functions to the same bound for semisorted functions.

Consider semisorting f , which means we sort f on each half of every line. Suppose the

Talagrand objective did not increase and the distance to monotonicity did not decrease.

Then Theorem4.0.4 on the semisorted version of f implies Theorem4.0.4 on f . What we

can prove is that: given the semisorted function, one can find a recoloring of the hypergrid

edges such that the Talagrand objective doesn’t increase. The precise statement is given

in Lemma 4.4.1. We comment on our techniques to prove such a statement in a later

paragraph.

Although semisorting can’t increase the Talagrand objective, it can clearly reduce the

distance to monotonicity. However, a relatively simple inductive argument proves The-

orem4.0.4 with a log n loss. Any function can be turned into a completely sorted (aka
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monotone) function by performing “log n semisorting steps” at varying scales. In each scale,

we consider many disjoint small hypergrids, and convert a semisorted function defined over a

small hypergrid to another semisorted function over a hypergrid of double the size (the next

scale). In one of these scales, we will find a semisorted function that has Ω(ε/ log n) distance

from its sorted version. One can average Theorem4.0.4 over all the small hypergrids at this

scale to bound the Talagrand objective of the whole function by Ω(ε/ log n). This is the

step where we incur the log n-factor loss. This argument is not complicated, and we provide

illustrated details in Section 4.4.

The real work happens in proving Theorem 4.4.3, that is, eq. (H1) for semisorted func-

tions.

Approach to proving eq. (H1) for semisorted functions. Recall, we have a fixed

adversarial coloring χ : E → {0, 1}. The proof follows a “hybrid argument” where we define

a potential that is modified over d+1 rounds. At the beginning of round 0 it takes the value

Ex∈[n]d [
√

Φf,χ(x)] which is the LHS of eq. (H1). At the end of round d it takes the value

Ex∈[n]dES⊆[d][
√

Igx,ξx(S)] which is the RHS of eq. (H1). The proof follows by showing that

the potential decreases in each round.

Let us describe the potential. Let us first write this without any reference to the colorings

(so no χ’s and ξx’s), and then subsequently address the colorings. At stage i, fix a subset

S ⊆ [i]. Define

Ri(S) := Ex∈[n]d

√√√√ i∑
j=1

I=j
gx (S) +

d∑
j=i+1

ΦS◦f (x; j)

 (Hybrid)

We remind the reader that S◦f is the function f after the dimensions corresponding to i ∈ S

have been sorted. Thus, Ri(S) is a “hybrid” Talagrand objective, with two different kinds

of influences being summed. Consider point x ∈ [n]d. On the first i coordinates, we sum the

undirected influence (along these coordinates) of S on the function gx. On the coordinates

75



i + 1 to d, we sum to directed influence along these coordinates in the function S ◦ f . The

potential is Λi := ES⊆[i][Ri(S)].

To make some sense of this, consider the extreme cases of i = 0 and i = d. When i = 0,

we only have the second ΦS◦f term. Furthermore, S is empty since S ⊆ [i]. So Λ0 is precisely

the original directed Talagrand objective, the LHS of eq. (H1). When i = d, we only have

the I=j
gx terms. Taking expectation over S ⊆ [d] to get Λd, we deduce that Λd is the RHS of

eq. (H1).

We will prove Λi−1 ≥ Λi for all 1 ≤ i ≤ d. To choose a uar set in [i], we can choose a uar

subset of [i− 1] and then add i with 1/2 probability. Hence, Λi = (ES⊆[i−1][Ri(S) +Ri(S +

i)])/2, while Λi−1 = ES⊆[i−1][Ri−1(S)]. So, if we prove that Ri−1(S) is at least both Ri(S)

and Ri(S + i), then Λi−1 ≥ Λi. The bulk of the technical work in this paper is involved

in proving these two inequalities, so let us spend a little time explaining what proving this

entails.

Let’s take the inequality Ri−1(S) ≥ Ri(S). Refer again to eq. (Hybrid). When we go

from Ri−1(S) to Ri(S), under the square root, the term ΦS◦f (x; i) is replaced by I=i
gx (S).

To remind the reader, the former term is the indicator of whether x participates in a i-

violation after the coordinates in S ⊆ [i − 1] have been sorted. The latter term is whether

gx(S+ i) equals gx(S), that is, whether the (hypergrid) function value at x changes between

sorting on coordinates in S and S + i. Just by parsing the definitions, one can observe that

ΦS◦f (x; i) ≥ I=i
gx (S); if a point is modified on sorting in the i-coordinate, then it must be

participating in some i-violation (note that vice-versa may not be true and thus we have an

inequality and not an equality). The quantity under the square-root point-wise dominates

(ie, for every x) when we move from Ri−1(S) to Ri(S). Thus, Ri−1(S) ≥ Ri(S).

The other inequality Ri−1(S) ≥ Ri(S + i), however, is much trickier to establish. In

Ri(S + i), the second summation under the square-root, the Φ terms, are actually on a

different function. The ΦS◦f (x; j) terms in Ri−1(S) are the thresholded influences of the

function after sorting on coordinates in S. But in Ri(S + i), these terms are Φ(S+i)◦f (x; j),
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the thresholded influences of x for the function after sorting on S + i. Although, it is true

that sorting on more coordinates cannot increase the total number of violations along any

dimension, this fact is not true point-wise. So, a point-wise argument as in the previous

inequality is not possible.

The argument for this inequality proceeds line-by-line. One fixes an i-line ℓ and considers

the vector of “hybrid function” values on this line. We then consider this vector when moving

from Ri−1(S) to Ri(S + i), and we need to show that the sum of square roots can get only

smaller. This is where one of our key insights comes in: the theory of majorization can be

used to assert these bounds. Roughly speaking, a vector a (weakly) majorizes a vector b if

the sum of the k-largest coordinates of a dominates the sum of the k-largest coordinates of

b, for every k. A less balanced vector majorizes a more balanced vector. If the ℓ1-norms of

these vectors are the same, then the sum of square roots of the entries of a is at most the

sum of square roots of that of b. This follows from concavity of the square-root function.

Our overarching mantra throughout this paper is this: whenever we perform an operation

and the hybrid-influence-vector induced by a line changes, the new vector majorizes the old

vector. Specifically, these vectors are generated by look at the terms of Ri−1(S) and Ri(S+i)

restricted to i-lines.

To prove this vector-after-operation majorizes vector-before-operation, we need some

structural assumptions on the function. Otherwise, it’s not hard to construct examples

where this just fails. The structure we need is precisely the semisortedness of f . When a

function is semisorted, the majorization argument goes through. At a high level, when f

is semisorted, the vector of influences (along a line) satisfy various monotonicity properties.

In particular, when we (fully) sort on some coordinate i, we can show the points losing

violations had low violations to begin with. That is, the vector of violations becomes less

balanced, and the majorization follows.

The above discussion disregarded the colors. With colors, the situation is noticeably more

difficult. Although the function f is assumed to be semisorted, the coloring χ : E → {0, 1}
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is adversarial. So even though the vector of influences may have monotonicity properties,

the colored influences may not have this structure. So a point with high influence could have

much lower colored influence. Note that the sort operator is insensitive to the coloring. So the

majorization argument discussed above might not hold when looking at colored influences.

With colors, eq. (Hybrid) is replaced by the actual quantity eq. (Colorful Hybrid) de-

scribed in Section 4.6. To carry out the majorization argument, we need to construct a family

of colorings ξx on the nd different hypercubes. We also need 2d many different auxiliary col-

orings χS of the hypergrid, constructed after every sort operation. The argument is highly

technical. But all colorings are chosen to follow our mantra: vector after operation should

majorize vector before operation. The same principle is also used to prove Lemma 4.4.1

which claims that semisorting an interval can only decrease the Talagrand objective, after a

recoloring.

The details of the actual Ri(S) hybrid function and the strategy to use them is presented

in Section 4.6. The most technical part of the paper is in Section 4.7, which proves that the

potential decreases in each round.

Addressing the ≈ in eq. (H2) via random sorts. To finally complete the argument,

we need eq. (H2) that relates the average variance of the gx functions to the distance to

monotonicity of f . As discussed earlier, eq. (H2) is false, even for the case of hypercubes.

Nevertheless, one can use eq. (H1) and Corollary 4.2.4 to prove a lower bound on TΦχ(f) with

respect to εf . This is the telescoping argument of KMS, refined in [PRW22]. We describe

the main ideas below. The first observation (see Theorem 4.5.2) is that Ex∈[n]d [var(gx)] is

roughly ES[∆(S ◦ f, S ◦ f ] where S is a uniform random subset of coordinates. The distance

to monotonicity εf is approximated by ∆
(
f, S ◦ S ◦ f

)
which, by the triangle inequality, is

at most ∆(f, S ◦ f) + ∆(S ◦ f, S ◦ f). Thus, we get a relation between εf , the expected

var(gx), and the distance between f and a “random sort” of f . Therefore, if eq. (H2) is

not true, then a random sort of f must be still far from being monotone, and then one can

repeat the whole argument on just this random sort itself. In one of these log d “repetitions”,
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the eq. (H2) must be true since in the end we get a monotone function (which can’t be far

from being monotone). And this suffices to establish Theorem 4.0.4. We re-assert that the

main ideas are already present in [KMS18, PRW22]. However, we require a more general

presentation to make things work for hypergrids. These details can be found in Section 4.5.

4.3 Preliminaries

A central construct in our proof is the sort operator.

Definition 4.3.1. Consider a Boolean function on the line h : [n] → {0, 1}. The sort

operator sort() is defined as follows.

sort(h)(b) =


0 if b < n− ∥h∥1

1 if b ≥ n− ∥h∥1

Thus, the sort operator “moves” the values on a line to ensure that it is sorted. Note

that sort(h) and h have exactly the same number of zero/one valued points. We can now

define the sort operator for any dimension i. This operator takes a hypergrid function and

applies the sort operator on every i-line.

Definition 4.3.2. Let i be a dimension and f : [n]d → {0, 1}. The sort operator for

dimension i, sorti(), is defined as follows. For every i-line ℓ, sorti(f)|ℓ = sort(f |ℓ).

Let S be an ordered list of dimensions, denoted (i1, i2, . . . , ik). The function S ◦ f is

obtained by applying the sorti() operator in the order given by S. Namely,

S ◦ f = sortik(sortik−1
(. . . sorti1(f)))

Somewhat abusing notation, we will treat the ordered list of dimensions S as a set, with

respect to containing elements. The key property of the sort operator is that it preserves

the sortedness of other dimensions.
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Claim 4.3.3. The function S ◦ f is monotone along all dimensions in S.

Proof. We will prove the following statement: if f is monotone along dimension i, then

sortj(f) is monotone along both dimensions i and j. A straightforward induction (which

we omit) proves the claim.

By construction, the function sortj(f) is monotone along dimension j. Consider two ar-

bitrary points x ⪯ x′ that are i-aligned (meaning that they only differ in their i-coordinates).

We will prove that sortj(f)(x) ≤ sortj(f)(x
′), which will prove that sortj(f) is monotone

along dimension i.

For convenience, let the j-lines containing x and x′ be ℓ and ℓ′, respectively. Note that

these j-lines only differ in their i-coordinates. Let c denote the j-coordinate of x (and x′).

Observe that sortj(f)x = sortj(f)|ℓ(c) (analogously for x′).

Note that, ∀c ∈ [n], f |ℓ(c) ≤ f |ℓ′(c). This is because f is monotone along dimension i, and

ℓ has a lower i-coordinate than that of ℓ′. Hence, ∥f |ℓ∥1 ≤ ∥f |ℓ′∥1. By the definition of the

sort operator, ∀c ∈ [n], sort(f |ℓ)(c) ≤ sort(f |ℓ′)(c). Thus, sortj(f)|ℓ(c) ≤ sortj(f)|ℓ′(c),

implying sortj(f)(x) ≤ sortj(f)(x
′).

A crucial property of the sort operator is that it can never increase the distance between

functions. This property, which was first established in [DGL+99] (Lemma 4), will be used

in Section 4.5, where we apply our main isoperimetric theorem on random restrictions.We

provide a proof for completeness.

Claim 4.3.4. Let f, f ′ : [n]d → {0, 1} be two Boolean functions. For any ordered set S ⊆ [d],

∆(S ◦ f, S ◦ f ′) ≤ ∆(f, f ′)

Proof. It suffices to prove this bound when S is a singleton. We prove that for any i ∈ [d],

∆(sorti(f), sorti(f
′)) ≤ ∆(f, f ′). In the following, we will use the simple fact that for

monotone functions h, h′ : [n]→ {0, 1}, ∆(h, h′) =
∣∣∣∥h∥1 − ∥h′∥1∣∣∣. Also, we use the equality
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∥sort(h)∥1 = ∥h∥1.

∆(sorti(f), sorti(f
′)) =

∑
ℓ i-line

∆(sorti(f)|ℓ, sorti(f ′)|ℓ)

=
∑
ℓ

∣∣∣∥sorti(f)|ℓ∥1 − ∥sorti(f ′)|ℓ∥1∣∣∣
=

∑
ℓ

∣∣∣∥f |ℓ∥1 − ∥f ′|ℓ∥1∣∣∣
=

∑
ℓ

∣∣∣∑
c∈[n]

f |ℓ(c)−
∑
c∈[n]

f |ℓ(c)
∣∣∣

≤
∑
ℓ

∑
c∈[n]

∣∣∣f |ℓ(c)− f ′|ℓ(c)
∣∣∣ = ∆(f, f ′)

The method of obtaining a monotone function via repeated sorting is close to being

optimal. For hypercubes, this result was established by [FR10] (Lemma 4.3) and also present

in [KMS18] (Lemma 3.5). The proofs goes through word-for-word applied to hypergrids.

Claim 4.3.5. For any function f : [n]d → {0, 1},

εf ≤ ∆(f, [d] ◦ f) ≤ 2εf

Proof. The first inequality is obvious since [d] ◦ f is monotone as established in Claim 4.3.3.

Let h be the monotone function closest to f , that is, εf = ∆(f, h). So,

∆(f, [d]◦f) ≤︸︷︷︸
triangle ineq

∆(f, h)+∆([d]◦f, h) =︸︷︷︸
since h=[d]◦h

∆(f, h)+∆([d] ◦ f, [d] ◦ h)︸ ︷︷ ︸
≤∆(f,h) by Claim 4.3.4

≤ 2∆(f, h) = 2εf

We provide one more simple claim about the sort operator that will be used throughout
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Section 4.7. Given h, h′ : [n]→ {0, 1}, define

∆−(h, h′) = |{c ∈ [n] : h(c) > h′(c)}| and ∆+(h, h′) = |{c ∈ [n] : h(c) < h′(c)}|.

Claim 4.3.6. Let h, h′ : [n]→ {0, 1} be any two functions. Then, ∆−(sort(h), sort(h′)) ≤

∆−(h, h′).

Proof. Observe that if ∥h∥1 ≤ ∥h′∥1, then ∆−(sort(h), sort(h′)) = 0 and so we are done.

On the other hand if ∥h∥1 ≥ ∥h′∥1, then we have

∆−(sort(h), sort(h′)) = ∥h∥1−∥h
′∥1 =

∑
c∈[n]

h(c)−h′(c) = ∆−(h, h′)−∆+(h, h′) ≤ ∆−(h, h′).

4.3.1 Colorful Influences and the Talagrand Objective

We will need undirected, colorful Talagrand inequalities for proving Theorem4.0.4. For the

sake of completeness, we explicitly define the undirected colored influence.

Definition 4.3.7. Consider a function g : {0, 1}d → {0, 1} and a 0-1 coloring ξ of the

edges of the hypercube {0, 1}d. The influence of z ∈ {0, 1}d, denoted Ig,ξ(z), is the number

of sensitive edges incident to z whose color has value f(z).

(An edge is sensitive if both endpoints have different values.)

Talagrand’s theorem asserts that Ez[
√

Ig(z)] = Ω(var(g)) [Tal93]. The robust/colored

version proven by KMS asserts this to be true for arbitrary colored influences.

Theorem 4.3.8 (Paraphrasing Theorem 1.8 of [KMS18]). (Colored Talagrand Theorem on

the Undirected Hypercube) There exists an absolute constant C > 0 such that for any function
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g : {0, 1}d → {0, 1} and any 0-1 coloring ξ of the edges of the hypercube,

Ez∈{0,1}d

[√
Iξ(z)

]
≥ C · var(g)

It will be convenient in our analysis to formally define the Talagrand objective for colored,

thresholded influences on the hypergrid.

Definition 4.3.9 (Colored Thresholded Talagrand Objective). Given any Boolean function

f : [n]d → {0, 1} and χ : E → {0, 1}, we define the Talagrand objective with respect to the

colorful thresholded influence as

TΦχ(f) := Ex

[√
Φf,χ(x)

]

where, Φf,χ is defined in Definition 4.0.3.

4.3.2 Majorization

It is convenient to think of the Talagrand objective as a “norm” of a vector. Throughout

the paper, we (ab)use the following notation:

given a vector v ∈ Rt
≥0, ∥v∥1/2 :=

t∑
i=1

√
vi.

If we imagine an nd-dimensional vector indexed by the points of the hypergrid, we see that

the Talagrand objective is precisely the norm of the vector whose x’th entry is Φf,χ(x).

Most often, however, we would be considering the Talagrand objective line-by-line, with the

natural ordering of the line defining a natural ordering on the vector. To be more precise, fix

a dimension i ∈ [d] and fix an i-line ℓ. An i-line is a set of n points which only differ in the

ith coordinate. This line ℓ defines a vector
#         »

Φℓ(f) ∈ Rn
≥0 whose jth coordinate, for 1 ≤ j ≤ n
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is precisely Φf,χ(x) where x ∈ ℓ has xi = j. Note that

∀i ∈ [d], TΦχ(f) =
1

nd

∑
i-lines ℓ

∥∥∥ #         »

Φℓ(f)
∥∥∥
1/2

.

Our proof to establish (the correct version of) eq. (H1) proceeds via a hybrid argument that

modifies the function and the coloring in various stages. In each stage, we prove that the

norm decreases. We use the following facts from the theory of majorization.

In the rest of this subsection all vectors, unless explicitly mentioned, live in Rt
≥0 for some

positive integer t. Given a vector a, we use (a)↓ and (a)↑ to denote the vectors obtained by

sorting a in decreasing and increasing order, respectively. Given two vectors a and b with

the same ℓ1 norm, we say a ⪰maj b if for all 1 ≤ k ≤ t,
∑

i≤k (a)
↓
i ≥

∑
i≤k (b)

↓
i .

Throughout this paper, when we apply majorization the LHS vector would be sorted

(either increasing or decreasing) while the RHS vector would be unsorted. To be absolutely

clear which is which, when a is sorted decreasing, we use the notation a ⪰maj (b)
↓ and when

a is sorted increasing we use the notation a ⪰maj (b)
↑. Here is a simple standard fact that

connects majorization to the Talagrand objective; it uses the fact that the sum of square

roots is a symmetric concave function, and is thus Schur-concave.

Fact 4.3.10 (Chapter 3, [MOA11]). Let a and b be two vectors such that a ⪰maj b. Then,

∥a∥1/2 ≤ ∥b∥1/2.

Next, we state and prove a simple but key lemma repeatedly used throughout the analysis.

Lemma 4.3.11. Let
#»

U =
∑

i wi be a finite sum of t-dimensional non-negative vectors.

Let
#»

S :=
∑

i (wi)
↓. Then,

#»

S ⪰maj

(
#»

U
)↓
. Analogously, if

#»

S :=
∑

i (wi)
↑, then

#»

S ⪰maj(
#»

U
)↑
.

Proof. We prove the first statement; the second analogous statement has an absolutely

analogous proof. We begin by noting
#»

S is a sorted decreasing vector since it is a sum
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of sorted decreasing vectors. For brevity, let’s use
#»

V :=
(

#»

U
)↓
. Next, we note that

∥∥∥ #»

S
∥∥∥
1
=∥∥∥ #»

V
∥∥∥
1
=
∑

i ∥wi∥1.

Now fix a 1 ≤ τ ≤ t. We need to show
∑τ

j=1

#»

S j ≥
∑τ

j=1

#»

V j. Consider the τ largest

coordinates of
#»

U , and let them comprise T ⊆ [t] where |T | = τ . Consider the τ -dimensional

vectors wi[T ] where we restrict our attention to only these coordinates. Let
#»

S ′ be the τ -

dimensional vector formed by the sum of the sorted versions (wi[T ])
↓. Note that

∑τ
j=1

#»

S ′j =∑τ
j=1

#»

V j. Also note that for any 1 ≤ j ≤ τ , the number
#»

S ′j equals
∑

i(jth max of wi[T ])

and
#»

S j equals
∑

i(jth max of wi). Thus,
#»

S j ≥
#»

S ′j, proving that
∑τ

j=1

#»

S j ≥
∑τ

j=1

#»

V j.

4.4 Semisorting and Reduction to Semisorted Functions

As we mentioned earlier when we stated eq. (H1), we do not know if this is a true statement

for an arbitrary function. It is true for what we call semisorted functions, and proving this

would be the bulk of the work. In this section, we define what semisorted functions are,

we prove that the Talagrand objective can only decrease when one moves to a semisorted

function, and therefore how one can reduce to proving Theorem 4.0.4 only for semisorted

functions.

Fix a function f : [n]d → {0, 1}. Fix a coordinate i and fix an interval I = [a, b].

Semisorting f on this interval in dimension i leads to a function h : [n]d → {0, 1} as follows.

We take every i-line ℓ and consider the function restricted on the interval I on this line, and

we sort it. The following lemma shows that semisorting on any (i, I) pair can only reduce

the Talagrand objective. We defer its proof to Section 4.4.1.

Lemma 4.4.1 (Semisorting only decreases TΦ.). Let f be any hypergrid function and

let χ be any bicoloring of the augmented hypergrid edges. Let i ∈ [d] be any dimension

and I be any interval [a, b]. There exists a (re)-coloring χ′ of the edges of the augmented
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hypergrid such that

TΦχ(f) ≥ TΦχ′
(h)

where h is the function obtained upon semisorting f in dimension i on the interval I.

A function f : [n]d → {0, 1} is called semisorted if for any i ∈ [d] and any i-line ℓ, the

function restricted to the first n/2 points is sorted increasing and the function restricted to

the second half is also sorted increasing. It is instructive to note that when n = 2, that is

when the domain is the hypercube, every function is semisorted. This shows that semisorted

functions form a non-trivial family. However, the semisortedness is a property that allows

us to prove that eq. (H1) holds. In particular, we prove this theorem.

Theorem 4.4.2 (Connecting Talagrand Objectives of f and Tracker Functions). Let

f : [n]d → {0, 1} be a semisorted function and let χ : E → {0, 1} be an arbitrary

coloring of the edges of the fully augmented hypergrid. Then for every x ∈ [n]d, one can

find a coloring ξx of the edges of the Boolean hypercube such that

TΦχ(f) := Ex∈[n]d

[√
Φf,χ(x)

]
≥ Ex∈[n]d ES⊆[d] [

√
Igx,ξx(S)].

We can use the above theorem to get set the intuition behind eq. (H2) correct, and prove The-

orem 4.0.4 for semisorted functions. We state this below, but we defer the proof of this

to Section 4.5. At this point we remind the reader again that this is not at all trivial, but

the proof ideas are generalizations of those present in [KMS18, PRW22] for the hypercube

case.

Theorem 4.4.3 (Theorem 4.0.4 for semisorted functions.). Let f : [n]d → {0, 1} be a

semisorted function that is ε-far from monotone. Let χ : E → {0, 1} be an arbitrary
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coloring of the edges of the augmented hypergrid. Then there is a constant C ′′ such that

TΦχ(f) := Ex

[√
Φf,χ(x)

]
≥ C ′′ε

Lemma 4.4.1 shows that the Talagrand objective can’t rise on semisorting. The distance

to monotonicty, however, can fall. In the remainder of the section we show how we can

reduce to the semisorted case with a loss of log n, and in particular, we use Theorem 4.4.3

to prove Theorem 4.0.4.

Sequence of Semisorted Functions and Reduction to the Semisorted Case. We

now describe a semi-sorting process which gives a way of getting from f to a monotone

function. Without much loss of generality, let us assume n = 2k which we can assume by

padding. Iteratively coarsen the domain [n]d = [2k]d as follows. First “chop” this hypergrid

into 2d many [n/2]d = [2k−1]d hypergrids by slicing through the “middle” in each of the

d-coordinates. More precisely, these 2d hypergrids can be indexed via v ∈ {0, 1}d, where

given such a vector, the corresponding hypergrid is

Hv =
d∏

i=1

{vi ·
n

2
+ 1,vi ·

n

2
+ 2, · · · ,vi ·

n

2
+

n

2
}

Each hypergrid Hv is an [n/2]d = [2k−1]d hypergrid. Let us denote the collection of all these

hypergrids as the set H1. So, H1 has 2
d many hypergrids and each hypergrid has dimension

[n/2]d = [2k−1]d. Repeat the above operation on each hypergrid in H1. More precisely,

each hypergrid Hv in H1 will lead to 2d hypergrids each with dimension [n/4]d = [2k−2]d.

The total number of such hypergrids, which we collect in the collection H2, is 2d × 2d =

(22)d. More generally, we have a family Hi consisting of (2i)
d
many hypergrids of dimension

[n/2i]d = [2k−i]d. The collection Hk−1 consists of (2k−1)d many d-dimensional hypercubes.

Note that in any family Hi for 1 ≤ i ≤ k− 1, each H ∈ Hi is a sub-hypergrid of [n]d. We let

fH denote the restriction of f only to this subset H of the domain. Also, let H0 denote the
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Figure 4.2: In the figure, we see an example with d = 2 and n = 8 = 23. There are 22 many 4× 4

green (hyper)-grids, and 42 many 2× 2 red squares.

singleton set containing only one hypergrid, [n]d. Define the function f1 : [n]d → {0, 1} as

follows: consider every hypergrid1 H in Hk−1 and apply the sort operator on fH for all these

hypergrids. Note that f1 is a monotone function when restricted to H ∈ Hk−1. Recursively

define fi as follows: consider every hypergrid H ∈ Hk−i and apply the sort operator on

(fi−1)H for all these hypergrids. Figure 4.3 is an illustration for d = 2 and k = 3, i.e. n = 8.

Claim 4.4.4. There must exist an 0 ≤ j ≤ k − 1 such that ∆(fj, fj+1) ≥ εf/k.

Proof. This follows from triangle inequality and the fact that ∆(f0, fk) ≥ εf .

Proof of Theorem 4.0.4. We now show how Theorem 4.0.4 follows from Lemma 4.4.1 and The-

orem 4.4.3 via an averaging argument. We fix the j as in Claim 4.4.4. By Lemma 4.4.1

we get that for any function f and any coloring χ, there exists a recoloring χ′ such that

TΦχ(f) ≥ TΦχ′
(fj). Now consider the hypergrids in H ∈ Hk−j−1. Let fj|H be the function

restricted to this sub-domain H. Note that the function fj|H is indeed semisorted by con-

struction. Therefore, by Theorem 4.4.3 (on the coloring χ′) we know that for all H ∈ Hk−j−1,

TΦχ′
(fj|H) ≥ C ′′ · εfj |H

1these will be hypercubes
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0 1 1 1 0 1 1 1

0 0 1 1 0 0 1 1

0 0 1 1 0 0 0 1

0 0 0 1 0 0 0 1

0 0 1 1 0 1 1 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 1 1

0 0 0 1 0 0 0 1

1 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1

0 1 1 0 0 0 0 1

1 0 1 0 1 0 1 0

0 0 0 1 1 1 1 0

1 0 1 0 0 1 0 0

0 1 1 0 0 1 0 1

0 0 1 0 0 1 1 0

0 1 1 1 1 1 0 1

0 1 0 0 0 1 0 0

0 1 0 1 0 1 0 1

0 1 0 1 0 0 0 1

0 1 0 1 1 1 0 1

0 0 0 1 0 1 0 0

0 1 0 1 0 1 0 1

0 0 0 1 0 1 0 1

0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

𝑓 = 𝑓0 𝑓1 𝑓2 monotone 𝑓3

ℎ

Δ 𝑓0, 𝑓1 = 28 Δ 𝑓1, 𝑓2 = 24 Δ 𝑓2, 𝑓3 = 22

Figure 4.3: The function f = f0 is described to the left, and then one obtains f1, f2 and f3. The

function h which is obtained doing sort on the whole of f is described below. Note h ̸= f3.

By Claim 4.3.5, we know that 2εfj |H ≥ ∆(fj|H , fj+1|H). Taking expectation over H ∈

Hk−j−1, we see that the LHS is at most (at most since we only consider violations staying in

H) TΦχ′
(fj), while the RHS is precisely ∆(fj, fj+1)/2 ≥ εf/2k. Putting everything together,

we get TΦχ(f) ≥
C′′εf
2 logn

proving Theorem 4.0.4.

4.4.1 Semisorting only decreases the Talagrand objective: Proof of Lemma 4.4.1

Let us first describe the coloring χ′.

• First let us describe the recoloring of pairs of points (x,x′) which differ only in some

coordinate j ̸= i and xi = x′i lies in the interval [a, b]. We go over all these edges by

considering pairs of i-lines which differ on a single coordinate j ̸= i. More precisely,

if ℓ = x ± tei then ℓ′ = x′ ± tei for some x′ = x + aej with a > 0. We now consider

re-coloring the pairs (x,x′ = x+ aej) as follows.

Let V denote the points x ∈ ℓ such that (a) xi ∈ I, (b) f(x) = 1, but (c) f(x+aej) = 0.
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That is (x,x + aej) is a violation. Consider all edges EV := {(x,x + aej) : x ∈ V }

and let #»χ be the |EV | dimensional 0, 1-vector which are the χ values of edges in EV

going left to right.

Now consider the function h where I has been sorted on both ℓ and ℓ′. Let U denote

the points x ∈ ℓ such that (a) xi ∈ I, (b) h(x) = 1, but (c) h(x + aej) = 0. That

is (x,x + aej) is a violation in h. Firstly note that |U | ≤ |V | and furthermore, these

|U | points form a contiguous interval of I. We now describe the recoloring χ′ of the

edges in EU := {(x,x+ aej) : x ∈ V }; all the other recolorings are immaterial since

they don’t contribute to TΦχ′
(h) since the edges are not violating. We take the |V |-

dimensional vector #»χ , sort in decreasing order, and then take the first |U | coordinates

and use them to define χ′(e) for e ∈ EU , left to right. See Figure 4.4 for an illustration.

1   1   0    1    0    1    1    0    0

0 1 0    0    0    0    1    1    0

0 0 0    0    1 1    1    1    1

0 0   0    0    0    0    1    1    1

V

U

Figure 4.4: We are considering only the interval I. The line below is ℓ and the line above is ℓ′.

The green shaded zones correspond to where the function evaluates to 1s. The situation to the right

is after sorting. Only the violating edges are marked. On the left, the red solid edges are colored

χ(e) = 1 while the blue dashed are colored χ(e) = 0. On the right, the color-coding is the same but

for χ′. All other unmarked edges inherit the same colors as χ.

• Now we describe recoloring of pairs of points (x,y) which only differ in coordinate i.

First, if both xi and yi lie in I, or if they both lie outside I, then we leave their colors

unchanged. Furthermore, if (x,y) is not a violating pair in f , then we leave its color

unchanged. Now consider a y to the right of I, that is, yi > b and f(y) = 0. Consider

the x’s with xi in I with f(x) = 1, each of which forms a violation with y. Suppose

there are k many of them, of which k0 of them are colored 0 and k1 of them are colored

1. We now consider the picture in h, and once again there are exactly k (possibly

different) points in the interval which are violating with y in h. Going from left to
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right, we color the first k1 of them 1 and the next k0 of them 0, in χ′. We now do a

similar thing for a z to the left of I, that is, zi < a and f(z) = 1. We now consider

the x’s with xi ∈ I with f(x) = 0, each of which forms a violation with z. As before,

suppose there are k many of them k1 of them colored 1 and k0 of them colored 0. In g

also there are k locations with which z is a violation. We, once again, going from left

to right, color the first k1 of them 1 and the next k0 of them 0, in χ′. See Figure 4.5

for an illustration.

1   1   0    1    0    1    1    0    0 0 0 0    0    1 1    1    1    101 01

𝒚 𝒚

𝒛𝒛

Figure 4.5: The two vertical black lines demarcate I. The green shaded zones correspond to where

the function evaluates to 1s. The situation to the right is after sorting. y is a point with f(y) = 0

to the right of I; z is a point with f(z) = 1 to the left of I. Only the violating edges incident to y

and z are marked. On the left, the red solid edges are colored χ(e) = 1 while the blue dashed are

colored χ(e) = 0. On the right, the color-coding is the same but for the recoloring χ′. All other

unmarked edges incident of y or z inherit the same colors as χ. Edges with both endpoints in I or

both endpoints outside I also inherit the same color.

Now we prove the lemma “line-by-line”. In particular, we want to prove for any i-line ℓ,

we have ∑
x∈ℓ

√
Φf,χ(x) ≥

∑
x∈ℓ

√
Φh,χ′(x)

Note that it suffices to prove the above for x whose xi ∈ I.

To prove the above inequality, it is best to consider the two vectors
#          »

Φχ(f) and
#           »

Φχ′(h)

which are |I|-dimensional whose xth coordinate is precisely Φf,χ(x) and Φh,χ′(x) respectively.

We want to prove ∥∥∥ #          »

Φχ(f)
∥∥∥
1/2
≥
∥∥∥ #           »

Φχ′(h)
∥∥∥
1/2

(4.1)
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First we divide the |I| coordinates of
#          »

Φχ(f) into O ∪ Z corresponding to when f(x) = 1

and f(x) = 0. Let’s call these two vectors
#             »

Φ
(1)
χ (f) and

#             »

Φ
(0)
χ (f). The former vector is |O|

dimensional, the latter is |Z| dimensional, and
#          »

Φχ(f) is obtained by some splicing of these

two vectors. We will do the same for the coordinates of
#           »

Φχ′(h) to obtain
#            »

Φ
(1)
χ′ (h) and

#            »

Φ
(0)
χ′ (h).

Note that since sorting doesn’t change the number of 0s or 1, both these vectors are |O| and

|Z| dimensional, respectively. We now set to prove

∥∥∥ #             »

Φ(1)
χ (f)

∥∥∥
1/2
≥
∥∥∥∥ #            »

Φ
(1)
χ′ (h)

∥∥∥∥
1/2

and
∥∥∥ #             »

Φ(0)
χ (f)

∥∥∥
1/2
≥
∥∥∥∥ #            »

Φ
(0)
χ′ (h)

∥∥∥∥
1/2

(4.2)

and this will prove eq. (4.1). We prove the first inequality; the proof of the second is

analogous. For brevity’s sake, for the rest of the section we drop the superscript (1) from
#    »

Φ(1).

The plan is to write
#          »

Φχ(f) as a sum of (Boolean) vectors, and then show that
#           »

Φχ′(h) is

dominated by the sum of sorts of those Boolean vectors. Then we invoke Lemma 4.3.11.

We write
#          »

Φχ(f) as a sum of Boolean vectors as follows. Fix any other i-line ℓ′ := ℓ+ aej

for some j ̸= i and a > 0. Define the following (0, 1)-vector also indexed by elements of O.

uℓ′(x) = 1 if f(x+ aej) = 0 and χ(x,x+ aej) = 1

That is, uℓ′(x) = 1 if the projection of x onto ℓ′, (x,x′ := x + aej), is a violating edge in f

with χ-color 1.

Define the following vector
#  »

A⊥ as follows.

Definition 4.4.5. For any x ∈ O,

#  »

A⊥(x) =
∑
j ̸=i

min

1,
∑

ℓ′=ℓ+aej

uℓ′(x)


︸ ︷︷ ︸

let’s call this wj(x)∈{0,1}

=:
∑
j ̸=i

wj(x)
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Finally, for x ∈ O, define
# »

A∥(x) = 1 if there is some y to its right, potentially outside

the interval I with f(y) = 0 and χ(x,y) = 1. Using the vectors, we can write the following.

Observation 4.4.6. For any x ∈ O,

#          »

Φχ(f)(x) =
#  »

A⊥(x) +
# »

A∥(x)

Now let’s consider the situation after I is sorted. The ones of O now “shift around”;

indeed, they are the |O| many right most points. Let’s call these locations O′ and note

|O′| = |O|.

Now define the |O′| = |O| dimensional vector vℓ′ where for x ∈ O′

vℓ′(x) = 1 if h(x+ aej) = 0 and χ′(x,x+ aej) = 1

Now we will use the property of the recoloring we performed. We claim two things:

Claim 4.4.7. The number of 1s in vℓ′ is at most the number of 1s in uℓ′, and vℓ′ is sorted

decreasing.

Proof. The number of 1s in uℓ′ is precisely the number of violating edges of the form (x,x′)

in f , where xi ∈ I and x′ = x+ aej and χ(x,x′) = 1. Similarly, the number of 1s in uℓ′ are

precisely the number of violating edges of the form (x,x′) in h, where xi ∈ I and x′ = x+aej

and χ′(x,x′) = 1. When we recolored to get χ′ we made sure by property (a) that the latter

number is smaller.

Take x and y in O, with xi < yi, but suppose, for the sake of contradiction, vℓ′(x) = 0

and vℓ′(y) = 1. The latter implies h(y′ := y + aej) = 0 and χ′(y,y′) = 1. Since h is sorted

on ℓ′, h(x′ := x+ aej) = 0 as well. Since x ∈ O, h(x) = 1 which means (x,x′) is a violating

edge in h. vℓ′(x) = 0 implies χ′(x,x′) = 0. But this violates property (b) of χ′.
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What we need is the following corollary.

For any ℓ′ = ℓ+ aej, vℓ′ ≤coor (uℓ′)
↓ (4.3)

where recall that (z)↓ is the sorted-decreasing version of z.

Just as we defined
#  »

A⊥, define the |O|-dimensional vector
#   »

B⊥ as follows.

Definition 4.4.8. For any x ∈ O′,

#   »

B⊥(x) =
∑
j ̸=i

min

1,
∑

ℓ′=ℓ+aej

vℓ′(x)


︸ ︷︷ ︸

let’s call this zj(x)∈{0,1}

=:
∑
j ̸=i

zj(x)

Note that for every j ̸= i, wj and zj are |O| = |O′| dimensional Boolean vectors which

we index by x ∈ O and x ∈ O′, respectively.

Claim 4.4.9. For all j, zj ≤coor (wj)
↓.

Proof. Follows from eq. (4.3), and the defintions of zj and wj as described in definition 4.4.5

and definition 4.4.8.

Finally, for x ∈ O′, define the |O′| = |O| dimensional vector
#  »

B∥ as
#  »

B∥(x) = 1 if there is

some y to its right, outside the interval I with h(y) = f(y) = 0 and χ′(x,y) = 1. Just as

in Observation 4.4.6, note that the following holds.

Observation 4.4.10. For any x ∈ O′,

#           »

Φχ′(h)(x) =
#   »

B⊥(x) +
#  »

B∥(x)

We now connect
# »

A∥ and
#  »

B∥ as follows.

Claim 4.4.11.
#  »

B∥ ≤coor

(
# »

A∥
)↓
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Proof. Similar to Claim 4.4.7, this follows from the following claim.

Claim 4.4.12. The number of 1s in
#  »

B∥ is at most that in
# »

A∥, and
#  »

B∥ is sorted decreasing.

Proof. This also follows from the way we recolor χ′ the pairs of the form (x,y) with y lying

to the right of I and f(y) = 0. First let’s show
#  »

B∥ is sorted decreasing. Take two points x

and z with a < xi < zi < b both evaluating to 1 in g. Say,
#  »

B∥(z) = 1 implying there is some

y with g(y) = f(y) = 0 to the right of I s.t. χ′(z,y) = 1. However, the way we recolor the

edges incident on y, this implies χ′(x,y) = 1 as well. But that would imply
#  »

B∥(x) = 1.

The first part of the claim also follows from the way we recolor. Suppose the number of

ones in
# »

A∥ is t. That is, only t of the points in O have 1-colored edges going to the right of

the interval. Consider the subset W of these outer endpoints. The function value, both f

and g, are 0 here. Note that none of these points in W have more than t edges incident on

them which are colored 1 in χ. Now note that in χ′, this number of 1-edges are conserved,

and so for every w ∈ W , the number of 1-colored violating edges is still ≤ t. Now suppose

for contradiction
#  »

B∥ has (t+1) ones. Take the right most point x and consider the violating

edge (x,y) which is colored 1 in χ′. By construction, this y must have 1-colored edges to

all the (t + 1) points (since we color them 1 left-to-right). This contradicts the number of

1-edges incident on y.

To summarize, we have from Observation 4.4.6 and definition 4.4.5,

#          »

Φχ(f) =
∑
j ̸=i

wj +
# »

A∥

that is, we have written the LHS as a sum of Boolean vectors. And, we have from Observa-
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tion 4.4.10 and definition 4.4.8, followed by Claim 4.4.9 and claim 4.4.11 that

#           »

Φχ′(h) =
∑
j ̸=i

zj +
#  »

B∥ ≤coor

∑
j ̸=i

(wj)
↓ +

( # »

A∥
)↓

︸ ︷︷ ︸
call this

#  »
sΦ

Trivially, we have
∥∥∥ #           »

Φχ′(h)
∥∥∥
1/2
≤
∥∥∥ #  »

sΦ
∥∥∥
1/2

, and from Lemma 4.3.11, we get
∥∥∥ #  »

sΦ
∥∥∥
1/2
≤∥∥∥ #          »

Φχ(f)
∥∥∥
1/2

, completing the proof of the first part of eq. (4.2).

4.5 Connecting with the Distance to Monotonicity: Proof of The-

orem 4.4.3

In this section, we set the intuition behind eq. (H2) straight. We show how the isoperi-

metric theorem Theorem 4.4.2 on semisorted functions can be used to prove Theorem 4.4.3.

We begin by recalling the corollary of the undirected, colored Talagrand objective on the

hypercube.

Corollary 4.5.1 (Corollary of Theorem 1.8 in [KMS18]). Fix f : [n]d → {0, 1}. Fix an

x ∈ [n]d and consider the tracking function gx : {0, 1}d → {0, 1}. Consider any arbitrary

coloring ξx : E(2[d])→ {0, 1} of the Boolean hypercube. Then, for every x ∈ [n]d, we have

ES⊆[d] [
√

Igx,ξx(S)] = Ω(var(gx))

As mentioned earlier, one can’t show eq. (H2), that is, Ex[var(gx)] = Ω(εf ). Indeed, there

are examples of functions even over the hypercube where the above bound does not hold.

KMS deal with this problem by applying Theorem4.4.2 to random restrictions of f . One can

show that there is some restriction where the corresponding Ex[var(gx)] is large. They re-

ferred to these calculations as the “telescoping argument”. This argument was quantitatively

improved by Pallavoor-Raskhodnikova-Waingarten [PRW22].
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In this section, we port that argument to the hypergrid setting. Our proof is different

in its presentation, though the key ideas are the same as KMS. Our first step is to convert

Theorem4.4.2 to a more convenient form, using the undirected Theorem4.3.8.

Theorem 4.5.2. There exists a constant C ′ > 0 such that for any semisorted function

f : [n]d → {0, 1} and any arbitrary coloring χ : E → {0, 1} of the augmented hypergrid, we

have

TΦχ(f) ≥ C ′ · ES[∆(S ◦ f, S ◦ f)].

Proof. By Theorem4.4.2, there exists some colorings ξx such that TΦχ(f) ≥ ExES[
√
Igx,ξx(S)].

By the undirected Talagrand bound Theorem4.3.8, ES[
√
Igx,ξx(S)] ≥ C · var(gx).

ES[∆(S ◦ f, S ◦ f)] = ESEx[1((S ◦ f)(x) ̸= (S ◦ f)(x))]

= ESEx[1(gx(S) ̸= gx(S))]

= ExES[1(gx(S) ̸= gx(S))] ≤ 4Ex[var(gx)] (4.4)

(The final inequality uses Claim 4.5.3, stated below.) Hence, ExES[
√
Igx,ξ(S)] ≥ (C/4)ES[∆(S◦

f, S ◦ f)].

Claim 4.5.3. For any Boolean function h : {0, 1}d → {0, 1}, PS[h(S) ̸= h(S)] ≤ 4var(h).

Proof. Recall that var(h) = 4PS[h(S) = 0]PS[h(S) = 1]. Hence, var(h) = 4maxb∈{0,1} PS[h(S) =

b] minb∈{0,1} PS[h(S) = b]. Since one of the values is taken with probability at least 1/2,

var(h) ≥ 2minb∈{0,1} PS[h(S) = b].

Let S = {S | h(S) ̸= h(S)}. Observe that half the sets in S have an h-value of 1, and the

other half have value zero. Hence, PS[h(S) ̸= h(S)] ≤ 2minb∈{0,1} PS[h(S) = b]. Combining

with the bound from the previous paragraph, PS[h(S) ̸= h(S)] ≤ 4var(h).
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We now give some definitions and claim regarding the Talagrand objective of random

restrictions of functions.

Definition 4.5.4. Let S ⊆ [d] be a subset of coordinates. The distribution of restrictions on

S, denoted RS, is supported over functions and generated as follows. We pick a uar setting

of the coordinates in S, and output the function under this restriction. (Hence, h ∼ RS has

domain [n]S.)

The isoperimetric theorem of Theorem4.4.2 holds for any ordering of the coordinates. In

this section, we will need to randomize the ordering of the sort operators. We will represent

an ordering as a permutation π over [d]. Abusing notation, for any subset S ⊆ [d], π(S) is

the induced ordered list of S.

Definition 4.5.5. For any function h : [n]k → {0, 1}, define δ(h) to be Eπ[∆(h, π([k]) ◦ h)].

By Claim 4.3.3, sorting on all coordinates leads to a monotone function. Thus, δ(h) is

at least the distance of h to monotonicity. We will perform our analyses in terms of δ(f),

since it is more amenable to a proof by induction over domain size.

The following claim is central to the final induction, and relates δ(f) to ES[∆(S◦f, S◦f)].

This is the (only) claim where we need to permute the coordinates. All other claims and

theorems hold for an arbitrary ordering of the coordinates (when defining S ◦ f).

Claim 4.5.6. δ(f) ≤ ESEh∼R(S)[δ(h)] + EπES[∆(π(S) ◦ f, π(S) ◦ f)]

Proof. Let us consider an arbitrary ordering of dimensions. By triangle inequality,

∆(f, S ◦ S ◦ f) ≤ ∆(f, S ◦ f) + ∆(S ◦ f, S ◦ S ◦ f)

Observe that S ◦ S ◦ f = S ◦ f , since sorting repeatedly on a dimension does not modify a

function. Hence, ∆(S◦f, S◦S◦f) = ∆(S◦S◦f, S◦S◦f) ≤ ∆(S◦f, S◦f). The latter inequality

holds because sorting only reduces the Hamming distance between functions (Claim 4.3.4).
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Plugging this bound in and taking expectations over ordered subset S of dimensions:

ES[∆(f, S ◦ S ◦ f)] ≤ ES[∆(f, S ◦ f)] + ES[∆(S ◦ f, S ◦ f)] (4.5)

Observe that S ◦ f only changes the function in the dimensions in S, and can be thought to

act on the restrictions of f (to S). Hence ES[∆(f, S ◦ f)] = Eh∼R(S)[∆(h, S ◦ h)]. Roughly

speaking, the quantity ∆(f, S ◦ S ◦ f) is ε(f) and Eh∼R(S)[∆(h, S ◦ h)] is Eh∼RSε(h). So we

would hope that eq. (4.5) implies ε(f) ≤ ε(h) + ES[∆(S ◦ f, S ◦ f)].

Unfortunately, the quantities are only constant factor approximations of ε(f), ε(h). So by

converting eq. (4.5) in terms of ε(f), we would potentially lose a constant factor in eq. (4.5).

To avoid this problem, we deal with δ(f) instead. By randomly permuting S and taking

expectations, the quantities in eq. (4.5) can be replaced by δ(·) terms. Taking expectations

over a uar π, eq. (4.5) implies

EπES[∆(f, π(S) ◦ π(S) ◦ f)] ≤ EπES[∆(f, π(S) ◦ f)] + EπES[∆(π(S) ◦ f, π(S) ◦ f)] (4.6)

Note that the switching order in the LHS, π(S) ◦ π(S), is uniformly random. Moreover,

EπESEh∼R(S)[∆(h, π(S) ◦ h)] = ESEhEπ[∆(h, π(S) ◦ h)] = ESEh[δ(h)]

Combining all our bounds, we get that

δ(f) ≤ ESEh∼R(S)[δ(h)] + EπES[∆(π(S) ◦ f, π(S) ◦ f)].

We prove a useful claim about the Talagrand objective of restrictions, made in [PRW22].

Claim 4.5.7. Let p ∈ (0, 1), and H(p) be the distribution of subsets of [d] generated by

selecting each element with iid probability p. Then, TΦχ(f) ≥ (1/
√
p) ·ES∼H(p)Eh∼RS

[TΦχ(h)].
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Proof. Fix a set S. For any subset S of coordinates, let the define the influence in S as

Φf,χ(x;S) :=
∑

i∈S Φf,χ(x; i). We are just summing the influences over the coordinates of S.

Consider the quantity Eh∼RS
[TΦχ(h)] = Eh∼RS

Ez[
√

Φh,χ(z)]. Note that z denotes a uar

setting of the coordinates in S. The colorings of h are inherited from the coloring of f . Each

function h is indexed by a (uar) setting of S. Hence,

Eh∼RS
Ez[
√

Φh,χ(z)] = Ex[
√

Φf,χ(x;S)] (4.7)

The point x is uar in the entire domain [n]d. Note that ES∼H(p)[Φf,χ(x;S)] is precisely

p · Φf,χ(x;S), since each coordinate is independently picked in S with probability p.

ES∼H(p)Eh∼RS
[TΦχ(h)] = ESEx[

√
Φf,χ(x;S)]

= ExES[
√

Φf,χ(x;S)]

≤ Ex

[√
ES[Φf,χ(x;S)]

]
= Ex

[√
p · Φf,χ(x;S)

]
=
√
p · TΦχ(f)

The inequality above is a consequence of the concavity of the square root function and

Jensen’s inequality.

Now we have all the ingredients to prove Theorem 4.4.3 whice we restate below for

convenience.

Theorem 4.4.3 (Theorem 4.0.4 for semisorted functions.). Let f : [n]d → {0, 1} be a

semisorted function that is ε-far from monotone. Let χ : E → {0, 1} be an arbitrary

coloring of the edges of the augmented hypergrid. Then there is a constant C ′′ such that

TΦχ(f) := Ex

[√
Φf,χ(x)

]
≥ C ′′ε

Proof. The proof is by induction over the dimension d of the domain. Formally, we will

prove a lower bound of (C ′/10)ε, where C ′ is the constat of Theorem4.5.2.
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Let us first prove the base case, when d ≤ 10. Note that Φf,χ(x) =
∑d

i=1 Φf,χ(x; i),

where each term in the summation is 0-1 valued. Hence, by the l1-l2-inequality,
√

Φf,χ(x) ≥∑d
i=1Φf,χ(x; i)/d = Φf,χ(x)/d.

Thus, TΦχ(f) ≥ Ex[Φf,χ(x)]/d. Furthermore, Ex[Φf,χ(x)] =
∑d

i=1 Ex[Φf,χ(x; i)]. We can

break the expectation over x into lines as follows.

Ex[Φf,χ(x)] =
d∑

i=1

Eℓ uar i-lineEc[Φf |ℓ,χ(c)]

(The coordinate c is uar in [n].) Now, for a Boolean function f |ℓ on a line, if the distance

to monotonicity is ε, then there are at least εn violating pairs [EKK+00], and thus for any

coloring χ, we have Ec[Φf |ℓ,χ(c)] ≥ ε(f |ℓ), and
∑d

i=1 Eℓ uar i-lineε(f |ℓ) = Ω(ε(f)).

Hence, TΦχ(f) = Ω(ε/d). For d ≤ 10, the lemma holds, and so henceforth we assume

d ≥ 10.

Now for the induction step. We now break into cases.

Case 1, EπES[∆(π(S) ◦ f, π(S) ◦ f)] ≥ δ(f)/10: By Theorem4.5.2, TΦχ(f) ≥ c ·ES[∆(S ◦

f, S ◦ f)] (for any ordering of coordinates). So TΦχ(f) ≥ c · EπES[∆(π(S) ◦ f, π(S) ◦ f)] ≥

(c/10) · δ(f).

Case 2, EπES[∆(S ◦ f, S ◦ f)] < δ(f)/10: By Claim 4.5.6, ESEh∼R(S)[δ(h)] ≥ δ(f)−EπES[∆(S◦

f, S ◦ f)]. In this case, we can lower bound ESEh∼R(S)[δ(h)] ≥ (9/10)δ(f). Note that S is

drawn from the distribution H(1/2). When S ̸= [d], we can apply induction to TΦχ(h) for
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h ∼ R(S). Hence,

ES∼H(1/2)Eh∼R(S)[TΦχ(h)] ≥ 2−d
∑
S ̸=[d]

Eh∼R(S)[TΦχ(h)] ≥ 2−d · (c/10) ·
∑
S ̸=[d]

Eh∼R(S)[δ(h)]

= 2−d · (c/10) ·
( ∑

S⊆[d]

Eh∼R(S)[δ(h)]− Eh∼R([d])[δ(h)]
)

= (c/10)
(
ESEh∼R(S)[δ(h)]− 2−dδ(f)

)
(h ∼ R([d]) is f)

≥ (c/10) · (9/10) · δ(f)− 2−d · (c/10) · δ(f) (by case condition)

= (9/10− 2−d) · (c/10) · δ(f) ≥ (4/5) · (c/10) · δ(f) (4.8)

By Claim 4.5.7, TΦχ(f) ≥
√
2 · ES∼H(1/2)Eh∼R(S)[TΦχ(h)]. Combining with the inequality of

section 4.5, TΦχ(f) ≥ (
√
2 · 4/5) · (c/10) · δ(f) ≥ (c/10) · δ(f).

4.6 Connecting Talagrand Objectives of f and the Tracker Func-

tions

In this section and the next, we establish our main technical result Theorem 4.4.2 relating

the Talagrand objectives on the colorful thresholded influence of the hypergrid function

f : [n]d → {0, 1} and the Talagrand objectives on the undirected influence of the tracker

functions. We restate the theorem below for convenience.

Theorem 4.4.2 (Connecting Talagrand Objectives of f and Tracker Functions). Let

f : [n]d → {0, 1} be a semisorted function and let χ : E → {0, 1} be an arbitrary

coloring of the edges of the fully augmented hypergrid. Then for every x ∈ [n]d, one can

find a coloring ξx of the edges of the Boolean hypercube such that

TΦχ(f) := Ex∈[n]d

[√
Φf,χ(x)

]
≥ Ex∈[n]d ES⊆[d] [

√
Igx,ξx(S)].

To prove Theorem 4.4.2 we need to describe the coloring ξx for each x in [n]d. We proceed

doing so in d stages.
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• For every i ∈ {0, 1, . . . , d} and for every x ∈ [n]d, we define a partial edge coloring

ξ
(i)
x of the hypercube which assigns a {0, 1} value to every hypercube edge of the form

(T, T⊕j) for all j ≤ i, and for all T ⊆ [i]. The process will begin with the null coloring,

ξ
(0)
x , and end with a complete coloring, ξx := ξ

(d)
x , for every x ∈ [n]d.

• For every i ∈ {0, 1, . . . , d} and every S ⊆ [i] we will also define a coloring χ
(i)
S of the

edges of the augmented hypergrid. We start with χ
(0)
∅ := χ where χ is the original

coloring which, recall, is adversarially chosen.

For every i ∈ {0, 1, . . . , d} and S ⊆ [i] we will use the above colorings to define the

(i, S)-hybrid Talagrand objective

Ri(S) := Ex∈[n]d

√√√√ i∑
j=1

I=j

gx,ξ
(i)
x

(S) +
d∑

j=i+1

Φ
S◦f,χ(i)

S
(x; j). (Colorful Hybrid)

Recall that S ◦ f is the function obtained after sorting f on the coordinates in S. Note that

Ri(S) is well-defined given the partial colorings ξ
(i)
x for each x ∈ [n]d as defined above. Also

observe that since χ
(0)
∅ := χ, the arbitrary coloring specified in the theorem statement, we

have that R0(∅) is precisely the LHS in the statement of Theorem 4.4.2, that is, R0(∅) =

Ex∈[n]d
[√

Φf,χ(x)
]
. Additionally, since we use ξx := ξ

(d)
x , observe that ES⊆[d][Rd(S)] is

precisely the RHS in the statement of Theorem 4.4.2.

With the above setup in mind, we show that the following Lemma 4.6.1 suffices to prove

Theorem 4.4.2.

Lemma 4.6.1 (Potential Drop Lemma). Fix i ∈ {1, . . . , d}, ξ(i−1)x for all x ∈ [n]d, and

χ
(i−1)
S for every S ⊆ [i− 1], which all satisfy the specifications described in the previous

paragraph. There exists a choice of ξ
(i)
x for every x ∈ [n]d and χ

(i)
S , χ

(i)
S+i for every

S ⊆ [i− 1] all satisfying the specifications described in the previous paragraph, such that

for all S ⊆ [i− 1], we have (a) Ri−1(S) ≥ Ri(S) and (b) Ri−1(S) ≥ Ri(S + i).
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Proof of Theorem 4.4.2. Consider the following binary tree with d + 1 levels. Each level

i ∈ {0, 1, . . . , d} has 2i nodes indexed by subsets S ⊆ [i]. Every such node is associated with

a coloring χ
(i)
S of the augmented hypergrid edges. The level i is also associated with a partial

coloring ξ
(i)
x for every x ∈ [n]d.

The 0’th level contains a single node indexed by ∅. The associated augmented hypergrid

coloring is χ
(0)
∅ := χ. The partial coloring ξ

(0)
x is null for all x ∈ [n]d. We associate the value

R0(∅) = TΦχ(f) with the root.

For 1 ≤ i ≤ d, we describe the children of each node in level i − 1. Each node in level

i − 1 is indexed by some S ⊆ [i − 1]. We associate this node with the value Ri−1(S). This

node has two children at level i: one, the left child, indexed by S and the other, the right

child, indexed by S+ i. The coloring of the hypergrid edges at the left child is defined as χ
(i)
S

from the lemma, and that of the hypergrid edges at the right child is defined as χ
(i)
S+i from

the lemma. The left and right children hold the quantites Ri(S) and Ri(S + i), respectively.

At level i, the partial coloring ξ
(i−1)
x is also extended to ξ

(i)
x for every x ∈ [n]d as stated in

the lemma. From the lemma, we have Ri−1(S) ≥ Ri(S) and Ri−1(S) ≥ Ri(S + i). This

immediately implies the following:

For all i ∈ {1, . . . , d}, we have ES⊆[i−1][Ri−1(S)] ≥ ES⊆[i][Ri(S)]

and chaining these d inequalities together yields R0(∅) ≥ ES⊆[d][Rd(S)].

Now consider the leaf nodes of this tree, which hold the values Rd(S) for every S ⊆ [d].

Observe that Rd(S) = Ex∈[n]d
[√

Igx,ξx(S)
]
since ξx := ξ

(d)
x . Recalling that R0(∅) = TΦχ(f)

yields

TΦχ(f) = R0(∅) ≥ ES⊆[d][Rd(S)] = ES⊆[d]Ex∈[n]d

[√
Igx,ξx(S)

]
and this establishes the claim after exchanging the expectations.
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4.7 Proof of Potential Drop Lemma 4.6.1

Recall i ∈ {1, . . . , d} is fixed. For brevity’s sake, we will fix a set S ⊆ [i − 1] and call

h := (S ◦ f). Let’s refer to χ
(i−1)
S as simply χ without confusing with the original χ in the

theorem. The two colorings χ
(i)
S and χ

(i)
S+i that we construct will be simply called χ′ and χ′′,

respectively. Let’s call the partial colorings ξ
(i−1)
x as simply ξx. We will call the coloring ξ

(i)
x

which we need to construct simply ξ′x in the latter. Recall that ξx is defined on all edges

(T, T ⊕ j) for T ⊆ [i − 1] and j ≤ i − 1 and in order to prove the lemma we will need to

define ξ′x on all edges (T ⊕ j) for T ⊆ [i] and j ≤ i.

Fix an i-line ℓ. We prove the lemma line-by-line. To be precise, let us consider the

following vectors. First,

#»

Lℓ :=


i−1∑
j=1

I=j
gx,ξx

(S)︸ ︷︷ ︸
#     »

L(1)
ℓ

+ Φh,χ(x; i)︸ ︷︷ ︸
#     »

L(2)
ℓ

+
d∑

j=i+1

Φh,χ(x; j)︸ ︷︷ ︸
#     »

L(3)
ℓ

: x ∈ ℓ

 (4.9)

Observe that

Ri−1(S) =
1

nd

∑
i-lines ℓ

∥∥∥ #»

Lℓ

∥∥∥
1/2

=
1

nd

∑
i-lines ℓ

∥∥∥ #    »

L(1)
ℓ +

#    »

L(2)
ℓ +

#    »

L(3)
ℓ

∥∥∥
1/2

(4.10)

where, recall, we are (ab)using the notation ∥v∥1/2 :=
∑

i

√
vi.

Define

#»

Rℓ :=


i−1∑
j=1

Igx,ξ′x
=j(S)︸ ︷︷ ︸

#      »

R(1)
ℓ

+ I=i
gx,ξ′x

(S)︸ ︷︷ ︸
#      »

R(2)
ℓ

+
d∑

j=i+1

Φh,χ′(x; j)︸ ︷︷ ︸
#      »

R(3)
ℓ

: x ∈ ℓ

 (4.11)

where we have denoted, in red, the recolorings that we need to define. The “first” RHS term
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is

Ri(S) :=
1

nd

∑
i-lines ℓ

∥∥∥ #»

Rℓ

∥∥∥
1/2

=
1

nd

∑
i-lines ℓ

∥∥∥ #     »

R(1)
ℓ +

#     »

R(2)
ℓ +

#     »

R(3)
ℓ

∥∥∥
1/2

(4.12)

Similarly, define

# »

M ℓ :=


i−1∑
j=1

I=j
gx,ξ′x

(S + i)︸ ︷︷ ︸
#        »

M(1)
ℓ

+ I=i
gx,ξ′x

(S + i)︸ ︷︷ ︸
#        »

M(2)
ℓ

+
d∑

j=i+1

Φi◦h,χ′′(x; j)︸ ︷︷ ︸
#        »

M(3)
ℓ

: x ∈ ℓ

 (4.13)

and notice that the “second” RHS term is

Ri(S + i) :=
1

nd

∑
i-lines ℓ

∥∥∥ # »

M ℓ

∥∥∥
1/2

=
1

nd

∑
i-lines ℓ

∥∥∥ #      »

M (1)
ℓ +

#      »

M (2)
ℓ +

#      »

M (3)
ℓ

∥∥∥
1/2

(4.14)

Observe now that it suffices to prove that there exists colorings χ′, χ′′, and ξ′x’s such that∥∥∥ #»

Lℓ

∥∥∥
1/2
≥
∥∥∥ #»

Rℓ

∥∥∥
1/2

and
∥∥∥ #»

Lℓ

∥∥∥
1/2
≥
∥∥∥ # »

M ℓ

∥∥∥
1/2

for all i-lines ℓ. Thus, we now fix an i-line

ℓ and drop the subscript, ℓ, from all the previously defined vectors for brevity. We define

LHS :=
∥∥∥ #»

L
∥∥∥
1/2

, RHS1 :=
∥∥∥ #»

R
∥∥∥
1/2

, RHS2 :=
∥∥∥ # »

M
∥∥∥
1/2

, and set out to prove LHS ≥ RHS1 and

LHS ≥ RHS2.

A Picture of the Line. Since h is semisorted, the picture of h restricted to ℓ looks like

this. The green zone is where the function is 1. Without loss of generality we assume ℓ

has more ones than zeros. We use A to denote the ones on the left and C to denote the

zeros on the right. We use k := |C|, and B ⊆ A are the k right most ones in the left side.

Throughout, we will use the notation
#»

AX to denote the sub-vector of
#»

A defined on ℓ with

A

B

C

kk

W O

coordinates restricted to x ∈ X; we will always use this notation when X is a contiguous
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interval. Indeed, these X’s will be always picked from {W,A,C,O,B,A \ B} or unions of

these, always making sure they form a contiguous interval.

High Level Idea. Before we venture into proving the inequalities, we would like to remind

the reader again of the proof strategy discussed in Section 4.2. We need to define the colorings

χ′, χ′′, and also ξ
(i)
x ’s such that the objective after recoloring satisfy the inequality we desire

to prove. This going to hinge upon showing that the vector obtained after operation either

majorizes or is coordinate-wise dominated by a vector that majorizes the vector before the

operation. In particular, these are the conditions (a)-(d) and (e)-(h) mentioned below in

the grey boxes. To show these properties, we would be crucially using the property that the

function f is semi-sorted which leads to certain monotonicity properties that allows us to

claim them. In particular, we would be using Lemma 4.3.11 when establishing almost all the

conditions mentioned above. There is a certain sense of repetition in which these arguments

are made, however, we have provided all the details for completeness.

4.7.1 Proving LHS ≥ RHS1

During the proof of LHS ≥ RHS1, we will define the coloring χ′ on all edges of the fully

augmented hypergrid and ξ′x(S, S ⊕ j) where j ≤ i for all x ∈ [n]d. We will not specify

ξ′x(S + i, S + i ⊕ j) since these won’t be needed to prove this inequality; we will describe

them when we prove LHS ≥ RHS2.

Before we describe the recolorings, it is useful to describe the plan of the proof. This will

motivate why we recolor as we do. We will actually consider

LHS =
∥∥∥ #»

LW

∥∥∥
1/2

+
∥∥∥ #»

LA

∥∥∥
1/2

+
∥∥∥ #»

LC

∥∥∥
1/2

+
∥∥∥ #»

LO

∥∥∥
1/2

and

RHS1 =
∥∥∥ #»

RW

∥∥∥
1/2

+
∥∥∥ #»

RA

∥∥∥
1/2

+
∥∥∥ #»

RC

∥∥∥
1/2

+
∥∥∥ #»

RO

∥∥∥
1/2
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and argue domination term-by-term.

More precisely, we find recolorings χ′, ξ′ such that

(a)
#     »

R
(q)
A ⪰maj

(
#    »

L
(q)
A

)↓
and

#     »

R
(q)
O ⪰maj

(
#    »

L
(q)
O

)↓
, for q ∈ {1, 3},

(b) ∃
#     »

L
′(2)
A such that

#     »

L
′(2)
A ⪰maj

(
#    »

L
(2)
A

)↓
and

#     »

L
′(2)
A ⪰coor

#     »

R
(2)
A ,

(c)
#     »

R
(q)
W ⪰maj

(
#    »

L
(q)
W

)↑
and

#     »

R
(q)
C ⪰maj

(
#    »

L
(q)
C

)↑
, for q ∈ {1, 3},

(d) ∃
#     »

L
′(2)
C such that

#     »

L
′(2)
C ⪰maj

(
#    »

L
(2)
C

)↑
and

#     »

L
′(2)
C ⪰coor

#     »

R
(2)
C .

Let us see why the above conditions suffice to prove the inequality. The second part of (b)

implies that
∥∥∥ #  »

RA

∥∥∥
1/2
≤
∥∥∥∥ #     »

R
(1)
A +

#     »

R
(3)
A +

#     »

L
′(2)
A

∥∥∥∥
1/2

. Part (a) and the first part of (b), along

with Lemma 4.3.11, implies
#     »

R
(1)
A +

#     »

R
(3)
A +

#     »

L
′(2)
A ⪰maj

(
#  »

LA

)↓
. And so, ∥LA∥1/2 ≥ ∥RA∥1/2. A

similar argument using (c) and (d) implies ∥LC∥1/2 ≥ ∥RC∥1/2.

One last observation is needed to complete the proof. Note that R
(2)
W is the zero vector:

the points x ∈ W don’t change value even when ℓ is sorted. Also note that L
(2)
W is the zero

vector; the points x ∈ W don’t participate in a violation in direction i. And therefore, part (c)

along with Lemma 4.3.11 implies
#    »

RW ⪰maj

(
#   »

LW

)↑
implying ∥LW∥1/2 ≥ ∥RW∥1/2. Similarly,

R
(2)
O ≡ L

(2)
O ≡ 0, and thus part (a) along with Lemma 4.3.11 implies ∥LO∥1/2 ≥ ∥RO∥1/2.

4.7.1.1 Proving (a) and (c) for q = 3

Defining the Coloring χ′: We will now describe the coloring χ′ on all edges of the form

(x,x+ aej) where j ≥ i+ 1, h(x) = 1 and h(x+ aej) = 0. For all other edges e, we simply

define χ′(e) = χ(e) as these edges do not play a role in proving the inequality.

Given a pair of i-lines ℓ and ℓ′ = ℓ + aej for j ≥ i + 1 and a > 0, we consider the set of
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violations from ℓ to ℓ′ in h:

V := {(x,x+ aej) : x ∈ ℓ, h(x) = 1, and h(x+ aej) = 0}. (4.15)

Since h is semi-sorted, it’s clear that we can write V = VL∪VR as a union of two intervals, in

the sense that {x : (x,x+aej) ∈ VL} is an interval in the lower half of ℓ and {x : (x,x+aej) ∈

VR} is an interval in the upper half of ℓ. Similarly, the upper endpoints form two intervals

in ℓ′. We then obtain χ′ by down-sorting χ on each of these intervals, moving left-to-right:

(χ′(e) : e ∈ VL) = (χ(e) : e ∈ VL)
↓ and (χ′(e) : e ∈ VR) = (χ(e) : e ∈ VR)

↓ .

We provide the following illustration for clarity. The white and green intervals represent

where h = 0 and h = 1, respectively. The vertical arrows represent violated edges. Blue

edges have color 0 and red edges have color 1. The left picture depicts the original coloring,

χ, and the right picture depicts the recoloring χ′.

VL VR VL VR

← χ → ← χ′� →
h |ℓ

h |ℓ′�

h |ℓ

h |ℓ′�

We now return to our fixed i-line ℓ and set out to prove parts (a) and (c) for q = 3,

given this coloring χ′. Let’s recall our illustration of ℓ and our definition of the intervals

W,A,C,O.

A

B

C

kk

W O
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Proving (a) for q = 3: Fix j ≥ i + 1 and a i-line ℓ′ := ℓ + aej. Let A′ := {x ∈

A : h(x+ aej) = 0} and O′ := {x ∈ O : h(x+ aej) = 0}. Since h is semi-sorted, it is not

hard to see that A′ and O′ are prefixes of A and O, respectively.

Claim 4.7.1. If xi < x′i in A such that x′ ∈ A′, then x ∈ A′. The same is true for O and

O′.

Proof. Since h is semisorted, h(x′ + aej) = 0 implies h(x+ aej) = 0.

Moreover, observe that our definition of χ′ gives us

(χ′(x,x+ aej) : x ∈ A′) = (χ(x,x+ aej) : x ∈ A′)
↓

and

(χ′(x,x+ aej) : x ∈ O′) = (χ(x,x+ aej) : x ∈ O′)
↓
.

Let’s investigate what this leads to. These are key properties.

Definition 4.7.2. Fix j ≥ i+1 and fix an i-line ℓ′ := ℓ+aej for a > 0. Define the following

two boolean vectors

vR
j,a := (1(h(x+ aej) = 0 and χ′(x,x+ aej) = 1) : x ∈ A)

and

vL
j,a := (1(h(x+ aej) = 0 and χ(x,x+ aej) = 1) : x ∈ A)

Observe, for x ∈ A,

Φh,χ′(x; j) = min

(
1,
∑
a

vR
j,a(x)

)
and Φh,χ(x; j) = min

(
1,
∑
a

vL
j,a(x)

)
(4.16)

Claim 4.7.3. Fix a j ≥ i+1 and a > 0. For any two xi < x′i in A, we have vR
j,a(x) ≥ vR

j,a(x
′).

That is, the vector vR
j,a is sorted decreasing.
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Proof. Since h is semisorted h(x′+aej) = 0 implies h(x+aej) = 0. Furthermore, since both

these are violations, by design χ′(x′,x′ + aej) = 1 implies χ′(x,x+ aej) = 1.

Claim 4.7.4. Fix a j ≥ i+ 1 and a > 0. The vectors vR
j,a and vL

j,a are permutations of one

another.

Proof. This is precisely how χ′ is defined: it only permutes the colorings on the violations

incident on A.

In conclusion, using the observation eq. (4.16), we conclude that we can write

#    »

L
(3)
A =

(
d∑

j=i+1

Φh,χ(x; j) : x ∈ A

)

as a weighted sum of Boolean vectors, and the above two claims imply that the vector

#     »

R
(3)
A =

(
d∑

j=i+1

Φh,χ′(x; j) : x ∈ A

)

is the same weighted sum of the sorted decreasing orders of those Boolean vectors. Therefore,

we can conclude using Lemma 4.3.11,

#     »

R
(3)
A ⪰maj

(
#    »

L
(3)
A

)↓
(4.17)

An absolutely analogous argument with O’s replacing A’s gives us

#     »

R
(3)
O ⪰maj

(
#    »

L
(3)
O

)↓
(4.18)

Proving (c) for q = 3: The picture is similar, but reversed, when we consider the points

in W ∪ C, where h(x) = 0. Recall the definition of W and C as in the illustration. Fix

j ≥ i + 1 and a i-line ℓ′′ := ℓ − aej. Let W ′ := {x ∈ W : h(x − aej) = 1} and
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C ′ := {x ∈ C : h(x− aej) = 1}. It is not hard to see that W ′ and C ′ are suffixes of W and

C, respectively.

Claim 4.7.5. If xi < x′i in W such that x ∈ W ′, then x′ ∈ W ′. The same is true for C and

C ′.

Proof. Since h is semisorted, h(x− aej) = 1 implies h(x′ − aej) = 1.

Again, observe that our definition of χ′ gives us

(χ′(x− aej,x) : x ∈ W ′) = (χ(x− aej,x) : x ∈ W ′)
↓

and

(χ′(x− aej,x) : x ∈ C ′) = (χ(x− aej,x) : x ∈ C ′)
↓

Definition 4.7.6. Fix j ≥ i+1 and fix an i-line ℓ′′ := ℓ−aej for a > 0. Define the following

two boolean vectors

vR
j,a := (1(h(x− aej) = 1 and χ′(x− aej,x) = 0) : x ∈ C)

and

vL
j,a := (1(h(x− aej) = 1 and χ(x− aej,x) = 0) : x ∈ C)

Observe, for x ∈ C,

Φh,χ′(x; j) = min

(
1,
∑
a

vR
j,a(x)

)
and Φh,χ(x; j) = min

(
1,
∑
a

vL
j,a(x)

)
(4.19)

Claim 4.7.7. Fix a j ≥ i+1 and a > 0. For any two xi > x′i in C, we have vR
j,a(x) ≥ vR

j,a(x
′).

That is, the vector vR
j,a is sorted increasing when considered left to right.

Proof. Since h is semisorted h(x′−aej) = 1 implies h(x−aej) = 1. Furthermore, since both

these are violations, by design χ′(x′,x′ + aej) = 0 implies χ′(x,x+ aej) = 0.
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Claim 4.7.8. Fix a j ≥ i+ 1 and a > 0. The vectors vR
j,a and vL

j,a are permutations of one

another.

A similar argument to the one given above now implies
#    »

L
(3)
C is a sum of Boolean vec-

tors, and
#     »

R
(3)
C is the sum of the sorted increasing orders of those Boolean vectors. Us-

ing Lemma 4.3.11, we can conclude

#     »

R
(3)
C ⪰maj

(
#    »

L
(3)
C

)↑
(4.20)

And an absolutely analogous argument gives

#     »

R
(3)
W ⪰maj

(
#    »

L
(3)
W

)↑
(4.21)

This finishes the proofs of q = 3 for (a) and (c).

4.7.1.2 Proving (a) and (c) for q = 1

Defining ξ′x(S, S ⊕ j) for S ⊆ [i − 1] and j ≤ i − 1: We now define the partial coloring

ξ′x := ξ
(i)
x on all edges (S, S ⊕ j) where S ⊆ [i− 1] and j ≤ i− 1 for all x ∈ [n]d. These are

exactly the relevant edges for the proof of parts (a) and (c) for q = 1. Note that the partial

coloring ξx := ξ
(i−1)
x is defined over precisely these edges for each x ∈ [n]d. The color of ξ′x

on the edges (S, S + i) for S ⊆ [i− 1] will be defined when we prove parts (b) and (d). The

color of ξ′x on the edges (S + i, S + i⊕ j) for S ⊆ [i− 1] and j ≤ i− 1 will be defined when

we prove LHS ≥ RHS2.

Fix j ≤ i− 1, S ⊆ [i− 1], and a i-line ℓ. We consider the set of x ∈ ℓ such that (S, S⊕ j)

is influential in gx:

V := {x ∈ ℓ : gx(S) = 1 and gx(S ⊕ j) = 0} . (4.22)

113



Note that since f is semi-sorted, we have that (S ◦f) and (S⊕j ◦f) are both semi-sorted.

Thus, we can write V = VL ∪ VR where VL and VR are intervals contained in the left and

right half of ℓ, respectively. We again obtain ξ′x by down-sorting the original coloring on

these intervals:

(ξ′x(S, S ⊕ j) : x ∈ VL) = (ξx(S, S ⊕ j) : x ∈ VL)
↓

and similarly

(ξ′x(S, S ⊕ j) : x ∈ VR) = (ξx(S, S ⊕ j) : x ∈ VR)
↓ .

For all x ∈ ℓ\V , we define ξ′x(S, S⊕j) := ξx(S, S⊕j). This completely describes ξ′x(S, S⊕j)

for every x ∈ [n]d.

We provide the following illustration for clarity. Note that the picture is quite similar

to the one provided in Section 4.7.1.1, when we defined χ′. The key difference is that the

bottom and top segments represent the same line ℓ, but with different functions S ◦ f and

(S ⊕ j) ◦ f , respectively. The vertical lines are no longer arrows to emphasize that they

represent undirected edges in the hypercube as opposed to directed edges in the augmented

hypergrid.

VL VR
VL VR

((S ⊕ j) ∘ f ) |ℓ

(S ∘ f ) |ℓ

← ξx → ← ξ′�x →

((S ⊕ j) ∘ f ) |ℓ

(S ∘ f ) |ℓ

We now return to our fixed i-line ℓ and set out to prove parts (a) and (c) for q = 1,

given the colorings ξ′x. Let’s recall our illustration of ℓ and our definition of the intervals

W,A,C,O. Recall that gx = h(x) and so the definition of these intervals is the same.

A

B

C

kk

W O
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Proof of Part (a) for q = 1: Fix j ≤ i − 1 and let A′ = {x ∈ A : gx(S ⊕ j) = 0}

and O′ = {x ∈ O : gx(S ⊕ j) = 0}, which are prefixes of A and O, respectively. From our

definition of ξ′x(S, S ⊕ j) above, we have

(ξ′x(S, S ⊕ j) : x ∈ A′) = (ξx(S, S ⊕ j) : x ∈ A′)
↓

and similarly

(ξ′x(S, S ⊕ j) : x ∈ O′) = (ξx(S, S ⊕ j) : x ∈ O′)
↓
.

Claim 4.7.9.
(
I=j
gx,ξ′x

(S) : x ∈ A
)
is a sorted decreasing vector, and is a permutation of(

I=j
gx,ξx

(S) : x ∈ A
)
.

Proof. Take xi < x′i in A. Note that gx(S) = 1 for both x,x′. Thus,

I=j
gx,ξ′x

(S) = 1 (gx(S ⊕ j) = 0 and ξ′x(S, S ⊕ j) = 1)

and

I=j
gx,ξx

(S) = 1 (gx(S ⊕ j) = 0 and ξx(S, S ⊕ j) = 1)

The two vectors are Boolean vectors with number of ones equal to the number of ones in

(ξx(S, S ⊕ j) : x ∈ A′) which equals the number of ones in (ξ′x(S, S ⊕ j) : x ∈ A′). Thus,

they are permutations. By design of ξ′x’s, this vector is sorted decreasing on A′, and all zeros

in A \ A′ (which come to the right of A′).

Observing that

#    »

L
(1)
A =

(
i−1∑
j=1

I=j
gx,ξx

(S) : x ∈ A

)
and

#     »

R
(1)
A =

(
i−1∑
j=1

I=j
gx,ξ′x

(S) : x ∈ A

)

using Lemma 4.3.11 and the claim above, we get
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#     »

R
(1)
A ⪰maj

(
#    »

L
(1)
A

)↓
(4.23)

Absolutely analogously, we get

#     »

R
(1)
O ⪰maj

(
#    »

L
(1)
O

)↓
(4.24)

Proof of Part (c) for q = 1: The picture is similar, but reversed when we consider the

points in W ∪C, where gx(S) = 0. Fix j ≤ i− 1 and define W ′ := {x ∈ W : gx(S ⊕ j) = 1}

and C ′ := {x ∈ C : gx(S ⊕ j) = 1} which are suffixes of W and C, respectively. From our

definition of ξ′x(S, S ⊕ j) above, made from the perspective of the set S ⊕ j, we have

(ξ′x(S, S ⊕ j) : x ∈ W ′) = (ξx(S, S ⊕ j) : x ∈ W ′)
↓

and similarly

(ξ′x(S, S ⊕ j) : x ∈ C ′) = (ξx(S, S ⊕ j) : x ∈ C ′)
↓
.

Analogous to Claim 4.7.9, we have the following claim.

Claim 4.7.10.
(
I=j
gx,ξ′x

(S) : x ∈ W
)
is a sorted increasing vector, and is a permutation

of
(
I=j
gx,ξx

(S) : x ∈ W
)
.

Arguing similarly to the proof of eq. (4.23) we get

#     »

R
(1)
W ⪰maj

(
#    »

L
(1)
W

)↑
(4.25)

and absolutely analogously, we get
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#     »

R
(1)
C ⪰maj

(
#    »

L
(1)
C

)↑
(4.26)

eq. (4.17), eq. (4.18), eq. (4.20), eq. (4.21), and eq. (4.23), eq. (4.24), eq. (4.25), eq. (4.26)

establish (a) and (c).

4.7.1.3 Proving (b) and (d):

Finally, we need to establish (b) and (d). Let us recall these and also draw the picture of ℓ

that we have been using.

(b) ∃
#     »

L
′(2)
A such that

#     »

L
′(2)
A ⪰maj

(
#    »

L
(2)
A

)↓
and

#     »

L
′(2)
A ⪰coor

#     »

R
(2)
A .

(d) ∃
#     »

L
′(2)
C such that

#     »

L
′(2)
C ⪰maj

(
#    »

L
(2)
C

)↑
and

#     »

L
′(2)
C ⪰coor

#     »

R
(2)
C .

A

B

C

kk

W O

We remind the reader that
#    »

L(2)(x) = Φh,χ(x; i) for all x ∈ ℓ. We begin with an observation

which strongly uses the “thresholded” nature of the definition of Φ.

Claim 4.7.11. No matter how χ is defined, either
#    »

L
(2)
A is the all 1s vector, or

#    »

L
(2)
C is the all

1s vector.

Proof. Suppose for the sake of contradiction, there exists x ∈ A and y ∈ C such that

Φh,χ(x; i) = Φh,χ(y; i) = 0. But the edge (x,y) is a violation, and if χ(x,y) = 1 then

Φh,χ(x; i) = 1, otherwise Φh,χ(y; i) = 1. Contradiction.
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Next we remind the reader that
#     »

R(2)(x) = I=i
gx,ξ′x

(S). We now define the ξ′x(S, S + i)

colorings for x ∈ A ∪ C using the above claim in the following simple manner.

If
#    »

L
(2)
A ≡ 1, then ξ′x(S, S + i) = 1 ∀x ∈ A ∪ C (4.27)

otherwise,

we have
#    »

L
(2)
C ≡ 1, and so we define ξ′x(S, S + i) = 0 ∀x ∈ A ∪ C (4.28)

In the former case, we have
#     »

R
(2)
A = (111 · · · 1︸ ︷︷ ︸

k many

0000) and
#    »

L
(2)
A ≡ 1 and so we pick

#     »

L
′(2)
A =

#    »

L
(2)
A .

Also note that we have
#     »

R
(2)
C as the all zeros vector, and so we pick

#     »

L
′(2)
C =

(
#    »

L
(2)
C

)↑
. These

satisfy (b) and (d). In the latter case the argument is analogous. Thus, in either case we

have established (b) and (d), and this completes the proof of LHS ≥ RHS1.

We remind the reader that we have now defined ξ′x(S, S ⊕ j) for all subsets S ⊆ [i − 1]

and 1 ≤ j ≤ i. In the next subsection, when we prove LHS ≥ RHS2, we will need to define

ξ′x(S+ i, S+ i⊕ j) for all j ≤ i−1. Note that for j = i, we have (S+ i, S+ i⊕ j) = (S+ i, S)

and the coloring ξ′x has already been defined for these edges in eq. (4.27) or eq. (4.28).

4.7.2 Proving LHS ≥ RHS2

This inequality is a bit trickier to establish because the function h itself now changes to i ◦h

in RHS2. For instance, focusing on the illustration we have been using, upon sorting the

picture looks like this.

We have now partitioned the interval A into I ∪ B where B is the k-ones closest to the

semi-sorting boundary. After sorting, we think of the ones in B moving into C, and the ones

in I shifting and moving to Q ⊆ A. The first k entries of A, which we call Z, takes the value

0 after sorting this line.
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I B C

kk

W O

CW OZ Q

To argue LHS ≥ RHS2, we break the vector
#»

L as

∥∥∥ #»

L
∥∥∥
1/2

=
∥∥∥ #»

LW

∥∥∥
1/2

+
∥∥∥ #»

LI∪B∪O

∥∥∥
1/2

+
∥∥∥ #»

LC

∥∥∥
1/2

and the vector
# »

M as

∥∥∥ # »

M
∥∥∥
1/2

=
∥∥∥ #     »

MW

∥∥∥
1/2

+
∥∥∥ #                »

MQ∪C∪O

∥∥∥
1/2

+
∥∥∥ #    »

MZ

∥∥∥
1/2

and argue vector-by-vector. The plan of the proof is similar to the previous case. We want

to find recolorings χ′′ and ξ′x such that

(e) ∃
#          »

M
′(q)
QCO such that

#          »

M
′(q)
QCO ⪰maj

(
#        »

L
(q)
IBO

)↓
and

#          »

M
′(q)
QCO ⪰coor

#          »

M
(q)
QCO, for q ∈ {1, 3}.

(f) ∃
#        »

L
′(2)
IBO such that

#        »

L
′(2)
IBO ⪰maj

(
#        »

L
(2)
IBO

)↓
and

#        »

L
′(2)
IBO ⪰coor

#          »

M
(2)
QCO.

(g) ∃
#        »

M
′(q)
WZ such that

#        »

M
′(q)
WZ ⪰maj

(
#       »

L
(q)
WC

)↑
and

#        »

M
′(q)
WZ ⪰coor

#        »

M
(q)
WZ , for q ∈ {1, 3}.

(h) ∃
#       »

L
′(2)
WC such that

#       »

L
′(2)
WC ⪰maj

(
#       »

L
(2)
WC

)↑
and

#       »

L
′(2)
WC ⪰coor

#        »

M
(2)
WZ .

Let us see why the above conditions suffice to prove the inequality. The second part

of (f) implies that
∥∥∥ #          »

MQCO

∥∥∥
1/2
≤
∥∥∥∥ #          »

M
(1)
QCO +

#          »

M
(3)
QCO +

#        »

L
′(2)
IBO

∥∥∥∥
1/2

. Part (e) and the first part

of (f), along with Lemma 4.3.11, implies
#          »

M
(1)
QCO +

#          »

M
(3)
QCO +

#        »

L
′(2)
IBO ⪰maj

(
#        »

LIBO

)↓
. And so,

∥LIBO∥1/2 ≥ ∥MIBO∥1/2. Now, by the second part of (g) and the second part of (h) we
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have
∥∥∥ #        »

MWC

∥∥∥
1/2
≤
∥∥∥∥ #        »

M
′(1)
WC +

#        »

M
′(3)
WC +

#       »

L
′(2)
WC

∥∥∥∥
1/2

and by the first part of (g) and (h) we have∥∥∥∥ #        »

M
′(1)
WC +

#        »

M
′(3)
WC +

#       »

L
′(2)
WC

∥∥∥∥
1/2

⪰maj

(
#       »

LWC

)↑
. Thus, ∥LWZ∥1/2 ≥ ∥MWZ∥1/2.

4.7.2.1 Proving (e) and (g) for q = 3

Defining the Coloring χ′′: We now describe the coloring χ′′ on all edges of the form

(x,x + aej) where j ≥ i + 1, (i ◦ h)(x) = 1 and (i ◦ h)(x + aej) = 0. For all other edges e,

we simply define χ′′(e) = χ(e).

Given a pair of i-lines ℓ and ℓ′ = ℓ + aej for j ≥ i + 1 and a > 0 we consider the set of

violations from ℓ to ℓ′ in h and in i ◦ h. As before, the violations in h form two a union of

two intervals V = VL ∪ VR. Recall the definition of V in eq. (4.15). Since (i ◦ h) is sorted in

dimension i, the violations from ℓ to ℓ′ in (i ◦ h) form a single interval which we will call U :

U := {(x,x+ aej) : x ∈ ℓ, (i ◦ h)(x) = 1), and (i ◦ h)(x+ aej) = 0} .

Since the sort operator can only reduce the number of violations in a dimension, we have

|U | ≤ |V | (Claim 4.3.6 applied to h|ℓ and h|ℓ′). We define J to be the interval of |V | − |U |

points directly to the right of U so that U ∪ J is an interval of size |V |. We then define

(χ′′(e) : x ∈ U ∪ J) = (χ(e) : e ∈ V )↓ .

We now have a complete description of χ′′. We provide the following illustration for

clarity. The white and green intervals represent where h = 0 and h = 1, respectively. The

vertical arrows represent violated edges. Blue edges have color 0 and red edges have color

1. The left picture depicts the original coloring, χ, and the original function, h. The right

picture depicts the recoloring, χ′′, and the function after sorting, i ◦ h.
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VL VR U J = ∅

ℓ

ℓ′�

VL VR = ∅ U J

hℓ′� (i ∘ h)ℓ′�

hℓ (i ∘ h)ℓ

← χ → χ′�′� → ← χ′�′�

We now return to our fixed i-line ℓ and set out to prove (e) and (g) for q = 3, given this

coloring χ′′. Let’s recall our illustration of h and (i ◦ h) restricted to ℓ and our definition of

the intervals W, I,B,C,O, Z,Q.

I B C

kk

W O

CW OZ Q

Proving (e) for q = 3: Recall the definition of A = I ∪ B, O, and Q ∪ C ∪ O as in the

illustration. Fix j ≥ i + 1 and a i-line ℓ′ = ℓ + aej. Let A′ := {x ∈ A : h(x + aej) = 0},

O′ := {x ∈ O : h(x + aej) = 0}, and U := {x ∈ Q ∪ C ∪ O : (i ◦ h)(x + aej) = 0}. Again,

applying Claim 4.3.6 to h|ℓ and h|ℓ′ , we have |U | ≤ |A′|+ |O′|. Let J denote the interval of

size |A′|+ |O′| − |U | directly to the right of U so that U ∪ J is an interval of size |A′|+ |O′|.

Observe that by our definition of χ′′ above, we have

(χ′′(x,x+ aej) : x ∈ U ∪ J) = (χ(x,x+ aej) : x ∈ A′ ∪O′)
↓
.

Let’s see what this leads to.

Definition 4.7.12. Fix j ≥ i + 1 and fix an i-line ℓ′ := ℓ + aej for a > 0. Define the
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following two boolean vectors:

vM
j,a := (1((i ◦ h)(x+ aej) = 0 and χ′′(x,x+ aej) = 1) : x ∈ Q ∪ C ∪O)

and

vL
j,a := (1(h(x+ aej) = 0 and χ(x,x+ aej) = 1) : x ∈ I ∪B ∪O) .

Observe, for x ∈ Q ∪ C ∪O,

Φi◦h,χ′′(x; j) = min

(
1,
∑
a

vM
j,a(x)

)
(4.29)

and for x ∈ I ∪B ∪O,

Φh,χ(x; j) = min

(
1,
∑
a

vL
j,a(x)

)
. (4.30)

Claim 4.7.13. Fix j ≥ i + 1 and a > 0. For any two xi < x′i in Q ∪ C ∪ O, we have

vM
j,a(x) ≥ vM

j,a(x
′). That is, the vector vM

j,a is sorted decreasing.

Proof. Since (i◦h) is semisorted (i◦h)(x′+aej) = 0 implies (i◦h)(x+aej) = 0. Furthermore,

since both these are violations, by design χ′′(x′,x′+aej) = 1 implies χ′′(x,x+aej) = 1.

Claim 4.7.14. Fix j ≥ i+1 and a > 0. The vector vM
j,a has at most as many 1s as vL

j,a and

thus
(
vL
j,a

)↓ ⪰coor v
M
j,a.

Proof. This is precisely how χ′′ is defined: it only permutes the colorings on the violations

incident on I ∪B ∪O, and this number can only decrease upon sorting (Claim 4.3.6 applied

to χ restricted to the edges going from ℓ to ℓ′).

In conclusion, we can write

#        »

L
(3)
IBO =

(
d∑

j=i+1

Φh,χ(x; j) : x ∈ I ∪B ∪O

)
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as a sum of Boolean vectors, and the above two claims imply that the vector

#          »

M
(3)
QCO =

(
d∑

j=i+1

Φ(i◦h),χ′′(x; j) : x ∈ Q ∪ C ∪O

)

is coordinate wise dominated by the sum of the sorted decreasing orders of those Boolean

vectors. Defining
#          »

M
′(3)
QCO to be the sum of the sorted decreasing orders, using Lemma 4.3.11,

we establish part (e) for q = 3. Namely, we get

∃
#          »

M
′(3)
QCO :

#          »

M
′(3)
QCO ⪰maj

(
#        »

L
(3)
IBO

)↓
and

#          »

M
′(3)
QCO ⪰coor

#          »

M
(3)
QCO (4.31)

Proving (g) for q = 3: A similar argument but working with the zeros establishes part (g)

for q = 3. The picture is similar, but reversed, when we consider the points in W ∪C, where

h(x) = 0. Fix a dimension j ≥ i+1 and some ℓ′′ = ℓ−aej. Let W
′ = {x ∈ W : h(x−aej) =

1}, C ′ = {x ∈ C : h(x − aej) = 1}, and U = {x ∈ W ∪ Z : (i ◦ h)(x − aej) = 1}. Note

that |U | ≤ |W ′| + |C ′| (Claim 4.3.6 applied to h|ℓ′′ and h|ℓ). Let J denote the interval of

|W ′|+ |C ′| directly to the right of |U | so that U ∪J is an interval of size |W ′|+ |C ′|. Observe

that by our definition of χ′′ above, we have

(χ′′(x− aej,x) : x ∈ U ∪ J) = (χ(x− aej,x) : x ∈ W ′ ∪ C ′)
↓
.

Let’s see what this leads to.

Definition 4.7.15. Fix j ≥ i + 1 and fix an i-line ℓ′′ := ℓ − aej for a > 0. Define the

following two boolean vectors:

vM
j,a := (1((i ◦ h)(x− aej) = 1 and χ′′(x− aej,x) = 0) : x ∈ W ∪ Z)

and

vL
j,a := (1(h(x− aej) = 1 and χ(x− aej,x) = 0) : x ∈ W ∪ C) .
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Observe, for x ∈ W ∪ Z,

Φi◦h,χ′′(x; j) = min

(
1,
∑
a

vM
j,a(x)

)
(4.32)

and for x ∈ W ∪ C,

Φh,χ(x; j) = min

(
1,
∑
a

vL
j,a(x)

)
. (4.33)

Claim 4.7.16. Fix j ≥ i + 1 and a > 0. For any two xi < x′i in W ∪ Z, we have

vM
j,a(x) ≤ vM

j,a(x
′). That is, the vector vM

j,a is sorted increasing.

Proof. Since (i ◦ h) is sorted in dimension i, we have (i ◦ h)(x− aej) = 1 implies (i ◦ h)(x′−

aej) = 1. Furthermore, since both these are violations, by design χ′′(x− aej,x) = 0 implies

χ′′(x′ − aej,x
′) = 0.

Claim 4.7.17. Fix j ≥ i+1 and a > 0. The vector vM
j,a has at most as many 1s as vL

j,a and

thus
(
vL
j,a

)↑ ⪰coor v
M
j,a.

Proof. This is precisely how χ′′ is defined: it only permutes the colorings on the violations

incident on W ∪C, and this number can only decrease upon sorting (Claim 4.3.6 applied to

χ restricted to the edges going from ℓ′′ to ℓ).

In conclusion, we can write

#       »

L
(3)
WC =

(
d∑

j=i+1

Φh,χ(x; j) : x ∈ W ∪ C

)

as a sum of Boolean vectors, and the above two claims imply that the vector

#        »

M
(3)
WZ =

(
d∑

j=i+1

Φ(i◦h),χ′′(x; j) : x ∈ W ∪ Z

)

is coordinate wise dominated by the sum of the sorted increasing orders of those Boolean

vectors. Defining
#        »

M
′(3)
WZ to be the sum of the sorted decreasing orders, using Lemma 4.3.11,

124



we establish part (g) for q = 3. Namely, we get

∃
#        »

M
′(3)
MZ :

#        »

M
′(3)
MZ ⪰maj

(
#       »

L
(3)
WC

)↑
and

#        »

M
′(3)
WZ ⪰coor

#        »

M
(3)
WZ (4.34)

4.7.2.2 Proving (e) and (g) for q = 1

Defining ξ′x(S + i, S + i ⊕ j) for S ⊆ [i − 1] and j ≤ i − 1: We now define the partial

coloring ξ′x := ξ
(i)
x on all edges (S + i, S + i ⊕ j) where S ⊆ [i − 1] and j ≤ i − 1 for all

x ∈ [n]d. These are exactly the relevant edges for the proof of parts (e) and (g) for q = 1.

Note that the partial coloring ξx := ξ
(i−1)
x is undefined over these edges.

Fix S ⊆ [i− 1], j ≤ i− 1, and a i-line ℓ. We consider the set of x ∈ ℓ such that (S, S⊕ j)

is influential in gx and the set of edges where (S+ i, S+ i⊕ j) is influential in gx. As before,

the former is a union of two intervals V = VL ∪ VR. Recall the definition of V in eq. (4.22).

Since (S+ i) ◦ f and (S+ i⊕ j) ◦ f are both sorted in dimension i, the set of x ∈ ℓ such that

(S + i, S + i⊕ j) is influential forms a single interval which we will call U :

U := {x ∈ ℓ : gx(S + i) = 1 and gx(S + i⊕ j) = 0} .

Again, we have |U | ≤ |V | (Claim 4.3.6 applied to (S ◦ f)|ℓ and ((S⊕ j) ◦ f)|ℓ) and we let

J denote the |V | − |U | points directly right of U , so that U ∪ J is an interval of length |V |.

We then define

(ξ′x(S + i, S + i⊕ j) : x ∈ U ∪ J) = (ξx(S, S ⊕ j) : x ∈ V )↓ .

For all x ∈ ℓ \ (U ∪ J) we define ξ′x(S + i, S + i ⊕ j) = 1. Note that this is an arbitrary

choice since such edges are not influential and so they do not come in to play in the rest of

the proof.

We now have a complete description of ξ′x on (S+ i, S+ i⊕j) for all x ∈ [n]d. We provide
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the following illustration for clarity, which is quite similar to the illustration provided in

Section 4.7.2.1 when we defined χ′′. The left picture depicts the original colorings, ξx, and

the relevant functions before applying the sort operator in dimension i. The right picture

depicts the recoloring, ξ′x, and the relevant functions after applying the sort operator in

dimension i.

VL VR U J = ∅

((S ⊕ j) ∘ f ) |ℓ

(S ∘ f ) |ℓ

← ξx → ξ′�x →

((S + i ⊕ j) ∘ f ) |ℓ

((S + i) ∘ f ) |ℓ

← ξ′�x

We now return to our fixed i-line ℓ and set out to prove (e) and (g) for q = 1, given the

colorings ξ′x. Recall gx(S) = h(x) and gx(S + i) = (i ◦ h)(x) and so we can reference the

same illustration and our definition of the intervals W, I,B,C,O, Z,Q.

I B C

kk

W O

CW OZ Q

Proving (e) for q = 1: Fix j ≤ i − 1 and let A′ := {x ∈ A : gx(S ⊕ j) = 0}, O′ := {x ∈

O : gx(S⊕ j) = 0, and U := {x ∈ Q∪C ∪O : gx(S+ i⊕ j) = 0}. As before, |U | ≤ |A′|+ |O′|

(applying Claim 4.3.6 to (S ◦ f)|ℓ and ((S ⊕ j) ◦ f)|ℓ) and we define J to be the |A′| − |O′|

points directly to the right of U so that U ∪ J is a prefix of Q ∪ C ∪ O of size |A′| + |O′|.

From our definition of ξ′x from above we have

(ξ′x(S + i, S + i⊕ j) : x ∈ U ∪ J) = (ξx(S, S ⊕ j) : x ∈ A′ ∪O′)
↓
.

We now get the following claim.

126



Claim 4.7.18.
(
I=j
gx,ξ′x

(S + i) : x ∈ Q ∪ C ∪O
)
is a sorted decreasing vector, and has at

most as many ones as the vector
(
I=j
gx,ξx

(S) : x ∈ I ∪B ∪O
)
.

Proof. Take xi < x′i in Q ∪ C ∪ O. Note that gx(S + i) = gx′(S + i) = 1 by definition

Q ∪ C ∪O. Thus,

I=j
gx,ξ′x

(S + i) = 1 (gx(S + i⊕ j) = 0 and ξ′x(S + i, S + i⊕ j) = 1)

and

I=j
gx,ξx

(S) = 1 (gx(S ⊕ j) = 0 and ξx(S, S ⊕ j) = 1)

By design of the ξ′x’s, the first vector is sorted decreasing on Q∪C ∪O (it takes value 0 after

U). Also by design, the number of ones in the latter vector can only be larger since we obtain

ξ′ by taking a permutation and possibly discarding some ones (the ones corresponding to

J).

Observing that

#        »

L
(1)
IBO =

(
i−1∑
j=1

I=j
gx,ξx

(S) : x ∈ I ∪B ∪O

)
and

#          »

M
(1)
QCO =

(
i−1∑
j=1

I=j
gx,ξ′x

(S + i) : x ∈ Q ∪ C ∪O

)

we see that the latter vector is coordinate-wise dominated by a vector which is a sum of

sorted decreasing versions of Boolean vectors which add up to the former one. Defining
#          »

M
′(1)
QCO to be the sum of the sorted decreasing orders, using Lemma 4.3.11, we establish part

(e) for q = 3. Namely, we get

∃
#          »

M
′(1)
QCO :

#          »

M
′(1)
QCO ⪰maj

(
#        »

L
(1)
IBO

)↓
and

#          »

M
′(1)
QCO ⪰coor

#          »

M
(1)
QCO. (4.35)

Proof of Part (g) for q = 1: A similar argument but working with the zeros establishes

part (g) for q = 1. Recall the definition of the sets W , C, and Z. Let W ′ = {x ∈
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W : gx(S⊕ j) = 1}, C ′ = {x ∈ C : gx(S⊕ j) = 1}, and U = {x ∈ W ∪Z : gx(S+ i⊕ j) = 1}.

As before |U | ≤ |W ′| + |C ′| (applying Claim 4.3.6 to ((S ⊕ j) ◦ f)|ℓ and (S ◦ f)|ℓ) and we

define J to be the set of |W ′|+ |C ′|− |U | points directly to the right of U so that U ∪J is an

interval of size |W ′|+ |C ′|. Note that U is a suffix of W ∪Z and J is a prefix of Q ∪C ∪O.

From our definition of ξ′x above, made with the set S ⊕ j, we have

(ξ′x(S + i, S + i⊕ j) : x ∈ U ∪ J) = (ξx(S, S ⊕ j) : x ∈ W ′ ∪ C ′)
↓
.

Claim 4.7.19.
(
I=j
gx,ξ′x

(S + i) : x ∈ W ∪ Z
)
is a sorted increasing vector, and has at most

as many ones as the vector
(
I=j
gx,ξx

(S) : x ∈ W ∪ C
)
.

Proof. Take xi < x′i in W ∪ Z. Note that gx(S + i) = gx′(S + i) = 0 by definition W ∪ Z.

Thus,

I=j
gx,ξ′x

(S + i) = 1 (gx(S + i⊕ j) = 1 and ξ′x(S + i, S + i⊕ j) = 0)

and

I=j
gx,ξx

(S) = 1 (gx(S ⊕ j) = 1 and ξx(S, S ⊕ j) = 0)

By design of the ξ′x’s, the first vector is sorted increasing on W ∪ Z. Also by design,

the number of ones in the latter vector can only be larger since we obtain ξ′ by taking a

permutation and possibly discarding some ones (the ones corresponding to J).

Observing that

#       »

L
(1)
WC =

(
i−1∑
j=1

I=j
gx,ξx

(S) : x ∈ W ∪ C

)
and

#        »

M
(1)
WZ =

(
i−1∑
j=1

I=j
gx,ξ′x

(S + i) : x ∈ W ∪ Z

)

we see that the latter vector is coordinate-wise dominated by a vector which is a sum of

sorted increasing versions of Boolean vectors which add up to the former one. Defining
#        »

M
′(1)
WZ to be the sum of the sorted increasing orders, using Lemma 4.3.11, we establish part

(e) for q = 3. Namely,
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∃
#        »

M
′(1)
WZ :

#        »

M
′(1)
WZ ⪰maj

(
#       »

L
(1)
WC

)↓
and

#        »

M
′(1)
WZ ⪰coor

#        »

M
(1)
WZ . (4.36)

4.7.2.3 Proving (f) and (h):

Let us now prove part (f) and (h). Note, at this point, ξ′x is fully defined on all pairs

(S, S ⊕ j) for S ⊆ [i] and j ≤ i. We don’t have the freedom to redefine. However, we see

that the definition we made in eq. (4.27) and eq. (4.28) suffices. Let us recall what we want

to establish.

(f) ∃
#        »

L
′(2)
IBO such that

#        »

L
′(2)
IBO ⪰maj

(
#        »

L
(2)
IBO

)↓
and

#        »

L
′(2)
IBO ⪰coor

#          »

M
(2)
QCO.

(h) ∃
#       »

L
′(2)
WC such that

#       »

L
′(2)
WC ⪰maj

(
#       »

L
(2)
WC

)↑
and

#       »

L
′(2)
WC ⪰coor

#        »

M
(2)
WZ .

We remind the reader that
#    »

L(2)(x) = Φh,χ(x; i) for all x ∈ ℓ and the coloring was defined

as follows:

If
#    »

L
(2)
IB ≡ 1, then ξ′x(S, S + i) = 1 ∀x ∈ I ∪B ∪ C

otherwise,

we have
#    »

L
(2)
C ≡ 1, and so ξ′x(S, S + i) = 0 ∀x ∈ I ∪B ∪ C

We remind the reader that
#      »

M (2)(x) = I=i
gx,ξ′x

(S+i) and therefore this is 1 iff gx(S+i) ̸= gx(S)

and ξ′x(S, S + i) = gx(S + i). The former implies x ∈ Z ∪ C.

Suppose we are in the first case. Then,
#      »

M (2)(x) = 1 if and only if x ∈ C. Since
#    »

L
(2)
IB ≡ 1 ⪰coor

#       »

M
(2)
QC , we can set

#        »

L
′(2)
IBO to be the vector that is 1s in I ∪B and 0’s in O. This

establishes (f). To establish (h), we observe that
#        »

M
(2)
WZ is the zero vector, and thus we can

choose
#       »

L
′(2)
WC to be

(
#       »

L
(2)
WC

)↑
.

Suppose we are in the second case. Then,
#      »

M (2)(x) = 1 if and only if x ∈ Z. Since
#    »

L
(2)
C ≡ 1 ⪰coor

#      »

M
(2)
Z , we can set

#       »

L
′(2)
WC to be the vector that is 1s in C and 0’s in W . This
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establishes (h). To establish (f), we observe that
#          »

M
(2)
QCO is the zero vector, and thus we can

choose
#        »

L
′(2)
IBO to be

(
#        »

L
(2)
IBO

)↓
.

In either case, we have established (f) and (h), and thus completed the proof.
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CHAPTER 5

A d1/2+o(1) Query Tester

In this chapter we obtain a nearly optimal non-adaptive monotonicity tester for Boolean

functions over d-dimensional hypergrids, which also yields the same result for continuous

product spaces. These results were originally published in [BCS23a]. We refer the reader to

Section 2.4 for a discussion of the main proof techniques and challenges.

Theorem 5.0.1. Consider Boolean functions over the hypergrid, f : [n]d → {0, 1}.

There is a one-sided, non-adaptive tester for monotonicity that makes ε−2d1/2+O(1/ log log d)

queries.

Let µ =
∏d

i=1 µi be a product Lebesgue measure over Rd. A function f : Rd → {0, 1} is

measurable if the set f−1(1) is Lebesgue-measurable with respect to µ. The µ-distance of f to

monotonicity is defined as infg∈M µ(∆(f, g)), whereM is the family of measurable monotone

functions and ∆ is the symmetric difference operator. (Refer to Section 3.5 for more details.)

Domain reduction results (Theorem 3.0.1, Theorem 3.0.2, or alternatively the techniques by

[HY22]) show that monotonicity testing over general hypergrids and continuous product

spaces can be reduced to testing over [k]d where k = poly(ε−1d) via sampling. Thus, a direct

consequence of Theorem5.0.1 is the following theorem for continuous monotonicity testing.

Theorem 5.0.2. Consider Boolean functions f : Rd → {0, 1}, with an associated

product measure µ. There is a one-sided, non-adaptive tester for monotonicity that

makes ε−2d1/2+O(1/ log log d) queries.
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5.1 Random Walks and the Monotonicity Tester

Without loss of generality1 we assume that n is a power of 2. We use x ∈R S to denote

choosing a uniform random element x from the set S. Abusing notation, we define intervals

in Zn by wrapping around. So, if 1 ≤ i ≤ n < j, then the interval [i, j] in Zn is the set

[i, n] ∪ [1, (j − 1) (mod n)].

The directed (lazy) random walk distribution in [n]d that we consider is defined as follows.

The distribution induced by this directed walk has multiple equivalent formulations, which

are discussed in Section 5.2.2.

Definition 5.1.1 (Hypergrid Walk Distribution). For a point x ∈ [n]d and walk length τ , the

distribution Uτ (x) over y ∈ [n]d reached by an upward lazy random walk from x of τ -steps

is defined as follows.

1. Pick a uniform random subset R ⊆ [d] of τ coordinates.

2. For each r ∈ R:

(a) Choose qr ∈R {1, 2, . . . , log n} uniformly at random.

(b) Choose a uniform random interval Ir in Zn of size 2qr such that xr ∈ Ir.

(c) Choose a uniform random cr ∈R Ir \ {xr}.

3. Generate y as follows. For every r ∈ [d], if r ∈ R and cr > xr, set yr = cr. Else, set

yr = xr.

Analogously, let Dτ (x) be the distribution defined precisely as above, but the >-sign is replaced

by the <-sign in step 3. This is the distribution of the endpoint of a downward lazy random

walk from x of τ -steps.

1See Theorem A.1 of [BCS18]. Note this assumption is not crucial, but we choose to use it for the sake
of a cleaner presentation.
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A crucial step of our algorithm involves performing the exact same random walk, but

originating from two different points. We can express our random walk distribution in terms

of shifts (rather than destinations) as follows.

Definition 5.1.2 (Shift Distributions). The up-shift distribution from x, denoted USτ (x) is

the distribution of x′ − x, where x′ ∼ Uτ (x). The down-shift distribution from x, denoted

DSτ (x) is the distribution of x− x′, where x′ ∼ Dτ (x).

Note that Uτ (x) is equivalent to the distribution of x + s, where s ∼ USτ (x). Similarly,

Dτ (x) is equivalent to the distribution of x − s, where s ∼ DSτ (x). Using Definition 5.1.1

and Definition 5.1.2, our tester is defined in Alg. 1.

Algorithm 1 Monotonicity tester for Boolean functions on [n]d

Input: A Boolean function f : [n]d → {0, 1}
1. Choose p ∈R {0, 1, 2, . . . , ⌈log d⌉} uniformly at random and set τ := 2p.
2. Run the upward path test with walk length ℓ = τ − 1 and ℓ = τ :

(a) Choose x ∈R [n]d and sample y from Uℓ(x).
(b) If f(x) > f(y), then reject.

3. Run the downward path test with walk length ℓ = τ − 1 and ℓ = τ :

(a) Choose y ∈R [n]d and sample x from Dℓ(y).

(b) If f(x) > f(y), then reject.

4. Run the upward path + downward shift test with walk length ℓ = τ − 1 and ℓ = τ :

(a) Choose x ∈R [n]d, sample y from Uℓ(x), and sample s from DSτ−1(x).
(b) If f(x− s) > f(y − s), then reject.

5. Run the downward path + upward shift test with walk length ℓ = τ − 1 and ℓ = τ :

(a) Choose y ∈R [n]d, sample x from Dℓ(y), and sample s from USτ−1(y).
(b) If f(x+ s) > f(y + s), then reject.

Remark 5.1.3. Given a function f : [n]d → {0, 1}, consider the doubly-flipped function

g : [n]d → {0, 1} defined as g(x) := 1 − f(x̄) where x̄i := n − xi. That is, we swap all the

zeros and ones in f , and then reverse the hypergrid (the all zeros point becomes the all n’s

point and vice-versa). The distance to monotonicity of both f and g are the same: a pair
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(x,y) is violating in f if and only if (x̄, ȳ) is violating in g. In Alg. 1, Step 2 on f is the same

as Step 3 on g, and Step 4 on f is the same as Step 5 on g. In our analysis, we will construct

a violation subgraph between vertex sets X and Y . Points in X are 1-valued and points in Y

are 0-valued. If |X| ≤ |Y |, then the steps 2, 3, and 4 suffice for the analysis. If |Y | ≤ |X|,

then (by the same analysis) we run steps 2,3, and 4 on the function g. This is equivalent to

running steps 2, 3, and 5 on the function f . So, the tester covers both situations, and we

can assume wlog that |X| ≤ |Y |. This discussion happens in Section 5.5.1.1.

Our main result is the following lower bound on the rejection probability of Alg. 1.

Theorem 5.1.4 (Main Theorem). Let n, ε−1 ≤ poly(d). If f : [n]d → {0, 1} is ε-far

from being monotone, then for any δ > (log log nd)−1, Alg. 1 rejects f with probability at

least ε2 · d−(1/2+O(δ)).

Theorem5.1.4 is proved in Section 5.4. We first use Theorem5.1.4 to prove our main

testing results, Theorem5.0.1 and Theorem5.0.2.

5.1.1 Proof of Theorem5.0.1 and Theorem5.0.2

To prove Theorem5.0.1, we use the domain reduction Theorem 1.3 of [BCS20], which we

state here for ease of reading.

Theorem 5.1.5 (Domain Reduction Theorem 1.3, [BCS20]). Suppose f : [n]d → {0, 1} is

ε-far from being monotone. Let k = (ε−1d)8. If T = T1 × · · · × Td is a randomly chosen

sub-grid, where for each i ∈ [d], Ti is a (multi)-set formed by taking k independent, uniform

samples from [n], then ET[εf |T ] ≥ ε/2.

Remark 5.1.6. We note that [HY22] obtain a more efficient domain reduction result. How-

ever, the domain reduction from [BCS20] can be used in a black-box fashion, resulting in a

simpler tester.

For ease of reading, we give a simplified proof of a weaker version of Theorem5.0.1. This

proof obtains a tester with an ε−3 dependence, instead of the stated ε−2. A more nuanced
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argument yields the improved ε−2 log(1/ε) dependence, which proves Theorem5.0.1 as stated2.

For details, we refer the reader to Section 7 of [BCS20]. In particular, we run Algorithm 1

in Section 7 of [BCS20] with the sub-routine in line 5 replaced by Alg. 1.

Proof. of Theorem5.0.1: Consider the tester which does the following, given f : [n]d → {0, 1}

and ε ∈ (0, 1).

1. If ε < d−1/2, then run the Õ(ε−1d) query non-adaptive and 1-sided tester of [DGL+99]

or [BRY14a].

2. If ε ≥ d−1/2, then set k = (ε−1d)8 ≤ d12 and repeat the following 8ε−1 times.

(a) Sample a [k]d sub-grid T ⊆ [n]d according to the distribution described in Theo-

rem5.1.5.

(b) Run 32 · ε−2 ·d1/2+O(δ) iterations of the tester described in Alg. 1 on the restricted

function f |T.

3. Accept.

If ε < d−1/2, then the number of queries is O(ε−1d) = O(ε−2d1/2). We are done in this

case.

Assume ε ≥ d−1/2. The total number of queries made by this tester is at most ε−3 ·

d1/2+O(δ). Clearly, if f is monotone, then the tester will accept, so suppose εf ≥ ε. By the

domain reduction Theorem5.1.5, we have ET[εf |T ] ≥ ε/2. So, ET[1 − εf |T ] ≤ 1 − ε/2 and

thus by Markov’s inequality,

PT

[
1− εf |T ≥ 1− ε/4

]
≤ 1− ε/2

1− ε/4
=

1− ε/4− ε/4

1− ε/4
≤ 1− ε/4.

2When we invoke Alg. 1, we assume that ε ≥ d−1/2 and so log 1/ε = d
log log 1/ε

log d ≪ dO(1/ log log d). The
factor of log 1/ε is absorbed by dO(1/ log log d) in the query complexity.
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Thus, PT[εf |T ≥ ε/4] ≥ ε/4. Thus, with probability at least 1 − (1 − ε/4)8/ε ≥ 1 − e−2,

some iteration of step (2a) will produce T such that εf |T ≥ ε/4. When this happens, some

iteration of step (2b) will reject with probability at least 1 − e−2, by Theorem5.1.4. Thus,

the tester rejects f with probability at least (1− e−2)2 ≥ 2/3.

The proof of Theorem5.0.2 for testing on Rd follows the exact same argument, using the

corresponding domain reduction Theorem 1.4 of [BCS20] for functions over Rd. We omit the

proof.

5.2 Technical Preliminaries

In this section, we list out preliminary definitions and notations. Throughout the section,

we fix a function f : [n]d → {0, 1} that is ε-far from monotone. For ease of readability, most

proofs of this section are in the appendix.

5.2.1 Violation Subgraphs and Isoperimetry

The fully augmented hypergrid is a graph whose vertex set is [n]d where edges connect all

pairs that differ in exactly one coordinate. We direct all edges from lower to higher endpoint.

The edge (x,y) is called an i-edge for i ∈ [d] if x and y differ in the ith coordinate. We

use I(x,y) = {z : x ⪯ z ⪯ y} to denote the points z in the segment [x,y], that is, they

are the points which differ from x and y only in the ith coordinate, and xi ≤ zi ≤ yi.

Given a function f : [n]d → {0, 1} the edge (x,y) of the fully augmented hypergrid is a

violating/violated edge if f(x) = 1 and f(y) = 0.

Definition 5.2.1. A violation subgraph is a subgraph of the fully augmented hypergrid all

of whose edges are violations.

Note that any violation subgraph is a bipartite subgraph, where the bipartition is given

by the 1-valued and 0-valued points. We henceforth always express a violation subgraph as
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G = (X,Y , E) such that ∀x ∈X, f(x) = 1 and ∀y ∈ Y , f(y) = 0. There are a number of

relevant parameters of violation subgraphs that play a role in our analysis.

Definition 5.2.2. Fix a violation subgraph G = (X,Y , E) and a point x ∈X.

• The degree of x in G is the number of edges in E incident to x and is denoted as

DG(x).

• For any coordinate i ∈ [d], the i-degree of x in G is the total number of i-edges in E

incident to x and is denoted as ΓG,i(x). Note DG(x) =
∑d

i=1 ΓG,i(x).

• The thresholded degree of x in G is the number of coordinates i ∈ [d] with ΓG,i(x) > 0

and is denoted as ΦG(x).

Whenever G is clear from context, for brevity, we remove it from the subscript.

Note that Φ(x) is an integer between 0 and d, Γi(x) is an integer between 0 and (n − 1),

and D(x) is an integer between 0 and (n− 1)d. We next define the following parameters of

a violation subgraph G.

Definition 5.2.3. Consider a violation subgraph G = (X,Y , E).

• D(X) is the maximum degree of a vertex in X, that is, D(X) = maxx∈X D(x).

• For i ∈ [d], Γi(X) is the maximum i-degree in X, that is, Γi(X) = maxx∈X Γi(x).

• Γ(X) is the maximum value of Γi(X), that is, Γ(X) = maxdi=1 Γi(X).

• Φ(X) is the maximum thresholded degree in X, that is, Φ(X) = maxx∈X Φ(x).

• m(G) is the number of edges in G.

(We analogously define these parameters for Y .)

We recall the notion of thresholded influence of a function f : [n]d → {0, 1} as defined

in [BCS23b, BKKM23]. For any x ∈ [n]d and i ∈ [d], Φf (x; i) is the indicator for the

existence of a violating i-edge incident to x. The thresholded influence of f at x is Φf (x) =∑d
i=1Φf (x; i). We use the same Greek letter Φ both for thresholded influence and thresholded
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degree. In the graph G0 = (X0,Y0, E) consisting of all violating edges of the fully augmented

hypergrid, Φf (x) is indeed ΦG0(x).

For applications to monotonicity testing, we require colored/robust versions of the thresh-

olded influence. For hypercubes this was suggested by [KMS18], and for hypergrids this was

generalized by [BCS23b]. Let χ : E → {0, 1} be an arbitrary coloring of all the edges of the

fully augmented hypergrid to 0 or 1. Given a point x and i ∈ [d], Φf,χ(x; i) is the indicator

of a violating i-edge e incident to x with χ(e) = f(x). The colored thresholded influence of

x wrt χ is simply Φf,χ(x) =
∑d

i=1Φf,χ(x; i). The Talagrand objective of f is defined as

TΦχ(f) := min
χ:E→{0,1}

∑
x∈[n]d

√
Φf,χ(x).

The main result of [BCS23b] is the following.

Theorem 5.2.4 (Theorem 1.4, [BCS23b]). If f : [n]d → {0, 1} is ε-far from monotone, then

TΦχ(f) = Ω( εnd

logn
).

We stress that the RHS above only loses a log n factor, which allows for domain re-

duction (setting n = poly(d)). This is what yields the nearly optimal
√
d dependence and

independence on n in the tester query complexity.

We extend the definition of TΦχ(f) to arbitrary violation subgraphs as follows. Given a

violation subgraph G = (X,Y , E) and a bicoloring χ : E → {0, 1} of its edges, for z ∈X∪Y

and i ∈ [d] let ΦG,χ(z; i) = 1 if there is a violating i-edge e ∈ E(G) incident to z such that

χ(e) = f(z), and ΦG,χ(z; i) = 0 otherwise. Define ΦG,χ(x) =
∑d

i=1ΦG,χ(x; i). Note, if χ ≡ 1,

that is every edge is colored 1, then ΦG,χ(x) = ΦG(x) for x ∈ X and ΦG,χ(y) = 0 for all

y ∈ Y . Similarly, if χ ≡ 0, then ΦG,χ(y) = ΦG(y) for y ∈ Y and ΦG,χ(x) = 0 for x ∈X.

Definition 5.2.5. Given a violation subgraph G = (X,Y , E), we define

TΦχ(G) := min
χ

∑
z∈X∪Y

[√
ΦG,χ(z)

]
,
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where the min is taken over all edge bicolorings χ : E(G)→ {0, 1}.

If G0 is the subgraph of all violations in the fully augmented hypergrid, then Theo-

rem 5.2.4 states TΦχ(G0) = Ω(εnd/ log n). We make a couple of observations.

Observation 5.2.6. For any violation subgraph G = (X,Y , E),

• D(X) ≤ Γ(X)Φ(X) and D(Y ) ≤ Γ(Y )Φ(Y ).

• m(G) ≥ TΦχ(G).

Proof. For any x ∈ X, we have D(x) =
∑d

i=1 Γi(x) =
∑

i:Γi(x)>0 Γi(x) ≤ (maxi Γi(x)) ·

Φ(x) ≤ Γ(X)Φ(X). The proof is analogous for Y . For the second bullet, observe that

m(G) =
∑

x∈X D(x) ≥
∑

x∈X Φ(x) ≥
∑

x∈X

√
Φ(x) =

∑
z∈X∪Y

√
ΦG,χ≡1(z) ≥ TΦχ(G).

Remark 5.2.7. Throughout the remainder of the paper, we consider d to be at least a large

constant and fix δ > 1
log lognd

. As a result, we use bounds such as “dδ ≥ poly log d” or

“d − C
√
d ≥ d/3” without explicitly reminding the reader that d is large. We use O(δ) to

denote C · δ for some unspecified, but fixed constant C.

5.2.2 Equivalent Formulations of the Random Walk Distribution

Recall the random walk distribution described in Definition 5.1.1. It is useful to think of this

walk as first sampling a random hypercube and then taking a random walk on that hyper-

cube. The following definition describes the appropriate distribution over sub-hypercubes in

[n]d.

Definition 5.2.8 (Hypercube Distribution). We define the following distribution Hn,d over

sub-hypercubes in [n]d. For each coordinate i ∈ [d]:

1. Choose qi ∈R {1, 2, . . . , log n} uniformly at random.
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2. Choose a uniform random interval Ii of size 2qi in Zn.

3. Choose a uniform random pair ai < bi from Ii.

Output H =
∏d

i=1{ai, bi}. When n and d are clear from context, we abbreviate H = Hn,d.

It will also be useful for us to think of our random walk distribution as first sampling

x ∈R [n]d, then sampling a random hypercube which contains x, and then taking a random

walk from x in that hypercube. The appropriate distribution over hypercubes containing a

point x is defined as follows.

Definition 5.2.9 (Conditioned Hypercube Distribution). Given x ∈ [n]d, we define the

conditioned sub-hypercube distribution Hn,d(x) as follows. For each i ∈ [d]:

1. Choose qi ∈R {1, 2, . . . , log n} uniformly at random.

2. Choose a uniform random interval Ii in Zn of size 2qi such that xi ∈ Ii.

3. Choose a uniform random ci ∈R Ii \ {xi}.

4. Set ai = min(xi, ci) and bi = max(xi, ci).

Output H =
∏d

i=1{ai, bi}. When n and d are clear from context we will abbreviate H(x) =

Hn,d(x).

The random walk distribution in a hypercube H is defined as follows.

Definition 5.2.10 (Hypercube Walk Distribution). For a hypercube H =
∏d

i=1{ai, bi}, a

point x ∈ H, and a walk length τ , we define the upward random walk distribution UH,τ (x)

over points y ∈ H as follows.

1. Pick a uniform random subset R ⊆ [d] of τ coordinates.

2. Generate y as follows. For every r ∈ [d], if r ∈ R and xr = ar, set yr = br. Else, set

yr = xr.
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Analogously, the downward random walk distribution DH,τ (x) is defined precisely as above,

but instead in step 2 if r ∈ R and xr = br, we set yr = ar, and otherwise yr = xr.

We observe that the following walk distributions are equivalent and defer the proof to

the appendix Section 5.8.1.

Fact 5.2.11. The following three distributions over pairs (x,y) ∈ [n]d×[n]d are all equivalent.

1. x ∈R [n]d, y ∼ Uτ (x).

2. H ∼ H, x ∈R H, y ∼ UH,τ (x).

3. x ∈R [n]d, H ∼ H(x), y ∼ UH,τ (x).

The analogous three distributions defined using downward random walks are also equivalent.

It is also convenient to define the shift distribution for hypercubes.

Definition 5.2.12 (Shift Distributions for Hypercube Walks). Given a hypercube H, the

up-shift distribution from x ∈ H, denoted USH,τ (x) is the distribution of x′ − x, where

x′ ∼ UH,τ (x). The down-shift distribution from y ∈ H, denoted DSH,τ (y) is the distribution

of y − y′, where y′ ∼ DSH,τ (y).

5.2.3 Influence and Persistence

We define the following notion of influence for our random walk distribution Definition 5.1.1.

Definition 5.2.13. The total and negative influences of f : [n]d → {0, 1} are defined as

follows.

• Ĩf = Ex∈[n]d
[
d · Py∼U1(x)[f(x) ̸= f(y)]

]
• Ĩ−f = Ex∈[n]d

[
d · Py∼U1(x)[f(x) > f(y)]

]
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The probability of the tester (Alg. 1) finding a violation in step (2b) when τ = 1 is

precisely Ĩ−f /d. Recall the definition of the distribution H in Definition 5.2.8. For brevity,

for a hypercube H =
∏d

i=1{ai, bi} sampled from H, we abbreviate IH := If |H and I−H :=

I−f |H . That is, if f(x) = 1, then IH(x) is the number of coordinates i for which xi = ai,

and f(x1, . . . ,xi−1, bi,xi+1, . . . ,xd) = 0, and if f(x) = 0, then IH(x) = 0. Then, IH =

Ex∈H[IH(x)]. The definition is analogous for I−H.

Claim 5.2.14. Ĩf = EH∼H [IH] and Ĩ−f = EH∼H
[
I−H
]
.

Proof. By Fact 5.2.11, the distribution (x ∈R [n]d,y ∼ U1(x)) is equivalent to first sampling

H ∼ H, then sampling (x ∈R H,y ∼ UH,1(x)). Recalling Definition 5.2.10, observe that

Py∼UH,1(x)[f(x) ̸= f(y)] = IH(x)/d. Putting these observations together yields

Ĩf = Ex∈[n]d
[
d · Py∼U1(x)[f(x) ̸= f(y)]

]
= EH∼HEx∈H [IH(x)] = EH∼H[IH]

An analogous argument proves the statement for negative influence.

The following claim states that if the normal influence is (very) large, then so is the

negative influence. This is a simple generalization of, and indeed easily follows from, Theorem

9.1 in [KMS18]. The proof can be found in Section 5.8.2.

Claim 5.2.15. If Ĩf > 9
√
d, then Ĩ−f >

√
d.

Next, we define the notion of persistent points. This is similar to that in [KMS18] with

a parameterization that we need for our purpose.

Definition 5.2.16. Given a point x ∈ [n]d, a walk length τ , and a parameter β ∈ (0, 1), we

say that x is (τ, β)-up-persistent if

Py∼Uτ (x)[f(y) ̸= f(x)] ≤ β.

Similarly, x is called (τ, β)-down-persistent if the above bound holds when y is drawn from

the downward walk distribution, Dτ (x). If both bounds hold, then we call x (τ, β)-persistent.
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The following claim upper bounds the fraction of non-persistent points. This is a gener-

alization of Lemma 9.3 in [KMS18]. The proof is deferred to Section 5.8.2.

Claim 5.2.17. If Ĩf ≤ 9
√
d, then the fraction of vertices that are not (τ, β)-persistent is at

most Cper
τ

β
√
d
where Cper is a universal constant.

5.2.4 The Middle Layers, Typical Points, and Walk Reversibility

All proofs in this section are deferred to Section 5.8.3.

Definition 5.2.18. In a hypercube {0, 1}d, the c-middle layers consist of all points with

Hamming weight in the range [d/2 ±
√

4cd log(d/ε)]. Given a d-dimensional hypercube H,

we let Hc ⊆ H denote the c-middle layers of H.

We state a bound on the number of points in the hypercube which lie in the middle

layers. This follows from a standard Chernoff bound argument.

Claim 5.2.19. For a d-dimensional hypercube H and c ≥ 1, we have |Hc| ≥ (1− (ε/d)c) ·2d.

We now define the notion of typical points in [n]d. Recall the distribution Hn,d (Defini-

tion 5.2.8) over random sub-hypercubes in [n]d and the distribution Hn,d(x) (Definition 5.2.8)

over random sub-hypercubes in [n]d that contain x. A point x is c-typical if for most sub-

hypercubes containing x, the point x is present in their c-middle layers.

Definition 5.2.20 (Typical Points). Given c ≥ 1, a point x ∈ [n]d is called c-typical if

PH∼H(x) [x ∈ Hc] ≥ 1− (ε/d)5.

Claim 5.2.21 (Most Points are Typical). For any ε ∈ (0, 1) and c ≥ 6,

Px∈R[n]d [x is c-typical] ≥ 1− (ε/d)c−5.
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Intuitively, a short random walk from a typical point will always lead to point that is

almost as typical. This is formalized as follows.

Claim 5.2.22 (Translations of Typical Points). Suppose x ∈ [n]d is c-typical. Then for a

walk length τ ≤
√
d, every point x′ ∈ supp(Uτ (x)) ∪ supp(Dτ (x)) is (c+ τ√

d
)-typical.

Recall the three equivalent ways of expressing the walk distribution in Fact 5.2.11. We

define the random walk probabilities only on points in the middle layers. This setup allows

for the approximate reversibility of Lemma5.2.24.

Definition 5.2.23. Consider two vertices x ≺ x′ ∈ [n]d and a walk length τ . We define

px,τ (x
′) = EH∼H(x)

[
1 (x ∈ H100 ∧ x′ ∈ H100) · Pz∼UH,τ (x)[z = x′]

]
(5.1)

to be the probability of reaching x′ by a random walk from x, only counting the contribution

when the random walk is taken on a hypercube that contains x and x′ in the 100-middle

layers. We analogously define px′,τ (x) using the downward random walk distribution in H.

Consider x ≺ x′ are two points in the middle layers. The following lemma asserts that

the probability of reaching from x to x′ via an upward walk of length≪
√
d is similar to the

probability of reaching from x′ to x via downward walk of the same length.

Lemma 5.2.24 (Reversibility Lemma). For any points x ≺ x′ ∈ [n]d and walk length

ℓ ≤
√
d/ log5(d/ε), we have

px,ℓ(x
′) = (1± log−3 d)px′,ℓ(x).

5.3 Red Edges, Blue Edges, and Nice Subgraphs

We now set the stage to prove Theorem 5.1.4. The first definition is that of mostly-zero-below

points. These are points from which a downward random walk (Definition 5.1.1) leads to a

point where the function evaluates to 0 with high probability.
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Definition 5.3.1. A point z is called ℓ-mostly-zero-below, or ℓ-mzb, if Pz′∼Dℓ(z)[f(z
′) =

0] ≥ 0.9.

To appreciate the utility of ℓ-mzb points, consider the following scenario. Suppose x is a

point with f(x) = 1 and is (ℓ, β)-down-persistent (Definition 5.2.16) for some small β. Next

suppose an upward random walk from x reaches an ℓ-mzb point z. Then, we claim that Step

4 of Alg. 1 would succeed with constant probability in finding a violated edge. An ℓ-length

downward walk from x, due to down-persistence, would lead to a x′ with f(x′) = 1 with

probability at least 1−β. The same ℓ-length downward walk from z would lead to a z′ with

f(z′) = 0 with ≥ 0.9 probability, since z is mostly-zero-below. Since (x, z) are comparable,

so would be (x′, z′). By a union bound, (x′, z′) is a violation with probability at least 0.9−β.

The next definition describes edges (x,y) of the violation subgraph most of whose internal

vertices lead to mzb-points via an upward random walk. Uncreatively, we call such edges

red. Recall that I(x,y) = {z : x ⪯ z ⪯ y} denotes the closed interval of points from x to y.

Definition 5.3.2. A violated edge (x,y) is called/colored red for walk length ℓ if

Pz∈I(x,y)Pz′∼Uℓ(z)[z
′ is ℓ-mzb] ≥ 0.01.

When ℓ is clear by context, we call the edge red.

There may be no ℓ-mzb points for the lengths we choose, that is, a downward walk from

any point leads to a point where the function evaluates to 1. In that case, Step 3 of Alg. 1 is

poised to succeed; for any violating edge (x,y), if we start from y then the downward walk

should give a violation. This motivates the next definition which recognizes violated edges

(x,y) most of whose internal vertices lead to points where the function evaluates to 1 via a

downward random walk. We call such edges blue.

Definition 5.3.3. A violated edge (x,y) is called/colored blue for walk length ℓ if

Pz∈I(x,y)Pz′∼Dℓ(z)[f(z
′) = 1] ≥ 0.01.
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When ℓ is clear by context, we simply call the edge blue.

We note that a violating edge (x,y) may be both red and blue, or perhaps more problemat-

ically, neither red nor blue. One of the key lemmas we prove is that we can get our hands

on a violation subgraph with sufficiently many colored edges. If we have our hands on a

large violation subgraph G with few red edges (but has some other properties), then we can

find another comparable sized violation subgraph H all of whose edges are blue, and whose

maximum degrees are bounded by those in G. The precise statement is given below. We

defer the proof of this lemma to Section 5.6.

Lemma 5.3.4 (Red/Blue Lemma). Let G(X,Y , E) be a violation subgraph and 1 ≤ ℓ ≤
√
d/ log5(d/ε) be a walk length such that the following hold.

1. At most half the edges are red for walk length ℓ.

2. All vertices in X ∪ Y are (ℓ, log−5 d)-up-persistent.

3. All vertices in X ∪ Y are 99-typical.

Then there exists another violation subgraph H(L,R, E ′) such that

1. All edges are blue for walk length ℓ and m(H) ≥ m(G)/7.

2. Γ(L) ≤ Γ(X) and Γ(R) ≤ Γ(Y ).

3. D(L) ≤ D(X) and D(R) ≤ D(Y ).

The next two definitions capture certain “nice” violation subgraphs consisting of either

red or blue edges. In Section 5.4, we show that if either of these subgraphs exist then we

can prove the tester works with the desired probability. In Section 5.5 we show that one of

these subgraphs must exist. Recall, ΦH(x) is the thresholded degree of x in the subgraph H

and δ > (log log nd)−1 is fixed (Remark 5.2.7).

Definition 5.3.5 ((σ, τ)-nice red violation subgraph). Given a parameter σ ∈ (0, 1) and a

walk length τ , a violation subgraph H(A,B, E) is called a (σ, τ)-nice red violation subgraph

if the following hold.
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(a) All edges in H are red for walk length τ − 1.

(b) All vertices in A are (τ − 1, 0.6)-down-persistent.

(c) σΦH(x) ≤ d1/2 for all x ∈ A.

(d) σ
∑

x∈A ΦH(x) ≥ ε2 · nd · d−O(δ).

(e) d1/2−O(δ) ≥ τ ≥ σ · d1/2−O(δ).

The first two conditions dictate that the subgraph is nice with respect to the length

of the walk. In particular, the edges are red with respect to this length and furthermore

the 1-vertices are down-persistent. As explained before the definition of red edges, this

property is crucial for the success of Step 4 of Alg. 1. The fourth condition says that the

total thresholded degree of the 1-vertices in H is large. I.e. for an average vertex x ∈ A,

there will be many coordinates i for which there is an i-edge in H incident to x. The third

condition says that the max thresholded degree of vertices in A is not too large and so the

total thresholded degree from the fourth condition must be somewhat spread amongst the

vertices in A. The final condition shows that the length of the walk is large compared to σ.

Note, if σ = Θ(1) and the third bullet point’s right hand side was 1 instead of
√
d, we would

be in the case of a large matching of violated edges, which was the “simple case” discussed

in Section 2.4.1.

The next definition is the analogous case of blue edges. When this type of subgraph

exists we argue that Step 3 of Alg. 1 succeeds. Note that Step 3 is the downward path

test (without a shift) and so we don’t need a persistence property like condition (b) in the

previous definition. This definition has the same conditions on the thresholded degree as the

previous definition, but with respect to the 0-vertices of the subgraph.

Definition 5.3.6 ((σ, τ)-nice blue violation subgraph). Given a parameter σ ∈ (0, 1) and a

walk length τ , a violation subgraph H(A,B, E) is called a (σ, τ)-nice blue violation subgraph

if the following hold.
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(a) All edges in H are blue for walk length τ − 1.

(b) σΦH(y) ≤ d1/2 for all y ∈ B.

(c) σ
∑

y∈B ΦH(y) ≥ ε2 · nd · d−O(δ).

(d) d1/2−O(δ) ≥ τ ≥ σ · d1/2−O(δ).

The following lemma captures the utility of the above definitions. It’s proof can be found

in Section 5.4.

Lemma 5.3.7 (Nice Subgraphs and Random Walks). Suppose for a power of two τ ≥ 2,

there exists a (σ, τ)-nice red subgraph or a (σ, τ)-nice blue subgraph. Then Alg. 1 finds a

violating pair, and thus rejects f , with probability at least ε2 · d−(1/2+O(δ)).

The following lemma shows that one of the two nice subgraphs always exists. It’s proof can

be found in Section 5.5.

Lemma 5.3.8 (Existence of nice subgraphs). Let n, ε−1 ≤ poly(d). Suppose f : [n]d → {0, 1}

is ε-far from monotone and Ĩf ≤ 9
√
d. Let δ > 1

log lognd
be a parameter. There exists

0 < σ1 ≤ σ2 < 1, a violation subgraph H(A,B, E), and a power of two τ ≥ 2, such that

either H is a (σ1, τ)-nice red subgraph or a (σ2, τ)-nice blue subgraph.

5.4 Tester Analysis

In this section we prove Theorem 5.1.4. First, in Section 5.4.1 we prove Lemma5.3.7 which

is the main tester analysis. Then in Section 5.4.2 we combine Lemma5.3.7, Lemma5.3.8

(which will be proven in Section 5.5), and Claim 5.2.15 to prove Theorem 5.1.4.

5.4.1 Main Analysis: Proof of Lemma5.3.7

There are two cases depending on whether we have a nice red subgraph or a nice blue

subgraph. In Case 1, Step 4 of Alg. 1 proves the lemma while in Case 2, Step 3 of Alg. 1
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proves the lemma. The proofs are similar, but we provide both for completeness.

5.4.1.1 Case 1: H is a (σ, τ)-nice red subgraph

Since τ is a power of 2, the tester in Alg. 1 chooses it with probability log−1 d. Thus, in the

rest of the analysis we will condition on this event.

Given x ∈ A, let Cx ⊆ [d] denote the set of coordinates for which x has an outgoing

edge in H. Note |Cx| = ΦH(x). Recall the upward path + downward shift test described

in Step 4 of Alg. 1 and the walk distribution Uτ−1(x) defined in Definition 5.1.1. We first

lower bound the probability that x ∈ A and R ∩ Cx ̸= ∅ where x is chosen uniformly by

the tester and R ⊆ [d] is a random set of τ coordinates. Let E1 denote this event. The main

calculation is to lower bound the probability of this event as follows.

P[E1] =
1

nd

∑
x∈A

P[R ∩ Cx ̸= ∅] ≥
1

nd

∑
x∈A

[
1−

(
1− |Cx|

d

)τ ]
≥ 1

nd

∑
x∈A

[
1− exp

(
−τ |Cx|

d

)]

The RHS can only decrease if we replace τ with its lower bound (Definition 5.3.5, (e))

of σ · d1/2−O(δ). Also, observe that σd1/2−O(δ)|Cx|
d

= σΦH(x)

d1/2+O(δ) ≤ 1 using our upper bound,

σΦH(x) ≤ d1/2 (Definition 5.3.5, (c)). Now, using e−x ≤ 1 − x
2
for x ≤ 1, the exponential

term in the RHS is at most 1− σΦH(x)

2d1/2+O(δ) , yielding

P[E1] ≥
σ

2d1/2+O(δ)
· 1
nd

∑
x∈A

ΦH(x) ≥︸︷︷︸
(Definition 5.3.5, (d))

ε2

d1/2+O(δ)
(5.2)

The event E1 asserts that the tester has chosen a point x ∈ A and there is at least one

r ∈ R for which there exists a red edge (x,x + aer) ∈ E for some integer a > 0 in the

subgraph H. Fix the smallest such r ∈ R ∩ Cx and the corresponding edge in H.

Recall the random walk process in Definition 5.1.1. We define the following good events.

• E2: Step (2a) chooses qr satisfying: if a ≤ n/4, then 2qr ∈ [2a, 4a]; if a > n/4, then

2qr = n.
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• E3: Step (2b) chooses the interval Ir ⊇ [xr,xr + a].

• E4: Step (2c) chooses cr uniformly3 from [xr,xr + a].

• E5: y is (τ − 1)-mostly-zero-below as per Definition 5.3.1.

• E6: f(y − s) = 0 for s chosen in Step 4 of Alg. 1 from DSτ−1(x).

• E7: f(x− s) = 1 for s chosen in Step 4 of Alg. 1 from DSτ−1(x).

Firstly, note that P[E2] = log−1 n for both cases of the edge length, a. Now, suppose

a ≤ n/4. Then, P[E3 | E2] ≥ 1/2 by the condition qr ≥ 2a and P[E4 | E2, E3] ≥ 1/4 by the

condition qr ≤ 4a. If a > n/4, then P[E3 | E2] = 1, since in this case Ir = [n] and again

P[E4 | E2, E3] ≥ 1/4 since [xr,xr + a] is at least a fourth of the entire line, [n].

Now, since the edge (x,x + aer) is red (Definition 5.3.2) for walk length τ − 1, we have

P[E5 | E4] ≥ 0.01.

Since y is (τ − 1)-mostly-zero-below, if we sample s′ from DSτ−1(y) we get f(y− s′) = 0

with probability ≥ 0.9. Now note that DSτ−1(y) and DSτ−1(x) differ only when the set R ⊆

[d] chosen in Definition 5.1.1 contains a coordinate in supp(y− x). Since |supp(y− x)| ≤ τ ,

|R| ≤ τ , and τ = o(
√
d), we have PR[R ∩ supp(y − x) ̸= ∅] ≤ τ 2/d = o(1). Therefore, when

s is drawn from DSτ−1(x), we get f(y− s) = 0 with probability ≥ 0.9(1− o(1)) ≥ 0.8. That

is, P[E6 | E5] ≥ 0.8.

Finally, all points inA are (τ−1, 0.6)-down-persistent (Definition 5.2.16) and so P[E7 | x ∈

A] ≥ 0.4.

Now, let’s put everything together. The final success probability of the tester is at least

3We point out the following minor technicality in our presentation. From Definition 5.1.1, note that cr
is chosen from Ir \ {xr} and so technically we will never have cr = xr. However, note that Step 4 of Alg. 1
also runs the upward path + downward shift tester using walk length τ − 1 and this is equivalent to setting
cr = xr in this analysis, so that the first step of the walk is of length 0. Thus, it is sound in this analysis to
think of cr as uniformly chosen from Ir and we make this simplification for ease of reading.
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P[E6 ∧ E7], which by a union bound and the reasoning above, is at least

(1− P[¬E6 | E5]− P[¬E7 | x ∈ A]) · P

[
5∧

i=1

Ei

]

≥ (1− 0.2− 0.6) · ε2

d1/2+O(δ)
· 1

log n
· 1
2
· 1
4
· 1

100
≥ ε2

d1/2+O(δ)

where in the last inequality we used n ≤ poly(d). This completes the proof when the nice

subgraph is red.

5.4.1.2 Case 2: H is a (σ, τ)-nice blue subgraph

As in Case 1, since τ is a power of 2, the tester in Alg. 1 chooses it with probability log−1 d.

Thus, in the rest of the analysis we will condition on this event. Given y ∈ B, let Cy ⊆ [d]

denote the set of coordinates for which y has an incoming edge in H. Note |Cy| = ΦH(y).

Recall the downward path tester described in Step 3 of Alg. 1 and the walk distribution

Dτ−1(y) defined in Definition 5.1.1. We first lower bound the probability that y ∈ B and

R ∩ Cy ̸= ∅ where y is chosen uniformly by the tester and R ⊆ [d] is a random set of τ

coordinates. Let E1 denote this event. The main calculation is to lower bound the probability

of this event as follows.

P[E1] =
1

nd

∑
y∈B

P[R ∩ Cy ̸= ∅] ≥
1

nd

∑
y∈B

[
1−

(
1− |Cy|

d

)τ ]
≥ 1

nd

∑
y∈B

[
1− exp

(
−τ |Cy|

d

)]

As in Case 1, the RHS can only decrease if we replace τ with its lower bound (Definition 5.3.6,

(d)) of σ · d1/2−O(δ), and a similar argument as in Case 1 gives

P[E1] ≥
σ

d1/2+O(δ)
· 1
nd

∑
y∈B

ΦH(y) ≥︸︷︷︸
(Definition 5.3.6, (c))

ε2

d1/2+O(δ)
(5.3)

As in Case 1, the event E1 says that the tester has chosen a point y ∈ B and there exists

r ∈ R such that there exists an edge (y − aer,y) ∈ E in the subgraph H for some integer
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a > 0. Fix the smallest r ∈ R ∩ Cy and the corresponding edge in H. Now define the

following good events for the remainder of the tester analysis.

• E2: Step (2a) chooses qr satisfying: if a ≤ n/4, then 2qr ∈ [2a, 4a]; if a > n/4, then

2qr = n.

• E3: Step (2b) chooses the interval Ir ⊇ [yr − a,yr].

• E4: Step (2c) chooses cr uniformly4 from [yr − a,yr].

• E5: f(x) = 1.

The final success probability of the tester is at least P[∧5i=1Ei]. Firstly, note that P[E2] =

log−1 n for both cases of the edge length, a. Suppose a ≤ n/4. Then, P[E3 | E2] ≥ 1/2 by

the condition qr ≥ 2a and P[E4 | E2, E3] ≥ 1/4 by the condition qr ≤ 4a. If a > n/4, then

P[E3 | E2] = 1, since in this case Ir = [n] and again P[E4 | E2, E3] ≥ 1/4.

Finally, since the edge (y − aer,y) is blue for walk length τ − 1, by definition (Defini-

tion 5.3.3) we have P[E5 | E4] ≥ 0.01. Putting everything together, we have

P

[
5∧

i=1

Ei

]
≥ ε2

d1/2+O(δ)
· 1

log n
· 1
2
· 1
4
· 1

100
≥ ε2

d1/2+O(δ)

where in the last step we used n ≤ poly(d) and this completes the proof when the nice

subgraph is blue. Together, the cases complete the proof of Lemma 5.3.7.

5.4.2 Tying it Together: Proof of Theorem5.1.4

Suppose f : [n]d → {0, 1} is ε-far from being monotone. Recall the definitions of Ĩf , Ĩ
−
f in

Definition 5.2.13. By Claim 5.2.15, if Ĩf > 9
√
d, then Ĩ−f >

√
d and so the tester (Alg. 1)

4The same minor technicality arises here as in the previous subsection. We will never have cr = yr as
per Definition 5.1.1, but Step 3 of Alg. 1 also runs the downward path tester with walk length τ − 1 and this
is equivalent to setting cr = yr in this analysis. Thus, it is again sound in this analysis to think of cr being
uniformly chosen from Ir.
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finds a violation in step (2) when τ = 1 with probability Ω(d−1/2). Thus, we will assume

Ĩf ≤ 9
√
d and so we may invoke Lemma5.3.8 which gives us either a nice red subgraph or a

nice blue subgraph. Lemma 5.3.7 then proves that Alg. 1 finds a violating pair and rejects

with probability at least ε2 · d−(1/2+O(δ)). This proves Theorem 5.1.4.

5.5 Finding Nice Subgraphs

In this section we prove Lemma 5.3.8 which we restate below.

Lemma 5.5.1 (Existence of nice subgraphs). Let n, ε−1 ≤ poly(d). Suppose f : [n]d → {0, 1}

is ε-far from monotone and Ĩf ≤ 9
√
d. Let δ > 1

log lognd
be a parameter. There exists

0 < σ1 ≤ σ2 < 1, a violation subgraph H(A,B, E), and a power of two τ ≥ 2, such that

either H is a (σ1, τ)-nice red subgraph or a (σ2, τ)-nice blue subgraph.

The proof proceeds over multiple steps and constitutes a key technical contribution of

the paper. We give a sketch of what is forthcoming.

• In Section 5.5.1 we describe the construction of a seed regular violation subgraph G.

This uses the directed isoperimetric result Theorem 5.2.4 proved in [BCS23b] and a

“peeling argument” not unlike that present in [KMS18]. At the end of this section, we

will fix the parameters σ1, σ2 and the walk length τ . In particular, the length τ will be

defined by the larger side of this violating bipartite graph.

• In Section 5.5.2, we obtain a regular violating graph H that has persistence prop-

erties with respect to the walk length τ . In [KMS18] and [BCS23b], one obtained

this violating graph by simply deleting the non-persistent points from the seed viola-

tion subgraph. In our case, since we choose the walk length depending on the larger

side, we need to be careful. We use the idea of “translating violation subgraphs” on

G (repeatedly) to find a different violation subgraph H with the desired persistence

properties.
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• In Section 5.5.3, we use the graph H to obtain either a nice red subgraph H1 or a nice

blue subgraph H2. If most of the edges in H were red, then a simple surgery on H

itself gives us H1. On the other hand, if H has few red edges (but has the persistence

properties as guaranteed), then we apply the red/blue lemma (Lemma 5.3.4) to obtain

the desired nice blue-subgraph H2. The proof of the red/blue lemma, which is present

in Section 5.6, uses the translating violation subgraphs idea as well.

Throughout, we assume f : [n]d → {0, 1} is a function which is ε-far from being monotone,

Ĩf ≤ 9
√
d and n, ε−1 ≤ poly(d). In particular, we fix a constant c so that nd ≤ dc. We also

fix a δ ≈ 1
log lognd

= o(1).

5.5.1 Peeling Argument to Obtain Seed Regular Violation Subgraph

Recall the definition of the Talagrand objective (Definition 5.2.5) TΦχ(G) of a violation sub-

graph G = (X,Y , E). Let G0 denote the violation subgraph formed by all violating edges in

the fully augmented hypergrid. Theorem 1.4 in [BCS23b] (paraphrased in this paper as The-

orem 5.2.4) is that TΦχ(G0) = Ω(εnd/ log n). Also recall the definitions in Definition 5.2.2.

The following lemma asserts that there exists a subgraph of G0 whose Talagrand objective

is not much lower, but satisfies certain regularity properties.

Lemma 5.5.2 (Seed Regular Violation Subgraph). There exists a violation subgraph G(X,Y , E)

satisfying the following properties.

(a) TΦχ(G) ≥ ε · d−cδ · nd.

(b) m(G) ≥ d−3cδ max(|X|Φ(X)Γ(X), |Y |Φ(Y )Γ(Y )).

(c) All vertices in X ∪ Y are 98-typical.

(d) |X|, |Y | ≥ ε
d1/2+cδ · nd.

Let us make a few comments before proving the above lemma. Condition (a) shows that

the Talagrand objective degrades only by a do(1) factor. Condition (b) shows that the graph
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is nearly regular since the RHS term without the d−o(1) term is the maximum value of m(G).

This is because Φ(X)Γ(X) is an upper bound on the maximum degree of any vertex x ∈X.

Indeed, if one can prove a stronger lemma which replaces the do(1) terms in (a) and (b) by

polylog(d)’s, then the remainder of our analysis could be easily modified to give a Õ(ε−2
√
d)

tester.

We need a few tools to prove this lemma. Our first claim is a consequence of the subad-

ditivity of the square root function.

Claim 5.5.3. Consider a partition of (the edges of) a violation subgraph G into H1, H2, . . . , Hk.

Then
∑

j≤k TΦχ(Hj) ≥ TΦχ(G).

Proof. Let χj denote the coloring of the subgraph Hj that obtains the minimum TΦχ(Hj).

Since the H1, . . . , Hk form a partition, we can aggregate the colors to get a coloring χ of G.

Consider any z ∈X ∪Y . Let ΦHj ,χj
(z) be the thresholded degree of z, restricted to the

edges colored by χj. By the subadditivity of the square root function,
∑

j≤k
√

ΦHj ,χj
(z) ≥√∑

j≤k ΦHj ,χj
(z). Observe that thresholded degrees are also subadditive, so

∑
j≤k ΦHj ,χj

(z) ≥

ΦG,χ(z). Hence,

∑
j≤k

TΦχ(Hj) =
∑
j≤k

∑
z∈X∪Y

√
ΦHj ,χj

(z) =
∑

z∈X∪Y

∑
j≤k

√
ΦHj ,χj

(z)

≥
∑

z∈X∪Y

√
ΦG,χ(z) ≥ TΦχ(G). (5.4)

Remark 5.5.4. The proof of Claim 5.5.3 crucially uses the fact that in the definition of

TΦχ(), we minimize over all possible colorings χ’s of the edges. In particular, if we had

defined TΦχ(G) only with respect to the all ones or the all zeros coloring, then the above proof

fails. In the remainder of the paper, we will only be using the χ ≡ 1 or χ ≡ 0 colorings,

and the curious reader may wonder why we need the definition of TΦχ(G) to minimize over

all colorings. This is exactly the point where we need it. We make this remark because the
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“uncolored” isoperimetric theorem is much easier to prove than the “colored” version, but

the colored/robust version is essential for the tester analysis.

Our next step is a simple bucketing argument.

Claim 5.5.5. Consider a violation subgraph G = (X,Y , E). Both of the following are true.

1. There exists a subgraph G′ = (X ′,Y ′, E ′) of G such that TΦχ(G
′) ≥ δ2TΦχ(G) and

m(G′) ≥ (nd)−δ|X ′|Φ(X ′)Γ(X ′).

2. There exists a subgraph G′ = (X ′,Y ′, E ′) of G such that TΦχ(G
′) ≥ δ2TΦχ(G) and

m(G′) ≥ (nd)−δ|Y ′|Φ(Y ′)Γ(Y ′).

Proof. We prove item (1) and the proof of item (2) is analogous.

For convenience, we assume that δ is the reciprocal of a natural number. For each

x ∈X, we bucket the incident edges as follows. First, for each a ∈ [1/δ], let Sa be the set of

dimensions i, such that the i-degree of x is in the range [n(a−1)δ, naδ). Note that S1, . . . , S1/δ

forms a partition of the set of coordinates, [d]. Now, for each a, b ∈ [1/δ], let the (a, b) edge

bucket of x, denoted Ea,b,x, be defined as follows. If |Sa| ∈ [d(b−1)δ, dbδ), then Ea,b,x is the

set of all edges incident to x along dimensions in Sa. If |Sa| /∈ [d(b−1)δ, dbδ), then Ea,b,x = ∅.

Observe {Ea,b,x : a, b ∈ [1/δ]} partitions the edges incident to x.

Now, let Ga,b denote the subgraph formed by the edge set ∪x∈XEa,b,x. Let Xa,b be the set

of vertices inX with non-zero degree in Ga,b. Observe that Φ(Xa,b) ≤ dbδ and Γ(Xa,b) ≤ naδ.

Moreover, the degree of each x ∈ Xa,b is at least d
(b−1)δ × n(a−1)δ ≥ (nd)−δΦ(Xa,b)Γ(Xa,b).

Hence, m(Ga,b) ≥ (nd)−δ|Xa,b|Φ(Xa,b)Γ(Xa,b).

Finally, by construction, theGa,b subgraphs partition the edges ofG. Hence, by Claim 5.5.3

we have
∑

a,b∈[1/δ] TΦχ(Ga,b) ≥ TΦχ(G). By averaging, there exists some choice of a, b such

that TΦχ(Ga,b) ≥ δ2TΦχ(G). This gives the desired subgraph G′.

Claim 5.5.5, part 1 above gives the regularity condition only with respect to X, and

part 2 gives the analogous guarantee with respect to Y , but the trouble is in getting both
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simultaneously. We do an iterative construction using Claim 5.5.5 to get the simultaneous

guarantee.

Proof. (part (a) and (b) of Lemma5.5.2) By the robust directed Talagrand theorem for

hypergrids (Theorem 5.2.4), there is a violation subgraph G0 = (X0,Y0, E0) such that

TΦχ(G0) = Ω(εnd/ log n). We construct a series of subgraphs G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr as

follows.

Let i ≥ 1. If i is odd, we apply item (1) of Claim 5.5.5 to Gi−1 to get Gi(Xi,Yi, Ei) with

the regularity condition on Xi. If i is even, we apply item (2) of Claim 5.5.5 to Gi−1 to get

Gi(Xi,Yi, Ei) with the regularity condition on Yi. If i > 1 and m(Gi) ≥ (nd)−δm(Gi−1),

then we terminate the series. By Claim 5.5.5, the series satisfies the following three properties

for all i ≥ 1.

• TΦχ(Gi) = Ω(δ2iεnd/ log n).

• If i is odd,m(Gi) ≥ (nd)−δ|Xi|Φ(Xi)Γ(Xi). If i is even,m(Gi) ≥ (nd)−δ|Yi|Φ(Yi)Γ(Yi).

• If the series has not terminated by step i, then m(Gi) < (nd)−δm(Gi−1).

The first two statements hold by the guarantees of Claim 5.5.5 and the fact that TΦχ(G0) =

Ω(εnd/ log n). The third statement holds simply by the termination condition for the se-

quence. The trivial bound on the number of edges is m(G0) ≤ nd ·nd. The third bullet point

yields m(Gi) < (nd)−iδ · nd · nd, if the series has not terminated by step i.

Claim 5.5.6. The series terminates in at most 3/δ steps.

Proof. Suppose not. Noting that m(Gi) ≥ TΦχ(Gi) (Observation 5.2.6), we get the following

chain of inequalities using the properties of our subgraph graph G3/δ.

(nd)−(3/δ)·δ ·nd ·nd > m(Gi) ≥ TΦχ(Gi) = Ω(δ6/δεnd/ log n) =⇒ (nd)−2 = Ω(δ6/δε/ log n)
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Note that we may assume ε ≥ 1/d and so Cε/ log n ≥ (nd)−1 for any constant C. Thus we

have (nd)−1 ≥ δ6/δ. Given that δ > 1/ log log nd, this inequality is a contradiction.

By the previous claim the series terminates in some r ≤ 3/δ steps, producingGr(Xr,Yr, Er),

which we claim has the desired properties to prove conditions (a) and (b) of Lemma5.5.2.

Since r ≤ 3/δ, TΦχ(Gr) = Ω(δ6/δεnd/ log n). Note that since δ > 1/ log log nd, we have

δ6/δ > (log log nd)−
6
δ = (nd)−

6
δ
· log log lognd

lognd > (nd)−δ
2

> (nd)−δ · log n > d−cδ log n

where the second to last step holds because 6 log log lognd
log d

≪
(

1
log lognd

)3
< δ3. The last

inequality used nd ≤ dc. This proves condition (a). Towards proving condition (b), note

that Cδ6/δ/ log n ≥ (nd)−δ for any constant C.

Let’s assume without loss of generality that r is even. Thus we havem(Gr) ≥ (nd)−δ|Yr|Φ(Yr)Γ(Yr)

by the second bullet point above. Next, since the series terminated at step r, we have

m(Gr) ≥ (nd)−δm(Gr−1) ≥ (nd)−2δ|Xr−1|Φ(Xr−1)Γ(Xr−1) ≥ (nd)−2δ|Xr|Φ(Xr)Γ(Xr)

where the second inequality is again by the second bullet point above and the fact that i− 1

is odd and the third inequality is simply because Gr is a subgraph of Gr−1. Again using

nd ≤ dc, we have (nd)−δ ≥ d−cδ and so we get that Gr satisfies conditions (a) and (b) of

Lemma5.5.2.

Proof. (Conditions (c) and (d) Lemma5.5.2) To obtain condition (c), we simply remove

the non-typical points. Recall the definition of c-typical points (Definition 5.2.20). By

Claim 5.2.21, the number of points that are not 98-typical is at most (ε/d)93nd. Thus,

removing all such vertices can decrease TΦχ(G) by at most (ε/d)93nd ·
√
d which is negligible

compared to the RHS in condition (a). Thus, we remove all such vertices from G and

henceforth assume that all of X ∪ Y is 98-typical.

Condition (d) follows from condition (a). Consider the constant coloring χ ≡ 1 and
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observe that

|X|
√
d ≥ Talχ≡1(G) ≥ Tal(G) ≥ ε · d−cδ · nd.

where the first inequality follows from the trivial observation that the maximum ΦG(x) can

be is d. Using the coloring χ ≡ 0 proves the same lower bound for |Y |.

5.5.1.1 Choice of the walk length

We end this section by specifying what the parameters σ1, σ2 and τ are going to be in Lemma 5.3.8.

We now make the assumption |X| ≤ |Y |. Given Remark 5.1.3, this is without loss of gener-

ality; this fact would be true either in f or in g, and running steps 2, 3, 5 on f is equivalent

to running steps 2, 3, 4 on g. The violation subgraphs for f and g are isomorphic. Then,

σ1 = σX :=
|X|
nd

and σ2 = σY :=
|Y |
nd

and set τ to be the unique power of two such that

1

2
⌈σY · d1/2−7cδ⌉ < τ − 1 ≤ ⌈σY · d1/2−7cδ⌉.

We conclude the subsection by establishing the following upper bound on the number of

vertices which are not up-persistent.

Claim 5.5.7. We may assume that

• the number of vertices x ∈X where f(x) = 1 that are not (τ−1, log−5 d)-up-persistent

is at most d−6cδ · |X|, and

• the number of vertices y ∈ Y where f(y) = 0 that are not (τ −1, log−5 d)-up-persistent

is at most d−6cδ · |Y |.

Proof. The statement for points where f(x) = 1 is implied by item (4) of Lemma5.5.2, for

otherwise the tester succeeds with the desired probability when it runs the upward path
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tester with walk length τ − 1 (step (2) of Alg. 1).

Now we prove the statement for points where f(y) = 0. By Claim 5.2.17, the total number

of (τ − 1, log−5 d)-non-persistent vertices is at most Cperτ · log5 d · 1√
d
· nd ≤ σY · d−6cδ · nd,

where we have simply used log5 d≪ dcδ and our definition of τ .

5.5.2 Using ‘Persist-or-Blow-up’ Lemma to obtain Down-Persistence

Lemma 5.5.2 provides a seed violation subgraph which has a large Talagrand objective and

has regularity properties. Claim 5.5.7 shows that we may assume these vertices are up-

persistent with respect to walk length of τ −1. However, we may not have down persistence.

In particular, it could be |X| ≪ |Y | and if we try to apply Claim 5.2.17 and remove all nodes

from X which are not (τ − 1, 0.6)-down-persistent, we may end up removing everything. To

obtain a subgraph with down-persistence properties, we need to apply a translation procedure

which is encapsulated in the lemma below. The proof of the lemma is deferred to Section 5.7.

Lemma 5.5.8 (Persist-or-Blow-up Lemma). Consider a violation subgraph G = (X,Y , E)

such that all vertices in G are c-typical where c ≤ 99 and (ℓ, log−5 d)-up persistent where

1 ≤ ℓ ≤
√
d/ log5(d/ε). Then, there exists a violation subgraph G′ = (X ′,Y ′, E ′) where all

vertices are (c+ ℓ√
d
)-typical and satisfying one of the following conditions.

1. Down-persistent case:

(a) All vertices in X ′ are (ℓ, 0.6)-down persistent.

(b) m(G′) ≥ m(G)/ log5 d.

(c) D(X ′) ≤ D(X), and ∀i ∈ [d],Γi(X
′) ≤ Γi(X)

(d) D(Y ′) ≤ D(Y ), and ∀i ∈ [d], Γi(Y
′) ≤ Γi(Y ).

2. Blow-up case:

(a) m(G′) ≥ 2(1− 3 log−3 d) ·m(G).

(b) D(X ′) ≤ D(X), and ∀i ∈ [d],Γi(X
′) ≤ Γi(X)
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(c) D(Y ′) ≤ 2D(Y ), and ∀i ∈ [d], Γi(Y
′) ≤ 2Γi(Y ).

That is, the application of the above lemma either gives the violation subgraph we need,

or it gives us a violation subgraph with around double the edges. In the remainder of this

section we use Lemma5.5.8 and the graph G(X,Y , E) derived in the previous section to

prove the following lemma.

Lemma 5.5.9 (Down-Persistent Violation Subgraph). Let G(X,Y , E) be the subgraph as-

serted in Lemma 5.5.2. There exists a natural number s ≤ log3 d and a violation subgraph

H(A,B, E) with the following properties.

1. m(H) ≥ 2s m(G)

log7 d
.

2. Γ(A) ≤ Γ(X) and Γ(B) ≤ 2sΓ(Y ).

3. D(A) ≤ D(X) and D(B) ≤ 2sD(Y ).

4. All vertices in A ∪B are (τ − 1, log−5 d)-up-persistent and 99-typical.

5. All vertices in A are (τ − 1, 0.6)-down-persistent.

Proof. We use Lemma5.5.8 to define the following process generating a sequence of viola-

tion subgraphs. The initial graph is G0 = (X0,Y0, E0) which is the seed regular violation

subgraph obtained from Lemma5.5.2.

For each i ≥ 1:

1. Obtain G′i−1 by removing all vertices from Xi−1∪Yi−1 that are not (τ −1, log−5 d)-

up-persistent.

2. Invoke Lemma5.5.8 with walk length τ − 1 on G′i−1 to obtain Gi = (Xi,Yi, Ei).

3. If Gi satisfies the down persistence condition of Lemma5.5.8 then halt and return

Gi.
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4. If Gi satisfies the blowup condition of Lemma5.5.8, then continue.

By Lemma5.5.8, if the process does not halt on step i, then we have the following

recurrences.

• m(Gi) ≥ 2(1− 3 log−3 d) ·m(G′i−1).

• D(Xi) ≤ D(Xi−1), Γ(Xi) ≤ Γ(Xi−1), D(Yi) ≤ 2D(Yi−1), Γ(Yi) ≤ 2Γ(Yi−1).

Furthermore, we have the following claim that bounds the number of edges lost in step

(1).

Claim 5.5.10. For every i ≥ 1, we have m(G′i−1) ≥ m(Gi−1)− d−2cδ · 2i−1 ·m(G).

Proof. By Claim 5.5.7, the number of vertices we remove from Xi−1 in step (1) is at most

d−6cδ · |X| and the number of vertices we remove from Yi−1 in step (1) is at most d−6cδ · |Y |.

The number of edges we remove by deleting these vertices from Yi−1 is at most

d−6cδ|Y |D(Yi−1) ≤ d−6cδ2i−1|Y |D(Y ) ≤ d−3cδ2i−1m(G) (5.5)

where in the second inequality we used D(Y ) ≤ Φ(Y )Γ(Y ) and the regularity property on

G (item (2) of Lemma5.5.2).

An analogous argument bounds the number of removed edges when we delete non-

persistent vertices fromXi−1. Thus the total number of edges removed is at most d−2cδ2i−1m(G).

Claim 5.5.11. If i ≤ log3 d and the process has not halted by step i, then m(Gi) ≥

Ω(2im(G)).
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Proof. For brevity, let α = 2(1− 3 log−3 d) and β = d−2cδm(G). Using the above bounds, we

get the recurrence

m(Gi) ≥ α ·m(G′i−1) ≥ α(m(Gi−1)− β2i−1).

Expanding this recurrence yields m(Gi) ≥ αim(G) − β
∑i

j=1 α
j · 2i−j. Observe that the

subtracted term can be bounded as

β
i∑

j=1

αj · 2i−j = d−2cδ2im(G)
i∑

j=1

(1− 3 log−3 d)j ≤ d−cδ2im(G)

simply using the fact that i ≤ log3 d≪ dcδ. The first term is

αim(G) = 2i(1− 3 log−3 d)im(G) ≥ C · 2im(G)

for some constant C. Combining the above two bounds completes the proof.

Claim 5.5.12. The above process halts in s ≤ log3 d iterations.

Proof. Suppose that the above process has not halted by step i = log3 d. By the previous

claim, the number of edges in Gi is at least C · 2im(G) = C · dlog2 dm(G) for some constant

C. By Observation 5.2.6, note that m(G) ≥ TΦχ(G) and thus is ≥ ε · d−cδ · nd by item (1)

of Lemma5.5.2. Thus, the number of edges in Gi is at least C · ε · dlog2 d−cδnd. Note that

the total number of edges in the fully augmented hypergrid is at most nd · nd. Moreover,

recall that we are assuming nd ≤ dc and ε ≥ d−1/2. Therefore, m(Gi) ≫ nd · nd and this is

a contradiction.

By Claim 5.5.12 and Lemma5.5.8, the process halts in some s ≤ log3 d number of steps

producing Gs(Xs,Ys, Es) with the following properties.

• m(Gs) ≥ 2s · m(G)

log6 d
.

• All vertices in Xs are (τ − 1, 0.6)-down-persistent.
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• Γ(Xs) ≤ Γ(X) and Γ(Ys) ≤ 2sΓ(Y ).

• D(Xs) ≤ D(X) and D(Ys) ≤ 2sD(Y ).

Note that by Lemma5.5.8 and (c) of Lemma5.5.2, all vertices in G1, . . . , Gs are (98 + sτ√
d
)-

typical. Moreover, by our choice of τ , we have sτ ≪
√
d and so all vertices in G1, . . . , Gs are

99-typical.

One last time, we remove all vertices in Xs∪Ys that are not (τ−1, log−5 d)-up-persistent

and obtain our final graph H(A,B, E). Using a similar argument made above in eq. (5.5),

the number of edges that are removed by deleting the non-persistent vertices from Ys is at

most

d−6cδ|Y |D(Ys) ≤ 2sd−6cδ|Y |D(Y ) ≤ 2sd−3cδm(G) ≤ d−3cδm(Gs) log
6 d ≤ d−2cδm(Gs)

and an analogous argument bounds the number of edges lost when we remove the non-

persistent vertices from Xs. Thus we have m(H) ≥ m(Gs)(1 − d−cδ) ≥ 2s m(G)

log7 d
and this

completes the proof of Lemma5.5.9.

5.5.3 Using Red/Blue Lemma to Obtain the Final Red/Blue Nice Subgraph

In this section, we prove Lemma5.3.8 using the violation subgraph H(A,B, E) obtained in

the previous section (Lemma5.5.9) and the red/blue lemma, Lemma5.3.4. We split into two

cases depending on how many edges in H are red.

5.5.3.1 Case 1: At least half the edges of H are red

In this case, we consider the graph H1 by simply removing all the non-red edges. We claim

that H1 makes progress towards a (σ1, τ)-nice red subgraph (Definition 5.3.5). Condition (a)

holds by definition. Condition (b) is satisfied due to Lemma 5.5.9, condition 5). Condition

(e) is satisfied because τ − 1 ≥ 0.5σY d
0.5−7cδ and σY ≥ σX = σ1. We need to establish
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condition (c) and (d). That is, we need to establish

(c) σX · ΦH(x) ≤
√
d for all x ∈ A

(d) σX

∑
x∈A ΦH(x) ≥ ε2 · nd · d−6cδ

Let A′ ⊆ A be the vertices x ∈ A which have ΦH(x) >
√
d

σX
. If |A′| ≥ d−5cδ|X|, then simply

consider H1(A
′,B, E ′) by deleting all vertices not in A′ from A. Conditions (a), (b), (e)

still hold, and (c) holds by design. Furthermore,

∑
x∈A′

ΦH1(x) ≥ d−5cδ|X| ·
√
d

σX

⇒ σX

∑
x∈A′

ΦH1(x) ≥ d−5cδ · ε

d1/2+cδ
· nd ·

√
d = ε · nd · d−6cδ

where we used Lemma 5.5.2, part (d) for the lower bound on |X|. Note that this implies

something slightly stronger than condition (d) above (the exponent of ε is 1).

Therefore, we may assume |A′| ≤ d−5cδ|X|. In this case, let H1 = (A \A′,B, E ′) where

we simply remove the A′ vertices. The number of edges this destroys is at most

d−5cδD(A)|X| ≤ d−5cδD(X)|X| ≤ d−2cδm(G) ≤ d−cδm(H)

where in the second inequality we used D(X) ≤ Φ(X)Γ(X) and the regularity property

(Lemma 5.5.2, property (b)) of G. Thus, the number of edges we’ve discarded is negligible,

and condition (c) holds. In particular, the number of edges in H1 is at least m(H)/2. We

now prove condition (d) also holds.

Claim 5.5.13. σX

∑
x∈A\A′ ΦH1(x) ≥ ε2 · nd · d−6cδ.

Proof. For any x ∈ A \ A′, we have ΦH1(x) ≥
D(x)
Γ(x)

and thus
∑

x∈A\A′ ΦH(x) ≥ m(H)/2
Γ(A)

.
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Since Γ(A) ≤ Γ(X) we have

∑
x∈A\A′

ΦH(x) ≥
m(H)

2Γ(A)
≥ 2s ·m(G)

2Γ(X) log7 d
≥ d−3cδ|X|Φ(X)Γ(X)

2Γ(X) log7 d

≥ d−4cδ|X|Φ(X) ≥ d−4cδ
∑
x∈X

ΦG(x). (5.6)

where in the second inequality we used (P1) to lower bound the number of edges in H

with that of G. In the third inequality we used the regularity property (property (b)

of Lemma 5.5.2), in the fourth we used dcδ ≫ 2 log7 d for large enough d, and the fifth

inequality uses the trivial upper bound Φ(X) ≥ ΦG(x) for all x ∈X.

Now we apply the fact (Lemma 5.5.2, condition 1) that TΦχ(G) is large. Using the

coloring χ ≡ 1 for edges in G, we get

∑
x∈X

√
ΦG(x) ≥ TΦχ(G) ≥ ε · d−cδ · nd ⇒ Ex∈X [

√
ΦG(x)] ≥

ε · d−cδ

σX

Jensen’s inequality gives

Ex∈X [ΦG(x)] ≥
ε2 · d−2cδ

σ2
X

⇒ σ2
X

|X|
∑
x∈X

ΦG(x) ≥ ε2d−2cδ ⇒ σX

∑
x∈X

ΦG(x) ≥ ε2d−2cδnd

Plugging into eq. (5.6) proves the claim.

5.5.3.2 Case 2: At most half the edges of H are red

In this case we invoke the Red/Blue lemma, Lemma5.3.4 to obtain a violation subgraph

H2 = (L,R, E ′) with the following key properties.

(P1) All edges are blue and m(H) ≥ 2s m(G)

7 log7 d
.

(P2) Γ(R) ≤ Γ(B) ≤ 2s · Γ(Y ).

(P3) D(R) ≤ D(B) ≤ 2s ·D(Y ).
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We claim that Hs makes progress towards a (σ2, τ)-nice blue subgraph (Definition 5.3.6).

Condition (a) holds by definition. Condition (d) is satisfied because τ ≥ 0.5σY d
0.5−7cδ and

σY = σ2. We need to establish condition (b) and (c). That is, we need to establish

(b) σY · ΦH(y) ≤
√
d for all x ∈ R

(c) σY

∑
y∈R ΦH(y) ≥ ε2 · nd · d−6cδ

As in Case 1, we begin by removing low degree vertices. Let R′ ⊆ R be the vertices y ∈ R

which have ΦH(y) >
√
d

σY
. If |R′| ≥ d−5cδ|Y |, then we would just focus on H2(R

′,L, E ′) and

this would satisfy (b) and (c) for a very similar reason as in Case 1. And so, we may assume

|R′| is smaller than d−5cδ|Y | and we define H2(L,R \R′, E ′), and this leads to a negligible

decrease in the number of edges. Condition (b) holds by design, and the proof that condition

(c) holds is similar. We provide it for completeness.

Claim 5.5.14. σY

∑
y∈R\R′ ΦH2(y) ≥ ε2 · nd · d−6cδ.

Proof. For any y ∈ R \ R′, we have ΦH2(y) ≥
D(y)
Γ(y)

and thus
∑

y∈R\R′ ΦH2(y) ≥
m(H)/2
Γ(R)

.

Since Γ(R) ≤ 2s · Γ(Y ) we have

∑
y∈R\R′

ΦH(y) ≥
m(H)

2Γ(R)
≥ 2s ·m(G)

2s · 14Γ(Y ) log7 d
≥ d−3cδ|Y |Φ(Y )Γ(Y )

14Γ(Y ) log7 d

≥ d−4cδ|Y |Φ(Y ) ≥ d−4cδ
∑
y∈Y

ΦG(y). (5.7)

where in the second inequality we used Lemma 5.5.9, part 1, to lower bound the number

of edges in H with that of G, the original seed graph from Lemma 5.5.2. In the third

inequality we used the regularity property (property 2 of Lemma 5.5.2), in the fourth we

used dcδ ≫ 14 log7 d for large enough d, and the fifth inequality uses the trivial upper bound

Φ(Y ) ≥ ΦG(y) for all y ∈ Y .

The rest of the proof is the same as Case 1 except we apply the coloring χ ≡ 0 for edges

in G. We omit this very similar calculation.
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These two cases conclude the proof of Lemma 5.3.8. All that remains is to prove the Red/Blue

lemma, Lemma 5.3.4 and the Persist-or-Blow-up lemma, Lemma 5.5.8. We prove these in

the subsequent two sections, and both of these use the translation of violation subgraphs

idea.

5.6 Proof of the Red/Blue Lemma, Lemma5.3.4

Let us recall the red/blue lemma.

Lemma 5.6.1 (Red/Blue Lemma). Let G(X,Y , E) be a violation subgraph and 1 ≤ ℓ ≤
√
d/ log5(d/ε) be a walk length such that the following hold.

1. At most half the edges are red for walk length ℓ.

2. All vertices in X ∪ Y are (ℓ, log−5 d)-up-persistent.

3. All vertices in X ∪ Y are 99-typical.

Then there exists another violation subgraph H(L,R, E ′) such that

1. All edges are blue for walk length ℓ and m(H) ≥ m(G)/7.

2. Γ(L) ≤ Γ(X) and Γ(R) ≤ Γ(Y ).

3. D(L) ≤ D(X) and D(R) ≤ D(Y ).

Proof. We first recall the definition of px,ℓ(x
′) in Definition 5.2.23. For a fixed x, consider

the process of sampling a hypercube H ∼ H(x) and then sampling z ∼ UH,ℓ(x). Recall

from Fact 5.2.11 that this is one of three equivalent ways of expressing our random walk

distribution. Given x,x′, ℓ, we have

px,ℓ(x
′) = P [x,x′ ∈ H100 and z = x′] .

We use these values to set up a flow problem as follows.

Recall the definition of red and blue edges (Definition 5.3.2 and Definition 5.3.3). Let B
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denote the set of all edges in the fully augmented hypergrid that are blue for walk length

ℓ. For every non-red edge (x,y) of G and every shift s ∈ supp(USℓ(x)), if the edge e =

(x+ s,y + s) is blue, then we put px,ℓ(x+ s) units of flow on e.

Claim 5.6.2. Every non-red edge of G inserts at least 0.95 units of flow in B.

Proof. Fix a non-red edge (x,y), and let i denote its dimension. Generate H ∼ H(x) and

s ∼ USH,ℓ(x). Note that it is equivalent to directly sample s ∼ USℓ(x). We then consider the

random edge e = (x+ s,y+ s). We set x′ = x+ s and y′ = y+ s. Let us define the following

series of events. (i) E1: si = 0. (ii) E2: f(x′) = 1. (iii) E3: f(y′) = 0. (iv) E4: at least half

of I(x′,y′) is not ℓ-mostly-zero-below, (v) E5: x,x′ ∈ H100. We will show that whenever E2,

E3, and E4 occur, the edge (x′,y′) is blue by definition. Therefore, recalling the definition of

px,ℓ(x
′), the edge (x,y) inserts at least P[∧5j=1Ej] units of flow in B. Subsequently, we will

show that the probability of this event is at least 0.95 and this will prove the claim.

Since ∥s∥0 ≤ ℓ ≤
√
d, we have P[E1] ≥ 1 − 1/

√
d. Since x is (ℓ, log−5 d)-up-persistent,

P[E2] ≥ 1 − log−5 d. Note that conditioned in E1, the distribution on y + s is identical to

Uℓ(y). Thus, since y is (ℓ, log−5 d)-up-persistentP[E3 | E1] ≥ 1− log−5 d. By a union bound

P[E1 ∧ E2 ∧ E3] ≥ 1− 3 log−5 d. (5.8)

To deal with E4, we bring in the non-redness of our edge (x,y). By definition,

Pz∈I(x,y)Pz′∼Uℓ(z)[z
′ is not ℓ-mzb] ≥ 0.99

In terms of shifts, we can express this bound as

Pz∈I(x,y)Ps∼USℓ(z)[z+ s is not ℓ-mzb] ≥ 0.99
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Since the probability of E1 is at least 1− o(1), we have

Pz∈I(x,y)Ps∼USℓ(z)[z+ s is not ℓ-mzb | E1] ≥ 0.98

Note that conditioned in E1, the distributions USℓ(z) and USℓ(x) are identical. Hence,

Ps∼USℓ(x)Pz∈I(x,y)[z+ s is not ℓ-mzb | E1] ≥ 0.98

Let Xs be the fraction of points in I(x + s,y + s) that are not ℓ-mzb. By linearity of

expectation, Es[Xs | E1] ≥ 0.98. Hence Es[1 − Xs | E1] ≤ 0.02 and by Markov’s inequality,

Ps[1−Xs > 0.5 | E1] ≤ 1/50. Hence, Ps[Xs ≥ 0.5 | E1] ≥ 49/50 = .98. Since P[E1] = 1−o(1),

we have P[E4] = Ps[Xs ≥ 0.5] ≥ 0.97.

Combining with eq. (5.8), we have P[∧4j=1Ej] ≥ 0.96. When ∧4j=1Ej occurs, the edge

(x′,y′) is a violated edge and at least half of I(x′,y′) is not ℓ-mzb. For z′ ∈ I(x′,y′) that is

not ℓ-mzb, by definition Pw∼Dℓ(z′)[f(w) = 1] ≥ 0.1. Hence,

Pz′∈RI(x′,y′)Pw∼Dℓ(z′)[f(w) = 1] ≥ 0.5× 0.1 ≥ 0.01

We conclude that (x′,y′) is blue, whenever ∧4j=1Ej occurs.

Stepping back, with probability at least 0.96 over the shift s ∼ USℓ(x), the edge (x +

s,y+s) is blue. Finally, since all points inX are 99-typical, we have P[x ∈ H99] ≥ 1−(ε/d)5,

and conditioned on this event we have x′ ∈ H100 since ℓ ≪
√
d. Together, we get P[E5] ≥

1 − 2(ε/d)5 ≥ 0.99. Thus, by a union bound P[∧5j=1Ej] ≥ 0.95 and so the amount of flow

that (x,y) inserts is at least 0.95.

Let E ′ ⊆ B denote the set of blue edges which receive non-zero flow. Let H(L,R, E ′)

denote the bipartite graph on these edges. Since ℓ ≤
√
d/ log5(d/ε), by the reversibility

Lemma5.2.24, px,ℓ(x
′) ≤ 2px′,ℓ(x) for any x ∈ X, x′ ∈ L and py,ℓ(y

′) ≤ 2py′,ℓ(y) for any

y ∈ Y , y′ ∈ R. Using this bound we’re able to establish the desired capacity constraints on
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the flow as follows.

Claim 5.6.3 (Edge Congestion). The total flow on an edge (x′,y′) ∈ B is at most 2.

Proof. By construction, the total flow on an edge (x′,y′) is at most

∑
x∈X

px,ℓ(x
′) ≤ 2

∑
x∈X

px′,ℓ(x) ≤ 2

since
∑

x∈X px′,ℓ(x) ≤ 1.

Claim 5.6.4 (Vertex Congestion). The following hold.

1. The total amount of flow through a vertex x′ ∈ L is at most 2D(X).

2. The total amount of flow through a vertex y′ ∈ R is at most 2D(Y ).

3. For all i ∈ [d], the total amount of i-flow through a vertex x′ ∈ L is at most 2Γi(X).

4. For all i ∈ [d], the total amount of i-flow through a vertex y′ ∈ R is at most 2Γi(Y ).

Proof. The total flow through a vertex x′ ∈ L is at most

∑
(x,y)∈E

px,ℓ(x
′) ≤ D(X)

∑
x∈X

px,ℓ(x
′) (max degree of x ∈X is D(X))

≤ 2D(X)
∑
x∈[n]d

px′,ℓ(x) (since px,ℓ(x
′) ≤ 2px′,ℓ(x))

≤ 2D(X) (since
∑
x∈[n]d

px′,ℓ(x) ≤ 1)

and an analogous argument proves (2). For a coordinate i ∈ [d], let Ei ⊆ E denote the set
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of i-edges in G. The total i-flow through a vertex x′ ∈ L is at most

∑
(x,y)∈Ei

px(x
′) ≤ Γi(X)

∑
x∈X

px,ℓ(x
′) (max i-degree of x ∈X is Γi(X))

≤ 2Γi(X)
∑
x∈[n]d

px′,ℓ(x) (since px,ℓ(x
′) ≤ 2px′,ℓ(x))

≤ 2Γi(X) (since
∑
x∈[n]d

px′,ℓ(x) ≤ 1)

and an analogous argument proves (4).

By Claim 5.6.2 and the fact that at least half the edges in G are not red, the total amount

of flow is at least m(G)/3 and this flow satisfies the constraints listed in Claim 5.6.3 and

Claim 5.6.4. Thus, dividing by 2 yields a flow of value m(G)/6 satisfying the following.

1. The flow on every edge is at most 1.

2. The total flow through any vertex in L is at most D(X). The total i-flow through any

vertex in L is at most Γi(X).

3. The total flow through any vertex in R is at most D(Y ). The total i-flow through any

vertex in R is at most Γi(Y ).

By integrality of flow, there exists an integral flow of at least ⌊m(G)/6⌋ ≥ m(G)/7 units

satisfying the same capacity constraints. By item (1) above, the integral flow is a subgraph

containing at least m/7 edges and satisfying the desired constraints listed in the lemma

statement.

5.7 Proof of the ‘Persist-or-Blow-Up’ Lemma, Lemma5.5.8

Let us recall the ‘Persist-or-Blow-Up’ lemma.

Lemma 5.7.1 (Persist-or-Blow-up Lemma). Consider a violation subgraph G = (X,Y , E)
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such that all vertices in G are c-typical where c ≤ 99 and (ℓ, log−5 d)-up persistent where

1 ≤ ℓ ≤
√
d/ log5(d/ε). Then, there exists a violation subgraph G′ = (X ′,Y ′, E ′) where all

vertices are (c+ ℓ√
d
)-typical and satisfying one of the following conditions.

1. Down-persistent case:

(a) All vertices in X ′ are (ℓ, 0.6)-down persistent.

(b) m(G′) ≥ m(G)/ log5 d.

(c) D(X ′) ≤ D(X), and ∀i ∈ [d],Γi(X
′) ≤ Γi(X)

(d) D(Y ′) ≤ D(Y ), and ∀i ∈ [d], Γi(Y
′) ≤ Γi(Y ).

2. Blow-up case:

(a) m(G′) ≥ 2(1− 3 log−3 d) ·m(G).

(b) D(X ′) ≤ D(X), and ∀i ∈ [d],Γi(X
′) ≤ Γi(X)

(c) D(Y ′) ≤ 2D(Y ), and ∀i ∈ [d], Γi(Y
′) ≤ 2Γi(Y ).

We first recall the definition of px,ℓ(x
′) in Definition 5.2.23. For a fixed x, consider the process

of sampling a hypercube H ∼ H(x) and then sampling z ∼ UH,ℓ(x). Recall from Fact 5.2.11

that this is one of three equivalent ways of expressing our random walk distribution. Given

x,x′, ℓ, we have

px,ℓ(x
′) = P [x,x′ ∈ H100 and z = x′] .

We use these values to set up a flow problem as follows. For every edge (x,y) of G and

s ∈ supp(USℓ(x)), if e = (x+ s,y+ s) is a violation, then we put px(x+ s) units of flow on

e. The flow, denoted F , is supported on a violation subgraph G′ = (X ′,Y ′, E). Note that

by Claim 5.2.22, all vertices in G′ are (c+ ℓ√
d
)-typical.

Claim 5.7.2. Every edge of G inserts at least 1− log−4 d units of flow.

Proof. The proof of this claim is similar to that of Claim 5.6.2. Fix an edge (x,y) ∈ G and

let this be an i-edge. Generate H ∼ H(x) and a shift s ∼ USH,ℓ(x), and let x′ = x + s
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and y′ = y + x. Consider the events: (i) E1: si = 0, (ii) E2: f(x′) = 1, (iii) E3: f(y′) = 0,

(iv)E4: x,x′ ∈ H100. Note that the total flow inserted by (x,y) is at least P[∧4i=1Ei]. P[E1] ≥

1− 1/
√
d, since ∥s∥0 ≤ ℓ ≤

√
d. Since x,y are both (ℓ, log−5 d)-up-persistent and f(x) = 1,

f(y) = 0, we get P[E2],P[E3] ≥ 1 − 1
log5 d

. Finally, since x is 99-typical, with probability

1− (ε/d)5 we have x ∈ H99 which implies x′ ∈ H100 since ℓ≪
√
d. Thus by a union bound,

P[∧5i=1Ei] ≥ 1− 2 log−5 d− 1/
√
d− (ε/d)5 ≥ 1− log−4 d.

Claim 5.7.3 (Edge Congestion). The flow on any edge (x′,y′) is at most
∑

x∈X px,ℓ(x
′) ≤

(1 + log−3 d).

Proof. Consider an edge (x′,y′), which receives flow from some (x,y) in G. Flow is inserted

by translations of edges, so y − x = y′ − x′. Hence, for a given x, there exists a unique y

such that (x,y) inserts flow on (x′,y′). By construction, the flow inserted is px,ℓ(x
′). Thus,

the total flow that (x′,y′) receives is at most
∑

x∈X px,τ (x
′). The RHS bound holds by

Lemma5.2.24 and observing that
∑

x∈X px′,ℓ(x) ≤ 1.

Claim 5.7.4 (Vertex Congestion). The following hold.

1. For any x′ ∈X ′, the total flow on edges incident to x′ is at most

D(X)
∑
x∈X

px,ℓ(x
′) ≤ D(X)(1 + log−3 d).

2. For any x′ ∈X ′, the total i-flow on edges incident to x′ is at most

Γi(X)
∑
x∈X

px,ℓ(x
′) ≤ Γi(X)(1 + log−3 d).

3. For any y′ ∈ Y ′, the total flow on edges incident to y′ is at most

D(Y )
∑
y∈Y

py,ℓ(y
′) ≤ D(Y )(1 + log−3 d).
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4. For any y′ ∈ Y ′, the total i-flow on edges incident to y′ is at most

Γi(Y )
∑
y∈Y

py,ℓ(y
′) ≤ Γi(Y )(1 + log−3 d).

Proof. Consider x′ ∈ X ′. All the i-flow inserted on edges incident to x′ comes from i-edges

(x,y) in G. Every i-edge in G inserts flow on at most a single edge incident to x′ and there

are at most Γi(X) i-edges incident to any vertex x ∈X. Hence, the total i-flow inserted by

a x ∈ X through x′ is at most Γi(X) · px,τ (x′). Thus, summing over all x ∈ X and using

the reversibility Lemma5.2.24 shows that the total i-flow on edges incident to x′ is at most

Γi(X)
∑
x∈X

px,τ (x
′) ≤ (1 + log−3 d)Γi(X)

∑
x∈X

px′,τ (x) ≤ (1 + log−3 d)Γi(X)

and this proves (2). The proof of (1) is identical, withD(X) replacing Γi(X), and statements

(3) and (4) have analogous proofs.

We now come to a key definition in our analysis.

Definition 5.7.5 (Heavy Vertices). A vertex x′ ∈ X ′ is called heavy if it satisfies any of

the following.

1. There is an edge (x′,y′) receiving at least 1/2 units of flow.

2. The total flow on edges incident to x′ is at least D(X)/2.

3. There exists i ∈ [d] such that the total i-flow on edges incident to x′ is at least Γi(X)/2.

We refer to the flow passing through heavy vertices as the heavy flow.

Claim 5.7.6. All heavy vertices are (ℓ, 0.6)-down persistent.

Proof. Consider a heavy vertex x′. That is, x′ satisfies one of the three conditions listed in

Definition 5.7.5. Suppose it satisfies the first condition: there is some violated edge (x′,y′)

receiving at least 1/2 units of flow. By Claim 5.7.3, the total flow on (x′,y′) is at most
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∑
x∈X px,ℓ(x

′). Hence,
∑

x∈X px,ℓ(x
′) ≥ 1/2. In fact, observe that we can prove the exact

same inequality if x′ satisfies the second or third condition of Definition 5.7.5, by using the

upper bound given by the LHS of items (1) and (2), respectively, of Claim 5.7.4. Now,

applying the reversibility Lemma5.2.24, we have (1 + log−3 d)
∑

x∈X px′,ℓ(x) ≥ 1/2. Note

that f(x) = 1 for all x ∈X. Hence,

Pz∼Dℓ(x′)[f(z) = 1] ≥
∑
x∈X

px′,ℓ(x) ≥
1

2(1 + log−3 d)
≥ 0.4 (5.9)

and so x′ is (ℓ, 0.6)-down-persistent.

We are now set up to complete the proof. For convenience, we use m to denote m(G). We

refer to the flow on edges incident to heavy vertices as the heavy flow. We letGH(XH ,YH , EH)

denote the bipartite graph of all edges incident to heavy vertices, that is, XH is the set of

all heavy vertices. We refer to the flow on edges incident to non-heavy vertices as the light

flow. We let GL(XL,YL, EL) denote the bipartite graph of all edges incident to non-heavy

vertices, that is, XL = X ′ \XH is the set of all non-heavy vertices. We split into two cases

based on the amount of heavy flow.

5.7.1 Case 1: The total amount of heavy flow is at least m
log4 d

Note that by Claim 5.7.6, all vertices in XH are (ℓ, 0.6)-down persistent.

By Claim 5.7.3 and Claim 5.7.4, the heavy flow satisfies the following capacity constraints.

1. The flow on every edge is at most (1 + log−3 d).

2. For every x′ ∈XH , the total flow on edges incident to x′ is at most D(X)(1+ log−3 d)

and the total i-flow on edges incident to x′ is at most Γi(X)(1 + log−3 d).

3. For every y′ ∈ YH , the total flow on edges incident to y′ is at most D(Y )(1 + log−3 d)

and the total i-flow on edges incident to y′ is at most Γi(Y )(1 + log−3 d).
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Let us divide the flow by (1+ log−3 d). Thus, we now have at least m
(1+log−3 d) log4 d

≥ m
log5 d

units of flow satisfying the following capacity constraints.

1. The flow on every edge is at most one.

2. For every x′ ∈ XH , the total flow on edges incident to x′ is at most D(X) and the

total i-flow on edges incident to x′ is at most Γi(X).

3. For every y′ ∈ YH , the total flow on edges incident to y′ is at most D(Y ) and the total

i-flow on edges incident to y′ is at most Γi(Y ).

By integrality of flow, there is an integral flow of at least m
log5 d

units satisfying the above

constraints. By condition (1) above, this integral flow is a subgraph of GH with at least

m
log5 d

edges, and satisfying the degree bounds listed in (1c) and (1d) of the lemma statement.

Thus, this subgraph satisfies case (1) of the lemma statement.

5.7.2 Case 2: The total amount of heavy flow is at most m
log4 d

By Claim 5.7.2, the total flow is at least m(1 − log−4 d) units. Thus, after removing the

heavy flow, the remaining light flow is at least m(1− 2 log−4 d) units. The light flow satisfies

the following capacity constraints.

1. Every edge has at most 1/2 units of flow.

2. For every x′ ∈ XL, the total flow on edges incident to x′ is at most D(X)/2 and the

total i-flow on edges incident to x′ is at most Γi(X)/2.

3. For every y′ ∈ YL, the total flow on edges incident to y′ is at most (1 + log−3 d)D(Y )

and the total i-flow on edges incident to y′ is at most (1 + log−3 d)Γi(Y ).

Items (1) and (2) are simply by Definition 5.7.5 since all vertices in XL are not heavy. Item

(3) follows from RHS bound on the vertex congestion in Claim 5.7.4.
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We now by rescale the flow by multiplying it by 2
1+log−3 d

. We now have 2m (1−2 log−4 d)

1+log−3 d
≥

2m(1− 2 log−3 d) units of flow with the following capacity constraints:

1. Every edge has at most one unit of flow.

2. For every x′ ∈ XL, the total flow on edges incident to x′ is at most D(X) and the

total i-flow on edges incident to x′ is at most Γi(X).

3. For every y′ ∈ YL, the total flow on edges incident to y′ is at most 2D(Y ) and the

total i-flow on edges incident to y′ is at most 2Γi(Y ).

By integrality of flow, we obtain an integral flow of at least ⌊2m(1−3 log−4 d)⌋ ≥ 2m(1−

3 log−3 d) units satisfying the same constraints listed above. In particular, the flow on any

edge is at most one and so the integral flow is a violation subgraph with at least 2m(1 −

3 log−3 d) edges and satisfying the degree bounds listed in case (2) of the lemma statement.

5.8 Deferred Proofs

5.8.1 Equivalence of the Walk Distributions: Proof of Fact 5.2.11

Proof. Fix a pair (u, v) in [n]d where u ⪯ v. We will show that the probability of sampling

this pair from each distribution is the same. Let S = {i ∈ [d] : vi > ui}. Note that uj = vj

for all j ̸= S. The probability of sampling the pair (u, v) from the distribution described in

item (1) of Fact 5.2.11 is computed as follows.

Px∈R[n]d, y∼Uτ (x)[(x,y) = (u, v)]

=
1

nd

∑
R⊇S : |R|=τ

(
d

τ

)−1∏
i∈S

P[ci = vi | x = u]
∏

i∈R\S

P[ci ≤ ui | x = u]. (5.10)

Recall the distribution of qi, Ii, ci from Definition 5.1.1. Consider i ∈ S and let di :=

min(vi− ui, n− (vi− ui)). Note that conditioned on qi, the total number of intervals Ii ∋ ui
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is 2qi and the number of such intervals that contain vi is max(0, 2qi − di). Thus, we have

i ∈ S =⇒ P[ci = vi | x = u] = Eqi

[
PIi [vi ∈ Ii]Pci∈Ii [ci = vi | vi ∈ Ii]

]
=

1

log n

∑
q : 2qi≥di

2qi − di
2qi

· 1

2qi − 1
=

1

2
· Eqi

[
max(0, 2qi − di)(

2qi

2

) ]
. (5.11)

For an interval Ii ∋ ui, let Ii,ui
denote the prefix of Ii preceding (not including) ui. Note

that conditioned on an interval Ii ∋ ui, the probability of choosing ci ≤ ui is |Ii,ui
|/(2qi − 1).

Thus, we have

i ∈ R \ S =⇒ P[ci ≤ ui | x = u] = Eqi

[
1

2qi − 1
· EIi∋ui

[|Ii,ui
|]
]

(5.12)

We now compute the probability of sampling (u, v) from the distribution described in item

(2) of Fact 5.2.11. Recall the distribution of qi, Ii, ai, bi from Definition 5.2.8. For i ∈ [d], let

Ei be the event that ai = ui or bi = ui. Note that

P[Ei] = Eqi [PIi [Ii ∋ ui]Pai<bi∈Ii [ui ∈ {ai, bi} | ui ∈ Ii]] = Eqi

[
2qi

n
· 2

2qi

]
=

2

n

Let Eu denote the event that x = u. We have

P[Eu] =
d∏

i=1

P[Ei] ·
1

2d
=

(
2

n

)d
1

2d
=

1

nd
. (5.13)

Let Ev denote the event that y = v. We have

P [Ev | Eu] =
∑

R⊇S : |R|=τ

(
d

τ

)−1∏
i∈S

P[ai = ui and bi = vi | Eu] ·
∏

i∈R\S

P[bi = ui | Eu] (5.14)

Fix an i ∈ S and recall di := min(vi − ui, n− (vi − ui)). We have

P[ai = ui and bi = vi | Eu] = P[ai = ui and bi = vi | Ei] =
P[ai = ui and bi = vi]

P[Ei]
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where the numerator is

P[ai = ui and bi = vi] = Eqi

[
PIi

[
Ii ⊇ [ui, vi]

]
·
(
2qi

2

)−1]
= Eqi

[
max(0, 2qi − di)

n ·
(
2qi

2

) ]

and so

i ∈ S =⇒ P[ai = ui and bi = vi | Eu] =
1

2
· Eqi

[
max(0, 2qi − di)(

2qi

2

) ]
(5.15)

which is equal to the probability computed in eq. (5.11).

Now fix an i ∈ R \ S. Recall the definition of Ii,ui
. We have

P[bi = ui | Eu] = P[bi = ui | Ei] =
P[bi = ui]

P[Ei]

where

P[bi = ui] = EqiEIi

[
1(ui ∈ Ii)

|Iui
|(

2qi

2

)]

= Eqi

[
1

n

∑
Ii∋ui

|Ii,ui
|
(
2qi

2

)−1]
=

2

n
Eqi

[
1

2qi−1
· EIi∋ui

[|Ii,ui
|]
]

and so recalling that P[Ei] = 2/n we have

i /∈ R \ S =⇒ P[bi = ui | Eu] = Eqi

[
1

2qi−1
· EIi∋ui

[|Ii,ui
|]
]

(5.16)

which is equal to the probability computed in eq. (5.12). Combining eq. (5.10), eq. (5.11),

eq. (5.12), eq. (5.13), eq. (5.14), eq. (5.15), eq. (5.16), we have

PH∼HPx∈RH, y∼UH,τ (x)[(x,y) = (u, v)] = P[Eu] · P[Ev | Eu] = Px∈R[n]d, y∼Uτ (x)[(x,y) = (u, v)]

and this proves that (1) and (2) of Fact 5.2.11 are equivalent.
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To show equivalence of (1) and (3), note that we only need to show that

PH∼H(u), y∼UH,τ (u)[y = v] = Py∼Uτ (u)[y = v] (5.17)

This is proven by an analogous calculation. The expression for Py∼Uτ (u)[y = v] is given

by dropping the 1
nd factor from eq. (5.10) and then plugging in the expressions obtained in

eq. (5.11) and eq. (5.12). The quantity PH∼H(u), y∼UH,τ (u)[y = v] is precisely P[Ev | Eu], and

an expression for this is obtained by eq. (5.14) and plugging in the expressions obtained in

eq. (5.15) and eq. (5.16). Thus, (1) and (3) are equivalent and this completes the proof.

5.8.2 Influence and Persistence Proofs

Claim 5.8.1. If Ĩf > 9
√
d, then Ĩ−f >

√
d.

Proof. Theorem 9.1 of [KMS18] asserts that for any H, if IH > 6
√
d, then I−H > IH/3.

(This holds for any Boolean hypercube function.) If Ĩf > 9
√
d, then by Claim 5.2.14,

EH[IH] > 9
√
d. Hence,

9
√
d < EH[IH] = P[IH ≤ 6

√
d] EH[IH|IH ≤ 6

√
d] + P[IH > 6

√
d] EH[IH|IH > 6

√
d]

< 6
√
d+ P[IH > 6

√
d]EH [3I

−
H|IH > 6

√
d] ≤ 6

√
d+ 3EH[I

−
H]

Hence, EH[I
−
H] >

√
d. By Claim 5.2.14, Ĩ−f >

√
d.

Claim 5.8.2. If Ĩf ≤ 9
√
d, then the fraction of vertices that are not (τ, β)-persistent is at

most Cper
τ

β
√
d
where Cper is a universal constant.

Proof. We will analyze the random walk using the distributions described in the first and

second bullet point of Fact 5.2.11 and leverage the analysis that [KMS18] use to prove their

Lemma 9.3. Let αup denote the fraction of vertices in the fully augmented hypergrid that
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are not (τ, β)-up-persistent. Using the definition of persistence and Fact 5.2.11, we have

αup · β < Px∈R[n]d, y∼Uτ (x) [f(x) ̸= f(z)] = EH∼H
[
Px∈RH, y∼UH,τ (x) [f(x) ̸= f(z)]

]
. (5.18)

Let ÛH,τ (x) denote the same distribution as UH,τ (x) except with the set R being a uar

subset of the 0-coordinates of x. I.e. ÛH,τ (x) is the non-lazy walk distribution on H.

Let x = x0,x1, . . . ,xτ = z be the τ steps taken on the walk sampled by UH,τ (x) and let

x = x̂0, x̂1, . . . , x̂τ = z be the τ steps taken on the walk sampled by ÛH,τ (x). For a fixed H

we have

Px∈RH, y∼UH,τ (x) [f(x) ̸= f(z)] ≤
τ−1∑
ℓ=0

P
[
f(xℓ) ̸= f(xℓ+1)

]
≤

τ−1∑
ℓ=0

P
[
f(x̂ℓ) ̸= f(x̂ℓ+1)

]
. (5.19)

The first inequality is by a union bound and the second inequality holds because the first

walk is lazy and the second is not. More precisely, we can couple the τ ′ ≤ τ steps of the

lazy-random walk where the point actually moves to the first τ ′ steps of the second non-lazy

walk, and the remaining τ − τ ′ terms of the non-lazy walk can only increase the RHS.

By Lemma 9.4 of [KMS18], the edge (x̂ℓ, x̂ℓ+1) is distributed approximately as a uniform

random edge inH. In particular, this implies P
[
f(x̂ℓ) ̸= f(x̂ℓ+1)

]
≤ C ·2IH/d for an absolute

constant C. (Note 2IH/d is the probability of a uniform random edge in H being influential.)

Putting eq. (5.18) and eq. (5.19) together yields αup ≤ 4Cτ
d
EH[IH] and an analogous argument

gives the same bound for αdown. Thus, by Claim 5.2.14 we have EH[IH] ≤ 9
√
d and the

fraction of (τ, β)-non-persistent vertices is at most 72Cτ
β
√
d
. Therefore, setting Cper := 72C

completes the proof.

5.8.3 Typical Points and Reversibility Proofs

Claim 5.8.3. For a d-dimensional hypercube H and c ≥ 1, we have |Hc| ≥ (1− (ε/d)c) · 2d.

Proof. Consider a uniform random point x in the hypercube. The Hamming weight ∥x∥1 is
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∑d
i=1 xi, where each xi is an iid unbiased Bernoulli. By Hoeffding’s theorem, P[

∣∣∣∥x∥1−d/2∣∣∣ ≥
t] ≤ 2 exp(−2t2/d). We set t =

√
4cd log(d/ε). The probability of not being in the c-middle

layers is at most

2 exp(−2t2/d) = 2 exp(−8c log(d/ε)) = 2(ε/d)8c ≤ (ε/d)c.

Hence, the probability of being in the c-middle layers is at least (1− (ε/d)c).

Lemma 5.8.4 (Most Points are Typical). For any ε ∈ (0, 1) and c ≥ 6,

Px∈R[n]d [x is c-typical] ≥ 1− (ε/d)c−5

Proof. Given x ∈ [n]d and a hypercube H ∋ x, let χ(x,H) = 1(x ∈ H \Hc). By Fact 5.2.11

and Claim 5.2.19, we have

Ex∈R[n]dEH∼H(x) [χ(x,H)] = EH∼HEx∈RH [χ(x,H)] ≤ (ε/d)c

Let us set qx := EH∼H(x)[χ(x,H)], so Ex[qx] ≤ (ε/d)c. By Markov’s inequality, Px[qx ≥

(ε/d)5] ≤ (ε/d)c−5. Note that when qx < (ε/d)5, x is c-typical. Hence, at least a (1 −

(ε/d)c−5)-fraction of points are c-typical.

Claim 5.8.5 (Translations of Typical Points). Suppose x ∈ [n]d is c-typical. Then for a

walk length τ ≤
√
d, every point x′ ∈ supp(Uτ (x)) ∪ supp(Dτ (x)) is (c+ τ√

d
)-typical.

Proof. We prove the claim for x′ ∈ supp(Uτ (x)). The argument for points in supp(Dτ (x))

is analogous. Let H be any hypercube containing x and x′ and let ∥x∥H, ∥x′∥H denote the

Hamming weight of these points in H. Observe that ∥x′∥H ≤ ∥x∥H + τ and so if x ∈ Hc,

then ∥x′∥H ≤ d/2 +
√
cd log d+ τ and since τ ≤

√
d, we have

√
cd log d+ τ ≤

√
cd log d+ τ

√
d log d =

√(
c+

τ√
d

)
d log d.
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To see that the first inequality holds, observe that by squaring both sides and rearranging

terms, it is equivalent to the inequality

τ 2 + 2τ
√
cd log d ≤ τ

√
d log d ⇐⇒ τ ≤

√
d(log d− 2

√
c log d)

which clearly holds by our upper bound on τ . Thus, if x ∈ Hc, then x′ ∈ Hc+ τ√
d
. Therefore,

the number of hypercubes H for which x′ ∈ Hc+ τ√
d
is at least the number of hypercubes H

for which x ∈ Hc. Therefore x′ is (c+ τ√
d
)-typical.

Lemma 5.8.6 (Reversibility Lemma). For any points x ≺ x′ ∈ [n]d and walk length ℓ ≤
√
d/ log5(d/ε), we have

px,ℓ(x
′) = (1± log−3 d)px′,ℓ(x).

Proof. If t := ∥x − x′∥0 > ℓ, then px,ℓ(x
′) = px′,ℓ(x) = 0. So assume t ≤ ℓ. Fix any

H containing x and x′ such that x,x′ ∈ H100 and let x and x′ denote the corresponding

hypercube (bit) representations of x,x′ in H. Let px,ℓ(x
′) = Pz∼UH,ℓ(x)[z = x′] and px′,ℓ(x) =

Pz∼DH,ℓ(x′)[z = x]. It suffices to show that px,ℓ(x
′) = (1± log−3 d)px′,ℓ(x).

Let S be the set of t coordinates where x and x′ differ. Let Z(x) be the set of zero

coordinates of the point x; analogously, define Z(x′). Recall that the directed upward walk

making ℓ steps might not flip ℓ coordinates. The process (recall Definition 5.2.10) picks a

uar set R of ℓ coordinates, and only flips the zero bits in x among R. Hence, an ℓ-length

walk leads from x to x′ iff R ∩ Z(x) = S.

Let the Hamming weight of x be represented as d/2+ ex, where ex denotes the “excess”.

Since x is in the 100-middle layers, |ex| ≤
√

400d log(d/ε).

The sets R that lead from x to y can be constructed by picking any ℓ− t coordinates in

Z(x) and choosing all remaining coordinates to be S. Hence,

px,ℓ(x
′) =

(
d/2+ex
ℓ−t

)(
d
ℓ

)
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Analogously, consider the downward ℓ step walks from x′. This walk leads to x iff

R ∩ Z(x′) = S. The sets R that lead from y to x can be constructed by picking any ℓ − t

coordinates in Z(x′) and choosing all remaining coordinates to be S. The size of Z(x′) is

precisely |Z(x)| − t = d/2− ex − t. Hence,

px′,ℓ(x) =

(
d/2−ex−t

ℓ−t

)(
d
ℓ

)
Taking the ratio,

px,ℓ(x
′)

px′,ℓ(x)
=

(
d/2+ex
ℓ−t

)(
d/2−ex−t

ℓ−t

) =

∏ℓ−t−1
i=0 (d/2 + ex − i)∏ℓ−t−1

i=0 (d/2− ex − t− i)
=

ℓ−t−1∏
i=0

d/2 + ex − i

d/2− ex − t− i

=
ℓ−t−1∏
i=0

(
1 +

2ex + t

d/2− ex − t− i

)

Recall that |ex| ≤
√

400d log(d/ε), t ≤ ℓ <
√
d/ log5(d/ε). For convenience, let b :=√

400d log(d/ε). So 2ex + t ≤ 3b. Also, d/2 − ex − t − i ≥ d/3 for all i < ℓ. Applying

these bounds,

px,ℓ(x
′)

px′,ℓ(x)
≤

ℓ−1∏
i=0

(
1 +

3b

d/3

)
≤ exp

(9ℓb
d

)
= exp

(√d ·√400d log(d/ε)

d log5(d/ε)

)
≤ 1 + log−3 d

An analogous calculation proves that
px,ℓ(x

′)

px′,ℓ(x)
≥ 1− log−3 d.
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Part II

Directed Isoperimetry and

Monotonicity Testing of Real-Valued

Functions
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CHAPTER 6

Directed Isoperimetric Inequalities for Real-Valued

Functions

The results in this chapter were originally published in [BKR23]. The main result is a gener-

alization of the robust directed Talagrand inequality for hypergrids (stated in Theorem 4.0.4

and Theorem 2.3.10) to real-valued functions. This generalization is achieved via the follow-

ing Boolean decomposition theorem. Given a DAG G and a function f : V (G) → R, we use

the notation S−f = {(x, y) ∈ E(G) : f(x) > f(y)} to denote the set of all edges in G where f

is decreasing.

Theorem 6.0.1 (Boolean Decomposition). Suppose G is a DAG and f : V (G) → R

is a function over the vertices of G that is not monotone. Then, for some k ≥ 1, there

exist Boolean functions f1, . . . , fk : V (G)→ {0, 1} and vertex-disjoint (induced) subgraphs

H1, . . . ,Hk of G for which the following hold:

1. 2
∑k

i=1 ε(fi) ≥ ε(f).

2. S−fi ⊆ S
−
f ∩ E(Hi) for all i ∈ [k].

We prove Theorem 6.0.1 in Section 6.2. The main application of Theorem 6.0.1 is that it

immediately implies the robust directed Talagrand inequality for hypergrids (Theorem 4.0.4)

holds for real-valued functions. To state the generalization we will need to generalize the

notion of colorful thresholded influence (Definition 4.0.3) to real-valued functions. As in

Chapters 4 and 5, we work with the fully augmented hypergrid which is the DAG over vertex
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set [n]d and edge set

E =
d⋃

i=1

Ei where Ei = {(x, y) : xi < yi and xj = yj ∀j ̸= i}. (6.1)

Given f : [n]d → R, an i-aligned violation is an edge (x, y) ∈ Ei such that f(x) > f(y).

Definition 6.0.2 (Colorful Thresholded Influence). Fix f : [n]d → R and χ : E → {0, 1}.

Fix a dimension i ∈ [d] and a point x ∈ [n]d. The colorful thresholded negative influence

of x along coordinate i is denoted Φf,χ(x; i), and has value 1 if there exists an i-aligned

violation (x, y) such that χ(x, y) = 1(f(x) > f(y)), and has value 0 otherwise. The colorful

thresholded negative influence of x is Φf,χ(x) =
∑d

i=1 Φf,χ(x; i).

In words, the above definition charges violating edges colored 1 to the lower endpoint

and violating edges colored 0 to the upper endpoint. Note that this is consistent with the

definition given for Boolean functions (Definition 4.0.3). In Section 6.1 we prove the following

inequality using Theorem 6.0.1. This inequality generalizes the robust directed Talagrand

inequality proven by [KMS18] with respect to both the domain and the co-domain.

Theorem 6.0.3 (Robust Directed Talagrand Inequality for Real-Valued Functions on

the Hypergrid). Let f : [n]d → R be ε-far from monotone, and let χ : E → {0, 1} be an

arbitrary coloring of the edges of the augmented hypergrid.

Ex∈[n]d

[√
Φf,χ(x)

]
= Ω

(
ε

log n

)

6.1 Directed Talagrand Inequality for Real-Valued Functions

In this section, we use our Boolean decomposition Theorem 6.0.1 and our robust directed Ta-

lagrand inequality for Boolean functions Theorem 4.0.4 to prove Theorem 6.0.3. We invoke

Theorem 6.0.1 with the underlying DAG being the fully augmented hypergrid, which has ver-

tex set [n]d and edge set E defined in eq. (6.1). Let f : [n]d → R be a non-monotone function
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and let χ : E → {0, 1} be an arbitrary 2-coloring of E. Given x ∈ {0, 1}d and a subgraph

H of the fully augmented hypergrid, let Φf,χ,H(x) denote the colorful thresholded influence

of x (Definition 6.0.2), but restricted to the edges in H, E(H). Formally, Φf,χ,H(x; i) = 1

iff there exists an i-aligned violation (x, y) ∈ E(H) such that χ(x, y) = 1(f(x) > f(y)), and

Φf,χ,H(x) =
∑d

i=1 Φf,χ,H(x; i).

Let f1, . . . , fk : [n]
d → {0, 1} be the Boolean functions and H1, . . . ,Hk be the vertex-

disjoint subgraphs of the fully augmented hypergrid that are guaranteed by Theorem 6.0.1.

Let C ′ denote the constant from the robust Boolean isoperimetric inequality (Theorem 4.0.4)

that is hidden by Ω. We have

Ex∼[n]d

[√
Φf,χ(x)

]
≥ Ex

[√
Φf,χ,

⋃k
i=1Hi

(x)
]

(6.2)

=
k∑

i=1

Ex

[√
Φf,χ,Hi

(x)

]
(6.3)

≥
k∑

i=1

Ex

[√
Φfi,χ,Hi

(x)

]
(6.4)

=
k∑

i=1

Ex

[√
Φfi,χ(x)

]
(6.5)

≥
k∑

i=1

C ′ · εfi (6.6)

≥ C ′ · εf
2

. (6.7)

The inequality eq. (6.2) holds simply because
⋃k

i=1Hi is a subgraph of the fully augmented

hypergrid, while the equality eq. (6.3) holds because the Hi’s are vertex-disjoint. The in-

equality eq. (6.4) holds since S−fi ⊆ S
−
f and the equality eq. (6.5) holds since S−fi ⊆ E(Hi)

(these are both by item 2 of Theorem 6.0.1). Finally, eq. (6.6) is due to Theorem 4.0.4 and

eq. (6.7) is due to item 1 of Theorem 6.0.1.
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6.2 Boolean Decomposition: Proof of Theorem6.0.1

In this section, we prove the Boolean Decomposition Theorem6.0.1. Our results consider

any partially ordered domain, which we represent by a DAG G. The transitive closure of

G, denoted TC(G), is the graph with vertex set V (G) and edge set {(x, y) : x ≺ y}. The

violation graph of f is the graph (V (G), E ′), where E ′ is the set of edges of TC(G) violated

by f .

In Section 6.2.1, we define the key notion of sweeping graphs and identify some of their

important properties. In Section 6.2.2, we prove a general lemma that shows how to use a

matching M in TC(G) to find vertex-disjoint sweeping graphs in G satisfying a “matching

rearrangement” property. The techniques in Section 6.2.1 and Section 6.2.2 are inspired by

the techniques of [BCS18] used to analyze Boolean functions on the hypergrid domain, [n]d.

In Section 6.2.3, we apply our matching decomposition lemma to a carefully chosen matching

to obtain the subgraphsH1, . . . ,Hk. Finally, in Section 6.2.4, we define the Boolean functions

f1, . . . , fk and complete the proof of Theorem6.0.1.

6.2.1 Sweeping Graphs and Their Properties

Given a graph G and two subgraphs H1 and H2, we define the union H1∪H2 to be the graph

with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2).

Definition 6.2.1 ((S, T )-Sweeping Graphs). Given a DAG G and s, t ∈ V (G), define H(s, t)

to be the subgraph of G formed by the union of all directed paths in G from s to t. Given two

disjoint subsets S, T ⊆ V (G), define the (S, T )-sweeping graph, denoted H(S, T ), to be the

union of directed paths in G that start from some s ∈ S and end at some t ∈ T . That is,

H(S, T ) =
⋃

(s,t)∈S×T

H(s, t).

Note that if s ⪯̸ t then H(s, t) = ∅.
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We now prove three properties of sweeping graphs which we use in Section 6.2.4 to analyze

our functions f1, . . . , fk. Given disjoint sets S, T ⊆ V (G) and z ∈ V (H(S, T )), define the

sets

S(z) = {s ∈ S : s ⪯ z} and T (z) = {t ∈ T : z ⪯ t}.

Claim 6.2.2 (Properties of Sweeping Graphs). Let G be a DAG and S, T ⊆ V (G) be disjoint

sets.

1. (Property of Nodes in a Sweeping Graph): If z ∈ V (H(S, T )) then S(z) ̸= ∅ and

T (z) ̸= ∅.

2. (Property of Nodes Outside of a Sweeping Graph): If z ∈ V (G) \ V (H(S, T )) then

at most one of the following is true: (a) ∃y ∈ V (H(S, T )) such that z ≺ y, (b)

∃x ∈ V (H(S, T )) such that x ≺ z.

3. (Sweeping Graphs are Induced): If x, y ∈ V (H(S, T )) and (x, y) ∈ E(G) then (x, y) ∈

E(H(S, T )).

Proof. Property 1 holds by definition of the sweeping graph H(S, T ). If z ∈ V (H(S, T )),

then, by definition of H(S, T ), there exist s ∈ S and t ∈ T for which z belongs to some

directed path from s to t. That is, z ∈ V (H(s, t)). Thus s ∈ S(z) and t ∈ T (z), and

property 1 holds.

We now prove property 2. Suppose, for the sake of contradiction, that there exist x, y, z ∈

V (G) for which x, y ∈ V (H(S, T )), z /∈ V (H(S, T )), and x ≺ z ≺ y. By property 1, there

exist some s ∈ S(x) and some t ∈ T (y). Then s ⪯ x ≺ z ≺ y ⪯ t and, consequently, z

belongs to some directed path from s to t. Thus z ∈ V (H(s, t)), and so z ∈ V (H(S, T )).

This is a contradiction.

We now prove property 3. Suppose x, y ∈ V (H(S, T )) and (x, y) ∈ E(G). By property 1,

there exist s ∈ S and t ∈ T for which s ⪯ x and y ⪯ t. Since (x, y) ∈ E(G), we have x ≺ y
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and so s ⪯ x ≺ y ⪯ t. Thus, the edge (x, y) belongs to a directed path from s to t. That is,

(x, y) ∈ E(H(s, t)) and so (x, y) ∈ E(H(S, T )).

6.2.2 Matching Decomposition Lemma for DAGs

In this section, we prove the following matching decomposition lemma. Recall that TC(G)

denotes the transitive closure of G, which is the graph with vertex set V (G) and edge set

{(x, y) : x ≺ y}. Consider a matching M in TC(G). We represent M : S → T as a bijection

between two disjoint sets S, T ⊆ V (G) of the same size for which s ≺M(s) for all s ∈ S. For

a set S ′ ⊆ S, define M(S ′) = {M(s) : s ∈ S ′}. Note that for convenience we will sometimes

abuse notation and represent M as the set of pairs, {(s,M(s)) : s ∈ S}, instead of as a

bijection.

Lemma 6.2.3 (Matching Decomposition Lemma for DAGs). For every DAG G and every

matching M : S → T in TC(G), there exist partitions (Si : i ∈ [k]) of S and (Ti : i ∈ [k]) of

T , where M(Si) = Ti for all i ∈ [k], and the following hold.

1. (Sweeping Graph Disjointness): V (H(Si, Ti)) ∩ V (H(Sj, Tj)) = ∅ for all i ̸= j, where

i, j ∈ [k].

2. (Matching Rearrangement Property): For all i ∈ [k] and (x, y) ∈ Si×Ti, if x ≺ y then

there exists a matching M̂ : Si → Ti in TC(G) for which (x, y) ∈ M̂ .

Proof. In Alg. 2, we show how to construct partitions (Si : i ∈ [k]) for S and (Ti : i ∈ [k]) for

T from a matching M in TC(G). Alg. 2 uses the following notion of conflicting pairs.

Definition 6.2.4 (Conflicting Pairs). Given a DAG G and four disjoint sets X, Y,X ′, Y ′ ⊂

V (G), we say that the two pairs (X, Y ), (X ′, Y ′) conflict if V (H(X, Y ))∩V (H(X ′, Y ′)) ̸= ∅.

The following observation is apparent and by design of Alg. 2.
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Algorithm 2 Algorithm for constructing conflict-free pairs from a matching M

Input: A DAG G and a matching M : S → T in TC(G).

1: Q0 ← {({x}, {y}) : (x, y) ∈M} ▷ Initialize pairs using M

2: for s ≥ 0 do

3: if two pairs (X, Y ) ̸= (X ′, Y ′) ∈ Qs conflict then

4: Qs+1 ← (Qs \ {(X, Y ), (X ′, Y ′)}) ∪ {(X ∪X ′, Y ∪ Y ′)} ▷ Merge conflicting pairs

5: else

6: s∗ ← s and return Qs∗ ▷ Terminate when there are no conflicts

Figure 6.1: An illustration for Alg. 2 with input matching M = {(a, x), (b, y), (c, z)}. We initialize

Q0 = {({a}, {x}), ({b}, {y}), ({c}, {z})}. The pairs ({a}, {x}) and ({b}, {y}) conflict, so we merge

them to obtain a new and final collection Q1 = {({a, b}, {x, y}), ({c}, {z})}.

Observation 6.2.5 (Loop Invariants of Alg. 2). For all s ∈ {0, 1, . . . , s∗}, (a) M(X) = Y

for all (X, Y ) ∈ Qs, (b) (X : (X, ·) ∈ Qs) is a partition of S, and (c) (Y : (·, Y ) ∈ Qs) is a

partition of T .

Given a matching M : S → T in TC(G), we run Alg. 2 to obtain the set Qs∗ . See Fig. 6.1

for an illustration. Define k = |Qs∗| and let {(Si, Ti) : i ∈ [k]} be the set of pairs in Qs∗ . By

Obs. 6.2.5, (Si : i ∈ [k]) is a partition of S, (Ti : i ∈ [k]) is a partition of T , and M(Si) = Ti

for all i ∈ [k]. Item 1 of Lemma6.2.3 holds since Alg. 2 terminates at step s only when all

pairs in Qs are non-conflicting (recall Definition 6.2.4). Thus, to prove Lemma6.2.3 it only

remains to prove item 2. To do so, we prove the following Claim 6.2.6, that easily implies

item 2. Note that while we only require Claim 6.2.6 to hold for the special case of s = s∗,

using an inductive argument on s allows us to give a proof for all s ∈ {0, 1, . . . , s∗}.

Claim 6.2.6 (Rematching Claim). For all s ∈ {0, 1, . . . , s∗}, pairs (X, Y ) ∈ Qs, and (x, y) ∈

X × Y , there exists a matching M̂ : X \ {x} → Y \ {y} in TC(G).
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Proof. The proof is by induction on s. For the base case, if s = 0, then, by inspection of

Alg. 2, for (X, Y ) ∈ Q0, we must have X = {x} and Y = {y}. Thus, setting M̂ = ∅ trivially

proves the claim.

Now let s > 0. Fix some (X, Y ) ∈ Qs and (x, y) ∈ X × Y . Let (X1, Y1), (X2, Y2) ∈ Qs−1

be the pairs of sets in Qs−1 for which x ∈ X1 and y ∈ Y2. First, if (X1, Y1) = (X2, Y2),

then by induction there exists a matching M̂ ′ : X1 \ {x} → Y1 \ {y} in TC(G). Note that

by definition of Alg. 2, we must have X1 ⊆ X and Y1 ⊆ Y . Then the required matching is

M̂ = M̂ ′ ∪M |X\X1 where M |(·) denotes the restriction of the original matching M to the set

(·). Suppose (X1, Y1) ̸= (X2, Y2). This is the interesting case, and we give an accompanying

illustration in Fig. 6.2. By definition of Alg. 2, it must be that (X1, Y1) and (X2, Y2) conflict

(recall Definition 6.2.4) and were merged to form X = X1∪X2 and Y = Y1∪Y2. Thus, there

exists some vertex z ∈ V (H(X1, Y1)) ∩ V (H(X2, Y2)) and x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2

for which x1 ⪯ z ⪯ y1 and x2 ⪯ z ⪯ y2.

We now invoke the inductive hypothesis to get matchings M̂1 : X1 \ {x} → Y1 \ {y1} and

M̂2 : X2 \ {x2} → Y2 \ {y} in TC(G). Observe that x2 ⪯ z ⪯ y1 and thus we can match x2

and y1. The required matching in TC(G) is M̂ = M̂1 ∪ M̂2 ∪ {(x2, y1)}.

Figure 6.2: An illustration for the case of (X1, Y1) ̸= (X2, Y2) in the proof of Claim 6.2.6. The

solid lines represent directed paths. The dotted line represents the pair (x2, y1) added to obtain the

final matching M̂ . The only vertices of X ∪ Y not participating in M̂ are x and y.

We conclude the proof of Lemma6.2.3 by showing that Claim 6.2.6 implies item 2. We
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are given (Si, Ti) ∈ Qs∗ for some i ∈ [k] and (x, y) ∈ Si × Ti where x ≺ y. By Claim 6.2.6

there exists a matching M̂ ′ : Si \ {x} → Ti \ {y} in TC(G). We then set M̂ = M̂ ′ ∪ {(x, y)}.

Since x ≺ y, the final matching M̂ : Si → Ti is a matching in TC(G) which contains the pair

(x, y).

6.2.3 Specifying a Matching to Construct the Subgraphs H1, . . . ,Hk

In this section, we apply Lemma6.2.3 to a carefully chosen matching M in order to construct

our vertex-disjoint subgraphs H1, . . . ,Hk.

Definition 6.2.7 (Max-weight, Min-cardinality Matching). A matching M in TC(G) is

a max-weight, min-cardinality matching for f if M maximizes
∑

(x,y)∈M(f(x) − f(y)) and

among such matchings minimizes |M |.

Henceforth, let M denote a max-weight, min-cardinality matching. Let S and T denote

the set of lower and upper endpoints, respectively, of M . We use the following well-known

fact on matchings in the violation graph.

Fact 6.2.8 (Corollary 2 of [FLN+02]). For a DAG G and function f : V (G)→ R, the distance

to monotonicity ε(f) is equal to the size of the minimum vertex cover of the violation graph

of f divided by |V (G)|.

Fact 6.2.9. M is a matching in the violation graph of f that is also maximal. That is, (a)

f(x) > f(y) for all (x, y) ∈M and (b) |M | ≥ (ε(f) · |V (G)|)/2.

Proof. First, for the sake of contradiction, suppose f(x) ≤ f(y) for some pair (x, y) ∈ M .

Then we can set M = M \ {(x, y)}, which can only increase
∑

(x,y)∈M(f(x) − f(y)) and

will decrease |M | by 1. This contradicts the definition of M . Thus, f(x) > f(y) for all

(x, y) ∈M and so M is a matching in the violation graph of f . Second, since M maximizes∑
(x,y)∈M(f(x) − f(y)), it must also be a maximal matching in the violation graph of f .

Thus, (b) follows from Fact 6.2.8 and the fact that the size of any maximal matching is at

least half the size of the minimum vertex cover.
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We now apply Lemma6.2.3 to M , obtaining the partitions (Si : i ∈ [k]) and (Ti : i ∈ [k])

for S and T , respectively, for which M(Si) = Ti for all i ∈ [k]. For each i ∈ [k], let

Hi = H(Si, Ti). We use the collection of sweeping graphs H1, . . . ,Hk to prove Theorem6.0.1.

Note that these subgraphs are all vertex-disjoint by item 1 of Lemma6.2.3. We use item 2 of

Lemma6.2.3 to prove the following lemma regarding the (Si, Ti) pairs. The proof crucially

relies on the fact that M is a max-weight, min-cardinality matching.

Lemma 6.2.10 (Property of the Pairs (Si, Ti)). For all i ∈ [k] and (x, y) ∈ Si×Ti, if x ≺ y

then f(x) > f(y).

Proof. Suppose there exists i ∈ [k], x ∈ Si, and y ∈ Ti for which x ≺ y and f(x) ≤ f(y). By

item 2 of Lemma6.2.3 there exists a matching M̂ : S → T in TC(G) for which (x, y) ∈ M̂ .

In particular, since M and M̂ have identical sets of lower and upper endpoints,

∑
(s,t)∈M̂

(f(s)− f(t)) =
∑

(s,t)∈M

(f(s)− f(t)) and |M̂ | = |M |.

Now set M̂ ′ = M̂ \ {(x, y)} and observe that since f(x) ≤ f(y),

∑
(s,t)∈M̂ ′

(f(s)− f(t)) ≥
∑

(s,t)∈M

(f(s)− f(t)) and |M̂ ′| < |M |.

Therefore, M is not a max-weight, min-cardinality matching and this is a contradiction.

6.2.4 Tying it Together: Defining the Boolean Functions f1, . . . , fk

We are now equipped to define the functions f1, . . . , fk : V (G) → {0, 1} and complete the

proof of Theorem6.0.1. First, given i ∈ [k] and z ∈ V (G) \ V (Hi), we say that z is below

Hi if there exists y ∈ V (Hi) for which z ≺ y, and z is above Hi if there exists x ∈ V (Hi)

for which x ≺ z. Since Hi is the (Si, Ti)-sweeping graph, by item 2 of Claim 6.2.2, vertex z

cannot be both below and above Hi, simultaneously. Second, given z ∈ V (Hi), we define the

set Ti(z) = {t ∈ Ti : z ⪯ t}. Note that by item 1 of Claim 6.2.2, Ti(z) ̸= ∅ for all z ∈ V (Hi),
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and so the quantity maxt∈Ti(z) f(t) is always well-defined.

Definition 6.2.11. For each i ∈ [k], define the function fi : V (G) → {0, 1} as follows. For

every z ∈ V (G),

fi(z) =



1, if z ∈ V (Hi) and f(z) > maxt∈Ti(z) f(t),

0, if z ∈ V (Hi) and f(z) ≤ maxt∈Ti(z) f(t),

1, if z /∈ V (Hi) and z is above Hi,

0, if z /∈ V (Hi) and z is not above Hi.

See Fig. 6.3 for an illustration of the values of fi. We first prove item 1 of Theorem6.0.1.

Recall that M(Si) = Ti for all i ∈ [k]. Let Mi = M |Si
denote the matching M restricted to

Si. Consider x ∈ Si. By Lemma6.2.10, f(x) > f(y) for all y ∈ Ti such that x ≺ y. Thus

f(x) > maxt∈Ti(x) f(t) and so fi(x) = 1. Now consider y ∈ Ti. Observe that y ∈ Ti(y). Thus,

clearly, f(y) ≤ maxt∈Ti(y) f(t), and so fi(y) = 0. Therefore, fi(x) = 1 for all x ∈ Si and

fi(y) = 0 for all y ∈ Ti. In particular, fi(x) = 1 > 0 = fi(M(x)) for all x ∈ Si and so Mi is

a matching in the violation graph of fi. Thus, ε(fi) ≥ |Mi|
|V (G)| for all i ∈ [k]. It follows,

k∑
i=1

ε(fi) ≥ |V (G)|−1
k∑

i=1

|Mi| = |V (G)|−1 · |M | ≥ |V (G)|−1 · ε(f) · |V (G)|
2

=
ε(f)

2

by the above argument and Fact 6.2.9. Thus, item 1 of Theorem6.0.1 holds.

To prove item 2 of Theorem6.0.1, we need to show that for all i ∈ [k] the following hold:

S−fi ⊆ E(Hi) and S−fi ⊆ S
−
f .

We first prove that S−fi ⊆ E(Hi). Consider an edge (x, y) ∈ E(G) \E(Hi). We need to show

that fi(x) ≤ fi(y). First, observe that if both x, y ∈ V (Hi), then by item 3 of Claim 6.2.2,

we have (x, y) ∈ E(Hi). Thus, we only need to consider the following three cases. Recall
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Figure 6.3: An illustration for the Boolean function fi of Definition 6.2.11. The diamond represents

the DAG G whose paths are directed from bottom to top. The hexagon represents the sweeping graph

Hi = H(Si, Ti). The value of fi is 1 for the vertices in Si and 0 for the vertices in Ti. For vertices

outside of Hi, its value is 1 for those vertices which are above Hi and 0 for vertices which are not

above Hi.

that fi(x), fi(y) ∈ {0, 1}.

1. x ∈ V (Hi), y /∈ V (Hi): In this case, y is above Hi, and so fi(y) = 1. Thus, fi(x) ≤

fi(y).

2. x /∈ V (Hi), y ∈ V (Hi): In this case, x is below Hi, and so x is not above Hi by item

2 of Claim 6.2.2. Thus, fi(x) = 0, and so fi(x) ≤ fi(y).

3. x /∈ V (Hi), y /∈ V (Hi): If x is above Hi, then y is above Hi as well, and so fi(x) =

fi(y) = 1. Otherwise, x is not above Hi and so fi(x) = 0. Thus, fi(x) ≤ fi(y).

Therefore, S−fi ⊆ E(Hi).

We now prove that S−fi ⊆ S
−
f . Consider an edge (x, y) ∈ S−fi . Then fi(x) = 1 and

fi(y) = 0. Since S−fi ⊆ E(Hi), we have (x, y) ∈ E(Hi) and so x, y ∈ V (Hi). By definition

of the functions fi, it holds that f(x) > maxt∈Ti(x) f(t) and f(y) ≤ maxt∈Ti(y) f(t). Since

x ≺ y, then Ti(y) ⊆ Ti(x), because all vertices reachable from y are also reachable from x.

Therefore,

f(x) > max
t∈Ti(x)

f(t) ≥ max
t∈Ti(y)

f(t) ≥ f(y).
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Thus f(x) > f(y), and so (x, y) ∈ S−f . As a result, S−fi ⊆ S
−
f and item 2 of Theorem6.0.1

holds. This concludes the proof of Theorem6.0.1.
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CHAPTER 7

Monotonicity Testing of Functions with Bounded

Image Size

In this chapter we prove nearly matching upper and lower bounds for non-adaptive, one-sided

error monotonicity testing of functions over the hypercube with image size at most r. These

results were originally published in [BKR23]. Our upper bound relies on the robust directed

Talagrand inequality Theorem 6.0.3 for the special case of n = 2, i.e. the hypercube.

Theorem 7.0.1. There exists a non-adaptive, 1-sided error ε-tester for monotonicity of

f : {0, 1}d → R that makes Õ
(
min

(
r
√
d

ε2
, d
ε

))
queries and works for all functions f with

image size r.

Theorem 7.0.2. There exists a constant ε > 0, such that for all d, r ∈ N, every non-

adaptive, 1-sided error ε-tester for monotonicity of functions f : {0, 1}d → [r] requires

Ω(min(r
√
d, d)) queries.

We prove Theorems 7.0.1 and 7.0.2 in Sections 7.1 and 7.2, respectively.

7.1 An Õ(r
√
d) Monotonicity Tester over the Hypercube

In this section we prove Theorem 7.0.1. We show that the tester of [KMS18] for Boolean

functions can be employed to test monotonicity of real-valued functions with bounded image

size. The tester is simple: it queries two comparable vertices x and y and rejects if the pair
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exhibits a violation to monotonicity for f . The tester tries different values τ for the distance

between x and y, that is, the number of coordinates on which they differ. The key step in

the analysis of [KMS18] (and in our analysis) is to show that for some choice of τ , the tester

will detect a violation to monotonicity with high enough probability. The extra factor of r

in the query complexity of our tester arises because we are forced to choose τ which is a

factor of (r − 1) smaller than for the Boolean case. Intuitively, the reason for this is that

as the walk length τ increases, the probability that the function value stays below a certain

threshold decreases. We make this precise in Section 7.1.2.

We first define the distribution from which the tester samples x and y. Following this,

we present the tester as Alg. 3. Let p denote the largest integer for which 2p ≤
√
d/ log d.

In Alg. 3, we sample pairs of vertices at distance τ , where τ ranges over the powers of two

up to 2p.

Definition 7.1.1 (Pair Test Distribution). Given parameters b ∈ {0, 1} and a positive

integer τ , define the following distribution Dpair(b, τ) over pairs (x, y) ∈ ({0, 1}d)2. Sample

x uniformly from {0, 1}d. Let S = {i ∈ [d] : xi = b}. If τ > |S|, then set y = x. Otherwise,

sample a uniformly random set T ⊆ S of size |T | = τ . Obtain y by setting yi = 1 − xi if

i ∈ T and yi = xi otherwise.

Algorithm 3 Monotonicity Tester for f : {0, 1}d → R
Input: Parameters ε ∈ (0, 1), dimension d, and image size r; oracle access to function

f : {0, 1}d → R.

1: for all b ∈ {0, 1} and τ ∈ {1, 2, 4, . . . , 2p} do
2: repeat Õ

(
min

(
r
√
d

ε2
, d
ε

))
times:

3: Sample (x,y) ∼ Dpair(b, τ).

4: if b = 0 and f(x) > f(y) then reject. ▷ if b = 0 then x ⪯ y

5: if b = 1 and f(x) < f(y) then reject. ▷ if b = 1 then x ⪰ y

6: accept.

Our tester only uses comparisons between function values, not the values themselves.
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Thus, for the purposes of our analysis we can consider functions with the range [r] w.l.o.g.

When τ = 1, the algorithm is simply sampling edges from the d-dimensional hypercube.

The distribution from which we sample is not the uniform distribution on edges, but following

an argument from [KMS18], we can assume that for τ = 1, our tester has the same guarantees

as the edge tester.

The choice of the distance parameter τ for which the rejection probability of the tester is

high depends on the existence of a certain “good” bipartite subgraph of violated edges. Our

analysis differs from the analysis of [KMS18] both in how we obtain the “good” subgraph of

violated edges and in the choice of the optimal distance parameter τ .

We extend the following definitions from [KMS18]. Let G(A,B,EAB) denote a directed

bipartite graph with vertex sets A and B and all edges in EAB directed from A to B.

Definition 7.1.2 ((K,∆)-Good Graphs). A directed bipartite graph G(A,B,EAB) is (K,∆)-

good if for X, Y such that either X = A, Y = B or X = B, Y = A, we have: (a) |X| = K.

(b) Vertices in X have degree exactly ∆. (c) Vertices in Y have degree at most 2∆. The

graph G is (K,∆)-left-good if X = A and (K,∆)-right-good if X = B.

The weight of x ∈ {0, 1}d, denoted by |x|, is the number of coordinates of x with value 1.

Definition 7.1.3 (Persistence). Given a function f : {0, 1}d → [r] and an integer τ ∈[
1,
√

d
log d

]
, a vertex x ∈ {0, 1}d of weight in the range d

2
± O(

√
d log d) is τ -right-persistent

for f if

Py[f(y) ≤ f(x)] >
9

10
,

where y is obtained by choosing a uniformly random set T ⊂ {i ∈ [d] : xi = 0} of size τ and

setting yi = 1 if i ∈ T and yi = xi otherwise
1. We define τ -left-persistence symmetrically.

We use the following technical claim implicitly shown in the analysis of the tester of

[KMS18].

1Note that τ ≥ |{i ∈ [d] : xi = 0}| by our assumption on x and τ .

202



Claim 7.1.4 ([KMS18]). Suppose there exists a (K,∆)-right-good subgraph G(A,B,EAB)

of the directed d-dimensional hypercube, such that (a) EAB ⊆ S−f , (b) K
√
∆ = Θ( ε(f)·2

d

log d
),

and (c) at least 99
100
|B| of the vertices in B are (τ ′− 1)-right-persistent for some τ ′ such that

τ ′ ·∆≪ d. Then there exists a constant C ′ > 0, such that for (x,y) ∼ Dpair(0, τ
′),

Px,y[f(x) > f(y)] ≥ C ′ · τ ′

d
· K
2d
·∆.

The analogous claim holds given a (K,∆)-left-good subgraph with many (τ ′ − 1)-left-

persistent vertices in A and (x,y) drawn from Dpair(1, τ
′).

In Section 7.1.1, we prove Lemma7.1.6 which obtains a good subgraph for f satisfying

conditions (a) and (b) of Claim 7.1.4. In Section 7.1.2, we prove Lemma7.1.8 which gives an

upper bound on the fraction of non-persistent vertices, enabling us to satisfy condition (c).

Finally, in Section 7.1.3, we use Lemma7.1.6 and Lemma7.1.8 to show that the conditions

of Claim 7.1.4 are satisfied. Finally, we use it to prove Theorem7.0.1.

7.1.1 Existence of a Good Bipartite Subgraph

In this section, we prove Lemma7.1.6 on the existence of good bipartite subgraphs for real-

valued functions, which was proved in [KMS18] for the special case of Boolean functions.

This lemma crucially relies on our isoperimetric inequality for real-valued functions (Theo-

rem6.0.3 for the special case of n = 2). We first state (without proof) a combinatorial result

of [KMS18], which we need for our lemma.

Lemma 7.1.5 (Lemma 6.5 of [KMS18]). Let G(A,B,EAB) be a directed bipartite graph

whose vertices have degree at most 2s. Suppose in addition, that for any 2-coloring of its

edges col : EAB → {red, blue} we have

∑
x∈A

√
degred(x) +

∑
y∈B

√
degblue(y) ≥ L, (7.1)
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where degred(x) denotes the number of red edges incident on x and degblue(y) denotes the

number of blue edges incident on y. Then G(A,B,EAB) contains a subgraph that is (K,∆)-

good with K
√
∆ ≥ L

8s
.

We can now generalize Lemma 7.1 of [KMS18].

Lemma 7.1.6. For all functions f : {0, 1}d → R, there exists a subgraph G(A,B,EAB) of

the directed, d-dimensional hypercube which is (K,∆)-good, where K
√
∆ = Θ( ε(f)·2

d

log d
) and

EAB ⊆ S−f .

Proof. Our proof relies on Lemma7.1.5. Condition eq. (7.1) is clearly reminiscent of the

isoperimetric inequality in Theorem6.0.3. We want to partition the vertices in {0, 1}d into

sets A and B such that all the violated edges are directed from A to B and apply Theo-

rem6.0.3 to the resulting graph. In addition, we want eq. (7.1) to hold for a big enough

value of L. In the Boolean case, we can simply partition the vertices by function values. In

contrast, for real-valued functions, a vertex x ∈ {0, 1}d can be incident on both incoming

and outgoing violated edges. To overcome this challenge we resort to the bipartiteness of the

directed hypercube, where each edge is between a vertex with an odd weight and a vertex

with an even weight. Partition S−f into two sets:

E0 = {(x, y) ∈ S−f : |x| is even};

E1 = {(x, y) ∈ S−f : |x| is odd}.

For j ∈ {0, 1}, let Vj and Wj denote the set of lower and upper endpoints, respectively, of the

edges in Ej. We consider the two subgraphs Gj(Vj,Wj, Ej) for j ∈ {0, 1}. Notice that the

vertices in V0∪W1 have even weight and the vertices in V1∪W0 have odd weight. Obviously,

V0 and W1 may not be disjoint, and similarly V1 and W0 may not be disjoint, and thus G0

and G1 may not be vertex-disjoint.

We quickly explain why we cannot simply use Lemma7.1.5 with either G0 or G1. Fix a

2-coloring of the edges E0 ∪ E1. By averaging, one of the graphs will have a high enough
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contribution to left-hand side of the isoperimetric inequality of Theorem6.0.3. Assume this

graph is G0. As a result, condition eq. (7.1) will hold for G0 with L = Ω(ε · 2d). However,

one cannot guarantee that condition eq. (7.1) holds for all possible colorings of the edges

of G0. Our construction below describes how to combine G0 and G1 so that we can jointly

“feed” them into Lemma7.1.5.

We construct copies Ĝ0 and Ĝ1 of G0 and G1, so that Ĝ0 contains a vertex labelled (x, 0)

for each vertex x of G0, and Ĝ1 contains a vertex (x, 1) for each vertex x of G1. For each

edge (x, y) in G0 we add an edge from (x, 0) to (y, 0) in Ĝ0. We do the same for the edges

of G1. Note that each edge of S−f has exactly one copy, either in Ĝ0 or Ĝ1.

Let Ĝ(V̂ , Ŵ ,S−f ) denote the union of the two vertex-disjoint graphs Ĝ0 and Ĝ1. That is,

V̂ = {(x, 0) | x ∈ V0} ∪ {(x, 1) | x ∈ V1},

Ŵ = {(y, 0) | y ∈ W0} ∪ {(y, 1) | y ∈ W1}.

All the edges of Ĝ are directed from V̂ to Ŵ . Although imprecise, we think of the edges of

Ĝ as S−f , since each edge in S−f has exactly one copy in Ĝ.

Consider a 2-coloring col : S−f → {red, blue}. Observe that

∑
(x,·)∈V̂

√
I−f,red(x) +

∑
(y,·)∈Ŵ

√
I−f,blue(x) =

∑
x∈V0∪V1

√
I−f,red(x) +

∑
y∈W0∪W1

√
I−f,blue(y)

=
∑

x∈{0,1}d
|x| is even

√
I−f,red(x) +

√
I−f,blue(x) +

∑
x∈{0,1}d
|x| is odd

√
I−f,red(x) +

√
I−f,blue(x)

=
∑

x∈{0,1}d

√
I−f,red(x) +

∑
y∈{0,1}d

√
I−f,blue(y) ≥ C · ε(f) · 2d,

where the inequality holds by Theorem6.0.3.

By construction, I−f,red(x) = degred((x, ·)) for all (x, ·) ∈ V̂ and I−f,blue(y) = degblue((y, ·))

for all (y, ·) ∈ Ŵ . We have that condition eq. (7.1) of Lemma7.1.5 holds with L = C ·ε(f)·2d.
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Thus, Ĝ contains a subgraph Ggood(A,B,EAB) that is (K,∆)-good with K
√
∆ ≥ L

8 log d
.

Without loss of generality, assume Ggood(A,B,EAB) is (K,∆)-right-good.

Let Ggood,0 = (A0, B0, EA0B0) denote the subgraph of Ggood lying in Ĝ0 and let Ggood,1 =

(A1, B1, EA1B1) denote the subgraph of Ggood lying in Ĝ1. Since B0 ∩B1 = ∅, we know that

either |B0| ≥ K/2 or |B1| ≥ K/2. Suppose |B0| ≥ K/2. Moreover, since Ĝ0 and Ĝ1 are

vertex-disjoint subgraphs, the degree of a vertex of A0 ∪B0 in Ggood,0 is the same its degree

in Ggood. Thus, Ggood,0 is a (K/2,∆)-right-good subgraph of the d-dimensional directed

hypercube for which K
2

√
∆ ≥ L

16 log d
.

By removing some vertices from B0, and redefining K if necessary, we may assume that

K
√
∆ = Θ

(
ε(f)·2d
log d

)
. This completes the proof of Lemma7.1.6.

7.1.2 Bounding the Number of Non-Persistent Vertices

We prove Lemma7.1.8 that bounds the number of non-persistent vertices for a function f

and a given distance parameter τ . All results in this section also hold for τ -left-persistence.

For a function f : {0, 1}d → R, we define I−f as
|S−f |
2d

.

Corollary 7.1.7 (Corollary of Theorem 6.6, Lemma 6.8 of [KMS18]). Consider a function

h : {0, 1}d → {0, 1} and an integer τ ∈
[
1,
√

d
log d

]
. If I−h ≤

√
d then

Px∼{0,1}d
[
x is not τ -right-persistent for h

]
= O

(
τ√
d

)
. (7.2)

We generalize the above result to functions with image size r ≥ 2.

Lemma 7.1.8. Consider a function f : {0, 1}d → [r] and an integer τ ∈
[
1,
√

d
log d

]
. If

I−f ≤
√
d, then

Px∼{0,1}d
[
x is not τ -right-persistent for f

]
= (r − 1) ·O

(
τ√
d

)
.
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Proof. For all t ∈ [r], define the threshold function ht : {0, 1}d → {0, 1} as:

ht(x) =


1 if f(x) > t,

0 otherwise.

Observe that for all t ∈ [r], we have S−ht
⊆ S−f , and thus I−ht

≤ I−f ≤
√
d. By Corollary 7.1.7,

we have that eq. (7.2) holds for h = ht for all t ∈ [r]. Next, we point out that a vertex

x ∈ {0, 1}d is τ -right-persistent for f if and only if x is τ -right-persistent for the Boolean

function hf(x). Too see this, consider a vertex z such that x ≺ z. First, note that hf(x)(x) = 0.

Second, note that hf(x)(z) = 1 if and only if f(z) > f(x) by definition of hf(x). Therefore,

f(z) ≤ f(x) if and only if hf(x)(z) ≤ hf(x)(x). Finally, note that all vertices are persistent

for hr since hr(x) = 0 for all x ∈ {0, 1}d. Using these observations, we have

Px∼{0,1}d [x is not τ -right-persistent for f ] = Px∼{0,1}d
[
x is not τ -right-persistent for hf(x)

]
≤ Px∼{0,1}d [∃t ∈ [r − 1] : x is not τ -right-persistent for ht]

≤
r−1∑
t=1

Px∼{0,1}d [x is not τ -right-persistent for ht]

=
r−1∑
t=1

O

(
τ√
d

)
= (r − 1) ·O

(
τ√
d

)
,

where the second inequality is by the union bound and the last equality is due to the fact

that eq. (7.2) holds for all ht, t ∈ [r].

7.1.3 Proof of Theorem7.0.1

In this section, we show how to use Lemma7.1.6 and Lemma7.1.8 to ensure that the condi-

tions of Claim 7.1.4 hold. Once the conditions are met, we prove Theorem7.0.1.

Proof of Theorem7.0.1. Let G(A,B,EAB) be the (K,∆)-good subgraph for f which we ob-

tain from Lemma7.1.6. Then K
√
∆ = Θ( ε(f)·2

d

log d
) and EAB ⊆ S−f . Without loss of generality,
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suppose that G(A,B,EAB) is a (K,∆)-right-good subgraph. Note that G(A,B,EAB) satis-

fies the conditions (a) and (b) of Claim 7.1.4. We define σ = K/2d, so that σ
√
∆ = Θ( ε(f)

log d
).

Before proceeding with the main analysis, we rule out some simple cases with the following

claim.

Claim 7.1.9. Suppose any of the following hold: (a) I−f ≥
√
d. (b) r ≥

√
d

log d
. (c) σ ≤ r·log d√

d
.

Then, for (x,y) ∼ Dpair(0, 1), we have Px,y[f(x) > f(y)] ≥ Ω̃( ε(f)
2

r
√
d
).

Proof. As we remarked, for τ = 1, Alg. 3 has the same guarantees as the edge tester. By

definition, the edge tester rejects with probability at least
I−f
d
. Therefore, (a) implies the

conclusion, since if I−f ≥
√
d, then the edge tester succeeds with probability Ω( 1√

d
). In

addition, the edge tester rejects with probability Ω( ε(f)
d
) for all real-valued functions. Thus,

(b) implies the conclusion, since if r ≥
√
d

log d
, then ε(f)

d
≥ ε(f)2

r
√
d log d

.

To see that (c) implies the conclusion, suppose σ ≤ r·log d√
d
. Recall that σ

√
∆ = Θ( ε(f)

log d
).

Thus,

σ ·∆ =
(σ
√
∆)2

σ
= σ−1 ·Θ

(( ε(f)
log d

)2)
= Ω

(
ε(f)2

√
d

r(log d)3

)
.

Next, recall that EAB ⊆ S−f and sinceG is (K,∆)-right-good, we have |EAB| = |B|·∆ = K·∆.

Thus, I−f ≥ K∆
2d

= σ · ∆. Therefore, the edge tester rejects with probability
I−f
d
≥ σ∆

d
≥

Ω
(

ε(f)2

r
√
d·(log d)3

)
.

In light of Claim 7.1.9, we henceforth assume that I−f ≤
√
d, r ≤

√
d

log d
, and σ ≥ r·log d√

d
.

Note that this implies r·log d√
d
≤ 1 and r·log d√

d
≤ σ ≤ 1. Since the tester iterates through all

values of τ that are powers of 2 and at most
√

d
log d

, we can fix the unique value τ ′ satisfying

τ ′ ≤ σ

r − 1

√
d

log d
≤ 2τ ′.

Note that these bounds imply that τ ′ ≥ 1
2
·
√
log d. Moreover, since I−f ≤

√
d, we can apply
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Lemma7.1.8 to conclude that the fraction of vertices in {0, 1}d which are not (τ ′ − 1)-right-

persistent for f is at most c·τ ′·(r−1)√
d

for some constant c > 0. Using our upper bound on τ ′,

this value is at most c·σ√
log d
≤ σ

100
for sufficiently large d. Since |B| = σ · 2d, we conclude that

at least 99
100
|B| vertices in B are (τ ′ − 1)-right-persistent. Finally, we show that ∆ · τ ′ ≪ d.

∆ · τ ′ ≤ ∆ · σ

r − 1

√
d

log d
=

1

r − 1
· σ
√
∆

√
d∆

log d
≤ 1

r − 1
·Θ
(
ε(f)

log d

)
d√
log d

≪ d,

and therefore condition (c) of Claim 7.1.4 holds. We have shown that all conditions, (a),

(b), and (c) of Claim 7.1.4 hold. Therefore, for (x,y) ∼ Dpair(0, τ
′), we have

Px,y[f(x) > f(y)] ≥ C ′ · τ ′

d
· σ ·∆ for some constant C ′ > 0.

Using our lower bound on τ ′, it follows that

Px,y[f(x) > f(y)] ≥ C ′ · τ ′ · σ ·∆
d

≥ 1

2
· σ

r − 1

√
d

log d
· C
′ · σ ·∆
d

=
C ′ · σ2 ·∆

2(r − 1)
√
d log d

.

Since (σ
√
∆)2 = Θ

(( ε(f)
log d

)2)
, then:

P(x,y)∼Dpair(0,τ ′)[f(x) > f(y)] ≥ C ′ε(f)2

2(r − 1)
√
d(log d)5/2

= Õ

(
ε(f)2

r
√
d

)
.

Therefore, Õ( r
√
d

ε(f)2
) iterations of the tester with (x,y) ∼ Dpair(0, τ

′) will suffice for the tester

to detect a violation to monotonicity and reject with high probability. This concludes the

proof of Theorem7.0.1.

7.2 An Ω(r
√
d) Lower Bound for Non-adaptive One-Sided Testers

In this section, we prove Theorem7.0.2 which gives a lower bound on the query complexity of

testing monotonicity of real-valued functions with 1-sided error nonadaptive testers. Fischer
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et al. proved Theorem7.0.2 for the special case of r = 2 [FLN+02, Theorem 19]. Our

proof of Theorem7.0.2 is a natural extension of their construction to the more general case

of r ∈ [2,
√
d].

Proof. Fix r ∈ [2,
√
d]. We show that every nonadaptive, 1-sided error tester for functions

over {0, 1}d with image size r must make Ω(r
√
d) queries. This implies Theorem7.0.2, since

Blais et al. [BBM12, Theorem 1.6] proved an Ω(min(d, r2)) lower bound for all testers.

For convenience, assume d is an odd perfect square and r divides 2
√
d+ 1. We partition

the points z ∈ {0, 1}d−1 into levels, according to their weight |z|. We group levels from the

middle of the (d − 1)-dimensional hypercube into r blocks of width w, where w = 2
√
d+1
r

.

Specifically, for each j ∈ [r], we define the set

Zj =

{
z ∈ {0, 1}d−1 : (j − 1)w ≤ |z| −

(d− 1

2
−
√
d
)
≤ jw

}
.

Observe that
r⋃

j=1

Zj =

{
z ∈ {0, 1}d−1 : −

√
d ≤

∣∣∣|z| − d− 1

2

∣∣∣ ≤ √d}
and Zj is a block of w consecutive levels from the middle of the (d−1)-dimensional hypercube.

For each i ∈ [d], we define function fi : {0, 1}d → [r] as follows. For x ∈ {0, 1}d and i ∈ [d],

let x−i be the point in {0, 1}d−1 obtained by removing the i’th coordinate from x. Given

x ∈ {0, 1}d, we define

fi(x) =


r if |x−i| > d−1

2
+
√
d,

1 if |x−i| < d−1
2
−
√
d,

j + (1− xi) if x−i ∈ Zj.

Claim 7.2.1. For all i ∈ [d], ε(fi) = Ω(1).

Proof. Consider the matching of edgesM =
{
(x, y) : xi = 0, yi = 1, and x−i = y−i ∈

⋃r
j=1 Zj

}
.
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Observe that all pairs in M are edges violated by fi and |M | = Ω(1) · 2d.

Every 1-sided error tester must accept if the function values on the points it queried are

consistent with a monotone function. We say that a set Q ⊆ {0, 1}d of queries contains a

violation for a function f if there exist x, y ∈ Q such that x ≺ y and f(x) > f(y). If Q

does not contain a violation, then the function values on Q are consistent with a monotone

function.

Claim 7.2.2. For all sets Q ⊆ {0, 1}d of queries,

∣∣{i ∈ [d] : Q contains a violation for fi}
∣∣ < w · |Q|.

Proof. We use the following claim due to [BCP+20].

Claim 7.2.3 (Lemma 3.18 of [BCP+20], rephrased). Let c, d ∈ N and Q ⊆ {0, 1}d. Given

x, y ∈ Q, define capc(x, y) as follows. If x and y differ on at least c coordinates, then

let capc(x, y) be the set of the first c coordinates on which x and y differ. Otherwise,

let capc(x, y) be the set of all coordinates on which x and y differ. Define capc(Q) =⋃
x,y∈Q capc(x, y). Then |capc(Q)| ≤ c(|Q| − 1).

By design of fi, if Q contains a violation for fi, then there exist x, y ∈ Q that differ in at

most w coordinates, one of which is i. Then i ∈ capw(x, y) and thus i ∈ capw(Q). Therefore,

by Claim 7.2.3,

∣∣{i ∈ [d] : Q contains a violation for fi}
∣∣ ≤ |capw(Q)| ≤ w(|Q| − 1) < w · |Q|.

This completes the proof of Claim 7.2.2.

Now, consider a nonadaptive tester T with 1-sided error that makes q = q(ε, d, r) queries.

Let Q ⊆ {0, 1}n denote the random set of queries of size q made by T . Using linearity of
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expectation and Claim 7.2.2,

d∑
i=1

P[T finds a violation for fi] = E
Q

[∣∣{i ∈ [d] : Q contains a violation for fi}
∣∣] < w · q

and therefore there exists i ∈ [d] such that

P [T finds a violation for fi] <
w · q
d

=
(2
√
d+ 1) · q
rd

<
3q

r
√
d
,

whereas, if T is a valid monotonicity tester, then we must have P[T finds a violation for fi] ≥

2/3. Therefore, for T to be a valid monotonicity tester, we require that it makes q ≥ 2
9
r
√
d =

Ω(r
√
d) queries.
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CHAPTER 8

Approximating the Distance to Monotonicity of

Real-Valued Functions

In this chapter, we prove the following theorem on approximating the distance to mono-

tonicity of real-valued functions over the hypercube. Our proof follows by showing that the

algorithm of Pallavoor et al. [PRW22] can be employed for real-valued functions, using our

generalized directed Talagrand inequality for real-valued functions Theorem 6.0.3 (here we

use the n = 2 case). This result was originally published in [BKR23].

Theorem 8.0.1. There exists a nonadaptive O(
√
d log d)-approximation algorithm for

the distance to monotonicity that, given a parameter α ∈ (0, 1) and oracle access to a

function f : {0, 1}d → R that is α-far from monotone, makes poly(d, 1/α) queries.

To prove Theorem8.0.1, it is sufficient to give a tolerant tester for monotonicity of func-

tions f : {0, 1}d → R. A tolerant tester for monotonicity gets two parameters ε1, ε2 ∈ (0, 1),

where ε1 < ε2, and oracle access to a function f . It has to accept with probability at

least 2/3 if f is ε1-close to monotone and reject with probability at least 2/3 if f is ε2-far

from monotone. Our tester distinguishes functions that are Õ(ε/
√
d)-close to monotone

from those that are ε-far. Suppose this tolerant tester has query complexity q(ε, d). Then,

by [PRW22, Theorem A.1], it can be converted to a distance approximation algorithm with

the required approximation guarantee and query complexity O(q(α, d) log log(1/α)). The fol-

lowing lemma, proved by Pallavoor et al. for the special case of Boolean functions, states

our result on tolerant testing of monotonicity. Together with the conversion procedure from

tolerant testing to distance approximation discussed above, it implies Theorem8.0.1.
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Lemma 8.0.2. There exists a fixed universal constant c ∈ (0, 1) and a nonadaptive al-

gorithm, ApproxMono, that gets a parameter ε ∈ (0, 1/2) and oracle access to a function

f : {0, 1}d → R, makes poly(d, 1/ε) queries and returns close or far as follows:

1. If ε(f) ≤ c·ε√
d log d

it outputs close with probability at least 2/3.

2. If ε(f) ≥ ε it outputs far with probability at least 2/3.

Proof. We show that Algorithm ApproxMono of Pallavoor et al. [PRW22], presented as Alg. 4,

works for real-valued functions. At a high level, the algorithm uses the fact that a function

that is far from monotone violates many edges or has a large matching of violated edges of a

special type. The first subroutine estimates the number of edges violated by the function by

sampling edges uniformly at random and checking if they violate monotonicity. The second

subroutine estimates the size of the special type of matching of violated edges. If either of

these estimates is large enough, the algorithm outputs far. Otherwise, it outputs close.

The class of matchings sought by the algorithm is parametrized by a subset of the co-

ordinates S ⊆ [d]. The special property of these matchings is that one can verify locally

whether a given point is matched by querying its neighbors and their neighbors.

To estimate the size of the matching parametrized by S, the algorithm estimates the

probability of the following event Capture(x, S, f). We denote by x(i) the point in {0, 1}d

whose i-th coordinate is equal to 1− xi and the remaining coordinates are the same as in x.

Definition 8.0.3 (Capture Event). For a function f : {0, 1}d → R, a set S ⊆ [d], and a

point x ∈ {0, 1}d, let Capture(x, S, f) be the following event:

1. There exists an index i ∈ S such that, for y = x(i), the edge between x and y is violated

by f . (Note that the edge between x and y is (x, y) if xi = 0; otherwise, it is (y, x).)

2. Neither the edges of the form (y, y(j)) nor the edges of the form (y(j), y), where j ∈

S \ {i}, are violated by f.

Denote Px∼{0,1}d [Capture(x, S, f)] by µf (S).
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Observe that µf (S) can be estimated nonadaptively, by sampling vertices x uniformly

and independently at random and querying f on x and all points that differ from x in at

most two coordinates.

𝑥

𝑦

𝑖

𝑆

𝑥

𝑦

𝑖

𝑆

Figure 8.1: An illustration to Definition 8.0.3. Two cases are depicted: when x ≺ y and when

y ≺ x.

Algorithm 4 Algorithm ApproxMono

Input: Parameters ε ∈ (0, 1/2) and dimension d; oracle access to function f : {0, 1}d → R.

1: Calculate ν̂, an estimate of the fraction of the hypercube edges that are violated by f ,

up to an additive error ε
4
√
d log d

.

2: if ν̂ ≥ 3ε/(4
√
d log d) then return far.

3: for t ∈ {1, 2, 4, . . . , 2⌊log2 d⌋} do
4: Sample S ⊆ [d] by including each coordinate i ∈ [d] independently with probability

1/t.

5: Calculate µ̂, an estimate of µf (S) = Px∼{0,1}d [Capture(x, S, f)] up to an additive

error c′·ε
4
√
d log d

for some constant c′ > 0.

6: if µ̂ ≥ 3c′·ε
4
√
d log d

then return far.

7: Return close.

The first component of the analysis is the observation that both the fraction of violated

edges and µf (S), for every S ⊆ [d], provide a good lower bound on the distance to mono-

tonicity. We state this observation without proof because the proof for the Boolean case

from [PRW22] extends to the general case verbatim. Intuitively, it tells us that, assuming

that the two estimates computed by Alg. 4 are accurate, if one of the estimates is large

enough then the input function is far from monotone.
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Observation 8.0.4 ([PRW22]). For every function f : {0, 1}d → R, the distance ε(f) is at

least half the fraction of the hypercube edges that are violated by f and ε(f) ≥ µf (S)/2 for

all S ⊆ [d].

The second (and the main) component of the analysis for the Boolean case is [PRW22,

Lemma 2.8], which relies on the robust isoperimetric inequality of [KMS18]. We generalize

this lemma to real-valued functions in Lemma8.0.5 below. Intuitively, it states that, if

function f violates few edges then, for one of the O(log d) choices of the parameter tried

in Step 3 of Alg. 4 for sampling set S, the expectation of µf (S) is large in terms of ε(f).

That is, again assuming that the estimates computed by Alg. 4 are accurate, if none of the

estimates is large enough then the input function is close to monotone.

Equipped with Observation 8.0.4 and Lemma8.0.5, it is easy to convert the intuition

above into the formal proof that the algorithm satisfies the guarantees of Lemma8.0.2. This

part of the proof uses standard techniques and is the same as for the case of Boolean functions

described in [PRW22], so we omit it. This completes the proof of Lemma8.0.2.

It remains to prove the following lemma, which crucially relies on our robust isoperimetric

inequality for real-valued functions. We generalize the quantities used by Pallavoor et al. so

that the proof is syntactically similar to that for the case of Boolean functions. One subtlety

that arises in the case of real-valued functions is that a vertex can be incident to violated

edges of both colors. In constrast, in the case of Boolean functions, each vertex can be

adjacent either to violated edges going to higher-weight vertices or to violated edges going

to lower-weight vertices, that is, it cannot be incident on both blue and red violated edges.

Lemma 8.0.5 (Generalized version of Lemma 2.8 of [PRW22]). Let f : {0, 1}d → R be

ε-far from monotone, with fraction of violated edges smaller than ε√
d log d

. Then, for some

t ∈ {1, 2, 4, . . . , 2⌊log2 d⌋}, it holds that

E
S⊆[d]

i∈S w.p. 1/t

[µf (S)] = Ω

(
ε√

d log d

)
.
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Proof. For x ∈ {0, 1}d, let U−f (x) denote the number of violated edges incident on x (both

incoming and outgoing). Consider the following 2-coloring of the edges in S−f :

col((x, y)) =

 red if U−f (x) ≥ U−f (y);

blue if U−f (x) < U−f (y).

This coloring ensures that, in the isoperimetric inequality, each edge is counted towards the

endpoint incident on the largest number of violated edges (and, in case of a tie, towards the

lower endpoint).

The proof of [PRW22, Lemma 2.8] relies on the existence of a set B ⊆ {0, 1}d and a color

b ∈ {red, blue} that satisfy the following two properties:

1. no edge violated by f has both endpoints in the set B;

2. 1
2d

∑
x∈B

√
I−f,b(x) = Ω(ε).

To obtain the set B and the color b, we partition {0, 1}d into two sets:

Beven = {x ∈ {0, 1}d : |x| is even} ,

Bodd = {x ∈ {0, 1}d : |x| is odd} .

The sets Beven and Bodd clearly satisfy property 1. Note that, for the case of Boolean

functions, Pallavoor et al. partition the domain points according to their function values

instead of the parity of their weight to guarantee property 1.

By Theorem6.0.3 (invoked for the special case of n = 2),

∑
x∈Beven

√
I−f,red(x) +

√
I−f,blue(x) +

∑
x∈Bodd

√
I−f,red(x) +

√
I−f,blue(x) ≥ C · ε · 2d .
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By averaging, there exist a color b ∈ {red, blue} and a set B ∈ {Beven, Bodd} that satisfy

∑
x∈B

√
I−f,b(x) ≥

C

4
· ε · 2d . (8.1)

Therefore, property 2 also holds. Note that due to the partition into even-weight and odd-

weight points we loose an extra factor of 2 as compared to Pallavoor et al. in the contribution

of the set B and the color b to the isoperimetric inequality. This results in a loss by a factor

of 2 (hidden in the Ω-notation) in the lower bound in Lemma8.0.5.

The rest of the proof is the same as in [PRW22], so we only summarize the key steps.

We proceed by partitioning the points x ∈ B into buckets Bt,s for t, s ∈ {1, 2, 4, . . . , 2⌊log2 d⌋},

where t ≥ s, as follows:

Bt,s = {x ∈ B : t ≤ U−f (x) < 2t and s ≤ I−f,b(x) < 2s} .

Each vertex x ∈ Bt,s is incident on between t and 2t violated edges and between s and 2s

edges colored b, which are counted towards x in property 2.

When the set S is chosen so that each coordinate is included with probability 1/t, it

holds for all x ∈ Bt,s that the event Capture(x,S, f) occurs with probability Ω(s/t). Using

this claim, one can lower bound the contribution of each bucket towards ES⊆[d][µf (S)]. By

combining the contributions of the buckets with the same value s and applying the Cauchy-

Schwartz inequality, one obtains

∑
t∈{1,2,4,...,2⌊log2 d⌋}

E
S⊆[d]

i∈S w.p. 1/t

[µf (S)] = Ω

(
1

2d
·
(
∑

t,s:t≥s |Bt,s|
√
s)2∑

t,s:t≥s |Bt,s|t

)
. (8.2)

We lower bound the sum in the numerator using (8.1) and upper bound the sum in the

denominator using the assumed upper bound on the number of violated edges. As a result,

we get that the left-hand side of (8.2) is Ω(ε
√
log d/

√
d). Averaging over the O(log d) possible

values of t yields Lemma8.0.5.
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Part III

Sample-Based Testing and Learning

of k-Monotone Functions
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CHAPTER 9

Introduction

A function f : X → R over a partial order P = (X ,⪯) is k-monotone if there does not

exist a chain of k + 1 points x1 ≺ x2 ≺ · · · ≺ xk+1 for which (a) f(xi+1) − f(xi) < 0

when i is odd and (b) f(xi+1) − f(xi) > 0 when i is even. When k = 1, these are the

monotone functions, which are the non-decreasing functions with respect to ⪯. Monotone

and k-monotone Boolean functions over domains {0, 1}d, [n]d, and Rd have been the focus of

a significant amount of research in property testing and computational learning theory. We

give an overview of the literature in Section 9.2.

The field of property testing is concerned with the design and analysis of sub-linear time

randomized algorithms for determining if a function has, or is far from having, some specific

property. A key aspect in the definition of a property testing algorithm is the type of access

it has to the function. Early works on property testing, e.g. [RS96, GGR98], focused on the

notion of query-based testers, which are allowed to observe the value of the function on any

point of their choosing, and since then this has become the standard model. The weaker

notion of sample-based testers, which can only view the function on independent uniform

samples, was also considered by [GGR98] and has received some attention over the years,

see e.g. [KR00, BBBY12, FLV15, GR16, FH23]. Sample-based algorithms are considered

more natural in many settings, for example in computational learning theory, where they are

the standard model. In fact, sample-based testing and learning are closely related problems;

given a learning algorithm, it is always possible to design a testing algorithm with the same

sample complexity, up to an additive poly(1/ε) factor1.

1See Lemma 11.6.1 for a precise statement. Also, note that if the learning algorithm is proper, then the
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For many fundamental properties, there is still a large gap between how much we know

in the query-based vs the sample-based models. Monotonicity (and k-monotonicity) is such

a property; despite a vast body of research on query-based monotonicity testing over the

hypercube {0, 1}d, the only work we know of which considers this problem in the sample-

based model is [GGL+00], who gave an upper bound of O(
√
2d/ε) and a matching lower

bound for the case when ε = O(d−3/2) on the number of samples needed to test monotonicity

of functions f : {0, 1}d → {0, 1}. The upper bound for learning monotone Boolean functions

due to [BT96, LRV22] also implies a testing upper bound of exp(O(1
ε

√
d)). Thus, this

question has been wide open for ε≫ d−3/2.

Our work addresses this gap in the monotonicity testing literature, proving a lower bound

which matches the learning upper bound for all ε at most some constant. More generally,

we prove tight lower bounds for k-monotonicity testing of functions, f : {0, 1}d → [r], i.e.

functions with image size at most r. To round out our results, we also give an improved

learning algorithm for k-monotone functions over Rd under product distributions whose

sample complexity matches our sample-based testing lower bound, up to poly-logarithmic

factors in the exponent.

9.1 Results

Before explaining our results and the context for them, we first provide some terminology

and basic notation. Given a domain X and a distribution µ over X , we denote the Hamming

distance between two functions f, g : X → R under µ by dµ(f, g) = Px∼µ[f(x) ̸= g(x)]. We

say that f is ε-far from k-monotone if dµ(f, g) ≥ ε for every k-monotone function g. The

results in this paper pertain to sample-based testing and learning of k-monotone functions

with respect to Hamming distance. We use the following terminology:

time complexity is also preserved. If the learning algorithm is improper, then there is a time complexity
blow-up, but the sample complexity is still preserved.
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• The example oracle for f under µ, denoted by EX(f, µ), when queried, generates an

example (x, f(x)) where x is sampled according to µ.

• A sample-based k-monotonicity tester under µ is a randomized algorithm which is given

access to EX(f, µ) for an arbitrary input function f and satisfies the following: (a) if

f is k-monotone, then the algorithm accepts with probability at least 2/3, and (b) if

f is ε-far from k-monotone, then the algorithm rejects with probability at least 2/3.

The tester has one-sided error if in case (a) it accepts with probability 1.

• A sample-based learning algorithm for k-monotone functions under µ is a randomized

algorithm which is given access to EX(f, µ) for an arbitrary k-monotone input function

f and outputs a hypothesis h such that dµ(f, h) ≤ ε with probability at least 1− δ. If

left unspecified, δ = 1/3.

In all of the above definitions if µ is unspecified, then it is the uniform distribution.

Testing and learning are closely related problems; any sample-based learning algorithm can

be used to construct a sample-based tester with the same sample complexity. We refer to

this transformation as the testing-by-learning reduction and although this is not a new idea

we provide a proof in Section 11.6 for completeness.

9.1.1 Sample-Based Testing and Learning on the Hypercube

The problem of learning monotone Boolean functions over the hypercube {0, 1}d was studied

by [BT96] who proved an upper bound2 of exp(O(min{1
ε

√
d, d})) for improper learning and

very recently by [LRV22, LV23] who obtained the same upper bound for agnostic proper

learning. The improper learning upper bound was extended by [BCO+15] who showed

matching upper and lower bounds of exp(Θ(min{k
ε

√
d, d})) for learning k-monotone Boolean

2We remark that any function over {0, 1}d can be learned exactly with O(d2d) = exp(O(d)) samples
by a coupon-collector argument. Combining this with the exp(O( 1ε

√
d)) upper bound by [BT96] yields

exp(O(min{ 1ε
√
d, d})). We use this slightly clunkier notation involving the min to emphasize that our upper

and lower bounds are matching in all parameter regimes.
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functions for any k ≥ 1. The testing-by-learning reduction shows that their upper bound

also holds for sample-based testing. The only prior lower bound for sample-based testing

that we’re aware of is Ω(
√

2d/ε) when ε = O(d−3/2) and k = 1 [GGL+00, Theorem 5]. Our

main result is the following much more general lower bound for this problem, which we prove

in Chapter 10.

Theorem 9.1.1 (Testing Lower Bound). There is an absolute constant c > 0 such that

for all ε ≤ c, every sample-based k-monotonicity tester for functions f : {0, 1}d → [r]

under the uniform distribution has sample complexity

exp

(
Ω

(
min

{
rk

ε

√
d, d

}))
.

Even for the special case of sample-based monotonicity testing of Boolean functions

(k = 1 and r = 2), Theorem 9.1.1 is already a new result, which matches the upper bound

for learning by [BT96] and is the first lower bound to hold for ε ≫ d−3/2. Moreover, our

lower bound is much more general, holding for all r, k, and is optimal in all parameters,

d, r, k, ε, up to a constant factor in the exponent. We show a matching upper bound in

Theorem 9.1.3.

We also note that the testing-by-learning reduction implies that the same lower bound

holds for learning with samples. As we mentioned, this result was already known for Boolean

functions (the r = 2 case) [BCO+15], but the general case of r ≥ 2 was not known prior to

our work.

Corollary 9.1.2 (Learning Lower Bound). There is an absolute constant c > 0 such

that for every ε ≤ c, every sample-based uniform-distribution learning algorithm for

k-monotone functions f : {0, 1}d → [r] has sample complexity

exp

(
Ω

(
min

{
rk

ε

√
d, d

}))
.
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On the upper bound side, a relatively straightforward argument extends the learning

algorithm of [BCO+15] for Boolean k-monotone functions, to k-monotone functions with

image size at most r. We give a short proof in Section 9.3. This shows that our lower

bounds in Theorem 9.1.1 and Corollary 9.1.2 are tight.

Theorem 9.1.3 (Learning Upper Bound for Hypercubes). There is a uniform-distribution

learning algorithm for k-monotone functions f : {0, 1}d → [r] which achieves error at

most ε with time and sample complexity

exp

(
O

(
min

{
rk

ε

√
d, d

}))
.

The testing-by-learning reduction again gives us the following corollary.

Corollary 9.1.4 (Testing Upper Bound for Hypercubes). There is a sample-based k-

monotonicity tester for functions f : {0, 1}d → [r] with sample complexity

exp

(
O

(
min

{
rk

ε

√
d, d

}))
.

Lastly, we consider the problem of sample-based testing with one-sided error. For mono-

tonicity testing of functions f : {0, 1}d → {0, 1} with non-adaptive queries, we know that one-

sided and two-sided error testers achieve the same query-complexity (up to polylog(d, 1/ε)

factors): there is a Õ(
√
d/ε2) one-sided error upper bound due to [KMS18] and a Ω̃(

√
d)

two-sided error lower bound due to [CWX17]. We show that the situation is quite different

for sample-based monotonicity testing; while the sample complexity of two-sided error testers

is exp(Θ(min{1
ε

√
d, d})), one-sided error testers require exp(Θ(d)) samples for all ε.

Theorem 9.1.5 (Testing with One-Sided Error). For every d, r, k, and ε > 0, sample-

based k-monotonicity testing of functions f : {0, 1}d → [r] with one-sided error requires
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exp(Θ(d)) samples.

9.1.2 Sample-Based Testing and Learning in Continuous Product Spaces

Learning k-monotone Boolean-valued functions has also been studied over Rd with respect

to product measures by [HY22] who gave an upper bound of exp(Õ(min{ k
ε2

√
d, d})) where

Õ(·) hides polylog factors of d, k, and 1/ε. Our next result gives an upper bound which

improves the dependence on ε from 1/ε2 to 1/ε in the exponent. By the same approach we

used to generalize the upper bound in Theorem 9.1.3 to arbitrary r ≥ 2, we get the same

generalization for product spaces. We obtain the following upper bound which matches our

lower bound for {0, 1}d in Theorem 9.1.1 up to polylog factors of d, k, r, and 1/ε. We say

that a function f : Rd → [r] is measurable if the set f−1(i) is measurable for every i ∈ [r].

Theorem 9.1.6 (Learning Upper Bound for Product Spaces). Given an arbitrary prod-

uct measure µ, there is a learning algorithm under µ for measurable k-monotone functions

f : Rd → [r] with time and sample complexity

exp

(
Õ

(
min

{
rk

ε

√
d, d

}))
.

The Õ(·) hides polylogarithmic dependencies on d, r, k, and 1/ε.

We prove Theorem 9.1.6 in Chapter 11. Once again the testing-by-learning reduction

gives us the following corollary for sample-based testing.

Corollary 9.1.7 (Testing Upper Bound for Product Spaces). Given an arbitrary product

measure µ, there is a k-monotonicity tester for measurable functions f : Rd → [r] under

µ with sample complexity

exp

(
Õ

(
min

{
rk

ε

√
d, d

}))
.
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The Õ(·) hides polylogarithmic dependencies on d, r, k, and 1/ε.

9.1.3 Proof Overviews

In this section we give an overview of our proofs for Theorem 9.1.1 and Theorem 9.1.6.

9.1.4 The Testing Lower Bound for Hypercubes

Our proof of Theorem 9.1.1 uses a family functions known as Talagrand’s random DNFs

introduced by [Tal96] which have been used by [BB21] and [CWX17] to prove lower bounds

for monotonicity testing of Boolean functions f : {0, 1}d → {0, 1} against adaptive and non-

adaptive query-based testers. Very recently, they have also been used to prove lower bounds

for tolerant testing by [CDL+23].

To understand our construction, let us first consider the special case of monotonicity of

Boolean functions, i.e. k = 1 and r = 2. We think of a DNF term as a point t ∈ {0, 1}d which

is said to be satisfied by x ∈ {0, 1}d if t ⪯ x, where ⪯ denotes the standard bit-wise partial

order over {0, 1}d. Consider N randomly chosen terms t1, . . . , tN each of width |tj| = w.

We will see later how to choose N and w. Let B := {x : d
2
≤ |x| ≤ d

2
+ ε
√
d} and for each

j ∈ [N ], let

Uj := {x ∈ B : tj ⪯ x and tj
′ ̸⪯ x for all j′ ̸= j}

be the set of points inB which satisfy tj and no other terms. Let U :=
⋃

j∈[N ] Uj. Now observe

that any two points lying in different Uj’s are incomparable and therefore independently

embedding an arbitrary monotone function into each Uj will result in a function which

globally is monotone if one defines the function outside of U appropriately. Using this fact

we can define two distributions Dyes and Dno as follows. Let A denote the set of points in

x ∈ {0, 1}d for which either |x| > d
2
+ ε
√
d or x ∈ B and tj, tj

′ ⪯ x for two different terms

j ̸= j′.

• f ∼ Dyes is drawn by setting f(x) = 1 if and only if x ∈ A∪
(⋃

j∈T Uj

)
where T ⊆ [N ]

226



contains each j ∈ [N ] with probability 1/2, independently. Such a function is always

monotone.

• f ∼ Dno is drawn by setting f(x) = 1 if and only if x ∈ A ∪ R where R contains each

x ∈ U with probability 1/2, independently. Such a function will be Ω(|U | · 2−d)-far

from monotone with probability Ω(1) since its restriction with U is uniformly random.

Now, each x ∈ U satisfies Pf∼Dyes
[f(x) = 1] = Pf∼Dno

[f(x) = 1] = 1/2 and for both

distributions the events f(x) = 1 and f(y) = 1 are independent when x, y lie in different

Uj’s. Therefore, any tester will need to see at least two points from the same Uj to distinguish

Dyes and Dno. Roughly speaking, by birthday paradox this gives a Ω(
√
N) lower bound on

the number of samples. The lower bound is thus determined by the maximum number of

terms N that can be used in the construction for which |U | = Ω(ε2d).

So how are N and w chosen? By standard concentration bounds, we have |B| = Ω(ε2d)

and observe that a point x ∈ B satisfies a random term with probability exactly (|x|/d)w.

We need U to contain a constant fraction of B, i.e. we need x to satisfy exactly 1 term with

constant probability. The expected number of satisfied terms is N · (|x|/d)w and, roughly

speaking, we need this value to be Θ(1) for all x ∈ B. Applying this constraint to the case

when |x| = d/2 forces us to pick N ≈ 2w. Now when |x| = d/2 + ε
√
d, the expected number

of satisfied terms is N · 2−w · (1 + 2ε/
√
d)w ≈ (1 + 2ε/

√
d)w and we are forced to choose

w ≈
√
d/ε. The lower bound for sample-based monotonicity testing of f : {0, 1}d → {0, 1}

is then Ω(
√
N) ≈ exp(Ω(

√
d/ε)).

Let us now think about generalizing this construction to testing k-monotonicity of func-

tions f : {0, 1}d → [r]. The moral of the above argument is that the permitted number of

terms is controlled by the number of distinct Hamming weights in the set B. We observe that

for larger values of k and r we can partitionB into k(r−1) blocks asB := B1∪B2∪· · ·∪Bk(r−1)

each with a window of Hamming weights of size only ε
√
d

k(r−1) . We are able to essentially repeat

the above construction independently within each block wherein we can set w ≈ k(r−1)
√
d

ε

and consequently N ≈ 2
k(r−1)

√
d

ε .
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For each block i ∈ [k(r − 1)], the random Talagrand DNF within block Bi is defined

analogously to the above construction, except that it assigns function values from {i mod

(r − 1), i mod (r − 1) + 1}, instead of {0, 1}. See Fig. 9.1 for an illustration. Since there

are k(r − 1) blocks in total, the distribution Dyes only produces k-monotone functions. At

the same time, a function f ∼ Dno assigns uniform random {a, a + 1} values within each

block Bm(r−1)+a. This results in a large number of long chains through Ba ∪B(r−1)+a ∪ · · · ∪

B(k−1)(r−1)+a which alternate between function value a and a+1. Considering the union of all

such chains for a = 0, 1, . . . , r−2 shows that f is Ω(ε)-far from k-monotone with probability

Ω(1).

9.1.5 The Learning Upper Bound for Product Spaces

As we discussed in Section 9.1, it suffices to prove Theorem 9.1.6 for the case of r = 2,

i.e. learning functions f : Rd → {±1} under a product measure µ. We use a downsampling

technique to reduce this problem to learning a discretized proxy of f over a hypergrid [N ]d

where N = Θ(kd/ε) with mild label noise. This technique has been used in previous works

[GKW19, BCS20, HY22] and our proof borrows many technical details from [HY22].

Next, forN which is a power of 2, we observe that a k-monotone function f : [N ]d → {±1}

can be viewed as a k-monotone function over the hypercube {±1}d logN by mapping each

point x ∈ [N ]d to its bit-representation. We can then leverage a result of [BCO+15] which

shows that all but a ε-fraction of the mass of the Fourier coefficients of k-monotone Boolean

functions f : {0, 1}d → {0, 1} is concentrated on the terms with degree at most k
√
d

ε
. We can

then use the Low-Degree Algorithm introduced by [LMN93] which was shown to work under

random classification noise by [Kea98].
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Figure 9.1: An illustration of the construction used in our proof of Theorem 9.1.1. The image

represents the set of points in the hypercube {0, 1}d with Hamming weight in the interval [d2 ,
d
2+ε
√
d),

increasing from bottom to top. The numbers on the left denote the Hamming weight of the points

lying in the adjacent horizontal line. The Bi blocks are the sets of points contained between two

adjacent horizontal lines. Each orange shaded region within Bi represents the set of points satisfied

by a term ti,j. The blue numbers represent the value that functions in the support of Dyes and Dno

can take. We have used the notation “r − 1, 2” as shorthand for r − 2, r − 1.
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9.2 Related Work

Monotone functions and their generalization to k-monotone functions have been extensively

studied within property testing and learning theory over the last 25 years. We highlight some

of the results which are most relevant to our work. Afterwards, we discuss some selected

works on sample-based property testing.

Sample-based monotonicity testing: Sample-based monotonicity testing of Boolean

functions over the hypercube, {0, 1}d, was considered by [GGL+00] (see [GGL+00, Theorems

5 and 6]) who gave an upper bound of O(
√

2d/ε) and a lower bound of Ω(
√

2d/ε) for

ε = O(d−3/2). Sample-based monotonicity testing over general partial orders was studied by

[FLN+02] who gave a O(
√

N/ε) one-sided error tester for functions f : D → R where D is

any partial order on N elements. Sample-based monotonicity testing of functions on the line

f : [n] → [r] was studied by [PRV18] who gave a one-sided error upper bound of O(
√

r/ε)

and a matching lower bound of Ω(
√
r) for all sample-based testers.

Query-based monotonicity testing: Monotonicity testing has been extensively studied

in the standard query model [Ras99, EKK+00, GGL+00, DGL+99, LR01, FLN+02, HK03,

AC06, HK08, ACCL07, Fis04, SS08, Bha08, BCSM12, FR10, BBM12, RRS+12, BGJ+12,

CS13, CS14a, CST14, BRY14a, BRY14b, CDST15, CDJS17, KMS18, BB21, CWX17, BCS18,

PRV18, BCS20, HY22, BKR23, BKKM23, BCS23b, BCS23a, CDL+23]. See Chapter 2 for

an extended discussion on this body of work.

k-Monotonicity testing: The generalization to k-monotonicity testing has also been

studied in the standard query model by [GKW19, CGG+19]. These works show that

the query-complexity of non-adaptive one-sided error k-monotonicity testing is exp(Θ̃(
√
d))

for all k ≥ 2, demonstrating an interesting separation between (1-)monotonicity and 2-

monotonicity.
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Learning monotone functions: Monotone Boolean functions f : {0, 1}d → {0, 1} were

studied in the context of learning theory by [BT96] who showed that they can be (improperly)

learned to error ε under the uniform distribution with exp(O(1
ε

√
d)) time and samples. Very

recent works [LRV22, LV23] have given agnostic proper learning algorithms with the same

complexity.

Learning k-monotone functions: The result of [BT96] was generalized by [BCO+15]

who gave upper and lower bounds of exp(Θ(k
ε

√
d)) for learning k-monotone Boolean functions

f : {0, 1}d → {0, 1}. For Boolean functions over hypergrids f : [n]d → {0, 1}, [CGG+19] gave

an upper bound of exp(Õ(min( k
ε2

√
d, d))) where Õ(·) hides polylog factors of d, k, 1/ε. This

result was generalized to functions f : Rd → {0, 1} under product measures by [HY22].

Sample-based property testing: The notion of sample-based property testing was first

presented and briefly studied by [GGR98]. Broader studies of sample-based testing and its

relationship with query-based testing have since been given by [FGL14, FLV15, GR16]. A

characterization of properties which are testable with a constant number of samples was

given by [BY19].

As we mentioned, sample-based algorithms are the standard model in learning theory,

and learning requires at least as many samples as testing for every class of functions. Thus,

it is natural to ask, when is testing easier than learning in terms of sample complexity?

This question is referred to as testing vs learning and has been studied by [KR00] and more

recently by [BFH21, FH23].

There has also been work studying models that interpolate between query-based and

sample-based testers. For instance, [BBBY12] introduced the notion of active testing, where

the tester may make queries, but only on points from a polynomial-sized batch of unlabeled

samples drawn from the underlying distribution. This was inspired by the notion of active

learning which considers learning problems under this access model.

Sample-based convexity testing of sets over various domains has also seen some recent
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attention [CFSS17a, BMR19a, BMR19b, BBH23].

9.3 Learning Functions with Bounded Image Size: Proof of The-

orem 9.1.3

In this section we give a short proof showing that the learning algorithm of [BCO+15] can be

extended in a relatively straightforward manner to functions f : {0, 1}d → [r] by increasing

the sample-complexity by a factor of r in the exponent.

Proof of Theorem 9.1.3. [BCO+15, Theorem 1.4] proved this result for the case of r = 2.

By standard arguments, their theorem can be strengthened slightly so that with probability

at least 1 − δ, the learner outputs a hypothesis with error at most ε, and the time and

sample complexity is only larger by a multiplicative factor of poly(ε−1, δ−1). We will need

this slightly stronger statement.

For each t ∈ [r], let ft : {0, 1}d → {0, 1} denote the thresholded Boolean function defined

as ft(x) := 1(f(x) ≥ t). Observe that for all x ∈ {0, 1}d we have f(x) = argmaxt{ft(x) = 1}.

Thus, for each t ∈ [r], run the learning algorithm of [BCO+15] with error parameters set to

ε′ := ε/r and δ = 1/3r to obtain a hypothesis ht. We have P[d(ht, ft) > ε/r] < 1/3r. By a

union bound, with probability at least 2/3, every t ∈ [r] satisfies d(ht, ft) ≤ ε/r. Moreover,

if this holds then by another union bound we have Px[∃t ∈ [r] : ht(x) ̸= f(x)] ≤ ε. Thus, the

hypothesis h(x) := argmaxt{ht(x) = 1} satisfies d(h, f) ≤ ε. The number of samples used is

poly(ε−1, r) · exp(O(min{ k
ε′

√
d, d})) and this completes the proof.

9.4 Preliminaries on k-Monotonicity

We use the notation [n] := {0, 1, . . . , n− 1}.

Definition 9.4.1. Given a poset P = (X ,⪯) and a function f : X → R, an m-alternating

chain is a sequence of points x1 ≺ x2 ≺ · · · ≺ xm such that for all i ∈ {1, . . . ,m− 1},
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1. f(xi+1)− f(xi) < 0 when i is odd, and

2. f(xi+1)− f(xi) > 0 when i is even.

Definition 9.4.2 (k-monotonicity). For a poset P = (X ,⪯), a function f : X → R is called

k-monotone if it does not have any (k + 1)-alternating chains.

Let MP,k denote the set of all k-monotone functions f : X → R over the poset P =

(X ,⪯). The Hamming distance between two functions f, g : X → R is d(f, g) = |X |−1 ·

|{x ∈ X : f(x) ̸= g(x)}|. The distance to k-monotonicity of f is denoted by ε(f,MP,k) :=

ming∈MP,k
d(f, g). The following claim is our main tool for lower bounding the distance to

k-monotonicity.

Claim 9.4.3. Let f : X → R and k′ ≥ 3k be an integer. Let C ⊂ X k′ be a collection of

disjoint k′-alternating chains for f . Then

ε(f,MP,k) ≥
1

3|X |
·

∣∣∣∣∣⋃
C∈C

C

∣∣∣∣∣ .
Proof. Observe that every k-monotone function g ∈ MP,k has the following property: for

every C = (x1, x2, . . . , xk′) ∈ C, the sequence

(
1, g(x2)− g(x1), g(x3)− g(x2), . . . , g(xk′)− g(xk′−1)

)
changes sign at most k − 1 times, whereas the sequence

(
1, f(x2)− f(x1), f(x3)− f(x2), . . . , f(xk′)− f(xk′−1)

)
changes sign exactly k′−1 times. We have prepended a 1 so that the first sign change occurs

as soon as the function value decreases. Now, changing f(xi) can only reduce the number of

times the sequence changes sign by at most 2 and so |{i : f(xi) ̸= g(xi)}| ≥ k′−k
2

. Summing
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over all chains in C and normalizing yields

d(f, g) ≥ k′ − k

2
· |C|
|X |
≥ k′

3
· |C|
|X |
≥ 1

3|X |
·

∣∣∣∣∣⋃
C∈C

C

∣∣∣∣∣
where the second inequality follows from k ≤ k′/3 and the third inequality is due to the fact

that the chains in C are all disjoint and each of size k′. This completes the proof since this

inequality holds for all g ∈MP,k.

We use the notationMr,k to denote the set of all k-monotone functions f : {0, 1}d → [r]

over the hypercube whose image has at most r distinct values.
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CHAPTER 10

Lower Bounds for Sample-Based k-Monotonicity

Testing

In this chapter we prove the following lower bounds on the sample complexity of testing k-

monotonicity of functions f : {0, 1}d → [r]. The main result in this chapter is Theorem 10.0.1

which we prove in Section 10.1. The proof of Theorem 10.0.2 is given in Section 10.2 and is

relatively straightforward.

Theorem 10.0.1 (Testing with Two-Sided Error). There is an absolute constant c > 0

such that for all ε ≤ c, every sample-based k-monotonicity tester for functions f : {0, 1}d →

[r] under the uniform distribution has sample complexity

exp

(
Ω

(
min

{
rk

ε

√
d, d

}))
.

Theorem 10.0.2 (Testing with One-Sided Error). For every d, r, k, and ε > 0, sample-

based k-monotonicity testing of functions f : {0, 1}d → [r] with one-sided error requires

exp(Θ(d)) samples.

10.1 Two-Sided Error Lower Bound

Our proof of Theorem 10.0.1 follows the standard approach of defining a pair of distributions

Dyes,Dno over functions f : {0, 1}d → [r] which satisfy the following:
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• Dyes is supported over k-monotone functions.

• Functions drawn from Dno are typically Ω(ε)-far from k-monotone: Pf∼Dno
[ε(f,Mr,k) =

Ω(ε)] = Ω(1).

• The distributions over labeled examples from Dyes and Dno are close in TV-distance.

Our construction uses a generalized version of a family functions known as random Ta-

lagrand DNFs, which were used by [BB21] and [CWX17] to prove lower bounds for testing

monotonicity of Boolean functions with adaptive and non-adaptive queries.

Let r, k satisfy rk ≤ ε
√
d

4800
. For convenience, we will assume that k(r−1)

ε
and
√
d are integers

and that k(r−1)
ε

divides
√
d. Let Lℓ :=

{
x ∈ {0, 1}d : |x| = ℓ

}
denote the ℓ’th Hamming level

of the hypercube. We partition
⋃

ℓ∈[0,ε
√
d) Ld/2+ℓ into k(r − 1) blocks as follows. For each

i ∈ [k(r − 1)], define

Bi =

(i+1)· ε
√
d

k(r−1)
−1⋃

ℓ=i· ε
√
d

k(r−1)

L d
2
+ℓ.

The idea of our proof is to define a random DNF within each Bi. The width of each DNF

will be set to w := (r−1)k
√
d

2ε
and for each i, the number of terms in the DNF within Bi will be

set to Ni := 2w · e−i = 2
(r−1)k

√
d

2ε
(1−o(1)). The DNF defined over Bi will assign function values

from {i mod (r − 1), i mod (r − 1) + 1}. The terms in each DNF will be chosen randomly

from the following distribution. We think of terms as points t ∈ {0, 1}d in the hypercube

where another point x satisfies t if t ⪯ x, i.e. ti = 1 implies xi = 1.

Definition 10.1.1 (Term distribution). A term t ∈ {0, 1}d is sampled from the distribution

Dterm as follows. Form a (multi)-set S ⊆ [d] by choosing w independent uniform samples

from [d]. For each a ∈ [d], let ta := 1(a ∈ S).
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10.1.1 The Distributions Dyes and Dno

We now define the yes and no distributions over functions f : {0, 1}d → [r]. For each i ∈

[k(r−1)], choose terms ti,1, . . . , ti,Ni i.i.d. from Dterm and let ttt = {ti,j : i ∈ [k(r−1)], j ∈ [Ni]}

denote the random set of all terms. Now, for each i ∈ [k(r − 1)] and j ∈ [Ni], define the set

Ui,j =
{
x ∈ Bi : x ⪰ ti,j and x ̸⪰ ti,j

′
for all j′ ̸= j

}
(10.1)

of all points in the i’th block that satisfy the j’th term uniquely. Let Ui =
⋃

j∈[Ni]
Ui,j denote

the set of points in Bi that satisfy a unique term. The following claim is key to our result

and motivates our choice of w and Ni. We defer its proof to Section 10.1.2.

Claim 10.1.2. For any i ∈ [k(r − 1)], j ∈ [Ni], and x ∈ Bi, we have

1

20Ni

≤ Pt[x ∈ Ui,j] ≤
3

Ni

.

As a corollary, we have Pt[x ∈ Ui] ≥ 1/20.

Functions drawn from Dyes are generated as follows. For each i ∈ [k(r − 1)] choose a

uniform random assignment

ϕϕϕi : [Ni]→ {i mod (r − 1), i mod (r − 1) + 1} and let ϕϕϕ = (ϕϕϕi : i ∈ [k(r − 1)]).

For every x ∈ Bi define

fttt,ϕϕϕ(x) =


i mod (r − 1), if ∀j ∈ [Ni], x ̸⪰ ti,j

i mod (r − 1) + 1, if ∃j ̸= j′ ∈ [Ni], x ⪰ ti,j, ti,j
′

ϕϕϕi(j), if x ∈ Ui,j.

Functions drawn Dno are generated as follows. For each i ∈ [k(r − 1)] choose a uniform
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random function

rrri : Ui → {i mod (r − 1), i mod (r − 1) + 1} and let rrr = (rrri : i ∈ [k(r − 1)]).

For each x ∈ Bi define

fttt,rrr(x) =


i mod (r − 1), if ∀j ∈ [Ni], x ̸⪰ ti,j

i mod (r − 1) + 1, if ∃j ̸= j′ ∈ [Ni], x ⪰ ti,j, ti,j
′

rrri(x), if x ∈ Ui.

For x not belonging to any Bi: if |x| < d
2
, then both the yes and no distributions assign value

0 and if |x| ≥ d
2
+ ε
√
d, then both the yes and no distributions assign value r − 1.

In summary, a function fttt,ϕϕϕ ∼ Dyes assigns the same random value ϕϕϕi(j) ∈ {i mod (r −

1), i mod (r − 1) + 1} to all points in Ui,j, which results in a k-monotone function, whereas

a function fttt,rrr ∼ Dno assigns an i.i.d. uniform random {i mod (r − 1), i mod (r − 1) + 1}-

value to each point in Ui, resulting in a function that is far from being k-monotone. By

construction, to detect any difference between these cases a tester will need to sample at

least two points from the same Ui,j. Theorem 9.1.1 follows immediately from the following

three lemmas.

Lemma 10.1.3. Every function in the support of Dyes is k-monotone.

Proof. Consider any ft,ϕϕϕ(x) ∈ supp(Dyes). For each a ∈ [k], consider the union of r − 1

blocks formed by

Ya := Ba(r−1) ∪Ba(r−1)+1 ∪ · · · ∪B(a+1)(r−1)−1.

Recall that if |x| < d/2, then ft,ϕϕϕ(x) = 0 and if |x| ≥ d/2 + ε
√
d, then ft,ϕϕϕ(x) = r − 1.

If d/2 ≤ |x| < d/2 + ε
√
d, then x ∈

⋃
a∈[k] Ya. Therefore, it suffices to show that for any

pair of comparable points x ≺ y ∈ Ya, we have ft,ϕϕϕ(x) ≤ ft,ϕϕϕ(y). Firstly, observe that by
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construction all points z ∈ Ba(r−1)+b have function value ft,ϕϕϕ(z) ∈ {b, b + 1}. Since x ≺ y,

if x and y are in different blocks, then x ∈ Ba(r−1)+b and y ∈ Ba(r−1)+b′ where b < b′ and so

the inequality is satisfied. Therefore, we may assume x, y ∈ Ba(r−1)+b are in the same block.

Since x ≺ y, if t ≺ x for some term t ∈ supp(Dterm), then t ≺ y as well. I.e. the set of terms

in Ba(r−1)+b satisfied by y is a superset of the set of terms in Ba(r−1)+b satisfied by x. By

construction, this implies ft,ϕϕϕ(x) ≤ ft,ϕϕϕ(y).

Lemma 10.1.4. For fttt,rrr ∼ Dno, we have Pttt,rrr[ε(fttt,rrr,Mr,k) = Ω(ε)] = Ω(1).

We prove Lemma 10.1.4 in Section 10.1.4.

Lemma 10.1.5. Given a collection of points xxx = (x1, . . . , xs) ∈ ({0, 1}d)s and a function

f : {0, 1}d → [r], let (xxx, f(xxx)) = ((x1, f(x1)), . . . , (xs, f(xs)))) denote the corresponding col-

lection of labelled examples. Let Eyes and Eno denote the distributions over (xxx, f(xxx)) when xxx

consists of s i.i.d. uniform samples and f ∼ Dyes and f ∼ Dno, respectively. If s ≤ 2
(r−1)k

√
d

5ε ,

then the total variation distance between Eyes and Eno is o(1).

We prove Lemma 10.1.5 in Section 10.1.3.

10.1.2 Proof of Claim 10.1.2

Proof. Recall w = (r−1)k
√
d

2ε
, Ni = 2w · e−i, the definition of Dterm from Definition 10.1.1, and

the definition of Ui,j from eq. (10.1). Since x ∈ Bi we have |x| = d
2
+ ℓ where iε

√
d

k(r−1) ≤ ℓ <

(i+1)ε
√
d

k(r−1) . Note that Pt∼Dterm
[t ⪯ x] = (|x|/d)w since t ⪯ x iff the non-zero coordinates of t are

a subset of the non-zero coordinates of x. Therefore, we have

Pt[x ∈ Ui,j] = Pti,j [t
i,j ⪯ x] ·

∏
j′∈[Ni]\{j}

Pti,j′ [t
i,j′ ̸⪯ x] = (|x|/d)w (1− (|x|/d)w)Ni−1 .
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Note that the first term is upper bounded as

(|x|/d)w ≤

 d
2
+ (i+1)·ε

√
d

k(r−1)

d

w

=
1

2w

(
1 +

2ε

k(r − 1)
√
d
· (i+ 1)

)w

≤ ei+1+o(1)

2w
≤ e1+o(1)

Ni

and this immediately implies the upper bound on Pt[x ∈ Ui,j]. We can also lower bound this

quantity by

(|x|/d)w ≥

 d
2
+ i·ε

√
d

k(r−1)

d

w

=
1

2w

(
1 +

2ε

k(r − 1)
√
d
· i
)w

≥ ei−o(1)

2w
≥ 1

eo(1)Ni

.

Now, combining our upper and lower bounds on (|x|/d)w yields

Pt[x ∈ Ui,j] ≥
1

eo(1)Ni

(
1− e1+o(1)

Ni

)Ni

≥ 1

eo(1)Ni

e−(1+o(1))·e1+o(1) ≥ 1

ee+1Ni

≥ 1

20Ni

.

10.1.3 Dyes and Dno are Hard to Distinguish

Proof. Recall the definition of the set Ui,j in eq. (10.1). For a ̸= b ∈ [s], let Eab denote the

event that xa and xb belong to the same Ui,j for some i ∈ [k(r − 1)] and j ∈ [Ni]. Observe

that conditioned on ∨a,bEab, the distributions Eyes and Eno are identical. Let x, y ∈ {0, 1}d

denote two i.i.d. uniform samples. We have

P[Eab] = Px,y,t

[∨
i,j

(x ∈ Ui,j ∧ y ∈ Ui,j)

]

=
∑
i,j

Px,y,t [x ∈ Ui,j ∧ y ∈ Ui,j] =
∑
i,j

Px,t[x ∈ Ui,j]
2 (10.2)

where the first step holds since the Ui,j’s are disjoint and the second step holds by indepen-

dence of x and y. Now, for a fixed i ∈ [k(r − 1)] and j ∈ [Ni] we have the following: by

Claim 10.1.2, for x ∈ Bi we have Pt[x ∈ Ui,j] ≤ 3
Ni

and for x /∈ Bi we have Pt[x ∈ Ui,j] = 0.
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Therefore Px,t[x ∈ Ui,j] ≤ 3
Ni
. Therefore, the RHS of eq. (10.2) is bounded as

∑
i,j

Px,t[x ∈ Ui,j]
2 =

∑
i

Ni · Px,t[x ∈ Ui,j]
2 ≤

∑
i

9

Ni

≤ rk · 9

Nr−2

since the Ni’s are decreasing with respect to i. Therefore,

dTV (Eyes, Eno) ≤ Pxxx,ttt

 ∨
a,b∈[s]

Eab

 ≤ s2 · rk · 9

Nr−2
= o(1)

since Nr−2 = 2
(r−1)k

√
d

2ε
(1−o(1)) = ω(s2 · rk).

10.1.4 Functions Drawn from Dno are Far from k-Monotone

Proof. We will use Claim 9.4.3, restated below for the special case of r-valued functions over

the hypercube. Recall thatMr,k is the set of k-monotone functions f : {0, 1}d → [r].

Claim 10.1.6. Let f : {0, 1}d → [r] and k′ ≥ 3k be an integer. Let C ⊂ ({0, 1}d)k′ be a

collection of disjoint k′-alternating chains for f . Then

ε(f,Mr,k) ≥
1

3 · 2d
·

∣∣∣∣∣⋃
C∈C

C

∣∣∣∣∣ .
From the above claim, we can lower bound the distance to k-monotonicity of f by showing

that it contains a collection of disjoint k′-alternating chains where k′ ≥ 3k whose union makes

up an Ω(ε)-fraction of the hypercube.

Recall Ui = Ui,1 ∪ · · · ∪ Ui,Ni
⊆ Bi and note that ft,rrr ∼ Dno takes values only from

{i mod (r − 1), i mod (r − 1) + 1} in Bi. In particular, for a ∈ {0, 1, . . . , r − 2}, let

Xa = Ba ∪B(r−1)+a ∪B2(r−1)+a ∪ · · · ∪B(k−1)(r−1)+a =
⋃
i∈[k]

Bi(r−1)+a (10.3)

and note that all points x ∈ Xa are assigned value ft,rrr(x) ∈ {a, a+ 1}. Moreover, this value
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is chosen uniformly at random when x ∈
⋃

i∈[k] Ui(r−1)+a, which occurs with probability

≥ 1/20 by Claim 10.1.2. Let k′′ := ε
√
d

r−1 and recall that we are assuming rk ≤ ε
√
d

4800
and so

k′′ ≥ 4800k. We first show there exists a large collection Ca of length-k′′ disjoint chains in

Xa for all a ∈ {0, 1, . . . , r − 2}.

Claim 10.1.7. For every a ∈ {0, 1, . . . , r − 2}, there exists a collection of vertex disjoint

chains Ca ⊂ (Xa)
k′′ in Xa of length k′′ of size |Ca| ≥ Ω( 2d√

d
).

Proof. We start by showing that there is a large matching in the transitive closure of the

hypercube from L d
2
to L d

2
+ε
√
d−1. Consider the bipartite graph (U, V,E) where U := L d

2
,

V := L d
2
+ε
√
d−1, and E := {(x, y) ∈ U × V : x ≺ y}. Observe that vertices in U have degree

exactly ∆ :=
( d

2

ε
√
d−1

)
while vertices in V have degree exactly

( d
2
+ε
√
d−1

ε
√
d−1

)
≥ ∆. Note also that

|V | =
(

d
d
2
+ε
√
d−1

)
≥ Ω( 2d√

d
) by Stirling’s approximation. We now use the following claim from

[BBH23].

Claim 10.1.8 ([BBH23]). Let (U, V,E) be a bipartite graph and ∆ > 0 be such that (a) each

vertex x ∈ U has degree exactly ∆ and (b) each vertex y ∈ V has degree at least ∆. Then

there exists a matching M ⊆ E in (U, V,E) of size |M | ≥ 1
2
|V |.

By the above claim and the previous observations, there exist subsets S ⊆ L d
2
and

T ⊆ L d
2
+ε
√
d−1 of size |S| = |T | = Ω( 2d√

d
) and a bijection ϕ : S → T satisfying x ≺ ϕ(x) for

all x ∈ S. We now use the following routing theorem due to Lehman and Ron to obtain a

collection of disjoint chains from S to T .

Theorem 10.1.9 (Lehman-Ron, [LR01]). Let a < b and S ⊆ La, T ⊆ Lb where m := |S| =

|T |. Moreover, suppose there is a bijection ϕ : S → T satisfying x ≺ ϕ(x) for all x ∈ S.

Then there exist m vertex disjoint paths from S to T in the hypercube.

Now, invoking the above theorem on our bijection ϕ : S → T yields a collection P of

|P | ≥ Ω( 2d√
d
) vertex disjoint paths from L d

2
to L d

2
+ε
√
d−1. For each a ∈ {0, 1, . . . , r−2}, let Ca

denote the collection of chains formed by taking a path in P and including only the vertices
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from Xa (recall eq. (10.3)). Note that the resulting chains in Ca are of length k′′ = ε
√
d

r−1 . This

completes the proof of Claim 10.1.7.

From Claim 10.1.7, we have C0, C1, . . . , Cr−2 where each Ca ⊂ (Xa)
k′′ is a collection

of vertex disjoint chains of length k′′ ≥ 4800k of size |Ca| ≥ Ω( 2d√
d
). Fix a chain C =

(x1, x2, . . . , xk′′) ∈ Ca. Let A(C) be the random variable which denotes the max-length alter-

nating sub-chain (recall Definition 9.4.1) of C over a random ft,rrr ∼ Dno. Fix xj in the chain

and suppose xj ∈ Bi ⊆ Xa. By Claim 10.1.2, Pt[xj ∈ Ui] ≥ 1/20. Moreover, conditioned

on xj ∈ Ui, ft,rrr(xj) is chosen from {a, a + 1} uniformly at random. Thus, any step of the

sequence

(1, ft,rrr(x2)− ft,rrr(x1), ft,rrr(x3)− ft,rrr(x2), . . . , ft,rrr(xk′′)− ft,rrr(xk′′−1))

is non-zero and differs in sign from the previous non-zero step with probability at least 1/40

and so E[A(C)] ≥ k′′/40. I.e., 0 ≤ E[k′′ − A(C)] < k′′(1 − 1
40
). Thus, using Markov’s

inequality we have

P
[
A(C) <

k′′

1600

]
= P

[
k′′ − A(C) > k′′

(
1− 1

40

)(
1 +

1

40

)]
≤ 1

(1 + 1
40
)
= 1− 1

41
.

(10.4)

Now, let C = C0∪C1∪· · ·∪Cr−2 and let Z := |{C ∈ C : A(C) ≥ k′′

1600
}|. By eq. (10.4) we have

E[Z] ≥ |C|/41 and 0 ≤ E[|C| − Z] ≤ |C|(1− 1
41
). Again using Markov’s inequality, we have

P
[
Z <

|C|
1681

]
= P

[
|C| − Z > |C|

(
1− 1

41

)(
1 +

1

41

)]
≤ 1

(1 + 1
41
)
= 1− 1

42
. (10.5)

Now, for C ∈ C such that A(C) ≥ k′′/1600, let C ′ be any (k′′/1600)-alternating sub-chain

of C. Let C ′ = {C ′ : C ∈ C such that A(C) ≥ k′′/1600} which is a collection of disjoint

(k′′/1600)-alternating chains for ft,rrr. Now, recall that k′′ ≥ 4800k and so k′′/1600 ≥ 3k.
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Thus, if Z ≥ |C|/1681, then |C ′| ≥ |C|/1681 and so by Claim 10.1.6 we have

ε(ft,rrr,Mr,k) ≥
1

3 · 2d

∣∣∣∣∣ ⋃
C′∈C′

C ′

∣∣∣∣∣ ≥ 1

3 · 2d
· |C ′| · k′′

1600
≥ k′′ · |C|

10, 000, 000 · 2d
(10.6)

By Claim 10.1.7 we have |C| ≥ (r − 1) · Ω( 2d√
d
) and recall that k′′ = ε

√
d

r−1 . Thus, the RHS of

eq. (10.6) is Ω(ε). In conclusion,

Pt,rrr [ε(ft,rrr,Mr,k) ≥ Ω(ε)] ≥ P
[
Z ≥ |C|

1681

]
≥ 1

42

by eq. (10.5) and this completes the proof of Lemma 10.1.4.

10.2 One-Sided Error Lower Bound

In this section we prove Theorem 10.0.2, our upper and lower bound on sample-based testing

with one-sided error over the hypercube.

Proof of Theorem 10.0.2. By a coupon-collecting argument, there is an O(d · 2d) sample

upper bound for exactly learning any function over {0, 1}d under the uniform distribution

and therefore the upper bound is trivial.

It suffices to prove the lower bound for the case of r = 2 and k = 1, i.e. for testing

monotonicity of Boolean functions. We will need the following fact.

Fact 10.2.1. Let A ⊂ {0, 1}d be any anti-chain and let ℓ : A → {0, 1} be any labelling of

A. Then there exists a monotone function f : {0, 1}d → {0, 1} such that f(x) = ℓ(x) for all

x ∈ A. I.e. A shatters the class of monotone functions.

Now, let T be any monotonicity tester with one-sided error and let S ⊆ {0, 1}d denote a

set of s i.i.d. uniform samples. Since T has one-sided error, if the input function is monotone,

then T must accept. In other words, for T to reject it must be sure without a doubt that the

input function is not monotone. By Fact 10.2.1 for T to be sure the input function is not
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monotone, it must be that S is not an anti-chain. Let f : {0, 1}d → {0, 1} be any function

which is ε-far from monotone. Since T is a valid tester, it rejects f with probability at least

2/3. By the above argument we have

2/3 ≤ PS[T rejects f ] ≤ PS[S is not an anti-chain] ≤ s2 · Px,y∼{0,1}d [x ⪯ y] (10.7)

where the last inequality is by a union bound over all pairs of samples. We then have

Px,y∼{0,1}d [x ⪯ y] = Px,y∼{0,1}d [xi ≤ yi, ∀i ∈ [d]] =
d∏

i=1

Pxi,yi∼{0,1}[xi ≤ yi] = (3/4)d. (10.8)

Thus, combining eq. (10.7) and eq. (10.8) yields s ≥
√

2
3
(4
3
)d = exp(Ω(d)).

245



CHAPTER 11

Learning Upper Bound for k-Monotone Functions in

Product Spaces

In this chapter we prove the following upper bound for learning measurable k-monotone

functions in Rd.

Theorem 11.0.1. Given an arbitrary product measure µ, there is a learning algorithm

under µ for measurable k-monotone functions f : Rd → [r] with time and sample com-

plexity

exp

(
Õ

(
min

{
rk

ε

√
d, d

}))
.

The Õ(·) hides polylogarithmic dependencies on d, r, k, and 1/ε.

We restate the theorem below without any hidden logarithmic factors and for the case

of r = 2. The theorem for general r ≥ 2 can then be obtained by replacing ε with ε/r and

δ by 1/3r following the same approach we used to prove Theorem 9.1.3 in Section 9.3.

Theorem 11.0.2. Given an arbitrary product measure µ, there is a learning algorithm under

µ which learns any measurable k-monotone function f : Rd → {±1} to error ε with probability

1− δ with time and sample complexity

ln

(
1

δ

)
·min

{
(d log(dk/ε))

O
(

k
ε

√
d log(dk/ε)

)
,

(
dk

ε

)O(d)
}

(11.1)

Our proof uses downsampling to reduce our learning problem over Rd to learning over

a hypergrid, [N ]d, under the uniform distribution with mild label noise. In Section 11.1 we
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synthesize the results from [HY22] which we borrow for our proof. In Section 11.2 we give

two learning results for hypergrids whose time complexities correspond to the two arguments

inside the min expression in eq. (11.1). In Section 11.3 we describe the learning algorithm

and prove its correctness.

Throughout this section, let µ =
∏d

i=1 µi be any product measure over Rd and let N be

a power of two satisfying 8kd/ε ≤ N ≤ 16kd/ε.

11.1 Reduction to Hypergrids via Downsampling

The idea of downsampling is to construct a grid-partition of Rd into Nd blocks such that (a)

the measure of each block under µ is roughly N−d, and (b) the function f we’re trying to

learn is constant on most of the blocks. Roughly speaking, this allows us to learn f under µ

by learning a proxy for f over [N ]d under the uniform distribution. The value of N needed

to achieve this depends on what [HY22] call the ”block boundary size” of the function.

Formally, the downsampling procedure constructs query access to maps block : Rd → [N ]d

and blockpoint : [N ]d → Rd which have various good properties which we will spell out in

the rest of this section. One should think of block as mapping each point x ∈ Rd to the

block of the grid-partition that x belongs to and blockpoint as mapping each block to some

specific point contained in the block. See [HY22, Def 2.1] for a formal definition. Given

these maps and a function f : Rd → {±1} we define the function fblock : [N ]d → {±1} as

fblock(z) = f(blockpoint(z)). We let block(µ) denote the distribution over [N ]d induced by

sampling x ∼ µ and then taking block(x).

Proposition 11.1.1 (Downsampling, [HY22]). Let f : Rd → {0, 1} be a k-monotone func-

tion and N,Q ∈ Z+. Using

m := O

(
NQ2d2

min(δ, ε)2
ln

(
Nd

δ

))

samples from µ = µ1 × · · · × µd, there is a downsampling procedure that constructs query
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access to maps block : Rd → [N ]d and blockpoint : [N ]d → Rd such that with probability at

least 1− δ over the random samples, the following two conditions are satisfied:

1.
∥∥block(µ)− unif([N ]d)

∥∥
TV
≤ δ

Q
.

2. Px∼µ
[
f(x) ̸= fblock(block(x))

]
≤ ε.

The total running time and number of samples is O(m).

Proof. [HY22, Prop. 2.5] shows that there is a randomized procedure using m samples from

µ and O(m) time which constructs the maps block and blockpoint such that with probability

1, we get

Px∼µ
[
f(x) ̸= fblock(block(x))

]
≤ N−d · bbs(f,N) +

∥∥block(µ)− unif([N ]d)
∥∥
TV

(11.2)

where bbs(f,N) is the N -block boundary size of f [HY22, Def. 2.4], which is at most kdNd−1

when f is k-monotone [HY22, Lemma 7.1]. Thus, the first of the two quantities in the RHS

is at most kd/N which is at most ε/8 using our definition of N . Then, [HY22, Lemma 2.7]

states that

P
[∥∥block(µ)− unif([N ]d)

∥∥
TV

> β
]
≤ 4Nd · exp

(
− β2m

18Nd2

)
(11.3)

and so invoking this lemma with β := min(δ/4Q, ε/8) and m := 18Nd2

β2 ln
(
16Nd

δ

)
completes

the proof.

11.2 Learning over Hypergrids

For a function f : X → {±1} and a measure µ over X , recall that the example oracle for

f under µ, denoted by EX(f, µ), when queried, generates an example, (x, f(x)), where x

is sampled from µ. Given a noise parameter η, the noisy example oracle EXη(f, µ), when

queried, samples x from µ, returns the true example (x, f(x)) with probability 1 − η, and
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returns the corrupted example (x,−f(x)) with probability η. This is referred to as random

classification noise (RCN).

We prove the following two upper bounds for learning over hypergrids under RCN. The

bound in Lemma 11.2.1 is relatively straightforward to prove using coupon collector argu-

ments plus some additional work to handle the label noise. We give a proof in Section 11.5.

Lemma 11.2.1 (Coupon Collecting Learner). Let ε, δ ∈ (0, 1), η ∈ (0, 1/2), and N ∈ Z+.

There is an algorithm which, given any k-monotone function f : [N ]d → {±1}, uses at most

Õ

(
1

(1− 2η)2

(
log

1

ε
+ log

1

δ

))
·NO(d)

examples from EXη(f, unif([N ]d)) and returns h : [N ]d → {±1}, satisfying Ph[d(f, h) ≤ ε] ≥

1− δ.

Lemma 11.2.2 (Hypercube Mapping Learner). Let ε, δ ∈ (0, 1), η ∈ (0, 1/2), and N ∈ Z+

be a power of two. There is an algorithm which, given any k-monotone function f : [N ]d →

{±1}, uses at most

O

(
1

ε2(1− 2η)2
+ log

1

δ

)
(d logN)O(

k
ε

√
d logN)

examples from EXη(f, unif([N ]d)) and returns h : [N ]d → {±1}, satisfying Ph[d(f, h) ≤ ε] ≥

1− δ.

Proof. Let b : [N ] → {±1}logN denote the bijection which maps each element of [N ] to its

bit representation. Let bbb : [N ]d → {±1}d logN be defined as bbb(x) = (b(x1), . . . , b(xd)). Given

f : [N ]d → {±1} define the function f cube : {±1}d logN → {±1} as f cube(z) = f(bbb−1(z)).

Observation 11.2.3. If f is k-monotone over [N ]d, then f cube is k-monotone over {±1}d logN .

Proof. Observe that if bbb(x) ≺ bbb(y) in {±1}d logN , then x ≺ y in [N ]d. Thus, if bbb(x1) ≺ · · · ≺

bbb(xm) is an m-alternating chain for f cube, then x1 ≺ · · · ≺ xm is an m-alternating chain for

f . Therefore, if f cube is not k-monotone, then neither is f .
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Now, given Observation 11.2.3 and the bijection bbb : [N ]d → {±1}d logN , it suffices to

provide a learning algorithm for f cube. This is achieved using the Low-Degree Algorithm

introduced by [LMN93] which was shown by [Kea98] to be robust to classification noise.

Formally, we use the following theorem, which we prove in Section 11.4 for the sake of

completeness.

Theorem 11.2.4 (Low-Degree Algorithm with Classification Noise). Let ε, δ ∈ (0, 1) and

η ∈ (0, 1/2). Suppose C is a concept class of Boolean functions over {±1}d such that for

some fixed positive integer τ , all f ∈ C satisfy
∑

S⊆[d] : |S|>τ f̂(S)
2 ≤ ε/2. Then there is an

algorithm A which, on any input f ∈ C, uses at most

O

((
1

ε2(1− 2η)2
+ log

1

δ

)
· dτ
)

examples from EXη(f, unif({±1}d)) and returns a hypothesis h : {±1}d → {±1} where

Ph[d(f, h) ≤ ε] ≥ 1− δ.

We use the following Fourier concentration lemma due to [BCO+15] for k-monotone

Boolean functions.

Lemma 11.2.5 ([BCO+15]). If f : {±1}d → {±1} is k-monotone, then
∑

S : |S|> k
√
d

ε

f̂(S)2 ≤

ε.

By Lemma 11.2.5, we can invoke Theorem 11.2.4 with τ = k
√
d logN
ε

, concluding the proof

of Lemma 11.2.2.

11.3 Putting it Together: Proof of Theorem 11.0.2

Proof. We now have all the tools to define the algorithm and prove its correctness.

Recall that given maps block : Rd → [N ]d, blockpoint : [N ]d → Rd, and a function f : Rd →

{±1} we define the function fblock : [N ]d → {±1} as fblock(z) = f(blockpoint(z)). Recall that
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Algorithm 5 Learning algorithm for k-monotone functions under product measure µ

Input: ε, δ ∈ (0, 1) and access to examples from EX(f, µ) where f : Rd → {±1} is k-
monotone.
1. Let N be a power of 2 such that 8kd

ε
≤ N ≤ 16kd

ε
. Let A denote the learning algorithm for

k-monotone functions g : [N ]d → {±1} which has the smaller sample complexity of the two
algorithms from Lemma 11.2.1 and Lemma 11.2.2. Let Q be the sample complexity of A.
2. Run the downsampling procedure of Proposition 11.1.1 to obtain the maps block,
blockpoint, and access to the corresponding function fblock : [N ]d → {±1}.
3. Obtain a set of Q examples S ∈ (Rd × {±1})Q from (EX(f, µ))Q.
4. Let Sblock = {(block(x), f(x)) : (x, f(x)) ∈ S} ∈ ([N ]d × {±1})Q.
5. Run A using the sample Sblock, which returns a hypothesis hblock : [N ]d → {±1} for fblock.
Return the hypothesis h : Rd → {±1} for f : Rd → {±1} defined as h(x) = hblock(block(x)).

block(µ) is the distribution over block(x) ∈ [N ]d when x ∼ µ. By Proposition 11.1.1, step

(2) of Alg. 11.3 results in the following items being satisfied with probability at least 1− δ.

1.
∥∥block(µ)− unif([N ]d)

∥∥
TV
≤ δ

Q
.

2. Px∼µ
[
f(x) ̸= fblock(block(x))

]
≤ ε.

Firstly, by item (2), an example (block(x), f(x)) where x ∼ µ, is equivalent to an

example (z, b) ∼ EXη(fblock, block(µ)) for some η ≤ ε. I.e. the set Sblock ∈ ([N ]d ×

{±1})Q from step (4) of Alg. 11.3 is distributed according to (EXη(fblock, block(µ)))Q.

Now, as stated, Lemma 11.2.1 and Lemma 11.2.2 only hold when A is given a sample

from (EXη(fblock, unif([N ]d)))Q. However, the following claim shows that since block(µ) and

unif([N ]d)) are sufficiently close (item (1) above), the guarantees on A from Lemma 11.2.1

and Lemma 11.2.2 also hold when A is given a sample from (EXη(fblock, block(µ)))Q.

Claim 11.3.1. Let C : X → {±1} be a concept class and let A be an algorithm which given

any f ∈ C, ε, δ ∈ (0, 1), and η ∈ [0, 1/2) uses a sample from (EXη(f, unif([N ]d)))Q and pro-

duces h satisfying Px∼unif([N ]d)[h(x) ̸= f(x)] ≤ ε with probability at least 1− δ. If D is a dis-

tribution over [N ]d with
∥∥D − unif([N ]d)

∥∥
TV
≤ γ, then given a sample from (EXη(f,D))Q,

A produces h satisfying Px∼D[h(x) ̸= f(x)] ≤ ε+ γ with probability at least 1− (δ + γQ) .

Using Claim 11.3.1 and item (1) above, if step (2) of Alg. 11.3 succeeds, then with
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probability at least 1−2δ, step (5) produces hblock such that Pz∼block(µ)[h
block(z) ̸= fblock(z)] ≤

2ε. By the triangle inequality and using our definition of h in the return statement of

Alg. 11.3, we have

Px∼µ[h(x) ̸= f(x)] ≤ Px∼µ[f(x) ̸= fblock(block(x))] + Px∼µ[f
block(block(x)) ̸= hblock(block(x))]

= Px∼µ[f(x) ̸= fblock(block(x))] + Pz∼block(µ)[f
block(z) ̸= hblock(z)]. (11.4)

The first term in the RHS is at most ε by item (2) above and the second term is at most 2ε

as we argued in the previous paragraph. Finally, adding up the failure probabilities of steps

(2) and (5), we conclude that Alg. 11.3 produces h satisfying Px∼µ[h(x) ̸= f(x)] ≤ 3ε with

probability at least 1− 3δ.

11.3.1 Proof of Claim 11.3.1

Proof. It is a well-known fact that for two distributions D1 and D2, the TV-distance between

the corresponding product distributions satisfies
∥∥∥DQ

1 −D
Q
2

∥∥∥
TV
≤ Q ∥D1 −D2∥TV and thus

we have ∥∥DQ − unif([N ]d)Q
∥∥
TV
≤ γQ

Given a set of Q examples S ∈ ([N ]d×{±1})Q, let E(S) denote the event that the algorithm

A fails to produce a hypothesis with error at most ε, after sampling S. First, note the

distribution over labels for the distributions are the same, and therefore

PS∼(EXη(f,D))Q [E(S)]− PS∼(EXη(f,unif([N ]d)))Q [E(S)] = PS∼DQ [E(S)]− PS∼unif([N ]d)Q [E(S)].

(11.5)

Using the definition of TV-distance we have

PS∼DQ [E(S)]− PS∼unif([N ]d)Q [E(S)] ≤
∥∥DQ − unif([N ]d)Q

∥∥
TV
≤ γQ (11.6)
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and therefore

PS∼(EXη(f,D))Q [E(S)] ≤ PS∼(EXη(f,unif([N ]d)))Q [E(S)] + γQ ≤ δ + γQ (11.7)

where we used PS∼(EXη(f,unif([N ]d)))Q [E(S)] ≤ δ by the assumption in the statement of the

claim. Now, conditioned on ¬E(S), we have that A produces h satisfying Px∼unif([N ]d)[h(x) ̸=

f(x)] ≤ ε. Again using our bound on the TV-distance, we have

Px∼D[h(x) ̸= f(x)]− Px∼unif([N ]d)[h(x) ̸= f(x)] ≤
∥∥D − unif([N ]d)

∥∥
TV
≤ γ

and so Px∼D[h(x) ̸= f(x)] ≤ ε+ γ.

11.4 Low-Degree Algorithm with RCN: Proof of Theorem 11.2.4

In this section we prove Theorem 11.2.4, showing that concept classes with bounded Fourier

degree can be learned efficiently in the presence of random classification noise (RCN). This

fact is already implicit from previous works [LMN93, Kea98], but we give a proof for the

sake of completeness.

For S ⊆ [d], the parity function χS : {±1}d → {±1} is defined as χS(x) =
∏d

i=1 xi. The

parity functions form a Fourier basis for the space of functions f : {±1}d → {±1} and the

unique representation of f is given by

f(x) =
∑
S⊆[d]

f̂(S)χS(x) where f̂(S) = Ex[χS(x)f(x)]

is Fourier coefficient for f on S. The idea of the Low-Degree Algorithm is to learn f by

learning its low-degree Fourier coefficients. From the definition of f̂(S), observe that an

estimate of f̂(S) can be viewed as a call to a statistical query oracle, which returns an

estimate of f̂(S) to within some specified allowed query error, α. In [Kea98], Kearns showed

how to simulate statistical query algorithms using only examples with classification noise.
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Theorem 11.4.1 (Theorem 3 of [Kea98], paraphrased). Suppose there is an algorithm which

learns a concept class C of Boolean functions over {±1}d to error ε, using at most Q statistical

queries with allowed query error α. Then, for any ε, δ ∈ (0, 1), there is a learning algorithm

for C which on any input f ∈ C, uses at most

O

((
1

α(1− 2η)

)2

log

(
Q

δ

)
+

1

ε2
log

(
1

δα(1− 2η)

))

examples from EXη(f, unif({±1}d)) and outputs a hypothesis h where Ph[d(f, h) ≤ ε] ≥ 1−δ.

In light of the above, we prove Theorem 11.2.4 by first giving an efficient statistical query

algorithm, and then applying Theorem 11.4.1.

Proof of Theorem 11.2.4. Since we assume
∑

S : |S|>τ f̂(S)
2 ≤ ε/2 for all f ∈ C, the idea is

to use a statistical query to obtain an estimate of f̂(S) for all |S| ≤ τ . Define A := {S ⊆

[d] : |S| ≤ τ} and note that

|A| =
τ∑

i=0

(
d

i

)
≤
(
de

τ

)τ

≤ O(dτ ). (11.8)

We define our statistical query algorithm L to do the following:

1. For each S ∈ A, make a statistical query for an estimate of f̂(S) = Ex[χS(x)f(x)] to

allowed query error α =
√

ε/(2|A|). Let ZS denote the obtained estimate for f̂(S).

2. Return h : {±1}d → {±1} where h(x) = sgn
(∑

S∈A ZSχS(x)
)
.

We now prove that this hypothesis h satisfies Px [f(x) ̸= h(x)] ≤ ε. First, observe that

Px [f(x) ̸= h(x)] =
1

4
Ex

[
(f(x)− h(x))2

]
. (11.9)

Now, if f(x) ̸= h(x), then
(
f(x)−

∑
S∈A ZSχS(x)

)2 ≥ 1 = 1
4
(f(x) − h(x))2. In the other

case, clearly if f(x) = h(x), then
(
f(x)−

∑
S∈A ZSχS(x)

)2 ≥ 0 = 1
4
(f(x) − h(x))2. Thus,
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for any x ∈ {±1}d, this inequality holds. Combining this observation with eq. (11.9) yields

Px [f(x) ̸= h(x)] ≤ Ex

(f(x)−∑
S∈A

ZSχS(x)

)2
 . (11.10)

In the next calculation, for S /∈ A, let ZS := 0. Now, writing f(x) =
∑

S f̂(S)χS(x), expand-

ing the squared sum, applying linearity of expectation, and using the fact that Ex[χS(x)] = 0

for any S ̸= ∅, the RHS of eq. (11.10) is equal to

Ex

(∑
S

χS(x)
(
f̂(S)− ZS

))2
 = Ex

[∑
S,T

χS∆T (x)
(
f̂(S)− ZS

)(
f̂(T )− ZT

)]

=
∑
S

(
f̂(S)− ZS

)2
. (11.11)

Using eq. (11.10), eq. (11.11), and the fact that |f̂(S)−ZS| ≤ α for S ∈ A and
∑

S/∈A f̂(S)2 ≤

ε/2, yields

d(f, h) = Px [f(x) ̸= h(x)] ≤
∑
S

(
f̂(S)− ZS

)2
=
∑
S∈A

(
f̂(S)− ZS

)2
+
∑
S/∈A

f̂(S)2 ≤ |A| ε

2|A|
+ ε/2 = ε.

Thus, L makes |A| ≤ O(dτ ) statistical queries to f with query error α =
√

ε/(2|A|) and

returns a hypothesis h satisfying d(f, h) ≤ ε. Therefore, applying Theorem 11.4.1 completes

the proof of Theorem 11.2.4.

11.5 Coupon Collecting Learner: Proof of Lemma 11.2.1

Proof. The learner is simple. Take s samples from EXη(f, unif([N ]d)) and for each x ∈ [N ]d,

let mx denote the number of times x has been sampled. Let m+
x ,m

−
x denote the number

of times x has been sampled with the label +1,−1 respectively. The learner outputs the
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hypothesis h : [N ]d → {±1} defined by h(x) = sgn(m+
x −m−x ).

Claim 11.5.1. Suppose that mx ≥ m := 2
(1−2η)2 ln(2/β). Then P[sgn(m+

x −m−x ) ̸= f(x)] ≤ β.

Proof. Each label seen for x is an independent {±1}-valued random variable which is equal

to f(x) with probability 1− η and so E[m+
x −m−x ] = mx((1− η)f(x) + η(−f(x))) = mx(1−

2η)f(x). Thus,

P
[
sgn(m+

x −m−x ) ̸= f(x)
]
≤ P

[∣∣(m+
x −m−x )− E[m+

x −m−x ]
∣∣ ≥ mx(1− 2η)

]
≤ 2 exp

(
−2m2

x(1− 2η)2

4mx

)
≤ β

by Hoeffding’s inequality and our bound on mx.

Claim 11.5.2. Suppose we take s := ln( 1
α
)N2d samples. Then P[∃x ∈ [N ]d : mx = 0] < α.

Proof. For any x, P[mx = 0] = (1 − N−d)s ≤ exp(− s
Nd ) ≪ αN−d and a union bound

completes the proof.

The following claim is an immediate corollary of the previous claim.

Claim 11.5.3. Suppose we take m · ln(2m
δ
)N2d samples. Then P[∃x ∈ [N ]d : mx < m] < δ

2
.

Proof. Partition the samples into m batches of size ln(2m
δ
)N2d. Invoke Claim 11.5.2 on each

batch of samples with α := δ
2m

. By the claim, each batch of samples contains a least 1 copy

of every point in [N ]d with probability at least 1 − δ
2m

. Thus, by a union bound over the

m batches, our sample contains at least m copies of every point in [N ]d with probability at

least 1− δ
2
.

Let m := 2
(1−2η)2 ln

(
4
εδ

)
and s := m ln(2m

δ
)N2d. The learner takes s samples from

EXη(f, unif([N ]d)). Let E denote the event that mx ≥ m for all x ∈ [N ]d. By Claim 11.5.3,

we have P[E ] ≥ 1 − δ
2
. For each x ∈ [N ]d, let Bx = 1(sgn(m+

x − m−x ) ̸= f(x)), i.e. the

indicator that x is misclassified by the learner.
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By Claim 11.5.1, we have

E

 ∑
x∈[N ]d

Bx
∣∣∣ E
 ≤ εδ

2
Nd and thus P

 ∑
x∈[N ]d

Bx > εNd
∣∣∣ E
 ≤ δ

2

by Markov’s inequality. Therefore,

P

 ∑
x∈[N ]d

Bx > εNd

 = P

 ∑
x∈[N ]d

Bx > εNd
∣∣∣ E
P[E ] + P

 ∑
x∈[N ]d

Bx > εNd
∣∣∣ ¬E

P[¬E ]

≤ P

 ∑
x∈[N ]d

Bx > εNd
∣∣∣ E
+ P[¬E ]

which is at most δ. The number of examples used by the learner is

s = m ln

(
2m

δ

)
N2d = Õ

(
1

(1− 2η)2

(
ln

1

ε
+ ln

1

δ

))
·NO(d)

and this completes the proof.

11.6 Testing by Learning

Lemma 11.6.1. Let X be a domain, let µ be a measure over X , and let F : X → {±1} be

a class of Boolean-valued functions over X . Suppose that for every ε ∈ (0, 1) there exists a

learning algorithm L for F under µ using s(ε) samples. Then for every ε ∈ (0, 1) there is

an ε-tester for F under µ using s(ε/4) +O(1/ε2) samples.

Proof. We define the property testing algorithm T as follows.

1. Take s := s(ε/4,X ) samples (x1, f(x1)), . . . , (xs, f(xs)) and run L to obtain a hypoth-

esis h for f .

2. Compute a function g ∈ F for which d(h, g) = d(h,F). (We remark that this step
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incurs a blowup in time-complexity, but does not require any additional samples.)

3. Take s′ := 20
ε2

new samples (z1, f(z1)), . . . , (zs′ , f(zs′)) and let α := 1
s′

∑s′

i=1 1(g(zi) ̸=

f(zi)) be an empirical estimate for d(f, g).

4. If α ≤ 3ε
4
, then accept. If α > 3ε

4
, then reject.

Claim 11.6.2. If f ∈ F , then P[d(f, g) ≤ ε/2] ≥ 5/6.

Proof. By the guarantee of the learning algorithm, we have P[d(f, h) ≤ ε/4] ≥ 5/6. Now,

since g is a function in F as close as possible to h, we have d(h, g) ≤ d(h, f). Thus, if

d(f, h) ≤ ε/4, then d(h, g) ≤ ε/4 as well. Thus, by the triangle inequality, with probability

at least 5/6 we have d(f, g) ≤ d(f, h) + d(h, g) ≤ ε/2 as claimed.

Now, consider the quantity α from step (4) of the algorithm, T . Let X be the Bernoulli

random variable which equals 1 with probability d(f, g). Note that α = 1
s′

∑s′

i=1Xi where

the Xi’s are independent copies of X. Using Hoeffding’s inequality we have

P
[
|α− d(f, g)| ≥ ε

4

]
= P

[∣∣∣∣∣
s′∑
i=1

Xi − s′ · d(f, g)

∣∣∣∣∣ ≥ s′ε

4

]
≤ 2 exp

(
−2 · (s′ε/4)2

s′

)
=

2

e
s′ε2
8

which is at most 1/6 when s′ ≥ 8 ln(12)/ε2. We can now argue that the tester T succeeds

with probability at least 2/3. There are two cases to consider.

1. f ∈ F : By Claim 11.6.2, d(f, g) > ε/2 with probability less than 1/6 and by the

above calculation |α− d(f, g)| ≥ ε/4 with probability at most 1/6. By a union bound,

with probability at least 2/3 neither event occurs, and conditioned on this we have

α ≤ d(f, g) + ε/4 ≤ 3ε/4 and the algorithm accepts.

2. d(f,F) ≥ ε: Then d(f, g) ≥ ε since g ∈ F . Again, |α− d(f, g)| < ε/4 with probability

at least 5/6 and conditioned on this event occurring we have α > d(f, g)− ε/4 ≥ 3ε/4

and the algorithm rejects.
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Therefore, T satisfies the conditions needed for Lemma 11.6.1.
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Part IV

Testing and Learning Convex Sets in

the Ternary Hypercube
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CHAPTER 12

Introduction

A subset S ⊆ [m]n of the hypergrid is discrete convex if it is the intersection of a convex set

C ⊆ Rn with the grid, S = C ∩ [m]n, or equivalently if S = [m]n ∩ Conv(S) where Conv(S)

is the convex hull of S. Discrete convex sets may not even be connected (see Figure 12.1),

which, along with some of their other unpleasant features, makes them difficult to handle

algorithmically and analytically, the most famous example being the difference between linear

programming and integer linear programming.

We are interested in testing and learning discrete convex sets. A learning algorithm

should output an approximation of an unknown convex set S by using membership queries

to S, while a testing algorithm should decide whether an unknown set S is either convex or

ϵ-far from convex, meaning that dist(S, T ) > ϵ for all convex sets T , where dist(S, T ) is the

measure of the symmetric difference.

Convexity is particularly interesting for property testing because it can be defined by

a local condition: a set S ⊆ Rn is convex if and only if for every 3 colinear points x, y, z,

if x, z ∈ S then y ∈ S. This means that, to certify the non-convexity of a (continuous)

set, it suffices to provide 3 colinear points that violate this condition. Speaking informally,

property testing results, especially testing with one-sided error, are statements about the

difficulty of finding such a certificate of non-membership to the property, when the object

S is ϵ-far from satisfying the property. But, the fact that convexity is defined by a local

condition does not make it easy to find violations of the condition when a set is far from

convex. This is particularly evident for discrete convex sets where, unlike continuous sets,

there may not be any lines which witness non-convexity, and one must instead look for up
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to n+ 1 points that violate Carathéodory’s theorem.

We are aware of no non-trivial algorithms for testing or learning discrete convex sets in

high dimensional grids [m]d when m is small. Prior works on testing and learning convex

sets include:

1. The analysis of convexity testers, such as the line tester and more general convex hull

testers, which are designed to simply “spot-check” for violations of the local conditions

that define convexity in Rn [RV04, BB20]. These works show that these spot-checkers

are not very efficient, requiring 2Ω(n) queries to detect sets that are Ω(1)-far from

convex.

2. Testing or learning convex sets in two dimensions, including the continuous square

[0, 1]2 [Sch92, BMR19a] or the discrete grid [m]2 [Ras03, BMR19b, BMR22].

3. Testing convexity in high dimensions with samples, either in the continuous setting

[CFSS17b, HY22] or discrete setting [HY22], and learning convex sets from random

examples of the set [RG09] or from Gaussian samples [KOS08].

When m ≫ poly(d), a “downsampling” or “gridding” approach can reduce to the case

m = poly(d) [CFSS17b, HY22], but once m is small the only known algorithm for testing or

learning is brute-force. So let us see what happens when we make m as small as possible.

When m = 2, testing and learning convex sets in [m]n ≡ {0, 1}n is trivial, because every

subset of {0, 1}d is convex and therefore testing is as easy as possible (the tester may simply

accept on every input) and learning is as hard as possible (requiring Ω(2n) queries).

The story changes significantly when m = 3, so that [m]n is equivalent to the ternary

hypercube {0,±1}n, where the difficulties of handling high-dimensional discrete convex

sets suddenly become evident. Although this is the simplest domain where where high-

dimensional discrete convex sets are non-trivial, little is known about the structure of dis-

crete convex sets on the ternary hypercube that would help in designing testing and learning
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Figure 12.1: Example of a convex set in {0,±1}3. The black dots are the set and the convex red

ellipsoid contains them. Note that the set may not be “connected” on the hypergrid.

algorithms. In this paper we will give the first results towards understanding testing and

learning discrete sets in high dimensions by focusing on the ternary hypercube.

12.1 Results

For two sets S, T ⊆ {0,±1}n, we define dist(S, T ) := |S∆T |
3n

, where S∆T denotes the sym-

metric difference. A set S ⊆ {0,±1}n is ε-far from convex if for every (discrete) convex set

T ⊆ {0,±1}n, dist(S, T ) ≥ ε. Given ε > 0, a convexity tester is a randomized algorithm

which is given membership oracle access to an input S ⊆ {0,±1}n and must satisfy

1. If S is convex then the algorithm accepts with probability at least 2/3.

2. If S is ε-far from convex then the algorithm rejects with probability at least 2/3.

The tester is one-sided if it must accept convex sets S with probability 1 instead of 2/3. A

tester is non-adaptive if it chooses its set of queries before receiving the answers to any of

the queries and it is sample-based if its queries are independently and uniformly random.

A learning algorithm is given membership oracle access to a convex set S ⊆ {0,±1}n

and must output (with probability at least 2/3) a set T ⊆ {0,±1}n with dist(S, T ) < ε; it is

proper if its output T must be convex.
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12.1.1 The Edge Boundary and Influence of Convex Sets

One of the most important things to know about a set is its edge boundary. The edge set of

the ternary hypercube is defined as

E =

{
(x, y) ∈ ({0,±1}n)2 :

n∑
i=1

|xi − yi| = 1

}
. (12.1)

Observe that |E| = 2n · 3n−1. We will identify a set S ⊆ {0,±1}n with its characteristic

function and write S(x) = 1 if x ∈ S and S(x) = 0 otherwise. An edge (x, y) is on the

boundary of S if S(x) ̸= S(y). The influence of a set S ⊆ {0,±1}n is its normalized

boundary size:

I(S) :=
1

3n
· |{(u, v) ∈ E : S(u) ̸= S(v)}| = 2n

3
· P(u,v)∼E[S(u) ̸= S(v)]. (12.2)

Before we state our results, consider some examples. Two important classes of convex sets

in {0,±1}n are halfspaces and balls, which often have minimal “boundary size” in various

settings.

Example 12.1.1 (Halfspaces). A halfspace is a set H = {x ∈ {0,±1}n : ⟨v, x⟩ < τ} where

v ∈ Rn and τ ∈ R. To maximize the influence, we want τ to be small, say τ = 0, and we

want v ≈ 1⃗. The probability that a random edge (x, y) is on the boundary is at most the

probability that a uniformly random x ∼ {0,±1}n satisfies |⟨⃗1, x⟩| ≤ 1, and it is not difficult

to show that this is at most O
(

1√
n

)
, giving an estimate of O(

√
n) for the maximum influence

of a halfspace.

Example 12.1.2 (Balls). A ball is a set Br = {x ∈ {0,±1}n : ∥x∥22 < r} where r ∈ R

is the radius. The average (squared) norm E[∥x∥22] for x ∼ {0,±1}n is the same as the

expected number of nonzero coordinates of x, which is 2
3
n, so to maximize the edge boundary

we think of r ≈ 2
3
n. Similar to above, the probability that x ∼ {0,±1}n is close enough to

this threshold to find a boundary edge is O
(

1√
n

)
, again giving an estimate of O(

√
n) for the
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maximum influence.

Our first result shows that there are convex sets with significantly larger influence, which

can be obtained by taking S to be the intersection of roughly 3Θ(
√
n) random halfspaces with

thresholds τ = Θ(n3/4); we think of these sets as interpolating between the halfspaces and the

ball. Our construction is inspired by [Kan14], who showed bounds on the influence of inter-

sections random halfspaces on the hypercube {0, 1}n, and we note that similar constructions

also achieve maximal surface area under the Gaussian distribution on Rn [Naz03].

Theorem 12.1.3. There exists a convex set S ⊆ {0,±1}n with influence I(S) = Ω(n3/4).

Our main result on the influence of convex sets is that this construction is essentially

optimal: we show a matching upper bound (up to log factors) for any convex set in {0,±1}n.

Due to the discrete nature of the domain, our proof of this theorem is significantly different

from the previous techniques that have been used to bound the surface area of convex sets

in continuous domains.

Theorem 12.1.4. If S ⊆ {0,±1}n is convex, then I(S) = O(n3/4 log1/4 n).

12.1.2 Sample-Based Learning and Testing

As an application of our bounds on the influence, we show using standard Fourier analysis

that any set S ⊆ {0,±1}n can be approximated with error ε by a polynomial of degree

I(S)/ε. Using Theorem 12.1.4 and the “Low-Degree Algorithm” of Linial, Mansour, and

Nisan [LMN93] then gives us the following upper bound for learning.

Theorem 12.1.5. There is a uniform-distribution learning algorithm for convex sets in

{0,±1}n which achieves error at most ε with time and sample complexity 3Õ(n3/4/ε). The

Õ(·) hides a factor of log1/4 n.
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A corollary of Theorem 12.1.5 is that the same upper bound on the sample complexity

holds for sample-based testing, due to the testing-by-learning reduction (which is slightly

non-standard because the learner is not proper, see Section 11.6).

Corollary 12.1.6. There is a sample-based convexity tester for sets in {0,±1}n with

sample complexity 3Õ(n3/4/ε) where the Õ(·) hides a factor of log1/4 n.

To complement our upper bounds, we prove also a lower bound for sample-based testing.

Here we remark that one of our motivations for studying convex sets in {0,±1}n is their

similarity (in an informal sense) to monotone functions on {0, 1}n; an analogy between

monotone functions on {0, 1}n and convex sets in Gaussian space was proposed in [DNS22]

and we are interested in this analogy for discrete convex sets. Our lower bound for sample-

based testing discrete convex sets uses a version of Talagrand’s random DNFs, which were

used previously to prove lower bounds for testing monotonicity on {0, 1}n [BB21, CWX17].

Theorem 12.1.7. For sufficiently small constant ε > 0, every sample-based convexity

tester for sets in {0,±1}n has sample complexity 3Ω(
√
n).

Again, the testing-by-learning reduction of Lemma 11.6.1 implies that this lower bound

also holds for learning.

Corollary 12.1.8. For sufficiently small constant ε > 0, sample-based learning convex

sets in {0,±1}n requires at least 3Ω(
√
n) samples.

12.1.3 Non-Adaptive One-Sided Testing

A convexity tester with one-sided error is one that finds a witness of non-convexity with

probability at least 2/3 when the tested set is ε-far from convex. A convexity tester is

non-adaptive if it must choose its set of membership queries before receiving any of the

query results. Bounds on non-adaptive one-sided error testing therefore have a natural
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combinatorial interpretation as bounds on the likelihood of blindly finding a witness of non-

convexity in a random substructure of the domain.

Our first result shows that there is a non-adaptive one-sided error tester with sub-

exponential query complexity 3o(n). In contrast, a similar bound for the Gaussian setting is

not yet known to exist.

Theorem 12.1.9. For every ε > 0, there is a non-adaptive convexity tester with one-

sided error for sets in {0,±1}n that has query complexity 3Õ
(√

n ln 1/ε
)
where the Õ(·)

notation is hiding an extra lnn term.

Next, we show that Theorem 12.1.9 is essentially tight, in that the exponential depen-

dence on
√
n in its bound is unavoidable.

Theorem 12.1.10. For sufficiently small constant ε > 0, every non-adaptive convexity

tester with one-sided error for sets in {0,±1}n has query complexity at least 3Ω(
√
n).

Our Theorem 12.1.7 above showed that 3Ω(
√
n) is required for sample-based testing. For

one-sided error testers, we can improve this lower bound to show that non-adaptive testers

are significantly more powerful than sample-based testers for one-sided testing.

Theorem 12.1.11. For sufficiently small constant ε > 0, sample-based convexity testing

in {0,±1}n with one-sided error requires 3Θ(n) samples.

This theorem also includes a matching upper bound. The upper bound in Theorem 12.1.11

is trivial because a coupon-collector argument shows that one can learn any set S ⊆ {0,±1}n

exactly using O(n3n) samples. A slightly improved bound of O
(
3n · 1

ε
log(1/ε)

)
also holds

by a general upper bound on one-sided error testing via the VC dimension [BFH21].
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12.2 Techniques

The discrete nature of the ternary hypercube, in contrast to the continuity of the domains

Rn or [0, 1]n, provides a new angle in the study of convexity which leads to the development

of a new set of combinatorial techniques and tools. In this section we give a brief overview

of the techniques we use to prove each of our theorems.

12.2.1 The Edge Boundary and Influence of Convex Sets

Influence Upper Bound: Our proof of Theorem 12.1.4, which gives an upper bound on

the edge boundary of a convex set, is accomplished by relating the number of boundary edges

to the expected number of sign-changes of one-dimensional random processes. This is done

by constructing a distribution D over the edge-set E of the ternary hypercube, such that

(a) D is “close” to the uniform distribution over E and (b) the probability that a random

edge drawn from D is influential for our convex set S ⊆ {0,±1}n is equal to the expected

number of sign-changes of a certain random process. This process is defined by considering

a random walk X(0), . . . ,X(m) of length m ≈ n1/2 where X(0) is a random point from the

middle layers of {0,±1}n and each X(s) is obtained by flipping a random 0-valued bit of

X(s−1) to a uniform random {±1}-value; the process finally draws s ∼ [m] uniformly at

random and outputs the edge (X(s−1),X(s)).

The crux of the argument is to bound the expected number of times this random walk

enters and leaves the set S. Since S is convex, it can be written as an intersection of

halfspaces S = H1 ∩ H2 ∩ · · · ∩ Hk of the form Hi = {x ∈ {0,±1}n : ⟨x, v(i)⟩ < τi} where

v(i) ∈ Rn and τi ∈ R. For each halfspace Hi, we define a corresponding one-dimensional

random walk Wi(s) = ⟨X(s), v(i)⟩ − τi and observe that the original random walk crosses

the boundary of Hi at step s if and only if Wi changes sign at step s. Then the number of

times the walk X(0),X(1), . . . crosses the boundary of S =
⋂

i Hi is the number of times the

maximum of the processes M = maxi Wi changes sign. Therefore, our goal is to bound the
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expected number of sign-changes for M , which we accomplish by using Sparre Andersen’s

fluctuation theorem [Spa54] (as stated in [BB23]) to relate this quantity to the number of

sign-changes of a uniform random walk.

High-Influence Set Construction: Our proof of Theorem 12.1.3 is inspired by the proof

of [Kan14, Theorem 2] which constructs a set in the Boolean hypercube {±1}n with influence

Ω(
√
n log k) by considering an intersection of k random halfspaces each of which is at distance

≈
√
n log k from the origin. In particular, when k ≈ 2

√
n the construction has influence

≈ n3/4 and when k ≈ 2n the set has influence ≈ n. On the ternary hypercube {0,±1}n,

the behaviour is different: here, halfspaces exhibit a “density increment” behaviour as their

threshold moves away from the origin, which prevents the influence from increasing as k

grows past 2
√
n, when Ω(

√
n log k) matches our upper bound of Õ(n3/4).

We can summarize this “density increment” phenomenon as follows. Most of the edges

of {0,±1}n occur in the middle layer {x ∈ {0,±1}n : ∥x∥1 = 2
3
n±O(

√
n)} =

⋃O(
√
n)

ℓ=−O(
√
n)
{x :

∥x∥1 = 2
3
n+ℓ}. A convex set is an intersection of halfspaces, but for convenience we consider

its complement which is a union of halfspaces, and has the same influence. Consider the

“density” or measure of the halfspace with normal vector 1⃗ at distance τ from the origin on

the points {x : ∥x∥1 = 2n
3
+ ℓ}:

ρ(ℓ, τ) := Px∈{0,±1}n : ∥x∥1=
2n
3
+ℓ

[∑
i

xi > τ

]
.

Suppose that there is a fixed value ρ such that ρ(ℓ, τ) ≈ ρ up to constant factors for all

ℓ = ±O(
√
n) simultaneously. Then we can take k ≈ 1

ρ
random halfspaces with threshold τ

and combine their boundary edges, since they will be essentially disjoint on the whole middle

layer, and it is not hard to show that the influence of the resulting union is roughly τ . It

happens that the condition of ρ(ℓ, τ) being approximately equal for all values ℓ = ±O(
√
n)

holds for τ up to τ ≈ n3/4 but for τ ≫ n3/4 the intersection of the halfspace with the set

{x : ∥x∥1 = 2n
3
+ ℓ} grows extremely fast with ℓ making ρ(−

√
n, τ) ≪ ρ(

√
n, τ), and the
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intersection of halfspaces with threshold τ quickly approaches the ball with influence O(
√
n)

(see Example 12.1.2).

12.2.2 Sample-Based Learning and Testing

Learning Upper Bound: Our proof of Theorem 12.1.5 follows by combining our upper

bound on the influence from Theorem 12.1.4 with the Low-Degree Algorithm of Linial, Man-

sour, and Nisan [LMN93]. In particular, using Fourier analysis over {0,±1}n in combination

with Theorem 12.1.4 we can show that for convex sets, a (1 − ε)-fraction of the Fourier

mass is on the coefficients with degree at most Õ(n3/4)/ε. Then we may use the Low-Degree

Algorithm for learning the convex sets; see Section 14.1.3. Since the ternary hypercube is a

non-standard domain, we state the necessary Fourier analysis for functions over {0,±1}n in

Section 14.1.1, which follows [O’D14, Chapter 8]. One technical difference between Fourier

analysis over the Boolean and ternary hypercubes is that the standard Fourier basis over

{±1}n is given by the parity functions which are bounded in [0, 1], whereas any Fourier

basis over {0,±1}n will have functions taking value 2O(n) on some elements x ∈ {0,±1}n.

Nevertheless, with some care, we show that the Low-Degree Algorithm still works.

Sample-Based Testing Lower Bound: Our proof of Theorem 12.1.7 uses a family of

functions known as Talagrand’s random DNFs adapted to the ternary hypercube. As we

mentioned, this family of functions has been used to prove lower bounds for monotonicity

testing [BB21, CWX17]. Our adapted version is described as follows. Each “term” of the

DNF is chosen to be a random point t ∈ {0,±1}n with ∥t∥1 =
√
n. We then say that a

point x ∈ {0,±1}n “satisfies” t if xi = ti for all i ∈ [n] where ti ∈ {±1}. After choosing

N random terms t(1), . . . , t(N) we define the disjoint regions of {0,±1}n given by U1, . . . , UN

where Ui is the set of points x ∈ {0,±1}n with ∥x∥1 ∈ [2n/3 ±
√
n] which satisfy a unique

term. Choosing N = 3
√
n results in

⋃N
i=1 Ui covering a constant fraction of the domain. We

then define two distributions Dyes and Dno as follows. Recall that Br is the radius-r ball
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in the ternary cube (Example 12.1.2) and let D denote the set of points x ∈ {0,±1}n with

∥x∥1 ∈ [2n/3±
√
n] that don’t satisfy any term.

• S ∼ Dyes is drawn by setting S = B 2n
3
−
√
n ∪ D ∪

(⋃
i∈T Ui

)
where T includes each

i ∈ [N ] independently with probability 1/2. Such a set is always convex.

• S ∼ Dno is drawn by setting S = B 2n
3
−
√
n ∪D ∪ C where C includes each x ∈

⋃N
i=1 Ui

independently with probability 1/2. Informally, this set will be Ω(1)-far from convex

with constant probability since its intersection with the middle layers is random.

For both distributions, each point x ∈
⋃N

i=1 Ui satisfies PS[x ∈ S] = 1/2 and if x ∈ Ui and

y ∈ Uj where i ̸= j, then the events x ∈ S and y ∈ S are independent. Thus, to distinguish

Dyes and Dno one has to see at least two points from the same Ui and this gives our sample

complexity lower bound.

12.2.3 Non-Adaptive One-Sided Testing

The proofs of Theorems 12.1.9 to 12.1.11 all rely on a partial order ⪯ defined on {0,±1}n,

which we call the outward-oriented poset, that has the origin 0n as the minimum element and

the corners of the cube {±1}n as the maximum elements. (See Section 12.4.1 for the formal

definition of this poset and a discussion of its properties and history.) For any y ∈ {0,±1}n,

we define Up(y) := {x ∈ {0,±1}n : y ⪯ x} to represent the set of points above y in this

poset.

Non-Adaptive One-Sided Upper Bound: An important property of the outward-

oriented poset in the context of testing convexity is that any point y in the convex hull

of a set of points X ⊆ {0,±1}n is also in the convex hull of X ∩ Up(y). Conversely, if a set

S ⊆ {0,±1}n is not convex, then there is a certificate of non-convexity of the form (X, y)

where y /∈ S is in the convex hull of X ⊆ S, and X ⊆ Up(y). This property implies that a

convexity tester can search for certificates of non-convexity by repeatedly choosing a random
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point y and querying all points in Up(y). A näıve implementation of this idea leads to a

query complexity that is significantly larger than the bound in the theorem. However, the

ternary hypercube satisfies a strong concentration of measure property: almost all of the

points in the ternary hypercube have 2
3
n ± O(

√
n) non-zero coordinates. As a result, we

can refine the convexity tester to only query the points in Up(y) whose number of non-zero

coordinates is at most 2
3
n + O(

√
n) to obtain the desired query complexity. The details of

the proof of Theorem 12.1.9 are presented in Chapter 15.

Non-Adaptive One-Sided Lower Bound: The lower bound in Theorem 12.1.10 is

obtained by considering the class of anti-slabs, which are defined by choosing a vector

v ∈ {0,±1}n with n/2 non-zero coordinates and taking the set of points {x ∈ {0,±1}n :

|⟨v, x⟩| > τ}. It is quite easy to find certificates of non-convexity for anti-slabs—the three

points −x, 0n, and x obtained by choosing x uniformly at random in the ternary hypercube

forms such a certificate with reasonably large probability whenever τ is small enough. How-

ever, we can eliminate these certificates of non-convexity if we “truncate” the anti-slabs by

including the set of points whose number of non-zero coordinates is below 2
3
n−O(

√
n), and

excluding the points whose number of non-zero coordinates is above 2
3
n+O(

√
n). We show

that any certificate of non-convexity for these truncated anti-slabs must have two points x, z

with a large difference between ⟨v, x⟩ and ⟨v, z⟩, but on the other hand, any small set of

queries has a low probability of including such a pair when v is chosen at random.

Sample-Based One-Sided Lower Bound: Finally, the proof of the lower bound Theo-

rem 12.1.11 again uses the outward-oriented poset and the connection between convex hulls

and the upwards sets Up(y) to show that any set of 3o(n) samples is unlikely to draw any

point y that is contained in the convex hull of the other sampled points and thus to have

any possibility of identifying a certificate of non-convexity of any set.
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12.3 Discussion and Open Problems

As far as we know, we are the first to study convex sets and their associated algorithmic

problems on the ternary hypercube. Thus there are many possible questions one could ask.

In this section we discuss a few such questions which we find most interesting.

Learning and sample-based testing. The most obvious question which our work leaves

open is that of determining the true sample complexity of learning and sample-based testing

of convex sets in the ternary hypercube, where our results leave a gap of 3Ω(
√
n) vs. 3Õ(n3/4).

By Theorem 12.1.3, our upper bound of Õ(n3/4) on the influence of convex sets is tight up

to a factor of log1/4 n, and therefore to improve our learning upper bound would require

another method.

Question 12.3.1. Can we close the gap of 3Ω(
√
n) vs. 3Õ(n3/4) for learning convex sets and

for sample-based convexity testing in {0,±1}n?

Testing with two-sided error. Our results for testing with queries apply only to case of

one-sided error. Earlier work on testing convex sets under the Gaussian distribution on Rn

with samples showed that, in that setting, two-sided error was more efficient than one-sided

[CFSS17b].

Question 12.3.2. Is there a two-sided error non-adaptive tester for domain {0,±1}n with

better query complexity than our one-sided error tester?

Our lower bound technique does not suffice for two-sided error. This is because the class

of anti-slabs, which we proved are hard to distinguish from convex sets using a one-sided

tester, can be distinguished from convex sets with two-sided error using only O(n) samples.

To do so, one may use the standard testing-by-learning reduction of [GGR98], together with

an O(n) bound on the VC dimension of the anti-slabs (which are essentially the union of

two halfspaces).
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Testing convexity in other domains. Our results show that queries can be more effec-

tive than samples for testing discrete convex sets in some high-dimensional domains. Is this

true for all discrete high-dimensional domains?

Question 12.3.3. What are the sample and query complexities for testing discrete convexity

over general hypergrids [m]n?

Note that our techniques do not immediately generalize to larger hypergrids, so answering

the last question even for the hypergrid {0,±1,±2}n requires some new ideas.

It would also be interesting to see if the gap between sample and query complexity also

holds for continuous sets.

Question 12.3.4. Can queries improve upon the bounds of [CFSS17b, HY22] for testing

convex sets with samples in Rn under the Gaussian distribution?

It is not clear if there is a formal connection between testing convex sets on the domain

{0,±1}n and on the domain Rn under the standard Gaussian distribution. One might expect

a connection here because the uniform distribution on {0,±1}n acts similarly to the Gaussian

in certain ways when n→∞. But we do not see how to construct direct reductions between

these two settings for the problem of convexity testing. Also, there is an intriguing analogy

between monotone subsets of {±1}n and convex subsets of Rn in the Gaussian space [DNS22].

How do convex subsets of {0,±1}n fit into this analogy?

12.4 Preliminaries: Convexity on the Ternary Hypercube

The main object of study in this paper is the ternary hypercube, an analogue of the Boolean

hypercube over the ternary set {0,±1}n. This set can be viewed as a discrete subset of Rn,

as a (hyper)grid graph in which two points x, y ∈ {0,±1}n are connected by an edge if and

only if
∑n

i=1 |xi−yi| = 1, and as a poset that we will describe in more detail in the subsection

below.
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The study of the ternary hypercube and more general grid graphs goes back at least to

Bollobás and Leader [BL91]. As a poset, its study goes back at least to Metropolis and

Rota [MR78]. The ternary hypercube appears to have some particularly elegant structure

that is not necessarily shared by larger hypergrids. We describe some of these fundamental

properties in the following subsections.

12.4.1 The Outward-Oriented Poset

We define a partial order over {0,±1}n, which puts the origin 0n as the minimum element

and the corners {±1}n as the maximum elements.

Definition 12.4.1 (Outward-Oriented Poset). We denote by ({0,±1}n,⪯) the n-wise prod-

uct of the partial order defined by 0 ≺ 1 and 0 ≺ −1. Equivalently, we write y ⪯ x when

∀i ∈ [n] : (yi ̸= 0 =⇒ xi = yi).

The outward-oriented poset can easily be extended to a lattice (by adding a global max-

imum point), though since we do not need this extension we do not pursue it here. The

outward-oriented poset appears naturally in many different contexts and, as a result, has

received different names. For instance, it arises in the study of the faces of the Boolean

hypercube [MR78], where it is sometimes called the “cubic lattice”, and in the study of

partial Boolean functions (see, e.g., [Eng97]). We use the name “outward-oriented poset” to

emphasize the fact that this poset is distinct from the partial order inherited from Rn.

Definition 12.4.2 (Upper Shadow). For any point y ∈ {0,±1}n, the upper shadow of y is

the set

Up(y) := {x ∈ {0,±1}n : y ⪯ x} .
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12.4.2 Convexity and Witnesses of Non-Convexity

Given a set of points X ⊆ {0,±1}n, we denote the convex hull of X by

Conv(X) :=

{∑
x∈X

λxx :
∑
x∈X

λx = 1 and λx ≥ 0, ∀x ∈ X

}
.

Definition 12.4.3 (Discrete Convexity). A set S ⊆ {0,±1} is convex if S = Conv(S) ∩

{0,±1}n.

Let ∆(S, T ) denote the cardinality of the symmetric difference between S and T . Given

S ⊆ {0,±1}n, we define dist(S, convex) as the minimum, over all convex sets T ⊆ {0,±1}n,

of ∆(S, T ) · 3−n. For brevity, we also sometimes use the notation ε(S) := dist(S, convex).

If ε(S) ≥ ε for some ε ∈ (0, 1), then we say that S is ε-far from convex.

Definition 12.4.4 (Violating Pairs). Consider S ⊆ {0,±1}n. If X ⊆ S and y ∈ Conv(X)∩

{0,±1}n, but y /∈ S, then we call (X, y) a violating pair for S. The pair is called minimal

if y /∈ Conv(X ′) for any strict subset X ′ ⊂ X.

All of our results exploit the following key property of the outward-oriented poset. This

fact captures the structure of {0,±1}n which we use throughout the paper.

Fact 12.4.5. If a violating pair (X, y) is minimal, then X ⊆ Up(y).

Proof. We have y =
∑

x∈X λxx where
∑

x∈X λx = 1. Moreover, the minimality of (X, y)

implies that λx > 0 for all x ∈ X. Now, let i ∈ [n] be some coordinate where yi ̸= 0. We

need to show that xi = yi for all x ∈ X. Without loss of generality, suppose yi = 1. Thus,

we have 1 =
∑

x∈X λxxi. If xi < 1 for some x ∈ X, then we would have
∑

x∈X λxxi < 1,

which is a contradiction.

Fact 12.4.6. Let S ⊆ {0,±1}n. The following two statements are equivalent.

• S is not convex.
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Figure 12.2: An illustration of {0,±1}2. Arrows indicate the direction of the partial order. The

red triangle shows the convex hull of X := {(−1, 1), (1, 0), (0, 1)}, which contains the origin. I.e.

(X, (0, 0)) is a minimal violating pair for X.

• There exists a minimal violating pair (X, y) for S.

Proof. Suppose there exists a minimal violating pair (X, y) for S. Since X ⊆ S, we have

Conv(X) ⊆ Conv(S) and so y ∈ Conv(S). Thus, y /∈ S implies S is not convex. Now suppose

S is not convex. Then there exists y ∈ (Conv(S) ∩ {0,±1}n) \ S. Let X ⊆ S be a minimal

set of points such that y ∈ Conv(X). The pair (X, y) is a minimal violating pair for S.

Fact 12.4.7. Consider S,Q ⊆ {0,±1}n. If Q does not contain any X ∪{y} such that (X, y)

is a violating pair for S, then there exists a convex set S ′ such that S ′ ∩Q = S ∩Q.

Proof. Let S ′ = Conv(S ∩Q) and consider an arbitrary y ∈ Q. We need to show that y ∈ S

if and only if y ∈ S ′. Clearly, y ∈ S implies y ∈ S ′. Now suppose y ∈ S ′ and note this

implies y ∈ Conv(S ∩Q) ⊆ Conv(S). Thus, if y /∈ S, then (S ∩Q, y) is a violating pair for S

and this contradicts our assumption about Q.

The following corollary is crucial for proving our lower bounds in Section 15.2 and Sec-

tion 15.3.

Corollary 12.4.8. Let T be a convexity tester for sets S ⊆ {0,±1}n with 1-sided error.

Suppose T rejects a set S after querying a set Q. Then Q contains some X ∪ {y} such that

(X, y) is a minimal violating pair for S.
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12.4.3 Concentration of Mass in the Ternary Hypercube

For x ∈ {0,±1}n, observe that ∥x∥1 = ∥x∥
2
2 is precisely the number of non-zero coordinates

of x. Moreover, each coordinate of a uniformly random x is non-zero with probability 2/3,

and so Ex∈{0,±1}n [∥x∥1] =
2n
3
. Standard concentration inequalities yield the following bound

on the number of points x ∈ {0,±1}n where ∥x∥1 is far from this expectation.

Fact 12.4.9. For every τ ≥ 0,

Px∈{0,±1}n

[∣∣∣∣∥x∥1 − 2n

3

∣∣∣∣ > τ

]
≤ 2 exp(−τ 2/2n).

Proof. We have ∥x∥1 =
∑n

i=1Xi where Xi = 1 with probability 2/3 and Xi = 0 with

probability 1/3. Thus, the bound follows immediately from Hoeffding’s inequality.

Given τ ≥ 0, we use the following notation to denote the inner, middle, and outer layers

of {0,±1}n with respect to distance τ :

Inn(τ) :=

{
x : ∥x∥1 −

2n

3
< −τ

}
,

Mid(τ) :=

{
x :

∣∣∣∣∥x∥1 − 2n

3

∣∣∣∣ ≤ τ

}
,

Out(τ) :=

{
x : ∥x∥1 −

2n

3
> τ

}
. (12.3)
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0n {±1}n

𝖬𝗂𝖽(τ)

𝖨𝗇𝗇(τ)

𝖮𝗎𝗍(τ)

y
X

2τ

2n
3 n0

Figure 12.3: This figure shows a pictorial representation of {0,±1}n as a poset. Any vertical slice

represents the set of all points with some fixed number of non-zero coordinates, and this number

is increasing from left to right. The left-most point is the origin and the right-most points are the

vertices of the hypercube {±1}n. The outward-oriented poset goes from left to right. The shaded

blue region emanating from y is the set Up(y) of points above y in the partial order. The set X

represents some minimal set of points for which y ∈ Conv(X) and thus y ≺ x for all x ∈ X, by

Fact 12.4.5.
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CHAPTER 13

The Influence of Convex Sets

In this chapter we prove that the maximum edge boundary of convex sets in {0,±1}n is

Θ̃(n3/4) · 3n, or equivalently that the influence is Θ̃(n3/4).

13.1 Upper Bound

We prove that convex sets in the ternary hypercube have influence Õ(n3/4). The main idea

in the proof is to relate the influence of a convex set S to the number of sign-changes in the

maximum of a set of one-dimensional random walks. The proof will consider a random walk

X(0),X(1), . . . ,X(m) starting from a random position in the middle layer of the ternary hy-

percube and moving randomly “outward” for m = O

(√
n

logn

)
steps, and count the number

of influential edges crossed near the “middle layers” by relating them to one-dimensional

random walks. We begin in Section 13.1.1 with definitions regarding the one-dimensional

random walks that we require and then in Section 13.1.2 show how they relate to the num-

ber of influential edges of S; finally, in Section 13.1.3 we prove the necessary bound on the

number of sign-changes of the one-dimensional random walks.

Notation. In this section it will be convenient to use bold letters like X for random

variables, with the non-bold letter X being reserved for a fixed instantiation of X.

13.1.1 One-Dimensional Random Walks and the Max-Walk

Let us define the types of one-dimensional random walks that will be necessary for our proof.
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Definition 13.1.1 (Random Walks). Let x = (x1, . . . , xm) ∈ Rm. Fix any permutation

σ : [m] → [m] and sign vector ε = (ε1, . . . , εm) ∈ {±1}m. For any a ∈ R, we define the

function W+a
x (t;σ, ε) for t ∈ {0} ∪ [m] as

W+a
x (t;σ, ε) :=


a if t = 0

a+
∑t

i=1 εixσ(i) if t > 0 .

The random walk W+a
x is defined by choosing a uniformly random permutation σ and vector

ε ∼ {±1}m and setting W+a
x (t) = W+a

x (t;σ, ε) for every t. If a = 0 we drop the superscript.

The main quantity of interest to us is the number of sign-changes of a random walk,

defined as follows.

Definition 13.1.2 (Crossing Number). Let W : {0} ∪ [m]→ R be any sequence. We define

the crossing number C(W ) as the number of sign-changes of W , defined as the number of

times t ∈ [m] such that either W (t) ≥ 0 > W (t− 1) or W (t) < 0 ≤ W (t− 1).

An important feature of our random walks will be that they have the Distinct Subset-Sum

(DSS).

Definition 13.1.3 (DSS RandomWalk). We say a sequence x ∈ Rm has the Distinct Subset-

Sum (DSS) property if for every two disjoint subsets A,B ⊆ [m], it holds that
∑

a∈A xa ̸=∑
b∈B xb. In particular, the random walk Wx satisfies

∀t ∈ [m] , P
σ,ε

[Wx(t;σ, ε) = 0] = 0 .

Note that, if x has the DSS property, then so does any subsequence of x.

We will require an upper bound on the crossing number of max-walks, which are random

walks defined as the maximum of a set of constituent walks of the type defined above.
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Definition 13.1.4 (Max-Walk). Let X be a set of sequences x ∈ Rm, and let a : X → R.

For a fixed permutation σ and vector ε ∈ {±1}m, define

M+a
X (t;σ, ε) := max

x∈X
W+a(x)

x (t;σ, ε) ,

and let the random walk M+a
X be defined as

M+a
X (t) := M+a

X (t;σ, ε)

where σ, ε are chosen uniformly at random.

The main fact about max-walks that we require is the following, which we prove in

Section 13.1.3.

Lemma 13.1.5 (Max-Walk Crossing Number). Let X be a set of sequences x ∈ Rm, each

having the DSS property, and let a : X → R. Then

E
[
C(M+a

X )
]
= O(

√
m) .

13.1.2 Upper Bound on the Number of Influential Edges of a Convex Set

We now prove the following upper bound on the influence of any convex set in the ternary

hypercube, restated below for convenience.

Theorem 12.1.4. If S ⊆ {0,±1}n is convex, then I(S) = O(n3/4 log1/4 n).

We require the following basic property of discrete convex sets.

Proposition 13.1.6. Let S ⊆ {0,±1}n be any discrete convex set. Then there is a finite

set of vectors V ⊆ Rn and thresholds τ : V → R, where each v ∈ V defines a halfspace

Hv := {x ∈ {0,±1}n : ⟨v, x⟩ < τ(v)}, such that S =
⋂

v∈V Hv. One may also assume

that V satisfies the property that, for every v ∈ V and every two disjoint subsets A,B ⊆ [n],∑
i∈A vi ̸=

∑
j∈B vj.
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Proof. Since S is the intersection of its convex hull Conv(S) with {0,±1}n, it may be written

as the intersection of {0,±1}n with a finite set of halfspaces with normal vectors V and

thresholds τ : V → R, and one may assume that none of the points in {0,±1}n lie on the

hyperplane boundary of any of the halfspaces. Then there is some δ > 0 such that the

minimum distance between a hyperplane and a point of {0,±1}n is at least δ · n. For each

v ∈ V , apply independent random perturbations to each coordinate to obtain v′i = vi + ri

where ri is drawn from [−δ, δ] uniformly at random. With probability 1, the resulting set

V ′ = {v′ : v ∈ V } satisfies the required conditions.

Proof of Theorem 12.1.4. Recall the definition of the edge-set E of the ternary cube from

eq. (12.1) and the set Mid(ℓ) from eq. (12.3). Given ℓ > 0, let

Eℓ = {(u, v) ∈ E : u, v ∈ Mid(ℓ)}

denote the set of edges lying in the middle ℓ layers of {0,±1}n. We consider the following

process which samples a random edge in {0,±1}n. Define ℓ :=
√
2n log n and m :=

√
n

logn
.

Let D denote the distribution over edges defined by the following procedure.

1. Sample X(0) ∼ Mid(ℓ).

2. Choose a random subset T ⊆ {i : X(0)
i = 0} with |T | = m of coordinates where X(0)

has a 0.

3. Let ε = (ε1, . . . , εm) ∈ {±1}m be independent Rademacher random variables and let

σ : [m]→ T be a random bijection.

4. For each s ∈ [m], let X(s) = X(s−1)+εseσ(s) = X(0)+
∑s

i=1 εieσ(i) where ej is the unit

vector with a 1 in coordinate j.

5. Choose s ∼ [m] and return the edge (X,Y ) = (X(s−1),X(s)).

Note that the above process can be equivalently defined as obtaining X(s) by selecting a
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uniform random coordinate i where X
(s−1)
i = 0 and flipping that bit to a random value in

{±1}, with equal probability. This results in a random walk X(0),X(1), . . . ,X(m) of length

m where each (X(s−1),X(s)) is a random out-going edge from X(s−1). We use two main

claims regarding this random walk to complete the proof of the theorem. The first is that

choosing an edge (X,Y ) ∼ D is approximately the same as choosing a uniformly random

edge from the middle layers.

Claim 13.1.7. Fix any z ∈ Mid(ℓ) and s ∈ [m]. Then P[X(s) = z] = Θ(3−n). I.e., each

step of the random walk is approximately uniformly distributed over Mid(ℓ). As a corollary,

for any fixed edge (u, v) ∈ Eℓ, we have

P(X,Y )∼D[(X,Y ) = (u, v)] = Θ

(
1

n · 3n

)
.

The second claim is that the probability of (X,Y ) ∼ D being an influential edge is small.

Claim 13.1.8. P(X,Y )∼D[S(X) ̸= S(Y )] ≤ O
(

1√
m

)
.

We defer the proof of both claims to the end of the section. We now prove Theorem 12.1.4

using Claim 13.1.7 and Claim 13.1.8 as follows. Let E denote the edges of the ternary

hypercube and let Eℓ = {(u, v) ∈ E : u, v ∈ Mid(ℓ)}. By definition,

I(S) =
1

3n
·
(
|{(u, v) ∈ E \ Eℓ : S(u) ̸= S(v)}|+ |{(u, v) ∈ Eℓ : S(u) ̸= S(v)}|

)
.

The first term is bounded using Fact 12.4.9 as

|{(u, v) ∈ E \ Eℓ : S(u) ̸= S(v)}|
3n

≤ |E \ Eℓ|
3n

≤ 2n · |Mid(ℓ)|
3n

≤ 2n · 2 exp(−ℓ2/2n) = O(1)
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since every vertex has degree at most 2n. The second term is bounded as

|{(u, v) ∈ Eℓ : S(u) ̸= S(v)}|
3n

=
|Eℓ|
3n
· P(u,v)∼Eℓ

[S(u) ̸= S(v)] ≤ 2n

3
· P(u,v)∼Eℓ

[S(u) ̸= S(v)]

≤ Ln · P(X,Y )∼D[S(X) ̸= S(Y )] ≤ L′n ·m−1/2 = L′ · n3/4 log1/4 n ,

where L,L′ are absolute constants. The first inequality follows simply from Eℓ ⊂ E and

|E| = 2n · 3n−1. The second inequality follows from Claim 13.1.7 and the third inequality

follows from Claim 13.1.8. This completes the proof of Theorem 12.1.4.

Let us now complete the deferred proofs of Claim 13.1.7 and Claim 13.1.8.

Proof of Claim 13.1.7. Let ∥z∥1 =
2n
3
+ r where |r| = O(

√
n log n). In order for X(s) = z to

occur we must have
∥∥X(0)

∥∥
1
= 2n

3
+ r − s. Thus, the probability is

P[X(s) = z] =
1

3n

((
n

2n
3
+ r − s

)
· 2

2n
3
+r−s

)
·
((

n
2n
3
+ r

)
· 2

2n
3
+r

)−1
=

1

3n
· 1
2s
·
(

n
2n
3
+ r − s

)(
n

2n
3
+ r

)−1
= Θ(3−n)

where the last step is due to the following fact:

If |r| ≤ O(
√
n log n) and s = O(

√
n

logn
), then

(
n

2n
3
+r−s

)(
n

2n
3
+r

)−1
= Θ(2s). As a corollary,

the number of points in the ternary cube with hamming weight 2n
3
+ r − s and 2n

3
+ r differ

by at most a constant factor.

This is proved as follows.(
n

2n
3
+r−s

)(
n

2n
3
+r

) =

(
2n
3
+ r
)
!
(
n
3
− r
)
!(

2n
3
+ r − s

)
!
(
n
3
− r + s

)
!
=

s−1∏
p=0

2n
3
+ r − p

n
3
− r + s− p

= 2s ·
s−1∏
p=0

n
3
+ r

2
− p

2
n
3
− r + s− p

= 2s ·
s−1∏
p=0

n
3
− r + s− p+ (3r

2
+ p

2
− s)

n
3
− r + s− p

= 2s ·
s−1∏
p=0

(
1 +

3r
2
+ p

2
− s

n
3
− r + s− p

)

Observe that the numerator inside the product is ±O(
√
n log n) since r is the dominating
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term and the denominator is Ω(n) since n/3 is the dominating term. Therefore, we have

(
n

2n
3
+r−s

)(
n

2n
3
+r

) = 2s ·

(
1±O

(√
log n

n

))s

= Θ(1) · 2s

since s = O(
√

n
logn

).

Proof of Claim 13.1.8. Let S be an intersection of halfspaces S =
⋂

v∈V Hv, with thresholds

τ : V → R, in the form promised by Proposition 13.1.6. In particular, each vector v ∈ V has

the DSS property (Definition 13.1.3). Fix any value of X(0) = X(0) and fix any permutation

σ and sign-vector ε = (ε1, . . . , εm) ∈ {±1}m in the definition of D, and consider the resulting

fixed values of X(0), X(1), . . . , X(m). Define a : V → R as a(v) = ⟨v,X(0)⟩ − τ(v).

For each v ∈ V , consider the sequences W
+a(v)
v := W

+a(v)
v (· ;σ, ε). For each X(s), observe

that X(s) ∈ Hv if and only if ⟨v,X(s)⟩ < τ(v), which is equivalent to the condition Wv(s) < 0,

since

W+a(v)
v (s) = a(v) +

s∑
j=1

εj · vσ(j) =

 ∑
i:X

(0)
i ̸=0

viX
(0)
i

− t(v) +
s∑

j=1

X
(s)
σ(j)vσ(j)

=

 ∑
j:X

(s)
j ̸=0

X
(s)
j vj

− t(v) = ⟨X(s), v⟩ − t(v) .

Therefore X(s) ∈ S if and only if W
+a(v)
v (s) < 0 for all v ∈ V , which is equivalent to

M+a
V (s) < 0 where M+a

V is the max-walk (recall Definition 13.1.4). Then for fixed sequence

X(0), . . . , X(m) and uniformly random s ∼ [m], the probability that (X(s−1), X(s)) is an

influential edge is equal to
C(M+a

V )

m
. Therefore, taking σ and ε to be random, we have

P
(X,Y )∼D

[S(X) ̸= S(Y )] =
1

m
· E
[
C(M+a

V )
]
= O(

√
m) ,

where the final bound is due to Lemma 13.1.5, since each vector in V was assumed to have
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the DSS property. This concludes the proof of the claim.

13.1.3 Crossing Bound for the Max-Walk: Proof of Lemma 13.1.5

We prove an upper bound on the number of times the maximum of a set of one-dimensional

random walks can change sign. Let us define certain special events in a random walk.

Fix any walk time m and let W : {0} ∪ [m]→ R. We define:

• A downcrossing of W is a time t ∈ [m] such that W (t) < 0 ≤ W (t− 1). C↓(W ) is the

number of downcrossings of W .

• An upcrossing of W is a time t ∈ [m] such that W (t) ≥ 0 > W (t). C↑(W ) is the

number of upcrossings of W .

• A downwards level return of W is any time t such that either:

– IfW (0) ≥ 0 then the smallest time t ∈ [m] such thatW (t) < W (0) is a downwards

level return.

– For any upcrossing s of W , the first time t > s such that W (t) < W (s) is a

downwards level return.

We write L↓(W ) for the number of downwards level returns of W .

• The downwards level decrease times of W is the unique sequence s1 < s2 < · · · defined

inductively as follows.

– If W (0) ≥ 0 then s1 is the first time such that W (s1) < W (0). Otherwise let t be

the first upcrossing of W . Then s1 is the first time such that W (s1) < W (t).

– For i > 1, if W (si−1) ≥ 0 then si ∈ [m] is the smallest time such that W (si) <

W (si−1). Otherwise, if W (si−1) < 0, then let t be the first upcrossing t > si−1

and define si as the first time si > t such that W (si) < W (t).

We write S↓(W ) for the number of downwards level decreases of W .

287



• The upwards level increase times of W is the unique sequence t1 < t2 < · · · defined

inductively as follows.

– If W (0) < 0 then t1 is the first time such that W (t1) > W (0). Otherwise let s be

the first downcrossing of W . Then t1 is the first time such that W (t1) > W (t).

– For i > 1, if W (ti−1) < 0 then ti is the first time such that W (ti) > W (ti−1).

Otherwise if W (ti−1) ≥ 0, then let s be the first downcrossing s > ti−1 and define

ti as the first time ti > s such that W (ti) > W (s).

We write S↑(W ) for the number of upwards level increases of W .

The main technical tool in our analysis is the following version of Sparre Andersen’s

fluctuation theorem [Spa54], as found in [BB23, Prop. 4.1]. Recall the definition of Wx from

Definition 13.1.1 and the DSS property from Definition 13.1.3.

Theorem 13.1.9 (Sparre Anderson; see [BB23], Proposition 4.1). For every m ∈ N, if

x ∈ Rm has the DSS property, then the random walk Wx satisfies

P [∀t ∈ [m] : Wx(t) > 0] = g(m) :=
1

4m

(
2m

m

)
.

We define a random variable R on the positive integers with

∀t ∈ N , P [R = t] := g(t− 1)− g(t) =
1

4t−1

(
2(t− 1)

t− 1

)
− 1

4t

(
2t

t

)
,

where we define g(0) := 1. For each m ∈ N, we also define a random variable Q(m) by the

following process. Set q = 0 and X = 0; while X < m, increment q and set X ← X + R

where R is a new independent copy of the random variable defined above. Then set Q(m) = q

once this process terminates; note that Q(0) = 0. Observe that for every k ∈ N,

P
[
Q(m) ≥ k

]
= P [R1 +R2 + · · ·+Rk ≤ m]
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where each Ri is an independent copy of R, and

E
[
Q(m)

]
=

m∑
t=1

P[R = t] ·
(
1 + E

[
Q(m−t)]) .

The following holds due to Theorem 13.1.9.

Proposition 13.1.10. Let x ∈ Rm have the DSS property, let a ∈ R, and let s1, t1 denote

the first downwards level decrease time and upwards level increase times of W+a
x , respectively.

Then for all z ∈ [m],

1. If a ≥ 0 then P[s1 = z] = P[R = z]; and,

2. If a < 0 then P[t1 = z] = P[R = z].

Proposition 13.1.11. Let x ∈ Rm have the DSS property and let a ∈ R. Then

E
[
Q(m)

]
= E

[
S↓(W

+a
x ) + S↑(W

+a
x )
]
.

Proof. By induction onm. Form = 1 we have E
[
Q(1)

]
= P[R = 1] = 1/2 and E [S↓(W

+a
x ) + S↑(W

+a
x )] =

1/2 since the random walk has probability 1/2 of increasing or decreasing in the first step;

if a ≥ 0 then the walk must decrease to create a downwards level decrease, while if a > 0

then the walk must increase to create an upwards level increase.

Now let m > 1. Suppose a ≥ 0 without loss of generality. Then the first level increase

or decrease is a downwards level decrease. Let s1 be the first downwards level decrease and

let y denote the random subsequence of x that remains after removing the first s1 elements

according to the random permutation σ. Then by induction and Proposition 13.1.10,

E
[
S↓(W

+a
x ) + S↑(W

+a
x )
]
=

m∑
t=1

P[s1 = t] ·
(
1 + E

[
S↓
(
W+Wx(s1)

y

)
+ S↑

(
W+Wx(s1)

y

) ∣∣ s1 = t
])

=
m∑
t=1

P[R = t] ·
(
1 + E

[
Q(m−t)]) = E

[
Q(m)

]
.

289



For a sequence W : {0} ∪ [m]→ R, write Z(W ) =
∑m

t=1 1 [W (t) ∈ {0,±1}].

Lemma 13.1.12. For any m, E [Z(W1⃗)] = O(
√
m).

Proof. We first bound the number of times t such that W1⃗(t) = 0. If t is odd then P[W1⃗(t) =

0] = 0. If t is even then there is a universal constant C such that

P[W1⃗(t) = 0] =
1

2t

(
t

t/2

)
≤ C · 1√

t
.

Therefore the expected number of times t with W1⃗(t) = 0 is at most

∑
t even

P[W1⃗(t) = 0] ≤ C ·
m∑
t=1

1√
t
= O(

√
m) .

Now observe that the expected number of times t where W1⃗(t) = 1 is the average of the

expected number of times where the shifted walks W+a

1⃗
is 0 on domain [m − 1], where

a = ±1, and the same holds for the number of times t where W1⃗(t) = −1.

Proposition 13.1.13. There exists x ∈ Rm with the DSS property such that

E [S↓(Wx) + S↑(Wx)] ≤ E [Z(W1⃗)] .

As a consequence, E
[
Q(m)

]
= O(

√
m).

Proof. Let δ := 1
3m

. Let x := 1⃗ + z where z ∼ [−δ, δ]m uniformly at random. Note that

x has the DSS property with probability 1. For any fixed z ∈ [−δ, δ]m, any permutation σ,

and any r ∈ {±1}n, write Wx(t) := Wx(t;σ, ε) for x = 1⃗ + z. Then we have Wx(t;σ, ε) ∈

[W1⃗(t;σ, ε) − 1/3,W1⃗(t;σ, ε) + 1/3]. Now fix any z ∈ [−δ, δ]m such that x = 1⃗ + z has the

DSS property; we show that it satisfies the required condition.

Let s1 < s2 < · · · < sk be the downwards level decreasing or upwards level increasing

points forWx, let s0 = 0, and observe that a point cannot be both downwards level decreasing

and upwards level increasing. We show by induction on i that |Wx(si)| ≤ 1+1/3 and therefore
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that W1⃗(si) ∈ {0,±1}. Since Wx(0) = 0 it must be that s1 is downwards level decreasing and

Wx(s1) < 0 = Wx(0) ≤ Wx(s1 − 1) and therefore Wx(s1) ≥ Wx(s1 − 1)− 1− 1/3 ≥ −4/3 so

it must be that W1⃗(s1) ∈ {−1, 0}. For i > 1, suppose that si is a downwards level decreasing

point. If there exists an upcrossing point a > si−1 such that Wx(si) < Wx(a), then we

observe that Wx(a − 1) < 0 ≤ Wx(a) and therefore Wx(a) < 1 + 1/3 so W1⃗(a) ∈ {0, 1}.

Now Wx(si) < Wx(a) ≤ Wx(si − 1) so it must be that −1 − 1/3 ≤ Wx(si) < 1 + 1/3 so

W1⃗(si) ∈ {0,±1}. On the other hand, if Wx(si−1) ≥ 0 and Wx(si) < Wx(si−1) then by

induction we have W1⃗(si−1) ∈ {0, 1}, and also Wx(si − 1) > Wx(si−1), so again we have

−1− 1/3 ≤ Wx(si) < 1 + 1/3 and therefore W1⃗(si) ∈ {0,±1}. A similar argument holds for

the upwards level increasing points.

The conclusion now follows from Proposition 13.1.11 and Lemma 13.1.12, since for the

x ∈ Rm defined in the current proof,

E
[
Q(m)

]
= E [S↓(Wx) + S↑(Wx)] ≤ E [Z(W1⃗)] = O(

√
m) .

Proposition 13.1.14. Let X be a set of sequences x ∈ Rm each having the DSS property,

and let a : X → R be arbitrary. Then

E
[
L↓(M

+a
X )
]
≤ E

[
Q(m)

]
.

Proof. By induction on m. For m = 1, the probability that M+a
X has a downwards level

return is at most 1/2, because if M+a
X (0) ≥ 0, all of the maximizing constituent walks x ∈ X

satisfying Wx(0)
+a(x) = M+a

X (0) must decrease. If M+a
X (0) < 0 then there is no downwards

level return for m = 1.

Let m > 1 and consider two cases. First assume that M+a
X (0) ≥ 0 and let x ∈ X be

an arbitrary constituent walk satisfying W
+a(x)
x (0) = M+a

X (0). For fixed permutation σ and

sign vector ε, let s1 be the first downwards level return point of M+a
X (· ;σ, ε) and let s′1 be

the first downwards level return point of W
+a(x)
x (· ;σ, ε). Note that s′1 ≤ s1 since M

+a
X is the
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maximum of its constituents.

Now we may write

E
[
L↓(M

+a
X )
]
=

m∑
s=1

P[s1 = s]
(
1 + E

[
L↓
(
M+b

Y

) ∣∣ s1 = s
])

,

where Y denotes the set of vectors X after removing the first t coordinates according to the

random permutation σ and b : Y → R is the starting point b(y) = W
+a(x)
x (t) of each walk

y ∈ Y obtained from the original vector x ∈ X by removing the first t coordinates according

to σ. By induction, this is

E
[
L↓
(
M+b

Y

) ∣∣ s1 = s
]
≤ E

[
Q(m−s)] .

Now we write s1 = s′1 + (s1 − s′1) where the second term is non-negative. Then

E
[
L↓(M

+a
X )
]
≤

m∑
s=1

P [s′1 + (s1 − s′1) = s] ·
(
1 + E

[
Q(m−s)])

=
m∑
t=1

P[s′1 = t]
m−t∑
s=0

P [s1 − s′1 = s | s′1 = t]
(
1 + E

[
Q(m−(s+t))

])
.

The inner sum is a convex sum of terms 1 + E
[
Q(m−(s+t))

]
which are each bounded by

1+E
[
Q(m−t)] because E [Q(k)

]
≥ E

[
Q(k′)

]
when k ≥ k′. We also have P[s′1 = t] = P[R = t]

due to Proposition 13.1.10. Therefore,

E
[
L↓(M

+a
X )
]
≤

m∑
t=1

P[R = t]
(
1 + E

[
Q(m−t)]) = E

[
Q(m)

]
.

We must now handle the case whereM+a
X (0) < 0. Let t be the smallest time whereM+a

X (t) ≥

0. Then

E
[
L↓(M

+a
X )
]
=

m∑
t=1

P[t = t] · E
[
L↓
(
M+b

Y

) ∣∣ t = t
]
,

where Y and b are defined similarly as before, as the sequences X after removing the first
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t coordinates according to the random permutation σ and b(y) = W
+a(x)
x (t) is where the x

walk ended up at time t. This new walk starts above 0 so the above argument applies and

the conclusion holds.

We can now prove Lemma 13.1.5.

Proof of Lemma 13.1.5. First observe that C(M+a
X ) ≤ 2C↓(M

+a
X )+1 so it suffices to bound

C↓(M
+a
X ). By definition it holds that C↓(M

+a
X ) ≤ L↓(M

+a
X ), so by Proposition 13.1.14 and

Proposition 13.1.13, we have

E
[
C↓(M

+a
X )
]
≤ E

[
Q(m)

]
= O(

√
m) .

13.2 Lower Bound

Recall the definition of the influence of a set in the ternary hypercube given in eq. (12.2).

In this section, we show that there exists a convex set whose influence is Ω(n3/4), nearly

matching the upper bound given in Theorem 12.1.4.

The construction of the high-influence set is obtained by considering the intersection of

2
√
n random halfspaces whose distance from the origin is Θ(n3/4). This approach is inspired

by [Kan14, Theorem 2], who showed that in the Boolean hypercube, an intersection of k

random halfspaces with an appropriately chosen distance from the origin will have expected

influence Ω(
√
n log k). In the ternary hypercube, this type of argument still works as long

as k ≤ 2O(
√
n). This type of construction was also used by Nazarov [Naz03] to show the

existence of convex sets in Rn whose Gaussian surface area is Ω(n1/4), which matches the

O(n1/4) upper bound proven by Ball [Bal93].

13.2.1 A Convex Set with Large Influence

We prove the following theorem.
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Theorem 12.1.3. There exists a convex set S ⊆ {0,±1}n with influence I(S) = Ω(n3/4).

Proof. Recall that the edges of {0,±1}n are the directed pairs of points (x, y) such that there

exists i ∈ [n] for which xi = 0, yi ∈ {±1} and xj = yj for all j ̸= i. We will use the following

claim which is also used by Kane (see [Kan14, Lemma 7] and its proof).

Claim 13.2.1. For any n and ε ∈ [2−n, 1/2], there exists τ = Θ(
√

n log 1/ε) such that

Px∼{±1}n

[
n∑

i=1

xi > τ

]
≥ ε.

Let ε = 2−
√
n and choose τ = Θ(

√
n log 1/ε) = Θ(n3/4) so that

ρ := Pz∼{±1}2n/3

[∑
i

zi > τ

]
≥ ε (13.1)

as guaranteed by Claim 13.2.1. The main technical lemma that allows our construction to

work is the following, which we prove in Section 13.2.2. Note that this lemma crucially uses

the assumption that τ = O(n3/4) and this is where the structure of the ternary hypercube

prevents this construction from obtaining sets with influence ≫ n3/4.

Lemma 13.2.2. For all n, all Ω(
√
n) ≤ τ ≤ O(n3/4), and all ℓ = O(

√
n),

P
x∼{±1}n+ℓ

[
n+ℓ∑
i=1

xi > τ

]
≤ O

(
P

x∼{±1}n

[
n∑

i=1

xi > τ

])
.

By Lemma 13.2.2 there are constants C0 < 1 < C1 such that for all ℓ ∈ [−
√
n,
√
n], we

have

C0ρ ≤ P
z∼{±1}2n/3+ℓ

[∑
i

zi > τ

]
≤ C1ρ. (13.2)

Define H := {x ∈ {0,±1}n :
∑n

i=1 xi > τ}. Let Lm = {x ∈ {0,±1}n : ∥x∥1 = m} and note
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that

P
z∼{±1}2n/3+ℓ

[∑
i

zi > τ

]
= P

z∼L2n/3+ℓ

[∑
i

zi > τ

]
and so eq. (13.2) tells us that the density of H in L2n/3+ℓ only differs by a constant mul-

tiplicative factor for any ℓ ∈ [−
√
n,
√
n]. We abuse notation and write H(x) = 1(x ∈ H).

Now, let E√n denote the set of edges in {0,±1}n which have both endpoints in Mid(
√
n) and

let

Imid(H) :=
1

3n
· |{(x, y) ∈ E√n : H(x) ̸= H(y)}| (13.3)

denote the influence of H restricted to Mid(
√
n). We prove the following lower bound on

this quantity.

Claim 13.2.3. Imid(H) = Ω(ρ · τ).

Proof. Let I = [2n/3−
√
n, 2n/3 +

√
n− 1] and observe that we can write

Imid(H) =
1

3

n∑
i=1

E
x∼{0,±1}n

[
1(∥x∥1 ∈ I) ·

(
|H(xi←1)−H(xi←0)|+ |H(xi←0)−H(xi←−1)|

)]
=

1

3

n∑
i=1

E
x∼{0,±1}n

[
1(∥x∥1 ∈ I) · (H(xi←1)−H(xi←−1))

]
(13.4)

=
1

3
E

x∼{0,±1}n

[
n∑

i=1

1(∥x∥1 ∈ I)
(
H(xi←1)−H(xi←−1)

)]

=
1

3
E

z∼{0,±1}n

[∑
i:zi=1

1(
∥∥zi←0

∥∥
1
)H(z)−

∑
i:zi=−1

1(
∥∥zi←0

∥∥
1
)H(z)

]
(13.5)

where eq. (13.4) holds because H is a monotone function with respect to the standard partial

order, i.e., if xi ≤ yi for all i ∈ [n], then x ∈ H implies y ∈ H, and eq. (13.5) follows by the

observation that for each i, z ∈ {0,±1}n appears in the sum as H(z) whenever x = zi←0

and zi = 1, and appears in the sum as −H(z) whenever x = zi←0 and zi = −1. Let
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I ′ = [2n/3−
√
n+ 1, 2n/3 +

√
n− 1]. Thus, the above expression can be rewritten as

Imid(H) =
1

3
E

z∼{0,±1}n

[
H(z)

n∑
i=1

zi · 1(
∥∥zi←0

∥∥
1
∈ I)

]

≥ 1

3
E

z∼{0,±1}n

[
H(z)1(∥z∥1 ∈ I

′)
n∑

i=1

zi

]
>

τ

3
E

z∼{0,±1}n
[H(z)1(∥z∥1 ∈ I

′)] (13.6)

where the first inequality holds since I ′ ⊂ I and ∥z∥1 ∈ I ′ implies ∥zi←0∥1 ∈ I for all i ∈ [n].

The second inequality holds since H(z) = 1 if and only if
∑

i zi > τ . Finally,

E
z∼{0,±1}n

[H(z)1(∥z∥1 ∈ I
′)] =

1

3n
·

√
n−1∑

ℓ=−
√
n+1

∑
z∈L2n/3+ℓ

H(z)

=

√
n−1∑

ℓ=−
√
n+1

(
n

2n/3+ℓ

)
· 22n/3+ℓ

3n
· P
z∼{±1}2n/3+ℓ

[∑
i

zi > τ

]
(13.7)

and the quantity in the RHS is Ω(ρ) by the lower bound in eq. (13.2) and since
(

n
2n/3+ℓ

)
·

22n/3+ℓ = Ω(3n/
√
n) for all ℓ ∈ [−

√
n,
√
n] by an application of Stirling’s approximation.

Combining this with eq. (13.6), we conclude that Imid(H) = Ω(ρ · τ) as claimed.

Let k := max{⌊(4C1ρ)
−1⌋, 1} ≤ ε−1. Choose v(1), . . . , v(k) ∈ {±1}n i.i.d. uniformly at

random and for each i ∈ [k] define Hi = {x ∈ {0,±1}n : ⟨x, v(i)⟩ > τ}. Let S = ∩ki=1Hi

be the convex set formed by the intersection of the complements of the Hi’s. Note that

S = ∪ki=1Hi and I(S) = I(S) and thus it suffices to give a lower bound on I(S). Observe that

every edge (x, y) that is influential for Hi is guaranteed to be influential for S if x, y /∈ Hj

for all j ̸= i ∈ [k]. Moreover, if ∥x∥1 =
2n
3
+ ℓ where ℓ ∈ [−

√
n,
√
n], then

P
v(j)∼{±1}n

[x ∈ Hj] = P
v(j)∼{±1}n

[
⟨v(j), x⟩ > τ

]
= P

z∼{±1}2n/3+ℓ

[∑
i

zi > τ

]
≤ C1 · ρ.

Thus, by a union bound, the probability that a Hi-influential edge (x, y) with x, y ∈ Mid(
√
n)
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remains influential for S is at least 1−2(k−1) ·C1ρ ≥ 1−2 ·(4C1ρ)
−1 ·C1ρ ≥ 1/2. Therefore,

E
v(1),...,v(m)

[
I(S)

]
≥ 1

2

k∑
i=1

Imid(Hi) = Ω(k · ρ · τ) = Ω(τ) = Ω
(
n3/4

)
(13.8)

and this completes the proof.

13.2.2 Bounding the Density Increment of Halfspaces

In this section we prove Lemma 13.2.2. Our proof makes crucial use of the following tight

bound on the binomial coefficient
(

n
n−τ
2

)
for any τ = O(n3/4). Importantly, the bound is tight

up to constant multiplicative factors, as opposed to constant factors in the exponent.

Fact 13.2.4. If τ = O(n3/4), then
(

n
n−τ
2

)
= Θ

(
2n√
n
· exp(− τ2

2n
)
)
.

Fact 13.2.4 is a special case of a much more general approximation, Corollary 13.3.2,

specifically the case of s = 2. The proof is relatively tedious and so we relegate it to

Section 13.3. Using Fact 13.2.4 we are able to prove the following claim which is important

for the proof of Lemma 13.2.2.

Claim 13.2.5. For all n, all Ω(
√
n) ≤ τ ≤ O(n3/4), and all ℓ = O((n/τ)2),

2−(n+ℓ)

(
n+ ℓ
n+ℓ−τ

2

)
≤ O

(
2−n
(

n
n−τ
2

))
.

Proof. Since τ = O(n3/4), by Fact 13.2.4

2−(n+ℓ)

(
n+ ℓ
n+ℓ−τ

2

)
≤ 1

Θ(
√
n+ ℓ)

exp

(
− τ 2

2(n+ ℓ)

)
=

1

Θ(
√
n)

exp

(
− τ 2

2n(1 + ℓ/n)

)
.

Observe that

− τ 2

2n(1 + ℓ/n)
= − τ 2

2n

(
1− ℓ

n+ ℓ

)
= − τ 2

2n
+

τ 2ℓ

2n(n+ ℓ)
= − τ 2

2n
+O(1)
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since ℓ = O((n/τ)2). Therefore,

2−(n+ℓ)

(
n+ ℓ
n+ℓ−τ

2

)
≤ 1

Θ(
√
n)

exp

(
− τ 2

2n

)
≤ O

(
2−n
(

n
n−τ
2

))

where the second inequality is by Fact 13.2.4 since τ = O(n3/4).

We are now set up to prove Lemma 13.2.2.

Proof of Lemma 13.2.2. First, write

P
x∼{±1}n+ℓ

[
n+ℓ∑
i=1

xi > τ

]
= P

x∼{±1}n+ℓ

[
τ <

n+ℓ∑
i=1

xi ≤ 2τ

]
+ P

x∼{±1}n+ℓ

[
n+ℓ∑
i=1

xi > 2τ

]
. (13.9)

By Hoeffding’s inequality, the second term is

P
x∼{±1}n+ℓ

[
n+ℓ∑
i=1

xi > 2τ

]
≤ exp

(
−2 · (2τ)2

4(n+ ℓ)

)
= exp

(
−2τ 2

n

(
1− 1

(n/ℓ) + 1

))
= O

(
exp

(
−2τ 2

n

))
(13.10)

since τ2ℓ
n2 = O(1). Using Claim 13.2.5, the first term is

P
x∼{±1}n+ℓ

[
τ <

n+ℓ∑
i=1

xi ≤ 2τ

]
=

1

2n+ℓ

∑
τ ′∈(τ,2τ ] even

(
n+ ℓ
n+ℓ−τ ′

2

)

≤ O

 1

2n

∑
τ ′∈(τ,2τ ] even

(
n

n−τ ′
2

)
= O

(
P

x∼{±1}n

[
τ <

n∑
i=1

xi ≤ 2τ

])
. (13.11)
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We now just need to show that the first term dominates the second term. By Fact 13.2.4

P
x∼{±1}n

[
τ <

n∑
i=1

xi ≤ 2τ

]
=

1

2n

∑
τ ′∈(τ,2τ ] even

(
n

n−τ ′
2

)

≥ Ω

(
τ√
n
exp

(
−2τ 2

n

))
= Ω

(
exp

(
−2τ 2

n

))
. (13.12)

Plugging the bounds from eq. (13.10), eq. (13.11), and eq. (13.12) back into eq. (13.9) yields

P
x∼{±1}n+ℓ

[
n+ℓ∑
i=1

xi > τ

]
≤ O

(
P

x∼{±1}n

[
τ <

n∑
i=1

xi ≤ n3/4

])
.

13.3 Approximating Binomial Coefficients Near the Middle

In this section we prove the following approximation of the binomial coefficient
(

n
n−τ
2

)
.

Theorem 13.3.1. For all 0 ≤ τ ≤ n(1− Ω(1)), we have

(
n

n−τ
2

)
=

2n ·
√

2n
π(n−τ)(n+τ)

exp
(
τ ·
∑∞

k=1

(
τ
n

)2k−1 ( 1
2k−1 −

1
2k

)
+Θ

(
1
n

)) .
Theorem 13.3.1 implies the following corollary.

Corollary 13.3.2. For every constant integer s ≥ 1, when τ = O(n1− 1
2s ) then

(
n

n−τ
2

)
= Θ

(
2n√
n
· exp

(
−

s−1∑
k=1

τ 2k

n2k−1

( 1

2k − 1
− 1

2k

)))
.

Proof. Since τ = o(n), the square-root term in the numerator of Theorem 13.3.1 becomes
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Θ(1/
√
n). Since τ = O(n1−1/2s) we have

∞∑
k=s

τ 2k

n2k−1

(
1

2k − 1
− 1

2k

)
≤

∞∑
k=s

n1−k/s
(

1

2k − 1
− 1

2k

)

=
∞∑
k=0

(
1

n1/s

)k (
1

2(k + s)− 1
− 1

2(k + s)

)
= O(1).

I.e., the infinite summation converges when one ignores the first s− 1 terms.

13.3.1 Proof of Theorem 13.3.1

We use the following standard identities and approximations in the proof.

Fact 13.3.3. If N > 1, then

(
1 +

1

N

)N

= exp

(
1−

∞∑
k=1

(−1)k+1

Nk(k + 1)

)
and

(
1− 1

N

)N

= exp

(
−1−

∞∑
k=1

1

Nk(k + 1)

)
.

Proof. Consider the Taylor series expansions ln(1 + x) =
∑∞

k=1
(−1)k−1xk

k
and ln(1 − x) =

−
∑∞

k=1
xk

k
at x ∈ (0, 1). Since N > 1, we have 1/N ∈ (0, 1). Thus,

(
1 +

1

N

)N

= exp

(
N ln

(
1 +

1

N

))
= exp

(
N

∞∑
k=1

(−1)k−1

Nkk

)
= exp

(
1−

∞∑
k=1

(−1)k+1

Nk(k + 1)

)

and

(
1− 1

N

)N

= exp

(
N ln

(
1− 1

N

))
= exp

(
−N

∞∑
k=1

1

Nkk

)
= exp

(
−1−

∞∑
k=1

1

Nk(k + 1)

)
.

Fact 13.3.4 (Stirling’s Approximation). For all n ≥ 1

√
2πn ·

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn ·

(n
e

)n
e

1
12n .
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Therefore, for all n ≥ 1 and 1 ≤ k ≤ n− 1,

(
n

k

)
=

√
n

2πk(n− k)

(n
k

)k ( n

n− k

)n−k

·exp
(

1

12n+Θ(1)
− 1

12k +Θ(1)
− 1

12(n− k) + Θ(1)

)
.

We are now ready to complete the proof of the approximation for binomial coefficients.

Proof of Theorem 13.3.1. Letting k = n−τ
2

and substituting this value in Fact 13.3.4 yields

(
n

n−τ
2

)
=

√
2n

π(n− τ)(n+ τ)
·
(

n
n−τ
2

)n−τ
2
(

n
n+τ
2

)n+τ
2

· exp(Θ(1/n))

= 2n

√
2n

π(n− τ)(n+ τ)
·
(

1

1− τ
n

)n−τ
2
(

1

1 + τ
n

)n+τ
2

· exp(Θ(1/n)). (13.13)

We now apply Fact 13.3.3 and get the following bounds:

(
1− τ

n

) 1
2
(n−τ)

=
(
1− τ

n

)n
τ
· τ
2n

(n−τ)

= exp

((
−1−

∞∑
k=1

(τ
n

)k 1

k + 1

)
·
(
τ

2
− τ 2

2n

))

= exp

(
−τ

2
+

τ 2

2n

)
exp

((
τ 2

2n
− τ

2

) ∞∑
k=1

(τ
n

)k 1

k + 1

)
(13.14)

and

(
1 +

τ

n

) 1
2
(n+τ)

=
(
1 +

τ

n

)n
τ
· τ
2n

(n+τ)

= exp

((
1−

∞∑
k=1

(τ
n

)k (−1)k+1

k + 1

)
·
(
τ

2
+

τ 2

2n

))

= exp

(
τ

2
+

τ 2

2n

)
exp

((
− τ 2

2n
− τ

2

) ∞∑
k=1

(τ
n

)k (−1)k+1

k + 1

)
. (13.15)
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Taking the product of eq. (13.14) and eq. (13.15) gives

(
1− τ

n

) 1
2
(n−τ) (

1 +
τ

n

) 1
2
(n+τ)

= exp

(
τ 2

n

)
exp

(
τ 2

2n

∞∑
k=1

(τ
n

)k 1− (−1)k+1

k + 1

)
exp

(
−τ

2

∞∑
k=1

(τ
n

)k 1 + (−1)k+1

k + 1

)
.

In the first sum, the kth term cancels when k is odd and doubles when k is even. In the

second sum, the kth term cancels when k is even and doubles when k is odd. Thus,

(
1− τ

n

) 1
2
(n−τ) (

1 +
τ

n

) 1
2
(n+τ)

= exp

(
τ 2

n
+

(
τ 2

n

∞∑
k=2, even

(τ
n

)k 1

k + 1

)
−

(
τ

∞∑
k=1, odd

(τ
n

)k 1

k + 1

))

= exp

(
τ 2

n
+

(
τ

∞∑
k=2, even

(τ
n

)k+1 1

k + 1

)
−

(
τ

∞∑
k=2, even

(τ
n

)k−1 1
k

))

= exp

(
τ 2

n
+

(
τ
∞∑
k=1

(τ
n

)2k+1 1

2k + 1

)
−

(
τ
∞∑
k=1

(τ
n

)2k−1 1

2k

))

= exp

((
τ
∞∑
k=1

(τ
n

)2k−1 1

2k − 1

)
−

(
τ
∞∑
k=1

(τ
n

)2k−1 1

2k

))

= exp

(
τ
∞∑
k=1

(τ
n

)2k−1( 1

2k − 1
− 1

2k

))
(13.16)

and plugging this quantity back into eq. (13.13) completes the proof of Theorem 13.3.1.
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CHAPTER 14

Sample-Based Testing and Learning

In this chapter we prove upper and lower bounds for testing and learning convex sets on

{0,±1}n with samples.

14.1 Upper Bound

Theorem 12.1.5. There is a uniform-distribution learning algorithm for convex sets in

{0,±1}n which achieves error at most ε with time and sample complexity 3Õ(n3/4/ε). The

Õ(·) hides a factor of log1/4 n.

Our proof of Theorem 12.1.5 uses the standard approach of showing that when S is

convex, its low-degree Fourier coefficients contain most of the information about S. We can

then learn S by estimating its low-degree Fourier coefficients. This learning approach was

established by Linial, Mansour, and Nisan, and is referred to as the ”Low-Degree Algorithm”

[LMN93]. The section is organized as follows:

1. Section 14.1.1: Setup of the Fourier analysis over the ternary hypercube that will be

necessary for the learning result.

2. Section 14.1.2: Bounds on the Fourier concentration of convex sets, using the influence

bounds from Chapter 13.

3. Section 14.1.3: The low-degree learning algorithm and the proof of Theorem 12.1.5

and Corollary 12.1.6.
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14.1.1 Fourier Analysis Setup over the Ternary Hypercube

This subsection uses mostly standard techniques, following Chapter 8 of [O’D14] which

outlines how to generalize Fourier analysis of Boolean functions to arbitary product spaces.

Let π1/3 and π⊗n1/3 denote the uniform distribution over {0,±1} and {0,±1}n, respectively.

Let L2({0,±1}n, π⊗n1/3) denote the real inner product space of functions f : {0,±1}n → R with

inner product ⟨f, g⟩ = Ex[f(x)g(x)].

Definition 14.1.1 (Fourier Basis). A Fourier basis for L2({0,±1}, π1/3) is an orthonormal

basis ϕ−1, ϕ0, ϕ+1 : {0,±1}n → R with ϕ0 ≡ 1.

An important message in Chapter 8 of [O’D14] is that the specific choice of Fourier basis

does not matter. For concreteness, we can use the following basis given in Example 8.10 of

[O’D14].

Definition 14.1.2. Define the following Fourier basis for L2({0,±1}, π1/3): ϕ0 ≡ 1,

(ϕ−1(−1), ϕ−1(0), ϕ−1(1)) = (−
√
6/2, 0,

√
6/2), and

(ϕ1(−1), ϕ1(0), ϕ1(1)) = (−
√
2/2,
√
2,−
√
2/2).

It can be easily confirmed that the basis in Definition 14.1.2 is orthonormal and so is

indeed a Fourier basis. Now, given α ∈ {0,±1}n, we define ϕα ∈ L2({0,±1}n, π⊗n1/3) as

ϕα(x) :=
n∏

i=1

ϕαi
(xi) (14.1)

An immediate corollary of Proposition 8.13 from [O’D14] is that (ϕα)α∈{0,±1}n is a Fourier

basis for L2({0,±1}n, π⊗n1/3). I.e., ϕ(0,0,...,0) ≡ 1 and this basis is orthonormal. Definition 8.14

of [O’D14] now asserts that every function f : {0,±1}n → R can be written as

f(x) =
∑

α∈{0,±1}n
f̂(α)ϕα(x) where f̂ = ⟨f, ϕα⟩ = Ex[f(x)ϕα(x)] (14.2)
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is the Fourier coefficient of f on α.

14.1.2 Fourier Concentration for Convex Sets

We use the notation #α := |{i : αi ̸= 0}|. Our goal is now to prove the following fact about

the Fourier coefficients of convex sets. Here we abuse notation and use S : {0,±1}n → {±1}

defined as S(x) = (−1)1(x/∈S) to denote membership in the set S.

Lemma 14.1.3 (Fourier Concentration for Convex Sets). There exists a constant C > 0

such that for any convex set S ⊆ {0,±1}n and ε > 0,

∑
α : #α>C

ε
n3/4 log1/4 n

Ŝ(α)2 ≤ ε.

Proof. The idea is to make use of our upper bound on the influence of convex sets from

Theorem 12.1.4. We will need the following slightly different definition of the influence given

by [O’D14]. We will refer to this slightly different notion as Fourier influence and will

denote it by IFourier(f) for clarity. We will show that these definitions are equivalent up to

a constant factor. Below, for x ∈ {0,±1}n, i ∈ [n], and b ∈ {0,±1}, we write xi←b for the

vector obtained from x by setting xi to b.

Definition 14.1.4 (Def. 8.17 and 8.22, [O’D14]). For f ∈ L2({0,±1}n, π⊗n1/3) and i ∈ [n],

the projection of f onto i is

Eif(x) = Eb∈{0,±1}[f(x
i←b)].

The i’th coordinate Laplacian operator Li is defined as Lif := f−Eif . The Fourier influence

of coordinate i on f is IFourieri (f) = ⟨f,Lif⟩. The total Fourier influence of f is IFourier(f) =∑n
i=1 IFourieri (f).

We will need the two following identities.
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Proposition 14.1.5 (Prop. 8.16 and Prop. 8.23, [O’D14]). Every f ∈ L2({0,±1}n, π⊗n1/3)

satisfies the following two identities:

1.
∑

α∈{0,±1}n f̂(α)
2 = E[f 2]

2. IFourier(f) =
∑

α∈{0,±1}n #α · f̂(α)2

Lemma 14.1.6 (Fourier Concentration from Influence). Let F : {0,±1}n → {±1} be a class

of functions with Fourier influence upper bounded by IFourier(f) ≤ B for all f ∈ F . Then,

for any ε > 0, we have ∑
α∈{0,±1}n : #α>B/ε

f̂(α)2 ≤ ε.

Proof. By item (1) of Proposition 14.1.5, we have
∑

α f(α)
2 = 1. Thus,

∑
α #α · f̂(α)2 is

the expectation of #α when α is sampled with probability f̂(α)2. By item (2) of Proposi-

tion 14.1.5 we have ∑
α∈{0,±1}n

#α · f̂(α)2 = IFourier(f) ≤ B

and now applying Markov’s inequality yields the desired inequality.

Fact 14.1.7 (Equivalence of Influence Definitions). For every f : {0,±1}n → {±1}, we have

3

8
· IFourier(f) ≤ I(f) ≤ 3

4
· IFourier(f).

Proof. Let ∆i(f) denote the number of lines in the ternary cube of the form (xi←−1, xi←0, xi←1)

such that f{xi←−1,xi←0,xi←1} is not constant, and let ∆(f) =
∑

i∆i be the total number of

such lines. Recall the definition of I(f) from eq. (12.2) and observe that since every such line

contains either 1 or 2 influential edges, we have ∆(f) · 3−n ≤ I(f) ≤ 2∆(f) · 3−n. We will

show that IFourier(f) = 8
3
∆(f) · 3−n and combining these observations completes the proof.

We have

IFourieri (f) = ⟨f,Lif⟩ = Ex [f(x)(f(x)− Eif(x))] = Ex

[
1− f(x)Eb∈{0,±1}[f(x

i←b)]
]
. (14.3)
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Now, for a fixed x, consider the line in dimension i, containing x: ℓi(x) := (xi←−1, xi←0, xi←1).

Observe that if f is constant on ℓi(x), then 1−f(x)Eb∈{0,±1}[f(x
i←b)] = 0. If f is non-constant

on ℓi(x), then either it contains two +1’s and one −1 or vice versa. In both cases we have

Ea∈{0,±1}
[
1− f(xi←a)Eb∈{0,±1}[f(x

i←b)]
]
= 1− Eb∈{0,±1}[f(x

i←b)]2 = 8/9. (14.4)

Therefore,

IFourieri (f) = Ex

[
1− f(x)Eb∈{0,±1}[f(x

i←b)]
]
= ExEa∈{0,±1}

[
1− f(xi←a)Eb∈{0,±1}[f(x

i←b)]
]

=
8

9
Ex

[
1(f |ℓi(x) is not constant)

]
=

8

3
∆i(f) · 3−n

and summing over all i completes the proof.

Combining Theorem 12.1.4, Lemma 14.1.6, and Fact 14.1.7 completes the proof of

Lemma 14.1.3.

14.1.3 Low-Degree Learning Algorithm and Proof of Theorem 12.1.5

Recall that we are using the basis for the space of functions f : {0,±1}n → R given by

ϕα(x) :=
n∏

i=1

ϕαi
(xi) for every α ∈ {0,±1}n (14.5)

where α−1, α0, α1 are a basis for the space of functions f : {0,±1} → R defined as: ϕ0 ≡ 1,

(ϕ−1(−1), ϕ−1(0), ϕ−1(1)) = (−
√
6/2, 0,

√
6/2), and

(ϕ1(−1), ϕ1(0), ϕ1(1)) = (−
√
2/2,
√
2,−
√
2/2).

Recall that f̂(α) = Ex[f(x)ϕα(x)]. Our learning upper bound Theorem 12.1.5 follows imme-

diately by combining Lemma 14.1.3 with the following theorem.

Theorem 14.1.8 (Low-Degree Algorithm over {0,±1}n). Let F : {0,±1}n → {±1} be a
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class of functions such that for ε > 0 and τ = τ(ε, n),

∑
α∈{0,±1}n : #α>τ

f̂(α) ≤ ε.

Then F can be learned with time and sample complexity poly(nτ , 1/ε).

Proof. Let A := {α ∈ {0,±1}n : #α ≤ τ}. Note that |A| =
∑τ

∆=0

(
n
∆

)
· 2∆ = poly(nτ ). We

take s samples x1, . . . , xs ∈ {0,±1}n where s will be chosen later. For each α, we use the

empirical estimate Zα := 1
s

∑s
i=1 f(xi)ϕα(xi) and return the hypothesis

h(x) = sgn

(∑
α∈A

Zαϕα(x)

)
. (14.6)

Consider the event that |Zα− f̂(α)| ≤
√
ε/|A| for all α. We first show that this event occurs

with high probability, and then show that if it occurs, then h is a good hypothesis.

Claim 14.1.9. Set s := 3|A|2
ε

= poly(nτ , 1/ε). Then

Px1,...,xs

[
|Zα − f̂(α)| ≤

√
ε/|A| for all α ∈ A

]
.

Proof. Fix any α ∈ A and observe that Zα = 1
s

∑s
i=1Xi where X1, . . . , Xs are independent

copies of X = f(x)ϕα(x) for x ∼ {0,±1}n drawn uniformly at random. Note that in the

setting of the Boolean hypercube when one uses the standard basis of parity functions, the

random variable X always lies in {±1}. In the ternary hypercube this is not the case and

in fact |ϕα(x)| can be exponentially large. For instance ϕ1⃗(⃗0) = (
√
2)n. However, since

⟨ϕα, ϕα⟩ = 1 for all α, we’re able to show that Var(X) ≤ 1 and this allows us to obtain good

estimates for f̂(α). We have

σ2 := Var(X) = Ex[(f(x)ϕα(x))
2]− Ex[f(x)ϕα(x)]

2 = 1− f̂(α)2

by definition of the Fourier coefficient f̂(α) and the fact that our basis is orthonormal and
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so in particular Ex[ϕα(x)
2] = ⟨ϕα, ϕα⟩ = 1. Therefore, Var(Zα) =

σ2

s
= 1−f̂(α)2

s
≤ 1

s
. Note

also that E[Zα] = f̂(α). Now, by Chebyshev’s inequality, we have

P
[
|Zα − f̂(α)| ≥ k√

s

]
≤ P

[
|Zα − f̂(α)| ≥ k

√
Var(Zα)

]
≤ 1

k2
.

Setting k =
√

3|A| and recalling s = 3|A|2
ε

yields

P
[
|Zα − f̂(α)| ≥

√
ε/|A|

]
= P

[
|Zα − f̂(α)| ≥ k√

s

]
≤ 1

3|A|

and taking a union bound over all α ∈ A completes the proof of the claim.

Claim 14.1.10. Using the definition of h in eq. (14.6), if |Zα − f̂(α)| ≤
√
ε/|A| for all

α ∈ A, then Px∼{0,±1}n [h(x) ̸= f(x)] ≤ ε.

Proof. First, observe that

Px [f(x) ̸= h(x)] =
1

4
Ex

[
(f(x)− h(x))2

]
. (14.7)

Now, if f(x) ̸= h(x), then
(
f(x)−

∑
α∈A Zαϕα(x)

)2 ≥ 1 = 1
4
(f(x) − h(x))2. Clearly if

f(x) = h(x), then this inequality also holds. Thus, for any x ∈ {0,±1}n, this inequality

holds. Combining this observation with eq. (14.7) yields

Px [f(x) ̸= h(x)] ≤ Ex

(f(x)−∑
α∈A

Zαϕα(x)

)2
 . (14.8)

In the next calculation, for α /∈ A, let Zα := 0. Now, writing f(x) =
∑

α f̂(α)ϕα(x),

expanding the squared sum, applying linearity of expectation, and using the fact that

309



Ex[ϕα(x)ϕα′(x)] = ⟨ϕα, ϕα′⟩ = 0 for any α ̸= α′, we get

Ex

(∑
α

ϕα(x)
(
f̂(α)− Zα

))2
 = Ex

[∑
α,α′

ϕα(x)ϕα′(x)
(
f̂(α)− Zα

)(
f̂(α′)− Zα′

)]

=
∑
α,α′

⟨ϕα, ϕα′⟩
(
f̂(α)− Zα

)(
f̂(α′)− Zα′

)
=
∑
α

(
f̂(α)− Zα

)2
. (14.9)

Finally, using eq. (14.8), eq. (14.9), and the fact that |f̂(α)− Zα| ≤
√
ε/|A| for α ∈ A and∑

α/∈A f̂(α)2 ≤ ε, yields

Px [f(x) ̸= h(x)] ≤
∑
α

(
f̂(α)− Zα

)2
=
∑
α∈A

(
f̂(α)− Zα

)2
+
∑
α/∈A

f̂(α)2 ≤ |A| · ε

|A|
+ ε = 2ε

and this completes the proof of the claim.

Combining Claim 14.1.9 and Claim 14.1.10 completes the proof of Theorem 14.1.8.

14.2 Lower Bound

In this section we prove the following lower bound on the sample complexity of convexity

testing in the ternary hypercube.

Theorem 12.1.7. For sufficiently small constant ε > 0, every sample-based convexity

tester for sets in {0,±1}n has sample complexity 3Ω(
√
n).

Our proof of Theorem 12.1.7 follows the standard approach of defining a pair of distri-

butions Dyes,Dno over subsets of {0,±1}n such that the following hold:

• Dyes is supported over convex sets.

• Sets drawn from Dno are typically far from convex: PS∼Dno
[ε(S) = Ω(1)] = Ω(1).
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• The distributions over labeled examples from Dyes and Dno are close in TV-distance.

14.2.1 The Distributions Dyes and Dno

Our construction uses a variant of random Talagrand DNFs adapted to the case of testing

convexity in the ternary hypercube, {0,±1}n. In particular, our construction is inspired

by the approach of [BB21] and [CWX17] to prove lower bounds for testing monotonicity of

functions on the Boolean hypercube, {0, 1}n.

Let N = 3
√
n and choose N terms t(1), . . . , t(N) ∈ {0,±1}n i.i.d. according the following

distribution. For each i ∈ [N ]:

1. Form a (multi)-set Ti by taking
√
n independent uniform samples from [n].

2. For each a ∈ Ti, set t
(i)
a ∈ {±1} uniformly at random. For each a /∈ Ti, set t

(i)
a = 0.

Let ttt = (t(1), . . . , t(N)) denote the random sequence of terms. Recall the outward-oriented

poset (Definition 12.4.1) over {0,±1}n. For each i ∈ [N ], let

Ui :=
{
x ∈ Mid(

√
n) : x ⪰ t(i) and x ̸⪰ t(j) for all j ∈ [N ] \ {i}

}
(14.10)

denote the set of points in the middle layers of the ternary hypercube which satisfy the i’th

term, uniquely. Let U = ∪N
i=1Ui denote the set of points which satisfy a unique term.

Sets drawn from Dyes are generated as follows. Choose a uniform random assignment

ϕϕϕ : [N ]→ {0, 1}. For every x ∈ Mid(
√
n) define

Sttt,ϕϕϕ(x) =


1, if ∀i ∈ [N ], x ̸⪰ t(i)

0, if ∃i ̸= j ∈ [N ], x ⪰ t(i) and x ⪰ t(j)

ϕϕϕ(i), if x ∈ Ui.

Sets drawn from Dno are generated as follows. Choose a uniform random function rrr : U →
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{0, 1}. For each x ∈ Mid(
√
n) define

Sttt,rrr(x) =


1, if ∀i ∈ [N ], x ̸⪰ t(i)

0, if ∃i ̸= j ∈ [N ], x ⪰ t(i) and x ⪰ t(j)

rrr(x), if x ∈ U .

For x /∈ Mid(
√
n): if x ∈ Inn(

√
n), then both the yes and no distributions assign value 1 and

if x ∈ Out(
√
n), then both the yes and no distributions assign value 0.

Theorem 12.1.7 follows immediately by combining the following three lemmas.

Lemma 14.2.1. Every set in the support of Dyes is convex.

Proof. Let Sttt,ϕϕϕ ⊆ {0,±1}n be any set drawn from Dyes. We observe that Sttt,ϕϕϕ is non-

increasing with respect to the outward-oriented poset (recall Definition 12.4.1). Suppose

y /∈ Sttt,ϕϕϕ and let x ∈ Up(y) (recall Definition 12.4.2). We have three cases depending on

where y lies.

• y ∈ Out(
√
n): in this case x ∈ Out(

√
n) as well and so x /∈ Sttt,ϕϕϕ.

• y ⪰ t(i), t(j) for two terms i ̸= j ∈ [N ]: in this case we have x ⪰ y ⪰ t(i), t(j) and so

x /∈ Sttt,ϕϕϕ.

• y ∈ Ui for some i ∈ [N ] and ϕϕϕ(i) = 0: in this case we have x ⪰ y ⪰ t(i) and so either

(i) x ∈ Ui, (ii) there exists j ̸= i ∈ [N ] for which x ⪰ t(j), or (iii) x ∈ Out(
√
n). In all

cases x /∈ Sttt,ϕϕϕ.

Since Sttt,ϕϕϕ is non-increasing we have Up(y) ⊂ Sttt,ϕϕϕ and so by Fact 12.4.5 any minimal set of

points X such that y ∈ Conv(X) satisfies X ⊂ Sttt,ϕϕϕ. Thus Sttt,ϕϕϕ is convex by Fact 12.4.6.

Lemma 14.2.2. For Sttt,rrr ∼ Dno, we have Pttt,rrr[ε(Sttt,rrr) ≥ Ω(1)] ≥ Ω(1).

We prove Lemma 14.2.2 in Section 14.2.2.
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Lemma 14.2.3. Given a collection of points xxx = (x1, . . . , xs) ∈ ({0,±1}n)s and a set S ⊆

{0,±1}n, let (xxx, S(xxx)) := ((x1, S(x1)), . . . , (xs, S(xs))) denote the corresponding collection of

labelled examples. Let Eyes and Eno denote the distributions over (xxx, S(xxx)) when xxx consists

of s i.i.d. uniform samples and S ∼ Dyes and S ∼ Dno, respectively. If s ≤ 3
√
n/3, then the

total variation distance between Eyes and Eno is o(1).

We prove Lemma 14.2.3 in Section 14.2.3.

14.2.2 Sets Drawn from Dno are Far from Convex: Proof of Lemma 14.2.2

Proof. Recall the definition of the set U in eq. (14.10). We prove Lemma 14.2.2 by showing

that with constant probability over the terms ttt and the random function rrr : U → {0, 1},

there exists a collection L of Ω(3n) disjoint co-linear triples (x, y, z) such that x, z ∈ Sttt,rrr,

y /∈ Sttt,rrr, and y = 1
2
(x+z). The existence of such a set implies that ε(Sttt,rrr) ≥ 1

3
|L| ·3−n = Ω(1)

since the membership of at least one point from each of these triples would need to changed

in order to make the set convex.

We first show that there is a large collection T of disjoint co-linear triples lying in

Mid(
√
n). Then, by Claim 14.2.6 and fact that each point in U is included in the set

Sttt,rrr with probability 1/2, we can argue that with constant probability, a constant fraction

of the triples in T will be violations of convexity.

Claim 14.2.4. There exists a set T of Ω(3n) disjoint co-linear triples (x, y, z) such that (a)

x, y, z ∈ Mid(
√
n), and (b) y = 1

2
(x+ z).

Proof. Given z ∈ {0,±1}n−1 and b ∈ {0,±1}, let (b, z) ∈ {0,±1}n denote the point whose

first coordinate is b and the rest of the coordinates are given by z. Consider the set of disjoint

triples

T :=

{
((−1, z), (0, z), (+1, z)) : z ∈ {0,±1}n−1 such that ∥z∥1 ∈

[
2n

3
−
√
n,

2n

3
+
√
n− 1

]}
.
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Observe that every triple (x, y, z) is contained in Mid(
√
n) and clearly y = 1

2
(x + z). We

use the following fact to lower bound |T |. This fact follows from an application of Stirling’s

approximation.

Fact 14.2.5. For any N and ℓ ∈ [−O(
√
N), O(

√
N)], we have

(
N

2N
3

+ℓ

)
= Θ

(
1√
N
· 3N

22N/3+ℓ

)
.

By the above fact,

|T | =

√
n−1∑

ℓ=−
√
n

(
n− 1
2n
3
+ ℓ

)
22n/3+ℓ =

√
n−1∑

ℓ=−
√
n

Ω

(
1√
n− 1

· 3n−1

22(n−1)/3+ℓ

)
22n/3+ℓ = Ω(3n)

and this completes the proof of the claim.

Let T denote the set of Ω(3n) disjoint co-linear triples in Mid(
√
n) given by Claim 14.2.4.

We will need the following claim which shows that triples in T are contained in U with

constant probability.

Claim 14.2.6. For any (x, y, z) ∈ T , we have Pttt[x, y, z ∈ U ] ≥ 1
1,000,000

.

Proof. By definition of T we have x, y, z ∈ Mid(
√
n) and x1 = +1, y1 = 0, z1 = −1 and

xj = yj = zj for all j ∈ [2, n]. Recall the distribution over the terms t = (t(1), . . . , t(N))

defined in Section 14.2.1. Note that Pt(i) [t
(i) ⪯ y] = (

∥y∥1
2n

)
√
n since t(i) ⪯ y if and only if

each of the
√
n non-zero coordinates a of t(i) (a) is chosen as one of the non-zero coordinates

of y which happens with probability ∥y∥ /n and (b) t
(i)
a is set to ya which happens with

probability 1/2. Also note that for a term t(i), we have t(i) ≺ y implies t(i) ≺ x, z. Therefore,

Pttt[x, y, z ∈ Ui] = Pt(i) [t
(i) ⪯ x, y, z] ·

∏
j ̸=i

Pt(j) [t
(j) ̸⪯ x, y, z]

= Pt(i) [t
(i) ⪯ y] ·

∏
j ̸=i

Pt(j) [t
(j) ̸⪯ x, z]

= Pt(i) [t
(i) ⪯ y] ·

∏
j ̸=i

(
1− Pt(j) [(t

(i) ⪯ x) ∨ (t(i) ⪯ z)]
)
. (14.11)
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The first term is lower bounded by

Pt(i) [t
(i) ⪯ y] =

(
∥y∥1
2n

)√n
≥
( 2n

3
−
√
n

2n

)√n
=

1

3
√
n

(
1− 3

2
√
n

)√n
≥ e−3/2−o(1)

N
≥ 1

5N
. (14.12)

To lower bound the second term, observe that

Pt(i) [t
(i) ⪯ x] =

(
∥x∥1
2n

)√n
≤
( 2n

3
+
√
n

2n

)√n
=

1

3
√
n

(
1 +

3

2
√
n

)√n
≤ e3/2

N
≤ 5

N
(14.13)

and the same bound holds for the point z. Therefore, by a union bound Pt(i) [(t
(i) ⪯ x)∨(t(i) ⪯

z)] ≤ 10/N . Plugging this bound along with eq. (14.12) into eq. (14.11) and summing over

all i ∈ [N ] yields

Pttt[x, y, z ∈ U ] =
N∑
i=1

Pt(i) [t
(i) ⪯ y] ·

∏
j ̸=i

(
1− Pt(j) [(t

(i) ⪯ x) ∨ (t(i) ⪯ z)]
)

≥ N · 1

5N
·
(
1− 10

N

)N

which is at least 1
1,000,000

and this completes the proof.

Now, for a set Sttt,rrr ∼ Dno, let

Tviol = {(x, y, z) : x, z ∈ Sttt,rrr and y /∈ Sttt,rrr}

denote the set of triples in T that are violations of convexity for Sttt,rrr. By definition of Dno

and using Claim 14.2.6, for any fixed (x, y, z) ∈ T , we have

P[(x, y, z) ∈ Tviol] = Pttt[x, y, z ∈ U ] · Prrr[rrr(x) = rrr(z) = 1, rrr(y) = 0 | x, y, z ∈ U ] ≥ 1

8, 000, 000
.
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Therefore, Ettt,rrr[|T \ Tviol|] ≤ |T |(1− 1
8,000,000

) and so by Markov’s inequality

Pttt,rrr

[
|Tviol| ≤

|T |
8, 000, 0002

]
≤ Pttt,rrr

[
|T \ Tviol| ≥ |T |

(
1− 1

8, 000, 0002

)]
= Pttt,rrr

[
|T \ Tviol| ≥ |T |

(
1− 1

8, 000, 000

)(
1 +

1

8, 000, 000

)]
≤ Pttt,rrr

[
|T \ Tviol| ≥ Ettt,rrr[|T \ Tviol|]

(
1 +

1

8, 000, 000

)]
≤ 1

1 + 1
8,000,000

= 1− 1

8, 000, 001
.

Finally, since |T | = Ω(3n), this gives us

Pttt,rrr [ε(Sttt,rrr) ≥ Ω(1)] ≥ Pttt,rrr

[
|Tviol| ≥

|T |
8, 000, 0002

]
≥ 1

8, 000, 001

and this completes the proof of Lemma 14.2.2.

14.2.3 Dyes and Dno are Hard to Distinguish: Proof of Lemma 14.2.3

Proof. Recall the definition of the set Ui in eq. (14.10). For a ̸= b ∈ [s], let Eab denote the

event that xa and xb belong to the same Ui for some i ∈ [N ]. Observe that conditioned on

∨a,bEab, the distributions Eyes and Eno are identical.

Let x, y ∈ {0,±1}n denote two independent uniform samples. We have

P[Eab] = Px,y,ttt

[
n∨

i=1

(x ∈ Ui ∧ y ∈ Ui)

]

=
n∑

i=1

Px,y,ttt [x ∈ Ui ∧ y ∈ Ui] =
N∑
i=1

Py,ttt[y ∈ Ui]
2 (14.14)

where the second equality holds since the Ui’s are disjoint and the third equality holds by

independence of x and y. Now, for a fixed i ∈ [N ], if y /∈ Mid(
√
n) observe that Pttt[y ∈ Ui] = 0

and if y ∈ Mid(
√
n), we have Pttt[y ∈ Ui] ≤ 5/N by eq. (14.13). Thus, Py,ttt[y ∈ Ui] ≤ 5/N and
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combining this with eq. (14.14) yields P[Eab] ≤ 25/N . Finally, by a union bound, we have

dTV(Eyes, Eno) ≤ Pxxx,ttt

 ∨
a̸=b∈[s]

Eab

 ≤ s2 · 25
N

= o(1)

since N = 3
√
n = ω(s2).
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CHAPTER 15

Non-Adaptive Testing with One-Sided Error

In this chapter we prove upper and lower bounds for non-adaptive convexity testing with

one-sided error in the ternary hypercube.

15.1 Non-Adaptive Upper Bound

We complete the proof of Theorem 12.1.9 in this section. The upper bound on the query

complexity for testing convexity non-adaptively with one-sided error is achieved by Algo-

rithm 6. (As a reminder, the notions of upward shadow Up(y) and middle layers Mid(ℓ) in

the algorithm are introduced in Definition 12.4.2 and eq. (12.3), respectively.)

Algorithm 6 Convexity tester for sets in {0,±1}n.
Input: A set S ⊆ {0,±1}n and a parameter ε ∈ (0, 1).
Set ℓ :=

√
2n ln 8/ε and repeat 4

ε
times:

1. Query y ∈ {0,±1}n uniformly at random.

2. If y ∈ S ∩Mid(ℓ), then query all points in Up(y) ∩Mid(ℓ).

3. If there exists X ⊆ S ∩ Up(y) ∩Mid(ℓ) such that y ∈ Conv(X), then reject.

Accept.

The analysis of Algorithm 6 relies on the following lemma regarding sets that are far

from convex.
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Lemma 15.1.1. Let S ⊆ {0,±1}n and ε ≤ ε(S). If ℓ =
√

2n ln 8/ε, then

|Conv
(
S ∩Mid(ℓ)

)
∩
(
S ∩Mid(ℓ)

)
| ≥ ε

2
· 3n.

In words, there are at least ε
2
· 3n points in the middle layers Mid(ℓ) that are not in S but

that lie in the convex hull of the portion of S in the middle layers.

Proof. Let T := Conv(S ∩Mid(ℓ)) ∩ {0,±1}n. Clearly, T is convex and so

ε(S) · 3n ≤ ∆(S, T ) = |T ∩ S|+ |T ∩ S|.

Now observe that S ∩Mid(ℓ) ⊆ T and so T ∩ S ⊆ Mid(ℓ). Thus, |T ∩ S| ≤ |Mid(ℓ)|. Next,

we have

|T ∩ S| = |T ∩ (S ∩Mid(ℓ))|+ |T ∩ (S ∩Mid(ℓ))| ≤ |T ∩ (S ∩Mid(ℓ))|+ |Mid(ℓ)|.

By Fact 12.4.9, |Mid(ℓ)| ≤ 2 exp(− ln(8/ε)) · 3n = ε
4
· 3n. Therefore, combining the above

yields

|T ∩ (S ∩Mid(ℓ))| ≥ ε(S) · 3n − 2|Mid(ℓ)| ≥
(
ε(S)− ε

2

)
· 3n ≥ ε(S)

2
· 3n

where the last step holds since ε ≤ ε(S).

We now prove the correctness of Algorithm 6. The tester always accepts when S is

convex, since in this case Conv(S ∩Mid(ℓ)) ⊆ S. Now suppose ε(S) ≥ ε. If y ∈ Conv(S ∩

Mid(ℓ))∩ (S ∩Mid(ℓ)), then there exists some X ⊆ S ∩Mid(ℓ) such that (X, y) is a minimal

violating pair. Crucially, Fact 12.4.5 guarantees that X ⊆ Up(y). Thus, if the tester picks

such a y in step (1), then it is guaranteed to reject S since step (2) queries all points in

Up(y) ∩ Mid(ℓ). Therefore, using Lemma 15.1.1, the probability that the tester rejects S
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after one iteration of steps 1-3 is at least

P
y∈{0,±1}n

[
y ∈ Conv(S ∩Mid(ℓ)) ∩ (S ∩Mid(ℓ))

]
≥ ε/2.

Thus, the tester rejects S with probability at least 1− (1− ε/2)4/ε ≥ 2/3.

We now bound the number of queries. I.e., we need to bound the size of Up(y) ∩Mid(ℓ)

when y ∈ Mid(ℓ). Note that each point in this set can be obtained by choosing a set of 2ℓ

coordinates where y has a zero, and then flipping each of these coordinates to a value in

{0,±1}. Therefore, when y ∈ Mid(ℓ), we have

|Up(y) ∩Mid(ℓ)| ≤
(
n

2ℓ

)
· 32ℓ ≤ n4ℓ = n

√
32n ln 8/ε

and so the total number of queries made by the tester is at most 4
ε
·n
√

32n ln 8/ε. This completes

the proof of Theorem 12.1.9.

15.2 Non-Adaptive Lower Bound

We complete the proof of Theorem 12.1.10 establishing the lower bound on the query com-

plexity of non-adaptive convexity testers with one-sided error in this section. The starting

point for the lower bound is the notion of an anti-slab in {0,±1}n.

Definition 15.2.1 (Slab). Fix τ ≥ 1 and v ∈ {0,±1}n. The (τ, v)-slab is defined as

Slabτ,v = {x ∈ {0,±1}n : |⟨v, x⟩| ≤ τ} .

We refer to Slabτ,v as the (τ, v)-anti-slab.

Note that a slab is an intersection of two parallel halfspaces and so an anti-slab is a union

of two parallel and disjoint halfspaces. Anti-slabs are clearly non-convex, and the following

claim establishes an important property of any certificate of non-convexity for the anti-slab.
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In particular, it shows that if a set of queries contains a witness of non-convexity for the

(τ, v)-anti-slab, then it must contain two points x ∈ Slabτ,v and y ∈ Slabτ,v whose projections

onto v are separated by at least distance τ .

Claim 15.2.2 (The Structure of Violating Pairs for Anti-slabs). Suppose (X, y) is a violating

pair for the (τ, v)-anti-slab, Slabτ,v. Then there exists a point x ∈ X for which |⟨v, x−y⟩| > τ .

Proof. We have y ∈ Conv(X) and so
∑

x∈X λxx = y where
∑

x∈X λx = 1. Moreover, we have

y ∈ Slabτ,v and so

∑
x∈X

λx⟨v, x⟩ =

〈
v,
∑
x∈X

λxx

〉
= ⟨v, y⟩ ∈ [−τ, τ ]. (15.1)

We also have X ⊆ Slabτ,v, which implies |⟨v, x⟩| > τ for all x ∈ X. Therefore, by eq. (15.1)

there clearly has to be some x ∈ X where ⟨v, x⟩ is positive and some x′ ∈ X where ⟨v, x′⟩

is negative, for otherwise the LHS would be outside the interval [−τ, τ ]. In particular, this

implies ⟨v, x⟩ > τ and ⟨v, x′⟩ < −τ and so

⟨v, x′⟩ < −τ ≤ ⟨v, y⟩ ≤ τ < ⟨v, x⟩.

Thus, if ⟨v, y⟩ ≤ 0, then |⟨v, x− y⟩| > τ , and if ⟨v, y⟩ ≥ 0, then |⟨v, x′ − y⟩| > τ .

We now introduce our hard family of sets: truncated anti-slabs. (As a reminder, the sets

Inn(t) and Out(t) are defined in eq. (12.3).)

Definition 15.2.3 (Truncated Anti-slab). Fix τ ≥ 1, v ∈ {0,±1}n, and t ≥ 1. The t-

truncated (τ, v)-anti-slab is defined as follows:

TASτ,v,t =
(
Slabτ,v ∪ Inn(t)

)
\ Out(t).

In particular, we fix τ =
√
n, t = 0.7

√
n, and consider vectors v ∈ {0,±1}n for which

∥v∥1 = n/2. Thus, henceforth we will drop the subscripts τ, t and abbreviate TASv :=
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v
2τ

𝖨𝗇𝗇(t) 𝖮𝗎𝗍(t)
x1

x2

x3

y

Figure 15.1: An illustration of the t-truncated (τ, v)-anti-slab. The dotted circle represents {±1}n
and everything within it is {0,±1}n. The dark shaded regions are TASv. The pair ({x1, x2, x3}, y)
is a violation for the set.

TAS√n,v,0.7√n.

In other words, TASv is the set obtained by taking the (
√
n, v)-anti-slab, adding in all

points with fewer than 2
3
n − 0.7

√
n non-zero entries, and removing all points with more

than 2
3
n + 0.7

√
n non-zero entries. The intuition for why these sets are hard to test (for

non-adaptive testers with one-sided error) is as follows. Suppose a one-sided error tester T

has queried a set Q ⊂ {0,±1}n and rejects TASv. By Corollary 12.4.8, Q must contain a

minimal violating pair (X, y) for TASv. Note that X ⊂ TASv, y /∈ TASv, and y ≺ x for all

x ∈ X by Fact 12.4.5. By Claim 15.2.2, there is some x ∈ X such that |⟨v, x − y⟩| >
√
n.

Additionally, by the truncation, we have x /∈ Out(0.7
√
n) and y /∈ Inn(0.7

√
n). Since y ≺ x,

this implies ∥x− y∥1 ≤ 1.4
√
n. In summary, for T to reject TASv after querying Q, there

must be some y ≺ x ∈ Q for which |⟨v, x− y⟩| >
√
n, but also ∥x− y∥1 ≤ 1.4

√
n.

We consider the family of sets F = {TASv : ∥v∥1 = n/2}. By the above argument the

lower bound boils down to the following question: given y ≺ x such that ∥x− y∥1 ≤ 1.4
√
n,

how many vectors v ∈ {0,±1}n (with ∥v∥1 = n/2) exist for which |⟨v, x − y⟩| >
√
n? We

show that this number is upper bounded by |F | ·exp(−Ω(
√
n)) and so, by a union bound, the
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number of sets in F that T can reject after querying Q is bounded by |Q|2 ·|F |·exp(−Ω(
√
n)).

Therefore, for T to be a valid non-adaptive tester with one-sided error, we must have |Q|2 =

exp(Ω(
√
n)) and this gives the result. This argument is formalized in Section 15.2.1.

Of course, for the above argument to prove Theorem 12.1.10, we need to show that

truncated anti-slabs are Ω(1)-far from convex.

Lemma 15.2.4. Consider v ∈ {0,±1}n where ∥v∥22 = n/2. We have dist(TASv, convex) =

Ω(1).

The above Lemma 15.2.4 is a corollary of the following Lemma 15.2.5.

Lemma 15.2.5. Consider v ∈ {0,±1}n where ∥v∥1 = n/2. There exists a set L ⊂

({0,±1}n)3 of Ω(3n) disjoint colinear triples such that for every (x, y, z) ∈ L the follow-

ing hold.

1. y = x+z
2

and y ∈ Slab√n,v, x, z ∈ Slab√n,v.

2. x, y, z ∈ Mid(0.7
√
n).

In Section 15.2.1 we prove Theorem 12.1.10 using Claim 15.2.2 and Lemma 15.2.4. In

Section 15.2.2 we prove Lemma 15.2.5, which immediately implies Lemma 15.2.4.

15.2.1 Proof of the Lower Bound

Recall the definition of Inn(t), Mid(t), and Out(t) in eq. (12.3). Given v ∈ {0,±1}n, recall

that

TASv =
(
Slab√n,v ∪ Inn(0.7

√
n)
)
\ Out(0.7

√
n)

is the 0.7
√
n-truncated (

√
n, v)-anti-slab (Definition 15.2.3). Let V denote the set of all

vectors v ∈ {0,±1}n where ∥v∥22 = n/2. By Lemma 15.2.4, we have dist(TASv, convex) =

Ω(1) for all v ∈ V . Also note that |V | =
(

n
n/2

)
· 2n/2 = 23n/2/Θ(

√
n).
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Given x, y ∈ {0,±1}n, let ∆(x, y) = {i ∈ [n] : xi ̸= yi}. For v ∈ {0,±1}n, let NZv =

{i : vi ̸= 0}. Let T be a one-sided error, non-adaptive tester for convex sets in {0,±1}n.

Claim 15.2.6. Fix v ∈ V and suppose that T rejects TASv after querying a set Q ⊆ {0,±1}n.

Then there exists x ̸= y ∈ Q such that (a) |∆(x, y)| ≤ 1.4
√
n and (b) |∆(x, y) ∩ NZv| >

√
n.

Proof. By Corollary 12.4.8, Q must contain a minimal violating pair (X, y) for TASv. By

Claim 15.2.2, there exists x ∈ X for which |⟨y−x, v⟩| >
√
n. Observe that |∆(x, y)∩NZv| ≥

|⟨y − x, v⟩| and so (b) holds.

Now, since (X, y) is a violating pair we have x ∈ TASv and y /∈ TASv and since (X, y)

is minimal, Fact 12.4.5 implies that y ≺ x. By construction, we have Inn(0.7
√
n) ⊆ TASv

and Out(0.7
√
n) ⊆ TASv and so it must be the case that x, y ∈ Mid(0.7

√
n). In summary, x

can be obtained by changing at most 1.4
√
n zero values in y to non-zero values. Thus, (a)

holds.

Now, given x, y ∈ {0,±1}n, let

V (x, y) =
{
v ∈ V : |∆(x, y) ∩ NZv| >

√
n
}
⊆ V . (15.2)

Claim 15.2.7. If |∆(x, y)| ≤ 1.4
√
n, then |V (x, y)| ≤ O(|V |) · 2−0.08

√
n.

Proof. Note that |NZv| = n/2 for all v ∈ V and so |V (x, y)| can be bounded as follows.

In the following calculation, a vector v ∈ V (x, y) is chosen by picking ℓ >
√
n coordinates

from ∆(x, y) and n/2− ℓ coordinates from [n] \∆(x, y) to be non-zero. Then each of these
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coordinates is fixed to a value in {±1}.

|V (x, y)| =
∑
ℓ>
√
n

(
|∆(x, y)|

ℓ

)(
n− |∆(x, y)|

n/2− ℓ

)
2n/2

≤ 2n/2
(
n− |∆(x, y)|
n/2−

√
n

) ∑
ℓ>
√
n

(
|∆(x, y)|

ℓ

)

=
23n/2

Θ(
√
n)
· 2−|∆(x,y)|

∑
ℓ>
√
n

(
|∆(x, y)|

ℓ

)
= O(|V |) · 2−|∆(x,y)|

∑
ℓ>
√
n

(
|∆(x, y)|

ℓ

)
(15.3)

To bound the RHS, observe that 2−k ·
∑

ℓ>
√
n

(
k
ℓ

)
is precisely the probability that a random

subset S ⊆ [k] has size |S| >
√
n, which is a monotone increasing function of k. Thus, the

RHS of eq. (15.3) is a monotone increasing function of |∆(x, y)| and so is maximized by

setting ∆(x, y) = 1.4
√
n. Thus,

|V (x, y)| ≤ O(|V |) · 2−1.4
√
n
∑
ℓ>
√
n

(
1.4
√
n

ℓ

)

≤ O(|V |) · 2−1.4
√
n ·
√
n ·
(
1.4
√
n√

n

)
≤ O(|V |) · 2−0.08

√
n.

The last inequality holds by the well known bound
(
m
k

)
≤
(
em
k

)k
as follows. We have(

1.4
√
n√

n

)
=
(
1.4
√
n

0.4
√
n

)
≤ ( e·1.4

0.4
)0.4
√
n = 20.4 log2(1.4e/0.4)

√
n < 21.31

√
n.

Now, given a set of queries Q ⊆ {0,±1}n, let

V (Q) =
{
v ∈ V : ∃x ̸= y ∈ Q such that |∆(x, y) ∩ NZv| >

√
n and |∆(x, y)| ≤ 1.4

√
n
}
.

(15.4)

By Claim 15.2.6, if T rejects TASv after querying the set Q, then v ∈ V (Q). Informally,

V (Q) contains all v for which Q can contain a witness of non-convexity for the set TASv.
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Moreover, by Claim 15.2.7 and the union bound, we have

|V (Q)| ≤
∑
x,y∈Q

|V (x, y)| ≤ |Q|2 ·O(|V |) · 2−0.08
√
n. (15.5)

Now, let Q be the set of q queries sampled according to the distribution defined by the

non-adaptive, one-sided error tester T . Then, using linearity of expectation and the bound

from eq. (15.5) we obtain

∑
v∈V

P
Q
[T rejects TASv after querying Q] ≤

∑
v∈V

P
Q
[v ∈ V (Q)]

= E
Q
[|V (Q)|] ≤ q2 ·O(|V |) · 2−0.08

√
n

and therefore, by averaging over V , there exists v ∈ V such that

2

3
≤ P

Q
[T rejects TASv after querying Q] ≤ O(1) · q2 · 2−0.08

√
n (15.6)

where the first inequality is due to the fact that T rejects any Sv with probability at least

2/3. Therefore, it follows that q ≥ Ω(1) · 20.04
√
n.

15.2.2 Truncated Anti-slabs are Far from Convex

We complete the proof of Lemma 15.2.5 in this section, restated below for ease of reading.

Lemma 15.2.8. Consider v ∈ {0,±1}n where ∥v∥1 = n/2. There exists a set L ⊂

({0,±1}n)3 of Ω(3n) disjoint colinear triples such that for every (x, y, z) ∈ L the follow-

ing hold.

1. y = x+z
2

and y ∈ Slab√n,v, x, z ∈ Slab√n,v.

2. x, y, z ∈ Mid(0.7
√
n).

Proof. Let J = {j ∈ [n] : vj ̸= 0}. Without loss of generality, by a rotation, we may assume
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that vj = 1 for all j ∈ J . Note that under this assumption, we have ⟨v, x⟩ =
∑

j∈J xj for all

x ∈ {0,±1}n.

To construct our set L of disjoint colinear triples we start by constructing a matching of

Ω(3n) pairs (x, y) such that (a) y ∈ Slab√n,v ∩Mid(0.7
√
n), (b) x ∈ Slab√n,v ∩Mid(0.7

√
n),

and (c) y can be obtained from x by changing a subset of x’s +1 coordinates in J to 0. A

third point z is obtained by reflecting x across y, i.e., this same set of coordinates is changed

to −1 to obtain z. By symmetry we have ∥z∥1 = ∥x∥1, (x, y, z) are colinear, and the resulting

set of triples are disjoint. We also choose the original matching so that we will always have

z ∈ Slab√n,v ∩Mid(0.7
√
n) and so the resulting triple satisfies item (1) and (2) of the lemma,

i.e., it is a violation of convexity for the 0.7
√
n-truncated (

√
n, v)-anti-slab, TAS√n,v,0.7√n.

To construct our matching we use the following simple claim.

Claim 15.2.9. Let (U, V,E) be a bipartite graph and ∆ > 0 be such that (a) each vertex

x ∈ U has degree exactly ∆ and (b) each vertex y ∈ V has degree at least ∆. Then there

exists a matching M ⊆ E in (U, V,E) of size |M | ≥ (1− 1/e)|V |.

Proof. We construct a random map ϕ : U → V as follows. For each x ∈ U let ϕ(x) be a

uniform random neighbor of x. Observe that ϕ−1(y) ∩ ϕ−1(y′) = ∅ for all y ̸= y′ ∈ V . Thus,

given ϕ, we can obtain a matching Mϕ as follows: for each y ∈ V , if ϕ−1(y) ̸= ∅, then add

(x, y) to Mϕ for some arbitrary x ∈ ϕ−1(y). To lower bound the size of Mϕ, observe that

Eϕ [|Mϕ|] = |V | − Eϕ

[∑
y∈V

1(ϕ−1(y) = ∅)

]
= |V | −

∑
y∈V

P
ϕ

[
ϕ−1(y) = ∅

]
.

Now, if ϕ−1(y) = ∅, this means that all deg(y) ≥ ∆ neighbors of y were mapped to some

neighbor other than y, of which there are exactly ∆ in total. Therefore,

P
ϕ

[
ϕ−1(y) = ∅

]
=

(
1− 1

∆

)deg(y)

≤ 1/e

since deg(y) ≥ ∆. Thus, Eϕ [|Mϕ|] ≥ |V | · (1 − 1/e) and so there exists a matching M
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satisfying the claim.

Given x ∈ {0,±1}n and b ∈ {0,±1}, let |x|b,J = |{j ∈ J : xj = b}| and similarly for J .

Let I = [n/6 + 0.6
√
n, n/6 + 0.8

√
n]. We define the following sets.

X =

{
x ∈ {0,±1}n :

√
n <

∑
j∈J

xj < 1.2
√
n, |x|1,J ≥ |x|0,J + 1.1

√
n, and |x|0,J ∈ I

}
(15.7)

Y =

{
y ∈ {0,±1}n : − 0.1

√
n <

∑
j∈J

yj < 0.1
√
n, |y|1,J ≥ |y|0,J − 1.1

√
n, and |y|0,J ∈ I

}
(15.8)

Observe that X ⊂ Slab√n,v and Y ⊂ Slab√n,v. We now partition X and Y as follows. For

each ℓ ∈ N, let

Xℓ = {x ∈ X : |x|0,J = ℓ} and Yℓ =
{
y ∈ Y : |y|0,J = ℓ+ 1.1

√
n
}
. (15.9)

For each such ℓ we consider the bipartite graph (Yℓ, Xℓ, Eℓ) where there is an edge (y, x) ∈ Eℓ

if x can be obtained from y by choosing a set of 1.1
√
n coordinates from J where y has a 0

and flipping all of these bits to +1. Formally, (y, x) ∈ E iff ∃A ⊆ J of size |A| = 1.1
√
n such

that (a) for all j ∈ A, yj = 0, xj = +1, and (b) for all j ∈ [n] \ A, yj = xj. Observe now

that (a) every vertex in Yℓ has degree exactly ∆ :=
(
ℓ+1.1

√
n

1.1
√
n

)
, and (b) each vertex x ∈ Xℓ

has degree

deg(x) =

(
|x|1,J
1.1
√
n

)
≥
(
|x|0,J + 1.1

√
n

1.1
√
n

)
=

(
ℓ+ 1.1

√
n

1.1
√
n

)
= ∆

where the inequality is by definition of X and the second to last equality is by definition of

Xℓ. Thus, by Claim 15.2.9, there exists a matching Mℓ in (Yℓ, Xℓ, Eℓ) of size |Mℓ| ≥ Ω(|Xℓ|).
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Now, we obtain a set of disjoint colinear triples by taking

L =

(x, y, 2y − x) : (y, x) ∈
n
6
−1.2

√
n⋃

ℓ=n
6
−1.3

√
n

Mℓ

 .

Note that by construction every (x, y, z) ∈ L is a colinear triple in {0,±1}n.

Proof of items (1) and (2) of Lemma 15.2.5: By definition of the sets X and Y , we

have x ∈ Slab√n,v and y ∈ Slab√n,v. Note that z is obtained from x by flipping a set of 1.1
√
n

coordinates in J where x is +1 to −1. Therefore, we have z ∈ Slab√n,v since

∑
j∈J

zj =
∑
j∈J

xj − 2.2
√
n < 1.2

√
n− 2.2

√
n = −

√
n

where the inequality used the definition of the set X. Thus, item (1) of the lemma is satisfied.

Now, for every (x, y, z) ∈ L, we have

n

6
− 1.3

√
n ≤ |x|0,J = |z|0,J = |y|0,J − 1.1

√
n ≤ n

6
− 1.2

√
n

and so

|x|0,J , |z|0,J , |y|0,J ∈
[n
6
− 1.3

√
n,

n

6
− 0.1

√
n
]
.

Now, recalling that I = [n/6 + 0.6
√
n, n/6 + 0.8

√
n] and the the definition of X and Y , we

have

|y|0,J , |z|0,J , |x|0,J ∈
[n
6
+ 0.6

√
n,

n

6
+ 0.8

√
n
]
.

Combining the two bounds above we get that the number of 0-coordinates of x, y, and z

are all in the range [n/3 − 0.7
√
n, n/3 + 0.7

√
n]. Therefore, we have ∥x∥1 , ∥y∥1 , ∥z∥1 ∈

[2n/3− 0.7
√
n, 2n/3 + 0.7

√
n], i.e., item (2) of the lemma is satisfied.
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Proof that |L| ≥ Ω(3n): It remains to lower bound the size of L. Towards this, recall that

|L| =
1.3
√
n∑

r=1.2
√
n

|Mn/6−r| =
1.3
√
n∑

r=1.2
√
n

Ω(|Xn/6−r|). (15.10)

We use the following claim to simplify our calculation of |Xn/6−r|.

Claim 15.2.10. If |x|0,J < n/6− 1.2
√
n and

∑
j∈J xj >

√
n, then |x|1,J ≥ |x|0,J + 1.1

√
n.

Proof. Note that |x|1,J − |x|−1,J =
∑

j∈J xj >
√
n and

|x|1,J + |x|−1,J = n/2− |x|0,J > n/3 + 1.2
√
n > 2|x|0,J + 3.6

√
n.

Adding these inequalities and dividing by 2 yields |x|1,J > |x|0,J + 1.85
√
n > |x|0,J + 1.1

√
n.

In particular, recalling the definition of X in eq. (15.7), using Claim 15.2.10, we get that

for ℓ ∈ [n/6− 1.3
√
n, n/6− 1.2

√
n], we can write

Xℓ =

{
x ∈ {0,±1}n :

√
n <

∑
j∈J

xj < 1.2
√
n, |x|0,J = ℓ and |x|0,J ∈ I

}
.

I.e., the condition |x|1,J ≥ |x|0,J + 1.1
√
n in the definition of X is not needed to describe Xℓ

for the values of ℓ that we consider.

Claim 15.2.11.
∑1.3

√
n

r=1.2
√
n
|Xn/6−r| = Ω(3n).

Proof. For simplicity let us assume that
√
n is an integer. Note that

∑1.3
√
n

r=1.2
√
n
|Xn/6−r| is

equal to ∑
0.6
√
n≤q≤0.8

√
n

(
n
2

n
3
− q

)
2

n
3
−q

 ∑
1.2
√
n≤k≤1.3

√
n

(
n
2

n
3
+ k

) ∑
0.5
√
n<s<0.6

√
n

( n
3
+ k

n
6
+ k

2
+ s

) .

(15.11)
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The first term in the product in eq. (15.11) comes from the fact that the bits in J can be set to

anything, as long as the number of zero bits is in the interval I = [n/6+0.6
√
n, n/6+0.8

√
n].

Equivalently, the number of non-zero entries is in the interval [n/3− 0.8
√
n, n/3− 0.6

√
n].

Now consider the second term. The first sum is over the number of non-zero coordinates

in J , which is in the interval [n
3
+1.2

√
n, n

3
+1.3

√
n]. The second sum is over all ways to set

the non-zero coordinates in J so that they’re sum is in the interval (
√
n, 1.2

√
n). Notice that

if the number of non-zero coordinates is n
3
+k, then the sum of the non-zero coordinates is in

the interval (
√
n, 1.2

√
n) iff the number of +1’s is in the interval (n

6
+ k

2
+0.5

√
n, n

6
+ k

2
+0.6

√
n).

This explains the second sum in the term.

To bound the RHS of eq. (15.11), we use the following fact, which follows readily from

Stirling’s formula.

Fact 15.2.12. Let N ∈ N, t ∈ Z be such that |t| ≤ c
√
N for some constant c > 0. Then,

(a)

(
N

N/2 + t

)
= Θ

(
1√
N
· 2N

)
and (b)

(
N

2N/3 + t

)
= Θ

(
1√
N
· 3N

22N/3+t

)
.

By part (b) of Fact 15.2.12 we can bound the first term of eq. (15.11) as

∑
0.6
√
n≤q≤0.8

√
n

(
n
2

n
3
− q

)
2

n
3
−q =

∑
0.6
√
n≤q≤0.8

√
n

Ω

(
1√
n
· 3n/2

)
= Ω(3n/2). (15.12)

For the second term in eq. (15.11), we have k, s = Θ(
√
n). Thus, by part (a) of Fact 15.2.12

we have

( n
3
+ k

n
6
+ k

2
+ s

)
≥ Ω

(
1√
n
· 2

n
3
+k

)
=⇒

∑
0.5
√
n<s<0.6

√
n

( n
3
+ k

n
6
+ k

2
+ s

)
≥ Ω

(
2

n
3
+k
)
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and so the second term of eq. (15.11) is

∑
1.2
√
n≤k≤1.3

√
n

(
n
2

n
3
+ k

) ∑
0.5
√
n<s<0.6

√
n

( n
3
+ k

n
6
+ k

2
+ s

)
≥

∑
1.2
√
n≤k≤1.3

√
n

(
n
2

n
3
+ k

)
· Ω
(
2

n
3
+k
)

(15.13)

which is at least Ω(3n/2) by part (b) of Fact 15.2.12 since k = Θ(
√
n).

To summarize, the LHS in the claim statement is equal to the quantity in eq. (15.11),

which is a product of two terms, each of which is at least Ω(3n/2) (eq. (15.12) and eq. (15.13)).

Therefore,
∑1.3

√
n

r=1.2
√
n
|Xn/6−r| = Ω(3n) as claimed.

Using the bound from Claim 15.2.11 in eq. (15.10) finishes the proof of Lemma 15.2.5.

15.3 Sample-Based One-Sided Error Lower Bound

There is an upper bound of O(n3n) samples required for exactly learning any set S ⊆

{0,±1}n, due to the coupon-collector argument, and therefore there is an upper bound of

3O(n) on one-sided error testing of convex sets with samples. For large enough ε > 0, there

is a slightly improved bound of O(3n · 1
ε
log(1/ε)) for one-sided sample-based testers for

any property of sets on {0,±1}n (even in the distribution-free setting where the distribution

over {0,±1}n is arbitrary and unknown to the algorithm), due to the general upper bound of

O(VC(H)· 1
ε
log(1/ε)) on one-sided sample-based testing, where VC(H) is the VC dimension

of the propertyH [BFH21]. We show that the exponent O(n) is optimal for one-sided sample-

based testers.

Theorem 12.1.11. For sufficiently small constant ε > 0, sample-based convexity testing in

{0,±1}n with one-sided error requires 3Θ(n) samples.

Proof. It suffices to prove the lower bound, due to the discussion above. Suppose that T is a

one-sided sample-based tester and let Q ⊆ {0,±1}n denote a random set of s samples made
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by T . If T is given a non-convex set S ⊆ {0,±1}n, then it must reject S with probability

at least 2/3. Moreover, by Corollary 12.4.8, for T to reject S it must be that Q contains

a minimal violating pair (X, y) for S and, by Fact 12.4.5, X ⊆ Up(y). Thus, in particular,

there must exist two points x, y ∈ Q such that x ∈ Up(y). Thus, by the union bound over

all pairs in Q, we have

2/3 ≤ P
Q
[T rejects S] ≤ P

Q
[∃x, y ∈ Q : x ∈ Up(y)] ≤ s2 · P

x,y∈{0,±1}n
[x ∈ Up(y)] (15.14)

To compute this probability, notice that

x ∈ Up(y) if and only if ∀i ∈ [n] : (yi = 0) ∨ (xi = yi = 1) ∨ (xi = yi = −1)

and so

P
x,y∼{0,±1}n

[x ∈ Up(y)] = (5/9)n. (15.15)

Thus, combining eq. (15.14) and eq. (15.15), we have s ≥
√

2
3
(9
5
)n = 3Ω(n).
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