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Short-term forecasts of traditional streams from public health
reporting (such as cases, hospitalizations, and deaths) are a key
input to public health decision-making during a pandemic. Since
early 2020, our research group has worked with data partners to
collect, curate, and make publicly available numerous real-time
COVID-19 indicators, providing multiple views of pandemic activ-
ity in the United States. This paper studies the utility of five such
indicators—derived from deidentified medical insurance claims,
self-reported symptoms from online surveys, and COVID-related
Google search activity—from a forecasting perspective. For each
indicator, we ask whether its inclusion in an autoregressive (AR)
model leads to improved predictive accuracy relative to the same
model excluding it. Such an AR model, without external features,
is already competitive with many top COVID-19 forecasting mod-
els in use today. Our analysis reveals that 1) inclusion of each of
these five indicators improves on the overall predictive accuracy of
the AR model; 2) predictive gains are in general most pronounced
during times in which COVID cases are trending in “flat” or “down”
directions; and 3) one indicator, based on Google searches, seems
to be particularly helpful during “up” trends.

COVID-19 | forecasting | hotspot prediction | time series | digital surveillance

Tracking and forecasting indicators from public health
reporting streams—such as confirmed cases and deaths

in the COVID-19 pandemic—are crucial for understanding
disease spread, correctly formulating public policy responses,
and rationally planning future public health resource needs.
A companion paper (1) describes our research group’s efforts,
beginning in April 2020, in curating and maintaining a database
of real-time indicators that track COVID-19 activity and other
relevant phenomena. The signals (a term we use synonymously
with “indicators”) in this database are accessible through the
COVIDcast Application Programming Interface (API) (2),
as well as associated R (3) and Python (4) packages, for
convenient data fetching and processing. In the current paper,
we quantify the utility provided by a core set of these indicators
for two fundamental prediction tasks: probabilistic forecasting
of COVID-19 case rates and prediction of future COVID-19
case hotspots (defined by the event that a relative increase in
COVID-19 cases exceeds a certain threshold).

At the outset, we should be clear that our intent in this paper
is not to provide an authoritative take on cutting-edge COVID-
19 forecasting methods. Similarly, some authors, e.g., ref. 5,
have pointed out numerous mishaps of forecasting during the
pandemic, and it is not our general intent to fix them here.
Instead, we start with a basic and yet reasonably effective pre-
dictive model for future trends in COVID-19 cases and present
a rigorous, quantitative assessment of the added value provided
by auxiliary indicators that are derived from data sources that
operate outside of traditional public health streams. In particular,
we consider five indicators derived from deidentified medical

insurance claims, self-reported symptoms from online surveys,
and COVID-related Google searches.

To assess this value in as direct terms as possible, we base our
study around a very simple basic model: an autoregressive model,
in which COVID cases in the near future are predicted using a
linear combination of COVID cases in the near past. Forecasting
carries a rich literature, offering a wide range of sophisticated
techniques (see, e.g., ref. 6 for a review); however, we purposely
avoid enhancements such as order selection, correction of out-
liers/anomalies in the data, and inclusion of regularization or
nonlinearities. Similarly, we do not account for other factors that
may well aid in forecasting, such as age-specific effects, holiday
adjustments, and the effects of public health mandates. All that
said, despite its simplicity, the basic autoregressive model that
we consider in this paper exhibits competitive performance (see
SI Appendix for details) with many of the top COVID-19 case
forecasters submitted to the US COVID-19 Forecast Hub (7),
which is the official source of forecasts used in public communi-
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cations by the US Centers for Disease Control and Prevention
(CDC). The strong performance of the autoregressive model
here is in line with the fact that simple, robust models have also
consistently been among the best-performing ones for COVID-
19 death forecasting (8).

In the companion paper (1), we analyze correlations between
various indicators and COVID case rates. These correlations
are natural summaries of the contemporaneous association be-
tween an indicator and COVID cases, but they fall short of
delivering a satisfactory answer to the question that motivates
the current article: Is the information contained in an indicator
demonstrably useful for the prediction tasks we care about? Note
that even lagged correlations cannot deliver a complete answer.
Demonstrating utility for prediction is a much higher standard
than simply asking about correlations; to be useful in forecast or
hotspot models, an indicator must provide relevant information
that is not otherwise contained in past values of the case rate
series itself [cf. the pioneering work on Granger causality (9, 10),
as well as the further references given below]. We assess this
directly by inspecting the difference in predictive performance
of simple autoregressive models trained with and without access
to past values of a particular indicator.

We find that each of the five indicators we consider—three
based on COVID-related outpatient visits from medical insur-
ance claims, one on self-reported symptoms from online surveys,
and one on Google searches for anosmia or ageusia—provide
an overall improvement in accuracy when incorporated into
the autorgressive model. This is true both for COVID-19 case
forecasting and for hotspot prediction. Further analysis reveals
that the gains in accuracy depend on the pandemic’s dynamics
at prediction time: The biggest gains in accuracy appear during
times in which cases are “flat” or trending “down”; but the in-
dicator based on Google searches offers a notable improvement
when cases are trending “up.”

Careful handling of data revisions plays a key role in our
analysis. Signals computed from surveillance streams are often
subject to latency and/or revision. For example, a signal based
on aggregated medical insurance claims may be available after
just a few days, but it can then be substantially revised over
the next several weeks as additional claims are submitted and/or
processed late. Correlations between such a signal and case rates
calculated “after the fact” (i.e., computed retrospectively, using
the finalized values of this signal) will not deliver an honest
answer to the question of whether this signal would have been
useful in real time. Instead, we build predictive models using
only the data that would have been available as of the prediction
date and compare the ensuing predictions in terms of accuracy.
The necessity of real-time data for honest forecast evaluations
has been recognized in econometrics for a long time (11–21), but
it is often overlooked in epidemic forecasting despite its critical
importance (22).

Finally, it is worth noting that examining the importance of
additional features for prediction is a core question in inferential
statistics and econometrics, with work dating back to at least ref.
9. Still today, drawing rigorous inference based on predictions,
without (or with lean) assumptions, is an active field of research
from both applied and theoretical angles (23–32). Our take in
the current work is in line with much of this literature; however,
to avoid making any explicit assumptions, we do not attempt
to make formal significance statements and, instead, broadly
examine the stability of our conclusions with respect to numerous
modes of analysis.

Methods
Signals and Locations. We consider prediction of future COVID-
19 case rates or case hotspots (to be defined precisely shortly).
By case rate, we mean the case count per 100,000 people (the
standard in epidemiology). We use reported case data aggregated

by the Johns Hopkins University Center for Systems Science
and Engineering (JHU CSSE) (33), which, like the auxiliary
indicators that we use to supplement the basic autoregressive
models, is accessible through the COVIDcast API (2).

The indicators we focus on provide information not generally
available from standard public health reporting. Among the
many auxiliary indicators collected in the API, we study the
following five:

• Change Healthcare COVID-like illness (CHNG-CLI): The
percentage of outpatient visits that are primarily about
COVID-related symptoms, based on deidentified Change
Healthcare claims data.

• Change Healthcare COVID (CHNG-COVID): The per-
centage of outpatient visits with confirmed COVID-19,
based on the same claims data.

• COVID Trends and Impact Survey COVID-like illness in
the community (CTIS-CLI-in-community): The estimated
percentage of the population who know someone in their
local community who is sick, based on Delphi’s COVID
Trends and Impact Survey, in partnership with Facebook.

• Doctor Visits COVID-like illness (DV-CLI): The same as
CHNG-CLI, but computed based on deidentified medical
insurance claims from other health systems partners.

• Google search trends for anosmia and ageusia (Google-
AA): A measure of Google search volume for queries that
relate to anosmia or ageusia (loss of smell or taste), based
on Google’s COVID-19 Search Trends dataset.

We choose these indicators because, conceptually speaking, they
measure aspects of an individual’s disease progression that would
plausibly precede the occurrence of (at worst, co-occur with)
the report of a positive COVID-19 test, through standard public
health reporting streams.

For more details on the five indicators (including how these are
precisely computed from the underlying data streams) we refer
to ref. 2 and the companion paper on the COVIDcast API and
its signals (1). For CTIS in particular, we refer to the companion
paper (34). For the Google COVID-19 Search Trends dataset,
see ref. 35; see also refs. 36 and 37 for a justification of the
relevance of anosmia or ageusia to COVID infection.

As for geographic resolution, we consider the prediction of
COVID-19 case rates and hotspots aggregated at the level of an
individual hospital referral region (HRR). HRRs correspond to
groups of counties in the United States within the same hospital
referral system. The Dartmouth Atlas of Healthcare 1998 (38) de-
fines these 306 regions based on a number of characteristics. They
are contiguous regions such that most of the hospital services for
the underlying population are performed by hospitals within the
region. Each HRR also contains at least one city where major
procedures (cardiovascular or neurological) are performed. The
smallest HRR has a population of about 125,000. While some are
quite large (such as the one containing Los Angeles, which has
more than 10 million people), generally HRRs are much more
homogenous in size than the (approximately) 3,200 US counties,
and they serve as a nice middle ground in between counties and
states.

HRRs, by their definition, would be most relevant for fore-
casting hospital demand. We have chosen to focus on cases
(forecasting and predicting hotspots) at the HRR level because
the indicators considered should be more useful in predicting
case activity rather than hospital demand, as the former is intu-
itively more contemporaneous to the events that are measured
by the given five indicators. Predicting case rates (and hotspots)
at the HRR level is still a reasonable goal in its own right; and
moreover, it could be used to feed predicted case information
into downstream hospitalization models.

Vintage Training Data. In this paper, all models are fitted with
“vintage” training data. This means that for a given prediction
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date, say, 28 September 2020, we train models using data that
would have been available to us as of 28 September 2020 (imagine
that we can “rewind” the clock to 28 September and query the
COVIDcast API to get the latest data it would have had available
at that point in time). This is possible because of the COVID-
cast API’s comprehensive data versioning system [described in
more detail in the companion paper (1)]. We also use the eval-
cast R package (39), which streamlines the process of train-
ing arbitrary prediction models over a sequence of prediction
dates, by constructing the proper sequence of vintage training
datasets.

Vintage training data mean different things, in practice, for
different signals. The three signals based on medical claims,
CHNG-CLI, CHNG-COVID, and DV-CLI, are typically 3 to
5 d latent and subject to a considerable but regular degree of
revision or “backfill” after their initial publication date. The
survey-based signal, CTIS-CLI-in-community, is 2 d latent and
rarely undergoes any revision at all. The target variable itself,
reported COVID-19 case rates, is 1 d latent and exhibits fre-
quent, unpredictable revisions after initial publication. Com-
pared to the pattern of revisions in the medical claims signals,
which are much more systematic in nature, revisions in case
reports can be highly erratic. Big spikes or other anomalies can
occur in the data as reporting backlogs are cleared, changes in
case definitions are made, etc. Groups like JHU CSSE then work
tirelessly to correct such anomalies after first publication (e.g.,
they will attempt to back distribute a spike when a reporting
backlog is cleared, by working with a local authority to ascertain
how this should best be done), which can result in very nontrivial
revisions. See Fig. 1 for an example.

Finally, our treatment of the Google-AA signal is different
from the rest. Because Google’s team did not start publishing this
signal until early September 2020, we do not have true vintage

data before then; the latency of the signal was always at least
1 wk through 2020. However, unlike the claims-based signals,
there is no reason for revisions to occur after initial publication,
and furthermore the latency of the signal is not an unavoidable
property of the data type, so we simply use finalized signal values,
with zero latency, in our analysis.

Analysis Tasks. To fix notation, let Y�,t denote the 7-d trailing
average of COVID-19 case incidence rates in location (HRR)
� and at time (day) t. To be clear, this is the number of new
daily reported cases per 100,000 people, averaged over the 7-d
period t − 6, . . . , t . The first task we consider—forecasting—is to
predict Y�,t+a for each “ahead” value a = 7, . . . , 21. The second
task—hotspot prediction—is to predict a binary variable defined
in terms of the relative change of Y�,t+a (relative to its value 1
wk prior, Y�,t+a−7), again for each a = 7, . . . , 21.

Why do we define the response variables via 7-d averaging?
The short answer is robustness: Averaging stabilizes the case time
series and moderates uninteresting artifacts like day-of-the-week
effects in the data. We note that we can also equivalently view this
(equivalent up to a constant factor) as predicting the HRR-level
case incidence rate summed over some 7-d period in the future
and predicting a binary variable derived from this.

In what follows, we cover more details on our two analysis
tasks. Table 1 presents a summary.
Dynamic retraining. For each prediction date t, we use a 21-d
trailing window of data to train our forecast or hotspot prediction
models (so, e.g., the trained models will differ from those at
prediction date t − 1). This is done to account for (potential)
nonstationarity. For simplicity, the forecasting and hotspot pre-
diction models are always trained on data across all HRRs (i.e.,
the coefficients in the models do not account for location-specific
effects).
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Fig. 1. Revision behavior for two indicators in the HRR containing Charlotte, NC. Each colored line corresponds to the data as reported on a particular date
(as of dates varying from 28 September through 19 October). (Left) The DV-CLI signal, which was regularly revised throughout the period, although the
effects fade as we look farther back in time. (Right) In contrast, case rates reported by JHU CSSE (smoothed with a 7-d trailing average), which remain “as
reported” on 28 September, with a spike toward the end of this period, until a major correction is made on 19 October, which brings this down and affects
all prior data as well.
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Table 1. Summary of forecasting and hotspot prediction tasks considered in this paper

Forecasting Hotspot prediction

Response variable Y�,t (7-d trailing average of COVID-19 case incidence rates, Z�,t = 1 (Y�,t ≥ 1.25 · Y�,t−7) (indicator that Y�,t grows by
per location � and time t) more than 25% relative to the preceding week)

Geographic resolution HRR HRR
Forecast period 9 June to 31 December 2020 16 June to 31 December 2020
Model type Quantile regression Logistic regression
Evaluation metric WIS AUC

Prediction period. In our analysis, we let the prediction date t run
over each day in between early to mid-June and 31 December
2020. The precise start date differs for forecasting and hotspot
prediction; for each task it was chosen to be the earliest date at
which the data needed to train all models were available, which
ends up being (per our setup, with 21 d of training data and lagged
values of signals for features, as we detail shortly) 9 June 2020
for forecasting and 16 June 2020 for hotspot prediction. (The
bottleneck here is the CTIS-CLI-in-community signal, which
does not exist before early April 2020, when the survey was first
launched).
Forecasting models. Recall that Y�,t denotes the 7-d trailing
average of COVID-19 case incidence rates in location � and at
time t. Separately for each a = 7, . . . , 21, to predict Y�,t+a for
ahead value a, we consider a simple probabilistic forecasting
model of the form

Quantileτ (Y�,t+a | Y�,s , s ≤ t) = αa,τ +
2∑

j=0

βa,τ
j Y�,t−7j . [1]

This model uses current case rates, and the case rates 7 and
14 d ago, to predict (the quantiles of) case rates in the future. We
consider a total of seven quantile levels (chosen in accordance
with the county-level quantile levels suggested by the COVID-19
Forecast Hub),

τ ∈ {0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975}. [2]

We fit Eq. 1 using quantile regression (40–42) separately for each
τ , using data from all 306 HRRs and, within each HRR, using
the most recent 21 d of training data. This gives us 6,426 training
samples for each quantile regression problem.

In addition to this pure autoregressive model, we also consider
five probabilistic forecasting models of the form

Quantileτ (Y�,t+a | Y�,s , X�,s , s ≤ t) =

αa,τ +
2∑

j=0

βa,τ
j Y�,t−7j +

2∑
j=0

γa,τ
j X�,t−7j , [3]

where X�,t denotes any one of the five auxiliary indicators—
CHNG-CLI, CHNG-COVID, CTIS-CLI-in-community, DV-
CLI, or Google-AA—at location � and time t. Note that we apply
the same lags (current value, along with the values 7 and 14
d ago) for the auxiliary indicators as we do for the case rates.
Training then proceeds just as before: We use the same seven
quantile levels in Eq. 2 and fit quantile regression separately for
each level τ , using data from all 306 HRRs and a trailing window
of 21 d of training data.

At prediction time, to avoid crossing violations (that is, for
two levels τ ′ > τ , the predicted quantile at level τ exceeds the
predicted quantile at level τ ′), we apply a simple post hoc sorting.
See Fig. 2 for an example forecast.
Hotspot prediction models. Define the binary indicator

Z�,t = 1
(
YΔ

�,t ≥ 0.25
)
,

where we use the notation YΔ
�,t = (Y�,t − Y�,t−7)/(Y�,t−7). In

other words, Z�,t = 1 if the number of newly reported cases over
the past 7 d has increased by at least 25% compared to the
preceding week. When this occurs, we say location � is a hotspot
at time t. Empirically, this rule labels about 27% of location-time
pairs as hotspots, during the prediction period (16 June to 31
December 2020).

We treat hotspot prediction as a binary classification problem
and use a setup altogether quite similar to the forecasting setup
described previously. Separately for each a = 7, . . . , 21, to pre-
dict Z�,t+a , we consider a simple logistic model

logit
(
P(Z�,t+a = 1 | Y�,s , s ≤ t)

)
= αa,τ +

2∑
j=0

βa,τ
j YΔ

�,t−7j ,

[4]
where logit(p) = log(p/(1− p)), the log-odds of p.

In addition to this pure autoregressive model, we also consider
five logistic models of the form

logit
(
P(Z�,t+a = 1 | Y�,s , X�,s , s ≤ t)

)
=

αa,τ +
2∑

j=0

βa,τ
j YΔ

�,t−7j +
2∑

j=0

γa,τ
j XΔ

�,t−7j , [5]

where we use XΔ
�,t = (X�,t − X�,t−7)/(X�,t−7), and again X�,t

stands for any of the five auxiliary indicators at location � and time
t. We fit the above models, Eqs. 4 and 5, using logistic regression,
pooling all 306 HRRs and using a 21-d trailing window for the
training data.

An important detail is that in hotspot prediction we remove all
data from training and evaluation where, on average, fewer than
30 cases (this refers to a count, not a rate) are observed over the
prior 7 d. This avoids having to make arbitrary calls for a hotspot
(or lack thereof) based on small counts.
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Fig. 2. Forecast for the HRR containing New York City from an autoregres-
sive model made on 15 October (vertical line). The fan displays 50, 80, and
95% intervals while the orange curve shows the median forecast. The black
curve shows “finalized” data, as reported in May 2021.
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Evaluation Metrics. For forecasting, we evaluate the probabilistic
forecasts produced by the quantile models in Eqs. 1 and 3 using
weighted interval score (WIS), a quantile-based scoring rule
(43). WIS is a proper score, which means that its expectation is
minimized by the population quantiles of the target variable. The
use of WIS in COVID-19 forecast scoring was proposed by ref.
44; WIS is also the main evaluation metric used in the COVID-
19 Forecast Hub. More broadly, the specific form of WIS used
here is a standard metric in the forecasting community for evalu-
ating quantile-based probabilistic forecasts, just as mean-squared
forecast error is standard for point forecasts.

WIS is typically defined for quantile-based forecasts where the
quantile levels are symmetric around 0.5. This is the case for our
choice in Eq. 2. Let F be a forecaster composed of predicted
quantiles qτ parameterized by a quantile level τ . In the case
of symmetric quantile levels, this is equivalent to a collection
of central prediction intervals (�α, uα), parameterized by an
exclusion probability α. The WIS of the forecaster F, evaluated
at the target variable Y, is defined by

WIS(F ,Y ) =
∑
α

{
α(uα − �α) + 2 · dist(Y , [�α, uα])

}
, [6]

where dist(a,S) is the distance between a point a and set S
(the smallest distance between a and an element of S). Note
that, corresponding to Eq. 2, the exclusion probabilities are α ∈
{0.05, 0.2, 0.5, 1}, resulting in four terms in the above sum.
By straightforward algebra, it is not hard to see WIS has an
alternative representation in terms of the predicted quantiles
themselves:

WIS(F ,Y ) = 2
∑
τ

φτ (Y − qτ ), [7]

where φτ (x ) = τ |x | for x ≥ 0 and φτ (x ) = (1− τ)|x | for x < 0,
which is often called the “tilted absolute” loss. While Eq. 7 is
more general (it can accommodate asymmetric quantile levels),
the first form in Eq. 6 is typically preferred in presentation, as the
score nicely decouples into a “sharpness” component (first term
in each summand) and an “under/overprediction” component
(second term in each summand). But the second form given in
Eq. 7 is especially noteworthy in our current study because it
reveals WIS to be the same as the quantile regression loss that
we use to train our forecasting models.

For hotspot prediction, we evaluate the probabilistic classifiers
produced by the logistic models in Eqs. 4 and 5 using the area
under the curve (AUC) of their true positive versus false positive
rate curve (which is traced out by varying the discrimination
threshold).

The primary aggregation scheme that we use in model evalua-
tion and comparisons is to average WIS per forecaster at ahead
value a over all forecast dates t and locations � and, similarly, to
compute AUC per classifier at ahead value a over all forecast
dates t and locations �.

Other Considerations.
Missing data imputation. Over the prediction period, all auxil-
iary indicators are available (in the proper vintage sense) for
all locations and prediction times, except for the Google-AA
signal, which is observed only for an average of 105 (of 306)
HRRs. Such missingness occurs because the COVID-19 search
trends data are constructed using differential privacy methods
(45), and a missing signal value means that the level of noise
added in the differential privacy mechanism is high compared
to the underlying search count. In other words, values of the
Google-AA signal are clearly not missing at random. It seems
most appropriate to impute missing values by zero, and this is
what we do in our analysis.

Backfill and nowcasting. As described previously, the auxiliary
indicators defined in terms of medical claims (CHNG-CLI,
CHNG-COVID, and DV-CLI) undergo a significant and
systematic pattern of revision, or backfill, after their initial
publication. Given their somewhat statistically regular backfill
profiles, it would be reasonable to attempt to estimate their
finalized values based on vintage data—a problem we refer to
as nowcasting—as a preprocessing step before using them as
features in the models in Eqs. 3 and 5. Nowcasting is itself a
highly nontrivial modeling problem, and we do not attempt
it in this paper (it is a topic of ongoing work in our research
group), but we note that nowcasting would likely improve the
performance of the models involving claims-based signals in
particular.
Spatial heterogeneity. Some signals have a significant amount
of spatial heterogeneity, by which we mean their values across
different geographic locations are not comparable. This is the
case for the Google-AA signal (due to the way in which the
Google search trends time series is self-normalized) (35) and the
claims-based signals (due to market-share differences and/or dif-
ferences in health-seeking behavior). Such spatial heterogeneity
likely hurts the performance of the predictive models that rely on
these signals, because we train the models on data pooled over
all locations. In the current paper, we do not attempt to address
this issue, and we simply note that location-specific effects (or
preprocessing to remove spatial bias) would likely improve the
performance of the models involving Google-AA and the claims-
based indicators.

Results
Here, and in what follows, we will use “AR” to refer to the
pure autoregressive model both in forecasting (Eq. 1) and in
hotspot prediction (Eq. 4) (the reference to the prediction task
should always be clear from the context). We will also use the
name of an auxiliary indicator—namely “CHNG-CLI,” “CHNG-
COVID,” “CTIS-CLI-in-community,” “DV-CLI,” or “Google-
AA”—interchangeably with the model in forecasting (Eq. 3) or
hotspot prediction (Eq. 5) that uses this same indicator as a
feature (the meaning should be clear from the context). So,
for example, the CHNG-CLI model in forecasting is the one in
Eq. 3 that sets X�,t to be the value of the CHNG-CLI indicator at
location � and time t. Finally, we use the term “indicator model”
to refer to any one of the 10 models of the form Eq. 3 or 5 (5 such
models for each of the forecasting and hotspot prediction tasks).

Below is a summary of the high-level conclusions:

• Stratifying predictions by the ahead value (a = 7, . . . , 21)
and aggregating results over the prediction period (early
June through end of December 2020), we find that each of
the indicator models generally gives a boost in predictive
accuracy over the AR model, in both the forecasting and
hotspot prediction tasks. The gains in accuracy generally
attenuate as the ahead value grows.

• In the same aggregate view, CHNG-COVID and DV-CLI
offer the biggest gains in both forecasting and hotspot pre-
diction. CHNG-CLI is inconsistent: It provides a large gain
in hotspot prediction, but little gain in forecasting (it seems
to be hurt by a notable lack of robustness, due to back-
fill). CTIS-CLI-in-community and Google-AA each provide
decent gains in forecasting and hotspot prediction. The for-
mer’s performance in forecasting is notable in that it clearly
improves on AR even at the largest ahead values.

• In a more detailed analysis of forecasting performance,
we find that the indicator models tend to be better than
AR when case rates are flat or decreasing (most notable
in CHNG-COVID and CTIS-CLI-in-community), but can
be worse than AR when case rates are increasing (this is
most notable in CHNG-CLI and DV-CLI). More rarely does

McDonald et al.
Can auxiliary indicators improve COVID-19 forecasting and hotspot prediction?

PNAS 5 of 9
https://doi.org/10.1073/pnas.2111453118

https://doi.org/10.1073/pnas.2111453118


an indicator model tend to beat AR when case rates are
increasing, but there appears to be evidence of this for the
Google-AA model.

• In this same analysis, when an indicator model performs
better than AR in a decreasing period, this tends to co-
occur with instances in which the indicator “leads” case
rates (meaning, roughly, on a short timescale in a given
location, its behavior mimics that of future case rates). On
the other hand, if an indicator model does better in periods
of increase, or worse in periods of increase or decrease, its
performance is not as related to leadingness.

Finally, to quantify the importance of training and making pre-
dictions using proper vintage data, we ran a parallel set of fore-
casting and hotspot prediction experiments using finalized data.
The results, given in SI Appendix, show that training and mak-
ing predictions on finalized data can result in overly optimistic
estimates of true test-time performance (up to 10% better in
terms of average WIS or AUC). Furthermore, since indicators
can have greatly different backfill profiles, the use of finalized
data in retrospective evaluations changes the relative ranking of
models. For example, CHNG-CLI and DV-CLI, when trained
on finalized data, perform very similarly in forecasting. This
makes sense since they are both claims-based indicators that
are supposedly measuring the same thing. However, DV-CLI
outperforms CHNG-CLI on vintage data, reflecting that it has
a less severe backfill profile.

SI Appendix provides a number of other additional analyses;
for example, we examine two assumption-lean methods for as-
sessing the statistical significance of our main results.

Code to reproduce all results can be found in ref. 2.

Aggregate Results by Ahead Value. Fig. 3, Left displays evaluation
results for forecasting, stratified by ahead value and averaged
over all HRRs and forecast dates. Shown is the average WIS
for each forecast model divided by that from a baseline model.
The baseline model is a flat-line forecaster that forms its median
forecast by using the most recent value Y�,t for all aheads Y�,t+a ,
with predicted quantiles defined by the empirical distribution
of the residuals from this median forecast over recent history.
This is the same baseline model as in the COVID-19 Forecast
Hub. Here, we use the baseline model to scale mean WIS to put
it on an interpretable, unitless scale. In Fig. 3, Left we can see
that all curves are below 1, which means (smaller WIS is better)
that all of the models, including AR, outperform the baseline
on average over the forecasting period. On the other hand, the

models deliver at best an improvement of about 20% in average
WIS over the baseline model, with this gap narrowing to about
10% at the largest ahead values, illustrating the difficulty of the
forecasting problem.

We can also see from Fig. 3, Left that CHNG-COVID and
DV-CLI offer the biggest gains over AR at small ahead values,
followed by CTIS-CLI-in-community and Google-AA, with the
former providing the biggest gains at large ahead values. The
CHNG-CLI model performs basically the same as AR. This is
likely due to the fact that CHNG-CLI suffers from volatility
due to backfill. The evidence for this explanation is twofold: 1)
The CHNG-CLI model benefits from a more robust method of
aggregating WIS (geometric mean; shown in SI Appendix), and 2)
when we train and make predictions on finalized data, it handily
beats AR, on par with the best-performing models (also shown
in SI Appendix).

Fig. 3, Right displays the results for hotspot prediction, again
stratified by ahead value and averaged over all HRRs and predic-
tion dates. We can see many similarities to the forecasting results
(note that larger AUC is better). For example, CHNG-COVID
and DV-CLI offer the biggest improvement over AR, and all
models, including AR, degrade in performance toward the base-
line (in this context, a classifier based on random guessing, which
achieves an AUC of 0.5) as the ahead values grow, illustrating the
difficulty of the hotspot prediction problem. A clear difference,
however, is that the CHNG-CLI model performs quite well in
hotspot prediction, close to the best-performing indicator models
for many of the ahead values. This may be because volatility in the
CHNG-CLI indicator plays less of a role in the associated logistic
model’s predicted probabilities (in general, a sigmoid function
can absorb a lot of the variability in its input).

Implicit Regularization Hypothesis. One might ask whether the
benefits observed in forecasting and hotspot prediction have
anything to do with the actual auxiliary indicators themselves.
A plausible alternative explanation is that the indicators are just
providing implicit regularization on top of the basic AR model,
in the same way any noise variable might, if we were to use it to
create lagged features in Eqs. 3 and 5.

To test this hypothesis, we reran all of the prediction exper-
iments but with X�,t in each indicator model replaced by suit-
able random noise (bootstrap samples from a signal’s history).
The results, shown and explained more precisely in SI Appendix,
are vastly different (i.e., worse) than the original set of re-
sults. In both forecasting and hotspot prediction, the “fake”
indicator models offer essentially no improvement over the pure
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AR model, which—informally speaking—strongly rejects the im-
plicit regularization hypothesis.

On the topic of regularization, it is also worth noting that the
use of �1 regularization (tuned using cross-validation) in fitting
any of the models in Eqs. 1, 3, 4, and 5 did not generally improve
their performance (experiments not shown). This is likely due to
the fact that the number of training samples is large compared to
the number of features (6,426 training samples and only three to
six features).

Evaluation in Up, Down, and Flat Periods. The course of the pan-
demic has played out quite differently across space and time.
Aggregating case rates nationally shows three pronounced waves,
but the behavior is more nuanced at the HRR level. Fig. 2 is
a single example of a forecast in a period of relatively flat case
trends, as New York City enters what would become its second
wave. The AR forecaster’s 50% prediction interval contains this
upswing, but its forecasted median is clearly below the finalized
case data. Unfortunately, this behavior is fairly typical of all
forecasters: During upswings, the forecasted median tends to fall
below the target, while the reverse is true during downswings.

Fig. 4 shows histograms of the differences in WIS of the
AR model and each indicator model, where we stratify these
differences by whether the target occurs during a period of
increasing case rates (up), decreasing case rates (down), or flat
case rates (flat). To define the increasing period, we use the same
definition we used for the hotspot task in Table 1. Therefore, all
hotspots are labeled up, while all nonhotspots are either flat or
down. For the down scenario, we simply use the opposite of the
hotspot definition: Y�,t decreases by more than 20% relative to
the preceding week.

While the performance of all models, including AR, generally
degrades in up periods, different models exhibit different and
interesting patterns. CHNG-CLI, CHNG-COVID, Google-AA,
and especially CTIS-CLI-in-community have large right tails
(showing improvements over AR) during the down periods.
Google-AA and CTIS-CLI-in-community have large right tails
during the flat periods. CHNG-CLI and DV-CLI have large
left tails (poor forecasts relative to AR) in flat and up periods.

Google-AA is the only model that outperforms the AR model,
on average, in up periods. Overall, the indicators seem to help
more during flat or down periods than during up periods, with
the exception of Google-AA.

SI Appendix pursues this analysis further. For example, we
examine classification accuracy and log-likelihood for the hotspot
task and find a similar phenomenon: The indicators considerably
improve accuracy or log-likelihood during flat or down periods,
with more mixed behavior during up periods when CHNG-CLI,
CHNG-COVID, and DV-CLI, in particular, lead to decreased
performance.

Effects of Leading or Lagging Behavior. As described in Methods,
each of the indicators we examine could be said to measure
aspects of disease progression that would precede a positive test.
That is, we imagine that these signals should “lead” cases. It
is entirely reasonable to imagine that, prior to an increase of
confirmed COVID-19 tests reported by a public health authority
in a particular location, we would see an increase in medical
insurance claims for COVID-related outpatient visits. However,
it may well be the case that such behavior is different during dif-
ferent periods. In fact, we find empirically that the “leadingness”
of an indicator (degree to which it leads case activity) tends to
be more pronounced in down or flat periods than in up periods,
a plausible explanation for the decreased performance in up
periods noted above.

In SI Appendix, we define a quantitative score to measure the
leadingness of an indicator, at any time t and any location �,
based on cross-correlations to case rates over a short time window
around t. The higher this score is, the greater it leads case activity.
This analysis is closely related to Granger causality (10) and
draws on a large body of prior work that measures leadingness
in economic time series (9, 46–57). Fig. 5 displays correlations
between the leadingness score of an indicator and the WIS differ-
ence (AR model minus an indicator model), stratified by whether
the target is classified as up, down, or flat. One would naturally
expect that the WIS difference would be positively correlated
with leadingness. Somewhat surprisingly, this relationship turns
out to be strongest in down periods and weakest in up periods.
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In fact, it is very nearly the case that for each indicator, the
strength of correlations only decreases as we move from down
to flat to up periods. In SI Appendix, we extend this analysis by
studying analogous “laggingness” scores, but we do not find as
clear patterns.

Discussion
Can auxiliary indicators improve COVID-19 forecasting and
hotspot prediction models? Our answer, based on analyzing five
auxiliary indicators from the COVIDcast API (defined using
data from medical insurance claims, internet-based surveys, and
internet search trends) is undoubtedly “yes.” However, there
are levels of nuance to such an answer that must be explained.
None of the indicators that we have investigated are transfor-
mative, rendering the prediction problem easy when it was once
hard (in the absence of auxiliary information). Rather, the gains
in accuracy from the indicator models (over an autoregressive
model based only on past case rates) appear to be nontrivial and
consistent across modes of analysis, but modest. In forecasting,
the indicator models are found to be most useful in periods in
which case rates are flat or trending down, rather than in periods
in which case rates are trending up (as one might hope to see is
the benefit being provided by a hypothetical “leading indicator”).

As described previously, it is likely that we could improve
the indicator models by using location-specific effects, as well
as using nowcasting techniques to estimate finalized indicator
values before we use them as features (to account for backfill
in the claims-based signals in particular). Beyond this, it is cer-
tainly possible that more sophisticated models for forecasting or
hotspot prediction would lead to different results and possibly
even different insights. Natural directions to explore include us-
ing multiple indicators in a single model, allowing for interaction
terms, and leveraging HRR demographics or mobility patterns.
That said, we are doubtful that more sophisticated modeling
techniques would change the “topline”conclusion—that auxiliary

indicators can provide clear but modest gains in forecasting and
hotspot prediction.

However, rigorously vetting the details for more sophisticated
models, as well as the generalizability of our findings to dif-
ferent geographic resolutions, both remain important directions
for future study. For example, in SI Appendix we show that for
forecasting at the state level, the benefits of including indicators
in the AR model are generally less clear (compared to those
observed at the HRR level). A plausible explanation is that at the
state level, where the signal-to-noise ratio (SNR) is higher, AR
performs better overall and represents a higher standard (when
asking whether it can be improved upon using the indicators). At
the HRR level, where the SNR is lower, including the indicators
as additional linear features in the AR model probably delivers a
kind of variance reduction (just like averaging independent terms
would) that contributes to improved accuracy. But as the SNR
increases, this variance reduction becomes less important, and
perhaps we must use more sophisticated modeling techniques to
extract comparable value from the indicators.

We reiterate the importance of using vintage data for rigor-
ous backtesting. Data sources that are relevant to public health
surveillance are often subject to revision, sometimes regularly
(as in medical claims data) and sometimes unpredictably (such
as COVID-19 case reports). When analyzing models that are
designed to predict future events, if we train these models and
make predictions using finalized data, then we are missing a
big part of the story. Not only will our sense of accuracy be
unrealistic, but also certain models may degrade by a greater or
lesser extent when they are forced to reckon with vintage data,
so backtesting on finalized data may lead us to make modeling
decisions that are suboptimal for true test-time performance.

In this paper, we have chosen to consider only very simple
forecasting models, while devoting most of our effort to account-
ing for as much of the complexity of the underlying data and
evaluation as possible. In fact, our paper is not only about pro-
viding rigorous answers to questions about model comparisons
in COVID-19 forecasting and hotspot prediction, but also about
demonstrating how one might go about answering such questions
in general. We hope that others will leverage our work, and build
on it, to guide advances on the frontier of predictive modeling for
epidemics and pandemics.

Data Availability. Code for reproducibility, R script files, and small datasets
have been deposited in Zenodo (58). Large intermediate datasets, archived
.rds (R objects) files containing all evaluations for forecasting, and hotspots
using vintage and finalized data (can be used to produce the graphics and
conclusions in the paper without rerunning the entire pipeline) are available
in the University of British Columbia Scholars Portal Dataverse (59).
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