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ABSTRACT OF THE DISSERTATION

New Approaches to Joint Modeling of Longitudinal and Time-to-Event Outcomes: with

Applications to Dynamic Prediction of Health Outcomes Using Massive Biobank Data

by
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Doctor of Philosophy in Biostatistics
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Professor Gang Li, Chair

It is often of interest to study the temporal patterns of longitudinal biomarker(s) that are

potentially correlated and predictive of time-to-event outcomes in biomedical studies. In

this dissertation, I develop new approaches for joint modeling of longitudinal and time-to-

event data. My dissertation consists of three projects. In Chapter 2, I develop customized

linear scan algorithms to speed up the computation of semi-parametric joint models by lin-

earizing the computational burden of the estimation procedure from O(n2) or O(n3) to O(n).

Compared to the existing software and packages on semi-parametric joint models, our imple-

mentations can provide more than thousands of speed-ups when the sample size goes large.

In Chapter 3, motivated by the Multi-Ethnic Study of Atherosclerosis (MESA), I propose a

novel joint model to account for the heterogeneity of within-subject variability of a longitudi-

nal outcome and demonstrate that it improves the dynamic prediction accuracy of predicting

the future event probabilities of both heart failure and death across MESA individuals. In

Chapter 4, I extend the joint model described in Chapter 3 to handle interval-censored co-

variates as missing data due to the unknown initial event time. Using age at diagnosis of

ii



diabetes as an interval-censored covariate, we revisit the UK-Biobank data to illustrate that

our proposed joint model can yield clinically meaningful parameter estimates, compared to

the existing methods such as midpoint imputation, which can lead to problematic conclusion

on the effect of covariates on the outcomes.
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CHAPTER 1

Introduction

My dissertation consists of three projects: 1) efficient algorithms and implementation of a

semi-parametric joint model of longitudinal and competing risks time-to-event data; 2) a

joint model of the individual mean and within-subject variability of a longitudinal outcome

with a competing risks time-to-event outcome; 3) an efficient and unbiased estimator of

joint modeling in the presence of interval-censored covariates due to the unknown initial

event time. Below gives the introduction of the summary of the three projects.

1.1 Efficient algorithms and implementation of a semi-parametric

joint model of longitudinal and competing risks time-to-event

data

In project 1, we will study efficient algorithms and implementation of a semi-parametric joint

model of longitudinal and competing risks time-to-event data. In clinical research and other

longitudinal studies, it is common to collect both longitudinal and time-to-event data on each

participant, and these two endpoints are often correlated. Joint models of longitudinal and

survival data have been widely used to mitigate incorrect estimation and statistical inferences

associated with separate analysis of each endpoint [Elashoff et al., 2017, Rizopoulos, 2010].

For instance, in longitudinal data analysis, joint models are often used to handle nonignorable

missing data due to a terminal event, which cannot be properly accounted for by a standard

mixed effects model or generalized estimating equation (GEE) method that relies on the

1



ignorable missing-at-random or missing-completely-at-random assumption [Henderson et al.,

2000, Elashoff et al., 2008, Sattar and Sinha, 2019]. Joint models are also popularly employed

in survival analysis to study the effects of a time-dependent covariate that is measured

intermittently or subject to measurement error [Tsiatis and Davidian, 2004, Wang, 2006,

Song et al., 2002, Crowther et al., 2013], and for dynamic prediction of an event outcome

from the past history of a biomarker [Yu et al., 2008, Barrett and Su, 2017, Proust-Lima

et al., 2015, Rizopoulos, 2011, Garre et al., 2008]. Comprehensive reviews of joint models for

longitudinal and time-to-event data and their applications can be found in [Elashoff et al.,

2017, Rizopoulos, 2012b, Hickey et al., 2018], [Sudell et al., 2016] and the references therein.

Despite the explosive growth of literature on joint models for longitudinal and time-to-

event data during the past three decades, efficient implementation of joint models has lagged

behind, which limits the application of joint models to only small to moderate studies. Re-

cently, massive sample size data collected from electronic health records (EHR) and insur-

ance claim databases warrants great opportunities to conduct clinical studies in a real-world

setting. For example, the UK Biobank is a prospective cohort study with approximately

500,000 individuals, aged 37-73 years, from the general population between 2006 and 2010 in

the United Kingdom [Collins, 2012, Sudlow et al., 2015]. Aggregated and quality controlled

EHR data purchasable from Optum [https://www.optum.com/EHR] includes 80+ millions

patients with longitudinal lab measures. The Million Veteran Project [Gaziano et al., 2016],

and IBM MarketScan Database [Butler et al., 2021] are some of many other big biobank

databases that contain rich yet complex longitudinal and time-to-event data on 105 ∼ 108

patients. However, current implementations of many joint models are inefficient and not

scalable to the size of biobank data as demonstrated later in Sections 2.2 and 2.3. There is

a pressing need to develop efficient implementations of joint models to enable the analysis

of these rich data sources.

The purpose of this paper is to develop and implement efficient algorithms for a semi-

parametric joint model of longitudinal and competing risks time-to-event data. As specified

2



in Section 2.1.1, the joint model consists of a linear mixed effects sub-model for a longi-

tudinal outcome and a semiparametric proportional cause-specific hazards sub-model for

a competing risks survival outcome. These two sub-models are linked together by shared

random effects or features of an individual’s longitudinal biomarker trajectory. In Section

2.1, we identify key computational bottlenecks in the semiparametric maximum likelihood

inference procedure for the joint model. Specifically, we point out that in a standard im-

plementation, the computational complexities for numerical integration, risk set calculation,

and standard error estimation are of the order O(n2), O(n2), and O(n3), respectively, where

n is the number of subjects. Consequently, current implementation grinds to a halt as n

becomes large (for example, n > 104). We further develop tailored linear scan algorithms

to reduce the computational complexity to O(n) in each of the aforementioned components.

We illustrate by simulation and real-world data that the linearization algorithms can result

in a drastic speed-up by a factor of many thousands when n > 104, reducing the runtime

from days to minutes for big data. Finally, we have developed a user-friendly R package

FastJM to fit the shared parameter semiparametric joint model using the proposed efficient

algorithms and made it publicly available on the Comprehensive R Archive Network (CRAN)

at https://CRAN.R-project.org/package=FastJM.

The rest of the paper is organized as follows. Section 2.1.1 outlines the semiparamet-

ric shared random effect joint model framework and reviews a customized expectation-

maximization (EM) algorithm for semiparametric maximum likelihood estimation as well

as a standard error estimation method. Section 2.1.2 develops various linear scan algorithms

to address the key computational bottlenecks in the EM algorithm and standard error estima-

tion for large data. Section 2.2 presents simulation studies to illustrate the computational

efficiency of the proposed linear scan algorithms. Section 2.3 demonstrates the improved

computational performance of our FastJM R package over some established joint model R

packages on two moderate to large real-world data sets. Concluding remarks are provided

in Section 2.4.
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1.2 A joint model of the individual mean and within-subject vari-

ability of a longitudinal outcome with a competing risks time-

to-event outcome

In biomedical studies, it is often of interest to study the temporal patterns of longitudinal

biomarkers and their association with health outcomes. This paper studies a new joint model

of a longitudinal biomarker and a time-to-event outcome that takes into account of possible

heterogeneous within-subject (WS) variability of the longitudinal biomarker. Our research

is motivated by recent evidence that the WS visit-to-visit variations of some longitudinal

biomarkers for diabetes patients are strong risk factors for various health outcomes [Rothwell

et al., 2010, Zhou et al., 2018, Ceriello et al., 2019]. For example, using several clinical trials,

including UK Prospective Diabetes Study (UKPDS) [Group et al., 1998], Action to Control

Cardiovascular Risk in Diabetes (ACCORD) [Group, 2008, Zhou et al., 2018, Ismail-Beigi

et al., 2010], and Veterans Affairs Diabetes Trial (VADT) [Duckworth et al., 2009, Reaven

et al., 2019], several investigators have demonstrated that individual glycemic variability and

blood pressure variability were associated with the risk of cardiovascular diseases (CVD),

e.g., myocardial infarction or stroke [Zhou et al., 2018, Nuyujukian et al., 2021], heart failure

[Nuyujukian et al., 2020], nephropathy [Zhou et al., 2020, 2021], and retinopathy [Zhou

et al., 2021], independent of traditional glycemic and blood pressure control. These studies

typically used an ad hoc two-stage approach that first estimates the individual variability of a

longitudinal biomarker in the stage 1 analysis and then correlates the individual variability

from stage 1 with a time-to-event outcome in the stage 2 analysis. However, the ad hoc

two-stage approach has some obvious practical and theoretical drawbacks and limitations.

To illustrate, in a two-stage analysis, participants may be excluded if they have in-

sufficient repeated measures of a biomarker to generate reliable estimates of visit-to-visit

variability during the first stage. Second, the first stage analysis is unable to account for the

variability measures’ uncertainty caused by the uneven number of repeated measures across
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individuals. Additionally, the first stage analysis cannot adjust for time-varying effects, such

as medication, during variability estimation, leading to significant estimation bias and inac-

curate inference during the second stage’s risk assessment. Lastly, the second stage analysis

cannot perform dynamic prediction of event of interest relying on the underlying trajectory

of biomarker(s) as time-dependent covariates. As a result, there is a pressing need to de-

velop a comprehensive statistical framework that can simultaneously model the individual

mean and within-subject variability trends of a longitudinal biomarker, allowing for valid

statistical inference on their connections with a time-to-event outcome. Furthermore, this

framework should enable dynamic prediction of the event outcome based on the observed

biomarker history.

During the past three decades, joint modeling of longitudinal and time-to-event data has

been extensively studied in the statistical literature and has emerged as a versatile tool to

address many challenging issues in longitudinal and survival data analysis. For instance,

joint models have been used to handle non-ignorable missing data due to a terminal event

in longitudinal data analysis, model intermittently observed time-varying covariates and/or

measurement error in survival analysis, and make dynamic prediction of a time-to-event out-

come based on the observed trajectories of longitudinal biomarkers [Tsiatis and Davidian,

2004, Wu et al., 2012, Elashoff et al., 2016, Hickey et al., 2018, Papageorgiou et al., 2019,

Alsefri et al., 2020, Huang et al., 2011]. However, current statistical literature on joint models

of longitudinal and time-to-event data has mostly focused on modeling the mean attribute

of a longitudinal biomarker trajectory and its association with a time-to-event outcome and

typically assume homogeneous WS variability for the longitudinal biomarker. More recently,

there have been efforts to model a longitudinal biomarker while accounting for heterogeneous

WS variability [Hedeker et al., 2008, Dzubur et al., 2020, German et al., 2021, Parker et al.,

2021]. [Hedeker et al., 2008] introduced a mixed-effects location-scale model for the longitu-

dinal data, which allows both WS and between-subject (BS) variability to be modeled by

time-dependent covariates. [Dzubur et al., 2020] further extended the mixed-effects location-
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scale model to mixed-effects multiple location-scale models that allow for multiple random

effects in the mean component. [German et al., 2021] developed a robust and scalable es-

timation method to study the effects of both time-varying and time-invariant predictors on

WS variability. [Parker et al., 2021] proposed a joint modeling approach to associate both

mean trajectory and WS variability of systolic blood pressure with left ventricular mass in

early adulthood. However, these longitudinal models have some major limitations. They

rely on the stringent missing at random (MAR) assumption, which is often violated by non-

ignorable missing data due to a terminal event. Moreover, they are not formally linked to

an event outcome and thus cannot be readily used to study the association between a longi-

tudinal biomarker with an event outcome of interest. As mentioned above, joint modeling of

longitudinal and time-to-event outcomes can help to address these limitations. However, to

the best of our knowledge, joint models of longitudinal and survival outcomes in the presence

of heterogeneous WS variability have not yet been reported.

This paper aims to fill the above-mentioned gap in the statistical literature on joint

models. The newly developed joint models can capture distinct attributes in a longitudinal

biomarker’s mean andWS variability and link them to a time-to-event outcome. We illustrate

the utility of our method using data from the Multi-Ethnic Study of Atherosclerosis (MESA).

The new joint model consists of a linear mixed-effects multiple location scale submodel

for the mean and WS variability of a longitudinal biomarker and a semiparametric cause-

specific Cox proportional hazards submodel for a competing risks survival outcome. The

submodels are linked by shared random effects. We derive an expectation-maximization

(EM) algorithm for semiparametric maximum likelihood parameter estimation and adopt

a profile-likelihood approach for standard error estimation. We also develop an efficient

implementation of our procedure that scales to large-scale biobank data. To this end, we

point out that the EM algorithm and standard error estimation for our semiparametric joint

model will require O(n2) and O(n3) operations, respectively, when implemented naively

due to repetitive risk set calculations (see Supplementary Materials B.3). By developing
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customized linear scan algorithms for both the EM algorithm and standard error estimation,

we reduce the computational complexity to O(n) and thus make the implementation scalable

to massive sample size data with tens of thousands to millions of subjects. Furthermore,

our empirical results show that in the presence of heterogeneous WS variability, a classical

joint model with homogeneous WS variability can lead to biased estimation and invalid

inference, which can be remedied by our proposed joint model (see Table 3.1). Finally, we

have developed a user-friendly R package JMH for the proposed methodology and made it

publicly available at https://github.com/shanpengli/JMH.

1.3 A joint model of longitudinal and interval-censored post-diagnosis

time to event data in the presence of interval-censored covari-

ates due to the unknown diagnosis time: with application to

UK-Biobank data

Interval-censored data arise frequently in biomedical studies when the event is known only to

occur within a certain time interval. For example, diagnosis of a disease such as diabetes is

usually performed at clinical visits and the onset of the disease is only known to fall between

two consecutive visits.

The fact that the event time is not directly observed imposes theoretical and computa-

tional challenges on semiparametric regression in survival analysis. In the recent decades,

there is an extensive literature on modeling and analyzing interval-censored event time data,

see [Huang and Wellner, 1997, Sun, 2006, Zhang and Zhao, 2013, Zeng et al., 2016, Wang

et al., 2016, Gómez et al., 2009, Sun et al., 2013], among others. For example, Goetghebeur

and Ryan [2000] proposed a semiparametric approach to the proportional hazards regression

analysis based on the Turnbull algorithm [Turnbull, 1976], which has been used to deter-

mine times at which the discrete hazard can take positive mass. Zeng et al. [2016] proposed
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a broad class of semiparametric transformation models to account for the effects of possi-

bly time-dependent covariates and showed that the estimated coefficients are consistent and

asymptotically efficient.

Instead of interval censored event time, interval censored covariate can also occur in

many applications. Langohr and Melis [2014] created a discrete support with corresponding

probability masses for the interval-censored covariate. In this paper, a likelihood approach

[Gómez et al., 2003], referred to as the Gómez, Espinal, and Lagakos (GEL) approach, was

introduced to jointly estimate the regression coefficients for modeling a continuous response

variable as well as the marginal distribution of the interval-censored covariate. Morrison et al.

[2021] proposed a joint modeling approach to model the distribution of HIV seroconversion

dates (interval-censored) without covariates directly and then derive the distribution of infec-

tion durations (longitudinal outcome). In this paper, they conducted numerous simulation

studies to compare with the existing approaches such as midpoint imputation, uniform impu-

tation, and the GEL approach [Gómez et al., 2003], and demonstrated that their method can

produce less bias. Ahn et al. [2018] proposed a available-data, doubly robust, and maximum

likelihood estimator to model the primary event of interest, in which an interval-censored

secondary event is included as a covariate characterized by Cox proportional hazards model

for interval-censored data.

During the past three decades, joint modeling of longitudinal and time-to-event data has

been extensively studied in the statistical literature and has emerged as a versatile tool to

address many challenging issues in longitudinal and survival data analysis. For instance,

joint models have been used to handle non-ignorable missing data due to a terminal event

in longitudinal data analysis, model intermittently observed time-varying covariates and/or

measurement error in survival analysis, and make dynamic prediction of a time-to-event

outcome based on the observed trajectories of longitudinal biomarkers [Tsiatis and Davidian,

2004, Wu et al., 2012, Elashoff et al., 2016, Hickey et al., 2018, Papageorgiou et al., 2019,

Alsefri et al., 2020, Huang et al., 2011]. Separate analyses or two-stage modeling of both

8



outcomes can yield biased results and invalid inference. Despite the aforementioned efforts

on modeling longitudinal or survival outcomes together with interval-censored covariates

[Gómez et al., 2003, Morrison et al., 2021, Gómez et al., 2003, Ahn et al., 2018], none

of these works exist under the joint modeling framework. Methodological development of

joint modeling of longitudinal and time-to-event data in the presence of interval-censored

covariates due to the unknown diagnosis time has not yet been studied.

The purpose of this paper is to fill the aforementioned gap in the statistical literature

on joint models. The newly developed joint model can handle interval-censored covariates

that appear in both longitudinal and survival sub-models, and we will demonstrate our es-

timation procedure can yield efficient and unbiased estimates in our simulation studies. We

illustrate the utility of our proposed model using data from UK-Biobank. The new joint

model consists of a linear mixed-effects multiple location scale submodel for the mean and

WS variability of a longitudinal biomarker and a semiparametric Cox proportional hazards

submodel together with interval-censored covariates. The submodels are linked by shared

random effects. We derive an expectation-maximization (EM) algorithm for semiparametric

maximum likelihood parameter estimation and adopt a profile-likelihood approach for stan-

dard error estimation. We also develop an efficient implementation of our procedure that

scales to large-scale biobank data.

The rest of the paper is organized as follows. Section 4.1 describes the semiparametric

shared random effects joint model framework and derives an efficient, customized EM algo-

rithm for semiparametric maximum likelihood estimation and a standard error estimation

method. Section 4.2 evaluates the empirical performance of the proposed joint model in

contrast to existing imputation methods via simulation studies. In Section 4.3, we apply our

developed method to the UK-Biobank data. Concluding remarks and further discussion are

given in Section 4.4.
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CHAPTER 2

Efficient algorithms and implementation of a

semi-parametric joint model of longitudinal and

competing risks time-to-event data with applications

to massive biobank data

In this chapter, we identify and address the key computational issues on semi-parametric

joint modeling of longitudinal and competing risks time-to-event data. We develop efficient

algorithms and implementation of a semi-parametric joint model to reduce the computational

complexity from O(n2) or O(n3) to O(n). We perform simulations to compare estimation

accuracy and precision between different implementations and compare the model perfor-

mance between our model and other R packages on two real data applications. Below we

will discuss the details.

2.1 Efficient algorithms for a semi-parametric joint model of lon-

gitudinal and competing risks data

2.1.1 Notations and preliminaries

Let Yi(t) be the longitudinal outcome at time t for subject i, i = 1, 2, ..., n, and n is the total

number of subjects. Suppose the longitudinal outcome Yi(t) is observed at time points tij,

j = 1, 2, ..., ni, and denote Yi = (Yi1, ..., Yini
). Let Ci = (Ti, Di) be the competing risks data
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on subject i, where Ti is the observed time to either failure or censoring, and Di takes value

in {0, 1, 2, . . . , K}, with Di = 0 indicating a censored event and Di = k implying the kth

type of failure is observed on subject i, k = 1, 2, ..., K. The censoring mechanism is assumed

to be independent of the failure time.

2.1.1.1 Model

Consider the following joint model in which the longitudinal outcome Yi(t) is characterized

by a linear mixed effects model:

Yi(t) = mi(t) + ϵi(t),

= X
(1)
i (t)Tβ + X̃i

(1)
(t)T bi + ϵi(t), (2.1)

and the competing risks survival outcome is modeled by a proportional cause-specific hazards

model:

λk(t | X(2)
i , bi, γk, νk) = lim

h→0

P (t ≤ Ti < t+ h,Di = k | Ti ≥ t,X
(2)
i , bi)

h

= λ0k(t) exp{X(2)T
i γk + νTk bi}, k = 1, . . . , K.

(2.2)

In the longitudinal sub-model (2.1), mi(t) is the mean of the longitudinal outcome at time

t, X
(1)
i (t) and X̃i

(1)
(t) are column vectors of possibly time-varying covariates associated

with the longitudinal outcome Yi(t), β represents a p × 1 vector of fixed effects of X
(1)
i (t),

bi ∼ Nq(0,Σ) denotes a q × 1 vector of random effects for X̃i
(1)
(t), ϵi(t) ∼ N(0, σ2) is the

measurement error independent of bi, and ϵi(t1) is independent of ϵi(t2) for any t1 ̸= t2. In

the competing risks survival sub-model (2.2), λk(t | X(2)
i , bi, γk, νk) is the conditional cause-

specific hazard rate for type k failure at time t, given time-invariant covariates X
(2)
i and

the shared random effects bi, and λ0k(t) is a completely unspecified baseline cause-specific

hazard function for type k failure. The two sub-models are linked together by the shared

random effects bi and the strength of association is quantified by the association parameters

ν1, ..., νK .
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2.1.1.2 Semiparametric maximum likelihood estimation via an EM algorithm

Let Ψ = {β, σ2, γ, ν,Σ, λ01(·), ..., λ0K(·)} denote all unknown parameters for the joint model

(2.1) and (2.2), where γ = (γT1 , ..., γ
T
K)

T and ν = (νT1 , ..., ν
T
K)

T . Let I(Di = k) be the

competing event indicator for type k failure, which takes the value 1 if the condition Di = k

is satisfied, and 0 otherwise. The observed-data likelihood for Ψ is then given by

L(Ψ;Y,C) ∝
n∏

i=1

f(Yi, Ci | Ψ)

=
n∏

i=1

∫
bi

f(Yi | Ci, bi,Ψ)f(Ci | bi,Ψ)f(bi | Ψ)dbi

∝
n∏

i=1

∫
bi

ni∏
j=1

1√
2πσ2

exp

[
− 1

2σ2

{
Yij −X

(1)
i (tij)

Tβ − X̃i
(1)
(tij)

T bi

}2
]

×

{
K∏
k=1

λk(t | X(2)
i , bi, γk, νk)

I(Di=k)

}
exp

[
−
∫ Ti

0

{
K∑
k=1

λk(t | X(2)
i , bi, γk, νk)

}
dt

]
× 1√

(2π)q|Σ|
exp(−1

2
bTi Σ

−1bi)dbi,

which follows from the assumption that Yi and Ci are independent conditional on the co-

variates and the random effects.

Because Ψ involves K unknown hazard functions, finding its maximum likelihood esti-

mate by maximizing the above observed-data likelihood is nontrivial. However, a customized

EM algorithm can be derived to compute the maximum likelihood estimate of Ψ by regard-

ing the latent random effects bi as missing data [Elashoff et al., 2008]. The complete-data

likelihood based on (Y,C, b) is

L(Ψ;Y,C, b) ∝
n∏

i=1

ni∏
j=1

1√
2πσ2

exp

[
− 1

2σ2

{
Yij −X

(1)
i (tij)

Tβ − X̃i
(1)
(tij)

T bi

}2
]

×
K∏
k=1

{
∆Λ0k(Ti) exp(X

(2)T
i γk + νTk bi)

}I(Di=k)

× exp

{
−

K∑
k=1

Λ0k(Ti) exp(X
(2)T
i γk + νTk bi)

}
× 1√

(2π)q|Σ|
exp(−1

2
bTi Σ

−1bi),
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where Λ0k(.) is the cumulative baseline hazards function for type k failure and ∆Λ0k(Ti) =

Λ0k(Ti)− Λ0k(Ti−).

The EM algorithm iterates between an expectation step (E-step):

Q(Ψ;Ψ(m)) ≡ E
(m)

b|Y,C,Ψ(m) {logL(Ψ;Y,C, b)} , (2.3)

and a maximization step (M-step):

Ψ(m+1) = argmax
Ψ

Q(Ψ;Ψ(m)), (2.4)

until the algorithm converges, where Ψ(m) is the estimate of Ψ from the m-th iteration. The

E-step (2.3) involves calculating the following expected values across all subjects: E(m)(bi),

E(m)(bib
T
i ), E

(m){exp(νkbi)}, E(m){bi exp(νkbi)}, and E(m){bibTi exp(νkbi)}, where

E(m){h(bi)} =

∫
h(bi)f(bi|Yi, Ci,Ψ

(m)) dbi (2.5)

for any function h(·). Furthermore, it can be shown that the M-step (2.4) has closed-form

solutions for the parameters β, σ2, Σ, and Λ0k(t) and that the other parameters γ and ν can

be updated using the one-step Newton-Raphson method. Details are provided in equations

(A.1)-(A.8) of the supplementary materials.

2.1.1.3 Standard error estimation

As discussed in Elashoff et al. [2016] (Section 4.1, p.72), standard errors of the paramet-

ric components of the semiparametric maximum likelihood estimate can be estimated by

profiled likelihood, observed information matrix, or bootstrap. All three methods can be

computationally intensive when n is large. Here we focus on the profiled likelihood-based

method and show that its computation can be linearized with respect to n.

Let Ω = (β,Σ, σ2, γ1, ..., γK , ν1, ..., νK) denote the parametric component of Ψ and Ω̂

its maximum likelihood estimate. The variance-covariance matrix of Ω̂ can be estimated

by inverting the following approximate empirical Fisher information [Lin et al., 2004, Zeng
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et al., 2005, Zeng and Cai, 2005]:

n∑
i=1

∇Ωl
(i)(Ω̂;Y,C)∇Ωl

(i)(Ω̂;Y,C)T , (2.6)

where ∇Ωl
(i)(Ω;Y,C) is the observed score vector from the profiled likelihood l(i)(Ω;Y,C) of

Ω on the ith subject by profiling out the baseline hazards. Details of the observed score vector

for each parametric component are provided in equations (A.9)-(A.13) of the supplementary

materials.

2.1.2 Efficient algorithms and implementation of the EM algorithm and stan-

dard error estimation

With naive implementation, multiple quantities in the above E-step, M-step, and standard

error estimation will involve O(n2) or O(n3) operations, which become computationally pro-

hibitive at large sample size n. Below we identify these bottlenecks and discuss appropriate

linear scan algorithms to reduce their computational complexities to O(n).

2.1.2.1 Efficient implementation of the E-step

At each EM iteration, the E-step (2.3) requires calculating integrals (2.5) across all subjects.

Below we discuss how to accelerate two commonly used numerical integration methods for

evaluating these integrals.

Standard Gauss-Hermite quadrature rule for numerical integration A commonly

used method for numerical evaluation of integral (2.5) is based on the standard Gauss-

Hermite quadrature rule [Press et al., 2007]:

E(m){h(bi)} =

∫
h(bi)f(Yi, Ci, bi | Ψ(m))dbi

f(Yi, Ci | Ψ(m))

=

∫
h(bi)f(Yi, Ci | bi,Ψ(m))f(bi | Ψ(m))dbi∫
f(Yi, Ci | bi,Ψ(m))f(bi | Ψ(m))dbi
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≈
∑

t1,t2,...,tq
πth(b̃

(m)
t )f(Yi, Ci | b̃(m)

t ,Ψ(m))f(b̃
(m)
t | Ψ(m)) exp(||ct||2)∑

t1,t2,...,tq
πtf(Yi, Ci | b̃(m)

t ,Ψ(m))f(b̃
(m)
t | Ψ(m)) exp(||ct||2)

,(2.7)

where

f(Yi, Ci | b̃(m)
t ,Ψ(m)) = f(Yi | b̃(m)

t ,Ψ(m)
y )× f(Ci | b̃(m)

t ,Ψ(m)
c )

=

ni∏
j=1

1√
2πσ2(m)

exp

[
− 1

2σ2(m)

{
Yij −X

(1)
i (tij)

Tβ(m) − X̃i
(1)
(tij)

T b̃
(m)
t

}2
]

×
K∏
k=1

{
∆Λ

(m)
0k (Ti) exp(X

(2)T
i γ

(m)
k + ν

T (m)
k b̃

(m)
t )

}I(Di=k)

× exp

{
−

K∑
k=1

Λ
(m)
0k (Ti) exp(X

(2)T
i γ

(m)
k + ν

T (m)
k b̃

(m)
t )

}
, (2.8)

with Λ
(m)
0k (.) the right-continuous and non-decreasing cumulative baseline hazard function

for type k failure at the m-th EM iteration as defined in Section A.1 (equation (A.4)) of

the supplementary material and ∆Λ
(m)
0k (Ti) the jump size of Λ

(m)
0k (.) at Ti, q the dimension

of the random effects vector,
∑

t1,t2,...,tq
the shorthand for

∑nq

t1=1 ...
∑nq

tq=1, nq the number of

quadrature points, ct = (ct1 , ct2 , ..., ctq)
T the abscissas with corresponding weights πt, b̃

(m)
t =

√
2Σ̂(m)1/2ct the re-scaled alternative abscissas, and Σ̂(m)1/2 the square root of Σ̂(m) [Elashoff

et al., 2008]. However, this method is computationally intensive due to multiple factors.

First, it usually requires many quadrature points to approximate an integral with sufficient

accuracy because the mode of the integrand is often located in a region different from zero.

Second, the computational cost increases exponentially with q because the Cartesian product

of the abscissas is used to evaluate the integrand with respect to each random effect. Lastly,

the alternative abscissas b̃t
(m)

need to be re-calculated at every EM iteration.

Pseudo-adaptive Gauss-Hermite quadrature rule for numerical integration When

the number of longitudinal measurements per subject is relatively large, [Rizopoulos, 2012a]

introduced a pseudo-adaptive Gauss-Hermite quadrature rule for numerical approximation

of integral (2.5), which achieves good approximation accuracy with only a small number

(nq) of quadrature points and is thus computationally more efficient. The pseudo-adaptive
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Gauss-Hermite quadrature rule proceeds as follows. First, fit the linear mixed effects model

(2.1) to extract the empirical Bayes estimates of the random effects and its covariance matrix

H̃i
−1
:

b̃i = Σ̂X̃i
(1)
V̂i

−1
{
Yi −X

(1)T
i β̂

}
, (2.9)

H̃−1
i = Σ̂− Σ̂X̃i

(1)

V̂i−1
− V̂i

−1
X

(1)T
i

{
n∑

i=1

X
(1)
i V̂i

−1
X

(1)T
i

}−1

X
(1)
i V̂i

−1


×X̃i

(1)T
Σ̂, (2.10)

whereX
(1)
i = (X

(1)
i (ti1), ..., X

(1)
i (tini

)), X̃i
(1)

= (X̃i
(1)
(ti1), ..., X̃i

(1)
(tini

)), and Vi = X̃i
(1)T

ΣX̃i
(1)

+σ2I. Then, define the alternative abscissas r̃t = b̃i+
√
2H̃

−1/2
i ct and approximate E(m){h(bi)}

by

E(m){h(bi)} ≈
∑

t1,t2,...,tq
πth(r̃t)f(Yi, Ci | r̃t,Ψ(m))f(r̃t | Ψ(m)) exp{||ct||2}∑

t1,t2,...,tq
πtf(Yi, Ci | r̃t,Ψ(m))f(r̃t | Ψ(m)) exp{||ct||2}

, (2.11)

where

f(Yi, Ci | r̃t,Ψ(m)) = f(Yi | r̃t,Ψ(m)
y )× f(Ci | r̃t,Ψ(m)

c )

=

ni∏
j=1

1√
2πσ2(m)

exp

[
− 1

2σ2(m)

{
Yij −X

(1)
i (tij)

Tβ(m) − X̃i
(1)
(tij)

T r̃t

}2
]

×
K∏
k=1

{
∆Λ

(m)
0k (Ti) exp(X

(2)T
i γ

(m)
k + ν

(m)T
k r̃t)

}I(Di=k)

× exp

{
−

K∑
k=1

Λ
(m)
0k (Ti) exp{X(2)T

i γ
(m)
k + ν

(m)T
k r̃t}

}
, (2.12)

with the notations defined similarly to equation (2.8).

The pseudo-adaptive Gauss-Hermite quadrature rule is computationally appealing be-

cause the alternate re-scaled quadrature points r̃t are computed only once before the EM

algorithm and do not need to be updated in the EM algorithm. Additionally, the pseudo-

adaptive Gauss-Hermite quadrature rule requires fewer quadrature points than the standard

Gauss-Hermite quadrature rule to achieve the same numerical approximation accuracy [Ri-

zopoulos, 2012a]. For example, our simulation results in the supplementary materials (Sec-

tion A.3, Table A.1) illustrate that the pseudo-adaptive Gauss-Hermite quadrature rule with
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nq = 6 quadrature points produces almost identical results to the standard Gauss-Hermite

quadrature rule with nq = 20 quadrature points.

Remark 1. (Linear calculation of H̃−1
i ’s across all subjects) At the first sight, calculating

H̃−1
i (2.10) across all subjects would involve O(n2) operations since each H̃−1

i involves a

summation over n subjects. However, because the same quantity
∑n

i=1 X
(1)
i V̂ −1

i X
(1)T
i appears

in every H̃−1
i , one can pre-compute this quantity and then use the cached value to calculate

H̃−1
i across all subjects. This way, one can compute the H̃−1

i ’s across all subjects in O(n)

operations. Our simulation study in the supplementary material (Section A.4, Figure A.1)

shows that applying this simple linearization algorithm can yield a speed-up by a factor of 10

to 10,000 when n grows from 10 to 105. Our implementation is also significantly faster than

a popular R package lme4 [Bates et al., 2007] with over a speed-up by a factor of 10 to 500

as n grows from 10 to 105.

Linear scan algorithm for calculating f(Yi, Ci | r̃t,Ψ(m)) across all subjects Both

the standard Gauss-Hermite quadrature rule (2.7) and the pseudo-adaptive Gauss-Hermite

quadrature rule (2.11) require evaluating f(Yi, Ci | bi,Ψ(m)) at their pre-specified abscissas

across all subjects (See equations (2.8) and (2.12)). Hence, calculating f(Yi, Ci | r̃t,Ψ(m))

requires evaluation of Λ
(m)
0k (Ti) across all subjects for each k. We observe from equation (A.4)

that for each k, {Λ(m)
0k (tk1), . . . ,Λ

(m)
0k (tkqk)} have already been calculated from the m-th EM

iteration, where tk1 > · · · > tkqk are qk distinct observed type k event times. For each i,

calculating Λ
(m)
0k (Ti) would involve O(n) operations if a global search is performed to find

the interval of two adjacent type k event times containing Ti. Consequently, calculating

{Λ(m)
0k (T1), . . . ,Λ

(m)
0k (Tn)} would require O(n2) operations. However, by taking advantage

of the fact that Λ
(m)
0k (t) is a right-continuous and non-decreasing step function, one can

obtain {Λ(m)
0k (T1), . . . ,Λ

(m)
0k (Tn)} from {Λ(m)

0k (tk1), . . . ,Λ
(m)
0k (tkqk)} in O(n) operations using

the following linear scan algorithm. First, sort the observation times Ti, i = 1, . . . , n, in
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descending order. Denote by (i) the ranked index of a subject. Then, define a mapping

{Λ(m)
0k (tk1),Λ

(m)
0k (tk2), . . .Λ

(m)
0k (tkqk)} 7→ {Λ(m)

0k (T(1)),Λ
(m)
0k (T(2)), . . . ,Λ

(m)
0k (T(n))}, (2.13)

where tk1, . . . , tkqk are scanned forward from the largest to the smallest, and for each tkj,

only a subset of the ranked observation times T(i) are scanned forward to calculate Λ
(m)
0k (T(i))

as follows

Λ
(m)
0k (T(i)) =


Λ

(m)
0k (tk1), if T(i) ≥ tk1,

Λ
(m)
0k (tk(j+1)), if T(i) ∈ [tk(j+1), tkj), for some j ∈ {1, . . . , qk − 1},

0, T(i) < tkqk .

Specifically, start with tk1 and scan through the first set of observation times T(1) ≥ ... ≥ T(ik1)

where T(ik1) ≥ tk1 > T(ik1+1), and the corresponding Λ0k(T(i))’s take the value Λ0k(tk1).

Next, move forward to tk2 and scan through the second set T(ik1+1) ≥ ... ≥ T(ik2), where

T(ik2) ≥ tk2 > T(ik2)+1, and the corresponding Λ0k(T(i))’s take the value evaluated at Λ0k(tk2).

Repeat the same process until T(n) is scanned. Because the scanned T(i)’s for different tkj’s

do not overlap, the entire algorithm costs only O(n) operations.

2.1.2.2 Linear risk set scan for the M-step

In the M-step, multiple quantities in equations, (A.4)-(A.8) such as the cumulative baseline

hazard functions, and the Hessian matrix and score vector for γk and νk (k = 1, 2, . . . , K),

involve aggregating information over the risk set R(tkj) = {r : Tr ≥ tkj} at each uncensored

event time tkj. These quantities are further aggregated across all tkj’s. If all subjects are

scanned to determine the risk set R(tkj) at each tkj, then aggregating information over the

risk set for all uncensored event times would obviously require O(n2) operations. Below

we explain how to linearize the number of operations for risk set calculations across all

uncensored event times by taking advantage of the fact that the risk set is decreasing over

time for right censored data.
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First, to calculate Λ
(m+1)
0k (tkj), j = 1, . . . , qk, one needs to compute

∑
r∈R(tkj)

exp(X
(2)T
r γ

(m)
k )

E
{
exp(ν

(m)
k br)

}
, j = 1, . . . , qk. Because the distinct uncensored event times tk1 > · · · > tkqk

are arranged in decreasing order, the risk set R(tk(j+1)) can be decomposed into two disjoint

sets: R(tk(j+1)) = R(tkj) ∪ {r : T(r) ∈ [tk(j+1), tkj)}, and consequently,∑
r∈R(tk(j+1))

ar =
∑

r∈R(tkj)

ar +
∑

{r:T(r)∈[tk(j+1),tkj)}

ar, (2.14)

for any sequence of real numbers a1, . . . , an. It follows from the recursive formula (2.14) and

the fact that the subjects in R(tkj) do not need to be scanned to calculate the second term

of (2.14), one can calculate
∑

r∈R(tkj)
ar, j = 1, . . . qk, in O(n) operations when T(r)’s are

scanned backward in time.

Next, to calculate the Hessian matrix I
(m)
γk for γk in (A.5), we first rewrite it as

I(m)
γk

=

qk∑
j=1

∆Λ0k(tkj)
(m+1)

∑
r∈R(tkj)

exp(X(2)T
r γ

(m)
k )E

{
exp(ν

(m)T
k br)

}
X(2)

r X(2)T
r

 ,
which allows one to linearize its calculation based on (2.14) with ar = ∆Λ0k(tkj)

(m+1) exp(X
(2)T
r γ

(m)
k )

E
{
exp(ν

(m)T
k br)

}
X

(2)
r X

(2)T
r similar to the linear scan algorithm for Λ

(m+1)
0k (tkj)’s.

Finally, the above linear risk set scan algorithm can be adapted to calculate the Hessian

matrix and score vector for γk and νk in equations (A.6)-(A.8) in O(n) operations in a similar

fashion.

2.1.2.3 Linear scan algorithm for standard error estimation

The standard error estimation formula in (2.6) relies on the observed score vector from the

profiled likelihood where the baseline hazard is profiled out. However, for each subject i, two

components of the score vector, ∇γk l
(i)(Ω̂;Y,C) and ∇νk l

(i)(Ω̂;Y,C) as given in equations

(A.12) and (A.13), involve aggregating information either over {r ∈ R(Ti)} or over both

{r ∈ R(tkj)} and {j : tkj ≤ Ti}. If implemented naively, the aggregation can take either

O(n) or O(n2) operations, respectively. As a result, the observed information matrix can
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take O(n3) operation as it requires summing up the information across all subjects. Below

we describe a sequential linear scan algorithm to reduce the computational complexity from

O(n3) to O(n).

Our algorithm can be easily explained by considering the calculation of the following

expression in the second term of ∇γk l
(i)(Ω̂;Y,C) in (A.12):

∑
j:tkj≤Ti

dkj
∑

r∈R(tkj)
exp(γTkX

(2)
r )E

{
exp(νTk br)

}
X

(2)
r[∑

r∈R(tkj)
exp(γTkX

(2)
r )E {exp(νTk br)}

]2 , for i = 1, ..., n.

In other words, we need to compute B(Ti) for i = 1, . . . , n, where B(t) ≡
∑

j:tkj≤t bkj and

bkj =
dkj
∑

r∈R(tkj)
exp(γTkX

(2)
r )E

{
exp(νTk br)

}
X

(2)
r[∑

r∈R(tkj)
exp(γTkX

(2)
r )E {exp(νTk br)}

]2 .

Before going further, we recall that the distinct uncensored event times tk1 > · · · > tkqk are

in descending order and that the subjects are sorted so that the observation times Ti’s are

in descending order.

First of all, because the risk set is decreasing over time for right censored data, it fol-

lows from equation (2.14) that B(tk1), . . . , B(tkqk) can be computed in O(n) operations as

one scans through tk1, . . . , tkqk backward in time. Second, analogous to (2.13), the fol-

lowing linear scan algorithm can be used to calculate {B(T(1)), B(T(2)), · · · , B(T(n))} from

{B(tk1), . . . , B(tkqk)}:

{B(tk1), . . . , B(tkqk)} 7→ {B(T(1)), B(T(2)), · · · , B(T(n))},

where tk1, . . . , tkqk are scanned forward from the largest to the smallest, and for each tkj, only

a subset of the ranked observation times T(i)’s are scanned forward to calculate B(T(i))’s as

follows

B(T(i)) =


B(tk1), if T(i) ≥ tk1,

B(tk(j+1)), if T(i) ∈ [tk(j+1), tkj), for some j ∈ {1, . . . , qk − 1},

0, otherwise.
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The details are essentially the same as those discussed following equation (2.13), and thus

omitted here.

2.2 Simulation studies

We present a simulation study to illustrate the computational speed-up rendered by the

proposed linear algorithms as the sample size n grows from 100 to 1,000,000. All simulations

were run on a MacBook Pro with 6-Core Intel Core i7 processor (2.6GHz) and 16 GB RAM

running MacOS.

We generated longitudinal measurements Yij from

Yij = β0 + β1tij + β2X2i + b0i + b1itij + ϵij (2.15)

which corresponds to model (2.1) with X
(1)
i (tij)

T = (1, tij, X2i) and X̃i
(1)
(tij)

T = (1, tij), and

competing risks event times from a proportional cause-specific hazards model

λ1(t;X1i, X2i, bi, γ1, ν1) = λ01(t) exp{γ11X1i + γ12X2i + νT1 bi} (2.16)

λ2(t;X1i, X2i, bi, γ2, ν2) = λ02(t) exp{γ21X1i + γ22X2i + νT2 bi}, (2.17)

where the two sub-models (2.15), (2.16), and (2.17) are linked together through the shared

random effects bi = (b0i, b1i)
T . In the above joint model, tij = 0, 1, ... represent scheduled visit

times, X1i follows N(2, 1.0), X2i ∼ Bernoulli(0.5) is a binary covariate, the random effects

bi = (b0i, b1i)
T follows a N2(0,Σ) distribution with Σ11 = 0.5,Σ22 = 0.25, and Σ12 = 0, the

measurement errors ϵij are iid N(0, 0.5) and independent of bi, and the baseline hazards

λ01(t) and λ01(t) are constants 0.05 and 0.1, respectively. We simulated noninformative

censoring time Vi following exp(20) and let Ti = min{T ∗
i1, T

∗
i2, Vi} be the observed time

(possibly censored) for subject i. The longitudinal measurements for subject i at tij are

assumed missing after Ti.

We first compared the runtime between three different implementations of the EM algo-

rithm for fitting the joint model (2.1) and (2.2) as described in Section 2.1.2:
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1. Method 1: Standard implementation of the EM algorithm using the standard Gauss-

Hermite quadrature rule in the E-step (equation (2.7) with nq = 20) without any linear

computation;

2. Method 2: Standard implementation of the EM algorithm using the pseudo-adaptive

quadrature rule in the E-step (equation (2.11) with nq = 6) with the linear calculation

of H̃−1
i ’s described in Remark 1 and without any other linear computation;

3. Method 3: Method 2 + linear scan for calculating f(Yi, Ci | r̃t,Ψ(m))’s + linear risk

set scan for M-step as described in Section 2.1.2;

where the number of quadrature points nq for methods 1 and 2 were determined by first trying

different values, {10, 20, 30} for method 1 and {6, 9, 12, 15} for method 2, and then choosing

the smallest value for which the estimation results are stabilized and similar between the two

implementation methods. For comparison purposes, we have also included the runtime of an

established joint model R package joineR, which uses a similar EM algorithm for parameter

estimation to fit a semiparametric joint model with a slightly different latent association

structure in the competing risks sub-model [Philipson et al., 2018]. The results are depicted

in Figure 2.1.

It is seen from Figure 2.1a that the runtime of method 3 increases linearly with the

sample size, while the runtime of the other three methods grows exponentially. For moderate

sample size, method 2 is computationally more efficient than method 1 because it requires

fewer quadrature points for numerical integration. However, its computational advantage

diminishes as the sample size increases due to the exponentially increasing computational

cost of f(Yi, Ci | r̃t,Ψ(m))’s and risk set calculation in the M-step. By further linearizing the

computation of these key components, method 3 has yielded more than 100-fold speed-up

over method 2 when n = 105, and the speed-up is expected to increase exponentially as n

increases (Figure 2.1b). Furthermore, method 3 has demonstrated more than 30-fold speed-

up over joineR when n = 104. We also note that joineR failed to run when n = 105 due to
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Figure 2.1: Runtime (seconds) comparison between three different implementations of the

EM algorithm for fitting the joint model (2.1) and (2.2) and the joineR package. The details

of Methods 1-3 are given in Section 2.2. joineR is an established R package which fits a

similar semiparametric joint model with a slightly different latent association structure in

the competing risks sub-model [Philipson et al., 2018]. Fold change is calculated as the ratio

of runtime between two methods.

the overload of memory.

We also compared the runtime of two implementations of the standard error estimation:

with and without linear scan as described in Section 2.1.2.3, and the bootstrap method

employed by the joineR package [Philipson et al., 2018]. The results are shown in Figure

2.2.

It is seen from Figure 2.2a that the implementation with linear scan easily scales to

a million subjects, taking only minutes to finish, while the naive implementation without

linear scan grinds to a halt when the sample size is 10,000 or larger. Figure 2.2b shows that
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Figure 2.2: Runtime (seconds) comparison between two implementations of standard error

estimation for fitting the joint model (2.1) and (2.2): linear scan and no linear scan as

described in Section 2.1.2.3, and the bootstrap method employed by the joineR package

[Philipson et al., 2018]. Fold change is calculated as the ratio of runtime between two

methods.
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linear scan can generate a speed-up by a factor of greater than 100,000 when n ≥ 10, 000.

Similarly, in comparison with joineR that used 100 bootstrap samples for standard error

estimation, our standard error estimation method with linear scan generated a speed-up by

a factor of greater than 100,000 when n ≥ 5, 000.

Finally, Figures 2.1 and 2.2 in Section 2.2 have focused on contrasting the computational

efficiency of different implementations for parameter estimation and standard error estima-

tion in terms of the runtime. We have also compared their parameter estimates and standard

error in Section A.5 of the supplementary materials. As one would expect, our three different

implementations (methods 1-3) yielded almost identical estimation results, whereas joineR

produced similar estimation results for the longitudinal model, but slightly different results

for the competing risks model due to its different latent association structure.

2.3 Real Data Examples

We have developed an R package FastJM to implement the efficient algorithms described

in Section 2.1. Below we illustrate the improved computational performance of FastJM in

comparison to existing joint model R packages on a lung health study (LHS) data with

n = 5, 887 subjects and a UK-Biobank data with n = 193, 287 participants.

2.3.1 Lung health study

The lung health study (LHS) data were collected from a ten-center randomized clinical

trial on 5,887 middle-aged smokers with mild to moderate chronic obstructive pulmonary

disease (COPD) [Tashkin et al., 2012]. Patients were randomized into three arms: usual

care, smoking intervention and placebo inhaler (SIP), and smoking intervention and active

bronchodilator inhaler (SIA). An important objective of the study was to determine if the

intervention program with the combination of intensive smoking cessation counseling and an

inhaled anticholinergic bronchodilator can slow down the decline in forced expired volume in
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1s (FEV1) during a 5-year follow-up period. Patients’ FEV1 values were collected annually

upon recruitment into the study. FEV1 was chosen as the primary outcome since its tra-

jectory is an indicator of a patient’s natural loss of lung function during the progression of

COPD. Since not all patients completed the whole study period, about 9.47% of longitudinal

measurements were missing. One of the possible reasons for dropout is that treatment was

not effective, and hence missing longitudinal measurements after dropout are non-ignorable.

Joint modeling of FEV1 together with the possible informative dropout time provides

an attractive approach to deal with nonignorable missing longitudinal data due to dropout.

Based on previous findings, we considered the following covariates when characterizing the

trajectory of Y = FEV1: time (year), sex, age, body mass index (BMI), baseline number

of cigarettes smoked per day, the logarithm of two-point methacholine concentration-FEV1

O’Connor slope (logslope) [O’Connor et al., 1995]. We also included two interaction terms

between treatment indicators SIP and SIA and time, so that the difference in the slope of

FEV1 between SIP (or SIA) and usual care can be evaluated by testing if the interactions

are zero or not. Specifically, we considered the following linear mixed effect model:

Yij = β0 + β1tij + β2Xagei + β3XF10CIGSi
+ β4Dsexi

+ β5Xlogslopei + β6XBMIi

+β7DSIPi
+ β8DSIAi

+ β9DSIPi
× tij + β10DSIAi

× tij + b0i + b1itij + ϵij,(2.18)

which corresponds to model (2.1) with X
(1)
i (tij)

T = (1, tij, Xagei , XF10CIGSi
, Dsexi

, Xlogslopei ,

XBMIi , DSIPi
, DSIAi

, DSIPi
× tij, DSIAi

× tij) and X̃i
(1)
(tij)

T = (1, tij). The random error

term ϵij
iid∼ N(0, σ2) and the random effects bi = (b0i, b1i)

T are assumed normally distributed

with zero mean and a covariance matrix Σ. For the dropout time Ti (possibly censored at

the end of the study), we assume the Cox proportional hazard sub-model:

λi(t)=λ0(t) exp{γ1XBMIi+γ2DSIPi
+γ3DSIAi

+γ4Xlogslopei+γ5Dsexi
+γ5Xagei+Wi(t)},(2.19)

where λ0(t) denotes the baseline hazard function and Wi(t) is a latent association structure

that links the two sub-models.
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Table 2.1: Runtime comparison between different R packages for joint modeling of a longi-

tudinal and a single event time on the lung health study data

Semiparametric Joint Models Parametric Joint Models

Package FastJM joineR JSMa JSMb JMb JMa1 JMa2 JMbayesa JMbayes∗b

Baseline hazard Unspecified Unspecified Unspecified Unspecified Unspecified Weibull B-spline B-spline B-spline

Wi(t) νT bi νX̃i
(1)
(t)T bi νmi(t) νX̃i

(1)
(t)T bi νmi(t) νmi(t) νmi(t) νmi(t) νT bi

Runtime 0.3min 20.4min 1h36min 1h51min * 0.9min 1min 19.8min 43min

* Failed to produce any result due to convergence issue.

Table 2.1 compares the runtime of FastJM and some existing joint model packages in-

cluding joineR [Philipson et al., 2018], different versions of JM [Rizopoulos, 2010], JMBayes

[Rizopoulos, 2014], and JSM [Xu et al., 2020] with various specifications of λ0(t) and Wi(t).

Among all the semi-parametric models (FastJM, joineR, JSMa, JSMb), FastJM finished in

0.3 minutes while other methods took 20.4 minutes to 111 minutes. As a matter of fact, the

runtime of FastJM was even shorter than those of some parametric joint models (JSMa and

JSMb). We also observed that JMbayes based on a Bayesian MCMC framework is considerably

slower than its frequentist counterpart JM. Finally, the parameter estimates and inference

results for the longitudinal outcome were almost identical between all packages, but slightly

different for the survival sub-model because of their slightly different latent structure Wi(t).

Detailed analysis results are summarized in Section A.6 of the supplementary materials.

2.3.2 UK Biobank primary care (UKB-PC) study

The UK Biobank (UKB) is a prospective cohort study with deep genetic and phenotypic

data collected on approximately 500,000 individuals, aged 37-73 years, from the general

population between 2006 and 2010 in the United Kingdom [Collins, 2012, Sudlow et al.,

2015]. Participants attended assessment at their closest clinic center where they com-

pleted questionnaires, took physical measurements, and provided biological samples (blood,
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urine, and saliva) as a baseline assessment visit. Hospital admission records were avail-

able until February, 2018, for the full UKB cohort, whereas linkage to primary care records

was available for 45% of the UKB cohort (approximately 230,000 participants) until May,

2017, for Scotland, September, 2017, for Wales, and August, 2017, for England. The

detailed linkage procedures relating to primary care records are available online [https:

//biobank.ndph.ox.ac.uk/showcase/showcase/docs/primary_care_data.pdf].

In this example we consider a joint model of longitudinal systolic blood pressure (SBP)

measurements and a competing risks event time defined as age-at-onset of Type 2 diabetes

(T2D) as the first risk and age-at-onset of stroke, myocardial infarction (MI), or all-cause

death as the second risk, whichever occurred first. Age-at-onset of outcomes were based

on participants’ primary care or hospital records, whichever occurred first. Followup was

censored at the primary care data end date for the relevant country or the date of outcomes,

if this occurred earlier. SBP measures were extracted from either baseline assessment visit

or primary care data. Covariates include sex, ethnicity, and BMI measured during baseline

visit. However, considering the imbalanced racial distribution in this case study, we only

considered white vs non-whites ethnicity groups. Specifically, the joint model consists of a

linear mixed effects model for the longitudinal outcome (SBP),

Yij = β0 + β1tij + β2XBMIi + β3Dmalei + β4Dnon−whitei + b0i + b1itij + ϵij, (Model-L)

which corresponds to model (2.1) with X
(1)
i (tij)

T = (1, tij, XBMIi , Dmalei , Dnon−whitei) and

X̃i
(1)
(tij)

T = (1, tij), and a proportional cause-specific hazards model for the competing risks

event outcome

λik(t) = λk0(t) exp{γk1XBMIi + γk2Dmalei + γk3Dnon−whitei +Wik(t)}, (Model-PCH)

for k = 1, 2. In Model-L, the random error term ϵij
iid∼ N(0, σ2) and the random effects

bi = (b0i, b1i)
T are assumed normally distributed with zero mean and covariance matrix Σ.

In Model-PCH, k = 1 denotes type-2 diabetes and k = 2 stroke, λk0(t) denotes the baseline
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Table 2.2: Runtime comparison between different R packages for semi-parametric joint mod-

eling of longitudinal SBP trajectory and competing risks event time on the UK-Biobank

primary care (UKB-PC) data

Package FastJM joineR

UKB-PC subset (n = 5, 000) 1min 3.3h

UKB-PC subset (n = 20, 000) 4.4min 33h

UKB-PC full data (n = 193, 287) 1h *

* Failed to produce any result due to computational failure.

cause-specific hazard function for cause k, andWik(t) the latent association structure of SBP

with cause k risk.

To our knowledge, besides our FastJM package, joineR, JM are two other current joint

model R packages that are capable of handling competing risks event outcomes. However,

because JM encountered convergence issues, we will focus on FastJM and joineR in this case

study. Table 2.2 compares the runtime of FastJM and joineR on a subset of 5,000 and

20,000 participants randomly selected from the UKB-PC data and the full UKB-PC data

with 193,287 participants.

Table 2.2 shows that for the UKB-PC subset of 5,000 participants, FastJM finished within

1 minute, while joineR took 3.3 hours to finish. For the UKB-PC subset of 20,000 partici-

pants, FastJM finished within 5 minutes, while joineR took 33 hours to run. For the UKB-PC

full data with 193,287 participants, FastJM finished within 1 hour, whereas joineR encoun-

tered a computational failure.

Finally, the analysis results produced by FastJM and joineR are similar for the longitudi-

nal sub-model for the UKB-PC subset of 5,000 and 20,000 participants and for UKB-PC full

data. For the survival sub-model, the analysis results are also similar for most parameters

except for the association parameters due to the different latent structure Wi(t) between
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two packages. Detailed analysis results are provided in Section A.7 of the supplementary

materials.

2.4 Discussion

We have developed customized linear scan algorithms to reduce the computational com-

plexity from O(n2) or O(n3) to O(n) within each iteration of the EM algorithm and in the

standard error estimation step for a semiparametric joint model of a longitudinal biomarker

and a competing risks event time outcome. Through simulation and case studies, we have

demonstrated that the efficient implementation can generate a speed-up by a factor of up to

hundreds of thousands and oftentimes reduce the runtime from days to minutes when the

sample size is large (n > 104), making it feasible to fit a joint model on a large data in real

time.

The ideas and techniques of this paper can potentially be adapted to improve compu-

tational efficiency for other joint models. For instance, the linear computational algorithm

in Remark 1 for computing the variance-covariance matrices of empirical Bayes estimates

of the random effects is not specific to the joint model considered in this paper and can

be used in any procedure that uses the pseudo-adaptive quadrature rule. Also, although

we have focused on joint modeling of a single biomarker with a time-to-event outcome, our

methodology can be easily extended to handle multiple biomarkers in a similar fashion. It is

also important to note that the linear risk set scan algorithm is limited to the share random

effects joint model in which the Cox sub-model (2.2) only involves time-independent covari-

ates. If the Cox sub-model contains time-dependent covariates such as the present value of

the longitudinal marker, then one may have to impose more restrictive assumptions such

as assuming a parametric baseline hazard in order to linearize the computation costs with

respect to the sample size.

This paper has focused on linearizing the computation with respect to the sample size
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within the framework of classical EM algorithm that is coupled with the pseudo-adaptive

quadrature rule for numerical integration in the E-step. It would be interesting to investigate

if coupling our algorithms with other numerical integration methods such as quasi-Monte

Carlo method [Owen, 2013] in the E-step, or with other variations of EM algorithms such

as the stochastic EM algoirthm (stEM) [Nielsen, 2000] or Turbo-EM [Bobb and Varadhan,

2021] could further enhance the computational efficiency, especially when there are 3 or more

random effects in the model. Finally, current joint model implementations are generally not

scalable as the number of longitudinal measurement grows large, rendering it infeasible to fit

dense longitudinal data such as those generated from modern wearable devices for dynamic

prediction of a health outcome. Future research is warranted to develop novel joint modeling

procedures that are scalable to large number of subjects, random effects, and longitudinal

measurements.

2.5 Software

A user-friendly R package FastJM [Li et al., 2022b] has been developed to fit the shared

parameter joint model using the efficient algorithms developed in this paper and is publicly

available on the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.

org/package=FastJM.

2.6 Data Availability

The lung health study (LHS) data used to support the findings in Section 2.3.1 have not

been made available because the authors did not have permission for data sharing from the

data provider. The data that support the findings in Section 2.3.2 are available from UK

Biobank repositories. The UK Biobank data are retrieved under Project ID: 48152. Data

are available at https://www.ukbiobank.ac.uk with the permission of UK Biobank.
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CHAPTER 3

A joint model of the individual mean and

within-subject variability of a longitudinal outcome

with a competing risks time-to-event outcome

In this chapter, we discuss a joint modeling approach to take into account of the impact of

both individual mean and WS variability of a longitudinal outcome on a time-to-event out-

come. We develop an efficient estimation procedure of the joint model via a customized EM

algorithm. We perform simulations to compare estimation accuracy and precision between

our proposed model and the classical joint model that assumes homogeneous WS variability.

Lastly, we apply our proposed model to the Multi-Ethnic Study of Atherosclerosis (MESA)

study, showing that our method can yield higher dynamic prediction accuracy than the

classical joint model.

3.1 Methods

3.1.1 Model and data specifications

Assume that there are n subjects in the study. For subject i, one observes a longitudinal

outcome Yi(t) at multiple time points tij, j = 1, . . . , ni, i = 1, . . . , n. In addition, each

subject may experience one of K distinct failure types or be right censored during follow-up.

Let T̃i denote the failure time of interest, D̃i the failure type taking values in {1, . . . , K},

and Ci be a censoring time for subject i. Then the observed right-censored competing
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risks time-to-event data for subject i has the form (Ti, Di) ≡
{
min(T̃i, Ci), D̃iI(T̃i ≤ Ci)

}
,

i = 1, . . . , n.

Assume that the longitudinal outcome Yi(t) is characterized by the followingmixed-effects

multiple location-scale submodel :

Yi(t) = mi(t) + σi(t)ϵi(t),

mi(t) = X
(1)T
i (t)β + ZT

i (t)bi, (3.1)

σ2
i (t) = exp

{
W T

i (t)τ + V T
i (t)ωi

}
, (3.2)

where X
(1)
i (t), Zi(t), Wi(t), and Vi(t) are vectors of possibly time-varying covariates, β and

bi represent the fixed effects and random effects, respectively, associated with the location

component mi(t) for the mean trajectory, and τ and ωi represent the fixed effects and

random effects, respectively, associated with the scale component σi(t) for the WS variability.

Assume that the measurement error ϵi(t) ∼ N(0, 1) is independent of bi and ωi, and mutually

independent across all time points and subjects, and the random effects θi ≡ (bTi , ω
T
i )

T follow

a multivariate normal distributionMVN(0,Σθ) with mean 0 and variance-covariance matrix

Σθ =

 Σbb Σbω

ΣT
bω Σωω

 ,

where Σbω = cov(bi, ωi), Σbb = cov(bi, bi), and Σωω = cov(ωi, ωi).

Assume further that the competing risks time-to-event outcome follows the following

cause-specific Cox proportional hazards submodel:

λk(t | X(2)
i (t),Mi(θi, t)) = lim

h→0

P (t ≤ T̃i < t+ h, D̃i = k | Ti ≥ t,X
(2)
i (t),Mi(θi, t))

h
= λ0k(t) exp{X(2)T

i (t)γk +MT
i (θi, t)αk}, k = 1, . . . , K, (3.3)

where λ0k(t) is a completely unspecified baseline hazard function, X
(2)
i (t) is a vector of

possibly time-varying covariates for the competing risks time-to-event outcome, γk is a vector

of fixed effects of X
(2)
i (t), Mi(θi, t) is a vector of pre-specified functions of θi and t, and αk

is a vector of association parameters between the longitudinal and time-to-event outcomes.
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Note that the three submodels (3.1)-(3.3) are linked together via the latent association

structure MT
i (θi, t)αk. Some useful examples of MT

i (θi, t)αk include (1) “shared random

effects” parameterization: MT
i (θi, t)αk = αT

bkbi + αT
ωkωi, (2) “present value” parameteriza-

tion: MT
i (θi, t)αk = αbkmi(t) + αωk log {σ2

i (t)}, and (3) “present value of latent process”

parametrization: MT
i (θi, t)αk = αbkZ

T
i (t)bi + αωkV

T
i (t)ωi, where αbk and αωk are the associ-

ation parameters for the individual mean trajectory and WS variability, respectively. It is

also worth noting that our joint model (3.1)-(3.3) reduces to the joint model of [Li et al.,

2022a] if the submodel (3.2) is replaced by a homogeneous WS variance σ2
i (t) ≡ σ2.

Throughout the paper we assume that Ci is independent of T̃i conditional on the observed

covariates and the unobserved random effects θi, i = 1, . . . , n. We further assume that

the longitudinal measurements are independent of the competing risks time-to-event data

conditional on the observed covariates and the unobserved random effects.

3.1.2 Likelihood and EM estimation

Denote by Ψ = (β, τ , γ, α, Σθ, λ01(·), ..., λ0K(·)) the collection of all unknown param-

eters and functions from the submodels (3.1)-(3.3), where γ = (γT1 , . . . , γ
T
K)

T and α =

(αT
b1, . . . , α

T
bK , α

T
ω1, . . . , α

T
ωK)

T . Denote by Yi = (Yi1, ..., Yini
)T , where Yij = Yi(tij). Omit-

ting the covariates for the sake of brevity, the observed-data likelihood is given by

L(Ψ;Y, T,D) ∝
n∏

i=1

f(Yi, Ti, Di | Ψ)

=
n∏

i=1

∫
f(Yi | θi,Ψ)f(Ti, Di | θi,Ψ)f(θi | Ψ)dθi

=
n∏

i=1

∫ ni∏
j=1

1√
2πσ2

i (tij)
exp

[
−{Yi(tij)−mi(tij)}2

2σ2
i (tij)

]

×
K∏
k=1

λk

{
Ti | X(2)

i (Ti),Mi(θi, Ti)
}I(Di=k)
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× exp

[
−

K∑
k=1

∫ Ti

0

λk

{
t | X(2)

i (t),Mi(θi, t)
}
dt

]

× 1√
(2π)q | Σθ |

exp

(
−1

2
θTi Σ

−1
θ θi

)
dθi,

where the first equality follows from the assumption that Yi and (Ti, Di) are independent

conditional on the covariates and the random effects.

Because Ψ involvesK unknown hazard functions, directly maximizing the above observed-

data likelihood is difficult. To tackle this issue, we derive an EM algorithm to compute the

semiparametric maximum likelihood estimate (SMLE) of Ψ by regarding the latent random

effects θi as missing data [Dempster et al., 1977, Elashoff et al., 2008].The complete-data

likelihood based on (Y, T,D, θ) is given by

L(Ψ;Y, T,D, θ) ∝
n∏

i=1

ni∏
j=1

1√
2π exp {W T

i (tij)τ + Vi(tij)Tωi}

× exp

−
{
Yi(tij)−X

(1)T
i (tij)β − ZT

i (tij)bi

}2

2 exp {W T
i (tij)τ + Vi(tij)Tωi}


×

K∏
k=1

[
∆Λ0k(Ti) exp

{
X

(2)T
i (Ti)γk +MT

i (θi, Ti)αk

}]I(Di=k)

× exp

[
−

K∑
k=1

∫ Ti

0

exp
{
X

(2)T
i (t)γk +MT

i (θi, t)αk

}
dΛ0k(t)

]
× 1√

(2π)q | Σθ |
exp

(
−1

2
θTi Σ

−1
θ θi

)
,

where Λ0k(.) is the cumulative baseline hazard function for type k failure and ∆Λ0k(Ti) =

Λ0k(Ti)− Λ0k(Ti−). The EM algorithm iterates between an expectation step (E-step):

Q(Ψ;Ψ(m)) ≡ E
(m)

θ|Y,T,D,Ψ(m) {logL(Ψ;Y, T,D, θ)} , (3.4)

and a maximization step (M-step):

Ψ(m+1) = argmax
Ψ

Q(Ψ;Ψ(m)), (3.5)
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until the algorithm converges, where Ψ(m) is the estimate of Ψ from the m-th iteration. Each

E-step involves calculating integrals of the form

E(m){h(θi)} =

∫
h(θi)f(θi | Yi, Ti, Di,Ψ

(m))dθi (3.6)

for every subject i, i = 1, . . . , n, which are evaluated using the standard Gauss-Hermite

quadrature rule [Press et al., 2007]. As shown in Supplementary Materials B.1.1, the M-

step (3.5) has closed-form solutions for a number of parameters including the nonparametric

baseline cumulative hazard functions Λ0k(t), k = 1, . . . , K, which is a key advantage of the

EM-algorithm. Other parameters without closed-form solutions in the M-step are updated

using the one-step Newton-Raphson method. Details of the EM algorithm are provided in

equations (B.4)-(B.9) of the Supplementary Materials.

3.1.3 Standard error estimation

As discussed in Elashoff et al. [2016] (Section 4.1, p.72), several approaches including profile-

likelihood, observed information matrix, and bootstrap method have been proposed in the

literature for estimating the standard errors of the parametric components of the SMLE. Here

we adopt the profile-likelihood approach because it can be readily computed from the EM

algorithm and performed well in our simulation studies. Let Ω = (β, τ, γ, α,Σθ) denote the

parametric component of Ψ and Ω̂ its SMLE. We propose to estimate the variance-covariance

matrix of Ω̂ by inverting the empirical Fisher information obtained from the profile likelihood

of Ω [Lin et al., 2004, Zeng et al., 2005, Zeng and Cai, 2005] as follows:

n∑
i=1

[∇Ωl
(i)(Ω̂;Y, T,D)][∇Ωl

(i)(Ω̂;Y, T,D)]T , (3.7)

where∇Ωl
(i)(Ω̂;Y, T,D) is the observed score vector from the profile-likelihood l(i)(Ω;Y, T,D)

of Ω on the ith subject by profiling out the baseline hazards. Details of the observed score

vector for each parametric component are provided in equations (B.10)-(B.14) of the Sup-

plementary Materials.
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3.1.4 Computational aspects

We point out in Supplementary Materials B.3 that a naive implementation of the proposed

EM algorithm and the standard error estimate for our joint model typically involves O(n2)

and O(n3) operations, respectively, which will become computationally prohibitive for large

scale studies with a massive number of subjects. However, by applying the linear scan

algorithms of [Li et al., 2022a], one can reduce the computational complexity of our EM

algorithm and standard error estimation to O(n) for the shared random effects joint model

(3.1)-(3.3), whereX
(2)
i (t) is assumed to be time-independent andMT

i (θi, t)αk = αT
bkbi+α

T
ωkωi.

We have implemented these efficient algorithms and developed an R package, JMH https://

github.com/shanpengli/JMH, which is capable of fitting the aforementioned shared random

effects joint model in real time with tens of thousands patients.

3.1.5 Dynamic prediction for competing risks time-to-event data

The proposed joint model (3.1)-(3.3) not only offers a general framework to model the indi-

vidual mean and WS variability of a longitudinal outcome and study their association with a

competing risks time-to-event outcome, but also facilitates subject-level dynamic prediction

of cumulative incidence probabilities of a competing risks event for a new subject i∗ based

on the longitudinal outcome history. Specifically, given the longitudinal outcome history

Y
(s)
i∗ = {Yi∗(ti∗j), ti∗j ≤ s} prior to a landmark time s > 0 and that an event has yet to

happen by time s, the cumulative incidence probability for type k failure at a horizon time

u > s is given by

Pi∗k(u, s|Ψ) = Pr(Ti∗ ≤ u,Di∗ = k|Ti∗ > s, Y
(s)
i∗ ,Ψ)

=

∫
Pr(Ti∗ ≤ u,Di∗ = k|Ti∗ > s, Y

(s)
i∗ , θi∗ ,Ψ)f(θi∗|Ti∗ > s, Y

(s)
i∗ ,Ψ)dθi∗

=

∫
Pr(Ti∗ ≤ u,Di∗ = k|Ti∗ > s, θi∗ ,Ψ)f(θi∗|Ti∗ > s, Y

(s)
i∗ ,Ψ)dθi∗

=

∫
Pr(Ti∗ ≤ u,Di∗ = k, Ti∗ > s|θi∗ ,Ψ)

Pr(Ti∗ > s|θi∗ ,Ψ)
f(θi∗|Ti∗ > s, Y

(s)
i∗ ,Ψ)dθi∗
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=

∫
CIFi∗k(u, s|θi∗ ,Ψ)

Si∗(s|θi∗ ,Ψ)
f(θi∗ |Ti∗ > s, Y

(s)
i∗ ,Ψ)dθi∗

=

∫ CIFi∗k(u,s|θi∗ ,Ψ)
Si∗ (s|θi∗ ,Ψ)

f(Y
(s)
i∗ |θi∗ ,Ψ)f(Ti∗ > s|θi∗ ,Ψ)f(θi∗|Ψ)dθi∗∫

f(Y
(s)
i∗ |θi∗ ,Ψ)f(Ti∗ > s|θi∗ ,Ψ)f(θi∗|Ψ)dθi∗

, (3.8)

where Si∗(.) = exp
{
−
∑K

k=1

∫ s

0
dΛk(t|θi∗ ,Ψ)

}
is the overall survival function and CIFi∗k(.) =∫ u

s
Si∗(t|θi∗ ,Ψ)dΛk(t|θi∗ ,Ψ) the cumulative incidence function (CIF) for type k failure and

the last step of integral (3.8) can be evaluated using a standard Gauss-Hermite quadrature

rule. An estimate of Pi∗k(u, s|Ψ) can be obtained by replacing Si∗(.), CIFi∗k(.), and Ψ by

their sample estimates Ŝi∗(.), ĈIF i∗k(.), and Ψ̂, respectively.

3.2 Simulation studies

3.2.1 Simulation 1

We present extensive simulations to examine the finite sample performance of the proposed

joint model with heterogeneous WS variability for the longitudinal outcome. We also demon-

strate that ignoring heterogeneous WS variability can lead to biased parameter estimates,

biased standard error estimates, invalid inferences, and inferior prediction accuracy.

We first evaluate the performance of parameter estimation, standard error estimation,

and confidence intervals in comparison to a classical joint model that ignores heterogeneous

WS variability. In this simulation, the longitudinal measurements Yi(tij) were generated

from the mixed-effects multiple location scale model (3.1)-(3.2) with

mi(tij) = β0 + β1X1i + β2X2i + β3X3i + β4tij + bi, (3.9)

σ2
i (tij) = exp(τ0 + τ1X1i + τ2X2i + τ3X3i + τ4tij + ωi), (3.10)

and the competing risks event data were generated from the following proportional cause-
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specific hazards models:

λ1(t) = λ01(t) exp{γ11X1i + γ12X2i + γ13X3i + αb1bi + αω1ωi}, (3.11)

λ2(t) = λ02(t) exp{γ21X1i + γ22X2i + γ23X3i + αb2bi + αω2ωi}, (3.12)

where the four sub-models (3.9)-(3.12) are linked together through the shared random effects

θi = (bi, ωi)
T . Here tij’s represent the scheduled visiting times for subject i with an increment

of 0.25, X1i ∼ Bernoulli(0.5), X2i ∼ Uni(−1, 1), and X3i ∼ N(1, 4). θi ∼ N2(0,Σθ), with

σ2
b = 0.5, σ2

ω = 0.5, and σbω = σbσωρbw. The WS variance σ2
i (tij) modeled by equation (3.10)

includes a fixed effect induced by a time-varying covariate tij (visit-to-visit variation), three

covariates Xi1, Xi2, and Xi3, and a subject level random effect ωi. The baseline hazards

λ01(t), λ02(t) are set to constants 0.05 and 0.1, respectively. We simulated non-informative

censoring time Ci ∼ Uni(5, 10) and let Ti = min{T ∗
i1, T

∗
i2, Ci} be the observed survival time

(possibly censored) for subject i, where T ∗
i1 and T

∗
i2 are independent event times from models

(3.11) and (3.12), respectively, i = 1, . . . , n. The longitudinal measurements for subject i

are assumed missing when tij > Ti. The censoring rate is about 21%, the rate of event 1

is about 47%, and the rate of event 2 is about 32%. The average number of longitudinal

measurements per subject is around 10.

We fitted both our proposed joint model (3.1)-(3.3) with heterogeneous WS variability

(Model 1) using our developed methods and R package “JMH” as described in Section 3.1

and a classical joint model (Model 2) with homogeneous WS variance (σ2
i (tij) ≡ σ2) using

the R-package FastJM [Li et al., 2022a]. Table 3.1 summarizes simulated results on the bias,

sample standard deviations of the parameter estimates (SE), average estimated standard

errors of the parameter estimates (Est. SE), and coverage probabilities of 95% confidence

intervals (CP) for a scenario with medium correlation (ρbω = 0.50) between the random

effects, and sample size n = 800. Each entry in the table is based on 500 Monte Carlo

samples.

In Table 3.1, our proposed joint model method (Model 1) demonstrates a smaller bias
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Table 3.1: Comparison of the bias, standard error (SE), estimated standard error (Est. SE),

and coverage probability (CP) between the proposed joint model with heterogeneous WS

variability (Model 1) and a classical joint model with homogeneous WS variability (Model

2) for the longitudinal outcome (n = 800)

Model 1 (heterogeneous WS variability) Model 2 (homogeneous WS variability)

Parameter True Bias SE Est. SE CP (%) Bias SE Est. SE CP (%)

Longitudinal

Fixed effects

Mean trajectory

β0 5 0.002 0.050 0.049 95.0 0.004 0.052 0.065 98.6

β1 1.5 <0.001 0.066 0.070 95.6 -0.004 0.071 0.075 95.4

β2 2 0.001 0.061 0.060 95.8 -0.003 0.063 0.066 96.0

β3 1 <0.001 0.019 0.018 94.2 -0.001 0.019 0.020 95.8

β4 2 <0.001 0.002 0.002 97.2 <0.001 0.003 0.003 93.2

WS variability

τ0 0.5 0.001 0.048 0.050 95.8 - - - -

τ1 0.5 -0.001 0.063 0.065 95.2 - - - -

τ2 -0.2 0.005 0.054 0.057 95.2 - - - -

τ3 0.2 <0.001 0.017 0.017 94.6 - - - -

τ4 0.05 <0.001 0.002 0.002 96.0 - - - -

Competing risks

Fixed effects

γ11 1 0.008 0.114 0.119 96.2 -0.045 0.111 0.114 94.4

γ12 0.5 0.005 0.096 0.099 94.8 -0.005 0.094 0.095 95.0

γ13 0.5 0.004 0.033 0.034 95.8 -0.012 0.032 0.033 93.8

γ21 -0.5 -0.010 0.150 0.139 95.0 0.028 0.149 0.136 92.6

γ22 0.5 -0.002 0.118 0.116 94.8 -0.002 0.116 0.113 95.0

γ23 0.25 <0.001 0.039 0.038 94.2 0.004 0.038 0.037 93.8

Association

αb1 0.1 -0.004 0.143 0.150 95.6 0.211 0.116 0.124 62.2

αb2 -0.1 -0.007 0.144 0.153 96.2 -0.258 0.145 0.161 65.8

αω1 0.5 <0.001 0.139 0.141 95.8 - - - -

αω2 -0.5 -0.007 0.142 0.158 96.8 - - - -

Covariance matrix

of random effects

σ2
b 0.5 -0.005 0.045 0.044 93.8 -0.030 0.053 0.045 82.2

σbω 0.25 -0.003 0.038 0.040 96.0 - - - -

σ2
ω 0.5 -0.003 0.031 0.032 95.0 - - - -

Note: Large error in confidence interval coverage probability (CP) compared to the 95%

nominal level are highlighted in boldface. Each entry is based on 500 Monte Carlo samples.
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for all parameters and standard error estimates and that CPs are close to the 95% nominal

level. On the other hand, ignoring the heterogeneous WS variability (Model 2) induced

non-negligible bias in some parameter and standard error estimates, leading to significant

under-coverage of the associated confidence intervals. For example, the parameter estimate

and standard error estimate of αb2 are both substantially biased, and its associated confidence

interval coverage probability (65.8%) is unreasonably low compared to the 95% nominal level.

We have performed additional simulations with different sample sizes and random effects

correlations. The results are consistent with those in Table 3.1 and thus are not included

here.

3.2.2 Simulation 2

We present another simulation to demonstrate the improved prediction performance of our

proposed joint model (Model 1) over the classical joint model (Model 2) that ignores hetero-

geneous WS variability for dynamic prediction of a future event probability from a subject’s

history prior to a landmark time.

Using the same setting as Simulation 1, we generated a random dataset from (3.9) -

(3.12) with the sample size of n = 3, 000. For the simulated dataset, we did 10 times of

random splits as 10 different collections of training sets and validation sets based on 4-fold

cross-validated mean absolute prediction error (MAPE4) by contrasting the predicted and

empirical cumulative incidence rates for 2 different failure types. MAPE4 is defined as below.

Step 1. Randomly partition all the MESA in study subjects into 4 equal-sized disjoint subsets,

D(1)
n , . . . ,D(4)

n .

Step 2. For each l = 1, . . . , 4, designate D(l)
n as the validation set and the remaining 3 subsets,

denoted by D(−l)
n , as the training set. The training set D(−l)

n is used to fit a joint

model, and then for each subject i∗ in the validation set D(l)
n , the fitted model is used

to perform a dynamic prediction of its risk-k cumulative incidence rate P̂i∗k(u, s) at a
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horizon time u from some landmark time s using formula (3.8).

Step 3. Rank the subjects in the validation D(l)
n according to the predicted risk k cumulative

incidence rate P̂
(l)
i∗k(u, s), and denote by Q

(l)
kq the q

th quartile group, q = 1, . . . , 4. Define

the risk k mean absolute prediction error (MAPE) for the qth quartile group Q
(l)
kq by

MAPE
(l)
k (u, s) =

1

4

4∑
q=1

∣∣∣∣∣F̂k(u|s,Q(l)
kq)−

∑
I(i∗ ∈ Q

(l)
kq)P̂i∗k(u, s)∑

I(i∗ ∈ Q
(l)
kq)

∣∣∣∣∣, (3.13)

where F̂k(u|s,Q(l)
kq) =

∫ u

s
Ŝ(t|s,Q(l)

kq)dĤk(t|s,Q(l)
kq) is the empirical cumulative risk k

incidence in the qth quartile group Q
(l)
kq , with Ŝ(t|s,Q

(l)
kq) being the Kaplan-Meier esti-

mator of the all risk survival function and Ĥk(t|s,Q(l)
kq) the Nelson-Aalen estimator of

the risk k cause-specific cumulative hazard function within the qth quartile group.

Step 4. Lastly, the 4-fold cross-validated mean absolute prediction error (MAPE4) for risk k

is defined as

MAPE4k(u, s) =
1

4

4∑
l=1

MAPE
(l)
k (u, s), k = 1, 2.

In this simulation, we adopt 4-fold cross validation, by setting the landmark time s = 3 so

that all the longitudinal information of the subjects at risk in a validation set are available

just prior to time s, and predicting the future event probabilities of each failure at the pre-

determined horizon times u = (4, 5, 6, 7). To reduce the variance of prediction error, we

repeat this procedure by proceeding with 10 random splits of training and validation sets,

and take the average of MAPE4 sores across 10 splits on all the horizon times as specified

above. Figure 3.1 shows the trajectories of the average MAPE4 scores of both Model 1 and

Model 2 based on 10 random splits of cross validation. We can see that Model 2 (proposed

joint model) always outperforms Model 1 (classical joint model) at all horizon times when

heterogeneous WS variability exist in a dataset.
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Figure 3.1: Average MAPE4 scores of 10 random splits of cross-validation on the horizon

times u = (4, 5, 6, 7) at the landmark time s = 3 based on one simulated dataset following

the equations (3.9) - (3.12).

3.3 An application: Multi-Ethnic Study of Atherosclerosis (MESA)

The Multi-Ethnic Study of Atherosclerosis (MESA) started in July 2000 and included a

community-based sample of 6,814 men and women, who were aged 45-84 years, free of clinical

CVD events at baseline, and constituted four racial/ethnic groups from six US field centers

[Bild et al., 2002]. The first examination was assigned at the enrollment (i.e., baseline), and

the following exams were conducted with up to five exams in total. During the study, blood

pressures, i.e., systolic and diastolic blood pressure (SBP and DBP, mmHg), were measured

at each exam, and the event surveillance was completely separate from the exams, from

phone follow-ups at intervals of 9-12 months. Eligible events such as CVD were collected

and abstracted for central adjudication. As an illustration, we consider joint modeling of

longitudinal SBP with two competing risk time-to-event outcomes: heart failure (risk 1)

and death (risk 2). We adjust for age at baseline (in years), sex (1=female, 0=male), and

race (1=non-white, 0=white) in both SBP and competing risk time-to-event models. After

excluding 29 individuals missing the event time, a cohort of 6,785 participants with an
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average of 4.3 SBP measures per subject and a total of 29,283 SBP measures are kept for

analysis. Among them, 380 (5.6%) participants had heart failure, 1,327 (19.6%) died, and

5,078 (74.8%) were right censored without experiencing any of the two events.

In our joint model (Model 1), the longitudinal SBP (Yi(tij)) is assumed to follow the

mixed-effects multiple location scale model (3.1)-(3.2) as

mi(tij) = β0 + β1tij + β2Agei + β3Racei + β4Sexi + bi, (3.14)

σ2
i (tij) = exp(τ0 + τ1tij + τ2Agei + τ3Racei + τ4Sexi + ωi), (3.15)

and the competing risk outcomes, heart failure, and death are modeled by the following

cause-specific hazards model:

λ1(t) = λ01(t) exp(γ11Agei + γ12Racei + γ13Sexi + αb1bi + αω1ωi), (3.16)

λ2(t) = λ02(t) exp(γ21Agei + γ22Racei + γ23Sexi + αb2bi + αω2ωi), (3.17)

where the shared random effects θi = (bi, ωi)
T follow bivariate normal distribution with mean

zero and variance-covariance matrix

Σθ =

 σ2
b σbω

σbω σ2
ω

 .

Several more complex models were also explored, including additional covariate adjustment,

their interactions, and random slopes. The results are similar; thus, we only report results

for the shared random intercept model in Table 3.2. For comparison purposes, Table 3.2 also

includes an analysis based on the following classical joint model (Model 2) of SBP, heart

failure, and death, assuming homogeneous SBP WS variability:

Yi(tij) = mi(tij) + σϵ(tij), (3.18)

mi(tij) = β0 + β1tij + β2Agei + β3Racei + β4Sexi + bi, (3.19)

λ1(t) = λ01(t) exp(γ11Agei + γ12Racei + γ13Sexi + αb1bi), (3.20)

λ2(t) = λ02(t) exp(γ21Agei + γ22Racei + γ23Sexi + αb2bi). (3.21)
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Table 3.2: Joint analysis of systolic blood pressure (SBP, mmHg), time to heart failure,

and time to death using the MESA data (Model 1 is the joint model (3.14)-(3.17) assuming

heterogeneous SBP individual mean trajectory and heterogeneous WS variability and Model

2 is the joint model (3.18)-(3.21) assuming heterogeneous SBP individual mean trajectory

and homogeneous SBP WS variability. Abbreviations: SE=standard error; HR=hazard

ratio; CI=confidence interval.)

Model 1 Model 2

Longitudinal outcome Mean trajectory WS variability Mean trajectory

(Systolic blood pressure (SBP, mmHg)) Estimate (SE) Estimate (SE) Estimate (SE)

Intercept 79.59 (0.74)*** 2.34 (0.08)*** 79.55 (1.31)***

Time (Years from baseline) -0.02 (0.03) 0.08 (<0.01)*** -0.14 (0.03)***

Age at baseline 0.66 (0.01)*** 0.03 (<0.01)*** 0.67 (0.02)***

Race (Non-White/White) 6.58 (0.24)*** 0.23 (0.02)*** 5.95 (0.41)***

Sex (Female/Male) -0.22 (0.26) 0.24 (0.03)*** 0.89 (0.42)*

Sex × Time 0.26 (0.04)*** -0.02 (0.01)** 0.21 (0.04)***

Random effects

(variance-covariance matrix) Estimate (SE) Estimate (SE)

σ2
b 204.15 (4.45)*** 213.49 (5.42)***

σbω 7.34 (0.23)*** N/A

σ2
ω 0.46 (0.02)*** N/A

Cause-specific hazard

(Heart failure) HR (95% CI) HR (95% CI)

Age at baseline 1.08 (1.07-1.10)*** 1.08 (1.07-1.09)***

Race (Non-White/White) 1.00 (0.81-1.23) 0.96 (0.78-1.18)

Sex (Female/Male) 0.57 (0.46-0.70)*** 0.58 (0.47-0.71)***

Random effects

Mean trajectory (αb1) 0.99 (0.97-1.01) 1.03 (1.02-1.03)***

WS variability (αω1) 2.04+ (1.42-2.94)*** N/A

Cause-specific hazard

(Death) HR (95% CI) HR (95% CI)

Age at baseline 1.11 (1.10-1.12)*** 1.10 (1.10-1.11)***

Race (Non-White/White) 1.11 (0.99-1.24) 1.08 (0.97-1.21)

Sex (Female/Male) 0.64 (0.57-0.71)*** 0.64 (0.58-0.72)***

Random effects

Mean trajectory (αb2) 0.98 (0.97-0.99)*** 1.01 (1.00-1.01)***

WS variability (αω2) 1.91+ (1.55-2.35)*** N/A

* p-value<0.05; ** p-value<0.01; *** p-value<0.001.

+ Standardized HR of association parameter for WS variability is reported to show the effect

on the cause-specific hazard by 1 SD change of WS variability of SBP.
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There are several interesting observations from the results (Table 3.2). Our proposed

model (Model 1) reveals that the heterogeneity of SBP WS variability is substantial (σ2
ω =

0.46, SE = 0.02, p-value< 0.001) across MESA individuals. It also suggests that standardized

SBP WS variability (ωi/σω) is highly predictive of heart failure (HR = 2.04, 95% CI=(1.42,

2.94)) and death (HR = 1.91, 95% CI=(1.55, 2.35)). As SBP WS variability (ωi) and

individual mean (bi) are two highly correlated covariates, caution needs to be taken when

interpreting their effects. In contrast, Model 2 only relates subject-specific SBP to the event

outcomes besides the baseline covariates. Results of Model 2 show that every 10 mmHg

elevation of subject-specific SBP contributes to 34% and 10% increased risk of heart failure

and death, respectively.

Next, we assess and compare the dynamic prediction accuracy of Model 1 and Model 2

using a 4-fold cross-validated mean absolute prediction error (MAPE4) by contrasting the

predicted and empirical cumulative incidence rates for heart failure and death, respectively.

Figure 3.2 depicts the 4-fold cross-validated MAPE4 score with landmark time s = 7

and horizon times u = 9, 11, and 13 years from baseline for heart failure (risk 1) and death

(risk 2). Figure 3.2b demonstrated that Model 1 outperforms both Model 2 for dynamic

prediction of the risk of death at all three horizon times u =9, 11, and 13, with a noticeable

smaller MAPE4 prediction error. Given the incidence rate of heart failure is low (< 6%),

MAPE4 may not be an informative prediction accuracy measure.

Figure 3.3 provides an illustration of the significant impact of SBP WS variability on the

event outcomes. In Figure 3.3, we ranked all subjects by the empirical Bayes estimate of

the random effect ωi based on Model 1 and then plotted the cumulative incidence of heart

failure (Figure 3.3a) and death (Figure 3.3b) for the top 20% high SBP WS variability group

versus the bottom 20% low SBP WS variability group. Our results demonstrate participants

in the top 20% high SBP WS variability group had a much higher cumulative incidence

than the bottom 20% low SBP WS variability group for both clinical events. The same

phenomenon is also observed in the spaghetti profile plot of the longitudinally measured
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Figure 3.2: The average 4-fold cross-validated MAPE4 score at s = 7 and u = (9, 11, 13) years

from baseline based on 10 random splits. Model 1 is the joint model (3.14)-(3.17) assuming

heterogeneous SBP individual mean trajectory and heterogeneous WS variability, Model 2

is the joint model (3.18)-(3.21) assuming heterogeneous SBP individual mean trajectory and

homogeneous SBP WS variability.

SBP for 25 randomly selected participants from each group over the study period, as shown

in Figure 3.4, where both events are more likely to happen among the high WS variability

cohort than the low WS variability cohort.

3.4 Discussion

Current literature on joint models of longitudinal and time-to-event outcomes has focused

primarily on modeling the mean trajectory of a longitudinal biomarker and associating it

with a time-to-event outcome. To our knowledge, the joint model introduced in this paper is

the first to model both the individual mean and WS variability of a longitudinal biomarker

and to utilize both features for dynamic prediction of the time-to-event outcomes. We have

developed an EM algorithm for SMLE, a profile-likelihood method for standard error esti-
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Figure 3.3: Empirical cause-specific cumulative incidence function (CIF) of the high (top

20%, red) and low (bottom 20%, blue) WS variability of SBP (mmHg) groups for heart

failure (left) and death (right) in MESA data.

Figure 3.4: Spaghetti profile plot of 25 randomly selected participants from the high (top

20%, left) and low (bottom 20%, right) SBP WS variability groups in the MESA cohort.
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mation, and scalable linear scan algorithms for large data. The advantages of our proposed

model over classical joint modeling approach are demonstrated using simulations as well

as through an application to the MESA study. Our analysis of the MESA study not only

reveals that the SBP WS variability is another important predictor for heart disease besides

the SBP mean level but also leads to a better dynamic prediction model for heart failure

and death by accounting for the mean and WS variability of SBP in the joint model.

The utility of joint modeling of mean trajectory and WS variability of a longitudinal

biomarker with a time-to-event outcome is not limited to the simple setting considered in this

paper. It could be informative to extend the current work to many other applications, includ-

ing joint models with multiple longitudinal biomarkers, multivariate time-to-event outcomes,

recurrent events, and other types of time-to-event data such as left-truncated or interval-

censored data. Extensions to more flexible models for the time trend of the longitudinal

outcome are also warranted.

It should be noted that the estimation method based on the EM algorithm may become

computationally infeasible as the number of random effects, the number of longitudinal

measurements, or the number of subjects increases. For example, the EM algorithm involves

numerically evaluating multiple intractable integrals for all subjects in each EM iteration,

and the computational cost of the standard Gauss Hermite quadrature rule used in this

paper for numerical integration grows exponentially with the number of random effects. In

future research, further development of scalable estimation methods is warranted.

Lastly, our model and inference procedure are based on normality assumptions for both

the random effects and WS error term in the longitudinal submodel. It would be of interest

to develop more robust joint models and inference procedure in future research.
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3.5 Software

A user-friendly R package JMH to fit the shared parameter joint model developed in this

paper is publicly available at https://github.com/shanpengli/JMH.
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CHAPTER 4

A joint model of longitudinal and interval-censored

post-diagnosis time to event data in the presence of

interval censored covariates due to the unknown

diagnosis time: with applications to large-scale

biobank data

In this chapter, we develop a novel joint modeling approach to take into account of interval-

censored time-to-event and interval-censored covariates due to the unknown initial event

time. We develop an estimation procedure of the joint model via a customized EM algo-

rithm. We perform simulations to compare estimation accuracy and precision between our

proposed model and the classical joint model with midpoint imputation. We also apply

computationally efficient algorithms to make the proposed method scalable to large sam-

ple size data. Lastly, we apply our proposed model to the UK-Biobank (UKB) data and

demonstrate that our method can yield more clinically plausible parameter estimates and

statistical inference.
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4.1 Joint model

4.1.1 Notations and preliminaries

Let n be the number of subjects and let i ∈ {1, 2, .., n} index the subjects. For each sub-

ject, let B̃i denote the calendar time of origin (e.g. date of birth), S̃i the calendar time

of occurrence of an initial event (e.g. diagnosis of diabetes). We formulate the interval

censoring interval by assuming a random, independent set of inspection times, denoted by

0 < Ũi1 < . . . Ũiki < +∞, with ki the total number of inspection times for subject i [Zeng

et al., 2016]. We do not model (Ũi1, . . . , Ũiki). For subject i, instead of observing S̃i, the

interval such that S̃i ∈ (Ũij, Ũi(j+1)] is observed and thus denote the calendar time to the last

negative diagnosis L̃i = Ũij and the calendar time to the first positive diagnosis R̃i = Ũi(j+1).

Let
{
Õij, Yi(tij)

}
, j ∈ {1, .., ni} be the post-initial-event observations, where Õij’s are cal-

endar observation times, tij = Õij − S̃i the observation time since the initial event time

S̃i, and Yi(tij) the value of a longitudinal biomarker collected at the corresponding obser-

vation time Õij. Let ˜̃Ei be the true calendar time for the target event, which is subject

to right censoring by a censoring time C̃i. Let Ẽi = min( ˜̃Ei, C̃i) be the observed calen-

dar time for the target event and δi = I( ˜̃Ei ≤ C̃i) the censoring indicator, with δi = 1

if the condition Ẽi ≤ C̃i is satisfied, and 0 otherwise. As a result, the observed data is

(B̃i, L̃i, R̃i, {Õij}, {Yi(tij)}, ˜̃Ei, δi), i = 1, . . . , n. Figure 4.1 shows an illustrative example of

the notations for subject i.

Denote Si = S̃i − B̃i as the time to occurrence of the initial event since time of origin,

Ti = Ẽi − S̃i as the time since the initial event, Li = L̃i − B̃i, and Ri = R̃i − B̃i. Let

B̃ = (B̃1, . . . , B̃n), L = (L1, . . . , Ln), R = (R1, . . . , Rn), Õ = (Õ1, . . . , Õn) with Õi =

(Õi1, . . . , Õini
), S = (S1, . . . , Sn), Y = (Y1, . . . ,Yn) with Yi = {Yi(ti1), . . . , Yi(tini

)}, and

T = (T1, . . . , Tn). Our interest is to (1) jointly model S,Y ,T and (2) use the proposed

joint model to make dynamic prediction of T based on the post-initial-event observations

(B̃,L,R, Õ,Y ).
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Figure 4.1: An example of longitudinal and event process after the unknown initial event

occurs at Si for subject i.

4.1.1.1 Model formulation

We assume that the initial event time Si is continuous but only observed at the censoring

interval (Li, Ri].

Longitudinal sub-model for the biomarker The longitudinal outcome Yi(tij) is char-

acterized by a mixed-effects multiple location scale model :

Yi(tij) = mi(tij) + σi(tij)ϵi(tij),

= X
(1)T
i (tij, Si)β + ZT

i (tij)bi + σi(tij)ϵi(tij), (4.1)

σ2
i (tij) = exp

{
W T

i (tij, Si)τ + V T
i (tij)ωi

}
, (4.2)

where X
(1)
i (tij, Si), Zi(tij), Wi(tij, Si), and Vi(tij) are vectors of possibly time-varying co-

variates measured at tij = Õij − Si − B̃i. The simplest case is to consider X
(1)
i (tij, Si) =

Wi(tij, Si) = (1, Si, tij)
T . β and bi represent the fixed effects and random effects, respectively,

associated with the location componentmi(t) for the mean trajectory, and τ and ωi represent

the fixed effects and random effects, respectively, associated with the scale component σi(t)
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for the WS variability. Assume that the measurement error ϵi(t) ∼ N(0, 1) is independent

of bi and ωi, and mutually independent across all time points and subjects, and the random

effects θi ≡ (bTi , ω
T
i )

T follow a multivariate normal distribution MVN(0,Σθ) with mean 0

and variance-covariance matrix

Σθ =

 Σbb Σbω

ΣT
bω Σωω

 ,

where Σbω = cov(bi, ωi), Σbb = cov(bi, bi), and Σωω = cov(ωi, ωi).

Cox sub-model for the target event The target event outcome is characterized by a

Cox proportional hazards model:

λi(t) = lim
h→0

P (t ≤ Ti < t+ h|Ti ≥ t,X
(2)
i , θi)

h
= λ0(t) exp{X(2)T

i (Si)γ +MT
i (θi, t)α}, (4.3)

with Ti = Ẽi − Si − B̃i (e.g. time to cardiovascular disease since the diagnosis of diabetes).

It is worth noting that since Si is interval censored and Ẽi is possibly right censored, Ti is

possibly interval censored. In the sub-model (4.3), λi(t) is the conditional hazard rate for at

time t since the initial event, given the covariates X
(2)
i (.) measured at time Si and the latent

association structure Mi(θi, t). The simplest case is to consider X
(2)
i (Si) = Si.

Note that the three submodels (4.1)-(4.3) are linked together via the latent association

structure MT
i (θi, t)α. Some useful examples of MT

i (θi, t)α include (1) “shared random ef-

fects” parameterization: MT
i (θi, t)α = αT

b bi + αT
ωωi, (2) “present value” parameterization:

MT
i (θi, t)α = αbmi(t)+αω log {σ2

i (t)}, and (3) “present value of latent process” parametriza-

tion: MT
i (θi, t)αk = αbZ

T
i (t)bi+αωV

T
i (t)ωi, where αb and αω are the association parameters

for the individual mean trajectory and WS variability, respectively.

Throughout the paper we assume that 1) the calendar time to the target event Ẽi is

always observed to be after the calendar time to the first positive diagnosis R̃i; 1) C̃i − S̃i

is independent of Ti; 2) the longitudinal process is independent of the time-to-event process

conditional on the observed covariates, θi, and Si; 3) θi and Si are mutually independent.
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4.1.2 Semi-parametric maximum likelihood estimate (SMLE)

4.1.2.1 Assumptions

Non-parametric estimation for the initial event distribution Similar to Zeng et al.

[2016], to derive the estimation procedure, we restrict the survival function for Si to have

a finite support S = {l : 0 = s0 < s1 < . . . < sk < +∞} consisting of the unique values

of Li and Ri (i = 1, . . . , n). Under S, the survival function of the initial event S(.) will be

evaluated as a non-increasing step function. Let ϕsl be the hazard rate at time sl ∈ S, then

the probability that Si equals sl is given by

p(Si = sl|Ψϕ) = S(s−l )− S(sl)

= exp

−
∑

j:sj<sl

ϕsj

− exp

−
∑

j:sj≤sl

ϕsj

 , l = 1, 2, . . . , k. (4.4)

To enable our joint modeling analysis, we make three key modeling assumptions about

the relationships among these variables. First, the longitudinal outcome Yi and the target

event outcome Ti are independent conditional on the covariates, random effects θi, and time

to the-initial-event Si. Second, θi and Si are independent. Third, the interval censoring

mechanism (Li, Ri) is a non-informative and independent process, that is, p(Li, Ri|Si) =

1 {Si ∈ (Li, Ri]} p(Li, Ri), where p(Li, Ri) is the probability that subject i’s pre-diabetic

follow-up schedule includes tests at Li followed by Ri.

4.1.2.2 Likelihood

For subject i the observed data is Di = {Li, Ri, Ti, δi,Yi, Õi}. Let Ψ = (ΨT
Y ,Ψ

T
T ,Ψ

T
θ ,Ψ

T
ϕ )

T

be a vector of all unknown parameters from the submodels (4.1) - (4.3), where ΨT
Y =

(β, τ), ΨT
T = (γ, α, ν,Λ0(.)), Ψ

T
θ = vech(Σθ), and ΨT

ϕ = {ϕsl}. The joint distribution of

(Yi, Ti, δi, Li, Ri) is fully determined by pi(Yi|Si, θi,ΨY ), pi(Ti, δi|Si, θi,ΨT ), p(θi|Ψθ), pi(Si|Ψϕ),

and p(Li, Ri|Si). For the sake of brevity, here we omit the covariates X
(1)
i (., .), Zi(.), wi(., .),

andX
(2)
i (.) from the subject-specific density functions pi(.). The observed-data log likelihood
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is given by

l(Ψ) =
n∑

i=1

log pi(Yi, Ti, δi, Li, Ri|Ψ)

=
n∑

i=1

log

∫ ∫
pi(Yi|Si, θi,ΨY )pi(Ti, δi|Si, θi,ΨT )p(θi|Ψθ)

×p(Li, Ri|Si)p(Si|Ψϕ)dSidθi. (4.5)

Since Si is assumed to be restricted on the finite support S, the log likelihood (4.5) can be

rewritten as

l(Ψ) =
n∑

i=1

log

∫ ∑
sl∈S

pi(Yi|Si = sl, θi,ΨY )pi(Ti, δi|Si = sl, θi,ΨT )p(θi|Ψθ)

p(Li, Ri|Si = sl)p(Si = sl|Ψϕ)dθi

=
n∑

i=1

log

∫ ∑
sl∈S

(
ni∏
j=1

1√
2π exp(W T

i (tij,l, sl)τ + ωi)

× exp

{
−(Yi(tij,l)−X

(1)T
i (tij,l, sl)β − ZT

i (tij,l)bi)
2

2 exp(W T
i (tij,l, sl)τ + ωi)

}
×
[
∆Λ0(ti,sl) exp

{
X

(2)T
i (sl)γ +W T

i (θi|ti,sl)α
}]δi

exp

[
−
∫ Ti

0

exp
{
X

(2)T
i (sl)γ +W T

i (θi|s)α
}
dΛ0(s)

]
× 1√

(2π)q+1|Σθ|
exp

(
−1

2
θTi Σ

−1
θ θi

)
× 1 {sl ∈ (Li, Ri]} p(Li, Ri)

{
exp(−

∑
su<sl

ϕsu)− exp(−
∑
su≤sl

ϕsu)

})
dθi,

where Λ0(.) is the unknown cumulative baseline hazard function, ∆Λ0(ti,sl) = Λ0(ti,sl) −

Λ0(ti,sl−), and tij,l = Õij − sl − B̃i and ti,sl = Ẽi − sl − B̃i when Si = sl.

4.1.2.3 EM algorithm

One can estimate Ψ by maximizing the observed-data log likelihood l(Ψ). However, the log

likelihood of each subject consists of the logarithm of a sum, which becomes computationally

challenging to maximize directly, and following the EM-steps will often increase l(Ψ) toward

a local maximum or saddlepoint [Morrison et al., 2021]. To address this issue, we can
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obtain the maximum likelihood estimate Ψ̂ by maximizing its complete-data log likelihood

l∗(Ψ; θ, S) via the EM algorithm:

l∗(Ψ; θ, S) ∝
n∑

i=1

log pi(Yi|Si, θi,ΨY ) + log pi(Ti|Si, θi,ΨT ) + log p(θi|Ψθ) + log p(Si|Ψϕ)

+ log p(Li, Ri|Si).

In the E step, we calculate the expectation of the complete-data log-likelihood, conditional

on the observed data, given the current estimates Ψ(m). Since each of these terms involves

a disjoint set of parameters, to maximize the expected complete-data log likelihood, we can

maximize each term’s expectation separately. p(Li, Ri|Si) is non-informative so we can ignore

this term and maximize

Q(Ψ;Ψ(m)) = QY (Ψ;Ψ(m)) +QT (Ψ;Ψ(m)) +Qθ(Ψ;Ψ(m)) +Qϕ(Ψ;Ψ(m))

=
n∑

i=1

E
(m)
θ,S {log pi(Yi|Si, θi,ΨY ) + log pi(Ti|Si, θi,ΨT ) + log p(θi|Ψθ) + log p(Si|Ψϕ)}

=
n∑

i=1

∑
sl∈S∩(Li,Ri]

E
(m)
θ

(
−

ni∑
j=1

[
1

2
log 2π exp

{
W T

i (tij, Si)τ + ωi

}

+

{
Yi(tij)−X

(1)T
i (tij, Si)β − ZT

i (tij)bi

}2

2 exp {W T
i (tij, Si)τ + ωi}


+ δi

{
log∆Λ0(Ti) +X

(2)T
i (Si)γ +W T

i (θi|Ti)α
}

−
∫ Ti

0

exp
{
X

(2)T
i (Si)γ +W T

i (θi|s)α
}
dΛ0(s)

−
{
q + 1

2
log 2π +

1

2
log |Σθ|+

θTi Σ
−1
θ θi
2

})
p
(m)
i (Si = sl|Yi, Ti, Li, Ri,Ψ

(m))

+
n∑

i=1

∑
sl∈S∩(Li,Ri]

log

{
exp(−

∑
su<sl

ϕsu)− exp(−
∑
su≤sl

ϕsu)

}
×p(m)

i (Si = sl|Yi, Ti, Li, Ri,Ψ
(m)). (4.6)

Use p
(m)
i (sl) to denote p

(m)
i (Si = sl|Yi, Ti, Li, Ri,Ψ

(m)) for brevity. p
(m)
i (sl) is calculated by

p
(m)
i (sl) =

∫
θi

p
(m)
i (θi, Si = sl|Yi, Ti, Li, Ri,Ψ

(m))dθi

=

∫
θi

pi(Yi|Si,θi,Ψ
(m)
Y )pi(Ti|Si,θi,Ψ

(m)
T )p(θi|Ψ

(m)
θ )p

(m)
i (Si=sl|Li,Ri,Ψ

(m)
ϕ )dθi∫

θi

∑
sl∈S pi(Ỹi|Si,θi,Ψ

(m)
Y )pi(Ti|Si,θi,Ψ

(m)
T )p(θi|Ψ

(m)
θ )p

(m)
i (Si=sl|Li,Ri,Ψ

(m)
ϕ )dθi

,(4.7)
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where

p
(m)
i (Si = sl|Li, Ri,Ψ

(m)
ϕ ) = 1 {sl ∈ (Li, Ri]}

exp
(
−
∑

Li<su<sl
ϕsu

)
{1− exp(−ϕsl)}

1− exp
(
−
∑

Li<su≤Ri
ϕsu

) .(4.8)

The detailed derivation of equation (4.8) is provided in Section C.1 of the supplementary

materials.

In the M-step, we find the update of Ψ by maximizing equation (4.6):

Ψ(m+1) = argmax
Ψ

Q(Ψ;Ψ(m)), (4.9)

until the algorithm converges, where Ψ(m) is the estimate of Ψ from the m-th iteration. It is

easy to see that the M-step (4.9) requires the following expected values across all subjects that

are calculated in the E-step (4.6): E
(m)
θ,S {exp(−ωi)}, E {bi exp(−ωi)}, E(m)

θ,S

{
bib

T
i exp(−ωi)

}
,

E
(m)
θ,S

[
exp

{
Wi(θi|t)Tα

}]
, E

(m)
θ,S

[
Wi(θi|t) exp

{
Wi(θi|t)Tα

}]
, E

(m)
θ,S

[
Wi(θi|t)Wi(θi|t)T exp

{
Wi(θi|t)Tα

}]
,

E
(m)
θ,S (θiθ

T
i ), where

E
(m)
θ,S {h(θi|t)} =

∑
sl∈S

E
(m)
θ h(θi|t)p(m)

i (sl)

=
∑
sl∈S

∫
θi

h(θi|t)p(m)
i (θi, Si = sl|Yi, Ti, Li, Ri,Ψ

(m))dθi

=

∫
θi

h(θi|t)
∑
sl∈S

p
(m)
i (θi, Si = sl|Yi, Ti, Li, Ri,Ψ

(m))dθi

=

∫
θi

h(θi|t)
∑

sl∈S pi(Yi|Si,θi,Ψ
(m)
Y )pi(Ti|Si,θi,Ψ

(m)
T )p(θi|Ψ

(m)
θ )p

(m)
i (Si=sl|Li,Ri,Ψ

(m)
ϕ )dθi∫

θi

∑
sl∈S pi(Ỹi|Si,θi,Ψ

(m)
Y )pi(Ti|Si,θi,Ψ

(m)
T )p(θi|Ψ

(m)
θ )p

(m)
i (Si=sl|Li,Ri,Ψ

(m)
ϕ )dθi

,

for any function h(.). Furthermore, it can be shown that the M-step (4.9) has closed form

solutions for the parameters β, Σθ, {ϕsl} and Λ0(.). The other parameters τ , γ, α can be

updated using the one-step Newton-Raphson method. Details are provided in equations

(C.2) - (C.11) of Section C.2 of the supplementary materials.

Remark 2. It is worth noting that in the EM algorithm, the instantaneous baseline hazard

function λ0(.) has positive mass only at the jump points ti,sl , i = 1, . . . , n, sl ∈ S, i.e.,

λ
(m)
0 (t) =


∆Λ

(m)
0 (t), t ∈ {ti,sl}

0, elsewhere.
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We observe that the non-continuity of λ0(.) will lead ψ
(m) to a saddlepoint because ∆Λ

(m)
0 (.)

will disturb the update of p
(m)
i (sl) in equation (4.7), which will result in a severe bias issue.

To mitigate this bias issue in the EM steps, we replace ∆Λ
(m)
0 (.) with the following quantity

to enhance the smoothness of the hazard function λ0(.):

∆Λ
(m)∗
0 (t) =

∫
1

b
K(

t− s

b
)d∆Λ

(m)
0 (s), (4.10)

is a kernel estimate of the instantaneous hazard function of λ
(m)
0 (.). In equation (4.10), b is

the smoothing bandwidth, K is a nonnegative kernel function satisfying certain properties.

For example, one may use an Epanechnikov kernel defined as K(x) = 0.75(1 − x2), |x| ≤ 1

and the global bandwidth b = c ∗max{ti,sl}/(8n
1/5
v ) with c the pre-determined constant and

nv the total number of jump points in Λ0(.). Altstein and Li [2013] discussed the choice of

c in the sensitivity analysis and found that when c = 0.95, the estimation procedure would

yield good estimation accuracy in the most of the cases. We adopted this specification in

Section 4.2 and found that the performance of our proposed method is also satisfying in all

our simulations, which is consistent with the conclusions found in [Altstein and Li, 2013].

4.1.3 Standard error estimation

As discussed in Elashoff et al. [2016] (Section 4.1, p.72), standard errors of the parametric

components of the SMLE can be estimated by profiled likelihood, observed information

matrix, or bootstrap. All three methods can be computationally intensive when n is large.

Here we focus on the profiled likelihood-based method, which can be linearized with n [Li

et al., 2022a].

Let Ω = (β, τ, vech(Σθ), γ, α, {ϕsl}) denote the parametric component of Ψ and Ω̂ its

maximum likelihood estimate and D = {D1, . . . ,Dn} the observed data for all the subjects.

The variance-covariance matrix of Ω̂ can be estimated by inverting the following approximate
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empirical Fisher information [Lin et al., 2004, Zeng et al., 2005, Zeng and Cai, 2005]:

n∑
i=1

∇Ωl
(i)(Ω̂;D)∇Ωl

(i)(Ω̂;D)T , (4.11)

where ∇Ωl
(i)(Ω;D) is the observed score vector from the profiled likelihood l(i)(Ω;D) of Ω

on the ith subject by profiling out the baseline hazards. Details of the observed score vector

for each parametric component are provided in equations (C.12)-(C.17) in Section C.3 of the

supplementary materials.

4.2 Simulation studies

We present extensive simulations to examine the finite sample performance of the proposed

joint model and the classical joint model with midpoint imputation. We also demonstrate

that midpoint imputation can lead to biased parameter estimates, biased standard error

estimates and invalid inferences.

We began with the cohort size n = 600 and 5, 000 to examine the large sample properties.

First of all, the initial event time Si ∼ uni(0.1, 5) was observed to be interval-censored

through a series of non-informative finite inspection times [Lawless and Babineau, 2006]

U = {Uij : i = 1, . . . , n, j = 1, . . . , Ki with Ui0 = 0, Uij < Ui(j+1)},

with Ui(j+1) = Uij +uni(0.1, 1). For each subject i, there exists a smallest censoring interval

(Uij, Ui(j+1)] that contains Si, and thus Li = Uij and Ri = Ui(j+1) was observed.

Next, longitudinal measurements Yi(tij) were generated from amixed-effects location scale

model (4.1) and (4.2) with

mi(tij) = β0 + β1Si + β2tij + β3X1i + β4X2i + bi, (4.12)

σ2
i (tij) = exp(τ0 + τ1Si + τ2tij + τ3X1i + τ4X2i + ωi), (4.13)

where tij = Õij −Si is a scheduled follow-up visit time after the initial event, the first sched-

uled follow-up visit time Õi1 starts at Ri, X1i ∼ uni(−1, 1), and X2i ∼ N(1, 4). Therefore,
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we observed Yi(tij) measured at Õij. The random effects θi = (bi, ωi)
T follows N2(0,Σθ),

where σ2
b = 1, σ2

ω = 0.5, and σbw = 0.1. The mean trajectory mi(tij) and WS variance

σ2
i (tij), modeled by equations (4.12) - (4.13), include fixed effects induced by the interval-

censored covariates Si, tij, and two baseline covariates Xi1, Xi2, and a subject level random

effect bi, ωi, respectively.

Lastly, the target event process was generated from a Cox proportional hazards model:

λi(t) = λ0(t) exp{γ1Si + γ2X1i + γ3X2i + αbbi + αωωi}, (4.14)

where the baseline hazards λ0(t) is held constant at 0.3 for t ≥ 1 and 0 otherwise to as-

sure that the target event can be always observed after the first positive diagnosis of the

initial event. We simulated the non-informative censoring time Ci ∼ uni(5, 10) and let

Ti = min{T̃i, Ci} be the survival time after the initial event occurs (possibly censored) for

subject i, where T̃i are independent event times from equation (4.14), i = 1, . . . , n. The

longitudinal measurements for subject i at tij are assumed missing after Ti. Finally, we ob-

served the survival time Ei = Ti+Si in a total time scale. Overall, we obtained an event rate

at about 75% and the average number of longitudinal measurements per subject is about 10.

We fitted both our proposed joint model (4.1) - (4.3) (Model 1) that accounts for interval-

censored covariates as missing data with a well developed R package “iCenJMH” and a

classical joint model (Model 2) using midpoint imputation [Li et al., 2023]. Table 4.1 -

4.4 summarize simulated results on the bias, sample standard deviations of the parameter

estimates (SE), average estimated standard errors of the parameter estimates (Est. SE), and

coverage probabilities of 95% confidence intervals (CP) between the random effects under

different scenarios. Each entry in the table is based on 300 Monte Carlo samples.

Table 4.1 shows the performance of both models under the sample size of n = 600 and

the 100% interval censoring rate of the initial event. Compared to midpoint imputation

(Model 2), our proposed joint model method (Model 1) demonstrates a smaller bias for all

parameters, a larger standard error estimates, and CPs reach the 95% nominal level. On
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the other hand, Model 2 ignores the uncertainty of interval-censored covariates as missing

data induced severe bias in some parameter and lower standard error estimates, leading to

significant under-coverage of the associated confidence intervals. For example, the parameter

estimate and standard error estimate of β0, αb are both substantially biased, and its associ-

ated confidence interval coverage probability (18% and 0%) is unreasonably low compared

to the 95% nominal level. When the interval censoring rate of the initial event reduces to

30% (See Table 4.2), the performance of Model 1 behaves similar as shown in Table 4.1

but Model 2 still encounters undercoverage issue due to non-ignorable estimation bias and

underestimated standard errors.

We further investigate the large sample theory of Model 1 and Model 2 by increasing

the sample size to be 5,000 and results are summarised in Table 4.3 - 4.4. We find that the

performance of Model 1 satisfies the large sample theory such that the CPs are similar to

95% nominal level. In contrast, the performance of Model 2 worsens under the simulation

settings with both high and low interval-censoring rates of the initial event, which confirms

the conclusion we draw from Table 4.1 - 4.2.

4.3 An application: UK-Biobank data

The UK-Biobank (UKB) is a prospective cohort study with both genetic and phenotypic

data collected on approximately 500,000 individuals, aged 37-73 years, from the general

population between 2006 and 2010 in the United Kingdom [Collins, 2012, Sudlow et al.,

2015]. Record linkage to Health Episode Statistics (England), Patient Episode Database for

Wales, and the Scottish Morbidity Records (Scotland) was used to identify the date and

cause of hospital admissions. Hospital admission records were available until February 2018

for the full UKB cohort (noted as “UKB data”), whereas linkage to primary care records was

available for 45% of the UKB cohort until the end of 2017 (noted as “UKB Primary Care

data”). The detailed linkage procedures relating to primary care records are available online
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Table 4.1: Comparison of the bias, standard error (SE), estimated standard error (Est. SE),

and coverage probability (CP) between the proposed joint model (Model 1) and a classical

joint model using midpoint imputation (Model 2) for the interval-censored initial event time.

Abbreviation: IC = interval-censored; RC = right-censored. (n = 600, IC rate for Si=100%,

RC rate for Ti=75%)

Model 1 (proposed model) Model 2 (midpoint imputation)

Covariates True Bias SE Est. SE CP (%) Bias SE Est. SE CP (%)

Longitudinal

Mean trajectory

Intercept 5 -0.028 0.131 0.159 99.3 0.379 0.173 0.110 18.0

Si (Interval-censored) 2 0.010 0.047 0.052 97.0 -0.057 0.063 0.034 56.3

tij (Interval-censored) -3 -0.001 0.013 0.015 97.7 <0.001 0.013 0.014 95.3

X1i -3 -0.003 0.104 0.116 97.0 -0.007 0.140 0.084 74.7

X2i 2 -0.002 0.033 0.033 96.0 -0.010 0.042 0.022 68.0

WS variability

Intercept 1 -0.005 0.075 0.085 97.0 -0.016 0.073 0.079 96.0

Si (Interval-censored) 0.05 0.001 0.025 0.027 96.7 0.003 0.025 0.025 96.3

tij (Interval-censored) 0.2 <0.001 0.009 0.010 98.7 <0.001 0.009 0.010 98.0

X1i 0.1 -0.002 0.063 0.065 97.7 -0.003 0.064 0.063 97.0

X2i -0.2 -0.001 0.018 0.019 95.3 <0.001 0.018 0.018 95.3

Survival

Si (Interval-censored) -0.05 <0.001 0.039 0.050 99.7 0.009 0.036 0.036 93.0

X1i 0.2 0.008 0.102 0.102 95.0 -0.013 0.094 0.088 92.3

X2i -0.1 -0.003 0.028 0.030 96.7 0.005 0.026 0.026 93.3

Association

bi 0.5 0.029 0.109 0.116 97.0 -0.311 0.041 0.041 0.0

ωi -0.5 -0.012 0.115 0.124 96.7 0.116 0.091 0.093 78.0

Covariance matrix

of random effects

σ2
b 1 -0.032 0.118 0.130 95.0 1.105 0.146 0.149 0.0

σ2
ω 0.5 -0.004 0.045 0.046 95.0 -0.005 0.044 0.044 94.0

σbω 0.1 0.002 0.061 0.060 95.3 -0.031 0.059 0.058 93.0

Note: Large error in confidence interval coverage probability (CP) compared to the 95%

nominal level are highlighted in boldface. Each entry is based on 300 Monte Carlo samples.
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Table 4.2: Comparison of the bias, standard error (SE), estimated standard error (Est. SE),

and coverage probability (CP) between the proposed joint model (Model 1) and a classical

joint model using midpoint imputation (Model 2) for the interval-censored initial event time.

Abbreviation: IC = interval-censored; RC = right-censored. (n = 600, IC rate for Si=30%,

RC rate for Ti=75%)

Model 1 (proposed model) Model 2 (midpoint imputation)

Covariates True Bias SE Est. SE CP (%) Bias SE Est. SE CP (%)

Longitudinal

Mean trajectory

Intercept 5 -0.006 0.099 0.114 98.3 0.108 0.116 0.106 79.3

Si (Interval-censored) 2 <0.001 0.036 0.037 94.7 -0.019 0.043 0.034 83.7

tij (Interval-censored) -3 <0.001 0.012 0.014 97.7 0.001 0.012 0.013 97.7

X1i -3 0.003 0.085 0.090 96.3 0.002 0.096 0.083 89.3

X2i 2 0.001 0.028 0.025 94.7 -0.002 0.035 0.022 82.0

WS variability

Intercept 1 -0.002 0.073 0.082 96.7 -0.003 0.072 0.078 96.3

Si (Interval-censored) 0.05 <0.001 0.023 0.026 97.3 0.001 0.023 0.025 96.0

tij (Interval-censored) 0.2 <0.001 0.010 0.010 96.3 <0.001 0.010 0.009 94.3

X1i 0.1 0.001 0.064 0.064 96.7 0.001 0.063 0.062 96.0

X2i -0.2 -0.001 0.018 0.019 95.0 -0.001 0.018 0.018 94.7

Survival

Si (Interval-censored) -0.05 <0.001 0.037 0.041 96.3 0.004 0.036 0.037 94.7

X1i 0.2 0.005 0.102 0.099 94.3 -0.004 0.100 0.091 91.0

X2i -0.1 -0.002 0.027 0.029 96.3 0.001 0.027 0.027 94.7

Association

bi 0.5 0.010 0.080 0.079 95.7 -0.153 0.059 0.053 24.0

ωi -0.5 -0.005 0.096 0.104 97.7 0.057 0.088 0.094 88.3

Covariance matrix

of random effects

σ2
b 1 -0.007 0.094 0.092 94.0 0.287 0.112 0.096 17.0

σ2
ω 0.5 -0.003 0.042 0.045 97.0 -0.004 0.042 0.043 96.7

σbω 0.1 0.003 0.044 0.048 95.7 -0.005 0.047 0.048 93.3

Note: Large error in confidence interval coverage probability (CP) compared to the 95%

nominal level are highlighted in boldface. Each entry is based on 300 Monte Carlo samples.
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Table 4.3: Comparison of the bias, standard error (SE), estimated standard error (Est.

SE), and coverage probability (CP) between the proposed joint model (Model 1) and a

classical joint model using midpoint imputation (Model 2) for the interval-censored initial

event time. Abbreviation: IC = interval-censored; RC = right-censored. (n = 5, 000, IC

rate for Si=100%, RC rate for Ti=75%)

Model 1 (proposed model) Model 2 (midpoint imputation)

Covariates True Bias SE Est. SE CP (%) Bias SE Est. SE CP (%)

Longitudinal

Mean trajectory

Intercept 5 -0.004 0.045 0.051 95.3 0.387 0.061 0.036 0.0

Si (Interval-censored) 2 0.001 0.014 0.017 98.0 -0.062 0.022 0.011 3.3

tij (Interval-censored) -3 <0.001 0.005 0.005 94.0 0.001 0.005 0.005 94.0

X1i -3 -0.004 0.037 0.039 94.7 0.001 0.053 0.027 70.7

X2i 2 <0.001 0.011 0.011 92.0 -0.004 0.019 0.007 51.7

WS variability

Intercept 1 0.002 0.027 0.027 97.0 -0.007 0.026 0.027 94.7

Si (Interval-censored) 0.05 -0.001 0.008 0.009 97.3 0.001 0.008 0.009 96.0

tij (Interval-censored) 0.2 <0.001 0.004 0.003 93.0 <0.001 0.004 0.003 94.0

X1i 0.1 -0.001 0.021 0.021 96.0 -0.002 0.021 0.021 95.3

X2i -0.2 -0.001 0.006 0.006 95.3 <0.001 0.006 0.006 95.7

Survival

Si (Interval-censored) -0.05 <0.001 0.014 0.014 95.0 0.007 0.013 0.012 88.3

X1i 0.2 0.001 0.034 0.033 93.7 -0.016 0.031 0.030 91.0

X2i -0.1 -0.001 0.010 0.010 92.0 0.007 0.010 0.009 84.7

Association

bi 0.5 0.002 0.036 0.035 93.3 -0.312 0.014 0.014 0

ωi -0.5 -0.002 0.037 0.038 95.7 0.111 0.030 0.031 4.3

Covariance matrix

of random effects

σ2
b 1 -0.011 0.044 0.043 92.7 1.006 0.050 0.051 0.0

σ2
ω 0.5 -0.002 0.014 0.015 96.0 -0.006 0.014 0.015 94.7

σbω 0.1 <0.001 0.020 0.020 96.7 -0.031 0.021 0.020 61.7

Note: Large error in confidence interval coverage probability (CP) compared to the 95%

nominal level are highlighted in boldface. Each entry is based on 300 Monte Carlo samples.
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Table 4.4: Comparison of the bias, standard error (SE), estimated standard error (Est. SE),

and coverage probability (CP) between the proposed joint model (Model 1) and a classical

joint model using midpoint imputation (Model 2) for the interval-censored initial event time.

Abbreviation: IC = interval-censored; RC = right-censored. (n = 5, 000, IC rate for Si=30%,

RC rate for Ti=75%)

Model 1 (proposed model) Model 2 (midpoint imputation)

Covariates True Bias SE Est. SE CP (%) Bias SE Est. SE CP (%)

Longitudinal

Mean trajectory

Intercept 5 -0.001 0.042 0.037 92.7 0.117 0.045 0.035 12.3

Si (Interval-censored) 2 <0.001 0.014 0.012 92.0 -0.021 0.015 0.011 50.3

tij (Interval-censored) -3 0.001 0.004 0.004 94.7 0.001 0.004 0.004 94.7

X1i -3 -0.003 0.032 0.029 92.0 -0.003 0.036 0.027 86.3

X2i 2 <0.001 0.010 0.008 95.0 <0.001 0.013 0.007 86.0

WS variability

Intercept 1 0.002 0.025 0.027 96.3 <0.001 0.025 0.026 96.3

Si (Interval-censored) 0.05 -0.001 0.008 0.009 96.0 -0.001 0.008 0.009 96.3

tij (Interval-censored) 0.2 <0.001 0.003 0.003 95.3 <0.001 0.003 0.003 94.7

X1i 0.1 -0.002 0.020 0.021 95.7 -0.002 0.020 0.021 95.7

X2i -0.2 <0.001 0.006 0.006 94.0 <0.001 0.006 0.006 94.7

Survival

Si (Interval-censored) -0.05 -0.001 0.014 0.013 94.0 0.003 0.013 0.013 94.3

X1i 0.2 0.001 0.034 0.032 92.0 -0.008 0.033 0.031 90.3

X2i -0.1 -0.001 0.010 0.009 92.0 0.003 0.010 0.009 90.7

Association

bi 0.5 0.001 0.025 0.025 94.3 -0.161 0.020 0.018 0

ωi -0.5 -0.005 0.034 0.033 95.0 0.053 0.032 0.031 56.7

Covariance matrix

of random effects

σ2
b 1 -0.001 0.028 0.030 96.0 0.296 0.034 0.033 0

σ2
ω 0.5 -0.002 0.014 0.014 95.3 -0.003 0.014 0.014 95.3

σbω 0.1 <0.001 0.015 0.016 94.7 -0.006 0.016 0.016 93.0

Note: Large error in confidence interval coverage probability (CP) compared to the 95%

nominal level are highlighted in boldface. Each entry is based on 300 Monte Carlo samples.
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[https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/primary_care_data.pdf].

In this illustrating example, we identified 42,785 participants, who were free from car-

diovascular diseases (CVD) at baseline and diagnosed with both type 1 and type 2 diabetes

but known to be observed at two consecutive clinical visits. The primary event outcome

is a CVD composite outcome, reflecting myocardial infarction (MI), unstable angina (UA),

ischemic stroke (IS), and percutaneous coronary intervention (PCI) [Kim et al., 2023]. Dur-

ing the study period, CVD-related biomarkers were measured during the follow-up visits,

such as systolic and diastolic blood pressure (SBP and DBP, mmHg), High-density and low-

density lipoprotein cholesterol (HDL and LDL, mmol/L), and triglycerides (mmol/L). As an

illustration, we considered a joint model of SBP and CVD event outcome in the presence

of the interval-censored age-onset diagnosis of type 2 diabetes and analyzed the association

between the two outcomes after type 2 diabetes diagnosis. We adjusted for the selected

baseline variables including self-reported blood pressure lowering medication use at the as-

sessment center (BP drug, 1=yes, 0=no), body mass index (BMI, kg/m2), smoking status

(1=smoker, 0=non-smoker), International Standard Classification of Education (ISCED),

race/ethnicity (1=non-British, 0=British), and sex (1=female, 0=male) in both SBP and

CVD time-to-event sub-models.

After excluding the patients without both longitudinal and event information, a cohort

of 11,821 participants with an average of 8.2 repeated measures and a total of 97,317 SBP

measures are kept for this analysis. Among them, 1,694 participants (14.3%) experienced

CVD events and 10,127 (85.7%) were right-censored during the study period.

In our proposed joint model (Model 1), the longitudinal SBP (Yi(tij)) is assumed to

follow the mixed-effects multiple location scale model (4.1)-(4.2) as

mi(tij) = β0 + β1Si + β2tij + β3BP durgi + β4BP durgi × tij+

β5BMIi + β6Smokingi + β7ISCEDi + β8Racei + β9Sexi + bi, (4.15)

σ2
i (tij) = exp(τ0 + τ1Si + τ2tij + τ3BP durgi + τ4BP durgi × tij+
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τ5BMIi + τ6Smokingi + τ7ISCEDi + τ8Racei + τ9Sexi + ωi), (4.16)

and the CVD event outcome is modeled by the following Cox proportional hazards model:

λi(t) = λ0(t) exp(γ1Si + γ2BP durgi + γ3BMIi + γ4Smokingi + γ5ISCEDi+

γ6Racei + γ7Sexi + αbbi + αωωi), (4.17)

where the shared random effects θi = (bi, ωi)
T follow bivariate normal distribution with mean

zero and variance-covariance matrix

Σθ =

 σ2
b σbω

σbω σ2
ω

 .

The results of joint analysis of SBP and time-to-CVD are summarised in Table 4.5. Both

Model 1 and Model 2 show that the heterogeneity of SBP WS variability is substantial (σ2
ω =

0.27, SE = 0.01, p-value< 0.001) across UKB participants and suggest that standardized SBP

WS variability (ωi/σω) is highly predictive of CVD event. We notice that the individual mean

of SBP is protective of CVD and one possible reason is the non-ignorable correlation between

SBP WS variability (ωi) and individual mean (bi). Both models also suggest that those who

took the blood pressure lowering medication at the assessment center had around 8mmHg

higher SBP at the baseline but the mean trajectory significantly declined over time, compared

to those never self-reported their medication use. One interesting finding is that Model 1

shows that age at diagnosis of diabetes is positively associated with the mean SBP, however,

Model 2 does not detect any significant signal of age at diagnosis of diabetes. In general,

the results from Model 1 would be more clinically meaningful since one’s physical condition

makes it harder to regulate the blood pressure as aging. In the survival sub-model, Model 1

suggests that a smoker had an 12% increased risk of CVD event than a non-smoker with a

p-value of 0.05, while Model 2 only shows a marginal relationship. In summary, the results

demonstrate that midpoint imputation can yield biased results and invalid inference and thus

lead to problematic conclusion about the relationship between outcomes and covariates.
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Table 4.5: Joint analysis of systolic blood pressure (SBP, mmHg) and time to CVD using

the UK-Biobank data (Model 1 is the proposed joint model (4.15)-(4.17) and Model 2 is

the classical joint model using midpoint imputation. Abbreviations: SE=standard error;

HR=hazard ratio; CI=confidence interval.)

Model 1 Model 2

Longitudinal outcome Mean trajectory WS variability Mean trajectory WS variability

(Systolic blood pressure (SBP, mmHg)) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Intercept 125.79 (0.62)*** 4.76 (0.08)*** 129.76 (0.57)*** 4.91 (0.08)***

Interval-censored covariates

Age at diagnosis of diabetes 0.06 (0.01)*** -0.01 (<0.01)*** <0.01 (0.01) -0.01 (<0.01)***

Time (Years from diagnosis of diabetes) 0.09 (0.01)*** <0.01 (<0.01) 0.08 (0.01)*** <0.01 (<0.01)

BP drug × Time -0.50 (0.01)*** -0.02 (<0.01)*** -0.46 (0.01)*** -0.01 (<0.01)***

Baseline covariates

BP drug 8.33 (0.15)*** 0.26 (0.02)*** 8.31 (0.15)*** 0.26 (0.02)***

BMI 0.13 (0.01)*** <0.01 (<0.01) 0.11 (0.01)*** <0.01 (<0.01)

smoking status 0.12 (0.13) 0.05 (0.02)*** 0.15 (0.12) 0.05 (0.02)***

ISCED -0.26 (0.04)*** -0.02 (<0.01)*** -0.30 (0.04)*** -0.02 (<0.01)***

Race (Non-British/British) -0.44 (0.17)*** 0.02 (0.02) -0.82 (0.16)*** 0.01 (0.02)

Sex (Female/Male) -1.08 (0.13)*** 0.03 (0.02) -1.19 (0.13)*** 0.03 (0.02)

Random effects

(variance-covariance matrix) Estimate (SE) Estimate (SE)

σ2
b 72.52 (1.28)*** 74.06 (1.30)***

σbω 1.77 (0.07)*** 1.81 (0.07)***

σ2
ω 0.27 (0.01)*** 0.27 (0.01)***

Target event outcome (CVD) HR (95% CI) HR (95% CI)

Interval-censored covariates

Age at diagnosis of diabetes 1.15 (1.14-1.16)*** 1.14 (1.13-1.14)***

Baseline covariates

BP drug 1.09 (0.97-1.23) 1.07 (0.95-1.20)

BMI 1.04 (1.03-1.05)*** 1.03 (1.02-1.04)***

smoking status 1.12 (1.00-1.24)* 1.10 (1.00-1.23)

ISCED 0.96 (0.93-0.99)** 0.96 (0.93-0.99)***

Race (Non-British/British) 1.28 (1.12-1.46)*** 1.26 (1.10-1.43)***

Sex (Female/Male) 0.60 (0.53-0.68)*** 0.61 (0.54-0.69)***

Random effects

Mean trajectory (αb) 0.97 (0.97-0.98)*** 0.97 (0.96-0.98)***

WS variability (αω) 1.27+ (1.16-1.39)*** 1.26+ (1.15-1.38)***

* p-value<0.05; ** p-value<0.01; *** p-value<0.001.

+ Standardized HR of association parameter for WS variability is reported to show the effect

on the risk of CVD by 1 SD change of WS variability of SBP.
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4.4 Discussion

We have developed a novel joint model of longitudinal and time-to-event outcomes that

handles the interval-censored covariates as missing data due to the unknown initial event

time. The non-parametric estimator of unknown initial event times is originally proposed

by Morrison et al. [2021], in which a discrete, finite support is well defined, and integrating

the complete-data log likelihood becomes a summation over the designated support and

thus relaxes the distributional assumption on the hazard of the initial event time. We

develop a customized EM algorithm under the joint modeling framework and demonstrate its

estimation advantage via extensive simulations, comparing with existing approaches such as

midpoint imputation, which ignores the uncertainty of interval-censored covariates and thus

leads to severe bias and undercoverage. Our analysis of UKB data reveals that imputation

strategy can result in problematic conclusion on parameter estimation.

The utility of joint modeling of longitudinal and time-to-event outcomes is not limited

to the simple setting considered in this paper. It could be possibly extended to many other

applications, such as joint multi-state model, joint modeling of recurrent events, or when

the target event is also interval-censored. Extensions to more sophisticated joint models for

multiple longitudinal biomarkers are also warranted in our future research.
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APPENDIX A

Supplementary Materials for Project 1

A.1 M-step solutions for equation (2.4) in Section 2.1.1.2

It can be shown that the parameters β, σ2, and Σ, as well as Λ0k(t) have closed-form solutions

in the M-step (See equation (2.4)). Using E(m) to denote E
(m)

bi|Yi,Ci,Ψ(m) , we have

β(m+1) =

{
n∑

i=1

ni∑
j=1

X
(1)
i (tij)X

(1)
i (tij)

T

}−1 n∑
i=1

ni∑
j=1

{
Yij − E(m)(X̃i

(1)
(tij)

T bi)
}

×X(1)
i (tij), (A.1)

σ2(m+1) =
1∑n

i=1 ni

n∑
i=1

ni∑
j=1

E(m)
{
Yij −X

(1)
i (tij)

Tβ(m+1) − X̃i
(1)
(tij)

T bi

}2

, (A.2)

Σ(m+1) =
1

n

n∑
i=1

E(m)(bib
T
i ), (A.3)

Λ
(m+1)
0k (t) =

∑
l:tkl≤t

dkl∑
r∈R(tkl)

exp(X
(2)T
r γ

(m)
k )E(m)

{
exp(ν

(m)T
k br)

} , (A.4)

where tk1 > ... > tkqk are the distinct uncensored failure times for risk k, R(tkl) is the risk

set at time tkl, l = 1, ..., qk, and dkl is the number of type k failures, for k = 1, . . . , K. It is

clear from equation (A.4) that Λ
(m+1)
0k (t) is a right-continuous and non-decreasing function.

The parameters γ and ν do not have closed-form solutions and we update them using

the one-step Newton-Raphson method

γ
(m+1)
k = γ

(m)
k + I(m)−1

γk
S(m)
γk

, k = 1, . . . , K,

ν
(m+1)
k = ν

(m)
k + I(m)−1

νk
S(m)
νk

, k = 1, . . . , K,
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where

I(m)
γk

=
n∑

i=1

∑
tkj≤Ti

∆Λ0k(tkj)
(m+1) exp(X

(2)T
i γ

(m)
k )E(m)

{
exp(ν

(m)T
k bi)

}
X

(2)
i X

(2)T
i , (A.5)

S(m)
γk

=
n∑

i=1

[
I(Di = k)X

(2)
i (Ti)

−
∑

tkj≤Ti

∆Λ0k(tkj)
(m+1) exp(X

(2)T
i γ

(m)
k )E(m)

{
exp(ν

(m)T
k bi)

}
X

(2)
i

]
, (A.6)

I(m)
νk

=
n∑

i=1

∑
tkj≤Ti

∆Λ
(m+1)
0k exp(X

(2)T
i γ

(m)
k )E(m)

{
bib

T
i exp(ν

(m)T
k bi)

}
, (A.7)

S(m)
νk

=
n∑

i=1

[
I(Di = k)E(m)(bi)

−
∑

tkj≤Ti

∆Λ0k(tkj)
(m+1) exp(X

(2)T
i γ

(m)
k )E(m)

{
bi exp(ν

(m)T
k bi)

}]
. (A.8)

A.2 The observed score vector in equation (2.6) in Section 2.1.1.3

The components of the observed score vector in equation (2.6) are defined by

∇βl
(i)(Ω̂;Y,C) =

1

σ2

ni∑
i=1

E
{
Yij −X

(1)
i (tij)

Tβ − X̃i
(1)
(tij)

T bi

}
X

(1)
i (tij)

∣∣∣∣∣
β=β̂,σ2=σ̂2

, (A.9)

∇Σl
(i)(Ω̂;Y,C) =

1

2

[
2Σ−1E(bib

T
i )Σ

−1−
{
Σ−1E(bib

T
i )Σ

−1 ◦ I
}
−2Σ−1+Σ−1 ◦ I

] ∣∣∣∣∣
Σ=Σ̂

,(A.10)

∇σ2l(i)(Ω̂;Y,C) =

[
1

2σ4

ni∑
i=1

E
{
Yij −X

(1)
i (tij)

Tβ − X̃i
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(tij)
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}2
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2σ2
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,(A.11)
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× exp(γTkX
(2)
i )E

{
exp(νTk bi)

} ∣∣∣∣∣
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, (A.12)
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k bi)
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. (A.13)

A.3 Comparison of estimation results using the standard Gauss-

Hermite quadrature rule and the pseudo-adaptive Gauss-Hermite

quadrature rule

We ran a small simulation study to compare the estimation results based on the standard

Gauss-Hermite rule (nq = 20) with those based on the pseudo-adaptive quadrature rule

(nq = 6). We generated 500 Monte Carlo samples of size n = 1, 000 from the joint model

(2.15) - (2.17) described in Section 2.2, where the maximum scheduled follow-up time was

set as 5 and the average number of longitudinal measurements was about 3 per subject. The

overall censoring rate was about 34% (35% for risk 1 and 30% for risk 2). The bias, the

standard error (SE), and the estimated standard error (Est. SE) of the parameter estimates

are summarized in Table A.1.

It is seen that the performance of the two methods are similar. Both methods have small

bias and their Est. SEs are close to the SEs in most cases.
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Table A.1: Comparison of bias, standard error (SE), and estimated standard error (Est. SE)

between the standard Gauss-Hermite quadrature rule (nq = 20) and the pseudo-adaptive

Gauss-Hermite quadrature rule (nq = 6)(n = 1000)

Standard Pseudo-adaptive

Parameter True Bias SE Est. SE Bias SE Est. SE

Longitudinal

Fixed effects

β0 10 -0.008 0.043 0.040 0.001 0.043 0.040

β1 1 -0.003 0.048 0.027 0.002 0.033 0.031

β2 -1.5 -0.005 0.059 0.058 -0.002 0.058 0.058

σ2 0.5 0.002 0.018 0.019 -0.001 0.018 0.018

Competing risks

Fixed effects

γ11 0.8 -0.025 0.178 0.182 -0.006 0.179 0.182

γ12 -1 0.004 0.126 0.127 -0.005 0.125 0.127

γ21 0.5 0.005 0.193 0.191 -0.005 0.189 0.191

γ22 -1.5 -0.010 0.135 0.138 -0.017 0.134 0.138

Association

ν11 1 -0.015 0.132 0.129 0.006 0.133 0.128

ν12 0.5 -0.058 0.228 0.202 0.012 0.204 0.209

ν21 0.7 -0.011 0.131 0.131 0.008 0.130 0.131

ν22 0.25 0.022 0.227 0.210 -0.004 0.216 0.215

Random effects

Σ11 0.5 -0.006 0.041 0.041 -0.001 0.040 0.041

Σ22 0.25 0.001 0.023 0.022 0.001 0.022 0.022

Σ12 0 0.002 0.026 0.024 0.001 0.024 0.024
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Figure A.1: Runtime (seconds) for three implementations of Empirical Bayes estimates:

lme4, linear scan, and no linear scan. Fold change is calculated as the ratio of runtime

between two methods.

A.4 Contrast of runtime between three implementations of the

variance-covariance matrices of the Empirical Bayes estimates

for the linear mixed effects model

We conducted a small simulation study to compare the runtime between the linear calculation

algorithm of the variance-covariance matrices of the Empirical Bayes estimates described in

Remark 1 of Section 2.1.2 and the direct implementation (2.10) over various samples sizes.

We also report the runtime of a popular R package lme4 as a reference. The results are

depicted in Figure A.1 below.

It is seen from Figure A.1 that applying the simple linear calculation algorithm can yield
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a speed-up by a factor of 10 to 10,000 when n grows from 10 to 105. Our implementation

was also significantly faster than the popular R package lme4 by a factor of 10 to 500 as n

grows from 10 to 105.

A.5 Parameter and standard error estimation results of different

implementations of semi-parametric joint models with com-

peting risks data

Figures 2.1 and 2.2 in Section 2.2 have focused on contrasting the computational efficiency of

different implementations for parameter estimation and standard error estimation in terms

of the runtime. As an illustration, we ran a small simulation to compare their parameter

estimates and estimated standard error based on 100 simulated data sets of size n = 1,000

from the model (2.15) - (2.17). The maximum scheduled follow-up time was set as 5 and

the average number of longitudinal measurements was about 3 per subject. The overall

censoring rate was about 34% (35% for risk 1 and 30% for risk 2). The estimation results

are summarized in Table A.2, where each entry is the average of the parameter and standard

error estimates over the 100 simulated data sets. As one would expect, the three different

implementations (methods 1-3) yielded almost identical results, whereas joineR produced

similar estimation results for the longitudinal model, but slightly different results for the

competing risks model due to its different latent association structure.

A.6 Analysis results of the lung health study data

Table A.3 summarizes the parameter estimates with 95% confidence intervals for the joint

model (2.18) and (2.19) using different joint model packages for the lung health study data.

It is seen that for the longitudinal sub-model, the parameter estimates obtained from

these different packages are almost identical, and that they do not seem to be much influ-
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Table A.2: Parameter estimates and standard error (SE) for three implementations of the

joint model (2.1) and (2.2) and the joineR package based on 100 data sets of size n = 1,000

generated from the model (2.15) - (2.17). The details of Methods 1-3 are given in Section

2.2. Each entry is the average of the parameter and standard error estimates over the 100

simulated data sets.

Method 1 Method 2 Method 3 joineR*

Parameter True Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Longitudinal

Fixed effects

β0 10 10.00 (0.04) 10.00 (0.04) 10.00 (0.04) 9.94 (0.05)

β1 1 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 0.95 (0.02)

β2 -1.5 -1.51 (0.06) -1.51 (0.06) -1.51 (0.06) -1.52 (0.06)

σ2 0.5 0.50 (0.02) 0.50 (0.02) 0.50 (0.02) 0.49 (0.02)

Competing risks

Fixed effects

γ11 0.8 0.78 (0.18) 0.78 (0.18) 0.78 (0.18) 0.72 (0.20)

γ12 -1 -1.02 (0.13) -1.02 (0.13) -1.02 (0.13) -0.90 (0.11)

γ21 0.5 0.50 (0.19) 0.50 (0.19) 0.50 (0.19) 0.45 (0.19)

γ22 -1.5 -1.52 (0.14) -1.52 (0.14) -1.52 (0.14) -1.44 (0.14)

Association

ν11 1 1.00 (0.13) 1.00 (0.13) 1.00 (0.13) N/A

ν12 0.5 0.49 (0.21) 0.49 (0.21) 0.49 (0.21) N/A

ν21 0.7 0.70 (0.13) 0.70 (0.13) 0.70 (0.13) N/A

ν22 0.25 0.29 (0.21) 0.29 (0.21) 0.29 (0.21) N/A

Random effects

Σ11 0.5 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.52 (0.04)

Σ22 0.25 0.25 (0.02) 0.25 (0.02) 0.25 (0.02) 0.25 (0.02)

Σ12 0 0.00 (0.04) 0.00 (0.02) 0.00 (0.02) -0.01 (0.03)

*No estimates were available for the association parameters ν because joineR uses a different

latent association structure.
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Table A.3: Parameter estimates using different joint model R packages for the lung health

study data
Packages FastJM joineR JSMa JSMb JMa1 JMa2 JM∗b JMbayesa JMbayes∗b

Parameters (95% CI)

Longitudinal outcome (FVC%)

Intercept 5.07 5.07 5.07 5.07 5.07 5.07 - 5.06 5.06

(4.97, 5.18) (4.95, 5.17) (4.97, 5.18) (4.97, 5.18) (4.97, 5.18) (4.97, 5.18) - (4.96, 5.17) (4.96, 5.16)

Time -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 - -0.05 -0.04

(-0.06, -0.05) (-0.06, -0.05) (-0.06, -0.05) (-0.06, -0.05) (-0.06, -0.05) (-0.06, -0.05) - (-0.07, -0.04) (-0.06, -0.03)

Age -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 - -0.03 -0.03

(-0.03, -0.03) (-0.03, -0.03) (-0.03, -0.03) (-0.03, -0.03) (-0.03, -0.03) (-0.03, -0.03) - (-0.03, -0.03) (-0.03, -0.03)

F10CIGS -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 - -0.003 -0.003

(-0.004, -0.002) (-0.004, -0.002) (-0.004, -0.002) (-0.004, -0.002) (-0.004, -0.002) (-0.004, -0.002) - (-0.004, -0.002) (-0.004, -0.002)

Sex

Female - - - - - - - - -

Male -0.86 -0.86 -0.86 -0.86 -0.86 -0.86 - -0.86 -0.86

(-0.88, -0.83) (-0.88, -0.84) (-0.88, -0.83) (-0.88, -0.83) (-0.88, -0.83) (-0.88, -0.83) - (-0.88, -0.84) (-0.88, -0.84)

Logslope -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 - -0.13 -0.13

(-0.15, -0.12) (-0.15, -0.12) (-0.15, -0.12) (-0.15, -0.12) (-0.15, -0.12) (-0.15, -0.12) - (-0.15, -0.12) (-0.15, -0.12)

BMI 0.0007 0.0007 0.0007 0.0007 0.0007 0.001 - 0.0004 0.0004

(-0.002, 0.003) (-0.002, 0.003) (-0.002, 0.003) (-0.002, 0.003) (-0.002, 0.003) (-0.002, 0.003) - (-0.002, 0.003) (-0.002, 0.003)

SIP 0.02 0.02 0.02 0.02 0.02 0.02 - 0.02 0.02

(-0.01, 0.04) (-0.01, 0.04) (-0.01, 0.04) (-0.01, 0.04) (-0.01, 0.04) (-0.01, 0.04) - (-0.01, 0.04) (-0.01, 0.04)

SIA 0.03 0.03 0.03 0.03 0.03 0.03 - 0.03 0.03

(0.01, 0.06) (0.00, 0.05) (0.01, 0.06) (0.01, 0.06) (0.01, 0.06) (0.01, 0.06) - (0.01, 0.06) (0.01, 0.06)

SIP:time 0.01 0.01 0.01 0.01 0.01 0.01 - 0.00 0.03

(0.01, 0.01) (0.01, 0.01) (0.01, 0.01) (0.01, 0.01) (0.01, 0.01) (0.01, 0.01) - (-0.02, 0.02) (0.01, 0.05)

SIA:time 0.01 0.01 0.01 0.01 0.01 0.01 - 0.01 0.02

(0.01, 0.02) (0.01, 0.02) (0.01, 0.02) (0.01, 0.02) (0.01, 0.02) (0.01, 0.02) - (0.00, 0.02) (0.01, 0.03)

Error

σ2 0.02 0.02 0.02 0.02 0.02 0.02 - 0.02 0.02

(0.02, 0.02) (0.02, 0.02) (0.02, 0.02) (0.02, 0.02) (0.01, 0.02) (0.02, 0.02) - (0.02, 0.02) (0.02, 0.02)

Covariance matrix of bi

(Intercept) 0.13 0.13 0.13 0.13 0.13 0.13 - 0.14 0.14

(0.13, 0.14) (0.13, 0.14) (0.13, 0.14) (0.13, 0.14) (0.12, 0.15) (0.11, 0.15) - (0.13, 0.14) (0.13, 0.14)

(Intercept):(time) 0.0012 0.0012 0.0012 0.0012 0.0012 0.001 - -0.003 -0.0044

(0.0007, 0.0016) (0.0011, 0.0012) (0.0012, 0.0012) (0.0012, 0.0012) (0.0011, 0.0012) (-0.03, 0.032) - (-0.0039, -0.0023) (-0.0090, 0.0002)

(Time) 0.0015 0.0015 0.0015 0.0015 0.0015 0.002 - 0.233 0.234

(0.0015, 0.0016) (0.0014, 0.0017) (0.0015, 0.0016) (0.0015, 0.0016) (-0.001, 0.004) (0, 0.003) - (0.225, 0.241) (0.226, 0.243)

survival outcome (drop out)

BMI 0.01 0.01 0.02 0.02 0.04 0.02 - 0.01 -0.01

(-0.01, 0.04) (-0.01, 0.03) (0.00, 0.04) (0.00, 0.04) (0.02, 0.06) (0.00, 0.04) - (-0.01, 0.03) (-0.03, 0.02)

SIP -0.10 -0.10 -0.09 -0.09 -0.06 -0.08 - -0.07 0.28

(-0.30, 0.10) (-0.34, 0.10) (-0.30, 0.11) (-0.30, 0.11) (-0.27, 0.14) (-0.28, 0.12) - (-0.28, 0.10) (-0.03, 0.59)

SIA -0.18 -0.18 -0.16 -0.17 -0.14 -0.15 - -0.15 -0.06

(-0.38, 0.03) (-0.39, 0.02) (-0.37, 0.05) (-0.38, 0.04) (-0.35, 0.07) (-0.36, 0.05) - (-0.35, 0.11) (-0.28, 0.15)

Logslope 0.10 0.09 0.05 0.09 0.16 0.08 - 0.03 0.20

(-0.02, 0.21) (-0.07, 0.16) (-0.07, 0.17) (-0.02, 0.21) (0.04, 0.27) (-0.04, 0.20) - (-0.08, 0.15) (0.09, 0.31)

Sex

Female - - - - - - - - -

Male -0.11 -0.09 -0.37 -0.08 0.04 -0.28 - -0.45 -0.11

(-0.30, 0.09) (-0.32, 0.11) (-0.62, -0.11) (-0.27, 0.10) (-0.23, 0.30) (-0.54, -0.02) - (-0.71, -0.15) (-0.37, 0.15)

Age 0.03 0.03 0.02 0.03 0.05 0.03 - 0.01 0.04

(0.02, 0.04) (0.01, 0.04) (0.01, 0.04) (0.02, 0.04) (0.04, 0.07) (0.01, 0.04) - (0.00, 0.03) (0.02, 0.06)

Association*, ν Shared Current value of Current value Current value of Current value Current value - Current value Shared

Random effect Latent process Latent process Random effect

-0.43 (Intercept) -0.37 -0.33 -0.37 0.11 -0.23 - -0.45 -0.60 (Intercept)

(-0.69, -0.17) (-0.64, -0.17) (-0.55, -0.11) (-0.59, -0.15) (-0.12, 0.34) (-0.45, -0.01) - (-0.69, -0.15) (-1.11, -0.28)

0.93 (Time) 14.86 (Time)

(-3.56, 5.42) (13.19, 16.42)

*Association parameters that capture the latent relationship between two sub-models have

different interpretations among different packages and cannot be compared directly.

*JMb failed to converge and thus no parameter estimates were provided.

*Some parameter estimates obtained from JMbayesb might not converge. Diagnostic plots

of the posterior parameter estimates are provided in supplementary materials (See Figure

A.2). 78



enced by the different latent association parameterization Wi(t) in the survival sub-model.

For the survival sub-model, the results are also similar between different packages. The only

exception is the association parameter because of the different latent association parameter-

ization Wi(t) in different packages.

It is worth pointing out that both FastJM and JMbayesb fit the same shared random

effects model while JMbayesb assumes a parametric B-spline baseline hazard, and they have

produced similar results for all parameters except for the association parameter of random

slope of time. A diagnostic analysis for the posterior estimates of the association parameter

(Figure A.2) reveals that JMbayesb suffered a convergence issue for this parameter, which

explains the discrepancy between the FastJM and JMbayesb results.

Figure A.2: Diagnostic plot of posterior estimates of the association parameters ν1 (intercept)

and ν2 (time) based on a Bayesian MCMC sample of 2,000 points obtained from JMbayesb for

lung health study data. (MCMC setup: number of iterations = 40,000; number of burn-in

= 15,000; number of thinning = 20.)
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A.7 Analysis results of the UK-Biobank primary care (UKB-PC)

data

Table A.4 shows the analysis results of the FastJM and joineR packages for the joint model

(Model-L) and (Model-PCH) based on two UKB-PC random subsets of sizes n=5,000 and

20,000, as well as the full UKB-PC data (n=193,287).

It is seen that the analysis results produced by FastJM and joineR are similar for the

longitudinal sub-model for the UKB-PC subset of 5,000 and 20,000 participants. For the

survival sub-model, the results are also similar for most parameters except for the association

parameters due to the different latent structure Wi(t) between the two packages. It is worth

noting that for the full UKB-PC data, FastJM was able to finish the analysis in real time

(within 1 hour), whereas joineR failed to produce any result due to computational failure.
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Table A.4: Comparisons of parameter estimates for the longitudinal and competing risks

survival outcomes for the UK-biobank primary care data between different R packages (n =

5,000, 20,000, 193,287; Type 1 failure = t2d (type 2 diabetes), Type 2 failure = stroke, MI,

or all-cause death)
Package FastJM joineR

Sample size 5,000 20,000 193,287 5,000 20,000 193,287

Parameter Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Longitudinal outcome (SBP)

Intercept 88.13 <0.0001 88.18 <0.0001 88.48 <0.0001 88.55 <0.0001 88.50 <0.0001 - -

Age at visit 0.39 <0.0001 0.40 <0.0001 0.40 <0.0001 0.38 <0.0001 0.39 <0.0001 - -

BMI 0.75 <0.0001 0.74 <0.0001 0.73 <0.0001 0.75 <0.0001 0.75 <0.0001 - -

Sex

Female - - - - - - - - - - - -

Male 4.18 <0.0001 3.88 <0.0001 4.01 <0.0001 4.10 <0.0001 3.78 <0.0001 - -

Ethnicity

White - - - - - - - - - - - -

Non-white -2.91 0.0006 -1.49 0.0004 -1.32 <0.0001 -2.97 0.0002 -1.46 0.0001 - -

σ2 160.47 <0.0001 160.91 <0.0001 162.65 <0.0001 160.22 <0.0001 160.69 <0.0001 - -

Covariance matrix of bi

(Intercept) 1162.76 <0.0001 1143.11 <0.0001 1088.65 <0.0001 1227.14 <0.0001 1200.78 <0.0001 - -

(Intercept):(age at visit) -19.21 <0.0001 -18.92 <0.0001 -18.03 <0.0001 -20.34 <0.0001 -19.94 <0.0001 - -

(age at visit) 0.34 <0.0001 0.34 <0.0001 0.33 <0.0001 0.36 <0.0001 0.36 <0.0001 - -

Type 1 Failure

BMI 0.14 <0.0001 0.13 <0.0001 0.14 <0.0001 0.14 <0.0001 0.13 <0.0001 - -

Sex

Female - - - - - - - - - - - -

Male 0.64 <0.0001 0.47 <0.0001 0.48 <0.0001 0.63 <0.0001 0.46 <0.0001 - -

Ethnicity

White - - - - - - - - - - - -

Non-white 1.42 <0.0001 1.54 <0.0001 1.28 <0.0001 1.40 <0.0001 1.55 <0.0001 - -

Association*, ν 0.02 0.0077 0.01 0.0039 0.02 <0.0001 0.01 0.2314 0.0042 0.2439 - -

1.17 0.0096 0.52 0.0151 0.97 <0.0001 - - - - - -

Type 2 Failure

BMI 0.05 <0.0001 0.03 <0.0001 0.03 <0.0001 0.04 0.0003 0.03 <0.0001 - -

Sex

Female - - - - - - - - - - - -

Male 0.68 <0.0001 0.63 <0.0001 0.62 <0.0001 0.66 <0.0001 0.60 <0.0001 - -

Ethnicity

White - - - - - - - - - - - -

Non-white 0.27 0.3671 0.30 0.0258 0.23 <0.0001 0.28 0.3335 0.29 0.0180 - -

Association*, ν 0.02 0.0217 0.02 <0.0001 0.02 <0.0001 0.02 0.0061 0.02 <0.0001 - -

1.42 0.0013 1.51 <0.0001 1.35 <0.0001 - - - - - -

*Association parameters that capture the latent relationship between the longitudinal and

survival sub-models are different between FastJM and joineR because of their different latent

association structures: FastJM uses shared random effects, whereas joineR uses the current

value of the latent process.

- Fail to produce any result due to computational failure.
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APPENDIX B

Supplementary Materials for Project 2

B.1 The EM algorithm

B.1.1 The M-step (equation (3.5))

It can be shown that the parameters β, Σθ, as well as Λ0k(tkj) at the qk distinct observed

type k event times tk1 > · · · > tkqk , have closed form solutions in the M-step. Using E(m) to

denote E
(m)

bi,ωi|Yi,Ti,Di,Ψ(m) and a
⊗

2 = aaT , ∀a ∈ Rd, we have

β(m+1) =

{
n∑

i=1

ni∑
j=1

X
(1)

⊗
2

i (tij)

exp {W T
i (tij)τ

(m)}
E(m)

[
exp

{
−Vi(tij)Tωi

}]}−1

×

(
n∑

i=1

ni∑
j=1

E(m)
[
exp

{
−Vi(tij)Tωi

}]
X

(1)
i (tij)Yi(tij)

exp {W T
i (tij)τ

(m)}

−
ZT

i (tij)E
(m)
[
bi exp

{
−Vi(tij)Tωi

}]
X

(1)
i (tij)

exp {W T
i (tij)τ

(m)}

)
(B.1)

Σ
(m+1)
θ =

1

n

n∑
i=1

E(m)(θ
⊗

2
i ) =

1

n

n∑
i=1

 E(m)(b
⊗

2
i ) E(m)(biω

T
i )

E(m)(ωib
T
i ) E(m)(ω

⊗
2

i )

 , (B.2)

Λ
(m+1)
0k (tkj) =

qk∑
l=j

dkl∑
r∈R(tkj)

exp
{
X

(2)T
r (tkj)γ

(m)
k

}
E(m) [exp {MT

i (θi, tkj)αk}]
, (B.3)

where R(tkj) is the risk set at time tkj, and dkl is the number of type k failures at time tkl,

for k = 1, . . . , K.

The other parameters τ , γ, α, and ν do not have closed form solutions and we update
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them using the one-step Newton-Raphson method

τ (m+1) = τ (m) + I(m)−1
τ U (m)

τ ,

γ
(m+1)
k = γ

(m)
k + I(m)−1

γk
U (m)
γk

, k = 1, . . . , K,

α
(m+1)
k = α

(m)
k + I(m)−1

αk
U (m)
αk

, k = 1, . . . , K,

where

I(m)
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ni∑
j=1

1

2
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}
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{
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b
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2
i exp

{
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}}])
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i (tij), (B.4)
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[
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with r
(m+1)
i (tij) = Yi(tij)−X

(1)T
i (tij)β

(m+1),

I(m)
γk

=
n∑

i=1

∑
tkj≤Ti

∆Λ0k(tkj)
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i (tkj)γ

(m)
k

}
×E(m)

[
exp

{
MT

i (θi, tkj)αk

}]
X

(2)
⊗

2
i (tkj), (B.6)
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×E(m)
[
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, (B.8)
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MT
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}]
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B.1.2 Numerical integration for the E-step

We approximate the integral in (3.6) using the standard Gauss-Hermite quadrature rule

[Press et al., 2007]. Specifically, the integral in (3.6) can be evaluated numerically as follows:

E(m){h(θi)} =

∫
h(θi)f(θi|Yi, Ti, Di,Ψ

(m))dθi

=

∫
h(θi)f(Yi, Ti, Di, θi|Ψ(m))dθi

f(Yi, Ti, Di|Ψ(m))

=

∫
h(θi)f(Yi|θi,Ψ(m))f(Ti, Di|θi,Ψ(m))f(θi|Ψ(m))dθi∫
f(Yi|θi,Ψ(m))f(Ti, Di|θi,Ψ(m))f(θi|Ψ(m))dθi

≈
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t )f(Yi | θ̃(m)

t ,Ψ(m))f(Ti, Di | θ̃(m)
t ,Ψ(m))f(θ̃
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t | Ψ(m)) exp(||θt||2)∑
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t ,Ψ(m))f(Ti, Di | θ̃(m)
t ,Ψ(m))f(θ̃
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t | Ψ(m)) exp(||θt||2)

,

where
∑

t1,t2,...,tq
is the shorthand for

∑nq

t1=1 ...
∑nq

tq=1, nq the number of quadrature points,

θt = (θt1 , θt2 , ..., θtq)
T the abscissas with corresponding weights πt, θ̃

(m)
t =

√
2Σ

(m)1/2
θ θt the

re-scaled alternative abscissas, and Σ
(m)1/2
θ the square root of Σ

(m)
θ [Elashoff et al., 2008].

B.2 Formulas for standard error estimation

The observed score vector ∇Ωl
(i)(Ω̂;Y, T,D) is needed in equation (3.7) for calculating the

empirical Fisher information matrix. Using ∇Ωl
(i) to denote ∇Ωl

(i)(Ω̂;Y, T,D) and E to

denote Ebi,ωi|Yi,Ti,Di,Ψ̂
, the parametric components of the observed score vector in equation

(3.7) is given by

∇βl
(i) =

ni∑
i=1

exp
{
−W T

i (tij)τ
}

84



×
(
ri(tij)E

[
exp

{
−Vi(tij)

Tωi

}]
− ZT

i (tij)E
[
bi exp

{
−Vi(tij)

Tωi

}])
X

(1)
i (tij),(B.10)

∇τ l
(i) =

ni∑
j=1

1

2

[
exp

{
−W T

i (tij)τ
}

×
{
r2i (tij)E

[
exp

{
−Vi(tij)

Tωi

}]
− 2ri(tij)Z

T
i (tij)E

[
bi exp

{
−Vi(tij)

Tωi

}]
+tr

(
Z

⊗
2

ij E
[
b
⊗

2
i exp

{
−Vi(tij)

Tωi

}])}
− 1
]
Wi(tij), (B.11)
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B.3 Computational aspects

When the latent association structure of the joint model (3.1) - (3.3) is assumed to be shared

random effects and the survival covariates are assumed to be time-independent, i.e., X
(2)
i (t) =
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X
(2)
i , we derive linear scan algorithms to reduce the computational burden using similar ideas

to [Li et al., 2022a]. Below we discuss some linear scan algorithms for implementation of the

EM steps and standard error estimation.

B.3.1 Linear scan for the E-step

As discussed in Supplementary Materials B.1.1, the E-step involves evaluating expected

values of multiple h(θi)’s at each EM iteration, which requires calculating f(Ti, Di | θi,Ψ(m))

across all subjects (See Supplementary Materials B.1.2). Note that f(Ti, Di | θi,Ψ(m)) can

be rewritten as

f(Ti, Di | θi,Ψ) =
K∏
k=1

[
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}
.

For each subject i, calculating Λ0k(Ti) would involve O(n) operations if a global search

is performed to find an interval of two adjacent uncensored event times that contains Ti.

Consequently, calculating all Λ0k(Ti)’s will require O(n2) operations. Similar to [Li et al.,

2022a], by taking advantage of the fact that Λ0k(t) is a right-continuous and non-decreasing

step function, we define the following a linear scan map

{Λ(m)
0k (tk1),Λ

(m)
0k (tk2), . . .Λ

(m)
0k (tkqk)} 7→ {Λ(m)

0k (T(1)),Λ
(m)
0k (T(2)), . . . ,Λ

(m)
0k (T(n))}, (B.15)

where tk1 > · · · > tkqk are scanned forward from the largest to the smallest, and for each tkj,

only a subset of the ranked observation times T(i) are scanned forward to calculate Λ
(m)
0k (T(i))
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as follows

Λ
(m)
0k (T(i)) =


Λ

(m)
0k (tk1), if T(i) ≥ tk1,

Λ
(m)
0k (tk(j+1)), if T(i) ∈ [tk(j+1), tkj), for some j ∈ {1, . . . , qk − 1},

0, T(i) < tkqk .

Consequently, the entire algorithm for calculating all Λ0k(Ti)’s costs only O(n) operations

since the scanned T(i)’s for different tkj’s do not overlap.

B.3.2 Linear risk set scan for the M-step

Multiple quantities in (B.6)-(B.9) including the cumulative baseline hazard functions involve

aggregating information over the risk set R(tkj) = {r : Tr ≥ tkj} at each uncensored event

time tkj, which are further aggregated across all tkj’s. All subjects are scanned to determine

the risk set R(tkj) for all uncensored event times will require O(n2) operations. Specifically,

to update Λ
(m+1)
0k (tkj), γ

(m+1)
k and α

(m+1)
k , one needs to compute

∑
r∈R(tkj)

ar(tkj), where ar(.)

is any time-dependent quantity defined in equations (B.6)-(B.9). Note that when ar(.) is

assumed to be time-independent, i.e., ar(.) = ar, the risk set R(tk(j+1)) can be decomposed

into two disjoint sets: ∑
r∈R(tk(j+1))

ar =
∑

r∈R(tkj)

ar +
∑

{r:T(r)∈[tk(j+1),tkj)}

ar, (B.16)

where the distinct uncensored event times tk1 > · · · > tkqk are arranged in a decreasing order.

it is easy to see that calculating
∑

r∈R(tkj)
ar, j = 1, . . . qk, takes O(n) operations when T(r)’s

are scanned backward in time, by following the recursive formula (B.16) where the subjects

in R(tkj) do not need to be scanned to calculate the second term.

B.3.3 Linear risk set scan for standard error estimation

Standard error estimation formula in (3.7) relies on the observed score vectors from the profile

likelihood where the baseline hazards are profiled out. It is seen from equations (B.13)-(B.14)

87



that obtaining the observed score vectors ∇γk l
(i)(Ω̂;Y, T,D) and ∇αk

l(i)(Ω̂;Y, T,D) involve

aggregating information either over {r ∈ R(Ti)} or over both {r ∈ R(tkj)} and {j : tkj ≤ Ti},

which can takes either O(n) or O(n2) operations, respectively, if not optimized. As a result,

the empirical Fisher information matrix can take O(n3) operations as it requires summing up

the information across all subjects. Specifically, to calculate the gradient ∇γk l
(i)(Ω̂;Y, T,D)

and ∇αk
l(i)(Ω̂;Y, T,D), one needs to compute

B(Ti) =
∑

j:tkj≤Ti

bkj(tkj), for i = 1, ..., n,

where B(.) is a right-continuous non-decreasing step function and bkj(tkj) =
∑

r∈R(tkj)
ar(tkj)

is any time-dependent quantity defined in equations (B.13) - (B.14). When ar(.) is assumed

to be time-independent, bkj(.) = bkj. Note that B(tk1), . . . , B(tkqk) can be computed in

O(n) operations as one scans through tk1, . . . , tkqk backward in time, following the recursive

formula (B.16). Furthermore, analogous to (B.15), the following linear scan algorithm can

be used to calculate {B(T(1)), B(T(2)), · · · , B(T(n))} from {B(tk1), . . . , B(tkqk)}:

{B(tk1), . . . , B(tkqk)} 7→ {B(T(1)), B(T(2)), · · · , B(T(n))},

where for each tkj, only a subset of the ranked observation times T(i)’s are scanned forward

to calculate B(T(i))’s as follows

B(T(i)) =


B(tk1), if T(i) ≥ tk1,

B(tk(j+1)), if T(i) ∈ [tk(j+1), tkj), for some j ∈ {1, . . . , qk − 1},

0, otherwise.

Consequently, calculating all B(T(i))’s takes O(n) operations.
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APPENDIX C

Supplementary Materials for Project 3

C.1 Derivation for equation (4.8) in the E-step in Section 4.1.2.3

p
(m)
i (Si = sl|Li, Ri,Ψ

(m)
ϕ ) =

p
(m)
i (Si = sl, Si ∈ (Li, Ri]|Ψ(m)

ϕ )

p
(m)
i (Si ∈ (Li, Ri]|Ψ(m)

ϕ )

=
1 {sl ∈ (Li, Ri]} p(m)

i (Si = sl|Ψ(m)
ϕ )

p
(m)
i (Si ∈ (Li, Ri]|Ψ(m)

ϕ )

= 1 {sl ∈ (Li, Ri]}
p
(m)
i (Si = sl, Si > Li|Ψ(m)

ϕ )

p
(m)
i (Si > Li, Si ≤ Ri|Ψ(m)

ϕ )

= 1 {sl ∈ (Li, Ri]}
p
(m)
i (Si = sl|Si > Li,Ψ

(m)
ϕ )p

(m)
i (Si > Li|Ψ(m)

ϕ )

p
(m)
i (Si ≤ Ri|Si > Li,Ψ

(m)
ϕ )p

(m)
i (Si > Li|Ψ(m)

ϕ )

= 1 {sl ∈ (Li, Ri]}
p
(m)
i (Si = sl|Si > Li,Ψ

(m)
ϕ )

p
(m)
i (Si ≤ Ri|Si > Li,Ψ

(m)
ϕ )

= 1 {sl ∈ (Li, Ri]}
p
(m)
i (Si = sl|Si > Li,Ψ

(m)
ϕ )

1− p
(m)
i (Si > Ri|Si > Li,Ψ

(m)
ϕ )

= 1 {sl ∈ (Li, Ri]}
exp

(
−
∑

Li<su<sl
ϕsu

)
{1− exp(−ϕsl)}

1− exp
(
−
∑

Li<su≤Ri
ϕsu

) .
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C.2 M-step solutions for equation (4.9) in Section 4.1.2.3

C.2.1 Update for Ψϕ

From equation (4.6), Qϕ(Ψ;Ψ(m)) can be rewritten as

Qϕ(Ψ;Ψ(m)) =
n∑

i=1

∑
sl

log

{
exp(−

∑
su<sl

ϕsu)− exp(−
∑
su≤sl

ϕsu)

}
p
(m)
i (sl)

=
n∑

i=1

∑
sl

log

{
exp(−

∑
su<sl

ϕsu)(1− exp(−ϕsl))

}
p
(m)
i (sl)

=
n∑

i=1

∑
sl

{
−
∑
su<sl

ϕsu + log(1− exp(−ϕsl))

}
p
(m)
i (sl). (C.1)

We aim to maximize equation (C.1) in the M-step. ϕsu has an analytical solution by letting

∂Qϕ(Ψ;Ψ(m))

∂ϕsu

= 0

⇒ ϕ(m+1)
su = − log

(
1−

∑n
i=1 p

(m)
i (su)∑n

i=1

∑
sl≥su

p
(m)
i (sl)

)
. (C.2)

C.2.2 Update for ΨY ,ΨT ,Ψθ

The parameters ΨY = (β, τ)T ,ΨT = (γ, α)T ,Ψθ = vech(Σθ) can be updated in the M-step

(4.9). It can be shown that β and Σθ have closed form solutions:

β(m+1) =

[
n∑

i=1

∑
sl∈S

{
ni∑
j=1

X
(1)
i (tij,l, sl)X

(1)T
i (tij,l, sl)

exp(W T
i (tij,l, sl)τ

(m))

}
p
(m)
i (sl)E

(m)(exp(−ωi))

]−1

×
[∑n

i=1

∑
sl∈S

{∑ni

j=1
Yi(tij,l)E

(m)(exp(−ωi))X
(1)
i (tij,l,sl)−ZT

i (tij,l)E
(m)(bi exp(−ωi))X

(1)
i (tij,l,sl)

exp(WT
i (tij,l,sl)τ (m))

}
× p

(m)
i (sl)

]
, (C.3)

Σ
(m+1)
θ =

1

n

n∑
i=1

E(m)(θiθ
T
i ). (C.4)

Denote t1 > ... > tk the distinct uncensored failure time consisting of all possible values of

ti,sl when δi = 1. The cumulative baseline hazard function has a closed form solution, given
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by

Λ
(m+1)
0 (t) =

∑
tv≤t

p(m)(tv)∑
r∈R(tv)

exp(X
(2)T
r (sl)γ(m))E(m) [exp {W T

r (θr|tv)α(m)}]p(m)
r (sl)

,(C.5)

where p(m)(tv) =
∑

i δi1(tv = ti,sl)p
(m)
i (sl) is the jump size at tv, R(tv) is the risk set at time

tv, v = 1, . . . , k. Note that Λ
(m+1)
0 (.) only has jumps at the uncensored event times tv’s. It is

clear that Λ
(m+1)
0 (t) is a right-continuous and non-decreasing function.

The rest of the parameters τ , γ, α, and ν do not have closed-form solutions and we

update them using the one-step Newton-Raphson method

τ (m+1) = τ (m) + I(m)−1
τ U (m)

τ ,

γ(m+1) = γ(m) + I(m)−1
γ U (m)

γ ,

α(m+1) = α(m) + I(m)−1
α U (m)

α ,

where

I(m)
τ =

n∑
i=1

∑
sl∈S

ni∑
j=1

1

2
wi(tij,l, sl)W

T
i (tij,l, sl) exp

{
−W T

i (tij,l, sl)τ
(m)
}

×
({

Yi(tij,l)−X
(1)T
i (tij,l, sl)β

(m+1)
}2

E(m) {exp(−ωi)}

− 2
{
Yi(tij,l)−X

(1)T
i (tij,l, sl)β

(m+1)
}
ZT

i (tij,l)E
(m) {bi exp(−ωi)}

+ tr
[
Zi(tij,l)Z

T
i (tij,l)E

(m)
{
bib

T
i exp(−ωi)

}])
p
(m)
i (sl), (C.6)

U (m)
τ =

n∑
i=1

∑
sl∈S

ni∑
j=1

1

2
wi(tij,l)

{
exp(−W T

i (tij,l, sl)τ
(m))

×
({

Yi(tij,l)−X
(1)T
i (tij,l, sl)β

(m+1)
}2

E(m) {exp(−ωi)}

− 2
{
Yi(tij,l)−X

(1)T
i (tij,l, sl)β

(m+1)
}
ZT

i (tij,l)E
(m) {bi exp(−ωi)}

+ tr
[
Zi(tij,l)Z

T
i (tij,l)E

(m)
{
bib

T
i exp(−ωi)

}])
− 1
}
p
(m)
i (sl), (C.7)

I(m)
γ =

n∑
i=1

∑
sl∈S

 ∑
tv≤ti,sl

∆Λ
(m+1)
0 (tv) exp(X

(2)T
i (sl)γ

(m))E(m)
[
exp

{
W T

i (θi|tv)α(m)
}]

× X
(2)
i (sl)X

(2)T
i (sl)

]
p
(m)
i (sl), (C.8)

U (m)
γ =

n∑
i=1

∑
sl∈S

[
δiX

(2)
i (sl)
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−
∑

tv≤ti,sl

∆Λ
(m+1)
0 (tv) exp(X

(2)T
i (sl)γ

(m))E(m)
[
exp

{
W T

i (θi|tv)α(m)
}]
X

(2)
i (sl)


×p

(m)
i (sl), (C.9)

I(m)
α =

n∑
i=1

∑
sl∈S

 ∑
tv≤ti,sl

∆Λ
(m+1)
0 (tv) exp(X

(2)T
i (sl)γ

(m))E(m)
[
Wi(θi|tv)

⊗
2 exp

{
W T

i (θi|tv)α(m)
}]

×p
(m)
i (sl), (C.10)

U (m)
α =

n∑
i=1

∑
sl∈S

δiE
(m)
{
W T

i (θi|ti,sl)
}
p
(m)
i (sl)

−
n∑

i=1

∑
sl∈S

 ∑
tv≤ti,sl

∆Λ
(m+1)
0 (tv) exp(X

(2)T
i (sl)γ

(m))E(m)
{
Wi(θi|tv) exp(W T

i (θi|tv)α(m))
}

×p
(m)
i (sl). (C.11)

C.3 Formulas for standard error estimation to equation (4.11) in

Section 4.1.3

The observed score vector ∇Ωl
(i)(Ω̂;D) is needed for calculating the empirical Fisher infor-

mation matrix. The components of the observed score vector in equation (4.11) is given

by

∇βl
(i)(Ω̂;D) =

∑
sl∈S

pi(sl)

ni∑
j=1

exp
{
−W T

i (tij,l, sl)τ
} [{

Yi(tij,l)−X
(1)T
i (tij,l, sl)β

}
E {exp(−ωi)}

− ZT
ijE {bi exp(−ωi)}

]
X

(1)
ij |β=β̂,τ=τ̂ , (C.12)

∇τ l
(i)(Ω̂;D) =

∑
sl∈S

pi(sl)

ni∑
j=1

1

2
W T

i (tij,l, sl)
{
exp

{
−W T

i (tij,l, sl)τ
}

×
({

Yi(tij,l)−X
(1)T
i (tij,l, sl)β

}2

E {exp(−ωi)}

− 2
{
Yi(tij,l)−X

(1)T
i (tij,l, sl)β

}
ZT

ijE {bi exp(−ωi)}
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+ tr
[
ZijZ

T
ijE
{
bib

T
i exp(−ωi)

}])
− 1
}
|β=β̂,τ=τ̂ , (C.13)

∇Σl
(i)(Ω̂;D) =

1

2

[
2Σ−1E(θiθ

T
i )Σ

−1 −
{
Σ−1E(θiθ

T
i )Σ

−1 ◦ I
}
− 2Σ−1 + Σ−1 ◦ I

]
|Σ=Σ̂, (C.14)

∇γl
(i)(Ω̂;D) =

∑
sl∈S

δipi(sl)X
(2)
i (sl)

−
∑

sl∈S δipi(sl)

∑
r∈R(ti,sl

) pr(sl) exp
{
X

(2)T
r (sl)γ

}
E{exp{WT

r (θr|ti,sl )α}}X(2)
r (sl)∑

r∈R(ti,sl
) pr(sl) exp

{
X

(2)T
r (sl)γ

}
E{exp{WT

r (θr|ti,sl )α}}

+
∑

sl∈S pi(sl)

(∑
v:tv≤ti,sl

p(tv)
∑

r∈R(tv)
pr(sl) exp

{
X

(2)T
r (sl)γ

}
E{exp{WT

r (θr|tv)α}}X(2)
r (sl)[∑

r∈R(tv)
pr(sl) exp

{
X

(2)T
r (sl)γ

}
E{exp{WT

r (θr|tv)α}}
]2

× exp
{
X

(2)T
i (sl)γ

}
E
{
exp(W T

i (θi|tv)α)
}

−
∑

v:tv≤ti,sl

p(tv) exp
{
X

(2)T
i (sl)γ

}
E{exp(WT

i (θi|tv)α)}X(2)
i (sl)∑

r∈R(tv)
pr(sl) exp

{
X

(2)T
r (sl)γ

}
E{exp{WT

r (θr|tv)α}}

)
|γ=γ̂,α=α̂,(C.15)

∇αl
(i)(Ω̂;D) =

∑
sl∈S

δipi(sl)E
{
W T

i (θi|ti,sl)
}

−
∑

sl∈S δipi(sl)

∑
r∈R(ti,sl

) pr(sl) exp
{
X

(2)T
r (sl)γ

}
E{Wr(θr|ti,sl ) exp{WT

r (θr|ti,sl )α}}∑
r∈R(ti,sl

) pr(sl) exp
{
X

(2)T
r (sl)γ

}
E{exp{WT

r (θr|ti,sl )α}}

+
∑

sl∈S pi(sl)

(∑
v:tv≤ti,sl

p(tv)
∑

r∈R(tv)
pr(sl) exp

{
X

(2)T
r (sl)γ

}
E{Wr(θr|tv) exp{WT

r (θr|tv)α}}[∑
r∈R(tv)

pr(sl) exp
{
X

(2)T
r (sl)γ

}
E{exp{WT

r (θr|tv)α}}
]2

× exp
{
X

(2)T
i (sl)γ

}
E
{
exp(W T

i (θi|tv)α)
}

−
∑

v:tv≤ti,sl

p(tv) exp
{
X

(2)T
i (sl)γ

}
E{Wi(θi|tv) exp(WT

i (θi|tv)α)}∑
r∈R(tv)

pr(sl) exp
{
X

(2)T
r (sl)γ

}
E{exp{WT

r (θr|tv)α}}

)
|γ=γ̂,α=α̂,(C.16)

∂l(i)(Ω̂;D)

∂ϕsu

=
∑

sl∈(Li,Ri]

{
−1(su < sl) +

exp(−ϕsl)

1− exp(−ϕsl)
1(su = sl)

}
pi(sl)|ϕsl

=ϕ̂sl
. (C.17)
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