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Abstract. Symmetric edge polytopes AG of type A are lattice polytopes arising from the
root system An and finite simple graphs G. There is a connection between AG and the
Kuramoto synchronization model in physics. In particular, the normalized volume of AG
plays a central role. In the present paper, we focus on a particular class of graphs. In fact,
for any cactus graph G, we give a formula for the h∗-polynomial of A

Ĝ
by using matching

generating polynomials, where Ĝ is the suspension of G. This gives also a formula for the
normalized volume of A

Ĝ
. Moreover, via methods from chemical graph theory, we show

that for any cactus graph G, the h∗-polynomial of A
Ĝ

is real-rooted. Finally, we extend the
discussion to symmetric edge polytopes of type B, which are lattice polytopes arising from
the root system Bn and finite simple graphs.
Keywords. Symmetric edge polytope, h∗-polynomial, interior polynomial, matching gen-
erating polynomial, µ-polynomial, real-rooted, γ-positive
Mathematics Subject Classifications. 05A15, 05C31, 13P10, 52B12, 52B20

1. Introduction

A lattice polytope P ⊂ Rn is a convex polytope all of whose vertices have integer coordinates.
Many lattice polytopes arising from graphs are constructed and have been studied from several
viewpoints.

In [24], lattice polytopes arising from the root system of type An and finite graphs were
introduced. Let G be a finite simple undirected graph on the vertex set [n] := {1, . . . , n} with
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the edge set E(G). The symmetric edge polytope AG (of type A) of G is the lattice polytope
which is the convex hull of

{±(ei − ej) : {i, j} ∈ E(G)},

where ei is the i-th unit coordinate vector in Rn. Symmetric edge polytopes, in particular, their
Ehrhart polynomials were studied from a viewpoint of algebraic number theory. In fact, the
Ehrhart polynomials of special symmetric edge polytopes have properties similar to Riemann’s
ζ function [5, 29]. Moreover, many results about zero loci of the Ehrhart polynomials of symmet-
ric edge polytopes have been found from a viewpoint of algebraic combinatorics [19, 22, 25].
On the other hand, symmetric edge polytopes are always reflexive polytopes, i.e., their dual
polytopes are also lattice polytopes. Reflexive polytopes correspond to Gorenstein toric Fano
varieties and they give many explicit constructions of mirrors of Calabi–Yau hypersurfaces [1].
By a work of Hibi [17], it follows that their h∗-polynomials of reflexive polytopes are always
palindromic. One of current hot topics on the study of lattice polytopes is unimodality questions
for h∗-polynomials. Since any symmetric edge polytope has a regular unimodular triangula-
tion, its h∗-polynomial is unimodal due to a result of Bruns and Römer [4]. Moreover, the h∗-
polynomial ofAG coincides with the h-polynomial of a unimodular triangulation of the bound-
ary ∂AG. From a viewpoint of algebraic and topological combinatorics, Gal [12] conjectured
that the h-polynomial of a flag triangulation of a sphere is γ-positive, which directly implies
the unimodality. More strongly, Nevo and Petersen conjectured that the γ-polynomial of the
h-polynomial of a flag triangulation of a sphere coincides with the f -polynomial of a balanced
simplicial complex [23]. In [18, 27], it is shown that the h∗-polynomials of the symmetric edge
polytopes of certain classes of graphs are γ-positive. On the other hand, the h∗-polynomial of
AG is not always real-rooted (Example 5.2). Note that if a polynomial all of whose coefficients
are positive is palindromic and real-rooted, then it is γ-positive and log-concave.

Recently, the normalized volumes of symmetric edge polytopes have attracted much atten-
tion. The author of [6] calls symmetric edge polytopes adjacency polytopes and refer to the
normalized volumes as the adjacency polytope bounds. Adjacency polytopes appeared in the
context of the Kuramoto model, describing the behavior of interacting oscillators [21]. There
are many applications of the Kuramoto model in several fields of study in biology, physics,
chemistry, engineering, and social science. In many cases, an adjacency polytope bound gives
an upper bound of the number of possible solutions in the Kuramoto equations [6]. In [7, 8, 25],
explicit formulas of the adjacency polytope bounds, i.e., the normalized volumes of the sym-
metric edge polytopes of certain classes of graphs are given. Moreover, in [9], another type of
adjacency polytope bounds is discussed.

In the present paper, from the above background we investigate the normalized volume and
the γ-polynomial of the h∗-polynomial of a symmetric edge polytope. In particular, we focus on
the suspension Ĝ of a graph G. Here Ĝ is the graph on the vertex set [n + 1] and the edge set
E(G) ∪ {{i, n + 1} : i ∈ [n]}. In [27], a formula of the γ-polynomial of the h∗-polynomial of
AĜ by using interior polynomials, which are a version of the Tutte polynomials for hypergraphs
introduced by Kálmán [20], is given. Moreover, the h∗-polynomial of AĜ is always γ-positive.
Furthermore, this formula also gives a formula of the normalized volume of AĜ.

Our first main theorem is another formula of the γ-polynomial of the h∗-polynomial of AĜ
of a certain class of graphs G by using matching generating polynomials. A cactus graph is a
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graph G such that each edge of G belongs to at most one cycle of G.

Theorem 1.1. Let G be a cactus graph on [n] and let g(G, x) be the matching generating poly-
nomial of G. Then the γ-polynomial of the h∗-polynomial of AĜ is

g(G, 2x) +
∑

R∈R′2(G)

(−2)c(R)g(G−R, 2x) x
|E(R)|

2 ,

whereR′2(G) is the set of all subgraphs of G consisting of vertex-disjoint even cycles, and c(R)
is the number of the cycles of R. Moreover, the normalized volume of AĜ is

2ng(G, 1/2) +
∑

R∈R′2(G)

(−2)c(R)2n−|E(R)|g(G−R, 1/2).

In [8], the normalized volume of the symmetric edge polytope of a wheel graph is computed.
Note that a wheel graph is the suspension of a cactus graph. By using Theorem 1.1, we can
give explicit formulas of the normalized volume and the γ-polynomial of the h∗-polynomial
of the symmetric edge polytope of a wheel graph (Example 4.5). On the other hand, applying
Theorem 1.1 to a graph G which has no even cycle, we can describe the γ-polynomial of the
h∗-polynomial of AĜ by a single matching generating polynomial and we know that it is real-
rooted (Corollary 4.4). Our second main theorem extends the real-rootedness of this result to
the suspension of any cactus graph via methods from chemical graph theory. In fact,

Theorem 1.2. Let G be a cactus graph. Then the h∗-polynomial of AĜ is real-rooted.

In the present paper, we also discuss Nevo–Petersen’s conjecture forAĜ. More precisely, we
show the following.

Theorem 1.3. Let G be a graph which has no even cycles. Then the γ-polynomial of h∗(AĜ, x)
coincides with the f -polynomial of a flag simplicial complex.

Note that the h-polynomial of a flag simplicial complex coincides with that of a balanced
simplicial complex [11]. Hence Theorem 1.3 proves that Nevo–Petersen’s conjecture holds for
any flag unimodular triangulation of the boundary ∂AĜ in this case. We also show that for a
forest G, ∂AĜ has a flag unimodular triangulation by using the algebraic technique of Gröbner
bases from Theorem 6.9 (since a forest is a bipartite graph with no cycles).

In [26], lattice polytopes arising from the root system of type Bn and finite graphs were
introduced. The symmetric edge polytope BG of type B of a graph G on the vertex set [n] is the
lattice polytope which is the convex hull of

{±ei : 1 6 i 6 n} ∪ {±ei ± ej : {i, j} ∈ E(G)}.

Then it follows that BG is reflexive if and only if G is a bipartite graph. In the case, BG has
a regular unimodular triangulation. Moreover, if G is bipartite, the γ-polynomial of the h∗-
polynomial ofBG can be described by an interior polynomial. Similarly to the case of symmetric
edge polytopes of type A, we give a formula of the γ-polynomial of the h∗-polynomial of BG
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for a cactus bipartite graph G by using matching generating polynomials and prove that the
h∗-polynomial is real-rooted (Theorem 7.2). Moreover, we show that for a forest G, the γ-
polynomial of the h∗-polynomial of BG coincides with the f -polynomial of a flag simplicial
complex (Theorem 7.5). Namely, Nevo–Petersen’s conjecture holds for any flag unimodular
triangulation of the boundary ∂BG in this case. We remark that for any forest G, ∂BG has a flag
unimodular triangulation (Remark 7.6).

The paper is organized as follows: In Section 2, we recall the definition of the h∗-polynomials
of lattice polytopes, some properties of polynomials and their related conjectures. In Section 3,
we define the interior polynomials of connected bipartite graphs and recall a formula of the γ-
polynomial of the h∗-polynomial ofAĜ for a graphG in terms of interior polynomials. We give
the proofs of Theorems 1.1, 1.2 and 1.3 in Sections 4, 5 and 6 respectively. Finally, in Section 7,
we extend the discussion to symmetric edge polytopes of type B.

2. Ehrhart theory and γ-polynomials

In this section, we recall the definition of h∗-polynomials, the notion of γ-positivity and its
related properties. Let P ⊂ Rn be a lattice polytope of dimension d. Given a positive integer t,
we define

LP(t) = |tP ∩ Zn|,
where tP := {tx ∈ Rn : x ∈ P}. The study on LP(t) originated in Ehrhart [10] who proved
that LP(t) is a polynomial in t of degree d with the constant term 1. We call LP(t) the Ehrhart
polynomial of P . The generating function of the lattice point enumerator, i.e., the formal power
series

EhrP(x) = 1 +
∞∑
k=1

LP(k)xk

is called the Ehrhart series of P . It is known that it can be expressed as a rational function of
the form

EhrP(x) =
h∗(P , x)

(1− x)d+1
,

where h∗(P , x) is a polynomial in x of degree at most d with nonnegative integer coefficients
[30] and it is called the h∗-polynomial (or the δ-polynomial) of P . Moreover,

h∗(P , x) =
d∑
i=0

h∗ix
i

satisfies h∗0 = 1, h∗1 = |P ∩ Zn| − (d + 1) and h∗d = |relint(P) ∩ Zn|, where relint(P) is
the relative interior of P . Furthermore, h∗(P , 1) =

∑d
i=0 h

∗
i is equal to the normalized volume

of P . We refer the reader to [2] for the detailed information about Ehrhart polynomials and
h∗-polynomials.

A full-dimensional lattice polytope P ⊂ Rn is called reflexive if the origin of Rn belongs to
the interior of P and its dual polytope

P∨ := {y ∈ Rn : 〈x,y〉 6 1 for all x ∈ P}
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is also a lattice polytope, where 〈x,y〉 is the usual inner product of Rn. Two lattice polytopes
P ⊂ Rn and Q ⊂ Rm are said to be unimodularly equivalent if there exists an affine map from
the affine span aff(P) of P to the affine span aff(Q) of Q that maps Zn ∩ aff(P) bijectively
onto Zm ∩ aff(Q) and maps P to Q. Each lattice polytope is unimodularly equivalent to a
full-dimensional lattice polytope. In general, we say that a lattice polytope is reflexive if it is
unimodularly equivalent to a reflexive polytope. We can characterize when a lattice polytope
is reflexive in terms of its h∗-polynomial. A polynomial f =

∑d
i=0 aix

i ∈ R[x] of degree d is
called palindromic if ai = ad−i for any i.
Proposition 2.1 ([17]). A lattice polytope P of dimension d is reflexive if and only if h∗(P , x)
is a palindromic polynomial of degree d.

Let f =
∑d

i=0 aix
i be a polynomial with real coefficients and ad 6= 0. We now focus on the

following properties.
(RR) We say that f is real-rooted if all its roots are real.

(LC) We say that f is log-concave if a2i > ai−1ai+1 for all i.

(UN) We say that f is unimodal if a0 6 a1 6 . . . 6 ak > . . . > ad for some k.
If all its coefficients are positive, then these properties satisfy the implications

(RR)⇒ (LC)⇒ (UN).

Assume that f is palindromic. Then f has a unique expression

f =

bd/2c∑
i>0

γi x
i(1 + x)d−2i

with γ0, γ1, . . . , γbd/2c ∈ R. The polynomial
∑

i>0 γi x
i is called γ-polynomial of f . We say that

f is γ-positive if each γi > 0. We can see that a γ-positive polynomial is real-rooted if and only
if its γ-polynomial has only real roots [28, Observation 4.2]. For a reflexive polytope P , denote
γ(P , x) the γ-polynomial of h∗(P , x).

For a given lattice polytope, a fundamental problem within the field of Ehrhart theory is to
determine if its h∗-polynomial is unimodal. One famous instance is given by reflexive polytopes
that possess a regular unimodular triangulation.
Proposition 2.2 ([4]). Let P be a reflexive polytope. If P possesses a regular unimodular tri-
angulation, then h∗(P , x) is unimodal.

It is known that if a reflexive polytope possesses a flag regular unimodular triangulation all
of whose maximal simplices contain the origin, then the h∗-polynomial coincides with the h-
polynomial of a flag triangulation of a sphere [4]. For the h-polynomial of a flag triangulation
of a sphere, Gal conjectured the following:
Conjecture 2.3 ([12]). The h-polynomial of any flag triangulation of a sphere is γ-positive.

More strongly, Nevo and Petersen conjectured the following:
Conjecture 2.4 ([23]). The γ-polynomial of the h-polynomial of any flag triangulation of a
sphere coincides with the f -polynomial of some balanced simplicial complex.
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3. Interior polynomials

In [27], for any graph G a formula for γ(AĜ, x) in terms of interior polynomials was given. In
this section, we recall the definition of interior polynomials and the formula.

A hypergraph is a pair H = (V,E), where E = {e1, . . . , en} is a finite multiset of non-
empty subsets of V = {v1, . . . , vm}. Elements of V are called vertices and the elements of
E are the hyperedges. Then we can associate H to a bipartite graph BipH on the vertex set
V ∪ E with the edge set {{vi, ej} : vi ∈ ej}. Assume that BipH is connected. A hypertree in
H is a function f : E → Z>0 such that there exists a spanning tree Γ of BipH whose vertices
have degree f(e) + 1 at each e ∈ E. Then we say that Γ induces f . Let HT(H) denote the
set of all hypertrees in H. A hyperedge ej ∈ E is said to be internally active with respect
to the hypertree f if it is not possible to decrease f(ej) by 1 and increase f(ej′) (j′ < j) by
1 so that another hypertree results. We call a hyperedge internally inactive with respect to a
hypertree if it is not internally active and denote the number of such hyperedges of f by ι(f).
Then the interior polynomial of H is the generating function IH(x) =

∑
f∈HT(H) x

ι(f). It is
known [20, Proposition 6.1] that deg IH(x) 6 min{|V |, |E|} − 1. If G = BipH, then we set
HT(G) = HT(H) and IG(x) = IH(x).

Let G be a finite graph on [n] with the edge set E(G). Given a subset S ⊂ [n],

ES := {e ∈ E(G) : |e ∩ S| = 1}

is called a cut of G. For example, we have E∅ = E[n] = ∅. In general, it follows that
ES = E[n]\S . We identify ES with the subgraph of G on the vertex set [n] and the edge set
ES . By definition, ES is a bipartite graph. Let Cut(G) be the set of all cuts of G. Note
that |Cut(G)| = 2n−1.

Assume thatG is a bipartite graph with a bipartition V1∪V2 = [n]. Then let G̃ be a connected
bipartite graph on [n+ 2] whose edge set is

E(G̃) = E(G) ∪ {{i, n+ 1} : i ∈ V1} ∪ {{j, n+ 2} : j ∈ V2 ∪ {n+ 1}}.

Theorem 3.1 ([27, Theorem 5.3]). Let G be a finite graph on [n]. Then one has

γ(AĜ, x) =
1

2n−1

∑
H∈Cut(G)

IH̃(4x).

In particular, Vol(AĜ) = 2
∑

H∈Cut(G) |HT(H̃)|.

4. A formula of γ(AĜ, x) for a cactus graphG

In this section, we prove Theorem 1.1. First we recall a relation between interior polynomials
and k-matchings. Let G be a finite graph with n vertices. A k-matching of G is a set of k
pairwise non-adjacent edges of G. Let

M(G, k) =

{
{vi1 , . . . , vi2k} :

there exists a k-matching of G
whose vertex set is {vi1 , . . . , vi2k}

}
.

For k = 0, we set M(G, 0) = {∅}.
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Proposition 4.1 ([26, Proposition 3.4]). Let G be a bipartite graph. Then we have

IG̃(x) =
∑
k>0

|M(G, k)|xk.

The matching polynomial α(G, x) of G is

α(G, x) =
∑
k>0

(−1)kmk(G)xn−2k,

where mk(G) is the number of k-matchings in G. On the other hand, the matching generating
polynomial g(G, x) of G is

g(G, x) =
∑
k>0

mk(G)xk.

It is known [13, Theorem 5.5.1] that α(G, x) is real-rooted for any graph G. Since α(G, x) =
xng(G,−x−2), it follows that any root of g(G, x) is real and negative. In fact, if u is a root
of g(G, x), then u is not zero and (−u)−1/2 is a root of α(G, x). Thus v = (−u)−1/2 is real and
hence u = −v−2 is real and negative.

Lemma 4.2. Let G be a graph such that each edge of G belongs to at most one even cycle of G.
Then

|M(G, k)| = mk(G) +
∑

R∈R′2(G)

(−1)c(R)mk−|E(R)|/2 (G−R) ,

whereR′2(G) is the set of all subgraphs of G consisting of vertex-disjoint even cycles, and c(R)
is the number of the cycles of R.

Proof. Let V = {vi1 , . . . , vi2k} be an element of M(G, k) and let M(V ) be the set of all k-
matchings of G whose vertex set is V . Given M,M ′ ∈ M(V ), let GM,M ′ be the subgraph of
G whose edge set is (M ∪M ′) \ (M ∩M ′). It then follows that GM,M ′ is a regular bipartite
graph of degree 2, and hence belongs to R′2(G). Let EC(V ) be the set of all even cycles C of
G satisfying that there exist M1,M2 ∈M(V ) such that GM1,M2 contains C.

Claim 1. The set EC(V ) consists of pairwise vertex-disjoint even cycles.
Suppose that distinct even cycles C,C ′ ∈ EC(V ) have a common vertex v. Then there

exists M1,M2,M3,M4 ∈ M(V ) such that C appears in GM1,M2 and C ′ appears in GM3,M4 .
Since C appears inGM1,M2 , M1∩C has an edge of the form {v, w}. Similarly, since C ′ appears
in GM3,M4 , M3 ∩ C ′ has an edge of the form {v, w′}. Since C and C ′ have no common edges,
{v, w} (resp. {v, w′}) is not an edge ofC ′ (resp. C). It then follows that both {v, w} and {v, w′}
appear in GM1,M3 . Hence there exists an even cycle C ′′ of G that contains {v, w} and {v, w′}.
This contradicts to the hypothesis that each edge of G belongs to at most one even cycle of G.
Thus EC(V ) consists of pairwise vertex-disjoint even cycles.
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Claim 2. IfM ∈M(V ) andC = ({v1, v2}, . . . , {v2`−1, v2`}, {v2`, v1}) ∈ EC(V ), thenM∩C
is either {{v1, v2}, {v3, v4}, . . . , {v2`−1, v2`}} or {{v2, v3}, {v4, v5}, . . . , {v2`, v1}}.

Since C belongs to EC(V ), there exists M1,M2 ∈ M(V ) such that C appears in the graph
GM1,M2 . Suppose that there exists j such that neither {vj−1, vj} nor {vj, vj+1} belongs to M .
Then M has an edge {vj, w} with w /∈ {vj−1, vj+1}. We may assume that {vj−1, vj} belongs
to M1. Then GM,M1 has edges {vj−1, vj} and {vj, w}. Hence there exists an even cycle of
G that contains {vj−1, vj} and {vj, w}, a contradiction. Thus one of {vj−1, vj} or {vj, vj+1}
belongs toM . Hence the intersection ofC andM is either {{v1, v2}, {v3, v4}, . . . , {v2`−1, v2`}}
or {{v2, v3}, {v4, v5}, . . . , {v2`, v1}}.

Claim 3. If an edge e does not appear in any cycle in EC(V ), then either e ∈ M for all
M ∈M(V ) or e /∈M for all M ∈M(V ).

Suppose that e belongs to M ∈M(V ) and does not belong to M ′ ∈M(V ). Then e belongs
to (M ∪M ′)\ (M ∩M ′) and hence appears in the graphGM,M ′ . Thus there exists an even cycle
C ∈ EC(V ) such that e ∈ C.

Let r = r(V ) denote the number of cycles in EC(V ) and let EC(V ) = {C1, . . . , Cr}. Let
E ′ be the set of all edges e of G such that e ∈M for all M ∈M(V ). From Claims 1–3,

M(V ) = {E ′ ∪M1 ∪ · · · ∪Mr : Mi is one of two perfect matchings of Ci}.

Thus we have |M(V )| = 2r. On the other hand, for R = Ci1 ∪ · · · ∪ Cis ∈ R′2(G) with
{Ci1 , . . . , Cis} ⊂ EC(V ), the number of (k − |E(R)|/2)-matchings of G − R with vertex set
V \ V (R) is |M(V \ V (R))| = 2r−s. Since

2r +
r∑
s=1

(−1)s
(
r

s

)
2r−s = 1,

we have

|M(G, k)| =
∑

V ∈M(G,k)

1

=

 ∑
V ∈M(G,k)

2r(V )

+

 ∑
V ∈M(G,k)

r(V )∑
s=1

(−1)s
(
r(V )

s

)
2r(V )−s



=

 ∑
V ∈M(G,k)

|M(V )|

+

 ∑
V ∈M(G,k)

∑
R∈R′2(G)

R⊂
⋃

C∈EC(V ) C

(−1)c(R)|M(V \ V (R))|



=

 ∑
V ∈M(G,k)

|M(V )|

+

 ∑
R∈R′2(G)

(−1)c(R)
∑

V ∈M(G,k)⋃
C∈EC(V ) C⊃R

|M(V \ V (R))|


= mk(G) +

∑
R∈R′2(G)

(−1)c(R)mk−|E(R)|/2 (G−R) ,
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as desired.

Now, we prove Theorem 1.1. In fact, Theorem 1.1 follows from the following more general
result.

Theorem 4.3. Let G be a graph such that each edge of G belongs to at most one even cycle of
G. Then one has

γ(AĜ, x) = g(G, 2x) +
∑

R∈R′2(G)

(−2)c(R)g(G−R, 2x) x
|E(R)|

2 .

Moreover, the normalized volume of AĜ is

2ng(G, 1/2) +
∑

R∈R′2(G)

(−2)c(R)2n−|E(R)|g(G−R, 1/2).

Proof. Let n be the number of vertices of G. From Theorem 3.1 and Proposition 4.1 one has

γ(AĜ, x) =
1

2n−1

∑
H∈Cut(G)

IH̃(4x) =
1

2n−1

∑
H∈Cut(G)

∑
k>0

|M(H, k)| (4x)k.

Since each edge of G belongs to at most one even cycle of G, each H ∈ Cut(G) satisfies the
same condition. From Lemma 4.2,

|M(H, k)| = mk(H) +
∑

R∈R′2(H)

(−1)c(R)mk−|E(R)|/2 (H −R) ,

for each H ∈ Cut(G). Thus the γ-polynomial of AĜ is

1

2n−1

∑
H∈Cut(G)

∑
k>0

mk(H) (4x)k

+
1

2n−1

∑
H∈Cut(G)

∑
k>0

∑
R∈R′2(H)

(−1)c(R)mk−|E(R)|/2 (H −R) (4x)k.

Note that every k-matching of H ∈ Cut(G) is a k-matching of G.

• Let M be a k-matching of G. Then M is a k-matching of H ∈ Cut(G) if and only if M
is a subgraph of H . There are 2n−k−1 such H ∈ Cut(G).

• Let M be a (k− |E(R)|/2)-matching of G−R with R ∈ R′2(G). Then M is a matching
of H ∈ Cut(G) with R ∈ R′2(H) if and only if M ∪R is a subgraph of H . There are

2n−|E(R)|−1−(k−|E(R)|/2)+c(R) = 2n−k−1−|E(R)|/2+c(R)

cuts H ∈ Cut(G) such that M ∪R is a subgraph of H .
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Thus γ(AĜ, x) is equal to
1

2n−1

∑
k>0

2n−k−1mk(G) (4x)k

+
1

2n−1

∑
k>0

∑
R∈R′2(G)

2n−k−1−
|E(R)|

2
+c(R)(−1)c(R)mk−|E(R)|/2 (G−R) (4x)k

=
∑
k>0

mk(G) (2x)k +
∑

R∈R′2(G)

(−2)c(R)
∑
k>0

mk−|E(R)|/2 (G−R) (2x)k−
|E(R)|

2 x
|E(R)|

2

= g(G, 2x) +
∑

R∈R′2(G)

(−2)c(R)g(G−R, 2x) x
|E(R)|

2 .

Moreover, since h∗(AĜ, x) = (x+ 1)nγ(AĜ, x/(x+ 1)2), the normalized volume of AĜ is

h∗(AĜ, 1) = 2nγ(AĜ, 1/4) = 2ng(G, 1/2) +
∑

R∈R′2(G)

(−2)c(R)2n−|E(R)|g(G−R, 1/2).

Since every matching generating polynomial is real-rooted, we obtain the following.
Corollary 4.4. Let G be a finite graph with n vertices. If G has no even cycles, then the γ-
polynomial of the h∗-polynomial of AĜ is g(G, 2x). In particular, h∗(AĜ, x) is real-rooted.
Moreover, the normalized volume of AĜ is 2ng(G, 1/2).

An example of the suspension of a cactus graph is a wheel graph. In [8], the normalized
volume of the symmetric edge polytope of a wheel graph was computed. By using Theorem 1.1,
we compute the γ-polynomial of the h∗-polynomial and the normalized volume of the polytope.

Example 4.5. Let Cn be a cycle of length n. Then Ĉn is a wheel graph. It is known that

g(Cn, x) = Ln(x),

where Ln(x) is the Lucas polynomial defined by

L0(x) = 2, L1(x) = 1, Ld(x) = Ld−1(x) + xLd−2(x),

and

g(Cn, 2x) = Ln(2x) =
(1 +

√
1 + 8x)n + (1−

√
1 + 8x)n

2n
.

See, e.g., [31, p.27 and p.36]. From Theorem 1.1 one has

γ(AĈn
, x) =


(1+
√
1+8x)n+(1−

√
1+8x)n

2n
if n is odd,

(1+
√
1+8x)n+(1−

√
1+8x)n

2n
− 2x

n
2 otherwise.

In particular, we obtain

Vol(AĈn
) = 2nγ(AĈn

, 1/4) =


(1 +

√
3)n + (1−

√
3)n if n is odd,

(1 +
√

3)n + (1−
√

3)n − 2 otherwise.
This coincides with [8, Theorem 4.24].
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5. Real-rootedness of h∗(AĜ, x)

In this section, we prove Theorem 1.2. The polynomial

γ(G, x) := g(G, 2x) +
∑

R∈R′2(G)

(−2)c(R)g(G−R, 2x) x
|E(R)|

2

is strongly related with the µ-polynomial in methods from chemical graph theory. Suppose
that G has n vertices and r cycles C1, . . . , Cr. Let t = (t1, . . . , tr) ∈ Rr be a vector whose
component ti is associated to the cycle Ci for i = 1, 2, . . . , r. It is known [14, Proposition 1a]
that the µ-polynomial µ(G, t, x) of a graph G satisfies

µ(G, t, x) = α(G, x) +
∑

R∈R2(G)

(−2)c(R)α(G−R, x)
∏
Ci⊂R

ti,

where R2(G) is the set of all subgraphs of G consisting of vertex-disjoint cycles, c(R) is the
number of the cycles of R. This polynomial generalizes important graph polynomials. In fact,
we have µ(G,0, x) = α(G, x) and µ(G,1, x) = φ(G, x), where φ(G, x) is the characteristic
polynomial of G. See [13, Theorem 5.3.3]. For a cactus graph, the following is known.

Proposition 5.1 ([14, Proposition 5]). Let G be a cactus graph. Then µ(G, t, x) is real-rooted
if |ti| 6 1 for all 1 6 i 6 r.

Thus we can prove Theorem 1.2.

Proof of Theorem 1.2. It is enough to show that γ(G, x) is real-rooted. The polynomial γ(G, x)
satisfies

xnγ

(
G,− 1

2x2

)
= xng(G,−x−2) +

∑
R∈R′2(G)

(−2)c(R)xng(G−R,−x−2)
(
− 1

2x2

) |E(R)|
2

= α(G, x) +
∑

R∈R′2(G)

(−2)c(R)α(G−R, x)
∏
Ci⊂R

(
−1

2

) |E(Ci)|
2

= µ(G, t, x),

where t = (t1, . . . , tr) with

ti =


(
−1

2

) |E(Ci)|
2 if Ci is an even cycle,

0 otherwise.

By Proposition 5.1, this is real-rooted. If u is a root of γ(G, x), then u 6= 0 and x = 1/
√
−2u is

a root of µ(G, t, x). Since 1/
√
−2u is real, so is u.

From Theorem 1.2 the h∗-polynomial of the symmetric edge polytope of a wheel graph, i.e.,
the suspension of a cycle is real-rooted. However, the h∗-polynomial of the symmetric edge
polytope of a cycle is not always real-rooted.
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Example 5.2. Let Cn be a cycle of length n > 3. Then from [27, Proposition 5.7] one has

γ(ACn , x) =

bn−1
2 c∑
i=0

(
2i

i

)
xi.

Hence h∗(ACn , x) is γ-positive. However, when n = 5, the γ-polynomial γ(AC5 , x) = 1+2x+
6x2 is not real-rooted. Hence h∗(AC5 , x) is not real-rooted.

6. Nevo–Petersen Conjecture for h∗(AĜ, x)

An n-dimensional simplicial complex ∆ is said to be

• flag if all minimal non-faces of ∆ contain only two elements;

• balanced if there is a proper coloring of its vertices c : V → [n+1], where V is the vertex
set of ∆.

Frohmader showed that the f -vector of a flag simplicial complex coincides with that of a bal-
anced simplicial complex. Nevo and Petersen posed the following strengthening problem of
Conjecture 2.4.

Problem 6.1 ([23]). The γ-polynomial of the h-polynomial of any flag triangulation of a sphere
coincides with the f -polynomial of some flag simplicial complex.

In this section, we discuss this problem for h∗(AĜ, x). In particular, we prove Theorem 1.3.
First, we recall that every flag simplicial complex arises from a finite simple graph. Let G be a
finite simple graph on [n] with the edge set E(G). A subset C of [n] is called a clique of G if
for all i and j belonging to C with i 6= j, one has {i, j} ∈ E(G). The clique complex of G is
the simplicial complex ∆(G) on [n] whose faces are the cliques of G.

Lemma 6.2 ([15, Lemma 9.1.3]). A simplicial complex ∆ is flag if and only if ∆ is the clique
complex of a finite simple graph.

Hence the f -polynomial of a flag simplicial complex can be computed by counting cliques
of a graph. By considering the complement of a graph, we also can compute the f -polynomial
of a flag simplicial complex by counting independent sets of a graph. Let us denote by G the
complement ofG. A subset S of [n] is called an independent set if for all i and j belonging to S
with i 6= j, one has {i, j} /∈ E(G). Let ik denote the number of independent sets S of G such
that |S| = k. (We set i0 = 1.) The independence polynomial of G is

i(G, x) =
∑
k>0

ikx
k.

Since a subset S of [n] is a clique of G if and only if S is an independent set of G, the f -
polynomial of ∆(G) is equal to i(G, x). By using this correspondence, we can prove that any
matching generating polynomial coincides with the f -polynomial of a flag simplicial complex.
For a graph G with the edge set E(G), the line graph L(G) is the graph with vertex set E(G)
and such that vertices e, f ∈ E(G) with e 6= f are adjacent if and only if e ∩ f 6= ∅.
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Proposition 6.3. Let G be a finite simple graph. Then the matching generating polynomial
g(G, x) of G coincides with the f -polynomial of a flag simplicial complex.

Proof. It follows that the matching generating polynomial g(G, x) of G and the independence
polynomial i(L(G), x) of the line graph L(G) of G are identical. Namely, one has g(G, x) =
i(L(G), x). Hence g(G, x) is the f -polynomial of a flag simplicial complex that is the clique
complex of L(G).

Moreover, by using the above correspondence, we prove the following proposition.

Proposition 6.4. Suppose that f(x) is the f -polynomial of a flag simplicial complex. Then, for
any 0 < m ∈ Z, there exists a flag simplicial complex whose f -polynomial is f(mx).

In order to show this proposition, the following lemma is needed. For two graphs G and
H with the vertex sets V (G) and V (H) respectively, let G[H] be the graph with the vertex set
V (G)×V (H) and such that a vertex (a, x) is adjacent to a vertex (b, y) if and only if a is adjacent
to b (inG) or a = b and x is adjacent to y (inH). The graphG[H] is called lexicographic product
(or composition) of G and H .

Lemma 6.5 ([3, Theorem 1]). Let G and H be graphs. Then one has

i(G[H], x) = i(G, i(H, x)− 1).

Proof of Proposition 6.4. Let ∆ be a flag simplicial complex whose f -polynomial is f(x). Then
there exists a graph G such that ∆ is the clique complex of G. Moreover, f(x) is the inde-
pendence polynomial i(G, x) of G. We consider the lexicographic product G[Km] of G and a
complete graph Km of m vertices. It then follows from Lemma 6.5 that

i(G[Km], x) = i(G, i(Km, x)− 1) = i(G,mx) = f(mx).

Thus f(mx) is the f -polynomial of a flag simplicial complex that is the clique complex of the
complement graph of G[Km].

Now, we prove Theorem 1.3.

Proof of Theorem 1.3. LetG be a graph which has no even cycles. From Corollary 4.4, one has

γ(AĜ, x) = g(G, 2x).

Thus Propositions 6.3 and 6.4 guarantee that g(G, 2x) is the f -polynomial of a flag simplicial
complex.

Example 6.6. Let Cn be an odd cycle of length n. It then follows from Example 4.5 that

γ(AĈn
, x) = g(Cn, 2x) =

(1 +
√

1 + 8x)n + (1−
√

1 + 8x)n

2n
.

From Theorem 1.3 γ(AĈn
, x) is the f -polynomial of a flag simplicial complex. In fact, the line

graph of a cycle is isomorphic to itself. Hence γ(AĈn
, x) is the f -polynomial of the clique

complex of Cn[K2]. For example, if n = 3, then C3[K2] = K3[K2] = K6 is the empty graph
with 6 vertices and γ(AĈ3

, x) = g(C3, 2x) = 1 + 6x coincides with the f -polynomial of its
clique complex.
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In the rest of this section, we show that for any bipartite graph G such that every cycle of
length > 6 in G has a chord, ∂AĜ has a flag unimodular triangulation. In particular, for any
forest G, ∂AĜ has a flag unimodular triangulation. First, we introduce the theory of Gröbner
bases of toric ideals. (See, e.g., [16, Chapter 3] for details on toric ideals and Gröbner bases.)
Let P ⊂ Rn be a lattice polytope, where P ∩ Zn = {a1, . . . , am}. For simplicity, we assume
that P is spanning, i.e., Zn+1 =

∑m
i=1 Z(ai, 1). Note that for any graph G, AG is unimodularly

equivalent to a full-dimensional lattice polytope satisfying this condition. Let

R = K[t1, t
−1
1 , . . . , tn, t

−1
n , s]

be the Laurent polynomial ring over a field K and let

S = K[x1, . . . , xm]

be the polynomial ring over K. We define the ring homomorphism π : S → R by setting
π(xi) = tai11 · · · tainn s where ai = (ai1, . . . , ain). The toric ideal IP of P is the kernel of π. It is
known that IP is generated by homogeneous binomials. Given a monomial order <, the initial
ideal in<(IP) of IP with respect to < is an ideal generated by the initial monomials in<(f) of
nonzero polynomials f in IP . The initial complex ∆(P , <) of P with respect to < is

∆(P , <) =

{
conv(B) : B ⊂ {a1, . . . , am},

∏
ai∈B

xi /∈
√

in<(IP)

}
,

where
√

in<(IP) is the radical of in<(IP).

Proposition 6.7 ([16, Theorems 4.14 and 4.17]). The initial complex ∆(P , <) is a triangulation
of P . Moreover, ∆(P , <) is flag unimodular if and only if in<(IP) is generated by squarefree
quadratic monomials.

We have the following proposition from a fact [32, Proposition 8.6] on the initial complex
with respect to a reverse lexicographic order.

Proposition 6.8. Suppose that a1 = 0 is the unique lattice point in the interior of P . Let < be
a reverse lexicographic order such that the smallest variable is x1. Then 0 is a vertex of every
maximal simplex in ∆(P , <), and

∆ =

{
conv(B) : B ⊂ {a2, . . . , am},

∏
ai∈B

xi /∈
√

in<(IP)

}

is a triangulation of the boundary ∂P of P . In particular, if ∆(P , <) is flag and unimodular,
then so is ∆.

Given a graph G on the vertex set [n] and the edge set E(G) = {e1, . . . , em}, let

R = K[t1, t
−1
1 , . . . , tn, t

−1
n , s]
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be the Laurent polynomial ring over a field K and let

S = K[x1, . . . , xm, y1, . . . , ym, z]

be the polynomial ring over K. We define the ring homomorphism π : S → R by setting
π(z) = s, π(xk) = tit

−1
j s and π(yk) = t−1i tjs if ek = {i, j} ∈ E(G) and i < j. Then the

toric ideal IAG
of AG is the kernel of π. The initial ideal of IAG

plays an important role in,
e.g., [8, 18, 25, 27]. In particular, a Gröbner basis of IAG

of a graph G with respect to a certain
reverse lexicographic order is given in [18, Proposition 3.8].

Theorem 6.9. Let G be a bipartite graph such that every cycle of length > 6 in G has a chord.
Then there exists a reverse lexicographic order < such that

(i) z is the smallest variable with respect to <;

(ii) in<(IA
Ĝ

) is generated by squarefree quadratic monomials.

In particular, ∂AĜ has a flag unimodular triangulation.

Proof. Let [n] be the vertex set of G. Recall that G̃ is a bipartite graph on [n + 2] whose edge
set is

E(G̃) = E(G) ∪ {{i, n+ 1} : i ∈ V1} ∪ {{j, n+ 2} : j ∈ V2} ∪ {{n+ 1, n+ 2}}.

Since every cycle of length > 6 in G has a chord, every cycle of length > 6 in G̃ has a chord.
From [24, Theorem 4.4], there exists a reverse lexicographic order < such that z is the smallest
variable with respect to <, and that the initial ideal of IA

G̃
with respect to < is generated by

squarefree quadratic monomials {m1, . . . ,ms}. Note that Ĝ is obtained from G̃ by contracting
the edge {n+ 1, n+ 2}, and there is a natural correspondence between E(G̃)\{{n+ 1, n+ 2}}
and E(Ĝ). From a fact shown in the proof of [27, Proposition 5.4], the initial ideal of IA

Ĝ
with

respect to the reverse lexicographic order induced by < is generated by squarefree quadratic
monomials {m1, . . . ,ms}\{xkyk}where ek = {n+1, n+2}. Thus ∂AĜ has a flag unimodular
triangulation by Propositions 6.7 and 6.8.

7. Symmetric edge polytopes of type B

In this section, we consider the symmetric edge polytope of type B of a cactus bipartite graph.
Note that the symmetric edge polytope BG of a graph G is reflexive if and only if G is bipartite
[26, Theorem 0.1]. In the case, a formula of the γ-polynomial of h∗(BG, x) in terms of interior
polynomials is given.

Theorem 7.1 ([26, Theorem 0.3]). Let G be a bipartite graph. Then one has

γ(BG, x) = IG̃(4x).

Similarly to Theorem 1.1, for a cactus bipartite graph G, we give a formula of γ(BG, x) in
terms of matching generating polynomials and show that h∗(BG, x) is real-rooted.
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Theorem 7.2. Let G be a cactus bipartite graph. Then one has

γ(BG, x) = g(G, 4x) +
∑

R∈R′2(G)

(−1)c(R)g(G−R, 4x) (4x)
|E(R)|

2 .

Moreover, h∗(BG, x) is real-rooted.

Proof. Letn be the number of vertices ofG. From Proposition 4.1, Lemma 4.2 and Theorem 7.1,
the γ-polynomial of BG is

IG̃(4x) =
∑
k>0

|M(G, k)| (4x)k

=
∑
k>0

mk(G)(4x)k +
∑
k>0

∑
R∈R′2(G)

(−1)c(R)mk−|E(R)|/2 (G−R) (4x)k

= g(G, 4x) +
∑

R∈R′2(G)

(−1)c(R)g(G−R, 4x)(4x)
|E(R)|

2 .

Moreover, γ(BG, x) satisfies

xnγ

(
BG,−

1

4x2

)
= xng(G,−x−2) +

∑
R∈R′2(G)

(−1)c(R)xng(G−R,−x−2)
(
− 1

x2

) |E(R)|
2

= α(G, x) +
∑

R∈R′2(G)

(−2)c(R)α(G−R, x)

(
1

2

)C(R) ∏
Ci⊂R

(−1)
|E(Ci)|

2

= µ(G, t, x),

where t = (t1, . . . , tr) with ti = (−1)
|E(Ci)|

2 /2. By Proposition 5.1, this is real-rooted. Hence
h∗(BG, x) is also real-rooted.

By using Theorem 7.2, for an even cycle, we compute the γ-polynomial of the h∗-polynomial
and the normalized volume of the symmetric edge polytope of type B.

Example 7.3. Let Cn be an even cycle of length n. It then from Example 4.5 that

g(Cn, 4x) = Ln(4x) =
(1 +

√
1 + 16x)n + (1−

√
1 + 16x)n

2n
.

From Theorem 7.2 one has

γ(BCn , x) =
(1 +

√
1 + 16x)n + (1−

√
1 + 16x)n

2n
− (4x)

n
2 .

In particular, we obtain

Vol(BCn) = 2nγ(BCn , 1/4) = (1 +
√

5)n + (1−
√

5)n − 2n.
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Theorem 7.2 generalizes the following result.

Corollary 7.4 ([26, Proposition 3.5]). Let G be a forest. Then one has

γ(BG, x) = g(G, 4x).

In particular, h∗(BG, x) is real-rooted.

Finally, we show that for a forest G, γ(BG, x) coincides with the f -polynomial of a flag
simplicial complex. Namely, Nevo–Petersen’s conjecture holds for any flag unimodular triangu-
lation of the boundary ∂BG in this case.

Theorem 7.5. Let G be a forest. Then the γ-polynomial of h∗(BG, x) coincides with the f -
polynomial of a flag simplicial complex.

Proof. It follows from Corollary 7.4 that the γ-polynomial of h∗(BG, x) is g(G, 4x). Thus
Propositions 6.3 and 6.4 guarantee that g(G, 4x) is the f -polynomial of a flag simplicial com-
plex.

Remark 7.6. It follows from the proof of [26, Theorem 2.6] that for any forestG, ∂BG has a flag
unimodular triangulation.
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