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Rapid Changes in the Light/Dark Cycle Disrupt Memory
of Conditioned Fear in Mice
Dawn H. Loh1, Juliana Navarro1, Arkady Hagopian1, Louisa M. Wang1, Tom Deboer2, Christopher S.

Colwell1*

1 Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America, 2 Department of Molecular

Cell Biology, Leiden University Medical Center, Leiden, The Netherlands

Abstract

Background: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Com-
ponents of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian
rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In
the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/
dark (LD) cycle. Such ‘‘jet lag’’ treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as
disrupt the synchrony between the multiple oscillators found within the body.

Methodology/Principal Findings: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either
before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and
phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear
conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked
corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep
deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to
compensate for the reduced recall due to acute phase shifts.

Conclusions/Significance: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a
synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may
be particularly sensitive to disruptions of circadian timing.
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Introduction

Daily rhythms in behavior and physiology are found in almost all

organisms. The ability to synchronize ones physiology to anticipate

environmental changes is thought to be the driving force behind the

evolution of a network of circadian oscillators that adapt and

respond, and yet have the ability to ‘‘keep time’’ in absence of any

external cues. In mammals, the most critical of these environmental

cues is light. The light signal is detected, in part, by photosensitive

cells in the retinal ganglion layer [1], and is integrated by the master

pacemaker in the hypothalamus: the suprachiasmatic nucleus

(SCN) [2]. The SCN in turn coordinates a network of circadian

oscillators that are found throughout the body [3,4]. Within the

brain, components of the circuits involved in learning and memory

demonstrate rhythms in gene expression, including the amygdala

[5] and the hippocampus [6,7]. Importantly, these rhythms are

autonomous as they continue in hippocampal slices in culture [8].

We hypothesize that these independent circadian oscillators in the

learning and memory circuits are critical for providing a temporal

structure to cognitive functions.

There are several lines of evidence that the circadian system can

influence cognitive functions, especially memory. Perhaps the most

important is the observation that peak performance in the recall of

a number of behavioral tasks shows a diurnal [9–12] as well as a

circadian variation [13,14,15]. The evidence for circadian regula-

tion of gene expression [5,7,8], signaling pathways [8,16,17], and

synaptic plasticity [18,19,20] in brain regions involved in learning

and memory (e.g. the hippocampus) provide the mechanistic

underpinnings to explain this temporal regulation. Mutations that

have an effect on the circadian molecular timing loop [8,21–25]

and cellular communication within the SCN clock [26] affect the

recall of learned behavior, as do mutations in the rhythmically

regulated cAMP/ERK/CREB pathway (e.g., [17]). Similarly,

environmental manipulations that disrupt circadian rhythms

without genetic mutations also disrupt memory in different tasks

[27–30]. For example, previous work has provided clear evidence

that chronic phase shifts of the light/dark (LD) cycle interfere with

memory [31,32,33]. Less work has examined the impact of single

alterations in the timing of the LD cycle [34], even though these

phase shifts disrupt the rhythms in clock gene expression within
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the SCN [35,36] and between the SCN and peripheral oscillators

[37].

Therefore, we performed a series of experiments to test the

hypothesis that acutely altering the LD cycle can affect the

acquisition and recall of contextual fear conditioning in mice. By

subjecting mice to this experimental ‘‘jet lag’’ on the day before or

after training, we addressed the importance of entrainment to the

LD cycle on acquisition and recall. Further experiments explored

the degree that recall was affected by the duration and direction of

phase shifts. We measured the impact of these phase shifts on the

stress response and sleep in the mice. Finally, we also explored the

possibility that prior experience of phase shifts could compensate

for the negative effect of acute phase shifts on recall.

Results

Does an acute phase shift prior to fear conditioning
affect acquisition or recall?

We first tested if an acute phase shift prior to training would

alter acquisition of fear conditioned behavior (Fig. 1A). The

control group (n = 8) was maintained on a 12:12 LD cycle and is

used for both the first and second experiment. The phase-shifted

group of mice (n = 6) housed in 12:12 LD was subjected to a 12 hr

phase advance by extending the dark phase on the day prior to

training (Day -1) resulting in an inversion of the lighting cycle on

the day of training. On Day 0, both groups of mice were trained

using the contextual fear conditioning protocol at their respective

Zeitgeber Time (ZT) 3, which consists of 2 time-delayed pairings

of a conditioned stimulus (CS, the context of the shock cage) and

an unconditioned stimulus (US, foot shock) within a 6.5 min

training session. There was no difference in acquisition of fear-

conditioned freezing between the non-shifted and the phase-

shifted groups (t-test for CS-US 1: t12 = 1.38, P = 0.19; CS-US 2:

t12 = 0.37, P = 0.72), with both groups demonstrating 60 to 64%

freezing by the second application of the CS-US (Fig. 1B). The

mice were then tested for recall in 24 hr intervals on 7 subsequent

days after training at ZT 3 (Fig. 1C). A two way repeated

measures analysis of variance (2RM ANOVA) determined

significant effects of the phase shift on recall of contextual fear

conditioned freezing (F 1,12 = 318.36, P,0.001) and between days

(F 6,12 = 62.40, P,0.001). Significant interaction was also

determined for phase shift x day (F 6,91 = 17.98, P,0.001). Post-

hoc Bonferroni’s t-test determined a significant reduction in recall

in the phase shifted cohort (Fig. 1C).

Hence, an acute phase shift prior to training does not affect

acquisition of fear-conditioned freezing, but has a negative effect

on recall of contextual fear-conditioned freezing that persists over

the testing period.

Does an acute phase shift after training have an effect on
recall?

Having determined that an acute phase shift prior to the

training process does not affect acquisition, we tested the effects of

an acute phase shift on recall after training (Fig. 2A). Two

separate groups of mice (n = 8 per group) were trained at ZT 3 on

Day 0. Acquisition of fear conditioned freezing was determined to

be similar for both groups (Fig. 2B; t-tests CS-US 1: t14 = 0.96;

P = 0.35; CS-US 2: t14 = 20.56, P = 0.56). The control group was

Figure 1. Phase shift prior to training reduced recall, but not acquisition, of contextual fear-conditioned behavior. A) Schematic
illustration of the experimental design. In this and all subsequent experiments, adult male mice were entrained to a 12:12 LD cycle for at least 2
weeks. One group (n = 6) was subjected to a 12 hr extension of the dark phase on Day -1 to cause a phase inversion by Day 0. On Day 0, both the
phase shifted and the control group (n = 8) were trained at ZT 3. 24 hr after training, both groups of mice were returned to the same context for
testing of the recall in once a day. B) Acquisition of the conditioned fear behavior was not altered by the phase shift. Freezing in response to CS-US 1
and CS-US 2 was not different between the control and phase shifted groups. C) Recall of the conditioned fear was dramatically reduced by the phase
shift. The phase shifted group displayed significantly reduced freezing compared to the control group upon testing. In this and subsequent
experiments, two way repeated measures analysis of variance (2RM ANOVA) followed by Bonferroni’s pairwise multiple comparison t-tests were used
to assess differences between the cohorts. The criterion level for significance was set at P,0.05, and the ‘‘*’’ symbol indicates significant differences
between control and phase-shifted groups. Error bars represent standard error mean (S.E.M.).
doi:10.1371/journal.pone.0012546.g001
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maintained on the same 12:12 LD cycle, and the second group

was subjected to an immediate phase advance. Both groups of

mice were returned to the conditioning chamber in 24 hr intervals

post-training: ZT 3 for the control group and ZT 15 for the phase-

shifted group. Testing of the phase-shifted group was performed

under conditions of darkness at ZT 15. The phase shifted group

performed considerably worse than the control group, demon-

strating reduced fear conditioned freezing when placed in the

same context (Fig. 2C). The adverse effect of the post-training

phase shift was confirmed by a 2RM ANOVA, which determined

a significant effect of phase shift (F 1,14 = 220.47, P,0.001),

between days (F 6,14 = 82.26, P,0.001), as well as interaction

between phase shift x day (F 6,111 = 7.44, P,0.001). Post-hoc

Bonferroni’s t-tests revealed significantly reduced freezing in the

phase shifted group on all 7 days of testing (Fig. 2C).

Thus, similar to our findings on phase shifts prior to training,

subjecting mice to phase shifts immediately after the training event

leads to markedly reduced contextual fear conditioned freezing

when tested.

Do acute phase advances versus phase delays have
different effects on recall?

Having determined that acute phase shifts prior to as well as

after training specifically affect recall, we wished to determine if

the direction of the phase shift had different effects on the recall of

fear-conditioned behavior (Fig. 3A). We trained 3 separate

cohorts of mice (n = 6–7 per group) and subjected one cohort to a

6 hr phase advance after training, testing this phase advanced

cohort 24 hr post-training at their new ZT 9. The second cohort

was subjected to a 6 hr phase delay after training, and tested 24 hr

post-training at the new ZT 21 in the dark. The third cohort was

not phase shifted. Acquisition was not different between the three

groups (one way ANOVA; CS-US 1: F 2,18 = 2.74, P = 0.09;

CS-US 2: F 2,18 = 3.04, P = 0.07). In contrast, retention of the

contextual fear conditioned behavior was again found to be

significantly different between the phase shifted groups by 2RM

ANOVA (Fig. 3B; F 2,17 = 9.32, P = 0.002) with significant

differences between days (F 6,17 = 209.79, P,0.001) and significant

interaction between phase shift x day (F 12,139 = 3.62; P,0.001).

Post-hoc Bonferroni’s t-tests showed that both the phase

advanced and phase delayed groups had significantly reduced

recall of contextual fear conditioned behavior on the first day of

testing compared to the un-shifted group (Advance: t12 = 6.36,

P,0.001; Delay: t12 = 4.12, P,0.001) but could not detect

significant differences between the phase advanced versus phase

delayed group (t13 = 2.34, P = 0.07) as well as on all subsequent

days of testing. Both the phase advanced and phase delayed groups

continued to show significantly lower recall of contextual fear

conditioned behavior on day 2 (Advance: t12 = 4.12, P,0.001;

Delay: t12 = 2.65, P = 0.03). By day 3, the conditioned behavior

was no longer different between the phase delayed group and

control (Advance: t12 = 3.46, P = 0.003; Delay: t12 = 1.92,

P = 0.18).

Both acute phase advances and delays lead to impairments in

recall of contextual fear conditioned behavior.

Does the magnitude of the acute phase shift have
varying effects on recall?

We wished to determine the minimum magnitude of phase shift

that would produce an effect on recall of contextual fear (Fig. 4).

We subjected 3 separate cohorts to phase advances of varying

degrees (3, 6 and 12 hr) after a training session at ZT 3 and

compared these to a fourth cohort that was not phase shifted.

Acquisition of fear conditioned freezing was not different between

the 4 groups (one way ANOVA; CS-US 1: F 3,26 = 1.56, P = 0.22;

CS-US-2: F 3,26 = 0.30, P = 0.82). Testing for fear conditioned

Figure 2. Acute phase shift after training reduced recall of contextual fear-conditioned behavior. A) Schematic illustration of the
experimental design. On Day 0, two cohorts (n = 8 per group) were trained at ZT 3. After training, one cohort was immediately phase shifted while the
other served as the control. 24 hr after training, both groups of mice were returned to the same context for testing once a day. B) Freezing in
response to CS-US 1 and CS-US 2 was not different between the two cohorts of mice. C) Recall of the conditioned fear was significantly reduced by
the phase shift.
doi:10.1371/journal.pone.0012546.g002
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behavior was performed for all 4 groups at 24 hr intervals post-

training. 2RM ANOVA determined significant differences be-

tween phase shifted groups (F 3,26 = 49.67, P,0.001) and between

days (F 6,26 = 181.51, P,0.001), with significant interaction

between phase shifts x day (F 18,209 = 3.78, P,0.001).

Both the 12 hr and 6 hr phase-advanced groups displayed

significantly reduced recall compared to the un-shifted control

group on the first day of testing (12 hr shift: t15 = 6.62, P,0.001;

6 hr advance: t14 = 4.28, P,0.001). The recall of contextual fear

conditioned freezing of the 3 hr phase advanced group was not

significantly different from control (3 hr advance: t14 = 0.20,

P = 1.00). Curiously, differences were observed between the 3 hr

phase advance group and the control group on only day 4 of

testing (t14 = 3.93, P,0.001). On the first test, no difference was

observed between the 12 hr shifted cohort and the 6 hr phase

advanced cohort (t14 = 2.11, P = 0.22), but further tests on days 2

and 3 showed reduced freezing in the 12 hr shift cohort compared

to the 6 hr phase advance cohort (day 2: t14 = 3.86, P,0.001; day

3: t14 = 2.67, P,0.001).

Thus, the increasing magnitudes of phase shift cause greater

impairment of recall of contextual fear conditioning, with the

12 hr phase inversion causing the most disruption, followed by the

6 hr phase advance, with minimal effects observed after a 3 hr

phase advance.

Does peak recall change according to the new lighting
schedule?

A critical control experiment was to determine if the peak of

recall following a phase shift was also shifted by the change in the

LD cycle (Fig. 5A). In many cases, peak recall is observed in 24 hr

intervals after training [38]. Following a 6 hr phase advance, we

tested separate cohorts of mice at 18, 24 and 30 hr after training at

ZT 3 to account for any possible shift in the peak recall. 6 separate

cohorts of mice were trained at ZT 3 and each cohort was tested

only once at 18 hr, 24 hr or 30 hr post-training time. 3 cohorts

were left un-shifted as controls to be tested at ZT 21 (18 h post-

training), ZT 3 (24 hr post-training) and ZT 9 (30 hr post-

training). 3 cohorts were subjected to a 6 hr phase advance

following training, and tested at the new ZT 3 (18 hr post-

training), ZT 9 (24 hr post-training) and ZT 15 (30 hr post-

training).

There was equal acquisition across all 6 groups (one way

ANOVA; CS-US 1: F5,24 = 1.02, P = 0.432; CS-US 2: F5,24 = 0.58,

P = 0.72). Comparison of the recall of fear conditioned behavior at

all times of testing by one way ANOVA revealed significant

differences between testing times (F 5,24 = 51.45, P ,0.001;

Fig. 5B). Post-hoc Bonferroni’s t-tests confirmed that the control

group’s recall at 24 hr was significantly higher than recall at 18 hr

and 30 hr post-training (control 24 hr vs. 18 hr: t6 = 10.94,

Figure 3. Both phase advances and delays of the LD cycle reduced recall of contextual fear-conditioned behavior. A) Schematic
illustration of the experimental design. On Day 0, three cohorts (n = 6 per group) were trained at ZT 3. Acquisition of fear conditioned freezing
behavior was not significantly different between the three groups (data not shown). After training, one cohort was subjected to a 6 hr phase advance
of the LD cycle, a second cohort was subjected to a 6 hr phase delay of the LD cycle and the third cohort was kept under the same LD cycle as
controls. All cohorts were tested for recall in 24 hr intervals. B) Recall of the conditioned fear was significantly reduced by both the phase advance
and delay of the LD cycle. 2RM ANOVA was performed with post-hoc Bonferroni’s t-tests, and ‘‘*’’ indicates significant differences between the control
and phase advanced cohort while the ‘‘{’’ symbol indicates significant differences between the control and phase delayed cohort.
doi:10.1371/journal.pone.0012546.g003
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P,0.001; 24 vs. 30 hr: t6 = 9.14, P,0.001) and was also

significantly greater than all times of testing of the phase-shifted

groups (control 24 hr vs. shifted 18 hr: t8 = 13.30, P,0.001;

control 24 hr vs. shifted 24 hr: t8 = 4.97, P,0.001; control 24 hr

vs. shifted 30 hr: t7 = 12.47, P,0.001). Within the shifted group,

the recall of contextual fear conditioning peaked in the group

tested at 24 hr post-training (shifted 24 hr vs. 18 hr: t8 = 8.39,

P,0.001; 24 hr vs. 30 hr: t7 = 7.67, P,0.001).

Within testing times, the phase shifted group consistently

demonstrated reduced recall of contextual fear conditioned

behavior than the un-shifted groups (18 hr: t8 = 5.09, P,0.001;

24 hr: t7 = 4.97, P,0.001; 30 hr: t7 = 6.03, P,0.001; Fig. 5B).

Recall in the phase shifted group at 24 hr post-training was greater

than the non-shifted group at 18 hr post-training (t7 = 3.99,

P = 0.01), but otherwise, recall exhibited by the phase-shifted

groups did not exceed that of the non-shifted groups at other

testing times.

The results from these experiments suggest that the 24 hr

interval post-training remains the time of highest recall regardless

of the new zeitgeber time.

Does the acute phase shift lead to an altered fear
response?

Corticosterone is a hormone secreted with a robust circadian

rhythm whose levels can regulate many aspects of learning and

memory (e.g., [39]). To determine if acute phase shifts have an

impact on baseline circulating corticosterone, we sampled from

control mice and mice that had been subjected to a 6 hr phase

advance on the day prior to sampling (Fig. 6). No significant

differences were measured in the serum corticosterone levels at ZT

3 between the un-shifted and phase-shifted groups (t6 = 1.45,

P = 0.21). To determine if the corticosterone response to the

training protocol was altered, we obtained blood samples from

mice 20 min after the 2 CS-US training procedure from a non-

shifted group and a group that had been subjected to a 6 hr phase

advance on the day prior to training. Circulating corticosterone

was significantly increased from baseline levels in both groups of

mice, and the serum concentration of corticosterone was signifi-

cantly increased in the phase-shifted mice (t9 = 22.45, P = 0.04)

compared to non-shifted controls. Two way ANOVA confirmed a

significant training-evoked corticosterone response (F 1,16 = 70.49,

P,0.001) as well as a significant interaction between the training

procedure and phase shift (F 1,16 = 4.98, P = 0.04).

Thus, the rapid shift of the LD cycle alters the stress-evoked

corticosterone response in the mice.

Does the acute phase shift cause sleep deprivation?
Several lines of evidence suggest that sleep plays some type of

critical role in memory consolidation and many studies have found

evidence that sleep deprivation interferes with the recall of learned

behaviors (e.g., [40]). To determine if the phase shifting procedure

interferes with sleep in the mice, we performed electroencepha-

logram (EEG) and electromyogram (EMG) recordings to deter-

mine the total amount of sleep in mice 24 hour prior to and after a

6 hr phase advance (Table 1). We found that the percentage of

time spent awake was not significantly different before or after the

phase advance (t9 = 20.24, P = 0.82). There was also no significant

change in the amount of non-rapid eye movement (NREM) and

REM sleep (NREM: t9 = 0.22, P = 0.83; REM: t9 = 0.41, P = 0.69).

To examine possible changes in the distribution of sleep, we

recorded rest/wake behavior from mice subjected to acute phase

shifts. Video recordings of the sleep/wake behavior were made

and visually scored (n = 8) before and after a 6 hr phase advance in

the LD cycle. Our behavioral data confirmed our EEG findings

that the amount of sleep within a 24 hr interval does not change

before (55.564.4% rest/24 hrs) or after (56.863.8% rest/24 hrs)

an acute phase advance of the LD cycle (2-way ANOVA:

F2,7 = 0.81, P = 0.47). However, there was some evidence that the

temporal distribution of sleep was altered following the phase

advance (day x hour interaction: F46,7 = 2.22, P,0.001; Fig. 7A).

Next, we examined the impact of a 6 hr phase delay. In this case,

there was a small but significant increase in the amount of sleep

(baseline: 58.364.7% rest/24 hrs) after (61.864.1% rest/24 hrs)

the phase shift (2RM ANOVA: F2,7 = 4.17, P = 0.021). In addition,

there was evidence that the temporal distribution of sleep was

altered following the phase delay (day x hour interaction:

F46,7 = 4.87, P,0.001; Fig. 7B).

These data demonstrate that the acute phase shift (6 hrs) did not

result in sleep deprivation as measured over a 24 hr period. A

phase delay (6 hrs) may have actually increased sleep during this

time interval (24 hrs). The temporal distribution of rest was altered

by the shift in the LD cycle.

The effect of prior experience of phase shifts on recall
In this experiment, we examined the effect of prior exposure to

phase shifts on recall of contextual fear-conditioning (Fig. 8). One

cohort of mice was subjected to repeated phase shifts on a weekly

basis. The LD cycle was phase advanced by 6 hr, followed by a

6 hr delay after a week. This was repeated twice prior to training

to produce a cohort of mice that were considered ‘‘Veterans’’ of

phase shifts. Acquisition of fear conditioned freezing was not

altered by the multiple phase shifts prior to training (one way

ANOVA: CS-US 1: F 2,17 = 2.12, P = 0.15; CS-US 2: F 2,17 = 0.37,

Figure 4. Phase advances of 6 hrs or more reduced recall of
contextual fear-conditioned behavior. On Day 0, four cohorts
(n = 6–8 per group) were trained at ZT 3. Acquisition of fear conditioned
freezing behavior was not significantly different between the groups
(data not shown). After training, one cohort was subjected to a 12 hr
phase shift, a second cohort was subjected to a 6 hr phase advance and
the third cohort subjected to a 3 hr phase advance. All cohorts of mice
were tested for recall of contextual fear conditioned behavior in 24 hr
intervals. Recall of the conditioned fear was significantly reduced by the
12 and 6 hr phase advance of the LD cycle. 2RM ANOVA was performed
with post-hoc Bonferroni’s t-tests, and ‘‘*’’ indicates significant
differences between the 12 hr phase shifted group and control; the
‘‘{’’ symbol indicates significant differences between the 6 hr phase
advanced group and control; ‘‘{’’ indicates significant differences
between the 3 hr phase advanced group and control.
doi:10.1371/journal.pone.0012546.g004
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P = 0.69). Immediately following training, the veteran cohort was

phase-shifted along with trained mice that were naı̈ve to phase

shifts. A third set of mice was left un-shifted as controls.

Comparison of recall of contextual fear conditioned behavior of

all three groups by 2RM ANOVA revealed a significant effect of

phase shift (F2,15 = 12.83, P,0.001) and day (F 6,15 = 28.47,

P,0.001), but no interaction between shift and day (F 12, 125 =

0.79, P = 0.66). Consistent with previous experiments, the naı̈ve

phase-shifted group displayed lower levels of recall compared to

the control non-shifted group on the first day of testing (post-hoc

Bonferroni’s t-test: t11 = 2.79, P = 0.02). Surprisingly, the veterans

of previous phase-shifts did not display deficits in recall following a

phase shift when compared to controls (t11 = 0.05, P.0.99) and

had significantly better recall than the mice naı̈ve to phase shifts

(t11 = 2.83, P = 0.02). Significant differences on subsequent days

are indicated in Fig 8.

Pre-exposing the mice to multiple phase shifts before training

can ameliorate the detrimental effects of an acute phase shift on

recall of contextual fear conditioned behavior.

Discussion

In this study, we found that acute phase shifts selectively affect

recall of the hippocampal-dependent contextual fear conditioned

behavior, regardless of whether we phase shifted the mice before

or after training. Our findings are consistent with previous studies

on phase shifts and cognition [33,34], but one critical difference is

that we applied the phase shift only once to mice that were naı̈ve

to such manipulations. Hence, we were able to demonstrate that a

rapid shift in the lighting cycle produces a dramatic reduction in

recall without a significant effect on acquisition (Fig. 1 & 2). The

duration and severity of jet lag depends on the number of time

zones crossed. For the circadian system, the larger the phase shift,

the longer the duration required for re-synchronization to the new

lighting schedule. For example, several studies suggest that the

circadian system would require more than 6 days to recover from

the 6 hr phase advance used in the present study [3,41,42,43]. We

were able to demonstrate that the larger the phase shift, the larger

the impact on recall (Fig. 4) with even a 3 hr phase advance

having some impact on recall compared to untreated controls.

Using this same behavioral assay, we previously found that a

mutation in one of the key clock genes (Period2) as well as the loss of

vasoactive intestinal peptide, a signaling molecule critical for

coupling within the central clock, reduced recall, but not

acquisition, of conditioned fear [8,26]. Collectively, our findings

are consistent with a role for the circadian system in the

consolidation of memory.

Several lines of evidence indicate that phase advances of the LD

cycle are more disruptive than phase delays. In general, an

organism’s behavioral activity-rest cycle can re-synchronize to a

phase delay of the LD cycle rapidly while synchronization to a

phase advance is much more gradual. For example, in mice, re-

Figure 5. The peak recall of conditioned fear behavior occurred 24 hrs after training with or without a phase shift. A) Schematic
illustration of the experimental design. On Day 0, six cohorts (n = 6 per group) were trained at ZT 3. Acquisition of fear conditioned freezing behavior
was not significantly different between the six groups (data not shown). After training, three cohorts were subjected to a 6 hr phase advance of the
LD cycle. Cohorts, one phase shifted and one control group were tested for recall of contextual fear-conditioned behavior at 18, 24 or 30 hrs intervals
after training. B) Recall of the conditioned fear was reduced by the phase advance of the LD cycle at each of the three intervals tested. The peak recall
for both groups was found 24 hrs after training. 2RM ANOVA was performed with post-hoc Bonferroni’s t-tests, and ‘‘*’’ indicates significant
differences between the phase shifted and control groups. Within groups (control and phase advanced), one way ANOVA revealed differences
between testing times (18, 24, 30 hrs post training) with the interval of peak recall in the control group indicated with a ‘‘{’’, and within the phase
advanced group as indicated by a ‘‘{’’.
doi:10.1371/journal.pone.0012546.g005
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synchronization to a 6 hr phase delay occurs within a couple of

days, while re-synchronization to a 6 hr phase advance may take

5–6 days [42]. In older mice, repeated phase advances can

increase mortality, an effect not seen with phase delays [44]. These

studies suggest that phase advances may be more disruptive to

cognitive processes than phase delays. In the present study (Fig. 3),

we found that both advances and delays disrupted the recall of the

conditioned fear. The impact of the phase advance was larger than

the phase delay at all time points tested, so it is possible that future

work will find more robust differences. Earlier work with rats also

found that both advances and delays of the LD cycle disrupted

memory [34]. Perhaps the difference between advances and delays

on cognitive processes lies more in the duration of the disruption

than its magnitude.

One downside of using the 12 hr phase shift (Fig. 1 & 2) as a

drastic disruption of the circadian system is the possibility that the

re-entrainment could take place via phase advances or delays. Our

series of different durations of phase shifts described in Fig. 4
confirmed that although the 12 hr phase shift has the most

disruptive effect on memory, 6 and 3 hr shifts also have a

significant impact on recall of fear-conditioned behavior, and the

6 hr protocol was hence used in all subsequent mechanistic

experiments to allow interpretation of the effects of direction of

shift and other factors that could affect memory. A further possible

confound of the post-training phase shift experiment described in

Fig. 2 is the difference in the lighting conditions between training

(light phase) and testing (dark phase post-shift). We have previously

shown that recall is higher in the day than in the night [13]. While

we cannot rule out some direct effect of dark reducing recall in this

one experiment, most of our experiments were carried out with

shorter phase shifts in which both training and testing were carried

out under the same lighting conditions that continued to affect

recall (e.g. Fig. 4 & 5). Furthermore, the experiment described in

Fig. 5 shows no difference in freezing between the non-shifted

animals tested at non-24 hr intervals in the dark (18 hr) and light

(30 hr) phase. Similarly, the mice subjected to a phase shift prior to

testing do not show a difference in freezing between the non-24 hr

interval testing phases in the light (18 hr) and dark (30 hr). For

these reasons, we do not feel that the acute effects of lighting

conditions were an interpretational problem for these studies.

Peak performance still occurs 24 hrs after training in the
phase shifted group

Behaviorally, there is a long history of work demonstrating that

peak performance in the recall of a number of behavioral tasks

varies with time of day [9–12] and circadian time [13,14,15]. This

type of research has led in most behavioral learning protocols to

keep the interval between training and testing at 24 hrs. This prior

work also raises the possibility that the 6 hr advance in the LD

cycle induced an immediate 6 hour shift in the peak of recall. If

this were the case, then the peak of recall would be 18 hrs after

training in the phase advanced group while remaining at 24 hrs

after training in the control group. We examined this possibility by

training mice that were on a stable LD cycle and then testing them

at 18, 24, and 30 hrs after training (Fig. 5). The control mice

showed a clear peak of recall of training 24 hrs after training,

confirming prior work. Interestingly, the phase advanced cohort

also showed a peak in recall 24 hrs after training. The 6 hr

advance did not shift the peak in performance to 18 hrs after

training. Therefore, the ‘‘time-stamp’’ of 24 hr for peak recall was

not affected by phase shifts, and confirmed that the reduced recall

we observed after a phase shift is not due to a shift in the timing of

the peak recall.

The jet lag protocol alters the magnitude of the stress
response but not baseline levels of corticosterone

Stress and the release of corticosterone is an important

modulator of learning and memory [39,45,46]. With contextual

fear conditioning, increasing corticosterone can facilitate consol-

idation [47,48,49] or interfere with recall [50,51,52]. Corticoste-

rone is a hormone secreted with a robust circadian rhythm, with

peak secretion during the late day, , ZT 10, in nocturnal rodents

[53]. Anatomical studies have provided evidence that the

paraventricular nucleus (PVN) receives innervations from the

SCN. Release of corticotrophin releasing factor by neurons within

the PVN is the critical step in stimulating adrenocorticotropic

hormone (ACTH) release from the pituitary and thus the

Figure 6. Phase advance of the LD cycle enhanced the
magnitude of the stress-evoked corticosterone response. Four
cohorts (n = 6–8 per group) of adult male mice were entrained to a
12:12 LD cycle for at least 2 weeks. On Day -1, two cohorts were
subjected to a 6 hr phase shift of the LD cycle. On Day 0, serum
corticosterone levels were measured at ZT 3. Baseline concentration
of serum corticosterone was not different between the control and
phase shifted groups. The cohorts that underwent training for fear
conditioning exhibited significant increases in corticosterone. The mag-
nitude of this stress-evoked response was significantly increased in the
phase-shifted group. 2RM ANOVA was performed with post-hoc
Bonferroni’s t-tests and ‘‘*’’ indicates significant differences between
training evoked corticosterone responses, while ‘‘{’’ indicates significant
differences between baseline and trained mice.
doi:10.1371/journal.pone.0012546.g006

Table 1. Percentage of time spent awake and in NREM and
REM sleep as determined by EEG/EMG recordings from mice
24 h before and after an acute 6 hr phase advance of an LD
cycle.

Baseline Phase Advance

Waking 51.363.2% 53.067.8%

NREM 42.762.6% 41.466.7%

REM 6.060.2% 5.661.3%

No significant differences were found between the baseline and post-phase
shift amounts of wake and sleep (REM and NREM sleep).
doi:10.1371/journal.pone.0012546.t001
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activation of the hypothalamic-pituitary-adrenal axis [54]. SCN-

lesioned rats show a loss of daily rhythm in ACTH and

corticosterone [55,56,57]. In this study, we determined the impact

of the 6 hr phase advance on the levels of corticosterone in the

mice. While we only sampled at one time of day, we did not see

evidence that unstimulated, baseline levels were increased by the

phase shift (Fig. 6). In contrast, the stress (foot shock) evoked

responses were significantly larger in the phase shifted group. So it

is possible that higher corticosterone levels during recall played a

role in the reduced memory in the phase shifted groups. In flight

crews who habitually experience travel between more distant time

zones, there is evidence for both higher salivary cortisol and

reduced performance of vigilance tasks [31,58].

The jet lag protocol alters the temporal distribution but
not total amounts of sleep

Sleep immediately after a training session has been shown to be

critical for consolidation of contextual fear conditioned memory

[59,60] as well as many other learned behaviors [40,61]. In

humans, sleep disturbances are a common complaint after jet

travel crossing a number of time zones [62,63]. To examine the

possibility that the 6 hr phase advance caused sleep deprivation in

Figure 7. Phase advance of the LD cycle alters the distribution but not the total amount of sleep. A single cohort (n = 8) of adult male
mice were entrained to a 12:12 LD cycle for 2 weeks. The mice were videotaped for 24 hrs to establish a baseline and an additional 48 hr during
which the mice were subjected to a 6 hr phase shift of the LD cycle. The video was scored every 5 min to determine if the mice were awake or asleep.
In both A and B, the significant differences between baseline and the first day of the phase shift as determined by 2RM ANOVA with post-hoc
Bonferroni’s t-tests are denoted by ‘‘*’’ and the significant differences between baseline and the second day of the phase shift by ‘‘{’’. A) A 6 h phase
advance of the LD cycle did not change the total amount of sleep over a 24 h cycle compared to the baseline recordings, but resulted in minor
changes in the distribution of sleep. B) A 6 h phase delay of the LD cycle resulted in increased sleep during and after the phase shift, and caused an
immediate increase in sleep during the extended 6 h of light, as well as a corresponding decrease in sleep during the dark hours of the following day.
doi:10.1371/journal.pone.0012546.g007
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mice, we examined pre- and post-phase shift sleep/wake patterns

using EEG recording in freely moving mice. We found no

significant differences in the amount of NREM or REM sleep

before and after the phase advance (Table 1). Surprisingly, we

could not find other studies that had examined the impact of

experimental jet lag on sleep in mice. In rats, there has been one

report that phase advances of the LD cycle led to an increase in

NREM and REM sleep [64]. Our phase advance protocol results

in one shorted day, and it has been shown that rats and hamsters

housed under short photoperiod (8:16 LD) show altered sleep

patterns but the short photoperiod does not affect sleep

homeostasis [65,66]. To further explore the sleep/wake patterns,

we turned to behavioral measures of sleep [67,68]. We measured

the patterns of sleep/wake before and after a 6 hr phase advance.

The results (Fig. 8) clearly show a change in the temporal

distribution of sleep but do not show an overall loss of sleep. Thus

the impact of jet lag on recall occurred without producing sleep

deprivation. Future studies will need to explore the relationship

between misalignment of sleep on memory consolidation.

Experience can reduce the impact of jet lag on the
conditioned fear

As a final experiment, we tried to further disrupt the circadian

system by subjecting the mice to repeated phase shifts, but

discovered that prior experience of phase shifts appears to

ameliorate the adverse effects on recall. This observation may

explain some apparent contradictions in the literature. A previous

study by Craig and McDonald showed that chronic or serial jetlag

in rats impairs acquisition, but in contrast to our findings,

chronically and acutely jetlagged rats did not appear to show

deficits in recall of contextual fear conditioned freezing [69]. This

discrepancy could be due to differences in application of ‘‘acute’’

phase shifts. In our study, all phase shifts were acutely applied to

mice naı̈ve to phase shifts, whereas Craig and McDonald applied

serial phase shifts over several days to produce their acute jetlag

model. In fact, their study agrees with our finding that multiple

serial exposures to phase shifts can compensate for the negative

effects of acute phase shifts on memory. The data suggest that it is

possible to design treatments that can reduce the cognitive impact

of circadian de-synchronization.

Phase shifts desynchronize the network of circadian
oscillators: mechanisms

Previous studies have shown that when rodents are subjected to

acute phase shifts of the LD cycle, de-synchrony results within core

clock genes within the SCN [42], between different regions within

the SCN [35,36,70] and between the SCN and peripheral

oscillators [71]. Within circuits involved in learning and memory,

it has been demonstrated that the amygdala takes longer to re-

entrain to phase shifts of the LD cycle than the SCN [72,73].

Nuclei within the amygdala (central and basolateral) and as well as

the dentate gyrus region of the hippocampus exhibit rhythms in

gene expression which are dependent on an intact SCN [5]. The

hippocampus also exhibits rhythms in clock gene expression

[7,8,26] that are independent of the SCN [8]. By applying an

acute phase shift, we are most likely uncoupling the tightly

synchronized network of circadian oscillators, including regions of

the brain responsible for learning and memory. We speculate that

this disruption in the coordination of clock gene expression within

different neural structures lies at the heart of memory deficits.

Consolidation of memory involves changes in gene expression

[74,75] and is prevented by inhibitors of transcription and

translation. The molecular circadian clock regulates the temporal

pattern of transcription and we believe that by this mechanism,

disruptions in the molecular clock could also disrupt consolidation

of memory. Previous work has also found evidence that levels of

adenylyl cyclase 1 expression [76] as well as cAMP and MAPK

activity in the hippocampus [17] exhibit daily oscillations. Previous

work in Aplysia implicates the circadian gating of the MAPK

pathway as the mechanistic control point for circadian regulation

of sensitization [16]. These results also raise the possibility that jet

lag evoked disruptions in intracellular signaling pathways may be

an important part of the observed deficits in recall.

Conclusions and Significance
In the present study, we demonstrate that single acute phase

shifts can reduce recall of a learned behavior, presumably through

altering memory consolidation. Among other novel findings, we

demonstrate that the 24-hr interval between training and testing

still produces the strongest recall even in phase shifted mice. We

were able to disassociate the impact of the circadian disruption

from the total amount of sleep as the mice were not sleep deprived.

The temporal distribution of sleep was disrupted and future studies

will need to explore the importance of when sleep occurs on

memory consolidation. Our data adds to a body of studies that

have shown that a functioning circadian system is important for

long-term memory. Memory deficits have been found in several

lines of mice with mutations impacting the generation of robust

circadian rhythms in behavior [8,21–26]. Similarly, environmental

manipulations, including chronic phase shifts of the LD cycle, that

disrupt circadian rhythms without genetic mutations also disrupt

memory in different tasks [28–34,69,77]. We think that the

broader hypothesis that internal desychronization of a network of

circadian oscillators results in memory deficits is clinically

important. Patients with a variety of psychiatric and neurological

Figure 8. Prior experience with phase shifts reverses the
impact of the jet lag on the recall of conditioned fear behavior.
One cohort of mice (n = 8) was subjected to 3 successive combinations
of phase advances and delays spaced out on a weekly basis (veterans),
and compared to mice that were left un-shifted (control, n = 8) as well
as a third cohort of mice that were subjected to an acute 6 hr phase
advance after training (naı̈ve, n = 8). 2RM ANOVA was performed with
post-hoc Bonferroni’s t-tests and ‘‘*’’ indicates significant differences
between control and naı̈ve cohorts and ‘‘{’’ indicates significant
differences between the veterans and naı̈ve cohorts. No statistical
differences were found between the un-shifted control group and the
phase-shifted veterans group on all 7 days of testing.
doi:10.1371/journal.pone.0012546.g008
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disorders exhibit disruptions in their sleep and circadian rhythms.

If our hypothesis is correct, these circadian disruptions may

contribute to the cognitive symptoms experienced by a range of

patients.

Methods

Experimental animals
Two to four-month old C57Bl/6 male mice were used in this

study. All mice were housed in cages within light-tight chambers

with controlled lighting conditions. The experimental protocols

used in this study were approved by the UCLA Animal Research

Committee (ARC 1998-183-41), and all recommendations for

animal use and welfare, as dictated by the UCLA Division of

Laboratory Animals and the guidelines from the National

Institutes of Health, were followed.

Experimental lighting conditions
In all experiments, mice were entrained to a 12:12 LD cycle for

at least one week prior to the start of all experiments (light intensity

36 mW/cm2>120 lux). All times are reported as Zeitgeber Time

(ZT), where ZT 0 corresponds to the start of the light period, and

ZT 12 refers to the start of the dark period. Training procedures

were done during the day at either ZT 3 (early day) or ZT 6 (mid-

day). All testing procedures were carried out in intervals of 24 hr

based on the initial training time unless otherwise stated. Acute

changes to the lighting schedule were performed relative to the

lighting cycle for each independently controlled chamber.

Training and testing procedure
Contextual fear conditioning was performed using previously

published protocols [13,26]. Briefly, on the day of training

(denoted as Day 0), mice were placed individually into cages

and allowed to acclimatize to the new environment (conditioned

stimulus; CS) for 3 min after which time animals received a 2 sec

0.2 mA foot shock (unconditioned stimulus; US). The training

protocol consisted of 2 of these conditioned and unconditioned

stimulus (CS-US 1 and 2) pairings with an inter-trial interval of

64 sec. At the end of the last CS-US pairing, the mice were left in

the cage for a further 64 sec, after which they were returned to the

home cages. On the day of testing (Day 1 to 7), mice were placed

individually into the same conditioning chamber for 6 min. The

fear conditioned freezing behavior was scored as previously

described [13,26]. When tested in the dark, handling of the mice

was performed using an IR viewer (FJW Industries, Ohio) and

recording of fear conditioned behavior was done using an IR-

capable camcorder (Sony, DRC-DVD408, NY).

Corticosterone measurements
Circulating corticosterone concentration in serum was deter-

mined as previously described [78]. Briefly, trunk blood was

collected from mice anesthetized with isoflurane. The serum

supernatant obtained by centrifugation of clotted blood at 10006g

was assayed by competitive enzyme immunoassay (Correlate-EIA

Corticosterone, Assay Designs, Ann Arbor, MI). The intra-assay

CV was ,8%, the inter-assay CV was ,13.1% and the sensitivity

was 27 pg/ml.

Sleep measurements
EEG and EMG recordings and vigilance state scoring were

performed as described previously [79]. EEG recordings before

and after the phase shift were performed on the same mice.

Vigilance state values were averaged to reflect the 24 hr levels of

time spent awake and in NREM and REM sleep. Behavioral

measurements of sleep were performed using surveillance camera

system (Gadspot, GS-335C, CA). The same cohort was used for

baseline and post-phase shift measurements. Mice were visually

scored for sleep/wake activity in 5 min intervals. These values

were summed and hourly percentages of sleep/wake were

determined. The sleep state is marked by several easily observed

behaviors, including adoption of a species-specific sleep posture

with the eyes closed [67]. Thus, we scored an animal as having

been behaviorally asleep only if its eyes were closed as it either lay

on its side or sat curled up with the head tucked into the body and

if it made no movement other than very slight and brief

transitional changes in posture. This type of strategy has been

previously used to assess the basic temporal distribution of

behavioral sleep across a 24-h period (e.g., [68]).

Statistical analysis
All reported values are mean 6 SEM unless otherwise stated.

To make simple comparisons between groups, Student’s t-tests

were used. In the cases in which repeated measurements were

made from single animals, the data was analyzed using a two-way

repeated measure (2RM) analysis of variance (ANOVA) followed

by Bonferroni’s t-tests for multiple comparisons. For all tests,

values were considered significantly different at P,0.05. To

compare recall for animals tested once at 18-, 24- or 30-hrs

following training, one-way ANOVA was used followed by

Bonferroni’s post-hoc t-tests for pair-wise comparisons. One-way

ANOVA with Bonferroni’s post-hoc t-test was also used to test

recall for vets vs. naı̈ve, advances vs. delays, and 12 vs. 6 vs. 3 hr

shifts.
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