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Abstract  

The complexity of occupant behavior is one of the major contributors to uncertainty in building 
performance simulation. Agent-based modeling (ABM), a computational simulation technique, 
has gained attention in the occupant modeling field due to its capability and flexibility to capture 
the heterogeneity and dynamics of human behavior and the emergent effects. While multiple 
efforts in the past decade have demonstrated the usefulness of the ABM approach for simulating 
occupants and their impacts on building performance, several crucial matters in the ABM research 
still remain unexplored. This paper presents ten questions that highlight the most important issues 
regarding ABM research and applications for occupant behavior in the context of building 
performance simulation. The questions and answers aim to provide insights into current and future 
ABM research, and more importantly to inspire new significant questions from young researchers 
in the field. This research is part of the IEA EBC Annex 79 project, occupant-centric building 
design and operation. 

Keywords: agent-based modeling, occupant behavior, human–building interaction, built 
environment, building performance simulation. 

1. Introduction  

Modelers desiring more realistic representations of human behavior in an increasingly complex 
world are turning frequently to agent-based models. Agent-based modeling (ABM) is a powerful 
technique that offers a bottom-up understanding of how agents interact with one another and with 
their external environments, thereby enabling examination of complexities in human decision-
making and problem-solving processes [1]. Agent-based models are essentially computational 
simulation models that consist of dynamically interacting discrete agents or autonomous decision-
making entities [2]. Such models can provide significant benefits when simulating human behavior 
by considering the behavior of individual agents, their heterogeneity, their ability to learn and 
adapt, the interactions among agents, and any resultant emergent effects. ABMs have been 
employed in a variety of disciplines to solve complex problems by simulating dynamic human 
behavior; for example, in economics for testing the effectiveness of labor market policies [3], in 



transport planning for designing public transport networks [4], in public health research for 
forecasting emerging infectious diseases [5], and in the built environment for examining 
walkability, evacuation management or building energy performance [6]–[9]. The ABM 
applications within the indoor built environment, concerning single or a group of buildings in 
urban settings are the focus of this study. This paper specifically pertains to the occupant 
representation and modeling and simulation techniques for energy and environmental performance 
of buildings.  

The agent-based paradigm has become increasingly popular as an occupant modeling approach in 
buildings because of its potential to cope with the formally complex and dynamic aspects of 
occupant-related processes [10]. However, the limited and fragmented knowledge of the ABM 
procedures in building performance simulation (BPS) poses a challenge for collective learning and 
providing guidance to researchers. Berger and Mahdavi point out that the existing ABM 
applications in BPS motivated to capture human–building interactions are insufficiently grounded 
in an empirically based understanding of occupant behavior [11]. They argue that the extant 
literature rarely discusses the necessary computational loads, data sources for developing occupant 
agents, or decisions regarding the resolution of agents’ behavioral repertoire [12]. Other ABM 
researchers have also acknowledged the challenges related to domain knowledge, validation 
methods, and scalable coupling approaches [13], [14] . Furthermore, there are several other crucial 
matters that remain unexplored in ABM research, such as the suitable behavioral theories for 
semantic representation of OB (or structured information about occupant behavior processes such 
as learning or sensing), required advancements in computational formalism for integrating the 
human dimension within BPS, and the modeling heuristics necessary to guide researchers and 
practitioners for practical applications. Hence, it is timely to formulate and discuss 10 questions 
highlighting the potential of agent-based approaches for the representation of human dimension in 
BPS and to raise the most important issues confronted by researchers and practitioners in ABM 
applications for building performance. 

The main purpose of this paper is to improve the understanding of ABM in occupant behavior 
(OB) research and to motivate young researchers to create innovative applications in BPS. This 
research is part of the International Energy Agency’s Energy in Buildings and Communities’ (IEA 
EBC) Annex 79 project, occupant-centric building design and operation [15]. The paper poses the 
most pertinent 10 questions related to ABM of occupants that will be of interest to the architects, 
engineers and other stakeholders of the building simulation community and can guide future 
research. The answers offered to the questions are not intended to be conclusive or complete. 
Rather, they are meant to stimulate further debate and reflections on this subject. Figure 1 presents 
a thematic overview of the 10 questions in this paper. The first two capture the fundamentals that 
address the potential of ABM in representing human behavior (Question 1) and the need for such 
an approach in the building performance domain (Question 2). Question 3 offers an overview of 
the existing behavioral theories and how they can inform ABM of occupants. Question 4 explores 
diverse use cases across building life cycle phases that the ABM can support, while Question 5 



deals with the required level of detail needed to represent occupants in such applications. The next 
two questions provide insights on how ABM can be implemented for simulating energy and 
environmental performance of the buildings. Question 6 discusses the existing ABM tools to 
capture the human–building interactions, while Question 7 covers the available co-simulation 
approaches for integrating ABM with BPS tools. Questions 8 and 9 elucidate the issues related to 
data availability for programming occupant behavior and validation or verification methods for 
ABM, respectively. Question 10 identifies key challenges and future perspectives of ABM 
research in the building simulation community. 

 

Figure 1. Overview of the thematic research questions 

2. Ten questions (and answers) concerning agent-based modeling of occupant behavior  
 

2.1. What is agent-based modeling (ABM) in the context of occupant activities and behavior 
in the indoor built environment?  

Occupant behavior is one of the major factors contributing to the uncertainty in building 
performance, and its accurate representation is crucial for improving simulation results [16]–[18]. 
ABM is a computational simulation technique suitable for representing dynamic occupant actions 
and decision-making processes to capture realistic occupant behavior. The agent-based approach, 



having its roots in the human social and organizational behavior and individual decision-making 
domains, considers occupants as autonomous interacting agents [19]. Each agent can be an 
individual occupant or a group of occupants having identical or distinct characteristics. The agent-
based approach allows modeling the behavior of occupant agents; characterizing their attributes 
and interactions among themselves as well as with their environment.  

An agent-based model of occupants consists of three key elements: agents, environment, and 
agent-environment relationships [20], [21] which are interlinked through systematic specification 
of interdependencies and feedback [22]. An agent or a set of agents (or occupants) is an individual 
entity with certain attributes and rules that govern its behaviors and decision-making processes. 
An agent’s attributes can either be static (such as gender that does not change during the 
simulation) or dynamic (for example, an agent’s location within the building that may vary at each 
time step based on an agent’s actions). The behavior of an occupant agent can be represented 
through various methods such as simple rules involving if-then actions, a set of logical rules, 
empirically grounded behavioral models, or sophisticated neural networks and genetic algorithms. 
Typically, an occupant agent can interact with other agents through agent-agent relationships. 
These connections essentially deal with the processes of socially relevant occupant exchanges and 
specify when, how, and with whom the occupants interact. For example, an ABM within a shared 
office setting can be programmed to specify the temporal and spatial features of occupant-occupant 
interactions, such as mealtimes and/or when the occupants are present in common spaces such as 
conference rooms. Occupant agents may exhibit attributes of influencing and being influenced by 
others, learning from the experiences, responding to changes in the environment, and adapting 
their behaviors to meet desired objectives. Moreover, agents may be programmed to represent 
other human behavior properties, such as heterogeneity or stochasticity to account for spatial, 
temporal, and inter-occupant variability. The second component is an agent’s environment, which 
depicts the specific external context, often including a spatial position, within which agents exist 
and/or interact. The environment offers opportunities for the occupant agents to interact and could 
be the building or a location within the building (such as floor, room or zone), a building 
component (such as operable window, adjustable thermostat) or a building system (such as cooling 
and heating system, lighting system). The spatial attribute or agent’s location is also determined 
by the environment. The third component in the ABM is a set of agent-environment relationships 
that describes the interactions among occupant agent and their surrounding environment, i.e., 
human-building interactions. Some examples of agent-environment relationships in context of 
ABM of occupants could be adjusting thermostat setting, opening windows, adjusting blinds, or 
operating electronic devices. 

Some of the common modeling techniques to simulate the stochasticity in OB include Bernoulli 
process, discrete-time Markov chain and survival analysis [23]. The Bernoulli process simulates 
the probabilities of events that are independent of previous ones, for instance occupancy. The 
Markov chain models, on the contrary, depend on the previous state to predict the probability of 
an event occurring and are useful for representing individual occupant actions and the motivations 



for those actions. Survival processes evaluate the expected time duration of an event before a 
change occurs, such as the time duration until a window will remain closed. These techniques often 
fall short of modeling multiple OB at the same time, interactions within multi-occupant spaces and 
representing the inter-occupant diversity. The agent-based occupant models, which are an 
extension of Markovian models, can be advantageous to overcome these drawbacks because of 
their ability to specify multiple inter-occupant and occupant-environment interactions or model 
the sequence of OB. Furthermore, there are three central properties of the agent-based approach 
that set them apart from other occupant modeling techniques. First, because ABM is a bottom-up 
approach, it is capable of producing the effects of collective behavior that emerge from individual-
level occupant interactions. This feature is particularly useful in the BPS domain to study the 
impact of emergent effects that arise from social dynamics or cultural influences on occupant 
behavior [24]. Second, ABM has the potential to effectively account for multidisciplinary drivers 
of OB and simulate their cumulative impacts. [25]. For example, an ABM can link the social and 
psychological aspects of occupants’ thermal perception with physics-based thermal comfort 
models to produce spillover effects and simulate realistic comfort-related behavior. Furthermore, 
ABM allows the choice of modeling OB at any desired level of spatial and temporal resolution or 
semantic richness. For example, occupants and their activities can be defined at varied 
granularities, such as for a group of occupants at the whole building level or for an individual 
occupant within a single zone, to suit the specific use case. To summarize, ABM creates a flexible 
abstraction of the real world to simulate realistic OB [26].  

 
2.2. Why is ABM needed in the occupant behavior domain?  

As an advanced and high-resolution technique, agent-based modeling is argued to be a versatile 
and powerful approach for computational emulation of people’s inherently complex patterns of 
movement and behavior [12]. But to what extent and in which cases is the application of this 
technique in the BPS domain necessary, justified, or even critical? To answer this question, we 
need to start with the fact that BPS can be used for diverse purposes [27]. Application instances 
include, among others, building component analysis, whole building design support, building 
systems sizing and configuration, building operation optimization, and urban-scale energy and 
environmental performance assessment. A significant portion of such application cases require the 
consideration of occupants’ presence and actions in buildings [28]. It is thus supposed that the 
representation resolution of occupants in simulation studies should match the purpose of their 
employment [29]. The task-dependent selection process of a simulation model’s proper level of 
detail can be informed by the nature of the targeted output, which is typically expressed in terms 
of the values of relevant building performance indicators (BPIs). Consequently, to select a suitable 
simulation model and its embedded occupant model, the specifics of the building performance 
indicators must be taken into consideration. Detailed classifications of BPIs have been expanded 
upon elsewhere [30], [31]. It suffices here to mention three key attributes of BPIs: topical, spatial, 
and temporal. The topical attribute simply specifies the domain of the inquiry (e.g., thermal, visual, 



air quality). The spatial attribute denotes the physical object of the query (e.g., room, floor, whole 
building, urban neighborhood). Finally, the temporal attribute denotes a specific instance of time, 
or a time period for which the BPI value is obtained. 

Given these premises, we could systematically discuss the suitability of ABM toward the 
representation of occupants in BPS. Consider the case of thermal performance simulation and the 
associated data for respective occupant models. Such data pertains to occupants’ presence, their 
metabolism, their clothing, their passive effects (e.g., heat gain, carbon dioxide, water vapor 
emissions), and their interactions with the building’s control devices (e.g., thermostats, windows, 
shades, lights). Broadly speaking, occupant models can be categorized in view of their position in 
three-dimensional conceptual space involving the domain, the spatial dimension, and the temporal 
dimension. For example, in case of thermal simulations, a low-resolution model can be spatially 
single-zone and temporally annual. Furthermore, in a low-resolution representational approach, 
occupants may be represented as a single entity (e.g., the entire population of a building) that 
follows uniform and synchronized schedules and rules. In a high-resolution agent-based model, on 
the other hand, occupants would be represented as individuals, that can display very different 
preferences, habits, and independent patterns of presence and action in buildings. In this case, the 
occupants’ influence on the resulting high-resolution values of the relevant BPIs (energy use, 
indoor environment) is typically modeled probabilistically and dynamically. Therefore, not only 
individual parameters (e.g., an individual occupant’s thermal comfort preferences) but also 
socially relevant factors (and their influence on occupants’ disposition to specific behavioral 
attitudes) can be taken into consideration. As such, we suggest that ABM could be applied 
especially advantageously in those cases where the BPI values must be obtained at a very high 
level of temporal and spatial resolution. Moreover, ABM application appears to be particularly 
beneficial if the intention is to generate a realistic emulation of the presence and behavior of 
occupants in buildings via probabilistic formalisms that take functional, physiological, 
psychological, and social parameters into account. A detailed description of the ABM applications 
supporting various use cases and the level of detail required for representing OB is presented later 
in sections 2.4 and 2.5 respectively.   

The significant impact of OB on the energy and environmental analysis of buildings necessitates 
the adoption of the agent-based approach by stakeholders such as architects, engineers, energy 
modelers, facility managers and researchers. The architects can take advantage of the agent-based 
approach to incorporate OB and occupant needs in designing or retrofitting buildings while the 
energy modelers and researchers can improve the predictive performance of building simulation 
models by incorporating realistic OB through ABMs. Moreover, by capturing the inter-occupant 
diversity or inter-occupant interactions, ABM can support the engineers and facility managers to 
design, optimize and improve the operations of building systems.  

2.3. To which extent can behavioral theories inform ABM approaches to building 
performance simulation?  



A crucial aspect in representation of agents is the underlying behavioral framework that defines 
the specific attributes and set of rules. As such, ABM applications concerning occupants’ presence 
and behavior in buildings could presumably benefit from knowledge and insights entailed in 
relevant behavioral theories. The question is, however, if given their state of development and 
coverage, the state of existing behavioral theories could directly inform practically oriented ABM 
applications. To explore this point, findings of recent review efforts in this area [33], [34] may be 
useful. Specifically, application of behavioral theories to explain energy-related occupants’ 
behavior may be suggested to be of direct relevance to agent-based modeling utility in the building 
domain. A few instances of behavioral theories (and their explanatory applications) identified in 
these reviews are briefly described in the following: 

●    An extended version of the Theory of Planned Behavior (TPB) [35]–[37] which 
entails perceived habit as an additional construct, was used by Lo et al. [38]. The subject 
was the study of energy-saving behaviors in offices of four organizations in the 
Netherlands. Therefore, the premise was that repeated actions can evolve into habits. 
Specifically, office workers’ actions regarding operation of lights and shades, as well as 
the use of appliances and electronics, were observed and surveys regarding energy use were 
conducted. According to TPB, behavior results from the interplay of a number of constructs 
pertaining to attitudes (informed by previous experience), perceived norm (subject to 
individuals’ social environments and their moral principles), and perceived control. Lo et 
al. [38] combined the TPB constructs with habits and physical context to appraise 
participants’ survey data. They identified physical context, infrastructure, and organization 
as key influencing factors regarding occupants’ energy-saving behavior. Others find 
empirical support for distinguishing between reasoned and unplanned or habitual 
behaviors, where only the former can be explained by values, beliefs, and norms [39]. 
●    Social Practice Theory and Neoclassical Economic Theory [40]–[43] were adopted 
by DellaValle et al. [44] in their effort to explain the energy performance gap in the context 
of social housing. The underlying objective was to explore the potential for increasing the 
building retrofit effectiveness via behavioral and social levers. Collected data via a pre-
retrofit survey among occupants were analyzed. Neoclassical Economic Theory considers 
rational decision making, as well as biases resulting from monetary context responsible for 
individuals’ choices. In contexts where price signals are visible, such as owner-occupied 
buildings and tenanted buildings that pass energy costs through to occupants, both energy 
consumption and some energy end-use technology choices show price sensitivity [45]. 
However, according to the Social Practice Theory, the cultural context and the long-term 
socialization processes also play a role in the state and modifiability of individuals’ energy-
relevant behavior. The study implies that the comprehension of occupants’ comfort- and 
satisfaction-seeking activities can guide the process of identifying more effective retrofit 
solutions. 
●    The Self-Determination Theory and the Maslow’s Hierarchical Theory of Needs 
[46], [47] were referred to by Al-Marri et al. [48] in their analysis of the Qatari households’ 



energy consumption behavior and the residents’ views concerning energy and 
sustainability. The former theory suggests that mechanisms such as rewards or penalties 
can encourage individuals toward certain types of behavior. The latter theory implies that 
short-term comfort may override long-term impact considerations of individuals. Both 
quantitative data (occupants’ survey, reporting also on operation of buildings’ control 
devices) and qualitative data (interviews with energy experts) were collected for this 
analysis. Results were discussed in the context of the observation that according to both 
theories, occupants’ environmentally relevant behavior (including energy saving 
disposition) can be influenced by social encouragement, motivation, awareness, and 
education. 
●    The Norm Activation Model (NAM) [49], [50] informed a study and interventional 
experiment by Matthies et al. [51] involving staff in 15 public university buildings in 
Germany. The implementation of the intervention program led to the observation of 
behavioral changes with regard to energy use. Collected data for the study concerned 
energy use as well as both self-reported and observed occupant behavior. To explain the 
formation of a behavior, the NAM differentiates the four stages, namely: (1) attention (an 
individual’s needs, behavioral consequences awareness, perceived behavior control); 
(2) motivation (an individual’s personal norms, established social norms, and moral 
values); (3) evaluation (an individual’s view of a behavior’s outcome); and 
(4) commitment to or denial of a behavior. As such, the NAM focuses on activating and 
influencing personal norms. In the Matthies et al. [51] experiment, both information 
provision (regarding environmental behavior and its impact) and rewarding techniques 
were considered. The NAM’s explanatory stance concerning the conflict between personal 
norms and the social context could help to explain, in this case, how conformance to the 
expectations from colleagues and superiors could result in behavioral changes. 
●    A contribution by D’Oca et al. [52] aimed at the synthesis of a number of theoretical 
approaches toward an “interdisciplinary framework for context and occupant behavior in 
office buildings.” In this case, the proposed framework does not emerge from a 
fundamental reasoning concerning the choice of the theories or the explicit explanation of 
the logic behind their synthesis. Rather, the framework acted as the jumping-off point for 
a questionnaire-based assessment of an extensive number of variables that are suspected to 
potentially influence occupants’ adaptive actions. As such, the conceptual and 
terminological inhomogeneities of the underlying original theories can be suggested to 
persist in the synthesized framework. The framework was nonetheless used as the basis for 
the DNAS (Drivers, Needs, Actions, and Systems) ontology proposed to “represent energy-
related occupant behavior in buildings” [53], [54]. The subsequent occupant behavior 
eXtensible Markup Language (obXML) schema was developed under the IEA EBC Annex 
66 [16] project to represent agent behavior and interactions for modeling and simulation. 
●     A high-level theory of control-oriented human behavior in buildings was recently 
proposed by Mahdavi et al. [34]. This human-ecologically oriented theory [55], [56] is 



referred to as pragmatic, so as to distinguish it from theories of human behavior proposed 
in more specialized domains (e.g., psychology, neuroscience). The proposed theory is 
suggested to be specifically relevant to the development of occupant models in 
computational tools for building performance assessment in view of criteria such as energy 
efficiency and indoor environmental quality. Meeting occupants’ expectations and 
requirements implies specific indoor environmental conditions. On the other hand, 
occupants’ actions influence these conditions. The proposed theory facilitates the 
formalization of the perception and evaluation processes that precede occupants’ 
disposition to—and actual engagement in—behavioral manifestation [57]. Moreover, the 
theory is meant to facilitate the systematic formulation of a versatile ontology for occupant 
behavior and the instantiation of this ontology in computational applications. 

We discussed a number of behavioral theories and their explanatory applications in (mostly 
energy-related) applications pertaining to the indoor built environment. The discussion reveals 
both the potential and the limitations of the current state of these theories. Many instances of such 
theories were not intended for explicit incorporation in building performance simulation. Rather, 
their applications targeted toward explanation or interpretation of specific – and frequently limited 
– behavioral circumstances. As a consequence, a direct operationalization of the theories in terms 
of semantic engines for ABM routines faces a number of formidable challenges [10], [57]. One 
key challenge thereby pertains to the observation, that the specific behavioral scenarios addressed 
in these theoretical investigations do not lend themselves readily for generalization. Moreover, the 
deployed constructs across various theories are not entirely consistent. This generated obstacles 
that hamper interoperability and scalability. Some theory-driven studies lack sufficiently rich 
repertoire of behavioral patterns. Others have not gone through robust operationalization tests. 
However, the most significant impediment faced by all theory development efforts may be the lack 
of extensive repositories of empirical (observational) data on occupants’ behavior in specific, well-
characterized environmental and social contexts. The availability of such data repositories 
represents a necessary and critical condition for the proper evolution, advancement, and 
verification of behavioral theories in view of coverage and robustness [10]. The rapid progress in 
the development and computational implementation of formal ABM methods is hoped to 
encourage and accelerate international data collection activities to realize and calibrate the 
semantic representations of OB in ABM applications. 

2.4. What are the use cases of ABM of occupants?  

This section offers common knowledge on the potential use cases of building performance 
assessment that can benefit from an agent-based occupant modeling approach. Though Section 2.2 
presented a broad overview of this matter, here we elucidate the diverse ABM applications across 
different building life cycle stages, spatial scale, and specific settings. We selected building life 
cycle stages relevant to OB applications and therefore do not consider the construction phase 
applications of ABM. 



Building life cycle stages: ABM can be useful at the schematic design stage to capture the influence 
of OB on building design parameters and thereby assist in the performance-based design process. 
Optimization of design components such as windows or shades, or evaluation of technological 
measures such as lighting sensors or personalized controls, may also be possible through the agent-
based occupant models. For code compliance modeling, ABM can prevent the suboptimal design 
decisions made through conventional static OB assumptions that are known to yield inaccurate 
building performance simulation results [58]. Use cases concerning load calculations and 
estimating cooling or heating system sizing can also adopt the agent-based occupant representation 
to model movement and behavior for improving the prediction accuracy. Building operation and 
control applications can utilize the ABM technique for energy demand analysis, identifying 
optimal heating, ventilation, and air conditioning (HVAC) operation strategies [59], or designing 
model predictive controls (MPC) [60]. ABM is particularly useful for cases involving high 
temporal and/or spatial resolution such as forecasting peak hourly demand to arrive at effective 
demand management strategies or load shape analysis at the disaggregated zone level. Within 
measurement and verification applications, ABM may be advantageous in improving the 
prediction accuracy of energy savings measures by developing individual-level models that can 
simulate the heterogeneity and stochasticity of human behavior [61]. Similarly, use cases 
concerning the effectiveness of energy efficiency measures for thermal resilience during extreme 
weather events such as heat waves or cold snaps may also benefit from the ABM application. In 
the case of building stock renovation, comparing the efficacy of retrofit options by incorporating 
dynamic OB through ABM can help designers make informed choices. Evaluating the 
technological acceptance of different retrofit techniques is also possible by developing agent-based 
models that reflect the underlying behavioral processes and motivations that drive occupants’ 
preferences.  

Spatial scale: Use cases concerning energy and environmental performance of buildings at higher 
spatial extents such as urban or district level can take particular advantage of the ABM approach. 
For instance, developing household level agent-based occupant models to assess the macro effects 
of dynamic OB on residential district energy demand [62]. Additionally, ABM can also be 
employed for simulating bottom-up emerging OB; for example, the rebound effect of household 
energy use arising out of residential policy measures such as tiered utility rates or subsidized 
photovoltaics. Use cases at an urban scale that can be supported by ABM may include energy 
performance of city building stock to support efficiency programs, testing policy scenarios for 
creation of sustainable buildings in urban settings, and optimization of energy infrastructure such 
as smart building systems [63].  

Specific settings: Apart from the different building life cycle stages and spatial extent, the agent-
based approach is also valuable for several context-specific use cases. Within environments with 
greater human–building interaction, such as naturally ventilated buildings, ABM can be 
advantageous in determining comfort levels by realistically simulating occupants’ perception of 
and behavior in the indoor environment [8]. Agent-based approach is also helpful in examining 



the efficacy of energy-saving policies in shared environments, such as university classrooms or 
office spaces, where interactions and peer effects have significant influences on OB [9], [64], [65]. 
For occupancy-driven analysis, such as evaluating performance of lighting sensors [66] or HVAC 
demand in airport terminal buildings [67], agent-based occupant modeling approaches are useful 
to simulate the stochasticity in occupancy patterns. Other potential application of ABM could be 
within net-zero energy communities, where occupants’ acceptance of technological solutions is 
central to achieving the desired energy savings, or for cases where occupant-centric BPIs such as 
occupant hours and peak load per occupant hour are of interest. Interdisciplinary studies exploring 
psychological, social or cultural influence on energy use behavior can also implement ABMs to 
capture the underlying processes to reflect upon the OB insights. Use cases involving special 
groups of the population, such as elderly, poorly educated, or resource-constrained individuals 
having distinct patterns of behavior that cannot be predicted through the traditional OB models 
may also take advantage of the ABMs. For example, while assessing the thermal or visual 
performance in senior living housing, the agent-based approach will be able to account for the 
specific thermal and visual comfort needs of the elderly. Figure 2 summarizes the potential use 
cases of ABM of occupants for energy and environmental performance of buildings. 

 

Figure 2. Use cases of ABM for energy and environmental performance of buildings. 

2.5. What are levels of detail for ABM to support various use cases?  

An important matter that needs to be addressed in occupant modeling using the agent-based 
approach is at what level of detail (LoD) the occupants’ presence, movement, decision-making 
processes, interactions, learning, and other behavioral features should be represented. The concept 
of level of detail in ABM for the built environment essentially deals with the amount of information 
or the degree of granularity adopted in representing OB [68]. For instance, occupants’ presence 
and movement in BPS can be demonstrated through diverse modeling expressions and at various 
spatial resolutions such as at aggregated whole-building level through a set of rules, at floor level 
following a uniform distribution probabilistic expression, or even at individual zone level through 



a stochastic process. Apart from occupant actions, presence, or movement, behavioral capabilities 
such as sensing, learning, predicting, and inter-occupant interactions can also be described at 
different degrees of detail to model the dynamics of human behavior. 

The degree of detail incorporated within the ABM can have a significant impact on the model 
outcomes, and thus the selection of an adequate LoD for OB representation is of utmost 
importance. Choosing a simple theoretical model may oversimplify multifaceted OB, leading to 
building simulation results apart from reality (i.e., the building performance gap). Alternatively, a 
complex empirically grounded model with individual-level specifics may unnecessarily overload 
the model and require additional computing time or resources. Moreover, striking a balance with 
a mid-level ABM [69], which is realistic enough to represent the dynamics of OB, but does not 
incorporate too many elements that make the model difficult to interpret, has its own challenges 
related to model evaluation and validation. To date, there is no consensus on the adequate LoD for 
occupant modeling within the OB community. However, the need to articulate a level of detail for 
occupant behavior and how it is influenced by the objective of simulation have been discussed by 
a few ABM researchers. Chen et al. highlighted the need for systematic definitions at different 
resolutions to describe occupant behavior for different research purposes [70]. They defined three 
levels of definition for OB modeling but included basic OB attributes related to occupancy, 
appliance operations, and actions with no consideration to occupants’ perceptual and behavioral 
processes that are known to influence building simulation results. Berger and Mahdavi, in their 
review on ABM applications for the built environment, underlined the necessity to understand the 
extent to which decisions concerning granularity in OB modeling are influenced by the purpose of 
the simulation [12]. 

The modeling purpose or the desired outcomes of simulation must be adopted as the guiding 
heuristic for the selection of LoD. Additionally, the trade-offs between the BPIs and available 
resources must be considered. Explaining this in detail, there are three major rules that the 
modelers must ponder upon before arriving at the suitable LoD. First, the resolution of occupant 
representation should be able to capture substantial OB aspects that can influence the model 
outcomes. For instance, if the model objective is to investigate thermal comfort in a conditioned 
office building where occupants do not have control over HVAC operations, a coarse LoD would 
be sufficient. Conversely, if a naturally ventilated building is the object of simulation, the ABM 
would require a higher degree of detail to reflect the underlying behavioral processes and dynamics 
that govern occupants’ control-oriented actions such as opening/closing windows or turning on/off 
ceiling fans. Second, the LoD must strike an appropriate balance between the desired accuracy of 
results and the required effort in terms of data, computational resources, and time for model 
development. Given the availability of big data and advanced computational resources, developing 
complex ABM incorporating a higher degree of detail may seem feasible. Nevertheless, the 
modelers must ensure that if a granular LoD is able to yield acceptable results that serve the model 
purpose, a finer LoD that requires more effort must only be selected if there is substantial 
improvement in model outcomes. In other words, Einstein’s razor that states “Everything should 



be made as simple as possible, but not simpler” must be applied [71]. For instance, an ABM 
intended to compare the annual energy use of various retrofit design options for a residential 
district may adopt a simpler LoD. Incorporating complexities of occupant behavioral processes 
using a higher LoD may not have a considerable impact on the objective of simulation, i.e., relative 
performance, given the scale of model and the aggregated performance metric. And lastly, the data 
necessities to develop ABM must be carefully considered before selecting a certain LoD. 
Constructing a detailed ABM would require qualitative and quantitative data through 
measurement, surveys, or interviews. For process-driven environments, such as hospitals that 
provide a critical indoor environment for operations and patients, occupant-driven variable energy 
use may be limited, and therefore developing data-intensive ABM is not necessary. However, for 
residential or office buildings, developing ABM with a higher LoD may be feasible, given the 
larger representation of such building typologies in the existing literature and open-access OB 
databases, such as the ASHRAE Thermal Comfort Database [72] and the ASHRAE Global 
Occupant Behavior Database [73]. A detailed description of the OB data availability and 
requirements for ABM is addressed in Section 2.8. 

2.6. What are the modeling and simulation tools used for ABM? 

Building energy modelers usually rely on the available ABM toolkits and software platforms to 
develop their models. Some of these popular toolkits are AnyLogic, NetLogo, and Repast [12]. 
Researchers have also programmed ABM features by using general programming languages, such 
as MATLAB, Python, Java, or C++ [12], [74]–[77]. There are a few specific toolkits developed 
for occupant behavior modeling, such as the Occupancy Simulator app based on the obFMU, and 
the PMFserv platform [78]–[80]. This section offers an overview of the existing ABM tools and 
software platforms required to capture the human–building interaction realistically. 

In selecting toolkits and software platforms, modelers usually have a set of criteria to meet their 
specific modeling goals. There should be (1) a coupling mechanism between an ABM-based 
occupant model and other BPS models. The building and occupant interaction model consists of 
exchanging information in a way where a representative agent perceives a building environment 
and takes adaptive adjustments, such as adjusting the thermostat setpoint, dimming the lighting, 
and closing the blinds. There are several methods for coupling the two models, such as via 
functional mock-up unit (FMU) and direct coupling [81], [82]. A detailed discussion on the 
coupling methods is presented in Section 2.7. (2) An ABM software toolkit should be able to model 
real occupants with scalable attributes. An occupant agent may have only thermal comfort; other 
models could have demographic and value characteristics attributed to the agents [39]. Using these 
attributes, agents perceive and perform adaptive actions in relation to their environment. In a real-
world scenario, occupants’ decisions of the same built environment are often influenced by other 
occupants’ decisions. (3) A toolkit should allow a multi-agent system, in which each occupant-
agent can interact with other occupant-agents [53], [83]. Finally, one motivation for using the 
ABM modeling approach is to explore agents’ changing perceptions and behaviors over time. Most 



ABM modeling toolkits allow the agents to perform actions at time t by learning from their 
decisions and impacts at time t-- -1. Therefore, the toolkit must also have (4) the ability to observe 
evolutionary pathways of occupant behaviors and activities in simulation time. The criteria 
mentioned above inform our selection of ABM toolkits to be discussed for their current and 
potential use in occupant behavior modeling work. 

● AnyLogic is a Java-based modeling tool that allows several simulation approaches, such 
as discrete events, system dynamics, and agent-based [84] methods. The software toolkit 
has a proprietary license, but a free edition is available for noncommercial use. 

● NetLogo is a multi-agent Java-based modeling tool that is known for its simple 
implementation [85]. NetLogo is an open-source toolkit that enables modelers to contribute 
to the core codes as well as develop code-modules. For example, BehaviorSpace is a useful 
module to run several models by using multiple available processors [85]. Other useful 
modules include various software wrappers for co-simulation purposes, such as 
PyNetLogo [86], RNetLogo [87] , and NetLogo-Matlab [88] . 

● MASON is Java-based discrete-event multi-agent simulation tool. It is an open-source 
software toolkit for large custom models, yet it is fast and lightweight. The toolkit has never 
been used for simulating building occupant behaviors but has some potential. 

● Repast Suite is a package of several ABM software toolkits. Java modelers may use Repast 
Symphony for simple ABM implementation across multiple computing clusters. Repast for 
High Performance Computing is a C++-based tool that is designed for use on large 
computing clusters. Repast for Python is the most recent addition to accommodate the 
Python community. The last tool has been widely accepted for various applications that 
require large-scale distributed ABM methods. 

● MATLAB has been known to run discrete-event simulations. It has also been used in 
building occupant simulation [14]. Recently, they added the ABM capability into the 
Simulink environment [89]. 

● SARL is one of the most recent Java-based multi-agent programming languages. The 
toolkit is fully supported by a popular Eclipse IDE for the programming environment and 
is intended to develop an extensible multi-agent model [90]. 

● obFMU is a C++ -based occupant behavior modeling tool [53], [54] packaged as an FMU 
for simulating occupant presence and movement [91], as well as occupant adaptive 
behavior defined in the obXML schema [54]. obFMU can be used to co-simulate occupant 
behavior with BEM tools such as EnergyPlus that implements the functional mockup 
interface.  

● PMFserv is another ABM-based occupant behavior modeling toolkit that co-simulates 
with EnergyPlus. The toolkit is a result of a 10-year development that was originally built 
for general social science and systems engineering purposes [78]–[80]. 

● Video game engine (e.g. Unity 3D and Unreal) is a cross-simulation platform that has 
been explored for multi-agent simulation in built environments. Some of the attractive 
features that come with the platforms are path-finding, collision avoidance, and other 



related agent behaviors and interactions. The advanced visualization features of the 
platforms also help modelers to do detailed design evaluations and communicate their 
findings to relevant stakeholders [92]–[94]. 

2.7. What coupling simulation approaches are used for co-simulation of ABM with BPS?  

Co-simulation has been an option to integrate ABM of occupant behaviors with BPS software 
programs (or simulators), such as EnergyPlus, IDA ICE, and Modelica Buildings Library. Three 
common co-simulation approaches are one-to-one, Functional Mock-up Interface (FMI), and 
middleware. In a one-to-one approach, the co-simulation is straightforward, by implementing the 
occupant behavior model within a BPS program or vice versa. (FMI) is an open-source standard 
that defines an interface that supports model exchange and co-simulation [95],[96]. Another 
popular approach is to use middleware that is a hub program to bridge the interactions between the 
BPS program and the occupant behavior model implemented in a different program. Building 
Control Virtual Testbed (BCVTB) is a software program developed for this purpose [98]. Multi-
agent Environment for Complex-SYstem CO-simulation (MECSYCO) middleware is a lesser-
known middleware for ABM co-simulation [99]. This section discusses the latter two co-
simulation methods to integrate models built under different programming environments. This 
section also discusses the limitations of each technique with a few examples. 

The FMI approach translates one or more simulators developed using various tools (e.g., Dymola, 
MATLAB/Simulink, and EnergyPlus) into an FMU format: a zipped file containing the program 
and an XML description file [97]. A non-FMI program is required to connect all interacting 
simulators. One example program using this approach is the occupant behavior Functional Mockup 
Unit (obFMU). The obFMU package comes with four main components: the co-simulation 
interface, an XML description file called obXML, a data model, and solvers. The obXML 
describes the occupant behavior as defined in the DNAS (drivers-needs-actions-systems) 
framework [53]. The obFMU is, then, directly connected with a BPS simulator, such as 
EnergyPlus. Figure 3a illustrates how EnergyPlus communicates with the obFMU. FMI may also 
be implemented within a hub program that connects both FMU-packages and non-FMU packages. 
One example is using PyFMI, a Python package, to implement the hub program for the Python 
environment (see Figure 3b).  

In the middleware approach, one method is to use MECSYCO, a generic approach to integrate 
multiple simulators using the Discrete Event Specification (DEVS) [99]. DEVS works as a 
wrapper for participating discrete-event simulators. One advantage of using MECSYCO is its 
interoperability with FMU components generated using the FMI standard. MECSYCO has a lot 
of potential for BPS since it has been widely used to co-simulate with ABM models. Camus [99] 
uses the tool in smart heating application to integrate simulators that are built using OpenModelica 
and NS-3 [97]. 



A more popular middleware in BPS is BCVTB. BCVTB is built on Ptolemy II, a Java-based open-
source software toolkit that supports the co-simulation of multiple simulation programs, such as 
EnergyPlus, Modelica, FMU, MATLAB, Radiance, ESP-r, TRNSYS, and BACnet stack (see 
Figure 3a). In the BCVTB environment, each simulator needs to implement interfaces to connect 
with BCVTB. In other words, BCVTB is a hub program that manages the data flow between the 
simulators (see Figure 3c). One early BCVTB implementation integrated EnergyPlus and Fluent 
[100]. Li and Wen [101] use MATLAB to transfer signals to EnergyPlus through BCVTB. Since 
then, BCVTB has been supporting tests of various MPC implementations, such as reducing 
demand and energy costs for buildings’ HVAC systems [102]. Bernal et al. [103] developed MLE+ 
based on BCVTB to integrate EnergyPlus and MATLAB specifically. In OB research, BCVTB 
also integrates EnergyPlus with an ABM of occupant model written in MATLAB [14] and with 
NetLogo [9].  

 

Figure 3. Diagrams of co-simulation methods between OB modeling program, BPS program, and 
auxiliary programs (inspired by Fathollahzadeh and Tabares-Velasco [104]). (a) shows an FMI 
approach to directly link EnergyPlus and an FMU-packaged OB model, obFMU, and (b) an FMI 
approach that connects the exportable FMU files containing all programs that is also via a Python-
based hub program, and (c) a BCVTB program acting as a hub program to connect all interacting 
programs through interfaces. 

There are several limitations to using each of the aforementioned methods, which have been 
recognized for their different uses. Fathollahzadeh and Tabares-Velasco [104] developed an 
evaluation metric to compare co-simulation procedures. The first key comparison point is based 
on the simulation runtime that the co-simulation model developed using the FMI standard typically 
runs 15% faster than BCVTB. Another important metric is to compare the methods 
mathematically. In either BCVTB or FMI-standard, the coupling follows two mathematical 



approaches, namely the Jacobi method that considers all participating simulators proceed and 
exchange data in parallel at time t + 1 (where t is the starting time). Another method is the Gauβ-
Seidl that exchanges in a sequential process (where the generated values of one simulator are sent 
to another simulator at time t+1. The FMI-based co-simulation allows both Jacobi and Gauβ-Seidl 
methods, whilst BCVTB only uses the Jacobi method. In terms of user-friendliness, the FMI 
method is generally easier to implement than BCVTB, since the FMI method provides an open-
source level of flexibility and is straightforward. BCVTB has a plus point for its GUI environment. 
Using BCVTB is relatively easier to connect multiple simulators by implementing the system 
command actor rather than making exportable FMUs for all the FMI methods. Perhaps, FMI is 
still a better approach for modelers since it has a more active development with the latest update 
being in January 2021 [97]. The latest update for BCVTB was for April 2016 [98]. 

2.8. What data are available to program the agents’ behavior? 

One of the major challenges in developing ABMs of occupant behavior is the availability of 
relevant data for programming and validating agents’ behaviors. The type of data needed directly 
depends on the specific use case considered (see Section 2.4) and the modeling LoD adopted (see 
Section 2.5). The following paragraphs detail (1) common data collection approaches and 
acquisition technologies, (2) open-access occupant modeling libraries, and (3) relevant data-
related challenges limiting ABM applications. 

Starting with data collection, Yan et al. [23] identified three main approaches: observational 
studies, occupant surveys and interviews, and laboratory studies. Observational studies typically 
consist of passively monitoring occupants’ behaviors and actions in their actual environment. In 
contrast, occupant surveys and interviews aim to better understand the behavioral characteristics 
of occupants and their drivers, going beyond their direct interactions with building systems. 
Laboratory studies often consist of controlled experiments to quantify occupants’ environmental 
preferences and study the adaptive actions they may take to maximize their comfort. It is worth 
noting that controlled experiments also can be conducted in virtual environments (e.g., using head-
mounted virtual reality devices), as documented in a recent review article by Alamirah et al. [105]. 

In terms of the data acquisition technologies used to collect occupant behavior data, Jia et al. [106] 
define four main types. The first type is occupancy and occupant behavior, which measures ground 
truth data about occupants through devices such as cameras and passive infrared (PIR) sensors. 
The second type is indoor and outdoor environment, which includes sensing environmental 
conditions often using a wireless sensor network (WSN) or weather stations. The third category is 
energy consumption and usage pattern, often using electricity or gas meters. The fourth category, 
others, covers additional self-developed sensors used to monitor specific occupancy behaviors 
(e.g., window opening state or shade position). 

In practice, collecting high-quality and reliable occupant behavior data is often challenging for 
researchers due to privacy concerns and costs of sensing and data curation. Acknowledging this 



gap, researchers have created open-access databases that can support the development of ABMs 
of occupants. Such databases are also important to compare different OB modeling approaches, 
benchmark their results, and test different LoDs and scales. Examples of publicly available datasets 
that can support ABMs of occupant behavior are listed below: 

● ASHRAE Global Comfort Database I [107] includes 52 field studies conducted between 
1982 and 1997 in 160 buildings worldwide, resulting in approximately 21,000 sets of raw 
thermal comfort data. 

● ASHRAE Global Comfort Database II [72] includes field studies conducted from 1995 and 
2016 around the world, resulting in a total of 81,846 rows of raw data of monitored thermal 
environment parameters paired with subjective “right-here-right-now” comfort votes. The 
database is publicly available at http://www.comfortdatabase.com/.  

● ASHRAE Global Occupant Behavior Database [73] includes 34 field-measured building 
occupant behavior datasets gathered from 39 institutions in 15 countries covering 10 
climatic zones. The database is publicly available at https://ashraeobdatabase.com/.  

● Library of occupant behavior models: Within the effort of IEA EBC Annex 66 [16] energy-
related OB literature has been reviewed to identify and compile a list of 127 commonly 
used OB models in the field that cover the following categories: (1) behavior types— 
occupant movement and different types of occupant interactions with windows, doors, 
shading, blinds, lighting systems, thermostats, fans, HVAC systems, plug loads, taking 
hot/cold beverages, and adjusting clothing levels. (2) building types—office, residential, 
and school buildings. In this list, those models with clear documentation were considered 
for library inclusion, and were processed and implemented using the DNAS (Drivers, 
Needs, Actions, Systems) framework, presented in a standardized schema obXML [108]. 
In addition, a library of occupant behavior models in Modelica was developed [109], which 
can be more conveniently integrated into Modelica-based building system models.  

Despite the advantages of large OB datasets, some data concerns exist and are worth noting. First, 
a well-calibrated stochastic model based on large empirical datasets may realistically emulate 
occupant-related processes and behaviors. However, as argued by [23], “this does not necessarily 
establish scalability toward anticipation of long-term future processes and events (predictive 
potency) or toward transportability to other buildings and other locations.” The rich dimensionality 
and context-dependence of occupant behaviors are believed to complicate the development of 
synthetic—more “generalizable”—OB datasets [110], [111]. Another factor that complicates the 
generalization of existing datasets is that the temporal and spatial granularities needed to represent 
occupant behaviors depend on the use case at hand (see Section 2.4). For instance, an ABM for 
building control-related applications may require high temporal and/or spatial granularities that 
are not always reported in general OB datasets. Furthermore, data with such granularities may 
require high storage and computational costs that could limit the capabilities of the ABMs. Such 
costs could be detrimental to applications that require fast responses, such as real-time building 
control systems. A fit-for-purpose approach is recommended here to match the size and complexity 
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of the data needed to the scale and LoD of the ABM. Finally, despite the promising data collection 
efforts and datasets described above, there is still a lack of available semantically rich datasets to 
support the development of agent-based models that are grounded in empirically based behavioral 
theories. The scope of data collection efforts should extend beyond observing existing occupant 
behaviors and aim to capture the multi-domain drivers (e.g., physical, contextual, social, 
psychological) behind these behaviors.  

2.9. What methods and data can be used to validate the results from ABM?  

An important step when developing an ABM is to ensure a correct and accurate representation of 
the real-world phenomenon studied. This section covers two distinct processes that contribute 
toward reliable and robust ABMs: (1) verification and (2) validation. Definitions and examples of 
verification and validation methods are presented by adapting and combining from various sources 
[112]–[116]. 

Verification is the process of determining that the implemented software correctly represents a 
model of a process. In other words, “are we building the model right”? Verification is a continual 
process that starts with the first basic version of the ABM and continues throughout the 
development process. In parallel to debugging, verification also includes looking for incorrect 
implementation of conceptual models and ensuring that any calculations or equations used are 
solved correctly. 

Validation, on the other hand, is the process of determining how much the computer model 
accurately represents the real world studied phenomenon and whether the model is a reasonably 
accurate representation. Validation is also the process of determining that the equations and logic 
used are the correct ones. In other words, “are we building the right model”? A distinction is made 
between three types of validation, namely conceptual, operational/structural, and 
outcome/predictive validation. 

Conceptual validation ensures that the concepts used to develop the ABM are sound and supported 
by empirical evidence. This is first achieved by using actual data to initialize the model’s 
parameters (see Section 2.8 for common data types and sources). A common modeling practice is 
to fit collected data to known probability distributions and use them to stochastically initiate model 
parameters (e.g., agents’ attributes and behavioral characteristics). In parallel, conceptual 
validation also entails basing the model, such as agents’ decision-making rules, on existing theories 
and concepts. Examples of common behavioral theories were covered in Section 2.3. 

Operational/structural validation consists of studying the model’s input-output behavior to 
confirm that the model outcomes are realistic under different initial conditions. Parametric 
variations and sensitivity analyses are often employed to evaluate ABMs’ operational/structural 
validity. On the one hand, they help confirm that the model is reacting well to changes in input 
parameters. On the other hand, they help identify the parameters with the highest influence on the 



model’s outputs. In parallel, statistical methods (e.g., confidence intervals) can also be used to 
quantify the variability in the results of different model runs. Given the stochastic nature of ABMs, 
it is common to conduct multiple runs (e.g., 100 or 1,000) for each combination of inputs and use 
statistical metrics to capture the spread in the results. Tracing is another method that could be used 
to ensure that the logic of execution of the model is correct. This is typically done by following 
and analyzing the behavior of specific entities in the model (e.g., a single building occupant) to 
help detect any anomalies. Finally, when possible, the use of graphical animation can facilitate the 
analysis of the model’s behavior and outcomes. 

Outcome/predictive validation aims to confirm that the model and its outputs are a reasonably 
accurate representation of the real-world phenomenon that is being studied. Put differently, are the 
predictions of the model accurate enough to be considered valid? Data are often needed to answer 
the question above and quantify the accuracy of the predictions. The use of data that was unseen 
by the model during development (i.e., out-of-sample validation) is typically preferred to 
in-sample validation, in order to minimize overfitting issues and increase the generalizability of 
the model. A wide range of performance metrics can be used to quantify model accuracy (or 
errors), depending on the nature of the problem (i.e., type of predicted output). Examples of 
common performance metrics for regression, classification, and probabilistic problems are 
presented next. These were obtained from [117]: 

● Regression problem (e.g., energy consumption or thermostat setpoint predictions): Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), Root Mean Squared 
Logarithmic Error (RMSLE), Coefficient of Variation of Root Mean Squared Error 
(CVRMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE), and Coefficient of 
determination R-Squared (R2). 

● Classification problem (e.g., occupant presence or shade position predictions): Accuracy, 
error rate, precision, recall, F1-Score, FBeta-Score, Area Under the Curve (AUC) and 
Receiver Operating Characteristic (ROC) curve, and confusion matrix. 

● Probabilistic problem (e.g., probability of window opening prediction): Prediction Interval 
Coverage Probability (PICP), Coverage Width Criterion (CWC), and Continuous Ranked 
Probability Score (CRPS). 

In summary, the stochastic nature of ABMs often makes their verification and validation 
challenging. Depending on the ABM’s scope, scale, LoD, and availability of data, different 
verification and validation methods can be used. The methods presented in this section should not 
be considered as mutually exclusive but rather complementary. Modelers are advised to use 
combinations of the methods to help get as close as possible to a verified and valid model. George 
Box famously said that “All models are wrong, some are useful” [118], implying that modelers 
should focus on building models that are accurate enough to be useful rather than aiming for 
“perfect” representations of real-world phenomena. 



2.10. What are the main challenges and future opportunities in ABM?  

Despite the agent-based mindset being increasingly accepted to represent OB in the BPS, there 
remain significant challenges associated with the theoretical approaches and implementation 
techniques of ABM. One of the most significant issues is to identify which are the key processes 
of human behavior that should or should not be included in the model so as to balance the model 
complexity or the level of detail. Integrating systematic approaches such as pattern-oriented 
modeling [119] with ABM can help in identifying substantial OB patterns from empirical 
knowledge to develop or test ABMs. Pattern-oriented modeling offers a structured way to 
incorporate observed patterns of human behavior at different levels of hierarchy (such as individual 
or community level) that can then be used to develop a theoretical foundation for agent-based 
models. Though ABMs can effectively account for emergent effects arising out of multiple 
occupant interactions at the local level, the method falls short of representing top-down effects 
(such as that related to organizational hierarchy), collaborative task-based behaviors, or structured 
behavior sequences. Integrating approaches such as event-based narratives to combine planned 
and unplanned sequences of events [120] or personas to describe fictional individuals for behavior 
customization [121] within ABM may be advantageous to holistically simulate OB in semantically 
rich environments.  

A second opportunity and challenge is associated with the adoption of “smart” features in the 
indoor built environment. Occupant responses to intelligent building controls and dynamically 
adaptable infrastructure systems are still poorly understood, and the empirical basis for modeling 
is thin. It is reasonable to hypothesize the emergence of destabilizing dynamics that might render 
system control ineffective. ABM is well suited to explore these dynamics even in the absence of 
complete data, because the modeling framework supports interactions among both stylized human 
and software agents. The agents’ environment becomes another actor in the system, and the 
concern is now not just who, but what is acting, and how [122]. 

The next issue in ABM of occupants is related to the urban scale applications, where apart from 
the data availability concerns discussed in Section 2.8, there also exists a lack of scalable 
approaches to model OB at community scale. Developing methods to aggregate individual-level 
OB within the ABM while capturing the significant details and dynamics could benefit urban 
building energy modelers and researchers. Furthermore, one of the most pressing needs in the 
ABM for building performance assessment is a set of guidelines or the development and 
documentation tools that can enable efficient representation of OB. A modeling guideline 
describing best practices and step-wise approaches to implement OB will assist researchers and 
practitioners through the ABM simulation process. 

The future perspective of ABM research, beyond the incremental improvements to the existing 
methods discussed earlier, could be geared towards improving their computational efficiency, 
advancing theoretical understanding or dealing with uncertainty. Exploring how different machine 
learning techniques such as Neural Networks or Bayesian Classification can be incorporated with 



ABMs could be a potential area of interest to the BPS community. Such a hybrid approach can 
serve as a powerful tool for decision support during the design stage or to develop data-driven 
ABMs for operational stage applications. Generating synthetic datasets using machine learning 
predictive models to train ABMs [111], especially for the adaptation processes, can help users 
overcome challenges related to data availability. Issues pertaining to parameter space exploration 
and ABM calibration could be tackled through advanced methods such as surrogate modeling that 
combine machine learning and intelligent iterative sampling [123]. In parallel, transfer learning 
approaches [124], where knowledge about occupant behavior from one building is transferred to 
other buildings, could enhance the scalability and generalizability of ABMs. Another research 
avenue that could support the future development of ABMs for occupant representation is their 
integration with interdisciplinary fields such as psychology, sociology, economics, and 
anthropology. Adopting multimodal data collection approaches to gather occupant data can enable 
users to develop comprehensive ABMs that reflect empirical human behavior. Moreover, 
conducting virtual reality tests on occupant behaviors and adaptation within their indoor 
environment or adopting the narrative analytics to feed additional information to the traditional 
ABMs may also be useful. The next generation ABMs might also explore data assimilation 
techniques to minimize the uncertainties due to the dynamic and stochastic processes incorporated. 
Developing data assimilation algorithms to incorporate empirical data and dynamically adjust the 
simulation to improve prediction would be beneficial in real world applications of ABM. 

3. Summary  

Agent-based modeling is a powerful computational tool to represent and simulate occupant 
behavior and interactions with other occupants and the indoor built environment. With the global 
trend toward decarbonizing the building sector, an integrated array of technologies and strategies 
are applied. However, their adoption and effectiveness of use is significantly influenced by human 
behavior. The increasing research, development, and applications of ABM for occupant behavior 
are made possible due to: (1) more practical use cases and values for stakeholders, (2) more 
affordable computing, and (3) more available ABM modeling and simulation tools, as well as 
emerging datasets to support occupant agent programming.  

This paper presents 10 questions and answers that highlight major issues in agent-based occupant 
behavior modeling for building performance simulation, hoping to inform building energy 
modelers on why, when, and how to apply ABM in order to provide insights into various stages of 
the building life cycle to achieve energy efficient, demand flexible, and climate resilient buildings.  

Understanding and representing occupant behavior within a behavioral theory and ABM 
computing framework for the indoor built environment remains a challenge. Getting adequate real-
world data to represent the diverse and heterogeneous occupants’ realistic behaviors is another 
challenge. Lastly, integrating agent-based occupant modeling with building energy modeling and 
other domain models (e.g., transportation, power grid) for community and urban scale applications 



can be data and computing intensive. These topics deserve further research to accelerate the 
adoption of agent-based occupant modeling. 

 

Declaration of competing interest  

All co-authors declare there is no conflict of interest in the reported work. 

Acknowledgements 

The LBNL team’s work was supported by the Assistant Secretary for Energy Efficiency and 
Renewable Energy, Office of Building Technologies of the United States Department of Energy, 
under Contract No. DE-AC02-05CH11231. Authors benefited from participation and discussion 
in the project (2018–2023) Annex 79, Occupant-centric building design and operation, under the 
International Energy Agency’s Energy in Buildings and Communities Programme. 

Biography 

Dr. Jeetika Malik is a postdoctoral researcher with the Building Technology and Urban Systems 
Division of Lawrence Berkeley National Laboratory, USA. She has a background in architecture 
and building engineering, and holds a PhD from Indian Institute of Technology Bombay. Her 
research interests include human building interaction, occupant comfort, occupant-centric 
approach towards building performance and energy modeling. 

Dr. Ardeshir Mahdavi is Professor of Building Physics and Building Ecology at TU Wien, Austria. 
He has conducted research in the fields of building physics, building performance simulation, 
building ecology, and human ecology. He has contributed to research on building data ontologies, 
simulation-based predictive building systems control, urban microclimate and urban energy 
modeling, probabilistic room acoustics methods, and models of building users' presence and 
behavior in buildings. Professor Mahdavi has published over 700 scientific papers. He is the 
recipient of the IBPSA Distinguished Achievements Awards. 

Dr. Elie Azar is an Associate Professor of Industrial and Systems Engineering at Khalifa 
University of Science and Technology in Abu Dhabi, UAE. He holds a PhD in Civil and 
Environmental Engineering from the University of Wisconsin-Madison. Dr. Azar's research aims 
to assess and improve the performance of the built environment in a holistic manner while 
accounting for the interaction between buildings and their users. His work is frequently published 
in books and leading peer-reviewed journals and conferences, earning him multiple academic 
awards and distinctions. 

Dr. Handi Chandra Putra is a postdoctoral researcher with the Building Technology and Urban 
Systems Division of Lawrence Berkeley National Laboratory, USA. He has a background in urban 
planning and holds a PhD from Rutgers University, New Jersey. His main research interest is in 
the behavioral aspects of building occupants in the built environment and urban development. He 
uses computational modeling and simulation, particularly agent-based modeling simulation, as his 
approach. 



Dr. Christiane Berger is Assistant Professor at the Department of Architecture, Design and Media 
Technology at Aalborg University, Denmark. She holds a Ph.D. degree in Architectural Science, 
a Master degree in Architecture and a Master degree in Building Science and Technology. Her 
research interests are in the areas of building performance simulation, indoor environmental 
quality, and occupant modeling. 

Dr. Clinton J. Andrews is Professor of Urban Planning and Director of the Center for Green 
Building at Rutgers University, New Jersey, USA. Trained in engineering and planning, he 
performs research on how people use and change the built environment, at scales spanning 
occupants of buildings to inhabitants of cities and regions. Andrews is a Fellow of AAAS and a 
winner of IEEE’s 3rd Millennium Medal. 

Dr. Tianzhen Hong is Senior Scientist with the Building Technology and Urban Systems Division 
of Lawrence Berkeley National Laboratory, USA. He is an IBPSA Fellow and ASHRAE Fellow. 
His research covers building energy efficiency, energy flexibility and energy resilience, multi-
scale building energy modeling and simulation, occupant behavior, smart buildings and urban 
systems. He is a Highly Cited Researcher 2021. 

References 

[1] L. Chen, “Agent-based modeling in urban and architectural research: A brief literature review,” 
Frontiers of Architectural Research, vol. 1, no. 2, pp. 166–177, Jun. 2012, doi: 
10.1016/J.FOAR.2012.03.003. 

[2] H. Sayama, Introduction to the modeling and analysis of complex systems. Open SUNY Textbooks, 
2015. 

[3] P. Mellacher and T. Scheuer, “Wage Inequality, Labor Market Polarization and Skill-Biased 
Technological Change: An Evolutionary (Agent-Based) Approach,” Computational Economics, 
vol. 58, no. 2, pp. 233–278, Aug. 2021, doi: 10.1007/s10614-020-10026-0. 

[4] P. Manser, H. Becker, S. Hörl, and K. W. Axhausen, “Designing a large-scale public transport 
network using agent-based microsimulation,” Transportation Research Part A: Policy and Practice, 
vol. 137, pp. 1–15, Jul. 2020, doi: 10.1016/J.TRA.2020.04.011. 

[5] S. Venkatramanan, B. Lewis, J. Chen, D. Higdon, A. Vullikanti, and M. Marathe, “Using data-
driven agent-based models for forecasting emerging infectious diseases,” Epidemics, vol. 22, pp. 
43–49, Mar. 2018, doi: 10.1016/J.EPIDEM.2017.02.010. 

[6] S. Jia and Y. Wang, “Effect of heat mitigation strategies on thermal environment, thermal comfort, 
and walkability: A case study in Hong Kong,” Building and Environment, vol. 201, p. 107988, Aug. 
2021, doi: 10.1016/J.BUILDENV.2021.107988. 

[7] Q. Sun and Y. Turkan, “A BIM-based simulation framework for fire safety management and 
investigation of the critical factors affecting human evacuation performance,” Advanced 
Engineering Informatics, vol. 44, p. 101093, Apr. 2020, doi: 10.1016/J.AEI.2020.101093. 

[8] Y. S. Lee and A. M. Malkawi, “Simulating multiple occupant behaviors in buildings: An agent-
based modeling approach,” Energy and Buildings, vol. 69, pp. 407–416, Feb. 2014, doi: 
10.1016/j.enbuild.2013.11.020. 



[9] H. C. Putra, C. J. Andrews, and J. A. Senick, “An agent-based model of building occupant behavior 
during load shedding,” Building Simulation, vol. 10, no. 6, pp. 845–859, Dec. 2017, doi: 
10.1007/s12273-017-0384-x. 

[10] A. Mahdavi, “The trouble with ‘HIM’: new challenges and old misconceptions in human 
information modelling,” Journal of Building Performance Simulation, vol. 14, no. 5, pp. 611–618, 
Sep. 2021, doi: 10.1080/19401493.2021.1990410. 

[11] C. Berger and A. Mahdavi, “Approaching the human dimension of building performance via agent-
based modelling,” 2021. 

[12] C. Berger and A. Mahdavi, “Review of current trends in agent-based modeling of building occupants 
for energy and indoor-environmental performance analysis,” Building and Environment, vol. 173, 
Apr. 2020, doi: 10.1016/j.buildenv.2020.106726. 

[13] M. Jia, R. S. Srinivasan, R. Ries, N. Weyer, and G. Bharathy, “A systematic development and 
validation approach to a novel agent-based modeling of occupant behaviors in commercial 
buildings,” Energy and Buildings, vol. 199, pp. 352–367, Sep. 2019, doi: 
10.1016/j.enbuild.2019.07.009. 

[14] J. Langevin, J. Wen, and P. L. Gurian, “Simulating the human-building interaction: Development 
and validation of an agent-based model of office occupant behaviors,” Building and Environment, 
vol. 88, pp. 27–45, Jun. 2015, doi: 10.1016/j.buildenv.2014.11.037. 

[15] W. O’Brien et al., “Introducing IEA EBC annex 79: Key challenges and opportunities in the field 
of occupant-centric building design and operation,” Building and Environment, vol. 178, p. 106738, 
Jul. 2020, doi: 10.1016/J.BUILDENV.2020.106738. 

[16] D. Yan et al., “IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings,” 
Energy and Buildings, vol. 156, pp. 258–270, Dec. 2017, doi: 10.1016/J.ENBUILD.2017.09.084. 

[17] T. Hong, D. Yan, S. D’Oca, and C. Chen, “Ten questions concerning occupant behavior in buildings: 
The big picture,” Building and Environment, vol. 114, pp. 518–530, 2017, doi: 
https://doi.org/10.1016/j.buildenv.2016.12.006. 

[18] D. Yan et al., “Occupant behavior modeling for building performance simulation: Current state and 
future challenges,” Energy and Buildings, vol. 107, pp. 264–278, Nov. 2015, doi: 
10.1016/J.ENBUILD.2015.08.032. 

[19] E. Bonabeau, “Agent-based modeling: methods and techniques for simulating human systems.,” 
Proceedings of the National Academy of Sciences of the United States of America, vol. 99 Suppl 3, 
no. suppl 3, pp. 7280–7, May 2002, doi: 10.1073/pnas.082080899. 

[20] C. M. Macal and M. J. North, “Tutorial on agent-based modelling and simulation,” Journal of 
Simulation, vol. 4, no. 3, pp. 151–162, 2010, doi: 10.1057/jos.2010.3. 

[21] C. M. Macal, “Tutorial on agent-based modeling and simulation: ABM design for the zombie 
apocalypse,” in 2018 Winter Simulation Conference (WSC), 2018, pp. 207–221. doi: 
10.1109/WSC.2018.8632240. 



[22] K. Stanilov, “Space in Agent-Based Models,” in Agent-Based Models of Geographical Systems, A. 
J. Heppenstall, A. T. Crooks, L. M. See, and M. Batty, Eds. Dordrecht: Springer Netherlands, 2012, 
pp. 253–269. doi: 10.1007/978-90-481-8927-4_13. 

[23] D. Yan et al., “Occupant behavior modeling for building performance simulation: Current state and 
future challenges,” Energy and Buildings, vol. 107, pp. 264–278, Nov. 2015, doi: 
10.1016/j.enbuild.2015.08.032. 

[24] C. fei Chen et al., “Culture, conformity, and carbon? A multi-country analysis of heating and cooling 
practices in office buildings,” Energy Research & Social Science, vol. 61, p. 101344, Mar. 2020, 
doi: 10.1016/J.ERSS.2019.101344. 

[25] S. de Marchi and S. E. Page, “Agent-Based Models,” Annual Review of Political Science, 2014, doi: 
10.1146/annurev-polisci-080812-191558. 

[26] L. Linkola, C. J. Andrews, and T. Schuetze, “An Agent Based Model of Household Water Use,” 
Water, vol. 5, pp. 1082–1100, 2013, doi: 10.3390/w5031082. 

[27] A. Mahdavi and F. Tahmasebi, “People in building performance simulation,” in Building 
Performance Simulation for Design and Operation, 2nd ed., J. L. M. Hensen and R. Lamberts, Eds. 
Routledge, 2019, pp. 117–145. 

[28] A. Mahdavi, “The Human Dimension of Building Performance Simulation (Keynote).,” 2011. 

[29] I. Gaetani, P. J. Hoes, and J. L. M. Hensen, “A stepwise approach for assessing the appropriate 
occupant behaviour modelling in building performance simulation,” Journal of Building 
Performance Simulation, vol. 13, no. 3, pp. 362–377, May 2020, doi: 
10.1080/19401493.2020.1734660. 

[30] A. Mahdavi and M. Taheri, “A building performance indicator ontology,” in EWork and eBusiness 
in Architecture, Engineering and Construction, 2018, pp. 385–390. 

[31] A. Mahdavi and M. Taheri, “An ontology for building monitoring,” Journal of Building 
Performance Simulation, vol. 10, no. 5–6, pp. 499–508, Nov. 2017, doi: 
10.1080/19401493.2016.1243730. 

[32] J. Drgoňa et al., “All you need to know about model predictive control for buildings,” Annual 
Reviews in Control, vol. 50, pp. 190–232, Jan. 2020, doi: 10.1016/J.ARCONTROL.2020.09.001. 

[33] A. Heydarian et al., “What drives our behaviors in buildings? A review on occupant interactions 
with building systems from the lens of behavioral theories,” Building and Environment, vol. 179, p. 
106928, Jul. 2020, doi: 10.1016/J.BUILDENV.2020.106928. 

[34] A. Mahdavi, V. Bochukova, and C. Berger, “A Pragmatic Theory of Occupants’ Indoor-
Environmental Control Behaviour,” Frontiers in Sustainable Cities, vol. 3, 2021, doi: 
10.3389/frsc.2021.748288. 

[35] M. Fishbein and I. Ajzen, Predicting and Changing Behavior: The Reasoned Action Approach, 1st 
ed. New York: Psychology Press, 2009. 

[36] I. Ajzen, “From Intentions to Actions: A Theory of Planned Behavior,” 1985. 



[37] I. Ajzen, “The theory of planned behavior,” Organizational Behavior and Human Decision 
Processes, vol. 50, no. 2, pp. 179–211, Dec. 1991, doi: 10.1016/0749-5978(91)90020-T. 

[38] S. H. Lo, G.-J. Y. Peters, G. J. P. van Breukelen, and G. Kok, “Only reasoned action? An 
interorganizational study of energy-saving behaviors in office buildings,” Energy Efficiency, vol. 7, 
no. 5, pp. 761–775, 2014, doi: 10.1007/s12053-014-9254-x. 

[39] E. L. Hewitt, C. J. Andrews, J. A. Senick, R. E. Wener, U. Krogmann, and M. S. Allacci, 
“Distinguishing between green building occupants’ reasoned and unplanned behaviours,” Building 
Research & Information, vol. 44, no. 2, pp. 119–134, 2016, doi: 10.1080/09613218.2015.1015854. 

[40] H. A. Simon, Models of man; social and rational. Oxford, England: Wiley, 1957. 

[41] H. A. Simon, “A Behavioral Model of Rational Choice,” The Quarterly Journal of Economics, vol. 
69, no. 1, pp. 99–118, 1955, doi: 10.2307/1884852. 

[42] A. Reckwitz, “Toward a Theory of Social Practices: A Development in Culturalist Theorizing,” 
European Journal of Social Theory, vol. 5, no. 2, pp. 243–263, May 2002, doi: 
10.1177/13684310222225432. 

[43] E. Shove, M. Pantzar, and M. Watson, “The Dynamics of Social Practice: Everyday Life and how 
it Changes,” 2012. 

[44] N. DellaValle, A. Bisello, and J. Balest, “In search of behavioural and social levers for effective 
social housing retrofit programs,” Energy and Buildings, vol. 172, pp. 517–524, Aug. 2018, doi: 
10.1016/J.ENBUILD.2018.05.002. 

[45] C. J. Andrews and U. Krogmann, “Explaining the adoption of energy-efficient technologies in U.S. 
commercial buildings,” Energy and Buildings, vol. 41, no. 3, pp. 287–294, Mar. 2009, doi: 
10.1016/J.ENBUILD.2008.09.009. 

[46] R. M. Ryan and E. L. Deci, “Self-Determination Theory and the Facilitation of Intrinsic Motivation, 
Social Development, and Well-Being Self-Determination Theory,” Ryan, 2000. doi: 10.1037/0003-
066X.55.1.68. 

[47] A. H. Maslow, “A Theory of Human Motivation,” 2013. 

[48] W. Al-Marri, A. Al-Habaibeh, and M. Watkins, “An investigation into domestic energy 
consumption behaviour and public awareness of renewable energy in Qatar,” Sustainable Cities and 
Society, vol. 41, pp. 639–646, Aug. 2018, doi: 10.1016/J.SCS.2018.06.024. 

[49] S. H. Schwartz and J. A. Howard, “A Normative Decision Making Model of Altruism,” 1981. 

[50] S. H. Schwartz, “Normative Influences on Altruism,” Advances in Experimental Social Psychology, 
vol. 10, no. C, pp. 221–279, Jan. 1977, doi: 10.1016/S0065-2601(08)60358-5. 

[51] E. Matthies, I. Kastner, A. Klesse, and H. Wagner, “High reduction potentials for energy user 
behavior in public buildings: how much can psychology-based interventions achieve?” Journal of 
Environmental Studies and Sciences, vol. 1, pp. 241–255, 2011. 

[52] S. D’Oca, C. F. Chen, T. Hong, and Z. Belafi, “Synthesizing building physics with social 
psychology: An interdisciplinary framework for context and occupant behavior in office buildings,” 



Energy Research & Social Science, vol. 34, pp. 240–251, Dec. 2017, doi: 
10.1016/J.ERSS.2017.08.002. 

[53] T. Hong, S. D’Oca, W. J. N. Turner, and S. C. Taylor-Lange, “An ontology to represent energy-
related occupant behavior in buildings. Part I: Introduction to the DNAs framework,” Building and 
Environment, vol. 92, pp. 764–777, Oct. 2015, doi: 10.1016/J.BUILDENV.2015.02.019. 

[54] T. Hong, S. D’Oca, S. C. Taylor-Lange, W. J. N. Turner, Y. Chen, and S. P. Corgnati, “An ontology 
to represent energy-related occupant behavior in buildings. Part II: Implementation of the DNAS 
framework using an XML schema,” Building and Environment, vol. 94, no. P1, pp. 196–205, Dec. 
2015, doi: 10.1016/J.BUILDENV.2015.08.006. 

[55] A. Mahdavi, “Steps to a General Theory of Habitability,” 1998. 

[56] A. Mahdavi, “The human factor in sustainable architecture,” in Low Energy Low Carbon 
Architecture, Taylor & Francis, 2016, pp. 137–148. 

[57] A. Mahdavi, “Explanatory stories of human perception and behavior in buildings,” Building and 
Environment, vol. 168, p. 106498, Jan. 2020, doi: 10.1016/J.BUILDENV.2019.106498. 

[58] S. Gilani, W. O’Brien, H. B. Gunay, and J. S. Carrizo, “Use of dynamic occupant behavior models 
in the building design and code compliance processes,” Energy and Buildings, vol. 117, pp. 260–
271, Apr. 2016, doi: 10.1016/J.ENBUILD.2015.10.044. 

[59] J. Wang, J. Hou, J. Chen, Q. Fu, and G. Huang, “Data mining approach for improving the optimal 
control of HVAC systems: An event-driven strategy,” Journal of Building Engineering, vol. 39, p. 
102246, Jul. 2021, doi: 10.1016/J.JOBE.2021.102246. 

[60] S. Huang, Y. Lin, V. Chinde, X. Ma, and J. Lian, “Simulation-based performance evaluation of 
model predictive control for building energy systems,” Applied Energy, vol. 281, p. 116027, Jan. 
2021, doi: 10.1016/J.APENERGY.2020.116027. 

[61] J. Granderson, S. Touzani, C. Custodio, M. D. Sohn, D. Jump, and S. Fernandes, “Accuracy of 
automated measurement and verification (M&V) techniques for energy savings in commercial 
buildings,” Applied Energy, vol. 173, pp. 296–308, Jul. 2016, doi: 
10.1016/J.APENERGY.2016.04.049. 

[62] G. Plessis, E. Amouroux, and Y. Haradji, “Coupling occupant behaviour with a building energy 
model - A FMI application,” in Proceedings of the 10th International Modelica Conference, March 
10-12, 2014, Lund, Sweden, Mar. 2014, vol. 96, pp. 321–326. doi: 10.3384/ecp14096321. 

[63] Y. Sun, E. A. Silva, W. Tian, R. Choudhary, and H. Leng, “An Integrated Spatial Analysis Computer 
Environment for Urban-Building Energy in Cities,” Sustainability, 2018, doi: 10.3390/su10114235. 

[64] Z. Ding, T. Hu, M. Li, X. Xu, and P. X. W. Zou, “Agent-based model for simulating building energy 
management in student residences,” Energy and Buildings, vol. 198, pp. 11–27, Sep. 2019, doi: 
10.1016/j.enbuild.2019.05.053. 

[65] E. Azar and H. al Ansari, “Multilayer Agent-Based Modeling and Social Network Framework to 
Evaluate Energy Feedback Methods for Groups of Buildings,” Journal of Computing in Civil 
Engineering, vol. 31, no. 4, p. 04017007, Jul. 2017, doi: 10.1061/(asce)cp.1943-5487.0000651. 



[66] S. Norouziasl, A. Jafari, and C. Wang, “An agent-based simulation of occupancy schedule in office 
buildings,” Building and Environment, vol. 186, p. 107352, Dec. 2020, doi: 
10.1016/J.BUILDENV.2020.107352. 

[67] K. Sinha, N. Ali, and E. Rajasekar, “An agent-based dynamic occupancy schedule model for 
prediction of hvac energy demand in an airport terminal building,” in Building Simulation 
Conference Proceedings, 2019, vol. 3, pp. 2063–2070. doi: 10.26868/25222708.2019.211133. 

[68] J. Malik, E. Azar, A. Mahdavi, and T. Hong, “A level-of-details framework for representing 
occupant behavior in agent-based models,” Automation in Construction (Under review), 2022. 

[69] D. O’Sullivan, T. Evans, S. Manson, S. Metcalf, A. Ligmann-Zielinska, and C. Bone, “Strategic 
directions for agent-based modeling: avoiding the YAAWN syndrome,” Journal of Land Use 
Science, vol. 11, no. 2, pp. 177–187, Mar. 2016, doi: 10.1080/1747423X.2015.1030463. 

[70] S. Chen, W. Yang, H. Yoshino, M. D. Levine, K. Newhouse, and A. Hinge, “Definition of occupant 
behavior in residential buildings and its application to behavior analysis in case studies,” Energy 
and Buildings, vol. 104, pp. 1–13, Jul. 2015, doi: 10.1016/j.enbuild.2015.06.075. 

[71] D. Midgley, R. Marks, and D. Kunchamwar, “Building and assurance of agent-based models: An 
example and challenge to the field,” Journal of Business Research, vol. 60, no. 8, pp. 884–893, Aug. 
2007, doi: 10.1016/J.JBUSRES.2007.02.004. 

[72] V. Földváry Ličina et al., “Development of the ASHRAE Global Thermal Comfort Database II,” 
Building and Environment, vol. 142, pp. 502–512, Sep. 2018, doi: 
10.1016/J.BUILDENV.2018.06.022. 

[73] Y. Liu, W. Mu, B. Dong, T. Hong, Z. O’Neill, and et al., “A Global Building Occupant Behavior 
Database,” Scientific Data (Under Review), 2022. 

[74] D. Masad and J. L. Kazil, “Mesa: An Agent-Based Modeling Framework,” 2015. 

[75] J. Foramitti, “AgentPy: A package for agent-based modeling in Python,” Journal of Open Source 
Software, vol. 6, no. 62, p. 3065, Jun. 2021, doi: 10.21105/joss.03065. 

[76] J. Nourisa, B. Zeller-Plumhoff, and R. Willumeit-Römer, “CppyABM: An open-source agent-based 
modeling library to integrate C++ and Python,” Journal of Software: Practice and Experience, 2022, 
doi: 10.1002/spe.3067. 

[77] C. M. Nikolai and G. R. Madey, “Tools of the Trade: A Survey of Various Agent Based Modeling 
Platforms,” J. Artif. Soc. Soc. Simul., vol. 12, 2009. 

[78] B. G. Silverman, M. Johns, J. Cornwell, and K. O’Brien, “Human Behavior Models for Agents in 
Simulators and Games: Part I: Enabling Science with PMFserv,” Presence: Teleoperators and 
Virtual Environments, vol. 15, no. 2, pp. 139–162, Apr. 2006, doi: 10.1162/pres.2006.15.2.139. 

[79] B. G. Silverman, G. Bharathy, K. O’Brien, and J. Cornwell, “Human Behavior Models for Agents 
in Simulators and Games: Part II: Gamebot Engineering with PMFserv,” Presence: Teleoperators 
and Virtual Environments, vol. 15, no. 2, pp. 163–185, Apr. 2006, doi: 10.1162/pres.2006.15.2.163. 

[80] M. Jia and R. Srinivasan, “Building performance evaluation using coupled simulation of energyplus 
and an occupant behavior model,” Sustainability (Switzerland), vol. 12, no. 10, May 2020, doi: 
10.3390/SU12104086. 



[81] E. Azar and S. Papadopoulos, “Human Behavior and Energy Consumption in Buildings: An 
Integrated Agent-Based Modeling and Building Performance Simulation Framework,” in Building 
Simulation Conference Proceedings, 2017. 

[82] Y. Chen, T. Hong, and X. Luo, “An agent-based stochastic Occupancy Simulator,” Building 
Simulation, vol. 11, no. 1, pp. 37–49, Feb. 2018, doi: 10.1007/s12273-017-0379-7. 

[83] E. Norling, “On Evaluating Agents for Serious Games,” in Agents for Games and Simulations: 
Trends in Techniques, Concepts and Design, F. Dignum, J. Bradshaw, B. Silverman, and W. van 
Doesburg, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 155–169. doi: 
10.1007/978-3-642-11198-3_11. 

[84] I. Grigoryev, “anylogic-in-3-days,” 2021. Accessed: Jan. 30, 2022. [Online]. Available: 
https://www.anylogic.com/upload/al-in-3-days/anylogic-in-3-days.pdf 

[85] U. Wilensky, “NetLogo,” Center for Connected Learning and Computer-Based Modeling, 
Northwestern University, 1999. http://ccl.northwestern.edu/netlogo/ (accessed Nov. 20, 2021). 

[86] M. Jaxa-Rozen and J. H. Kwakkel, “PyNetLogo: Linking NetLogo with Python,” J. Artif. Soc. Soc. 
Simul., vol. 21, 2018. 

[87] J. C. Thiele, “R Marries NetLogo: Introduction to the RNetLogo Package,” Journal of Statistical 
Software, vol. 58, no. 2, pp. 1–41, 2014, doi: 10.18637/jss.v058.i02. 

[88] M. Biggs, “NetLogo-Matlab Extension,” 2021. https://github.com/mbi2gs/netlogo-matlab-
extension (accessed Nov. 13, 2021). 

[89] MathWorks, “Agent-Based Modeling,” MathWorks: MATLAB Central File Exchange, 2021. 
https://www.mathworks.com/matlabcentral/fileexchange/68720-agent-based-modeling (accessed 
Jan. 31, 2022). 

[90] S. Rodriguez, N. Gaud, and S. Galland, “SARL: A General-Purpose Agent-Oriented Programming 
Language,” 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and 
Intelligent Agent Technologies (IAT), vol. 3, pp. 103–110, 2014. 

[91] Y. Chen, X. Liang, T. Hong, and X. Luo, “Simulation and visualization of energy-related occupant 
behavior in office buildings,” Building Simulation, vol. 10, no. 6, pp. 785–798, Dec. 2017, doi: 
10.1007/s12273-017-0355-2. 

[92] S. Shin, S. Jeong, J. Lee, S. W. Hong, and S. Jung, “Pre-Occupancy Evaluation based on user 
behavior prediction in 3D virtual simulation,” Automation in Construction, vol. 74, pp. 55–65, Feb. 
2017, doi: 10.1016/J.AUTCON.2016.11.005. 

[93] W. Shen, X. Zhang, G. Q. Shen, and T. Fernando, “The User Pre-Occupancy Evaluation Method in 
designer–client communication in early design stage: A case study,” Automation in Construction, 
vol. 32, pp. 112–124, Jul. 2013, doi: 10.1016/J.AUTCON.2013.01.014. 

[94] D. Schaumann, S. Breslav, R. Goldstein, A. Khan, and Y. E. Kalay, “Simulating use scenarios in 
hospitals using multi-agent narratives,” Journal of Building Performance Simulation, vol. 10, no. 
5–6, pp. 636–652, Nov. 2017, doi: 10.1080/19401493.2017.1332687. 



[95] T. Blockwitz et al., “Functional Mockup Interface 2.0: The Standard for Tool independent Exchange 
of Simulation Models,” in Proceedings of the 9th International MODELICA Conference, September 
3-5, 2012, Munich, Germany, Nov. 2012, vol. 76, pp. 173–184. doi: 10.3384/ecp12076173. 

[96] M. Henningsson, J. Åkesson, and H. Tummescheit, “An FMI-Based Tool for Robust Design of 
Dynamical Systems,” in Proceedings of the 10th International Modelica Conference, March 10-12, 
2014, Lund, Sweden, Mar. 2014, vol. 96, pp. 35–42. doi: 10.3384/ecp1409635. 

[97] T. S. Nouidui and M. Wetter, “Tool coupling for the design and operation of building energy and 
control systems based on the Functional Mock-up Interface standard,” in Proceedings of the 10th 
International Modelica Conference, March 10-12, 2014, Lund, Sweden, Mar. 2014, vol. 96, pp. 
311–320. doi: 10.3384/ecp14096311. 

[98] M. Wetter and P. Haves, “A Modular Building Controls Virtual Test Bed for the Integrations of 
Heterogeneous Systems,” Lawrence Berkeley National Laboratory, vol. 3, pp. 69–76, 2008. 

[99] B. Camus et al., “Co-simulation of cyber-physical systems using a DEVS wrapping strategy in the 
MECSYCO middleware,” SIMULATION, vol. 94, no. 12, pp. 1099–1127, Jan. 2018, doi: 
10.1177/0037549717749014. 

[100] R. Zhang, K. P. Lam, S. chune Yao, and Y. Zhang, “Coupled EnergyPlus and computational fluid 
dynamics simulation for natural ventilation,” Building and Environment, vol. 68, pp. 100–113, Oct. 
2013, doi: 10.1016/J.BUILDENV.2013.04.002. 

[101] X. Li and J. Wen, “Review of building energy modeling for control and operation,” Renewable and 
Sustainable Energy Reviews, vol. 37, pp. 517–537, Sep. 2014, doi: 10.1016/J.RSER.2014.05.056. 

[102] J. Ma, J. Qin, T. Salsbury, and P. Xu, “Demand reduction in building energy systems based on 
economic model predictive control,” Chemical Engineering Science, vol. 67, no. 1, pp. 92–100, Jan. 
2012, doi: 10.1016/J.CES.2011.07.052. 

[103] W. Bernal, M. Behl, T. X. Nghiem, and R. Mangharam, “MLE+: A Tool for Integrated Design and 
Deployment of Energy Efficient Building Controls,” in Proceedings of the Fourth ACM Workshop 
on Embedded Sensing Systems for Energy-Efficiency in Buildings, 2012, pp. 123–130. doi: 
10.1145/2422531.2422553. 

[104] M. H. Fathollahzadeh and P. C. Tabares-Velasco, “Building control virtual test bed and functional 
mock-up interface standard: comparison in the context of campus energy modelling and control,” 
Journal of Building Performance Simulation, vol. 13, no. 4, pp. 456–471, Jul. 2020, doi: 
10.1080/19401493.2020.1769191. 

[105] H. Alamirah, M. Schweiker, and E. Azar, “Immersive virtual environments for occupant comfort 
and adaptive behavior research – A comprehensive review of tools and applications,” Building and 
Environment, vol. 207, Jan. 2022, doi: 10.1016/j.buildenv.2021.108396. 

[106] M. Jia, R. S. Srinivasan, and A. A. Raheem, “From occupancy to occupant behavior: An analytical 
survey of data acquisition technologies, modeling methodologies and simulation coupling 
mechanisms for building energy efficiency,” Renewable and Sustainable Energy Reviews, vol. 68. 
Elsevier Ltd, pp. 525–540, Feb. 01, 2017. doi: 10.1016/j.rser.2016.10.011. 

[107] R. de Dear, “de Dear 1998,” ASHRAE Transactions, vol. 104, pp. 1141–1152, 1998. 



[108] Z. D. Belafi, T. Hong, and A. Reith, “A library of building occupant behaviour models represented 
in a standardised schema,” Energy Efficiency, vol. 12, pp. 637–651, 2019. 

[109] Z. Wang, T. Hong, and R. Jia, “Buildings.Occupants: A Modelica package for modelling occupant 
behaviour in buildings,” Journal of Building Performance Simulation, vol. 12, no. 4, pp. 433–444, 
Jul. 2019, doi: 10.1080/19401493.2018.1543352. 

[110] C. J. Andrews, M. S. Allacci, J. Senick, H. C. Putra, and I. Tsoulou, “Using synthetic population 
data for prospective modeling of occupant behavior during design,” Energy and Buildings, vol. 126, 
pp. 415–423, Aug. 2016, doi: 10.1016/j.enbuild.2016.05.049. 

[111] H. C. Putra, T. Hong, and C. Andrews, “An ontology to represent synthetic building occupant 
characteristics and behavior,” Automation in Construction, vol. 125, May 2021, doi: 
10.1016/j.autcon.2021.103621. 

[112] P. Ormerod and B. Rosewell, “Validation and Verification of Agent-Based Models in the Social 
Sciences,” in Epistemological Aspects of Computer Simulation in the Social Sciences, 2009, pp. 
130–140. 

[113] L. Yilmaz, “Validation and verification of social processes within agent-based computational 
organization models,” Computational and Mathematical Organization Theory, vol. 12, no. 4. pp. 
283–312, Dec. 2006. doi: 10.1007/s10588-006-8873-y. 

[114] X. Xiang, R. Kennedy, G. Madey, and S. Cabaniss, “Verification and Validation of Agent-based 
Scientific Simulation Models,” 2005. 

[115] M. Pilch, T. Trucano, J. Moya, G. Froehlich, A. Hodges, and D. Peercy, “SANDIA REPORT 
Guidelines for Sandia ASCI Verification and Validation Plans-Content and Format: Version 2.0,” 
Albuquerque, 2001. 

[116] R. G. Sargent, “Verification and validation of simulation models,” Journal of Simulation, vol. 7, no. 
1, pp. 12–24, 2013, doi: 10.1057/jos.2012.20. 

[117] B. Dong et al., “Occupant behavior modeling methods for resilient building design, operation and 
policy at urban scale: A review,” Applied Energy, vol. 293, Jul. 2021, doi: 
10.1016/j.apenergy.2021.116856. 

[118] G. E. P. Box, “Science and Statistics,” 1976. 

[119] V. Grimm et al., “Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from 
Ecology,” Science. 2005. doi: 10.1126/science.1116681. 

[120] X. Zhang, D. Schaumann, B. Haworth, P. Faloutsos, and M. Kapadia, “Multi-Constrained Authoring 
of Occupant Behavior Narratives in Architectural Design,” 2019. 

[121] R. Goldstein, A. Tessier, and A. Khan, “Customizing the Behavior of Interacting Occupants using 
Personas,” 2010. [Online]. Available: https://www.researchgate.net/publication/236176795 

[122] B. Latour, “Reassembling the Social. An Introduction to Actor-Network-Theory,” Journal of 
Economic Sociology, vol. 14, no. 2, pp. 73–87, 2013, [Online]. Available: 
https://EconPapers.repec.org/RePEc:hig:ecosoc:v:14:y:2013:i:2:p:73-87 



[123] F. Lamperti, A. Roventini, and A. Sani, “Agent-based model calibration using machine learning 
surrogates,” Journal of Economic Dynamics and Control, vol. 90, pp. 366–389, May 2018, doi: 
10.1016/J.JEDC.2018.03.011. 

[124] Z. Deng and Q. Chen, “Reinforcement learning of occupant behavior model for cross-building 
transfer learning to various HVAC control systems,” Energy and Buildings, vol. 238, p. 110860, 
May 2021, doi: 10.1016/J.ENBUILD.2021.110860. 

 

  




