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Proportional reasoning is important and yet difficult for many students, who often use
additive strategies, where multiplicative strategies are better suited. In our research
we explore the potential of an interactive touchscreen tablet application to promote
proportional reasoning by creating conditions that steer students toward multiplicative
strategies. The design of this application (Mathematical Imagery Trainer) was inspired
by arguments from embodied-cognition theory that mathematical understanding is
grounded in sensorimotor schemes. This study draws on a corpus of previously
treated data of 9–11 year-old students, who participated individually in semi-structured
clinical interviews, in which they solved a manipulation task that required moving two
vertical bars at a constant ratio of heights (1:2). Qualitative analyses revealed the
frequent emergence of visual attention to the screen location halfway along the bar
that was twice as high as the short bar. The hypothesis arose that students used
so-called “attentional anchors” (AAs)—psychological constructions of new perceptual
structures in the environment that people invent spontaneously as their heuristic means
of guiding effective manual actions for managing an otherwise overwhelming task,
in this case keeping vertical bars at the same proportion while moving them. We
assumed that students’ AAs on the mathematically relevant points were crucial in
progressing from additive to multiplicative strategies. Here we seek farther to promote
this line of research by reanalyzing data from 38 students (aged 9–11). We ask: (1)
What quantitative evidence is there for the emergence of AAs?; and (2) How does the
transition from additive to multiplicative reasoning take place when solving embodied
proportions tasks in interaction with the touchscreen tablet app? We found that: (a)
AAs appeared for all students; (b) the AA-types were few across the students; (c) the
AAs were mathematically relevant (top of the bars and halfway along the tall bar); (d)
interacting with the tablet was crucial for the AAs’ emergence; and (e) the vast majority
of students progressed from additive to multiplicative strategies (as corroborated with
oral utterances). We conclude that touchscreen applications have the potential to
create interaction conditions for coordinating action and perception into mathematical
cognition.

Keywords: attentional anchors, touchscreen tablet, mathematics, proportional reasoning, sensorimotor
interaction
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INTRODUCTION

Educational theory should offer valuable heuristics for designing
applications that foster students’ conceptual learning. However,
these theories have by and large focused on learning-with-paper
rather than learning-with-technology (Papert, 2004). This theory-
to-practice gap is particularly acute in the case of touchscreen
tablets: Whereas tablets offer a breakthrough in human-computer
interaction by way of enabling direct multi-touch manipulation
of virtual objects, educational research is still scarce on how
performing motor actions can contribute to the development
of conceptual knowledge (Glenberg, 2006; Marshall et al., 2013;
Abrahamson and Bakker, 2016). Even when researchers do
engage students in multimodal interaction, where action and
perception are elicited as cognitive entry into target concepts,
these actions and perceptions are rarely studied via multimodal
learning analytics (Worsley and Blikstein, 2014). Consequently,
critical data are lost on how action and perception may lead to
more advanced reasoning. In the current study we investigated
how students could benefit from engaging with an interactive
tablet application designed to foster mathematical reasoning
through the development of new sensorimotor coordination.

Investigating multimodal learning could be especially
beneficial in those learning domains in which students are
known to experience severe difficulties. Proportional learning is
one such area. It could be that students’ difficulty with developing
proportional reasoning lies not so much with the mathematical
concepts per se as much as with their conventional presentation,
which is as symbolical expressions of quantitative relations.
Symbolic presentation of mathematical concepts, particularly
without guiding students in the appropriate multimodal
animation of the symbols, is liable to elicit inappropriate
understandings, for example it may evoke additive routines
where multiplicative solutions are needed. In the current study
we use an interactive touchscreen tablet application (MIT-Ext),
an extended version of the Mathematical Imagery Trainer for
Proportion (MIT-P; Reinholz et al., 2010; Abrahamson et al.,
2011) that was inspired by arguments from the theory of
embodied cognition that mathematical concepts are grounded
in sensorimotor schemes (e.g., Varela et al., 1991). In this
application students move their fingers up and down along two
vertical bars to try and make the bars green. They will be green,
rather than red, only when the respective heights of the bars
relate by a preset proportion, such as 1:2, that is initially unknown
to the students (see Figure 1). These physical movement patterns
students learn to enact could potentially create opportunities
to ground what will become the target mathematical content of
proportionality.

The current study was designed to investigate the emergence
of sensorimotor schemes as students engage in a MIT-Ext
task. We hypothesized that while students’ hands move the
bars at a constant ratio, their eyes will follow dynamical
patterns. These patterns are called attentional anchors (AAs) –
psychological constructions of new perceptual structures in
the environment that people invent spontaneously as their
heuristic means of guiding effective manual actions for managing
an otherwise overwhelming task (Liao and Masters, 2001;

FIGURE 1 | Representation of the MIT-Ext colored bars. Both bars have
to be moved in parallel motion. Once the right proportion is found (example:
pre-set proportion 1:2), the bars will turn green.

Hutto and Sánchez-García, 2015; Abrahamson and Sánchez-
García, 2016). Figure 2 demonstrates an AA that occurred
frequently in the empirical data.

Prior studies from this research program showed that
throughout the task, students often looked at specific parts
of both bars and their eyes moved in patterned sequences
among these locations. The conjecture arose that these perceptual
behaviors consistently predicted students’ conceptual transition
from additive to multiplicative strategies (Shayan et al., 2015;
Abrahamson et al., 2016). In the current study we examined in
detail the process of constructing AAs so as to determine how
these perceptual structures facilitated students’ motor actions
in accord with the task demand that is, moving the virtual
objects while keeping them green. In particular, we describe how
the coordination of action and perception stimulated students’
progression from additive to multiplicative solution strategies.
We articulated the following two research questions to guide this
new line of inquiry:

(1) What quantitative evidence is there for the emergence of
AAs?

(2) How does the transition from additive to multiplicative
reasoning take place when solving proportion tasks in
interaction with the touchscreen tablet app?

In the next section we focus on the theoretical rationale
and design methods for investigating embodied-interaction
technologies for learning mathematics, and in particular learning
proportions.

THEORETICAL BACKGROUND

Proportional Learning
For primary school students proportion is a notoriously difficult
domain of mathematics. In the Dutch school system, the
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FIGURE 2 | Three consecutive video stills overlaid with eye gaze data, showing the occurrence of a perceptual triangle, whereby the student looks at
the top of the short bar, top of the high bar and halfway up the high bar.

domain “proportions, fractions and percentages” enters the
school curriculum in the late elementary grades. Students have to
meet particular standards related to ratio and proportion. These
standards are set in the so-called Reference Levels Arithmetic
(CITO, 2013) and are assessed by a student tracking system and in
national examinations (Boswinkel and Schram, 2011). Before the
age of 12, Dutch students have to get a sense of the structure and
consistency of quantities, whole numbers, decimal numbers, and
percentages. Moreover, they should be able to do some (context-
bound) calculations with those mathematical objects (CITO,
2013). During the teaching of proportion there is an emphasis
on working with a ratio table, which either is given to students or
they must recognize when it might be useful (Van Galen et al.,
2005). As such, there is a large emphasis on applying learned
rules and strategies instead of developing a deep understanding
of proportion.

Essentially, proportional learning involves understanding the
multiplicative part-whole relations between rational quantities.
This means that a change in one quantity is always accompanied
by a change in the other, and that these changes are related by
a constant multiplier (Piaget and Inhelder, 1966/1977; Lamon,
2007; Boyer and Levine, 2015). Proportional reasoning and
the ability to conduct multiplicative operations can be seen
as an important precursor for virtually all other mathematical
content, including concepts such as ratios, fractions and linear
functions (Karplus et al., 1983; Vergnaud, 1983; Lesh et al.,
1988; Bakker, 2014). Despite the paramount importance of
proportionality, mastering it remains a challenge for school
curriculum (Tourniaire and Pulos, 1985; Lamon, 2012). In
particular, students experience difficulty in developing fluency
with proportions that build upon – yet are differentiated
from – simpler non-multiplicative concepts (e.g., additive
constructions), notations, terminology, and procedures (Karplus
et al., 1983; Tourniaire and Pulos, 1985; Lamon, 2007; Fernández
et al., 2012).

Students’ progression from additive strategies to multiplicative
strategies can be seen as a central component of their
growing proportional understanding. Additive and multiplicative

strategies are theorized in different ways. The current study
follows the work of Carpenter et al. (1999), Van Dooren et al.
(2010), and Abrahamson et al. (2014), in eliciting the sequences
discernible in the students’ emerging proportional learning.
Additive strategies on the one hand wrongly focus on the additive
differences between components of the ratio (1:2 = 3:4 because
1 + 1 = 2 and 3 + 1 = 4) and on the other hand correctly on
repeated addition (1:2 = 3:6, because 1 + 1 = 2 and 3 + 3 = 6),
while multiplicative strategies draw on the internal ratio of
similar units and apply these to other units (1:2 = 3:6, because
2= 2∗1 and 6= 2∗3).

With respect to the development of proportional reasoning
a crucial question then is how students ground multiplicative
conceptualizations of ratio in additive conceptualizations of
proportions (Abrahamson et al., 2014) and how this can be
supported by making use of interactive touchscreen tablet
applications (e.g., embodied learning tasks).

Embodied Cognition as a Theory for
Mathematical Cognition
In its most fundamental form embodied cognition theory states
that the mind, body, and its surrounding environment are
highly interrelated, and hence, mutually dependent upon each
other (Wilson, 2002; Anderson et al., 2012). In this view,
human cognition is deeply rooted in the body’s interactions
with its physical environment, where (motor) action, perception
and cognition are intricately linked, and reasoning consists of
reproducing fragments of embodied experiences (e.g., Lakofff
and Nùñez, 2000). This opposes views of early mainstream
cognitive science epistemology where the mind is seen as an
information processing system, operating completely separately
from the body’s sensorimotor systems. Per that view, reasoning
(including mathematical thought) is non-bodily, timeless and
universal, and the formation of concepts is not restricted
by physical realities. And yet proponents of the embodiment
view conceptualize, cognitive processes and (mathematical)
concepts not as abstract but rather as fully embodied, emergent
phenomena (Núñez et al., 1999).
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Many studies have provided empirical evidence for the
embodied nature of mathematical cognition, including the role of
the body in appropriating mathematical concepts. For example,
in their study on students’ gestures and the embodied knowledge
of geometry, Kim et al. (2011) investigated how gesturing
facilitated the emergence of mathematical knowledge, by
embodying the multisensory properties underlying geometrical
concepts. They found that students’ gestures influenced
their thinking about geometrical concepts. Moreover, as the
geometrical concepts became more complex, the gestures the
students deployed became more complex as well, indicating an
intricate relation between gesturing and mathematical knowledge
formation. Similar results with respect to the embodiment of
mathematical thinking and learning were found by Wright
(2001), Broaders et al. (2007), and Alibali and Nathan (2012).
Another study by Lozada and Carro (2016), investigating
Piagetian conservation tasks in students, found that making
students active participants in the transformation process,
instead of letting them merely observe the same phenomenon,
would help them recognize quantity invariance. These studies,
among others, suggest that cognition can be a direct consequence
of sensorimotor experiences of conceptual exemplars, which
indicates that there is a formative relationship between bodily
experiences and mathematical concepts (Johnson-Laird, 1983;
Malinverni et al., 2012). The guiding principle is that even the
most abstract mathematical concepts are in fact grounded in
sensorimotor experiences (Núñez et al., 1999; Wilson, 2002;
Gallese and Lakoff, 2005) and created by the human imaginative
mind via a very specific use of everyday bodily grounded
cognitive mechanisms, such as conceptual metaphors, analogical
reasoning, or fictive motion (Miller and Johnson-Laird, 1976;
Núñez et al., 1999; Lakofff and Nùñez, 2000; Wright, 2001).
Following this embodiment perspective, it is thus important
that students are offered the appropriate embodied experiences
from which to construct these key concepts. However, these
are rarely included in current educational practices. For
example, when solving problems involving proportions such
as, “1:2 = 3:[?],” students cannot experience the meaning of
proportional equivalence as indicated by the “ = ” symbol, since
they do not have a structured opportunity to enact, visualize, or
conceptualize certain number pairs (Abrahamson and Lindgren,
2014).

One promising approach, capable of facilitating the emergence
of sophisticated schemes mobilizing mathematical learning
and development, are embodied-embedded instructional
technologies – including touchscreen tablets – (Black, 2010;
Antle, 2013), which incorporate and enable students’ emerging
sensorimotor enactments and visualizations of mathematical
concepts (Reinholz et al., 2010; Abrahamson et al., 2011).
Certain technologies are based on the premise that directing
people to move in specific patterns of action may guide and
improve comprehension, problem solving, and learning (e.g.,
Fischer et al., 2011; Antle, 2013). As such, students can develop
pre-symbolical mathematical cognition by engaging in embodied
activities that create the right opportunities to build particular
action–perception schemes related to proportions. In particular,
we present an example of a learning environment designed

with the intention that students first develop proportional
sensorimotor schemes and later progressively formalize these
schemes in the form of mathematical discourse.

As such, by coordinating action and perception students
could move from informal goal-directed motions to more formal
mathematics, following a concurrent shift from additive toward
multiplicative reasoning. Thus the design and evaluation of
an interactive technological device for mathematical learning
created an empirical context to pursue broader research problems
pertaining to the cognitive process of developing quantitative
proportional reasoning. Here we are interested in the interplay
between action and perception when students work on the
touchscreen application described above. Using eye-tracking
technology, we evaluate the construct of AAs and its explanatory
power to illuminate hidden processes in our findings related to
students’: (a) dynamical patterns in visual attention to the objects;
(b) hand movement; and (c) reasoning following changes in
visual attention.

Eye-Tracking to Identify Attentional
Anchors
An AA, in essence, is an action-oriented perceptual configuration
overlaid onto a problem space (e.g., the nearby environment to
which people guide their attention). It can take many forms,
depending on the properties of a task and the domain in which
the task is going to be carried out. For example, a juggler might
imagine a geometrical structure (e.g., a rectangle) hovering in the
air in order to coordinate his actions. Accordingly, an AA can be
seen as a real or imagined object, area, or other aspect or behavior
that co-exists in a person’s perceptual manifold. In other words,
AAs can be thought of as a geometrical form overlaid onto the
perceived world and functioning as a tool by which one could
coordinate their sensorimotor actions (Liao and Masters, 2001;
Abrahamson and Sánchez-García, 2016).

Abrahamson et al. (2016) hypothesized that AAs are
constructed and used for motor-action coordination when
solving the MIT-Ext tasks. They suggest that the AA play critical
roles in achieving both the activity’s primary goal of performing
the motor action per task specifications and the secondary goal
of mathematizing the physical solution strategy. With respect to
the tasks used in our study, from an embodiment perspective,
there is the assumption that students develop action-perception
coordination schemes to tackle the target problem. We expect
students to act out goal-directed movements while looking at
mathematically relevant areas in the touchscreen task (i.e., top
of the bars and halfway the tall bar). Moreover, since the goal of
the task is largely unknown for students at the start of the task,
it is expected that students first deploy exploratory haphazard
eye-movements, and thereafter, when patterns and task-goals
are becoming clear, deploy more deliberate and patterned eye-
movements directed at the task relevant areas (Haider and
Frensch, 1999; Rayner, 2009).

In the present study we want to further investigate the
interaction of action-gaze-reasoning behavior by looking into
the eye-measures, including fixation count, fixation duration
and scan path of the AA patterns, as well as the timing
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of the AA patterns and how all these relate with the
effective solution strategies. In order to elucidate these (mainly)
implicit processes, eye-tracking measures are supplemented with
concurrent thinking-aloud transcripts (Van Someren et al., 1994).
We assume that the combined use of both methodologies will
provide us with a more detailed understanding of the hidden and
fine-grained aspects of a participants’ perceptual and cognitive
processing (Van Gog et al., 2005; Rayner, 2009; Hyönä, 2010; Lai
et al., 2013; Van Gog and Jarodzka, 2013).

MATERIALS AND METHODS

Participants
Forty-five fifth- and sixth-graders from five elementary schools in
the Netherlands voluntarily participated in the study. The schools
were all denominational, where families were predominantly
white and from middle class backgrounds. Seven participants
were excluded from the analysis, due to technical problems; four
had incomprehensible audio, two had unclear dark video, and
one had mis-calibrated distorted eye-measures. The 38 remaining
participants were included in the analyses (21 male, 17 female;
Mage = 135.37 measured in months, SD = 8.37). Before data
gathering commenced, the ethical committee board of the faculty
of Social Sciences at Utrecht University approved the study
(2015). Additionally, informed consent was obtained from the
legal guardians of all students involved.

Materials
Task in MIT-Ext
The task in MIT-Ext consists of two colored vertical bars. For
each bar a student can use their index finger to move the bars
up and down. Moving the bars in parallel motion changes the
color of the bars along a gradient between red and green. The
bars can be set at a predefined ratio (e.g., 1:2, 2:3, 3:4, etc.).
The bars will only turn green when the student finds the correct
proportion. For example, with the pre-set proportion 1:2, the
right bar (RB) has to be twice as high as the left bar (LB). In order
to keep the bars green, one has to move their fingers at a pace
relative to this pre-set proportion. The aim of the task for the
participant is to find the mystery rule that causes the bars to turn
green (i.e., the pre-set ratios). Eye-tracking technology was added
for multimodal data-gathering. MIT-Ext exists of an interface
that allows the user to pre-set multiple tasks. The present study
included one task, with a pre-set proportion of 1:2. The task
consists of three phases, wherein after the first phase, in which the
screen is plain white, symbolic artifacts are being added onto the
environment (i.e., a grid in phase 2 and a grid supplemented with
numbers in phase 3) intended to scaffold a learner’s conceptual
understanding of proportions. For a schematic overview of the
task and the included phases, see Figure 3.

The students were consistenly guided through the
environment (Abrahamson et al., 2011, 2014) by following
an instruction strategy (i.e., providing cues, e.g., “Try to make
the bars green, and maintain the green bars even when you move
your hands”).

Eye-Tracking Equipment
Eye-tracking data were collected using a Tobii X2-30, mounted
on a stand designed for eye-tracking research with mobile devices
(e.g., smartphones, tablets). An external camera captured the
scene by making video recordings (including audio) during task
processing. These recordings were exported to the Tobii software
(Tobii, version 3.3.0) to be integrated with the gaze data.

Coding Scheme for Video Data and Thinking-Aloud
Transcripts
For the analysis of participants’ video data and thinking-
aloud transcripts, a coding scheme was developed. The
transcripts were coded on the utterance level and consisted
of one dimension knowledge articulation, divided over two
categories (a) knowledge content, and (b) solution strategy.
The first category, knowledge content was developed by Chi
(1997). Chi’s coding scheme differentiates between unique
contributions (C), repetitions of previous contributions (R)
and no problem content at all (0) and as such can be seen
as a vital part of knowledge articulation. Additionally, since
the verbally strong participants might have an advantage
over the verbally weak participants (Chi, 1997), it seemed
reasonable to differentiate between utterances that were
contributions and utterances that were repetitions (of previous
contributions), including only the contributions into subsequent
analyses.

All the contributions of the previous category were coded
on the second category, solution strategy (Abrahamson et al.,
2014). The second category entailed seven ‘strategy’ codes, being:
(1) pre-additive, (2) fixed interval, (3) changing interval, (4)
a-per-b, (5) a-per-1, (6) multiplicative, and (7) speeds. Short
descriptions of the codes with examples are provided in Table 1.
In essence, within these solutions strategy codes the development
of students’ additive conceptions into a more sophisticated
multiplicative framework can be traced, following the literature
into proportional learning and reasoning (Carpenter et al., 1999;
Misailidou, 2007; Reinholz et al., 2010; Van Dooren et al., 2010),
but cannot be seen as an ordinal scale in itself. For example,
deploying a “speeds” solution strategy is not necessarily better
or more advanced than performing a “multiplicative” solution
strategy.

Since these sensorimotor enactments were conveyed in
essentially the same dynamical hand gestures (i.e., moving
the bars simultaneously while keeping the bars green can be
interpreted as an enactment of the a-per-1 solution strategy
as well as an enactment of the multiplicative solution strategy),
the choice was made to primarily rely on the reasoning
utterances of the students, while looking at the video data.
Moreover, qualitative observations in previous studies into the
same tablet application showed that students’ solution strategies
preceded or coincided their motor enactments of these strategies
(Shayan et al., 2015, 2017). Short descriptions of these motor
enactments can be found in Table 1. In addition, in the
current study, a pre-additive code was also included, which
is not directly related to a specific sensorimotor enactment,
but instead, has a more exploratory nature. During this pre-
additive strategy students search for early clues as to why
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FIGURE 3 | Schematic representation of the three phases within the task: (A) pre-set proportion 1:2, blank screen; (B) pre-set proportion 1:2, grid; (C)
pre-set proportion 1:2, grid supplemented with numbers.

TABLE 1 | Characteristics and examples of the two dimensions in the codebook for the video and verbal data.

Dimension Characteristics Description/Example

Knowledge articulation

(1a) Knowledge content

Contribution (C) Refers to utterances that are indicative of a student’s
emerging proportional reasoning.

‘My right hand has to move faster than
my left hand to keep it green.’

Repetition (R) Refers to repetition of previous contributions. ‘When I move faster with my right hand, it
remains green.’ [repetition of the
utterance above]

Null-content (N) Contains no problem content at all. ‘Can I start already?’

(1b) Solution strategy (from additive to multiplicative reasoning)a

Conceptual strategy Motor action

Pre-additive (1)b Comments are focused on the visual appearance of
both bars.

‘Right should be higher than left.’ Random movements, green is being
found based on chance.

Fixed interval (2)b Students try to maintain a constant spatial interval
between both hands/bars.

‘There is a difference of two, so I have to
go up two at both bars.’

The difference between both bars is
being held constant.

Changing interval (3)b Students modify the spatial interval between both
hands/bars in order to enlarge the distance.

‘The higher I go, the bigger the distance
needs to be.’

The difference between both bars is
being enlarged.

a-per-b (4)b Student deploys sequential hand-movements, each
hand moves up or down according to its respective
quota.

‘For every unit left, I go up two unit’s
right.’

Both bars descend or ascend at
respective constant values.

a-per-1c (5)b Student deploys a strategy that attends to the interval
between the left- and right-bar as it changes with
respect to the height of the lower bar.

‘1–2 is one line apart, 2–4 is two lines
apart, 3–6 is 3 lines apart.’

When the left bar rises, the right bar
rises by one unit more than the
previous difference between both bars.

Multiplicative (6)b Quantitative statements about the numerical location
of one of the bars directly as a product of the
numerical location of the other bar.

‘The right bar is twice as high as the left
bar.’

A value is determined for the left bar,
which is continuously doubled to find
the value for the right bar.

Speeds (7)b Statements are about the relations between both
bars in terms of their respective velocity.

‘My right hand has to go faster than my
left hand, in order to keep both bars
green.’

Both bars ascend and descend at
different constant velocities.

aThe given examples are based on pre-set proportion 1:2. bUsed ordering of the strategies in brackets, the ordering of the used solution strategies was based on the
literature into proportional development (e.g., Misailidou, 2007; Van Dooren et al., 2010; Abrahamson et al., 2014). Furthermore, following Abrahamson and Sánchez-
García (2016), ‘speeds’ was interpreted as a simultaneous enactment of the a-per-b strategy while at the same time can be interpreted as a qualitative indication of the
multiplicative solution strategy. c1 = Magnitude of interval between hands.

the bars turn green (Reinholz et al., 2010). For a detailed
account – and previous use – of the solution strategies
in a similar context, see the study of Abrahamson et al.
(2014).

Procedure
Pilot Studies
Two pilot studies were conducted in order to test the
methodological outset of the main study. During the first pilot
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study, the MIT-Ext application and the instruction strategy were
tested. Four students (age range: 7–10 years) performed several
tasks on the MIT-Ext (set-proportions 1:2 and 2:3). For these
students the pre-set proportions were difficult. Based on this
first pilot study, and following previous research on embodied
mathematical learning (e.g., Reinholz et al., 2010; Abrahamson
et al., 2011; Petrick and Martin, 2012) and proportional
development (Piaget and Inhelder, 1966/1977; Siegler and Pyke,
2013), it was decided to only include students between the age of
10 and 12 years (grade 5–6). A second pilot study was conducted
with four students (age range: 11–12 years). Here the pre-set
proportions 1:2 and 3:4, and the instruction strategy were tested.
Based on this second pilot study it was decided to set the pre-
set proportion for the task to 1:2, and to make the instruction
strategy more elaborate in order to ensure consistency.

Thinking-Aloud Instructions
Following the standards described by Ericsson and Simon
(1993), students were encouraged to think-aloud during task
performance in order to connect their gaze-data with their
proportional reasoning. They were instructed in two ways: (1)
written, in the start screen of the task itself and (2) verbally by the
researcher. With respect to the environment, a piece of text was
incorporated into the MIT-Ext application, twice (“do not forget:
say everything you think, out loud to the researcher”). Moreover,
whenever necessary throughout the duration of the task, the
researcher instructed the students to verbalize everything that
came to their minds.

Semi-structured Clinical Interviews
The students took part in individual sessions of approximately 1 h
during the day in a separate room at schools. At the beginning
of each session students got written instructions on the tablet
screen, together with images, explaining how to interact with
the app: “You have to move the bars up and down and find the
green bars. Try to keep the bars green while moving them.” First
students were allowed to explore the environment in order to
find as many greens they could. During this exploratory phase the
researcher did not explicitly ask them to express their thoughts.
Only when students found the first green, the researcher asked
them to find more greens. This first phase roughly took 2–
5 min (the time students spent per phase and on the whole
task varied considerably between students – range in seconds:
[419–1475]). After the first exploration phase the students were
probed to articulate their thoughts regarding what they were
doing and which actions they were undertaking in order to find
the mystery rule. Regardless of their rule articulation at the end of
the first task phase (i.e., blank screen) the students were asked
to move the bars all the way up from the bottom to the top
while keeping the bars green. After this first phase the previously
mentioned instructional probes were repeated throughout the
other task phases (i.e., grid and grid supplemented with numbers)
as well, while also encouraging the students to express their
thoughts about why the bars turned green to gain more insight
in their used solution strategies. At the end of the third phase
the students again were asked to move the bars all the way
up. During the task the researcher repeated pre-formulated

sentences, such as: “Can you find more greens?” and “Could
you tell me what you are doing right now?” These consecutive
interaction periods primed the interview data for subsequent
analyses and comparison.

Eye-movements, screen recordings and concurrent
verbalizations were captured during the entire task performance.
Verbalizations by the students were transcribed verbatim.

Data Analysis
Verbal Transcripts
The coding of utterances was done with a computer program
designed for the coding of qualitative data: MEPA (version 4.10)
(Erkens, 2005). Two raters familiar with the task and the materials
as well as with the coding scheme scored 7.5% of the transcripts
(n = 3). Inter rater reliability computed on this subsample
of transcripts yielded a Cohen’s κ of 0.88 for the knowledge
content category, and a Cohen’s κ of 0.73 for the solution strategy
category, which both can be considered good. One rater scored
the remaining transcripts.

Eye-Tracking Data
For the analysis of participants’ eye-tracking data so-called ‘areas
of interest’ (AoIs) were defined. These AoIs were selected based
on the mathematical frameworks underlying proportions, which
also make sense in the context of the used application (i.e.,
two bars set a pre-set proportion) (cf., Shayan et al., 2015;
Abrahamson et al., 2016). Here it was assumed that students
would make sense of the tasks by (1) looking from left to right
and vice versa, (2) looking halfway both bars in order to see the
shorter bar as halfway the taller bar, and (3) looking at both bars
from the top to the bottom and vice versa in order to define
the differences between the top of both bars and the bottom of
both bars (cf. Fuson and Abrahamson, 2005; Boyer and Levine,
2015). Each bar was divided in three areas of the same size
(allowing to gather eye-fixation and gaze data at the top of both
bars, halfway both bars, and at the bottom of both bars). These
areas would grow and shrink relative to the changes in the bars’
height. Moreover, the area between both bars and the area outside
both bars were included as two AoIs as well. Figure 4 provides a
schematic representation of the dynamic AoIs used in the current
study.

Eye-tracking variables
Based on the literature into problem-solving and expertise
development (e.g., Gegenfurtner et al., 2011; Susac et al., 2014),
we included four eye-tracking variables in our analysis: (1) the
sum of the fixation counts within each AA AoI divided by
segment time (i.e., time that students seek the mystery rule),
(2) the average fixation duration per visit by dividing fixation
duration by visits in AoIs (fixation duration was the total duration
by which participants looked at a certain AoI (in seconds), visits
were defined as the successive entering and exiting of an AoI), (3)
the unique visits by dividing the visits by segment time, and (4)
the scan path, as a count measure, by which participants looked
at several AoIs successively.

Besides fixation count, fixation duration, and visits within
AoIs it was decided to incorporate the scan path because it
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FIGURE 4 | Schematic representation of the allocation of the eight (dynamic) areas of interest (AoIs) used in current study. The AoIs on the bars were
slightly larger than the bars: 40 pixels on both sides and 40 pixels on top.

includes fixation sequences, and gives information about multiple
successive fixations and saccades (Holmqvist et al., 2011; Lai et al.,
2013). Including the scan path gives insight into the complex
patterns of eye movements when processing dynamic stimuli
(Jarodzka et al., 2010). In the context of the task this would imply
a deeper insight in student’s subsequent eye-movements, and as
such could give an indication of the specific eye-patterns that
are of interest when solving proportion related tasks. Moreover,
when looking at the research of Shayan et al. (2015), being able to
quantify the eye-gaze patterns that might have a role in student’s
conceptual understanding of proportions is essential to push
forward the research in this domain. As such, including the scan
path as an eye-measure is insightful in describing the multitude
of geometrical variations the AA might hold, and what if any
is the role of AAs in the coordination of perception, action and
reasoning when performing embodied proportional touchscreen
tablet tasks.

Pre-processing
In order to process the eye-tracking data the raw gaze data was
first filtered with the default Tobii fixation filter (Olsson, 2007).
This filter identifies fixation points by a minimum of 5 gaze
points grouped within a radius of 35 pixels. Moreover, before
going through the recorded data, the Tobii fixation filter applies
a correction to missing gaze data points below 100 ms. Using
Tobii Studio the gaze data (within segments) was exported to
Microsoft Excel. Additionally, using a matlab script the eye-
coordinates were converted to the same coordinate system of
the hand-coordinates from the apps’ hand movement log files.
This was necessary to manually calculate the fixation count and
fixation durations of the AOIs with respect to the dynamic
height of the bars. Another script was written with python

programming language to calculate the fixation duration, visit
count, and fixation count (Python, version 2.0; Python, 2015).
As such, Python calculated for each time stamp with a fixation
point, based on the position of the hands in that timestamp, the
associated AoI of the gaze. Moreover, the dynamic track of the
gaze data over the AoIs, was also recorded in this program and
was returned as the scan path.

Analyses RQ 1 What Quantitative Evidence Is There
for the Emergence of Attentional Anchors in Terms of
Location, Fixation duration, and Scan Paths?
First, for every participant the segments of the eye-data that could
be used were defined. It was chosen to focus on the moment
between a student started to deploy specific eye-movements
indicative of an AA (Shayan et al., 2015) till they articulated
their first multiplicative rule (i.e., answering the question: “why
do the bars turn green?”). Based on these segments, for every
participant the fixation count, fixation duration, unique visits per
AoI, and the scan paths over the AoIs were calculated. Descriptive
statistics (i.e., frequencies and percentages) are reported to show
which AoIs are attended to in terms of count, duration and
visits. Next we looked at the scan path and calculated the most
frequently occurring gaze sequences. This was done in two ways:
(1) time-based, and (2) event-based. For the time-based method,
per participant, all occurring patterns were divided by the same
participant’s time on task (in seconds). Subsequently, for each
occurring pattern these values were added. As a consequence,
every pattern got a score indicative of their frequency of
occurrence in the sample. As a result, the five patterns with the
highest score were picked and included. For the event-based
method, per participant, the five most occurring patterns were
located. Per participant, the pattern that occurred most got a
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score of five, the pattern that occurred second most got a score of
four, until the least occurring pattern of the five most occurring
patterns got a score of one. Subsequently, for each occurring
pattern these values were added. As a consequence, every pattern
got a score indicative of their frequency of occurrence in the
sample. Again, the five patterns with the highest score were
included.

Analyses RQ 2 How Does the Transition from Additive
to Multiplicative Reasoning Take Place When Solving
Proportions Tasks?
This second research question is being addressed by analyzing
the interaction transcripts in MEPA, to gain a deeper insight
into the transitions between the seven different solution strategies
in order to detect whether students might show a progression
toward more advanced strategies. As such, a lag-sequential
analysis was done in MEPA to extract the transitions between
solution strategies per participant. Since only the transitions
between certain phases were of interest, all repeated consecutive
solution strategies were excluded. For example, when a student
mentioned the a-per-b solution strategy twice or more (as a
unique contribution) directly after each other, this was changed
to mentioning this solution strategy only once. Subsequently,
frequency transition tables between all possible combinations
of solution strategies were analyzed. Significant transitions
are calculated based on a comparison between the observed
frequency transition table and an expected frequency transition
table where all expected transitions were defined. The values of
both tables are then compared to each other to see whether the
found transitions in the sample significantly deviates from those
transitions one would expect based on chance. Furthermore,
since the literature suggests that a transition from additive
toward more multiplicative strategies are important indicators
for proportional reasoning (e.g., Carpenter et al., 1999; Reinholz
et al., 2010; Van Dooren et al., 2010), an aggregated file
was made of the initial seven solution strategies into four
overarching components, being: (1) pre-ratio (or proto-ratio),
mostly incorrect strategies (e.g., students keep the distance
between both bars fixed; 1:2 = 3:4) (the former pre-additive and
fixed distance reasoning), (2) additive (the former a-per-b, and
a-per-1 reasoning), (3) multiplicative (multiplicative reasoning),
and (4) speeds (the former change and speeds reasoning, which
can be seen as a qualitative account of quantitative multiplicative
reasoning). With these four categories it is possible to elucidate
students’ transitions from additive to multiplicative frameworks.

RESULTS

First, video and gaze data were inspected to identify the
emergence of AAs. Based on qualitative inspections of video data,
the exploratory study of Shayan et al. (2015) already showed
that students tend to direct their gaze toward the top of the
LB, top of the RB and halfway the RB (length of the LB on the
RB), either distinctly or supplemented by separate switches in
between those. This focus emerged without explicit instruction.
This distinct eye-gaze pattern (AoI 1-4-5, see Figure 2) can be

seen as indication of an AA. The current study adds to these
insights by focusing on the moments before stating the rule of the
task. Here students show similar visual patterns, indicating that
accomplishing such perceptual-motor (eye-hand) coordination,
enabled the students to develop strategies by which they kept
both bars green. From this moment on, this distinct gaze pattern
will be called a gaze triangle whenever necessary. Since the gaze
triangle seems closely related to conceptual understanding (i.e.,
students show similar eye-gaze patterns around the moment they
find the solution to the tasks), underscoring the assumption that
there are critical phases in knowledge development, the first
moments a similar AA appeared were located across the sample.
Accordingly, segments were made in Tobii Studio, by which the
start of each segment reflected the appearance of the AA for the
first time. The end of the segment was marked 5 s after stating the
rule of the task (e.g., the RB has to be twice as high as the LB). The
moment the students show the first AA till they state the rule will
be termed as the critical phase, whenever necessary. Subsequently,
segments were exported in order to use them for data analysis.

Results Research Question 1
Table 2 gives information on students’ eye-measures in terms of
counts, fixation duration and number of visits in each of the eight
AoIs. From this table it can be noticed that especially AoI 1, AoI 4,
and AoI 5 are at the core of the students’ attention, forming a gaze
triangle. As such, AoI 1, AoI 4, and AoI 5 were more frequently
and longer looked at and visited compared to others. These areas
were top of the LB, top of the RB and middle of the RB.

Analyses of the occurrence of eye-gaze patterns (i.e., scan
paths) show that the transition between 1 and 4 (not necessarily
in this order) are most common when looking at two subsequent
transitions, while the transition between 1-4-5 (not necessarily in
this order) are most common when looking at three subsequent
transitions. See Table 3, for the five most occurring two- and
three-digit gaze sequences over the six AoIs. The five most
occurring two- and three-digit gaze sequences are visualized in
Figures 5A,B. Moreover, when looking more closely at the raw
data files to see whether these patterns indeed were the most
occurring patterns for every student individually, it was revealed
that within the two-digit eye-movement patterns, pattern 1–4 was
the most occurring pattern for a large portion of the students
[60.53%], followed by pattern 4–5 [28.95%], and within the three-
digit eye-movement patterns the most occurring patterns were
1-4-5 [73.68%], and 1-2-4 [13.16%], indicating that these eye-
gaze patterns indeed were most frequent for most students in the
sample.

In sum, manipulating both bars (i.e., performing a situated
sensorimotor operatory scheme) in order to keep both bars green
corresponded with distinct gaze patterns that students frequently
deployed, when progressing through the touchscreen tablet
task. Moreover, by acting out goal-directed movements students
looked at mathematically relevant areas. In doing so they hooked
their initial understanding of proportions to the mathematical
structures underlying proportions as this was visually presented
in the touchscreen tablet application. Overall, these quantitative
results show evidence for the emergence and existence of AAs as
was qualitatively observed in the video data.
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TABLE 2 | Means and SDs of number of counts, fixation duration (in seconds), and number of visits in the eight AoIs [percentages given between
brackets].

AoIs Eye-measures

Counts Duration Visits

M [%] SD M [%] SD M [%] SD

AoI 0 1541.89 [11.74] 1602.93 49.59 [13.58] 53.46 95.74 [14.28] 95.69

AoI 1∗ 2680.95 [20.41] 2844.17 71.33 [19.54] 63.51 126.32 [18.84] 109.86

AoI 2 500.26 [5.81] 521.75 16.94 [4.64] 16.98 28.32 [4.22] 25.54

AoI 3 274.24 [2.09] 356.49 7.75 [2.12] 10.83 15.74 [2.35] 16.55

AoI 4∗ 4335.92 [33.01] 4417.90 114.67 [31.42] 93.76 183.68 [27.40] 149.11

AoI 5∗ 1382.76 [10.53] 1219.66 43.63 [11.95] 30.01 69.66 [10.39] 52.76

AoI 6 499.53 [3.80] 527.94 15.76 [4.32] 15.92 25.53 [3.81] 24.17

AoI 8 1918.92 [14.61] 1562.14 45.30 [12.41] 31.03 125.32 18.70] 93.09

∗Based on qualitative observation of the video data the AoIs indicative of the AA were 1, 4, and 5.

TABLE 3 | The five most occurring (two- and three digit) eye-movement patterns over the six areas of interest (two ways of calculating: using time-based
and event-based measures).

1 2 3 4 5

Two-digit eye-movement patterns

Time-based (occurrence) 1–4 (67.72) 4–5 (38.81) 1–5 (21.13) 1–2 (10.47) 2–4 (6.34)

Event-based (score) 1–4 (167.50) 4–5 (144.75) 1–5 (82.83) 1–2 (53.33) 2–4 (29.83)

Three-digit eye-movement patterns

Time-based (occurrence) 1–4–5 (12.87) 1–2–4 (4.32) 1–2–5 (2.98) 4–5–6 (2.50) 2–4–5 (2.21)

Event-based (score) 1–4–5 (167.50) 1–2–4 (95.00) 4–5–6 (57.77) 1–2–5 (52.87) 2–4–5 (46.67)

Results Research Question 2
The solution strategies found in current sample are in accordance
with the solution strategies outlined in the work of Abrahamson
et al. (2014) that was based on video data without eye-
tracking technology. Figure 6 shows a schematic representation
of the observed solution strategies in which the strategies and
accompanying motor enactments are visualized and explained.
Since an in-depth description of those strategies with examples
is beyond the scope of this article; the 2014 article gives an
elaborate account. In short, the figure shows the six solution
strategies. For example, the fixed interval solution strategy is
shown first. In black you see the first enactment, where the
LB is one and the RB is two. Subsequently, the position of the
bars change, visualized in blue and yellow (2:3 and 3:4). It is
shown that the difference between both bars stays the same
(fixed interval), which is incorrect when the pre-set proportion
is 1:2.

Frequencies and Order of Students’ Solution
Strategies
All students in the sample used at least two different solution
strategies. Some students used all solution strategies. Table 4
provides an overview of the strategy occurrence frequencies
of the students. Frequencies show that overall the use of
solution strategies varies. The pre-additive and multiplicative
strategies were used most often. When specifically looking at
the solution strategies during the critical phase (i.e., showing
the first AA till stating the rule in the first task), it is

noticeable that the students used the a-per-b, a-per-1, and
speeds strategy the least. Table 5 shows the overview of
transitions between two subsequent codes in the interaction
transcript. All statistically significant transitions are presented
with z-scores between brackets. Closer inspection of the values
reveals that the students in our sample more often used a
solution strategy further in the sequence after a solution strategy
earlier in the sequence than vice versa (106 times vs. 48 times).
Especially the transitions from pre-additive solution strategies
to fixed solution strategies (10 times, z = 3.93), from pre-
additive solution strategies to multiplicative solution strategies
(20 times, z = 3.24), and from multiplicative solution strategies
to speeds solution strategies (12 times, z = 3.61) seem to occur
most.

Table 6 shows the aggregated solution strategies, and
as such the transitions from incorrect toward correct
strategies, from additive strategies toward multiplicative
strategies, and from multiplicative strategies toward speeds
strategies. The first thing to note is that there are significant
transitions from (incorrect) pre-ratio solution strategies
toward (correct) additive (12 times, z = 2.40), multiplicative
(23 times, z = 3.03), and speeds (16 times, z = 3.20)
solution strategies. Second, the transition from additive
solution strategies to multiplicative solution strategies can
be regarded as a significant transition as well (16 times,
z = 3.43). Finally, as was already discernible in the previous
table, there is a significant transition from multiplicative
solution strategies to speeds solution strategies (16 times,
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FIGURE 5 | (A) Overview of the two-digit gaze-patterns apparent in our sample. Circles connected by lines are representative of the gaze-patterns. Pattern 1 was
most prevalent across participants. (B) Overview of the three-digit gaze-patterns apparent in our sample. Circles connected by lines are representative of the
gaze-patterns. Pattern 1was most prevalent across participants.

FIGURE 6 | Adapted from Abrahamson et al. (2014). Student generated solution strategies for the make-the-bars-green problem (pre-set proportion 1:2): (A)
fixed interval – maintaining 1 constant regardless of RB-and-LB elevation (incorrect solution); (B) changing interval – modifying 1 correlative to RB-and-LB elevation;
additive, either (C) co-iterate composite units – both LB and RB ascend or descend at respective constant values a and b (a-per-b), or (D) LB rises by a (usually 1),
RB by 1 box more than the previous 1; (E) multiplicative – relocating the next green position as a function of the height of only one of the bars (given LB at x and RB
at y, 2x = y; x = 1/2 y), e.g., determining LB y-axis value, than doubling to find RB value, then halving for LB, and (F) speeds – LB and RB ascend/descend at
different constant velocities (v1 < v2) or RB velocity is double LB velocity (2v1 = v2; v1 = 1/2 v2 . LB, left-bar; RB, right-bar; 1 = magnitude of interval between
cursors (vertical and diagonal variants); v = velocity.

z = 2.34), indicating that the students in the current sample
often explicated their quantitative multiplicative insights
by a qualitative speeds related account. For example, when
a student mentioned a multiplicative solution strategy
(e.g., “the RB always has to be half as tall as the LB”), this
was more often elucidated by a speeds related solution

strategy (e.g., “I have to move my right hand twice as
fast as my right hand”) than one would expect based on
chance.

In the next section the findings of the previous sections will be
clarified by giving qualitative examples of students’ progression
through the task.
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TABLE 4 | Frequencies of solution strategies during the first (pre-set proportion 1:2) task, and during the critical phase.

Pre-additive Fixed interval Changing interval a-per-b a-per-1 Multiplicative Speeds Sum

Tasks

Task 1 33 (87) 12 (20) 17 (27) 20 (28) 7 (7) 38 (162) 15 (24) 142 (355)

Critical phase 30 (70) 10 (20) 12 (18) 7 (8) 4 (4) 38 (38) 3 (4) 104 (162)

Absolute frequencies are given (i.e., sum of the students who used that solution strategy). Total amount of used solution strategies are given between brackets. Note that
time on task has not been taken into account.

TABLE 5 | Overview of the transitions between two subsequent solution strategies.

Code 1 2 3 4 5 6 7 Total T Frequency of occurrence

(1) Pre-additive – 10 (3.93) 9 (2.95) 1 (−) 2 (−) 20 (3.24) 2 (−) 40 44

(2) Fixed 1 (−) – 5 (2.75) 6 (3.32) 3 (3.09) 4 (−) 0 (−) 18 19

(3) Change 3 (−) 0 (−) – 5 (2.25) 0 (−) 8 (−) 4 (−) 17 21

(4) a-per-b 1 (−) 1 (−) 1 (−) – 2 (−) 11 (–) 2 (−) 15 23

(5) a-per-1 0 (−) 0 (−) 1 (−) 1 (−) – 4 (2.50) 0 (−) 4 8

(6) Multi 9 (−) 4 (−) 4 (−) 8 (−) 0 (−) – 12 (3.61) 12 20

(7) Speeds 2 (−) 2 (−) 1 (−) 2 (−) 1 (−) 6 (−) – – 61

106

Total Transitions 16 7 7 11 1 6 – 48 154 196

Significant z-scores in bold between brackets, p < 0.05.

TABLE 6 | Overview of the transitions between two subsequent aggregated solution strategies.

Code 0 1 2 3 Total T Frequency of occurrence

(0) Pre-ratio – 12 (2.40) 23 (3.03) 16 (3.20) 51 51

(1) Additive 2 (−) – 16 (3.43) 4 (−) 20 29

(2) Multiplicative 12 (−) 9 (−) – 16 (2.34) 16 36

(3) Speeds 7 (−) 8 (−) 14 (−) – – 61

87

Total transitions 21 17 14 – 52 139 177

Significant z-scores in bold between brackets, p < 0.05.

Touchscreen Tablets: A Meeting Place
for Action, Perception and Cognition –
Two Qualitative Examples
The video data and think-aloud transcripts of two students
were chosen to illustrate how touchscreen applications can be a
meeting place for action, perception, and cognition. Whereas the
previous results sections focus on the presence and frequency of
appearance of any AA, and on the order and use of the different
solution strategies, we here are integrating all these findings by
giving two concrete examples of students progressing through the
task. Here we show the variation and commonalities that exist
between students. In short, a focus will be on (1) elucidating
the findings of the previous section, by giving examples, and
(2), elaborating on the cognitive processes (in terms of attention
allocation and reasoning) taking place between showing the first
AA and stating the rule. As such, these examples will give a fine-
grained account of how action and perception are coordinated
during emerging proportional reasoning.

Figures 7A,B show the students’ developmental trajectories in
terms of appearing AAs during the critical phase. Figures 8A,B
show the students’ sequences of solution strategies and

progression through the entire task. For the first student, see
Figure 7A, the moment showing the AA for the first time till
stating the rule is relatively long. Student 1 articulated a multitude
of solution strategies before stating his first multiplicative rule.
In this respect, a few moments after the first AA was shown
the student stated a strategy related to changing interval. After
the articulation of this strategy he articulated a strategy related
to fixed interval and a little later gives a qualitative account
of the a-per-b solution strategy. From this latter strategy he
gradually progresses into a multiplicative mathematical register
(cf., Abrahamson et al., 2014), as shown in the following excerpt:

S1: “It is this piece here [LB], which I hold with my left hand
[student moves his left finger up and down the screen], that
should be added over there [his gaze is focused on the top of
the LB while switching to the top of the RB and between the
top of the LB and the length of the LB on the RB].”
[...]

R: “Can you show that to me?”
S1: “Well, for example, it is this part [difference between both

bars], like this, when that part becomes higher, the bars turn
green.”
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FIGURE 7 | (A) (Student 1) Student generated solution strategies for the make-the-bars-green problem (pre-set proportion 1:2): (b) First AA occurred during the
changing interval solution strategy (time: 00:58) (e) Stating the rule – blank screen (time: 06:06), (d,f) the solution strategies a-per-1 and speeds were not (yet)
mentioned by the student. LB, left-bar; RB, right-bar; 1 = magnitude of interval between cursors (vertical and diagonal variants); v, velocity gray areas = student did
not use this solution strategy. (B) (Student 2) Student generated solution strategies for the make-the-bars-green problem (pre-set proportion 1:2): (b) First AA
occurred during the fixed interval solution strategy (time: 01:52) (e) Stating the rule – grid supplemented with numbers (time: 13:25), (b,d,f) the solution strategies
changing interval, a-per-1 and speeds were not (yet) mentioned by the student.LB, left-bar; RB, right-bar; 1 = magnitude of interval between cursors (vertical and
diagonal variants); v, velocity gray areas = student did not use this solution strategy.

R: “So, can you explain that?”
S1: “Well, like, that part is just added [student focuses on the

LB]. For example, this piece [difference between LB and RB],
actually is doubling the other one [LB], so this one [LB] is
being doubled [gaze forms a gaze triangle].”

For his entire solution strategy sequence, see Figure 8A.
Figure 7B shows the developmental trajectory of another student
during the critical phase. In general, it took this student
longer to state the multiplicative rule than Student 1. This is
reflected in the task-phases. Student 1 stated the rule during
the first task phase (blank screen), while Student 2 needed the
symbolic artifacts, not only as a means to enhance, deepen or
explain his (naïve) solution procedures, but also to articulate
the multiplicative propositions as to why the bars turn green
(Abrahamson et al., 2011). In general, Student 2, see Figure 7B,
had a hard time finding the rule. He articulated many ideas
starting with the articulation of some pre-additive rules, the small
‘baby steps’ toward proportional understanding (Reinholz et al.,
2010). Subsequently he conveys the a-per-b solution strategy.
From the a-per-b solution strategy he slowly progresses into a

multiplicative framework, as shown in the following excerpt, see
Figure 7B.

R: “What exactly are you doing?”
S2: “I am following the lines.”
R: “Can you explain?”

S2: “[student’s gaze shifts between the top of both bars] If this one
moves up two, this one moves up one [still the student shifts
his gaze between the top of both bars].”
[...]

R: “And what are you doing right now?”
S2: “I am sort of, following the lines.”
R: “Can you explain?”

S2: “Yes, whenever. . .it is starting to double [intensive gaze
shifts between the top of both bars].”

R: “Ok.”
S2: “Because when this one is at 5 [looking at the numerals], I

have to move that one [shifting his gaze between numerals
and top of the RB] to 10 [here the student uses his thumb to
show how the LB is half the RB, adding to his perceptual gaze
triangle].”
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FIGURE 8 | (A,B) Sequences of solution strategies, time path on the x-axis. (A) Student 1 – Solution strategy sequence. (B) Student 2 – Solution strategy sequence.

In this respect, several minutes have gone by between
articulating the a-per-b solution strategy and articulating the
first multiplicative strategy. During these moments he tries to
reconcile the grid and the grid supplemented with numbers,
interpolated onto the problem space, with his existing strategies,
and as such largely shows a similar trajectory as the first
student, even though the problem situation in which they
draw their conclusions is rather dissimilar (i.e., blank screen
vs. grid supplemented with numbers). Moreover, with respect
to perceptual-sensorimotor coupling, for the second student,
while he focuses on the top of both bars extensively, he uses
his thumb to assist him in making the gaze triangle, and then

states the rule. For his entire solution strategy sequence, see
Figure 8B.

When looking at the solution strategy sequences of both
students, some differences and similarities come to the fore,
see Figures 8A,B. First thing to stress is that a higher point
in the graph does not necessarily mean better, as was already
discussed in the previous section. However, these graphs
do give insight in students’ transitions toward more correct
solution strategies, bearing greater mathematical sophistication,
and transitions from additive toward multiplicative solution
strategies. The first aspect that comes to the fore is that
both students mention a speeds solution strategy after a
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multiplicative solution strategy. Second, both sequences show
how the students transition from additive toward multiplicative
solution strategies. In this respect, Student 1 and Student
2 show long periods of additive a-per-b additive reasoning
before progressing toward multiplicative reasoning. Certain
transitions are illustrative for the entire sample as was showed
quantitatively in the previous section. Another important finding
(though not visible in the graphs of these two particular
students) is that many students “regressed” to lower solution
strategies after having first stated a multiplicative strategy. In this
respect, students were prone to explain their initial multiplicative
insights in additive terms before progressing toward multiplicative
reasoning.

Integrative Summary of the Findings
Qualitative and quantitative analysis of the video and eye-gaze
data corpus revealed the following patterns:

(1) All students gazed at areas on the screen where there were
no particular distinguishing perceptual stimuli per se, such
as half way along a vertical bar. Believing that these gaze
behaviors served the students in better enacting the task’s
goal motor-actions, we call these patterns “AAs.”

(2) Whereas individual students invented AAs spontaneously,
similar and even identical AAs recurred across the students.

(3) The AAs are related thematically to the mathematical
notions instantiated into the activity (top of the bars and
halfway along the tall bar can be considered mathematically
relevant areas in the touchscreen task).

(4) Within AAs, some Areas of Interest (AoIs) drew greater
gaze frequency and durations (see in Figure 4).

(5) Comparison across gaze patterns consisting of two AoIs
and three AoIs revealed that the most frequent AoI pair
was ambiguous with respect to solution insight but the
most frequent AoI triad was unambiguous with respect to
solution insight.

(6) Students each deployed a variety of solutions strategies.
(7) Transitions between solution strategies were non-random,

with strategies that were more correct or bearing greater
mathematical sophistication typically occurring after rather
than before strategies that were less correct or bearing lesser
mathematical sophistication. In particular, solutions tended
to progress from additive toward multiplicative rather than
vice versa. This would indicate that the touchscreen tablet
application for proportions is a means by which students
can progress through proportional stages essential for their
development of proportional reasoning.

(8) Fine-grained analysis of data from two students revealed
the emergence of a multiplicative gaze pattern followed
by improved bimanual motor action and then verbal
articulation of a successful solution strategy.

All in all, the results demonstrated that participant students’
action, perception, and conceptual understanding developed
hand-in-hand through purposeful interaction with a touchscreen
tablet application.

DISCUSSION AND CONCLUSION

The aim of the current study was to understand the micro-process
by which embodied interaction with a touchscreen application
for proportion may lead to mathematical reasoning. Analysis
of the eye-tracking and video data implicated the role of AAs
in mediating the coordination of action and perception toward
more advanced solution strategies. Two research questions
framed the data analyses:

(1) What quantitative evidence is there for the emergence of
AAs in terms of fixation count, fixation duration, and scan
paths?

(2) How does the transition from additive to multiplicative
reasoning take place when solving embodied proportions
tasks?

The Emergence of Attentional Anchors:
Inferences from Quantitative Data
The first question was answered by quantifying the eye-
gaze patterns that occurred when students interacted with the
touchscreen tablet application for proportions (MIT-Ext). These
eye-gaze patterns were contemporaneous with first enactments
of effective manipulation and prior to verbal articulations of
solution strategies. Analyzing these eye-gaze patterns resulted
in quantitative evidence of recurrent gaze patterns to screen
locations bearing non-salient stimuli or no stimuli at all
yet bearing invariant geometric relations to salient dynamical
features. As such these eye-gaze patterns apparently guided
the students throughout the problem-solving and reflection
process. In particular, the AAs are instrumental in passage from
task-inappropriate mathematical reasoning (incorrect additive
solution) to task-appropriate mathematical reasoning (correct
multiplicative solution).

Transitioning from Additive to
Multiplicative Reasoning: The Role of
Interaction
It was found that students more often showed a transition
from incorrect to correct solution strategies, that is, from
additive to multiplicative solution strategies, than vice versa. This
indicates that students showed progression toward qualitatively
more advanced proportional reasoning at the end of the
task than at the beginning of the task. This advancement
in reasoning coincided with better coordinated sensorimotor
manipulations of the two bars. Case studies illustrated how
the emergence of AAs and improved solution strategies
co-developed. The dynamics of action-perception-reasoning
observed in the current sample speaks for a coherent goal
oriented progress in which students use the limited resources
available in their working environment to acquire more abstract
knowledge in a progressive manner. The path that takes them
to reach the goal and to find the ‘rule’ is unique to their
experience, yet it shares the necessary building blocks (such as
common solution strategies, gaze patterns, etc.) for proportional
learning.
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These results have several implications, theoretical as well as
educational. First, we have presented one example of design-
based research in the domain of mathematics education. In
addition to the findings outlined here are the possibilities
that embodied-design touchscreen applications offer to the
education research in general. The current design together
with the multi-modal investigating methodology has shed
light on the problem at hand (proportional reasoning) from
so many different angles that would have remained in the
dark otherwise. Without using touchscreen designs it is not
possible to study the role of AAs in bimanual coordination.
Without the recording of eye-tracking and thinking-aloud
to capture students’ perceptual attention and proportional
reasoning we would not have found out about the existence
of AAs and their correlation with conceptual proportional
reasoning. As such, the current study is unique in the
sense that it simultaneously studied action, perception, and
reasoning and, in doing so, showed how the AA serves as
a cognitive pivot in students’ transitions from informal goal-
directed motions to more formal reasoning about a mathematical
idea. In this respect, the construction of AAs preceded the
participants’ articulation of effective manipulation strategies
using mathematical terminology. We thus offer first-ever,
triangulating empirical evidence in support of claims for the
efficacy of the MIT-tablet application. Moreover, based on
this study we can be more specific about what aspects of an
educational learning environment are crucial for a student’s
conceptual development and transfer of knowledge to the task at
hand.

Second, given the problems reported about students’ and
adults’ proportional reasoning, in particular the persistence
of reasoning additively rather than multiplicatively (Lamon,
2007), we find it promising that so many students move from
additive to more advanced multiplicative solution strategies
in a brief interview session. Within a relatively short period
of time the touchscreen tablet application gives students the
opportunity to struggle with the core conceptual challenge
of proportion, namely that the arithmetic relations among
the quantities in a proportional relation are multiplicative
instead of additive and that, therefore, the measured differences
among corresponding quantities are unequal. As such, the
findings of this study support previous research on proportional
reasoning. Since it is generally agreed upon that students
move from additive to multiplicative reasoning when learning
about proportions, we showed that when using an embodied
touchscreen application students follow the same developmental
course. In general, students in our sample showed additive
reasoning and by means of the application changed this to
multiplicative reasoning.

Limitations and Future Directions
The current study did not take differences in verbal ability
into account. Since the analyses used largely rely on students’
reasoning utterances, it could be that the verbally weak students
are at a disadvantage. In the current study we tried to overcome
this problem by (1) taking into account the time students spent
on the task, and (2) by not looking into total amounts of

utterances students had, but at the transitions between utterances.
In this respect, verbally weak students are not necessarily at a
disadvantage since we assume that every new insight is being
articulated (i.e., by means of the instruction strategy that we used
consistently within tasks and between students). Nevertheless,
future research could incorporate a measure of verbal ability
and use it as a covariate to control for any differences between
students. Another limitation of the current study is that we
only looked at the 1:2 proportion. One could argue that this
is a special kind of proportion in the sense that multiplication
and division are easily applied to it, and its properties can be
more easily visualized than say 2:3. As such, students’ progress
through this interactive learning environment may be specific
to tasks of finding simple proportions such as 1:2, and to the
affordances of this specific touchscreen application. Therefore,
transferability of coordination schemes to other proportions
needs to be investigated.

Furthermore, it would be valuable to investigate how
the occurrence of action-perception schemes relates to other
visualizations of the same mathematical domains, or other
mathematical domains. In this study we used vertical bars, but
we also intend to investigate how students solve tasks when
the objects they manipulate are two sides of a two-dimensional
shape such as a rectangle. It can be expected that new challenges
will emerge, because proportion would then be situated in a
multi-directional context, including horizontal as well as vertical
movements. As such, work is done on tasks with orthogonal
bars looking into the question how strategies students use differ
between parallel and orthogonal versions of the task(s). We
expect particular pedagogical pay-offs of different representations
and mathematical subdomains. Offering students a variation of
tasks in which a certain part of that task is being held constant
(i.e., the pre-set proportion), can be a powerful source for
learning (Runesson, 2006). We also recommend studying pairs
of students interacting on the same task. In this way, students
are encouraged to communicate about what they are doing
(Abrahamson et al., 2011). In this way, re-description (Karmiloff-
Smith, 1995) can be promoted and studied. Preliminary results
of this line of research are discussed by Abrahamson et al.
(2016).

Another important recommendation for future research is to
work with the current tasks in more realistic educational settings.
Since the touchscreen application is not designed to solely teach
about proportions, it is important to design tasks that can
support the properties of the application. Also, students worked
on the task for a relatively short period of time. How would
action and perception evolve when students have more time to
work with the touchscreen application? We also recommend to
broaden the scope of what is to be learned. The current study
focuses on research in the domain of proportional learning.
Further research is also recommended on other topics, also
beyond mathematics education (e.g., Nemirovsky et al., 1998;
Ferrara, 2014). Last, it seems plausible that sub-populations of
students benefit more from embodied design than others. It
seems worthwhile to study if students with learning disabilities
or problems with symbolic language may gain from embodied
experiences.
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CONCLUSION

The discovery of attentional anchors underlying students’
bimanual coordination bears important implications for
the design of educational technology. In particular, our
refined instrumentation for tracking and visualizing these
phenomenological chimera now enables us to reverse-engineer
interaction learning. We begin from a mathematical object
we wish students to develop, then we construe this object
as constituting an AA for some bimanual task, and finally
we implicate this task task’s motor-action goals. In a sense,
understanding AAs allow educational designers to undo the
enactivist evolution from action to perception to cognitive
structures, in the service of mathematics learning.

The interview protocol, which was prepared as a research
instrument for this study, predicates the experimenter’s clinical
interventions at various points along the facilitated activity
on the participant manifesting target behavioral criteria. One
of these behavior–intervention associations is of particular
interest to our research, namely our project to understand
micro-processes in guided sensorimotor mathematical inquiry
with touchscreen tablet applications. This behavior criterion is
students’ effective enactment of a target dynamical motor-action
coordination, namely they are moving their hands all the while
keeping invariant certain quantitative relations marked by the
hands’ momentary locations. As our empirical data demonstrate,
although these motor actions manifest multiplicative relations,
such as 1:2 ratio, when prompted to articulate their operational
strategy the students nevertheless resort to additive structuration.
That is, although the dynamical gestalt objectively instantiates
an intensive quantity, students explicate their actions in terms
of its constituent extensive quantities (specified increments along
spatial extensions, such as unitized intervals).

We propose to conceptualize students’ behaviors not as
unfortunate regressions but as fortunate opportunities. To
begin with, we are assuming that sensorimotor coordinations
can emerge as solutions to interaction problems before
these coordinations can be articulated logically or modeled
mathematically. In a sense, one could argue that the mainstay
of our naturalistic and cultural manual skills, such as walking,
throwing a stone, or using basic kitchen utensils, come about
with little to no conscious, structured reflection let alone
discourse. Moreover, we perceive the Mathematical Imagery
Trainer activities as creating conditions for students to reflect
in retrospect on solutions they have already demonstrated in
action. We thus reaffirm our earlier implication of the body as
the vanguard of mathematical reasoning (Abrahamson, 2014,
2015): We submit that embodied solutions to coordination
problems can exhibit quantitative relations that exceed the
individual’s current mathematical knowledge. We further submit

that educational technology for sensorimotor mathematical
grounding should therefore create conditions for students
to enact dynamical instantiations of concepts at the cusp
of their conceptual grasp. The teacher’s role is to optimize
students’ opportunities for conceptual grounding by challenging
and supporting them to explicate their manifest behaviors
mathematically. By asking them to coordinate complementary
visualizations of their own actions, students may ground
multiplicative dynamics in additive conceptions (Abrahamson
et al., 2014).

These are early days in our line of investigation. Whereas
we hesitate to make causal claims regarding the role of AAs
in successful learning with tablet applications, the strong
correlations among perception, action, performance, and
utterance surely point to promising lines of research, which
will hopefully result in creating heuristic design frameworks
for educational applications within the field of mathematics.
Such frameworks could be informed by ‘embodied design’
(Abrahamson, 2014). In particular, industry informed by
embodied design would seek to build touchscreen tablet
applications that create opportunities for students to solve
motor-action problems designed specifically so as to give rise
to targeted proto-conceptual AAs that in turn can assist in
reflective abstraction. In our experience the study of what are
productive movements and useful coordination schemes in
solving tasks that assist in mathematical reasoning is by no means
trivial. But with due care, research in this area could inform the
work of touchscreen developers building interactive educational
applications. In short, touchscreen applications have the potential
to be meeting places for action, perception, and cognition.
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