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SPECIAL SERIES: PRECISION MEDICINE AND IMMUNOTHERAPY IN GI MALIGNANCIESreview
articles

Neuroendocrine Tumors and Peptide
Receptor Radionuclide Therapy: When Is the
Right Time?
Thomas A. Hope, MD1,2,3; Marianne Pavel, MD4; and Emily K. Bergsland, MD2,5

abstract

Since its approval in 2018 by the US Food and Drug Administration, peptide receptor radionuclide therapy
(PRRT) has become a mainstay in the treatment of neuroendocrine tumors. Lutetium-177-DOTATATE, the only
approved agent, is indicated for the treatment of gastroenteropancreatic-neuroendocrine tumors. Although
patient selection appears straightforward with somatostatin receptor-positron emission tomography, there is
considerable complexity when deciding which patients to treat and when to start PRRT. Herein, we review the
many factors that affect patient selection, focusing on the optimal patients to treat. Although significant effort has
been expended to determine which patients benefit the most from PRRT, a validated predictive biomarker
remains elusive. Although PRRT has been used for more than 2 decades in Europe and standards of care exist
for safe treatment, there remain numerous questions regarding when PRRT should be used relative to other
treatments. It is important to remember that multidisciplinary discussions are essential. Currently, there are a
number of ongoing studies looking to assess the efficacy of PRRT compared with other treatment options and to
optimize treatment through combination therapy, different dosing strategies, or use of different radionuclides
and radioligands.

J Clin Oncol 40:2818-2829. Published by American Society of Clinical Oncology

INTRODUCTION

Neuroendocrine neoplasms comprise a highly diverse
spectrum of tumors that are classified on the basis of
their primary site of origin and their pathology (dif-
ferentiation and grading; Table 1). Neuroendocrine
neoplasms are subclassified into well-differentiated
(neuroendocrine tumors [NETs]) and poorly differ-
entiated (neuroendocrine carcinomas) neoplasms,
with well-differentiated tumors subclassified on the
basis of their Ki-67 proliferation index and/or mitotic

rate (MR) into grade 1 (G1) (Ki-67 between 1%-2%;
MR , 2 per 10 high powered fields), grade 2 (G2)
(Ki-67 between 3%-20%, MR between 2-20), and
grade 3 (G3) (Ki-67 . 20%; MR . 20). In 2017 and
2018, the WHO classification was updated to include
well-differentiated gastroenteropancreatic G3 tumors
(WDG3), whereas previously, G3 NETs and neuroen-
docrine carcinomas were grouped together.1,2 In pa-
tients with metastatic disease, the most common
primary sites are the pancreas (Pan-NETs) and small
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KEY POINTS

• Lutetium-177-DOTATATE is approved for the treatment of somatostatin receptor–positive neuro-
endocrine tumors (NETs).

• Patient selection for peptide receptor radionuclide therapy is primarily based on somatostatin
receptor-positron emission tomography.

• NETs vary on the basis of primary site, extent of disease, pace of growth, and other characteristics,
and the appropriate sequence of therapies is complex and remains in flux.

• Multidisciplinary discussions are essential when choosing between therapeutic options for NET.
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bowel (SB-NETs), followed by the lung. Each of these tu-
mors, depending on primary site and classification, has
different behaviors and outcomes. In addition to their his-
tological features and anatomic site, tumors can be func-
tional, secreting a variety of bioactive compounds such as
serotonin or peptide hormones (gastrin, insulin, vasoactive
intestinal peptide, and others).

In patients with unresectable advanced disease, systemic
treatment typically begins with somatostatin analogs (SSAs,
octreotide, or lanreotide), which are also used for control of
symptoms related to hypersecretion of serotonin or hormones.
However, as outlined in a number of current treatment
guidelines, the precise sequence of therapy must be indi-
vidualized, on the basis of a variety of factors, including
symptoms, comorbidities, prior therapy, tumor characteristics,
and whether stability or shrinkage is acceptable.3-5 In Pan-
NETs, chemotherapy (either temozolomide- or streptozotocin-
based) and targeted therapies including everolimus and
sunitinib are often used.6-9 In SB-NETs, SSAs and everolimus
are approved, and everolimus is also approved for use in
bronchial NETs.10,11 Of note, the tyrosine kinase inhibitor
surufatinib is approved in China for the treatment of advanced
panNETs and extrapancreatic NETs, but has not been ap-
proved by the US Food and Drug Administration (FDA).12,13

Beyond systemic agents, given the predilection for the liver,
liver-directed therapies (LDTs), such as bland embolization
and chemoembolization, are commonly used. In selected
patients, ablative therapies (radiofrequency or microwave
ablation) are used.

The most recently approved therapy is peptide receptor
radionuclide therapy (PRRT), which targets the somato-
statin receptor (SSTR) using SSAs labeled with radioac-
tivity. Yttrium-90 (90Y)–labeled compounds have been
largely replaced by lutetium-177 (177Lu)–labeled com-
pounds, in part because of the higher rates of renal toxicity
with 90Y-labeled compounds.14 In the only phase III trial
(NETTER-1), 177Lu-DOTATATE (Lutathera) plus octreo-
tide long-acting release (LAR) 30 mg once every 4 weeks
was compared with high-dose octreotide LAR (60 mg once
every 4 weeks) in patients with adequate renal function who
had advanced SSTR-positive midgut NETs (Ki67 # 20%)
that were progressive despite standard dose octreotide
LAR.15 SSTR expression was defined using SSTR scintig-
raphy with 111In-pentetreotide (octreoscan). Treatment
was shown to prolong progression-free survival (PFS) and
improve patient quality of life.15,16 The median PFS was
8.4 months (95% CI, 5.8 to 9.1) with octreotide LAR alone
and was not reached in the PRRT arm (P , .001; hazard

TABLE 1. Heterogeneity Across Neuroendocrine Tumors
Primary Site Lung Midgut/Hindgut Pancreas

Grade/differentiation Low grade Intermediate grade High grade

Well-differentiated Poorly differentiated

Extent of disease Low burden/resectable High burden/unresectable

Liver dominant Widely metastatic

Pace of growth Slow/stable Progressive

Hormone status Functional Nonfunctional

SSTR expression High expression Low expression

Abbreviation: SSTR, somatostatin receptor.

CONTEXT

Key Objective
How do we select patients optimally for peptide receptor radionuclide therapy?
Knowledge Generated
Neuroendocrine tumors vary on the basis of primary site, extent of disease, pace of growth, and other characteristics, and

the appropriate sequence of therapies is complex and remains in flux. Systemic therapies include targeted agents such
as everolimus and sunitinib, chemotherapies such as capecitabine/temozolomide, and somatostatin analogs. Debulking
strategies include surgery and liver-directed therapies. A number of clinical trials are ongoing, focused both on how to
improve upon peptide receptor radionuclide therapy and to better understand how to sequence therapies.

Relevance
Somatostatin receptor-positron emission tomography is currently used for patient selection, but a validated predictive

biomarker remains elusive. Multidisciplinary discussions are essential when choosing between therapeutic options for
neuroendocrine tumor.
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ratio [HR] 5 0.21; 95% CI, 0.13 to 0.33), although the
overall response rate (ORR) with 177Lu-DOTATATE was
only 13%.15,17 There was also a trend toward increased
overall survival (OS), although the difference was not sta-
tistically significant (P 5 .30).18 177Lu-DOTATATE was
given in four cycles of a fixed 200 mCi administered activity
intravenous over 30 minutes every 8 weeks; further details
on administration can be found elsewhere.19

The NETTER-1 trial was performed in midgut NET (mostly
SB-NETs), but the final FDA approval was for
gastroenteropancreatic (GEP)-NETs and included Pan-NETs
on the basis of prospective single-arm European data.20 The
authors reported a 55%ORR, median PFS of 30months, and
median OS of 71 months in Pan-NETs, although the ORR in
the 177Lu-DOTATATE prescribing information for the same
population was only 16% in GEP-NETs.17,20

National Comprehensive Cancer Network guidelines include
PRRTas a potential therapy for SB-NETs, Pan-NETs, bronchial
NETs, and paraganglioma/pheochromocytomas.21 In SB-
NETs, Society of Nuclear Medicine and Molecular Imaging/
North American Neuroendocrine Tumor Society guidelines
place PRRT before everolimus as a second-line therapy while
European Society for Medical Oncology guidelines place PRRT
before everolimus when the Ki-67 is , 10% and everolimus

before PRRT when the Ki-67 is . 10% and European Neu-
roendocrine Tumour Society guidelines place both everolimus
and PRRT as second-line options.3,22-24 In Pan-NETs, Euro-
pean Society for Medical Oncology and European Neuroen-
docrine Tumour Society guidelines place PRRT after
capecitabine/temozolomide while Society of Nuclear
Medicine and Molecular Imaging/North American Neuroen-
docrine Tumor Society guidelines placed both as second-line
options. Overall, PRRT is recognized routinely in published
guidelines, but treatment sequencing varies by society and
primary site. Ongoing comparative trials (Table 2) will provide
more evidence on sequencing of therapies as discussed below.

SELECTION OF PATIENTS FOR PRRT USING SSTR-POSITRON
EMISSION TOMOGRAPHY

In NETs, SSTR imaging is used to select patients for PRRT.
Historically, this was performed using SSTR scintigraphy with
111In-pentetreotide. Assessment of intensity of SSTR ex-
pression used the Krenning score,25 a qualitative five-point
score from 0 (Fig 1A, no uptake) to 4 (Figs 1C, uptake greater
than the spleen). In NETTER-1, uptake greater than or equal
to the liver (Krenning score of 2) was used as the inclusion
criteria. It should be noted that 111In-pentetreotide has been
mostly replaced with SSTR-positron emission tomography

TABLE 2. Selected Ongoing Phase II and Phase III Trials Involving Peptide Receptor Radionuclide Therapy in NETs

Trial Sponsor Tumor Type NCT Size Comparison
Primary
End Point

Estimated
Completion

A021901 Alliance Bronchial NET NCT04665739 108 177Lu-DOTATATE 200 mCi
3 4 v 10 mg everolims
daily

PFS 2024

NCI Paraganglioma/
pheochromocytomas

NCT03206060 90 177Lu-DOTATATE 200 mCi
3 4 single arm

PFS 2026

NETTER-2 Novartis/
AAA

G1/G2 GEP-NET NCT03972488 222 177Lu-DOTATATE 200 mCi
3 4 v high-dose octreotide

PFS 2027

LUTHREE Romagnolo Any SSTR-positive tumor NCT03454763 618 177Lu-DOTATATE at every
5 weeks 3 5 v every
8-10 weeks 3 5

PFS
and safety

2021

ReLUTH Montpellier All G1/G2 NET NCT04954820 146 177Lu-DOTATATE 200 mCi
3 2 v observation after
two cycles of retreatment

RECIST
response

2029

COMPOSE ITM G2/G3 GEP-NET NCT04919226 202 177Lu-Edotreotide 200 mCi
3 4 v CAPTEM/
everolimus/FOLFOX

PFS 2026

COMPETE ITM G1/G2 GEP-NET NCT03049189 300 177Lu-Edotreotide 200 mCi
3 4 v 10 mg everolimus
daily

PFS 2029

DOBATOC Aarhus All NEN NCT04917484 100 177Lu-DOTATOC 200 mCi
3 4 v modulated
dosing 3 4

PFS 2025

ALPHAMEDIX02 Radiomedix G1-G3 NET NCT05153772 34 212Pb-DOTAMTATE
67.6 mCi/kg 3 4
single arm

RECIST
response
and safety

2023

Abbreviations: 177Lu, Lutetium-177; CAPTEM, capecitabine temozolomide; FOLFOX, infusional fluorouracil, leucovorin, and oxaliplatin; G1, Grade 1; G2,
Grade 2; G3, Grade 3; GEP, gastroenteropancreatic; ITM, Isotope Technologies Munich; NCI, National Cancer Institute; NEN, neuroendocrine neoplasm; NET,
neuroendocrine tumor; PFS, progression-free survival; SSTR, somatostatin receptor.
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(PET) using one of the three FDA-approved agents (68Ga-
DOTATATE, 68Ga-DOTATOC, and 64Cu-DOTATATE). SSTR-
PET is a marked improvement over 111In-pentetreotide in
regards to lesion detection.26 Although there are slight dif-
ferences in the three SSTR-PET radiopharmaceuticals, they
are treated as equivalent for patient selection for PRRT.
Krenning scores applied to SSTR-PET (often termed as
modified Krenning scores) are not equivalent to 111In-
pentetreotide, and SSTR-PET typically results in higher
scores particularly in patients with smaller lesions.25,27 Of note,
disease can technically have uptake on SSTR-PET, but not
have high enough uptake for PRRT (Fig 1B).

Uptake on PET can be quantitatively measured using
the standardized uptake value (SUV), which corrects
measured activity in an individual volume for the mass
of the patient. SUVs are typically reported as the
maximum SUV, which is the voxel with the highest
measured uptake in the lesion of interest. Unfortu-
nately, SUVs are affected by more than just receptor
density, for example high-volume tumor can serve as
sink for the radioligand decreasing measured uptake
across tissues (Fig 1D). Another important issue with
SSTR-PET is the presence of heterogeneous disease.
Within patients, there can be disease that is both SSTR-
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FIG 1. Issues with patient selection in SSTR-PET. (A) Patient A demonstrates no uptake in the liver lesions seen on hepatobiliary phase MRI (white
arrow, Krenning 0) and is not a candidate for PRRT. (B) Patient B demonstrates uptake in themediastinal mass above blood pool but less than the liver
(black arrow, Krenning 1), which although technically has uptake, it is not adequate for treatment. There are benign causes of uptake on SSTR-PET, as
seen in ameningioma in patient B (open arrowhead). (C) Patient C has uptake in some lesions greater than the liver and spleen (black arrow; SUVmax of
47, Krenning 4), but the bone lesions have uptake less than the liver (white arrow; SUVmax of 7.7, Krenning 2). Given that the bone lesions were the site
of progression, PRRT is not a good option. (D) Patient D has lesions with high uptake in the thoracic spine (dotted white arrow) while other sites of
disease, for example the pulmonary nodule, have no uptake on SSTR-PET (solid white arrow). Therefore, the patient is not a candidate for PRRT. (E)
Patient E has disease that is heterogeneous when comparing FDG with SSTR-PET. Some lesions have uptake on both FDG and SSTR (dotted arrows)
while other lesions are positive on SSTR and negative on FDG (solid arrows). In this case, the patient maybe a candidate for PRRT. (F) Patient F has
uptake greater than the liver and spleen (SUVmax of 12), although all uptakes are diminished because of the large volume of tumor and kidney uptake is
relatively decreased (black arrow). This patient meets criteria for treatment but has a poor prognosis because of the large tumor volume. CT, computed
tomography; FDG, fluorodeoxyglucose; MIP, maximum intensity projection; MRI, magnetic resonance imaging; PET, positron emission tomography;
PRRT, peptide receptor radionuclide therapy; SSTR, somatostatin receptor; SUVmax, maximum standardized uptake value.
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positive (Krenning 3 and 4) and SSTR-negative (Kren-
ning 0-2; Fig 1C).

SSTR-PET AS A PREDICTOR OF RESPONSE

There has been a number of efforts to predict response to
PRRT using baseline SSTR-PET images, but before going
further, it is important to review the difference between
prognostic and predictive biomarkers.28 A prognostic bio-
marker will identify the likelihood that a patient will have a
more or less favorable outcome, regardless of therapy. An
example of a prognostic biomarker is tumor growth rate
(TGR), and as expected, a higher TGR correlates with
progression.29 A predictive biomarker will separate similar
individuals into those that are more or less likely to respond
to a specific intervention or experience a certain toxicity.
SSTR-PET is both a predictive and prognostic biomarker,
but it should be noted that developing predictive bio-
markers typically requires evaluation in a population of
patients (with and without the biomarker) treated with two
different therapies. A predictive marker must also predict
response reliably enough to affect treatment choices. One
confounding factor with SSTR-PET is that uptake is related
to proliferative rate and differentiation, with more aggressive
tumors having lower uptake.30 For example, in patients
treated with SSAs, higher SUVs correlate with longer PFS,31

but whether or not this is due to SSAs being more effective
in patients with higher SSTR-PET uptake or because of
patients who are likely to have better outcomes is not clear.

A number of studies have correlated higher pretreatment
SSTR-PET uptake to better PRRT outcomes.32,33 The only
randomized trial with PRRT (NETTER-1) used 111In-
pentetreotide for baseline imaging.15 There was no differ-
ence in the HR of patients who were Krenning 4 versus
those with lower uptake (HR 5 0.23 v 0.18), suggesting
that we should be careful when using SUVs to select which
patients to treat with PRRT and that further work needs to
be performed to determine how SSTR-PET should be used
as a predictive biomarker.15 In spite of this, there appears to
be benefit to having higher uptake on SSTR-PET before
PRRT as pretreatment uptake correlates with subsequent
measured dose to the tumor,34 and the mechanism of
action is dependent on dose delivery with higher doses
having more response.35 Therefore, although there are no
absolute cutoffs on which to make clinical decisions, when
faced with multiple treatment options, higher uptake on
SSTR-PET may sway one toward PRRT.

In addition to uptake on SSTR-PET, heterogeneity may be
equally as important for patient selection. Patients with
heterogeneous disease on SSTR-PET have worse out-
comes, including OS.36,37 SSTR-negative lesions will not
respond and are associated with primary treatment resis-
tance because of the absence of the target.38

An alternative to pretreatment cutoffs is to use post-
treatment imaging to evaluate response during

therapy. In addition to emitting an electron, 177Lu emits
gamma photons that can be imaged using a single-
photon emission computed tomography camera. Using
quantitative techniques, one can calculate absorbed
dose in organs and lesions, which may become more
feasible with newly described single time point imaging
techniques.39,40 Ultimately, radiographic response takes
into account both intrinsic radiation sensitivity and dose
to the tumor and can allow an evaluation of treatment
efficacy during treatment. Figure 2 shows a patient with
relatively low uptake on SSTR-PET (maximum SUV of
13.6), who demonstrated an impressive response after
only one cycle of 177Lu-DOTATATE.

DEVELOPING ROLE OF CIRCULATING BIOMARKERS

Nonhormonal tumor markers, particularly chromogranin A,
are frequently used,41 but rarely affect patient
management.42 Although chromogranin A at baseline was
shown to be prognostic for PFS and OS in multiple studies
including the RADIANT trials,10,43 it has not shown to be
predictive of response to PRRT or other treatments most
likely because of its high false-positive and false-negative
rates.44 Taken together, there is no clear role for chro-
mogranin A as a biomarker for patient selection for PRRT.

The primary issue of using either SSTR-PET or nonhor-
monal tumor markers to predict response to SSTR-PET is
that they do not take into account tumor-specific factors,
primarily the radiosensitivity of the tumor. Circulating bio-
markers can potentially measure the intrinsic sensitivity of a
tumor, which could be used as a predictive biomarker for
PRRT. Blood-based genomic markers include the NETest
and the PRRT Predictive Quotient (PPQ). The NETest, a 51
gene assay of circulating transcripts, is under study as a
biomarker of PRRT response.45 The NETest has shown
prognostic value in for predicting outcomes after curative
surgery or systemic therapies including PRRT. PPQ
combines eight blood gene transcripts with the Ki-67 of the
tumor to create a binary output of response to PRRT.46 Two
studies assessing the PPQ in non-PRRT cohorts suggest
that it might be a predictive biomarker46,47; however, data
from randomized trials are not available. Although not
evaluated in the setting of PRRT to date, the presence and
increased fractions of circulating tumor DNA were asso-
ciated with poorer PFS.48 Further work using circulating
tumor cells and DNA may add additional value in under-
standing who will benefit the most from PRRT.

LOW-VOLUME DISEASE

The decision of when to start systemic therapy and par-
ticularly 177Lu-DOTATATE is not clear. In patients with low-
volume disease, especially slow-growing disease, systemic
therapy is often best postponed or a treatment with low
toxicity such as SSA may be considered.11,49 Overall, NET
patients with low-volume disease do better than patients
with higher-volume disease; for example, in the PROMID trial
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of octreotide versus placebo inmidgut NET, the median time
to progression on the treatment arm decreased from
29.4 months in patients with 0%-10% liver involvement to
4.6 months in patients with . 50% liver involvement.49

Similarly, indolent disease course was demonstrated in
the CLARINET trial, a placebo controlled trial of lanreotide in
GEP-NET.11

One issue with this approach is defining low-volume disease.
In PROMID, low-volume disease was considered as patients
with, 10% liver involvement, whereas in CLARINET, it was
25% liver involvement.11,49 Another limitation is that the
assessment of tumor volume from published trials is re-
stricted to the liver and does not consider disease spread to
other sites such as the bone, lung, or peritoneum. Given the
difference in detection rate between 111In-pentetreotide
and SSTR-PET, one might consider lesion sizes , 2 cm
as low-volume disease.27 In addition to volume, tumor grade
is important. In the CLARINET study, the median PFS for
placebo decreased from 18.3 months in G1 tumors to
12.1 months in G2 tumors.11

If time to progression on octreotide is as long as 29 months
in low-grade midgut NET with low-volume disease, might it
be appropriate to postpone the onset of systemic therapy?
Given that PRRT can have significant long-term toxicities,

primarily bone marrow and renal, delaying treatment is
appealing. In GEP-NET patients with low-volume disease
and a slow pace of growth, alternative strategies might
include local therapies, higher-dose SSA, or even an oral
agent (eg, everolimus or sunitinib) although potential tox-
icity should be factored in. Although not routine, emerging
data suggest that treatment with SSAs may be appropriate
beyond progression with dose intensification.15,50 In short,
low-volume disease presents a unique challenge given a
lack of data to guide therapy decisions and the potential for
toxicities in patients who might otherwise have a relatively
good prognosis.

HIGH-VOLUME DISEASE

The higher the volume of disease, the worse the outcome.51

Many prognostic factors including . 50% liver involve-
ment, more than five bone metastases, or a highly elevated
chromogranin A all correlate with poor outcomes after
PRRT.52 In patients with high-volume disease treated with
177Lu-DOTATATE, tumor sink results in decreased uptake
and, therefore, lower efficacy.53 In a secondary analysis
from the NETTER-1 trial, higher tumor volume was asso-
ciated with poorer outcomes, but only the presence of liver
lesions . 3 cm was predictive of a worse outcome.54

A B C

13

0

FIG 2. Post-treatment imaging for evaluation of response. A 70-year-old womanwith pancreatic neuroendocrine
tumor treated with two cycles of 177Lu-DOTATATE. (A) Pretreatment 68Ga-DOTATATE PET demonstrates
SSTR-positive disease, with standardized uptake values up to 13.6. (B) Postcycle 1 planar gamma camera
imaging demonstrates uptake in the osseous and hepatic disease (black arrowhead). (C) Postcycle 2 planar
gamma camera imaging demonstrates increased uptake in the kidneys (black arrow) and significant reduction
in uptake in the previously visualized disease consistent with response. PET, positron emission tomography;
SSTR, somatostatin receptor.
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Therefore, it may be optimal to debulk patients before
PRRT, which could be performed with surgery, LDT, or
chemotherapy. LDT is effective in debulking larger hepatic
lesions, and the RETNET trial (ClinicalTrials.gov identifier:
NCT02724540) will help us understand which type of
embolic therapy is optimal. In particular, radioembolization
should be reserved for patients with SSTR-negative tumors
or those who have localized large SSTR-positive tumors,
where selective arterial administration can be used to spare
normal liver.55 In patients with high-volume Pan-NET,
treatment with capecitabine/temozolomide can be used
given the 33% ORR observed in the E2211 study, which
showed a median PFS for temozolomide of 14.4 months
versus 22.7 months with capecitabine/temozolomide (HR5
0.58, P 5 .023).7 Two important studies, A022001 (177Lu-
DOTATATE versus capecitabine/temozolomide in Pan-
NETs) and COMPOSE (177Lu-Edotreotide versus best
standard of care in GEP-NETs; Table 2) will help to address
the question of sequence chemotherapy and PRRT.56

One important consideration with LDT is that relatively fast
debulking can be beneficial in symptomatic patients or
those who have a high urine 5-HIAA or hypersecretion of
peptide hormones. However, PRRT can also be effective in
hormonal symptom control as well, with one series showing
71% of functional Pan-NET patients with uncontrolled
symptoms at baseline had improvement.57 In SB-NET,
symptomatic improvement is often seen without a radio-
graphic response. For example, with Y90-DOTATOC, only
4% of patients had a radiographic response while 42% had
improvement in diarrhea,14 and in the NETTER-1 study,
only 13% had a radiographic response while 48% had
improvement in diarrhea.16

COMPLIMENTARY ROLES OF SSTR AND
FLUORODEOXYGLUCOSE-PET IN HIGHER-GRADE NETS

The majority of evidence for PRRT is in G1/G2 NETs, al-
though PRRT is beneficial in patients with G3 NETs.58-60

The largest retrospective multicenter study evaluated 149
patients with G3 NETs and demonstrated a 42% ORR, 14-
month PFS, and 29-month OS.59 The higher the Ki-67, the
worse the outcome with PFS falling from 16 months to
6 months when the Ki-67 was . 55%. Compared with G1/
G2 NETs, WDG3NETs have a higher ORR, but shorter PFS.

Imaging is important when selecting higher-grade NETs for
PRRT. 18F-fluorodeoxyglucose (FDG) is a marker of tumor
metabolism and uptake increases with more aggressive
tumors. Converse to SSTR-PET, higher uptake on FDG-PET
correlates with worse outcomes and has been shown to
outperform pathologic grading.61 Although often FDG and
SSTR-PET uptake are inversely correlated, they can be
unrelated and, therefore, the NETPET score was developed
to take into account differing uptakes.62 In general, patients
with higher uptake on FDG-PET have a higher score, have a
poorer outcome, and are less suitable candidates for
PRRT.63 As discussed above, heterogeneous SSTR

expression is a poor prognostic factor, and the combination
of FDG and SSTR-PET can help to further elucidate vari-
ation across metastases. It is important to make sure that
there are not lesions that are FDG-positive and SSTR-PET–
negative as these sites of disease will not be successfully
treated with PRRT. Although less commonly used in the
United States, FDG-PET is recommended by the European
Association of Nuclear Medicine not only in G3 cases but
also in patients with rapidly progressive disease and those
with SSTR-negative disease on computed tomography.64

As FDG-PET is a marker of metabolism, uptake likely re-
lates to both TGR and proliferation rate, and both higher
FDG uptake and TGR are poor prognostic factors.29,61 As a
simplification of radiation sensitivity and a modern appli-
cation of the law of Bergonié and Tribondeau, it is often
considered that tumors with higher TGR, Ki-67, and uptake
on FDG (all markers of higher proliferation rates) are more
sensitive to radiation.65 Although this may be true, patients
withWDG3 tumors who have higher Ki-67 and higher uptake
on FDG-PET have lower ORR, PFS, and OS after treatment
with PRRT.60 Although PRRT is approved in patients with
progressive disease, patients without documented tumor
progression who have high-volume disease or higher-grade
disease may be considered for treatment, as is being
evaluated in COMPOSE and NETTER-2 (ClinicalTrials.gov
identifiers: NCT03972488 and NCT04919226).

LIMITATIONS AND CHALLENGES

There are many challenges for patient selection. Pre-
existing liver, renal, and bone marrow dysfunction can
be worsened with treatment. In patients with liver injury, it is
difficult to decide if PRRT is safe. One study showed a high
rate of toxicity in heavily pretreated liver-dominant patients
after receiving PRRT with nearly 60% of patients developing
ascites66 while other studies have shown that regional he-
patic embolization is safe before PRRT.67 Although there are
no data on the use of PRRT after Y90-radioembolization, it
appears that Y90-radioembolization is safe after PRRT.68,69

Limited LDT before PRRT is safe, yet PRRTmay worsen liver
injury in patients with ascites or other signs of liver failure.

Renal injury has been demonstrated with Y90-based
treatments,70 but it appears that the rate of renal toxicity
is lower with 177Lu-labeled compounds, and it is not clear
what the rate of renal injury is with 177Lu-DOTATATE. The
NETTER-1 trial did not demonstrate any toxicity related to
PRRT in patients with mild renal dysfunction.71 Renal
toxicity is likely more an issue in the setting of repeat PRRT
because of the cumulative kidney dose, although in one
study of 168 patients receiving repeat PRRT, there were no
cases of grade III or IV renal toxicity.72 One difficulty with
renal toxicity is that it develops months to years after
treatment, and, therefore, one cannot dynamically evaluate
for toxicity during the 6-month course of therapy. The delay
in development of renal toxicity also limits the reports of
renal injury in the literature. Although renal injury appears
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uncommon with PRRT, as repeat treatments become more
common, we will have to address cumulative injury to the
kidneys.

Bone marrow toxicity is typically acute, and evaluating for
cytopenias between cycles is straightforward. In contrast,
long-term bone marrow toxicity (leukemia and myelodys-
plasia) occurs in 2%-3% of patients typically 1-4 years after
treatment.18,20,70 There are no predictive biomarkers, and
myeloid neoplasms are typically predated by the devel-
opment of thrombocytopenia.73 The risk appears to be
higher when concurrent chemotherapy is administered,
limiting the value of this approach.74,75 Early work suggests
that clonal hematopoiesis may relate to the development of
cytopenias and potentially secondary myeloid neoplasms.73,76

In patients with advanced NET, the median survival is
measured in years, with a subset of patients living decades,
and, therefore, the risk of secondary bone marrow malig-
nancies can be the biggest concern.

Additionally, how to treat patients with mesenteric and
peritoneal disease, who may develop subsequent bowel
obstructions, has yet to be determined.77,78 It is generally
agreed upon that steroids should be used in patients with
mesenteric or peritoneal disease to prevent complications.
Importantly, PRRT is not effective in decreasing the size of
mesenteric masses in SB-NETs and is likely not beneficial
in treating bowel complications.79

One last issue relates to patients with poor performance
status (PS). Anecdotally, patients can have poor outcomes
from PRRT if they have a poor baseline PS, and poor PS has
been shown to be an independent prognostic factor for OS

after PRRT.80 However, precise information is lacking as
such patients are not candidates for clinical trials.

OPTIMIZING PRRT

The current implementation of PRRT is to administer a unit
dose of 200 mCi per cycle for a total of four cycles. There is
over a 10-fold variation tumor absorbed dose with PRRT
because of the widely different extents of disease and
varying tumor uptake.81 A patient-specific dosing protocol
would be optimal, but consensus on how this should be
performed remains elusive. A handful of trials (Table 2) are
being performed bymodulating the administered activity on
the basis of measured kidney absorbed dose,82,83 but none
to date are targeting an optimal tumor absorbed dose.
Significant work needs to be performed to determine the
optimal number of cycles, frequency of cycles, and ad-
ministered activity moving forward.

In liver-dominant patients, amethod to increase the efficacy of
PRRT is to administer the activity intra-arterially rather than
intravenously. Initial work using 68Ga-DOTATOC demon-
strated an over three-fold increase in tumor uptake in hepatic
lesions when administered intra-arterially,84 although a sub-
sequent study with 90Y-DOTATOC did not reproduce such
impressive results.85 There are currently multiple trials looking
at the benefit of intra-arterial administration (ClinicalTrials.gov
identifiers: NCT03590119 and NCT03590119).

One other approach to improving the efficacy of PRRT is to
use combination therapy approaches. One of the first
approaches was to combine PRRT with chemotherapy
such as capecitabine/temozolomide (ClinicalTrials.gov
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FIG 3. Optimal setting for PRRT. Patients with low-volume disease that is relatively stable may be better
treated with SSAs, oral-targeted agents, or even observation. Patients with high-volume disease may benefit
from debulking therapies before PRRT or chemotherapy. If disease is faster pace or higher-grade, PRRT may
be appropriate in lower-volume patients. Additionally, the higher the uptake on somatostatin receptor-positron
emission tomography, the better an option PRRT becomes relative to other therapies. Overall, patient se-
lection remains complex, and multidisciplinary tumor board discussions are needed to determine optimal
treatment strategies. PRRT, peptide receptor radionuclide therapy; SSA, somatostatin analog.
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identifier: NCT02358356), although early reports from a
prospective RCT and long-term follow-up data from a phase II
study indicate that the rate of marrow toxicity, including
myelodysplastic syndrome and acute leukemia, is unac-
ceptably high.74,75 Other trials are studying the combination of
therapies that impair DNA repair such as olaparib (Clinical-
Trials.gov identifiers: NCT04375267 andNCT04086485) and
triapine (ClinicalTrials.gov identifier: NCT04234568), al-
though there may be similar concerns with marrow toxicity.86

Finally, although single-agent check point inhibitors have not
been successful in NETs,87,88 combinations with PRRT are
being evaluated (ClinicalTrials.gov identifier: NCT03457948);
preclinical data showing antitumor immune responses by
PRRT with 177Lu-DOTATATE in a murine model of human
NET support this strategy.89

FUTURE DIRECTIONS

There are currently a number of phase II/III trials in NETs
(Table 2), primarily focused on new indications (eg,
bronchial NET and paraganglioma/pheochromocytomas),
radioligands (DOTATOC and Edotreotide), radionuclides
(212Pb), retreatment, modulated dosing, and assessing
treatment earlier in the disease course. With the approval of
177Lu-DOTATATE, the field continues to move quickly to
adapt to the introduction of this new treatment modality.

In March 2021, the National Cancer Institute Gastrointestinal
Steering Committee convened a clinical trials planning
meeting focused on NETs.56 There were two immediate term
concepts that were discussed: the role of retreatment with
PRRT and modified PRRT on the basis of lesional absorbed
dose. Additionally, combination trials with immunotherapy and
DNA repair–targeted therapies were considered. Although not

discussed at the NET clinical trials planning meeting because
of feasibility concerns, there is a considerable interest in the
use of alpha particle therapy inNETs. Alpha particles (a helium
atom) are much larger than beta particles (an electron) and so
deposit their energy over a much shorter distance (50-60 m v
1-2 mm). A single-center phase I study evaluating 212Pd-
DOTAMTATE demonstrated an 80% ORR in patients treated
at the recommended phase II dose.90 Early work has also
shown efficacywith 225Ac-DOTATATE and 225Ac-DOTATOC
but has been limited to single-center series to date.91,92

NETs are a heterogeneous disease with many unanswered
questions. Although the selection of patients for PRRT is
based on uptake on an imaging biomarker, we lack a pre-
dictive biomarker to help select which patients are most likely
to benefit from PRRT. Overall, there is likely a sweet spot for
PRRT where patients with low-volume disease are followed
with observation or treated with SSAs, whereas high-volume
patients or those with a fast TGR may be best treated with
chemotherapy or other debulking approaches (Fig 3). Ev-
erything being equal, higher uptake on SSTR-PET would
make one consider PRRT over other options, although no
strict cutoffs exist. This is similar in concept to that proposed
by Hofman and Hicks93 previously, which focused on the
integration of information from functional imaging, SSTR, and
FDG-PET on one side and proliferative activity on the other.
We acknowledge that this approach is overly simplified and
urge the use of multidisciplinary discussions to evaluate
treatment options for individual patients, in order integrate key
factors such as functionality, TGR, prior therapies, patients
features, and comorbidities. We are fortunate that the field is
rapidly moving forward, and many opportunities to optimize
and improve upon PRRT are being evaluated.
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50. Pavel M, Ćwikła JB, Lombard-Bohas C, et al: Efficacy and safety of high-dose lanreotide autogel in patients with progressive pancreatic or midgut neuro-
endocrine tumours: CLARINET FORTE phase 2 study results. Eur J Cancer 157:403-414, 2021

51. Tirosh A, Papadakis GZ, Millo C, et al: Prognostic utility of total 68Ga-DOTATATE-Avid tumor volume in patients with neuroendocrine tumors. Gastroenterology
154:998-1008.e1, 2018

52. Swiha MM, Sutherland DEK, Sistani G, et al: Survival predictors of 177Lu-Dotatate peptide receptor radionuclide therapy (PRRT) in patients with progressive
well-differentiated neuroendocrine tumors (NETS). J Cancer Res Clin Oncol 148:225-236, 2022

53. Beauregard J-M, Hofman MS, Kong G, et al: The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: Implications for peptide receptor
radionuclide therapy. Eur J Nucl Med Mol Imaging 39:50-56, 2012

54. Strosberg J, Kunz PL, Hendifar A, et al: Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with 177Lu-
Dotatate: An analysis of the NETTER-1 study. Eur J Nucl Med Mol Imaging 47:2372-2382, 2020

55. Jonathan S, El-Haddad G, Al-Toubah T, et al: Radioembolization versus bland or chemoembolization for liver-dominant neuroendocrine tumors: Is it an either/or
question? J Nucl Med 62:1669-1671, 2021

56. Hope TA, Kunz P, Singh S, et al. Neuroendocrine tumor clinical trials planning meeting: Treatment in the era of peptide receptor radionuclide therapy.
Neuroendocrine tumor PRRT CTPM. https://www.cancer.gov/about-nci/organization/ccct/steering-committees/nctn/gastrointestinal/gisc-net-prrt-ctpm-
execsum.pdf
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