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SPATIAL REGRESSION MODELS USING INTER-REGION
DISTANCES IN A NON-RANDOM CONTEXT

Nicolas Christou (nchristo@stat.ucla.edu) Gary Simon (gsimon@stern.nyu.edu)
Department of Statistics Department of Statistics and Operations Research
University of California, Los Angeles New York University
8130 Mathematical Sciences Building 44 West Fourth Street
Los Angeles, CA 90025 New York, NY 10012-1126
Abstract
This paper considers spatial data z(s1),2z(s2), -, 2(s,) collected at n loca-

tions, with the objective of predicting z(sg) at another location. The usual
method of analysis for this problem is kriging, but here we introduce a new
signal-plus-noise model whose essential feature is the identification of hot spots.
The signal decays in relation to distance from hot spots. We show that hot
spots can be located with high accuracy and that the decay parameter can be
estimated accurately. This new model compares well to kriging in simulations.

Key words and phrases: Hot spot; Kriging; Spatial prediction; Variogram.

1 Introduction

In this paper we deal with spatial data obtained at a single time. Such data occurs
in mining, agriculture, atmospheric science, ecology, epidemiology, hydrology, mete-
orology, waste disposal, and so on. Often the goal of such a study is a prediction at

an unsampled location.



Let Z = (z(s1),2(82), - -, 2(8,))" be the vector of the observed values at locations
81,82, -+, 8,. The objective is to predict the unobserved value z(sg) at location sq
which is not one of si, 89,---,s8,. These data may involve spatial correlation which
cannot be ignored.

Kriging, a term introduced by Matheron (1963), is a very popular method to
solve the problem of spatial prediction. It was first used in mining data. It as-
sumes a random field expressed through a variogram or covariance function, and
correct estimation of the variogram (or covariance function) is very crucial. The
model assumption (see Cressie (1991)) is Z(s) = p + d(s) where 4(s) is a zero
mean stochastic term with variogram 2v(-). If we assume intrinsic stationarity then
E(Z(s+h)—Z(s)) = 0 and the variogram is defined as Var(Z(s+h)—Z(s)) = 2vy(h)
This can be written as Var(Z(s + h) — Z(s)) = E(Z(s + h) — Z(s))? and thus the
method of moments estimator for the variogram can be used (also called the classical

estimator, Cressie (1991))

29(h) = N(R) N%)(Z(Si) — Z(s;))? (1)

where the sum is over N(h) such that s; — s; = h. Kriging minimizes the mean
squared error of prediction E[z(sg) — 2(8o)]?, where 2(sy) = ¥, w;2(s;); that is,
the predictor assumption is a weighted average of the sample values, and > 77" ; w; =1
to ensure unbiasedness.

In this paper we assume that spatial data come from a signal plus independent

noise. We replace spatial covariance structure with signal plus noise. Data of the



signal-plus-noise kind may exist because of “hot spots,” a term very popular in epi-
demiology. For example a nuclear accident location will be a hot spot and will
possibly cause thyroid cancer up to a certain distance from it. Other examples from
epidemiology are Lyme disease, where the proximity to rivers and similar environ-
ments will increase the chance of lyme disease, thyroid goiter disease where the lack
of iodine increases the chance of occurence (the further a person is from the sea the
greater the risk), tuberculosis for which a hot spot may exist at a poor neighborhood.
In a study about Lyme disease by Magnarelli et al. (1993) and Magnarelli (1995)
it was found that most of the patients were from central and southeastern Con-
necticut. This is because in those areas foci (hot spots) for Lyme borreliosis (Lyme
disease) exist. Ticks and blood specimens were collected from white-tailed deer
(odocoileus virginianus) and analyzed for Borrelia burgdorferi, the etiologic agent
of Lyme disease. Another example from epidemilogy is the scrub typhus in north
Queensland, Australia, reported by McBride et al. (1999). All cases reported were
soldiers who had visited a training area in north Queensland. These are not the only
examples from epidemilogy. The list of diseases and hot spots is quite extensive.
This new method has a number of very useful advanages. It exploits a non-
random structure for the expected value, while leaving the noise component as sta-
tistically independent errors, it identifies hot spots among the data points, and allows
the estimation of useful parameters, such as the number and locations of hot spots

and the decay parameter.



2 Proposed Model - Estimation Technique

A hot spot is a location or region with high activity. As we move away from the hot
spot the rate decays, related to the distance from the hot spot. We propose a model

that uses exponential decay, and the decay rate is a parameter to be estimated.

2.1 The Model

Let s1, s, ..., s, be the spatial locations. The proposed spatial regression model, the

response at location s; has the following form
2(8i) = fo + Bre” PUhm 4op Brem P ¢ (2)

where

Bo, B1, - - - B regression coefficients

B decay parameter

dist; g, distance from data point 7 to hot spot j

€; independent error term with standard deviation o.

Of course by, B1,- - -, Bk, B and o are parameters to be estimated, as is k, the number
of hot spots. We assume that the hot spots are among the points si, 89, - -, Sy.
What we observe are the z(81),---,2(8,) values. Given those values, and assuming

the existence of hot spots, we are proposing the estimation technique described next.



2.2 Estimation Technique

To estimate and fit a model to the observed z(s;) values, we want to create variables
which are also functions of the distance between the data points. If indeed the data
are generated by a number of hot spots then the variables which are most related to
the z(s1),---,2(8,) are the ones which are essentially indicators for the hot spots.
More specifically let d;; be the Euclidean distance between spatial locations s; and

sj. We define the n x 1 vector X; as having j* entry
(X;);=eP% i=1... nandj=1,---,n (3)

where n is the number of spatial locations. For example the vector X ;3 will have the

—Bdistiz,1 . . . ..
, 1

, -+, e Bdistisa)! Therefore we can construct

following form X3 = (e ,
n of those vectors. Next we regress the response vector Z on the predictors X and
other covariates that may be relevant. This model is overspecified in that there are
too many predictors, so we use stepwise regression. The carriers entering into the

model will also be identifiers of possible hot spots. If there are hot spots, then the

predictors matching the hot spots will be the ones selected.

2.2.1 Estimation of Parameters

We consider here the case where one hot spot exists, and that the location of this hot
spot is known. Given this information we employ the following procedure based on
maximum likelihood estimation. Later we will present the more realistic case where

the location of the hot spot is not known. We will show subsequently that we can,



with very high probability, determine the correct number of hot spots and identify
their locations. The model for the one hot spot case is z(s;) = By + Bie B4H + ¢,
with normal ¢;. This has four unknown parameters, 3y, 51, B, and 0. We estimate
these parameters by maximum likelihood. If B were known, we would need only the
ordinary slope and intercept estimates for a simple regression. We make an initial
guess at B and then find ordinary least squares estimates Bo and Bl. The guess at B
is updated through Newton-Raphson and the process is iterated to convergence. The
above technique is used to estimate B when the location of the hot spot is known.
In general we do not know this location. One way to locate the hot spot is to go
from data point to data point and repeat the above procedure as if that data point
were the hot spot. Finally we should pick as the hot spot the one that gives the
highest R?. This process is not as painful as it sounds, as most of the data points
are hopelessly unrealistic as choices for a hot spot.

Now, one can ask the following question: Among n data points what is the
probability that the i** data point is correctly selected as the hot spot? Next we will

give an answer to this question, at least for a simple geometry.

2.3 Probability of Selecting the Correct Hot Spot

Let us consider here a five-point layout (one point in the center with the other four
points forming a square around it). Suppose that the true hot spot is at data point 1

northwest corner). We generate a data vector Z= (z(s1),---, 2(85))'=U +¢€, where
g



U,= (1,e B ¢=Bds1 o=Bdu o=Bdsi)! Here, we set By = 0 and $; = 1, so that the
model is z(s;) = e B% + ¢;. The vector U, is non-random and it is created just
for notational convenience. Now, we create five potential carrier vectors (as in (3))
X through X5, where (X;); = e B%i 4,5 = 1,---,5. These potential carriers will
all be based on a guess at B. For the moment we will postpone the question as to
whether we correctly estimated B, and we will assume that B is known. Our results
utilize the value of B. Trying a different B would only slightly alter the findings.
We would like to make a first calculation to determine whether we correctly identify
data point 1 as the hot spot. We will select data point 1 as the true hot spot
using stepwise regression if the correlation of Z with X is the largest. We use the

following relationship

Plbest correlation is not with X ;] =
P[{Corr?(Z, X1) < Corr?(Z, X3) } U{Corr?(Z, X1) < Corr?*(Z, X3) } U
{Corr?(Z, X1) < Corr?(Z, X4) } U{Corr*(Z, X1) < Corr?*(Z, X5) }|

In the right hand side of the previous equation the four events may not be disjoint,

so this expression becomes

Plbest correlation is not with X1] <
P[Corr?(Z, X1) < Corr?(Z, X2) | + P[Corr?(Z, X1) < Corr®(Z, X3) | +

P[Corr?(Z, X1) < Corr?(Z, X4) | + P[Corr?(Z, X1) < Corr®(Z, X5) |
Therefore a lower bound for the desired probability is

Plbest correlation is with X] = P[select point 1 as hot spot] >



1— {P[Corr?(Z, X1) < Corr*(Z, X3) | + P[Corr?(Z, X1) < Corr*(Z, X3) | +

P[Corr?(Z, X1) < Corr?(Z, X4 )] + P[Corr?(Z, X,) < Corr*(Z, X5) ]} (4)

Examine just the first of these probability calculations. This should establish a

pattern which will let us solve for the others.

5 2
lZ(zi = z)(zi1 — 51)1
i=1

BB ]

=1

Observe that Corr?(Z, X;) =

lZ(Zi — Z)(wi0 — 562)]

=1

{i(zi - 5)2} {25:(%'2 - iz)Z}

=1 i=1

Similarly, Corr?(Z, X3) =

The condition Corr?(Z,X;) < Corr?(Z,X5) is equivalent to

5 2 5 2
lZ(zi —z)(za — El)] [Z ) (@2 — wz)]

=1 =1
'3 < '3

S s ey

i=1 i=1 =1 i=1

Because Zz 1 Z2(zs1 — Z1) = 0 the above inequality can be written as

5 2 5 2
[Zzz(le _fil) Zzz Tio — T2 ]
1=1 1=1
5 < 5
Z("Eil — 71) Z Tig — 2)”
=1

i=1

Finally, we can substitute z; = U;; + ¢; to get this:

5 2 5 2
[Z(Uﬂ + &) (w1 — 71) Z(Uil +€)(mio — a‘cz)]
i=1 - < i=1 -
z(-ﬁil — 51)2 Z(.TZQ — .772)2

In simplest notation we want P[C?/V; < D?/V,] = P[C?/V} — D?/Vy < 0], where
C, D are jointly normal, or P([C/+/Vi — D/\/V3][C//Vi + D/\/V3] < 0). If we use

8



the transformation v = C//Vi + D/\/V,, and v = C/\/Vi — D/+/V5 we can write

this probability as P(uv < 0), which can be expanded as

Pluv<0)=Pu>0Nv<0)+Plu<0nuv>0) (5)

The quantities C//Vi + D/+/V, have means

5 5
Y Un(zil—z1) > Un(a2l — 7o)

5 5
\l > (win — 71)? J > (win — 72)?

and variances

5
\/m - le -7312 $2)

It can be shown easily that the covariance between u and v is zero. As v and v are

20?2 +

normal, they are therefore independent. Now P(uv < 0) = P(u > 0Nv < 0)+P(u <
0Nv>0)=

P(u>0)P(v < 0)+ P(u<0)P(v>0). Finally we have

rcoo () -s @)oo @)e(®) o

Therefore we can compute a lower probability bound of correctly identifying data
point 1 as the true hot spot. Of course we need to compute also the probability
of falsely identifying hot spots. The previous result, as given by equation (6) gives
us only lower bound probabilities of identifying the true hot spot. For the points
which are not the true hot spots, we desire upper bound probabilities, since again
we cannot find exact probabilities. For example, one can ask the question: What is

the upper bound of the probability of falsely identifying data point 2 as the true hot

9



spot, given that the true hot spot is at data point 17 The following computation
procedure will give us these probability upper bounds. The probability that data

point 2 is falsely selected as the true hot spot is

P[data point 2 is selected] =
P[{Corr*(Z, X3) > Corr?(Z, X1) } N {Corr?(Z, X3) > Corr®(Z, X3) } N

{Corr?(Z, X3) > Corr?(Z, X4) } N {Corr?(Z, X2) > Corr®(Z, X5s) }]

We know that because the true hot spot is at data point 1 the most difficult event in
the right side of the previous equation is Corr?(Z, X5) > Corr?(Z, X ;). Therefore
the probability of selecting data point 2 as the true hot spot, is less or equal than the
probability that the correlation of Z with X, will be greater than the correlation of

Z with X .
P[data point 2 is selected] < P[Corr?(Z, X2) > Corr?(Z, X1) ]

This probability has already been computed using equations (4) and (6).

We can calculate these probabilities for each pair (Z, X;) and thus establish a
lower bound for the probability of correctly selecting the true hot spot and upper
bound for the probability of falsely identifying spurious hot spots. These probability

bounds, along with a simulation study, will be shown next.

2.3.1 Simulations

To examine the performance of the lower and upper bounds, as described above,
we run simulations for the five-point layout. The true hot spot is at data point 1,

10



(north-west corner).

We computed the probability bounds for various values of the true R? and B.
We vary the true R? from 95% down to 50%, and the decay parameter from 0.005
up to 0.040. The variance of the error term is then determined from the equation

below (7). The so-called true R? is the squared correlation between the population

—Bdyp, .,
b

versions of Z and X, where X has entries e -, e BbH and is given by

2

o°.
TrueR? = —, il (7)
Osigna] Oerror

The model for the data generation is z(s;) = By+B1e B%1 +¢;. Setting 5y = 0,5, =1
we get z(s;) = e” P41 + ¢;. The variance of the signal is the variance of the values

e Bdui ... e=Bdsi  The probability bounds from these simulations are shown in

Table 1. We observe that the lower and upper bound probabilities generally reassur

us about the probability of finding the correct hot spot.

2.4 Test for a Hot Spot

Suppose that we tentatively identify a hot spot at location H. In the model z(s;) =
Bo + Bre B%H 4 ¢; we would hope to reject the hypothesis Hy : B = 0, versus the

alternative H, : B > 0. The power of the test will be

Prob[reject B =0] =
Problhot spot correctly identified] x

Prob[reject B = 0 | correctly identified] +

11
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Table 1: Probability lower bound for data point 1 being identified as the hot spot,
and probability upper bounds for data points 2,3,4,5 being falsely identified as the
hot spots for five-point layout. The true hot spot is at the north-west data point 1.
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> " Problhot spot falsely identified at point 7] x
Prob[reject B = 0 | falsely identified] >
Prob[hot spot correctly identified] x

Prob[reject B = 0 | correctly identified] (8)

As the second term is likely to be small, we expect that (8) gives a very good lower
bound.
The test uses the estimate B which was found earlier, and the limiting variance,

which can be obtained from Fisher’s information matrix.

2.4.1 Simulations to Obtain Asymptotic Variances

Simulations are run for data in the layout of the state of North Carolina (see Fig-
ure 1), with one point for each of the 100 counties (shown in Cressie (1991)). A hot
spot is assumed at location so5. The simulation model used for the data generation

is the following
2(8:) = fo + fre Pl 4 ¢ (9)

We set 3y = 0, 31 = 4, and we use various combinations of the true R and B. The
results of these simulations are shown on Table 2, with each line representing one
run. All t-statistics are significant at the 1% level. In every case, the null hypothesis

H, : B =0 is rejected, given that the hot spot is correctly identified.
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[ =] 51 5 | = | @[5 |5 | = | '

0.95 | 0.025 | 0.0252 | 0.000000780 | 28.49 || 0.95 | 0.035 | 0.0356 | 0.000001321 | 30.94
0.90 | 0.025 | 0.0252 | 0.000001637 | 19.72 || 0.90 | 0.035 | 0.0358 | 0.000002792 | 21.44
0.80 | 0.025 | 0.0254 | 0.000003654 | 13.27 || 0.80 | 0.035 | 0.0363 | 0.000006300 | 14.45
0.70 | 0.025 | 0.0255 | 0.000006221 | 10.22 || 0.70 | 0.035 | 0.0367 | 0.000010836 | 11.15
0.60 | 0.025 | 0.0256 | 0.000009612 8.27 || 0.60 | 0.035 | 0.0371 | 0.000016926 9.03
0.50 | 0.025 | 0.0258 | 0.000014318 6.82 || 0.50 | 0.035 | 0.0377 | 0.000025530 7.46
0.95 | 0.030 | 0.0304 | 0.000001028 | 29.96 || 0.95 | 0.040 | 0.0407 | 0.000001667 | 31.54
0.90 | 0.030 | 0.0305 | 0.000002168 | 20.75 || 0.90 | 0.040 | 0.0411 | 0.000003531 | 21.85
0.80 | 0.030 | 0.0308 | 0.000004870 | 13.98 || 0.80 | 0.040 | 0.0416 | 0.000007989 | 14.73
0.70 | 0.030 | 0.0311 | 0.000008345 | 10.78 || 0.70 | 0.040 | 0.0422 | 0.000013777 | 11.36
0.60 | 0.030 | 0.0315 | 0.000012984 8.73 || 0.60 | 0.040 | 0.0427 | 0.000021577 9.20
0.50 | 0.030 | 0.0318 | 0.000019498 7.21 || 0.50 | 0.040 | 0.0434 | 0.000032644 7.60

Table 2: t-statistics for testing B = 0, for North Carolina layout. All are significant
at the 1% level.

3 Kriging Vs. Proposed Method

We wanted to be fair in comparing kriging with the proposed method. We first
generated simulated data assuming that one hot spot exists and then data by the
random field model friendly to kriging. The first type of simulated data favors the
proposed method while the second type favors kriging. For all data the geography
of the state of North Carolina is used (Figure 1) where there are 100 data points,

one for each county.

3.1 One Hot Spot Model

For this simulation, we assume that there is one hot spot, selected at the southeast
corner of the state (data point 25). For simulations assuming existence of one hot
spot at location 25, the response at data point 7 is given by (9) above. We also need

to choose the decay parameter B and the variance of the independent error terms

14



(€’s). We vary B from 0.025 up to 0.040 in steps of 0.005. The variance of the error
term o2 is related to the true R? of the model (see equation (7)). The true R? goes
from 95% down to 90% and then down to 50% in steps of 10%. All the parameters

used in the data generation are shown on Table 3.

H Parameters for data generation H

| Proposed method | Kriging (estimates) |
By =0 range (& = 40 — 200)
fr=4 nugget (o = 0.05 — 0.50)

True R? = 0.50, 0.60,0.70, 0.80, 0.90, 0.95 | sill (¢, + ¢ = 0.40 — 1.00)
B = 0.25,0.30,0.35, 0.40

Table 3: Parameters for data generation. Note that the kriging parameters shown
here are estimates, while the parameters for the proposed method are the true ones.

Given these values, what method can best fit these data, kriging or the proposed
method? To answer this question we need to estimate the variogram for the kriging

system and construct the carriers for the proposed method.

3.1.1 Kriging Estimates, Data Generated by Hot Spot Model

For the kriging system the exponential variogram is used

0, h=0
2v(h; 6) = (10)

co+c(l— €$p(_m))a h#0

(67

0 = (co,c1,), where ¢g >0, ¢; >0, and a > 0.

15



The above variogram parameters are assessed from the sample variogram, by mini-

mizing the weighted sum of squares proposed by Cressie (1985)

2(h(k) 17
o = 1} N () (1)

i=1
3.1.2 Proposed Method

The proposed method calls for the construction of the independent variables x;,
i=1,2,...,n,asin (3). We need to estimate the B in (3) using the Newton-Raphson
iterative process. We choose a starting value for B. We then regress the vector Z on
the 100 predictors (one at a time) and we select the one with the highest R?. After
the variable selection we proceed with the Newton-Raphson estimation of B and the

other parameters of the model, 3y, 51, and o2.

3.1.3 Comparison

The two methods are compared using the Predicted Sum of Squares (PRESS) crite-
rion PRESS = " | (2(s;) — 2(s;))?, where Z(s;) is the predicted value at locaton s;
using the other n — 1 values. As we mentioned earlier, we generate 100 data points.
We omit one data point at a time and we estimate it using the remaining 99 data
points. This is followed for both kriging and the proposed method. For example,
after the omission of data point 1 we use data points at locations 89, - - -, 8199 t0O €s-
timate the variogram. After the estimation of the variogram we predict z(s1) using

a weighted average of the values z(83), -, z(8100)-
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Similarly, for the proposed method, we use the 99 data values to first locate
the hot spot, estimate B, fy, 81, and ¢? and then predict z(s;). This procedure is
followed for each data point. At the end we have available the actual (observed)
data and the predicted data under kriging and the proposed method.

For each method and for every random sample generated we compute the pre-

dicted sum of squares. Then the ratio PRESSkriging/PRESS

proposed 18 ¢om-

puted.

In Table 4 we present the simulation results and the comparison between the two
methods when the true hot spot is located at the edge of the state of North Carolina
(data point 25). We generate 100 samples, each of size 100 (number of counties). The
ratio represents the average predicted sum of squares of kriging (for the 100 random
samples), divided by the average predicted sum of squares of the proposed method
(for the same 100 samples). A ratio of the two predicted sum of squares greater than
one indicates that the proposed method outperforms kriging, while a ratio of less
than one is in favor of kriging. The proposed method outperforms kriging in the vast
majority of the random samples (these results are not shown because we would need
dozens of pages to present them!). Instead we present the average of these results.
In all of them we observe that the proposed method outperforms kriging when the
true R? is either low or high. For example when the true R? is 95%, B = 0.025, the
variance of the signal is 0.4379, and the variance of the error terms (using equation

(7)) is 62, = 0.0230, we observe that the ratio of the two PRESS’s is 1.3797. For

error
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this combination the proposed method is a big winner. As the true R? becomes
smaller the ratio of the two methods is getting closer to one, which means that
kriging improves over the proposed method, but never outperforms the proposed
method. This is true for all the values of B. The improvement of kriging relative
to the proposed method as the signal gets weaker occurs because the sample mean
is a better predictor than any regression predictor. It is known that an increase of
the nugget effect, leads kriging to become more like a simple average (see Isaaks and
Srivastava (1989)). Therefore, when the error terms are very strong (which means
weak signal), kriging can challenge the proposed method. We also ran simulations

with low R? (20% — 30%) but the ratio of the two PRESS’s is never below 1.

| | | Decay Parameter B |
I [ [ 0.025 |0.030 [0.035 |0.040 |

95 % | 1.3797 | 1.3787 | 1.3850 | 1.3096
90 % || 1.2670 | 1.2780 | 1.2844 | 1.2372
True R? || 80 % || 1.1755 | 1.1774 | 1.1863 | 1.1606
70 % || 1.1397 | 1.1400 | 1.1374 | 1.1422
60 % || 1.1166 | 1.1179 | 1.1192 | 1.1270
50 % || 1.0801 | 1.0921 | 1.0957 | 1.0962

| 0.4379 | 0.3677 | 0.3174 | 0.2808 |

2
H O signal H

Table 4: Ratio of kriging over proposed method predicted sum of squares for the one
hot spot case at the edge of the state, location 25.
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Figure 1: Map showing the 100 counties of North Carolina, numbered in alphabetical
order. County names and distances are given in Cressie (1991). 1 inch=138 miles.

3.2 Simulated Data-Covariance Function Known

In the previous section we assumed that the data are generated by a hot spot and
that they come from a signal plus independent error term. This assumption favors
the proposed method. As a matter of fairness, we generate simulated data assuming
a random field with specified covariance function. One would expect that kriging
will perform much better.

The 100 county seats of the state of North Carolina are used again as our spatial
locations. The spatial variables z(sy), z(s2), - -, 2(s,) have covariance matrix X,
based on the exponential covariance function

¢y + ¢, h=0

Cov(h;cy, c1, ) = (12)
cle:vp(—%”), h#0

The Cholesky decomposition discussed by Cressie (1991) can be used to write X =
LL’, where L is a lower triangular matrix. This facilitates the creation of data with
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this covariance structure. In simulations, we used o = 50 miles and o = 100 miles;
nugget cg = 0.5,1.0,1.5,2.0; sill ¢y + ¢; = 1,2, 3,4. After the data are generated as
described above, the estimation of the variogram is needed. In order to be fair to
both methods we fit both the exponential and the spherical variogram models for
the kriging calculation. Since the data are generated using an exponential covariance
function, fitting only with the exponential variogram this would result in favoring
kriging. We should not assume, that in reality kriging knows the true covariance
function. Therefore it is very reasonable to fit both the exponential and the spherical
variogram models. For each combination of the parameters we generate 100 random
samples to compare kriging with the proposed method using again the predicted
sum of squares criterion. The results are shown on Table 5. When the average (100
samples) predicted sum of squares of kriging over the average of the predicted sum of
squares of the proposed method is less than one, kriging outperforms the proposed
method, and when the ratio is above one, the proposed method is a winner.
Although the covariance function is known, the proposed method performs better
than kriging in some cases. Of course kriging on average outperforms the proposed
method, and this is not a big surprise. However the performances of kriging and the
proposed method are close, as the entries in Table 5 are close to one. Especially when
kriging fits the spherical variogram incorrectly, the ratios of the two predicted sum
of squares are closer to one. Even in some cases the proposed method outperforms

kriging. On the other hand, when data are generated by a hot spot model, we observe
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I I o = 50 miles [

kriging fits (correct) kriging fits (incorrect)
exponential variogram spherical variogram
|| || co = 0.5 | co = 1.0 | co=1.5 | co = 2.0 || co=0.5 | co = 1.0 | co=1.5 | co = 2.0 ||
0.5 || 0.9503 0.9079 0.9293 0.9385 0.9824 0.9828 0.9764 0.9499
c1 1.0 || 0.9020 0.9238 0.9355 0.9143 1.0183 0.9843 0.9868 0.9860
1.5 [| 0.9127 0.9299 0.9351 0.9485 1.0097 1.0085 0.9754 0.9924
2.0 || 0.9166 0.9045 0.9354 0.9344 0.9571 1.0173 0.9759 0.9875
I a = 100 miles |

kriging fits (correct) kriging fits (incorrect)
exponential variogram spherical variogram
|| co = 0.5 | co = 1.0 | co=1.5 | co =20 || co =0.5 | co =1.0 | co=1.5 | co = 2.0 ||
0.5 || 0.9444 0.9541 0.9586 0.9447 0.9448 0.9546 0.9634 0.9513
c1 1.0 [| 0.9264 0.9372 0.9554 0.9540 0.9399 0.9379 0.9760 0.9549
1.5 || 0.9079 0.9306 0.9548 0.9485 0.9012 0.9235 0.9416 0.9447
2.0 || 0.9019 0.9224 0.9348 0.9539 0.9096 0.9416 0.9126 0.9608

Table 5: Ratio of kriging over proposed method predicted sum of squares when the
covariance structure is known.

ratios of the two predicted sum of squares to be around 1.35 — 1.40, an indication

that the proposed method is a clear winner in those simulations.

4 An Example

We compare the proposed method with kriging using the southwest of England
unemployment data. For this data set the percentage of the total workforce unem-
ployed in January, 1967, (see Cliff and Ord (1973)) in the 37 employment areas in

the southwest of England is used (see Figure 3).

4.1 Kriging - Proposed Method

For the kriging calculation we first construct the sample variogram (see Figure 2).

Based on the appearance of this sample variogram we fit the linear variogram with
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estimated parameters ¢y = 7.5 and b=0.1:

0, h=0

75 + 0.1||k|, h#0

2gamma
20 25 30 35
| | | |

15
|

10
|

50 100 150 200 250 300

Figure 2: The variogram estimator 2% for the southwest of England unemployment
data. Horizontal axis in miles.

For the proposed method we estimate the decay parameter B = 0.007 to construct
the predictors. The two methods are compared using the predicted sum of squares
(PRESS). We found that the proposed method gives a smaller PRESS (PRESS krig-
ing=6.4465, PRESS proposed=>5.8549). We should mention here that even though
the best variogram fitted to these data is the linear (see Figure 2), we also fitted the
exponential and the spherical variograms. This was done because one may fit the
wrong variogram to the data. Again we observe that the proposed method outper-
forms kriging. Using the exponential variogram (PRESS kriging=6.6383), and using
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the spherical variogram (PRESS kriging=7.0828).

4.2 Conclusion

Figure 3 shows the hot spot predictor which enters the model at the 5% level of
significance. We observe that only one predictor entered the model (number 13).
Data point 13 is near the city of Bristol and near the data points that have low
unemployment rates compared to the other ones. We can claim that there is a hot
spot in the neighborhood of the data point 13. The hot spot is probably Bristol,
where one expects to find low unemployment (more jobs near a big city). This result
is consistent with that of Cliff and Ord (1973). They regressed the unemployment
rate on the cartesian coordinates (z1,zs) and they found that the linear surface falls
from the southwest to the northeast parts of the map and reflects the higher levels of
unemployment in the extreme southwest, where the economy is heavily reliant upon

tourism and mining. Our method has the advantage of identifying the hot spot.

5 Final Remarks

In solving the spatial prediction problem different approaches can be taken. Popular
methods are kriging and trend-surface analysis (not discussed in this paper). The

proposed new method assumes the existence of hot spots and we have shown that
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Figure 3: Possible hot spot, data point 13, for the southwest of England unemploy-
ment data. 1 inch=>59 miles.

these are reliably located. The debate on which method is best can be endless.
The decomposition of the process z(s;) into large-scale variation plus smaller-scale
variation cannot be specified uniquely. Trend-surface prediction decomposes z(s;)
into large-scale variation plus white noise. Ordinary kriging prediction relies on a
random field that decomposes z(s;) into constant mean plus spatially correlated error
term with variogram 27(-). The new model is similar to trend-surface analysis, but

with simple and easily-interpreted structure.
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