UC Irvine
UC Irvine Previously Published Works
TitleCrystallographic characterization of (C5H4SiMe3)3U(BH4)
Permalink
https://escholarship.org/uc/item/5xh500t9
Journal
Acta Crystallographica Section E: Crystallographic Communications, 77(Pt 4)
ISSN2056-9890
Authors
Windorff, Cory J
Cross, Justin N
Scott, Brian Let al.
Publication Date
2021-04-01
DOI
10.1107/s2056989021002425
Peer reviewed

CRYSTALOGRAPHIC COMMUNICATIONS

Received 6 January 2021
Accepted 3 March 2021

Edited by M. Zeller, Purdue University, USA
\# Present address: New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM 88003, USA.

Keywords: crystal structure; uranium; borohydride; cyclopentadienyl compounds.

CCDC reference: 2067867
Supporting information: this article has supporting information at journals.iucr.org/e

open $\begin{aligned} & \text { access }\end{aligned}$

Crystallographic characterization of $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$

Cory J. Windorff, ${ }^{\text {a,b }} \ddagger$ Justin N. Cross, ${ }^{\text {a }}$ Brian L. Scott, ${ }^{\mathrm{a}}$ Stosh A. Kozimor ${ }^{\text {a* }}$ and William J. Evans ${ }^{\text {b* }}$

${ }^{\text {a Los }}$ Alamos National Laboratory, Los Alamos, New Mexico 87544, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of California, Irvine, California 92697, USA. *Correspondence e-mail: stosh@lanl.gov, wevans@uci.edu

New syntheses have been developed for the synthesis of (borohydrido$\left.\kappa^{3} H\right) \operatorname{tris}\left[\eta^{5}\right.$-(trimethylsilyl)cyclopentadienyl]uranium(IV), $\left[\mathrm{U}\left(\mathrm{BH}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Si}\right)_{3}\right]$ or $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)\left(\mathrm{Cp}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)$ and its structure has been determined by single-crystal X-ray crystallography. This compound crystallized in the space group $P \overline{1}$ and the structure features three η^{5}-coordinated Cp^{\prime} rings and a κ^{3}-coordinated $\left(\mathrm{BH}_{4}\right)^{-}$ligand.

1. Chemical context

Actinide borohydrides have been of interest since the 1940s, owing to their potential volatility and applied use in vapor deposition technologies for the production of thin films (Hoekstra \& Katz, 1949; Daly \& Girolami, 2010). Uranium borohydride compounds are structurally interesting because the $\left(\mathrm{BH}_{4}\right)^{-}$ligand can coordinate large electropositive cations (such as uranium) in several modes. For example, κ^{1}, κ^{2}, and κ^{3} $\mathrm{U}-\left(\mathrm{BH}_{4}\right)$ binding has previously been reported (Ephritikhine, 1997). Borohydrides can also achieve high coordination numbers with uranium, e.g. the oligomeric 14-coordinate $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$ (Bernstein et al., 1972). Although several cyclopentadienyl uranium borohydrides have been crystallographically characterized (Ephritikhine, 1997), the structure of $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)\left(\mathrm{Cp}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)$, made in 1992 (Berthet \& Ephritikhine, 1992), has not been reported. Our interest in Cp^{\prime} uranium chemistry (MacDonald et al., 2013; Windorff et al., 2017) prompted us to determine the coordination mode of $\left(\mathrm{BH}_{4}\right)^{-}$within the tris-cyclopentadienyl uranium platform using single-crystal X-ray diffraction. Toward this end, we developed new synthetic routes to the $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ compound.

The $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ compound was originally synthesized by reacting $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UH}$ with $\mathrm{H}_{3} \mathrm{~B}-\mathrm{PPh}_{3}$ (Berthet \& Ephritikhine, 1992). Our attempts to repeat this procedure in toluene and diethyl ether solvents were unsuccessful, potentially because we were uncertain about the details of the reaction. However, we were successful in synthesizing $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ from $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UH}$ with $\mathrm{H}_{3} \mathrm{~B}-\mathrm{PPh}_{3}$ in hot THF solvent. We also observed $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ could be prepared in high yield (96\%) by reacting

Table 1
A comparison of structural parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$ in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ and other $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U} X\left\{X=\mathrm{Cl}^{-}, \mathrm{I}^{-},\left[\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right]^{-}\right\}$complexes.
cent $=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}$ centroid.

	$\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$	$\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UCl}^{a}$ (Windorff et al., 2017)	$\mathrm{Cp}_{3}{ }_{3} \mathrm{UI}$ (Windorff et al., 2017)	$\mathrm{Cp}_{3}^{\prime} \mathrm{U}\left(\eta^{1}-\mathrm{CH}=\mathrm{CH}_{2}\right)$ (Schock et al., 1988)	$\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left[\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right]$ (Réant et al., 2020)
U-(cent)	2.458, 2.490, 2.500	2.473	2.475, 2.478, 2.480	2.481, 2.483, 2.489	2.472, 2.478, 2.485
(cent) $-\mathrm{U}-X$	104.13, 104.14, 104.83	100.00	97.9, 101.2, 101.6	95.1100 .0100 .2	96.04, 96.30, 97.65
(cent) $-\mathrm{U}-$ (cent)	113.28, 114.26, 114.26	117.00	116.1, 116.4, 118.3	116.4, 117.2, 120.0	118.28, 118.88, 119.08

Note: (a) The asymmetric unit contains one Cp^{\prime} ring, one-third of a chloride atom, and one-third of a uranium atom.
$\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UI}$ with NaBH_{4} in the presence of 15 -crown- 5 . When this reaction was carried out in toluene at room temperature, the I^{-}ligand was substituted by the $\left(\mathrm{BH}_{4}\right)^{-}$anion. Another method we developed for synthesizing $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ involved reacting $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$ with KCp^{\prime} (3 equiv.) in diethyl ether. This reaction, where $\left(\mathrm{BH}_{4}\right)^{-}$was substituted by $\left(\mathrm{Cp}^{\prime}\right)^{-}$, also proceeded in high yield (89\%). X-ray quality crystals of $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ formed at 253 K overnight from diethyl ether solutions.

Of our two synthetic routes, we preferred making $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ from $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UI}$ over $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$ because the $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$ starting material was more challenging to isolate in a chemically pure form. Another interesting comparison between the two synthetic methods involved the substitution chemistry. The $\left(\mathrm{Cp}^{\prime}\right)^{-}$anion displaced $\left(\mathrm{BH}_{4}\right)^{-}$from $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$ and $\left(\mathrm{BH}_{4}\right)^{-}$displaced I^{-}in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UI}$. Hence, we qualitatively concluded that the stability of the $\mathrm{U}-X$ bond for molecular compounds dissolved in organic solvents was largest for $\left(\mathrm{Cp}^{\prime}\right)^{-}$, intermediate for $\left(\mathrm{BH}_{4}\right)^{-}$, and lowest for I^{-}. The generality of this conclusion is limited, and we acknowledge

Structure of $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ with atomic displacement parameters drawn at the 50% probability level. Boron-bound hydrogen atoms are represented as isotropic circles. All carbon-bound hydrogen atoms are omitted. Selected structural metrics, $\mathrm{U}-\left(\mathrm{Cp}^{\prime}\right.$ centroid) average 2.48 (2) $\AA, \mathrm{U}-\mathrm{H}$ average $2.35(1) \AA, \quad\left(\mathrm{Cp}^{\prime} \quad\right.$ centroid $)-\mathrm{U}-\left(\mathrm{Cp}^{\prime} \quad\right.$ centroid $)$ average $113.9(6)^{\circ}$, $\left(\mathrm{Cp}^{\prime}\right.$ centroid) $-\mathrm{U}-\mathrm{B}$ average $104.4(4)^{\circ}$, and terminal $\mathrm{B}-$ H distance of 1.11 (5) Å.
the solubility of the other reaction products (such as NaI) might significantly influence the substitution chemistry on uranium.

2. Structural commentary

Single crystal X-ray data from $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ were refined in the triclinic $P \overline{1}$ space group with one crystallographically unique molecule in the unit cell, see Fig. 1. The data are of high quality, and electron-density difference peaks consistent with the location and geometry of bridging hydrides were located from a difference-Fourier map with $\mathrm{U}-\mathrm{H}$ distances of 2.35 (5), 2.35 (5), and 2.36 (5) A. Although the uncertainty associated with the $\mathrm{U}-\mathrm{H}$ bonds is relatively high, they are consistent with previously reported bond lengths for actinide(IV) hydride interactions (Ephritikhine, 1997; Daly et al., 2010). Significantly lower uncertainty is associated with the $U-B$ distance at $2.568(4) \AA$, which is similar to two of the three $\mathrm{U}-\mathrm{B}$ distances in $\left[\mathrm{U}\left(\mathrm{BH}_{4}\right)_{3}(\mathrm{DME})\right]_{2}(\mu-\mathrm{O})(\mathrm{DME}=$ 1,2-dimethoxyethane), 2.574 (6), 2.584 (6), and 2.635 (7) \AA (Daly et al., 2012). The U-B distance in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ was reported to be $2.48 \AA$ (Zanella et al., 1988), although disorder in that structure prevented a full solution from being obtained. Theoretical calculations on $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ in the gas phase and in solution predicted $\mathrm{U}-\mathrm{B}$ distances of 2.533 and $2.557 \AA$ (Elkechai et al., 2009), which are also consistent with our data. Other $\left(\mathrm{C}_{5} R_{5}\right)_{2} \mathrm{U}\left(\mathrm{BH}_{4}\right)_{2}$ structures showed similar $\mathrm{U}-\mathrm{B}$ distances of 2.56 (1) \AA for $\left[\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2} \mathrm{U}\left(\mathrm{BH}_{4}\right)_{2}$ (Blake et al., 1995), 2.58 (3) A in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}\left(\mathrm{BH}_{4}\right)_{2}($ Gradoz et al., 1994, Marsh et al., 2002), and 2.553 (1) \AA in $\left(\mathrm{PC}_{4} \mathrm{Me}_{4}\right)_{2} \mathrm{U}\left(\mathrm{BH}_{4}\right)_{2}$ (Baudry et al., 1990).

The uranium- $\left(\mathrm{Cp}^{\prime}\right.$ centroid) distances in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ range from $2.458-2.500 \AA$ and average 2.48 (2) \AA (uncertainty reported as the standard deviation from the mean at 1σ). These uranium- $\left(\mathrm{Cp}^{\prime}\right.$ centroid) distances compare well with the $2.473 \AA$ analogous metric in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UCl}$ (Windorff et al., 2017) and other $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U} X$ structures (see Table 1) with average $\mathrm{U}-\left(\mathrm{Cp}^{\prime}\right.$ centroid) distances of 2.478 (3) \AA in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UI}$ (Windorff et al., 2017), 2.484 (4) \AA in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\eta^{1}-\mathrm{CH}=\mathrm{CH}_{2}\right)$ (Schock et al., 1988) and 2.478 (7) \AA in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left[\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right]$ (Réant et al., 2020). The 113.9 (6) ${ }^{\circ}$ average of (Cp^{\prime} centroid) $-\mathrm{U}-\left(\mathrm{Cp}^{\prime}\right.$ centroid) angles in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ is more acute than the 117.0° angle in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UCl}$ and other $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U} X$ structures, where the average $\left(\mathrm{Cp}^{\prime}\right.$ centroid $)-\mathrm{U}-\left(\mathrm{Cp}^{\prime}\right.$ centroid) angles were reported as $117(1)^{\circ}$ in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UI}, 112(2)^{\circ}$ in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\eta^{1}\right.$ -

Figure 2
Structure of $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UCl}$ with atomic displacement parameters drawn at the 50% probability level, as reproduced from the published CIF (Windorff et al., 2017); the isomorphous thorium complex, $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{ThCl}$, is also known (Réant et al., 2020). Hydrogen atoms are omitted for clarity.
$\mathrm{CH}=\mathrm{CH}_{2}$), and 118.7 (4) ${ }^{\circ}$ in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left[\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right]$. The more acute $\left(\mathrm{Cp}^{\prime}\right.$ centroid $)-\mathrm{U}-\left(\mathrm{Cp}^{\prime}\right.$ centroid $)$ angles are complemented by a more obtuse average (Cp^{\prime} centroid) $-\mathrm{U}-\mathrm{B}$ angle of $104.4(4)^{\circ}$ in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$, likely due to the close proximity

Figure 3
Structure of $\mathrm{Cp}_{3}^{\prime} \mathrm{UCH}_{3} / \mathrm{Cl}$ with only the $\left(\mathrm{CH}_{3}\right)^{-}$ligand shown, with atomic displacement parameters drawn at the 50% probability level, except the $-\mathrm{CH}_{3}$ unit, which has been plotted as an isotropic sphere, as reproduced from the published CIF (Windorff et al., 2017), see the manuscript for further details. Hydrogen atoms are omitted for clarity.

Figure 4
Structure of $\mathrm{Cp}_{3}^{\prime} \mathrm{UI}$ with atomic displacement parameters drawn at the 50% probability level, as reproduced from the published CIF (Windorff et al., 2017). Hydrogen atoms are omitted for clarity.

Figure 5
Structure of $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\eta^{1}-\mathrm{CH}=\mathrm{CH}_{2}\right)$ with atomic displacement parameters drawn as isotropic spheres, as reproduced from the CIF (Schock et al., 1988). Hydrogen atoms are omitted for clarity.

Figure 6
Structure of $\mathrm{Cp}_{3}^{\prime} \mathrm{U}\left[\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right]$ with atomic displacement parameters drawn at the 50% probability level, as reproduced from the published CIF (Réant et al., 2020); the isomorphous thorium complex, $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{Th}\left[\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right]$, is also known (Réant et al., 2020). Hydrogen atoms are omitted for clarity.

Figure 7
Structure of $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{ThCH}_{3}$ with atomic displacement parameters drawn at the 50% probability level, as reproduced from the published CIF (Wedal et al., 2019). Hydrogen atoms are omitted for clarity.

Figure 8
Structure of $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{ThBr}$ with atomic displacement parameters drawn the the 50% probability level, as reproduced from the published CIF in the $P \overline{3}$ space group (Windorff et al., 2017); there is a second report of the same molecule in the $P 2_{1} / c$ space group, featuring the same ligand orientation (Wedal et al., 2019). Hydrogen atoms are omitted for clarity.

Figure 9
Structure of $\left(\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\right)_{2}(\mu-\mathrm{O})$ with atomic displacement parameters drawn as isotropic spheres, as reproduced from the CIF (Berthet et al., 1991); the isomorphous thorium complex, $\left(\mathrm{Cp}_{3}{ }_{3} \mathrm{Th}\right)_{2}(\mu-\mathrm{O})$, is also known (Wedal et al., 2019). Hydrogen atoms are omitted for clarity.

Figure 10
Structure of $\left(\mathrm{Cp}_{3}^{\prime} \mathrm{U}\right)_{2}\left[\mu-\left(\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\right]$ with atomic displacement parameters drawn at the 50% probability level, as reproduced from the published CIF (Mehdoui et al., 2004). Hydrogen atoms are omitted for clarity.
of the $\left(\mathrm{BH}_{4}\right)^{1-}$ ligand compared with $\left(\mathrm{Cp}^{\prime}\right.$ centroid $)-\mathrm{U}-X$ angles of 100.0° in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UCl}, 100(2)^{\circ}$ in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UI}, 98(3)^{\circ}$ in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\eta^{1}-\mathrm{CH}=\mathrm{CH}_{2}\right)$, and $96.7(9)^{\circ}$ in $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left[\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right]$, see Table 1.

An unusual feature of the $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ structure is that all three of the trimethylsilyl groups are oriented in a single direction towards the $\left(\mathrm{BH}_{4}\right)^{-}$unit. This orientation has not been observed in other $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}($ anion $)$ and $\mathrm{Cp}_{3}{ }_{3} \mathrm{U}(\mu$ dianion) $\mathrm{UCp}^{\prime}{ }_{3}$ structures, which are shown in Figs. 2-12. The closest comparison is with the $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UCl}$ structure (Windorff et al., 2017), where all three trimethylsilyl groups are oriented towards the Cl^{-}unit, but twisted down and away from the chloride towards the meridian. The $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UI}$ (Windorff et al., 2017) and $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\eta^{1}-\mathrm{CH}=\mathrm{CH}_{2}\right) \quad$ (Schock et al., 1988) complexes have one trimethylsilyl group pointed away from the anionic ligand. The $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left[\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right]$ complex (Réant et al., 2020) represents the opposite extreme where all of the

Figure 11
Structure of $\left(\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\right)_{2}(\mu-\mathrm{CCO})$ with atomic displacement parameters drawn at the 50% probability level and disorder in the $(\mu-\mathrm{CCO})^{2-}$ unit displayed in one configuration, as reproduced from the published CIF (Tsoureas \& Cloke, 2018). The molecule contains a plane of symmetry, and the unit cell contains two half molecules with the same orientation. For clarity, only one full molecular unit is depicted and hydrogen atoms are omitted for clarity.

Figure 12
Structure of $\left(\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\right)_{4}(\mu-L)$ where $L=$ a complex organic structure containing a central cyclobutene-1,3-dione ring, with atomic displacement parameters drawn at the 50% probability level, as reproduced from the published CIF (Tsoureas \& Cloke, 2018). Hydrogen atoms and disorder in the $-\mathrm{SiMe}_{3}$ groups are omitted for clarity.
trimethylsilyl groups are oriented away from the $\left[\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}\right]^{1-}$ unit. Since $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ has the smallest monoanion of the $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}$ (anion) complexes and the correspondingly smallest $\left(\mathrm{Cp}^{\prime}\right.$ centroid $)-\mathrm{U}-\left(\mathrm{Cp}^{\prime}\right.$ centroid $)$, and the largest (Cp^{\prime} centroid) $-\mathrm{U}-X$ angles, the orientation of the silyl groups could occur due to steric factors. However, it is also possible that some dispersion forces between the $\left(\mathrm{BH}_{4}\right)^{-}$and the trimethylsilyl groups could contribute to the orientation (Liptrot et al., 2016). It is interesting to note that in the $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{Th} X$ series where $X=\mathrm{Cl}$ (Réant et al., 2020), Br (Windorff et al., 2017), and CH_{3} (Wedal et al., 2019), all three trimethylsilyl groups are oriented towards the anion, but twisted down and away from the anion towards the meridian as in $\mathrm{Cp}_{3}{ }_{3} \mathrm{UCl}$.

3. Supramolecular features

There are no major supramolecular features to report. The molecules pack in an alternating 180° rotation from one another within the unit cell and stack 'head to tail' between the unit cells.

4. Database survey

A search using the Cambridge Structural Database (Version 5.41, March 2020; Groom et al., 2016) for borohydride structures containing η^{5}-aromatic five-membered rings bound to uranium showed two classes of complexes. There were the uranium(IV) piano-stool complexes: $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{U}\left(\mathrm{BH}_{4}\right)_{3}$ (DEKVEU and DEKVEU10; Baudry et al., 1985, 1989); $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{U}\left(\mathrm{BH}_{4}\right)\left(\mathrm{SPS}^{\mathrm{Me}}\right)$ (JOJTIM; Arliguie et al., 2008),
where $\mathrm{SPS}^{\mathrm{Me}}=\mathrm{PC}_{5} \mathrm{H}-3,5-\mathrm{Ph},-2,6-\left(\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\right)-1-\mathrm{Me}$, a λ^{4}-phosphinine with two lateral phosphinosulfide groups, and the tetramethylphosphol $\left(\mathrm{PC}_{4} \mathrm{Me}_{4}\right)$ compound $\left(\mathrm{PC}_{4} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)$ $\mathrm{U}\left(\mathrm{BH}_{4}\right)$ (THF) (MOBVEE; Cendrowski-Guillaume et al., 2002). There were also uranium(IV) metallocene structures, (Ring) $)_{2} \mathrm{U}\left(\mathrm{BH}_{4}\right)_{2}$, where Ring $=\mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{CPURBH}$; Zanella et al., 1977), $\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}$ (ZEYZOS; Blake et al., 1995), $\mathrm{C}_{5} \mathrm{Me}_{5}$ (WIFFOG and WIFFOG01; Gradoz et al., 1994; Marsh et al., 2002), $\mathrm{C}_{9} \mathrm{H}_{7}$ (VASVUG, $\mathrm{C}_{9} \mathrm{H}_{7}=$ indenide; Rebizant et al., 1989) and $\mathrm{PC}_{4} \mathrm{Me}_{4}$ (KIJBEK, $\mathrm{PC}_{4} \mathrm{Me}_{4}=$ tetramethylphosphol; Baudry et al., 1990). The macrocyclic trans-calix[2]benzene[2]pyrrolide (L) complex $\left[L \mathrm{U}\left(\mathrm{BH}_{4}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ was also in the database (CUJMEB; Arnold et al., 2015). This last compound features two η^{5}-bound $\mathrm{NC}_{4} \mathrm{H}_{2} R_{2}$ ligands. Also in the database were a few examples of uranium(III) borohydrides, such as the mono borohydride $\left[\left(\mathrm{PC}_{4} \mathrm{Me}_{4}\right)_{2} \mathrm{U}\left(\mathrm{BH}_{4}\right)\right]_{2}$ (YEZJES; Gradoz et al., 1994) and the mixed oxidation state piano stool $\left[\mathrm{Na}(\mathrm{THF})_{6}\right]\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{U}\left(\mathrm{BH}_{4}\right)_{3}\right]_{2} \quad$ (VAXMUC; Ryan et al., 1989)] complexes.

There are also three dimeric uranium(IV) complexes with $\mathrm{Cp}^{\prime-}$ ligands, all of the form $\left(\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\right)_{2}(\mu-X)$ where $X=\mathrm{O}^{2-}$ (SOSXON; Berthet et al., 1991), (pyrazine) ${ }^{2-},\left(\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)^{2-}$ (EYERIJ; Mehdoui et al., 2004), and CCO^{2-} (PIKFAT; Tsoureas \& Cloke, 2018). There is also the tetrametallic $\left(\mathrm{Cp}_{3}^{\prime}{ }_{3} \mathrm{U}\right)_{4}(\mu-L)$ (PIKDUL; Tsoureas \& Cloke, 2018) where L is a complex organic structure containing a central cyclobutene-1,3-dione ring.

5. Spectroscopic Features

The fully defined $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ compound was also characterized by ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ multi-nuclear NMR spectroscopy. It was of particular interest to examine the ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum for comparison with previous studies of silicon-containing paramagnetic uranium complexes (Windorff \& Evans, 2014). The ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{7} \mathrm{D}_{8}$ was in good agreement with the literature (Berthet \& Ephritikhine, 1992). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were also obtained in both $\mathrm{C}_{7} \mathrm{D}_{8}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$, as well as different field strengths, 500 vs 600 MHz for ${ }^{1} \mathrm{H}$, to see if any significant solvent or field effects were present. Since the spectra were not dependent on solvent or field strength, only the spectra obtained in $\mathrm{C}_{6} \mathrm{D}_{6}$ in a 600 MHz field will be discussed here. See Section 6 for full details.

In general, the resonances attributable to the $\mathrm{Cp}^{\prime-}$ ligands are sharp ($v_{1 / 2}<50 \mathrm{~Hz}$) and paramagnetically shifted over a range of $\delta 9.6$ to -22.6 ppm , in the ${ }^{1} \mathrm{H}$ NMR spectrum, and a ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ resonance at $\delta-57.4 \mathrm{ppm}$ was observed, typical of other tetravalent uranium complexes (Windorff \& Evans, 2014). The resonances attributable to the $\left(\mathrm{BH}_{4}\right)^{-}$unit showed considerably more shifting and broadening, resonating at $\delta-59.5\left(v_{1 / 2}=300 \mathrm{~Hz}\right)$ and $79.6\left(v_{1 / 2}=240 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ spectra, respectively. Since the $\left(\mathrm{BH}_{4}\right)^{-}$ligand exhibited a single ${ }^{1} \mathrm{H}$ NMR resonance whereas two distinct hydride environments are present in the solid state, it appears that the complex is fluxional in solution. This is in line with previous studies (Ephritikhine, 1997).

6. Synthesis and crystallization

6.1. General considerations

All manipulations and syntheses described below were conducted with the rigorous exclusion of air and water using glovebox techniques under an argon atmosphere. Solvents (THF, $\mathrm{Et}_{2} \mathrm{O}$, toluene, hexane, and pentane) were sparged with UHP argon (Praxair) and dried by passage through columns containing a copper(II) oxide oxygen scavenger (Q-5) and molecular sieves prior to use or stirred over sodium benzophenone ketyl, briefly exposed to vacuum several times to degas and distilled under vacuum. All ethereal solvents were stored over activated $4 \AA$ molecular sieves. Deuterated solvents (Cambridge Isotopes) used for nuclear magnetic resonance (NMR) spectroscopy were dried over sodium benzophenone ketyl, degassed by three freeze-pump-thaw cycles, and distilled under vacuum before use. The ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a GN 500, Cryo 500 or Bruker Avance 600 spectrometer operating at 500.2 MHz, $160.1 \mathrm{MHz}, 125.8 \mathrm{MHz}$, and 99.1 MHz for the 500 MHz spectrometers, respectively, and 600.1 MHz , 192.6 MHz, 150.9 MHz and 119.2 MHz for the 600 MHz spectrometer, respectively, at 298 K unless otherwise stated. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced internally to solvent resonances, ${ }^{11} \mathrm{~B}$ and ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced externally to $\mathrm{BF}_{3}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and SiMe_{4}, respectively, the ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were acquired using the INEPT pulse sequence. The 15 -crown- 5 (Aldrich) reagent was dried over activated molecular sieves and degassed by three freeze-pump-thaw cycles before use. The NaBH_{4} (Aldrich) reagent was placed under vacuum ($10^{-3} \mathrm{Torr}$) for 12 h before use. The following compounds were prepared following literature procedures: KCp^{\prime} (Peterson et al., 2013), $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$ (Schlesinger \& Brown, 1953), $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UI}$ (Windorff et al., 2017).

6.2. $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ from $\mathrm{Cp}_{3}^{\prime} \mathrm{UI}, \mathrm{NaBH}_{4}$ and 15-crown-5

Solid $\mathrm{NaBH}_{4}(15 \mathrm{mg}, 0.40 \mathrm{mmol})$ was added to a $\mathrm{C}_{7} \mathrm{D}_{8}$ (toluene- $d_{8}, 0.6 \mathrm{~mL}$) solution of $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{UI}(37 \mathrm{mg}, 0.048 \mathrm{mmol}$) in a J-Young NMR tube, an excess of 15 -crown-5 (1 drop) was added and the tube was sealed and removed from the glovebox and vortexed (30 s). The NaBH_{4} was not fully soluble in $\mathrm{C}_{7} \mathrm{D}_{8}$ even in the presence of 15 -crown- 5 . After 18 h , NMR spectroscopy showed complete conversion to $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$. The sample was brought back into the glovebox and the volatiles were removed under reduced pressure. The product was then extracted into $\mathrm{Et}_{2} \mathrm{O}$, filtered away from white insoluble solids [presumably $\mathrm{Na}(15$-crown-5)I and excess NaBH_{4}] and the volatiles were removed under reduced pressure to give $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)(30 \mathrm{mg}, 96 \%)$ as a wine-red solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{7} \mathrm{D}_{8}, 500.2 \mathrm{MHz}\right): \delta 9.7\left(s, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}, 6 \mathrm{H}\right),-2.1$ $\left(s, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Si} M e_{3}, 27 \mathrm{H}\right),-23.1\left(s, \mathrm{C}_{5} H_{4} \mathrm{SiMe}_{3}, 6 \mathrm{H}\right),-59.8(s, b r$, $\left.v_{1 / 2}=325 \mathrm{~Hz}, \quad \mathrm{U}-\left(\mathrm{B} H_{4}\right), \quad 4 \mathrm{H}\right) ;{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{C}_{7} \mathrm{D}_{8}\right.$, $160.1 \mathrm{MHz}): \delta 79.1\left[s, b r, v_{1 / 2}=230 \mathrm{~Hz}, \mathrm{U}-\left(B \mathrm{H}_{4}\right)\right] ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{7} \mathrm{D}_{8}, \quad 125.8 \mathrm{MHz}\right): \delta 233.1\left(C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), \quad 214.0$ $\left(C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), 185.6\left(C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), 0.4\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Si} M e_{3}\right) ;{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{7} \mathrm{D}_{8}$, 99.1 MHz, INEPT): $\delta-57.7\left(s, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 600.1 \mathrm{MHz}\right): \delta 9.6\left(s, \mathrm{C}_{5} H_{4} \mathrm{SiMe}_{3}, 6 \mathrm{H}\right),-2.0(s$,

Table 2
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{U}\left(\mathrm{BH}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Si}\right)_{3}\right]$
$M_{\text {r }}$	664.69
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	112
$a, b, c(\AA)$	8.7530 (15), 12.217 (2), 13.657 (2)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	94.159 (3), 96.016 (3), 103.256 (3)
$V\left(\mathrm{~A}^{3}\right)$	1406.6 (4)
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	5.91
Crystal size (mm)	$0.88 \times 0.62 \times 0.17$
Data collection	
Diffractometer	Bruker D8 Quest with Photon II detector
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.413, 0.747
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	30231, 10686, 9355
$R_{\text {int }}$	0.055
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.769
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.037, 0.102, 1.07
No. of reflections	10686
No. of parameters	274
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	3.87, -2.72

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), and SHELXTL2018/3 (Sheldrick, 2008).
$\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Si} M e_{3}, 27 \mathrm{H}\right),-22.6\left(s, \mathrm{C}_{5} H_{4} \mathrm{SiMe}_{3}, 6 \mathrm{H}\right),-59.3\left(s, b r, v_{1 / 2}\right.$ $\left.=300 \mathrm{~Hz}, \mathrm{U}-\left(\mathrm{BH}_{4}\right), 4 \mathrm{H}\right) ;{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 192.6 \mathrm{MHz}\right): \delta$ $79.6\left[s, b r, v_{1 / 2}=240 \mathrm{~Hz}, \mathrm{U}-\left(B \mathrm{H}_{4}\right)\right] ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $150.9 \mathrm{MHz}): \delta 232.0\left(C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), 214.2\left(C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), 186.5$ $\left(C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), \quad 0.6 \quad\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Si} M e_{3}\right) ;{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, 119.2 MHz, INEPT): $\delta-57.4\left(s, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)$.

6.3. $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$ from $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$ and $\mathrm{KCp}{ }^{\prime}$

An $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ solution of $\mathrm{KCp}^{\prime}(460 \mathrm{mg}, 2.61 \mathrm{mmol})$ was added to a pale-green solution of $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}(250 \mathrm{mg}$, 0.841 mmol), also dissolved in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. White solids precipitated (presumably KBH_{4}) as the solution quickly turned orange and then slowly changed to dark red (30 min). After stirring the mixture for an additional 12 h , volatiles were removed under reduced pressure, and the product was extracted into hexane leaving white solids behind (presumably KBH_{4}). Removal of the volatiles under reduced pressure gave $\mathrm{Cp}^{\prime}{ }_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)(496 \mathrm{mg}, 89 \%)$ as a dark wine-red solid. X-ray quality crystals were grown from a concentrated ether solution at 253 K .

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Analytical scattering factors neutral atoms were used throughout the analysis. A 3-D
rendering of the molecule can be found at the following web address: https://submission.iucr.org/jtkt/serve/z/Utgd9EjfTrqJVoXA/zz0000/0/.
$\mathrm{C}-\mathrm{H}$ bond distances were constrained to 0.95 A for cyclopentadienyl $\mathrm{C}-\mathrm{H}$ moieties, and to $0.98 \AA$ for aliphatic CH_{3} moieties, respectively. Methyl torsion angles were not refined but constrained to be staggered. The borohydride H atoms were located from a difference-Fourier map and their positions were freely refined. $U_{\text {iso }}(\mathrm{H})$ values were set to a multiple of $U_{\text {eq }}(\mathrm{C} / \mathrm{B})$ with 1.5 for CH_{3} and BH_{4} and 1.2 for $\mathrm{C}-$ H units, respectively.

Acknowledgements

We wish to thank Robert T. Pain (University of New Mexico) for the gift of $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$. We also wish to thank Dr Joseph W. Ziller (UC-Irvine) for helpful discussions.

Funding information

Funding for this research was provided by: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry program (grant No. 2020LANLE372 to SAK, BLS; grant No. DE-SC0004739 to WJE); U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Oak Ridge Institute for Science and Education (ORISE), Office of Science Graduate Student Research (SCGSR) program. (contract No. DE-AC05-06OR23100 to CJW); Los Alamos, Director's Postdoctoral Fellowship (award to JNC); U.S. Department of Energy, NNSA, Triad National Security, LLC (contract No. 89233218CNA000001).

References

Arliguie, T., Blug, M., Le Floch, P., Mézailles, N., Thuéry, P. \& Ephritikhine, M. (2008). Organometallics, 27, 4158-4165.
Arnold, P. L., Farnaby, J. H., Gardiner, M. G. \& Love, J. B. (2015). Organometallics, 34, 2114-2117.
Baudry, D., Bulot, E., Charpin, P., Ephritikhine, M., Lance, M., Nierlich, M. \& Vigner, J. (1989). J. Organomet. Chem. 371, 163-174.
Baudry, D., Charpin, P., Ephritikhine, M., Folcher, G., Lambard, J., Lance, M., Nierlich, M. \& Vigner, J. (1985). J. Chem. Soc. Chem. Commun. pp. 1553-1554.
Baudry, D., Ephritikhine, M., Nief, F., Ricard, L. \& Mathey, F. (1990). Angew. Chem. Int. Ed. Engl. 29, 1485-1486.
Bernstein, E. R., Hamilton, W. C., Keiderling, T. A., La Placa, S. J., Lippard, S. J. \& Mayerle, J. J. (1972). Inorg. Chem. 11, 3009-3016. Berthet, J.-C. \& Ephritikhine, M. (1992). New J. Chem. 16, 767-768. Berthet, J.-C., Le Maréchal, J.-F., Nierlich, M., Lance, M., Vigner, J. \& Ephritikhine, M. (1991). J. Organomet. Chem. 408, 335-341.

Blake, P. C., Lappert, M. F., Taylor, R. G., Atwood, J. L., Hunter, W. E. \& Zhang, H. (1995). J. Chem. Soc. Dalton Trans. pp. 3335-3341.
Bruker (2018). APEX3, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cendrowski-Guillaume, S. M., Nierlich, M. \& Ephritikhine, M. (2002). J. Organomet. Chem. 643-644, 209-213.

Daly, S. R., Ephritikhine, M. \& Girolami, G. S. (2012). Polyhedron, 33, 41-44.
Daly, S. R. \& Girolami, G. S. (2010). Chem. Commun. 46, 407-408.
Daly, S. R., Piccoli, P. M., Schultz, A. J., Todorova, T. K., Gagliardi, L. \& Girolami, G. S. (2010). Angew. Chem. Int. Ed. 49, 3379-3381.
Elkechai, A., Boucekkine, A., Belkhiri, L., Amarouche, M., Clappe, C., Hauchard, D. \& Ephritikhine, M. (2009). Dalton Trans. pp. 2843-2849.
Ephritikhine, M. (1997). Chem. Rev. 97, 2193-2242.
Gradoz, P., Baudry, D., Ephritikhine, M., Lance, M., Nierlich, M. \& Vigner, J. (1994). J. Organomet. Chem. 466, 107-118.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hoekstra, H. R. \& Katz, J. J. (1949). J. Am. Chem. Soc. 71, 2488-2492.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Liptrot, D. J., Guo, J.-D., Nagase, S. \& Power, P. P. (2016). Angew. Chem. Int. Ed. 55, 14766-14769.
MacDonald, M. R., Fieser, M. E., Bates, J. E., Ziller, J. W., Furche, F. \& Evans, W. J. (2013). J. Am. Chem. Soc. 135, 13310-13313.
Marsh, R. E., Kapon, M., Hu, S. \& Herbstein, F. H. (2002). Acta Cryst. B58, 62-77.
Mehdoui, T., Berthet, J.-C., Thuéry, P. \& Ephritikhine, M. (2004). Eur. J. Inorg. Chem. pp. 1996-2000.

Peterson, J. K., MacDonald, M. R., Ziller, J. W. \& Evans, W. J. (2013). Organometallics, 32, 2625-2631.
Réant, B. L. L., Berryman, V. E. J., Seed, J. A., Basford, A. R., Formanuik, A., Wooles, A. J., Kaltsoyannis, N., Liddle, S. T. \& Mills, D. P. (2020). Chem. Commun. 56, 12620-12623.

Rebizant, J., Spirlet, M. R., Bettonville, S. \& Goffart, J. (1989). Acta Cryst. C45, 1509-1511.
Ryan, R. R., Salazar, K. V., Sauer, N. N. \& Ritchey, J. M. (1989). Inorg. Chim. Acta, 162, 221-225.
Schlesinger, H. I. \& Brown, H. C. (1953). J. Am. Chem. Soc. 75, 219221.

Schock, L. E., Seyam, A. M., Sabat, M. \& Marks, T. J. (1988). Polyhedron, 7, 1517-1529.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Tsoureas, N. \& Cloke, F. G. N. (2018). Chem. Commun. 54, 8830-8833.
Wedal, J. C., Bekoe, S., Ziller, J. W., Furche, F. \& Evans, W. J. (2019). Dalton Trans. 48, 16633-16640.
Windorff, C. J. \& Evans, W. J. (2014). Organometallics, 33, 3786-3791.
Windorff, C. J., MacDonald, M. R., Ziller, J. W. \& Evans, W. J. (2017). Z. Anorg. Allg. Chem. 643, 2011-2018.

Zanella, P., Brianese, N., Casellato, U., Ossola, F., Porchia, M., Rossetto, G. \& Graziani, R. (1988). Inorg. Chim. Acta, 144, 129134.

Zanella, P., De Paoli, G., Bombieri, G., Zanotti, G. \& Rossi, R. (1977). J. Organomet. Chem. 142, C21-C24.

supporting information

Acta Cryst. (2021). E77, 383-389 [https://doi.org/10.1107/S2056989021002425]

Crystallographic characterization of $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)_{3} \mathrm{U}\left(\mathrm{BH}_{4}\right)$

Cory J. Windorff, Justin N. Cross, Brian L. Scott, Stosh A. Kozimor and William J. Evans

Computing details

Data collection: APEX3 (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: SHELXTL2018/3 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2018/3 (Sheldrick, 2008).
(Borohydrido- $\boldsymbol{\kappa}^{3} H$)tris[η^{5}-(trimethylsilyl)cyclopentadienyl]uranium(IV)

Crystal data

$\left[\mathrm{U}\left(\mathrm{BH}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Si}\right)_{3}\right]$
$M_{r}=664.69$
Triclinic, $P \overline{1}$
$a=8.7530$ (15) \AA
$b=12.217$ (2) \AA
$c=13.657$ (2) \AA
$\alpha=94.159(3)^{\circ}$
$\beta=96.016(3)^{\circ}$
$\gamma=103.256(3)^{\circ}$
$V=1406.6(4) \AA^{3}$

Data collection

Bruker D8 Quest with Photon II detector diffractometer
Radiation source: I $\mu \mathrm{S} 3.0$ microfocus

ω scans

Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.413, T_{\text {max }}=0.747$
30231 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.102$
$S=1.07$
10686 reflections
274 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
Z=2
$$

$$
F(000)=652
$$

$$
D_{\mathrm{x}}=1.569 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

Cell parameters from 30231 reflections
$\theta=2.4-33.1^{\circ}$
$\mu=5.91 \mathrm{~mm}^{-1}$
$T=112 \mathrm{~K}$
Plate, red
$0.88 \times 0.62 \times 0.17 \mathrm{~mm}$

10686 independent reflections
9355 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=33.1^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-13 \rightarrow 13$
$k=-18 \rightarrow 18$
$l=-20 \rightarrow 20$

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0549 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=3.87 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.72 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
U1	0.51249 (2)	0.16808 (2)	0.26353 (2)	0.00963 (4)
B1	0.8150 (5)	0.2329 (4)	0.3009 (4)	0.0177 (8)
H1A	0.761 (6)	0.294 (5)	0.308 (4)	0.027*
H1B	0.771 (6)	0.205 (5)	0.219 (4)	0.027*
H1C	0.762 (6)	0.166 (5)	0.348 (4)	0.027*
H1D	0.944 (6)	0.271 (5)	0.317 (4)	0.027*
Si1	0.76504 (13)	0.39347 (9)	0.07862 (8)	0.0156 (2)
Si2	0.71528 (13)	0.35432 (9)	0.54090 (9)	0.0161 (2)
Si3	0.79753 (13)	-0.07373 (10)	0.23562 (8)	0.0161 (2)
C1	0.5747 (4)	0.3269 (3)	0.1255 (3)	0.0134 (6)
C2	0.4548 (4)	0.2353 (3)	0.0762 (3)	0.0142 (7)
H2	0.467664	0.185642	0.022485	0.017*
C3	0.3126 (4)	0.2291 (3)	0.1192 (3)	0.0168 (7)
H3A	0.205686	0.182752	0.090235	0.020*
C4	0.3423 (5)	0.3169 (3)	0.1952 (3)	0.0194 (8)
H4A	0.259820	0.343109	0.229549	0.023*
C5	0.5036 (5)	0.3754 (3)	0.2021 (3)	0.0170 (7)
H5A	0.551554	0.449334	0.242324	0.020*
C6	0.8516 (6)	0.2832 (4)	0.0182 (4)	0.0258 (9)
H6A	0.773894	0.237713	-0.034755	0.039*
H6B	0.946750	0.320007	-0.009698	0.039*
H6C	0.879493	0.234315	0.067481	0.039*
C7	0.9080 (5)	0.4833 (4)	0.1805 (4)	0.0259 (9)
H7A	0.935861	0.435704	0.231009	0.039*
H7B	1.003659	0.521095	0.153741	0.039*
H7C	0.859331	0.540147	0.210342	0.039*
C8	0.7126 (6)	0.4851 (4)	-0.0173 (4)	0.0284 (10)
H8A	0.637627	0.438442	-0.070950	0.043*
H8B	0.664218	0.541988	0.012768	0.043*
H8C	0.808545	0.522937	-0.043833	0.043*
C9	0.5445 (4)	0.2558 (3)	0.4617 (3)	0.0139 (6)
C10	0.5031 (4)	0.1358 (3)	0.4589 (3)	0.0129 (6)
H10A	0.566960	0.090586	0.496241	0.016*
C11	0.3457 (4)	0.0938 (3)	0.4159 (3)	0.0148 (7)
H11A	0.280490	0.015468	0.418243	0.018*
C12	0.2877 (4)	0.1864 (3)	0.3859 (3)	0.0159 (7)
H12A	0.174487	0.184244	0.363546	0.019*
C13	0.4089 (5)	0.2856 (3)	0.4155 (3)	0.0156 (7)
H13	0.400650	0.360371	0.406008	0.019*

C14	0.7834 (5)	0.4881 (3)	0.4818 (4)	0.0236 (9)
H14A	0.694252	0.523095	0.467930	0.035*
H14B	0.867433	0.540488	0.526781	0.035*
H14C	0.823995	0.470669	0.419794	0.035*
C15	0.6386 (6)	0.3890 (4)	0.6594 (3)	0.0269 (9)
H15A	0.553651	0.428013	0.645944	0.040*
H15B	0.597529	0.319142	0.688904	0.040*
H15C	0.724665	0.438154	0.705407	0.040*
C16	0.8764 (5)	0.2804 (4)	0.5706 (3)	0.0226 (8)
H16A	0.965381	0.332556	0.612059	0.034*
H16B	0.836522	0.215057	0.606193	0.034*
H16C	0.911947	0.254911	0.509097	0.034*
C17	0.6012 (4)	-0.0360 (3)	0.2171 (3)	0.0128 (6)
C18	0.4764 (5)	-0.0648 (3)	0.2755 (3)	0.0140 (6)
H18	0.485999	-0.088223	0.340226	0.017*
C19	0.3343 (4)	-0.0530 (3)	0.2215 (3)	0.0153 (7)
H19	0.232617	-0.068713	0.243279	0.018*
C20	0.3699 (4)	-0.0141 (3)	0.1306 (3)	0.0145 (7)
H20A	0.290811	-0.013775	0.072251	0.017*
C21	0.5350 (4)	-0.0017 (3)	0.1283 (3)	0.0130 (6)
H21A	0.589324	0.009939	0.067662	0.016*
C22	0.8854 (5)	-0.0487 (4)	0.3683 (3)	0.0238 (9)
H22A	0.904791	0.031903	0.390761	0.036*
H22B	0.811913	-0.092648	0.408388	0.036*
H22C	0.985486	-0.072076	0.375288	0.036*
C23	0.7622 (7)	-0.2283 (4)	0.1955 (4)	0.0334 (11)
H23A	0.716059	-0.243268	0.125928	0.050*
H23B	0.862889	-0.250933	0.203265	0.050*
H23C	0.689316	-0.271505	0.236365	0.050*
C24	0.9339 (5)	0.0070 (4)	0.1537 (4)	0.0277 (10)
H24A	0.883975	-0.008159	0.084891	0.042*
H24B	0.954902	0.088142	0.174393	0.042*
H24C	1.033665	-0.016878	0.159288	0.042*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
U1	$0.00980(6)$	$0.01025(6)$	$0.00983(7)$	$0.00336(4)$	$0.00194(4)$	$0.00341(4)$
B1	$0.0131(18)$	$0.019(2)$	$0.021(2)$	$0.0041(15)$	$0.0016(16)$	$0.0059(16)$
Si1	$0.0167(5)$	$0.0131(4)$	$0.0176(5)$	$0.0025(4)$	$0.0052(4)$	$0.0052(4)$
Si2	$0.0188(5)$	$0.0123(4)$	$0.0163(5)$	$0.0030(4)$	$0.0004(4)$	$0.0002(4)$
Si3	$0.0160(5)$	$0.0195(5)$	$0.0161(5)$	$0.0099(4)$	$0.0025(4)$	$0.0049(4)$
C1	$0.0143(15)$	$0.0126(15)$	$0.0135(16)$	$0.0032(12)$	$0.0010(12)$	$0.0050(12)$
C2	$0.0163(16)$	$0.0158(16)$	$0.0109(16)$	$0.0038(13)$	$0.0015(13)$	$0.0037(12)$
C3	$0.0140(16)$	$0.0207(18)$	$0.0172(18)$	$0.0051(13)$	$0.0010(13)$	$0.0098(14)$
C4	$0.0163(17)$	$0.0192(18)$	$0.028(2)$	$0.0106(14)$	$0.0061(15)$	$0.0141(16)$
C5	$0.0186(17)$	$0.0148(16)$	$0.0210(19)$	$0.0079(13)$	$0.0051(14)$	$0.0091(14)$
C6	$0.030(2)$	$0.020(2)$	$0.029(2)$	$0.0048(17)$	$0.0154(19)$	$0.0026(17)$

supporting information

C7	$0.024(2)$	$0.021(2)$	$0.030(2)$	$-0.0006(16)$	$0.0056(18)$	$0.0030(17)$
C8	$0.028(2)$	$0.029(2)$	$0.032(3)$	$0.0063(18)$	$0.0100(19)$	$0.021(2)$
C9	$0.0145(15)$	$0.0117(15)$	$0.0165(17)$	$0.0045(12)$	$0.0024(13)$	$0.0022(12)$
C10	$0.0168(16)$	$0.0122(15)$	$0.0102(15)$	$0.0033(12)$	$0.0028(12)$	$0.0028(12)$
C11	$0.0148(15)$	$0.0169(16)$	$0.0132(16)$	$0.0016(13)$	$0.0061(13)$	$0.0057(13)$
C12	$0.0119(15)$	$0.0236(18)$	$0.0143(17)$	$0.0067(13)$	$0.0046(13)$	$0.0026(14)$
C13	$0.0167(16)$	$0.0175(17)$	$0.0145(17)$	$0.0076(13)$	$0.0025(13)$	$0.0023(13)$
C14	$0.026(2)$	$0.0122(17)$	$0.032(2)$	$0.0031(15)$	$0.0054(18)$	$0.0032(16)$
C15	$0.037(2)$	$0.023(2)$	$0.018(2)$	$0.0031(18)$	$0.0037(18)$	$-0.0048(16)$
C16	$0.0228(19)$	$0.0204(19)$	$0.025(2)$	$0.0080(15)$	$-0.0036(16)$	$0.0027(16)$
C17	$0.0141(15)$	$0.0125(15)$	$0.0126(16)$	$0.0041(12)$	$0.0025(12)$	$0.0029(12)$
C18	$0.0190(17)$	$0.0126(15)$	$0.0104(16)$	$0.0033(13)$	$0.0025(13)$	$0.0024(12)$
C19	$0.0137(15)$	$0.0127(15)$	$0.0182(18)$	$-0.0003(12)$	$0.0032(13)$	$0.0031(13)$
C20	$0.0140(15)$	$0.0176(16)$	$0.0097(16)$	$0.0018(13)$	$-0.0030(12)$	$-0.0001(12)$
C21	$0.0149(16)$	$0.0140(15)$	$0.0111(16)$	$0.0063(12)$	$0.0007(12)$	$-0.0007(12)$
C22	$0.0220(19)$	$0.033(2)$	$0.020(2)$	$0.0142(17)$	$0.0007(16)$	$0.0059(17)$
C23	$0.040(3)$	$0.025(2)$	$0.041(3)$	$0.022(2)$	$0.001(2)$	$-0.001(2)$
C24	$0.023(2)$	$0.038(3)$	$0.030(2)$	$0.0164(19)$	$0.0102(18)$	$0.014(2)$

Geometric parameters (A, ${ }^{\circ}$)

U1-B1	2.568 (4)	C7-H7B	0.9800
U1-C21	2.731 (4)	C7-H7C	0.9800
U1-C10	2.732 (4)	C8-H8A	0.9800
U1-C20	2.733 (4)	С8-H8B	0.9800
U1-C5	2.740 (4)	C8-H8C	0.9800
U1-C12	2.748 (4)	C9-C13	1.419 (5)
U1-C11	2.754 (3)	C9-C10	1.424 (5)
U1-C4	2.755 (4)	C10-C11	1.403 (5)
U1-C3	2.755 (4)	C10-H10A	1.0000
U1-H1A	2.35 (5)	C11-C12	1.411 (5)
U1-H1B	2.35 (5)	C11-H11A	1.0000
U1-H1C	2.36 (5)	C12-C13	1.417 (5)
B1-H1A	0.98 (6)	C12-H12A	1.0000
B1-H1B	1.15 (6)	C13-H13	0.9500
B1-H1C	1.12 (5)	C14-H14A	0.9800
B1-H1D	1.11 (5)	C14-H14B	0.9800
Sil-C7	1.868 (5)	C14-H14C	0.9800
Si1-C8	1.871 (4)	C15-H15A	0.9800
Si1-C6	1.872 (5)	C15-H15B	0.9800
Sil-C1	1.877 (4)	C15-H15C	0.9800
Si2-C16	1.867 (4)	C16-H16A	0.9800
Si2-C9	1.871 (4)	C16-H16B	0.9800
Si2-C15	1.873 (5)	C16-H16C	0.9800
Si2-C14	1.877 (4)	C17-C18	1.415 (5)
$\mathrm{Si} 3-\mathrm{C} 22$	1.867 (5)	C17-C21	1.421 (5)
Si3-C23	1.873 (5)	C18-C19	1.420 (5)
Si3-C17	1.876 (4)	C18-H18	0.9500

Si3-C24	1.884 (5)
C1-C2	1.418 (5)
C1-C5	1.432 (6)
C2-C3	1.420 (5)
C2-H2	0.9500
C3-C4	1.396 (6)
C3-H3A	1.0000
C4-C5	1.418 (5)
C4-H4A	1.0000
C5-H5A	1.0000
C6-H6A	0.9800
C6-H6B	0.9800
C6-H6C	0.9800
C7-H7A	0.9800
B1-U1-C21	91.29 (14)
B1-U1-C10	88.27 (13)
C21-U1-C10	121.25 (11)
B1-U1-C20	121.42 (14)
C21-U1-C20	30.15 (11)
C10-U1-C20	116.28 (11)
B1-U1-C5	89.68 (13)
C21-U1-C5	119.23 (12)
C10-U1-C5	119.52 (12)
C20-U1-C5	115.78 (12)
B1-U1-C12	128.78 (14)
C21-U1-C12	131.96 (12)
C10-U1-C12	48.97 (11)
C20-U1-C12	104.45 (12)
C5-U1-C12	89.90 (12)
B1-U1-C11	117.73 (13)
C21-U1-C11	113.80 (11)
C10-U1-C11	29.63 (11)
C20-U1-C11	95.57 (11)
C5-U1-C11	118.89 (12)
C12-U1-C11	29.73 (11)
B1-U1-C4	119.54 (13)
C21-U1-C4	115.96 (13)
C10-U1-C4	114.79 (12)
C20-U1-C4	98.00 (13)
C5-U1-C4	29.91 (11)
C12-U1-C4	70.43 (12)
C11-U1-C4	99.66 (12)
B1-U1-C3	129.05 (13)
C21-U1-C3	87.02 (12)
C10-U1-C3	134.56 (12)
C20-U1-C3	69.70 (12)
C5-U1-C3	49.08 (12)

C19-C20	1.402 (5)
C19-H19	0.9500
C20-C21	1.421 (5)
C20-H20A	1.0000
C21-H21A	1.0000
$\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	0.9800
C22-H22B	0.9800
C22-H22C	0.9800
$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	0.9800
C23-H23B	0.9800
C23-H23C	0.9800
C24-H24A	0.9800
C24-H24B	0.9800
C24-H24C	0.9800
C3-C4-H4A	125.3
C5-C4-H4A	125.3
U1-C4-H4A	125.3
C4-C5-C1	108.8 (4)
C4-C5-U1	75.7 (2)
C1-C5-U1	77.6 (2)
C4-C5-H5A	124.8
C1-C5-H5A	124.8
U1-C5-H5A	124.8
Si1-C6-H6A	109.5
Si1-C6-H6B	109.5
H6A-C6-H6B	109.5
Si1-C6-H6C	109.5
H6A-C6-H6C	109.5
H6B-C6-H6C	109.5
Si1-C7-H7A	109.5
Si1-C7-H7B	109.5
H7A-C7-H7B	109.5
Si1-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
Sil-C8-H8A	109.5
Si1-C8-H8B	109.5
H8A-C8-H8B	109.5
Si1-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
C13-C9-C10	105.6 (3)
C13-C9-Si2	125.9 (3)
C10-C9-Si2	126.4 (3)
C11-C10-C9	109.8 (3)
C11-C10-U1	76.0 (2)
C9-C10-U1	77.7 (2)

C12-U1-C3	85.59 (12)
C11-U1-C3	109.24 (11)
C4-U1-C3	29.34 (13)
B1-U1-H1A	22.4 (14)
$\mathrm{C} 21-\mathrm{U} 1-\mathrm{H} 1 \mathrm{~A}$	110.3 (14)
C10-U1-H1A	88.4 (14)
C20-U1-H1A	139.8 (14)
C5-U1-H1A	70.3 (13)
C12-U1-H1A	115.5 (14)
C11-U1-H1A	116.7 (14)
C4-U1-H1A	99.3 (13)
C3-U1-H1A	116.2 (13)
B1-U1-H1B	26.5 (14)
C21-U1-H1B	70.8 (14)
C10-U1-H1B	113.0 (14)
C20-U1-H1B	100.0 (14)
C5-U1-H1B	85.6 (13)
C12-U1-H1B	154.6 (14)
C11-U1-H1B	141.1 (13)
$\mathrm{C} 4-\mathrm{U} 1-\mathrm{H} 1 \mathrm{~B}$	113.1 (13)
C3-U1-H1B	109.6 (13)
H1A-U1-H1B	39.9 (19)
B1-U1-H1C	25.8 (13)
C21-U1-H1C	90.4 (14)
C10-U1-H1C	66.9 (14)
C20-U1-H1C	116.7 (13)
C5-U1-H1C	112.4 (13)
C12-U1-H1C	114.2 (14)
C11-U1-H1C	94.8 (13)
C4-U1-H1C	140.7 (13)
C3-U1-H1C	154.7 (13)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{U} 1-\mathrm{H} 1 \mathrm{C}$	42.1 (18)
H1B-U1-H1C	46.4 (18)
U1-B1-H1A	66 (3)
U1-B1-H1B	66 (3)
H1A-B1-H1B	97 (4)
U1-B1-H1C	67 (3)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{B} 1-\mathrm{H} 1 \mathrm{C}$	107 (4)
H1B-B1-H1C	110 (4)
U1-B1-H1D	174 (3)
H1A-B1-H1D	108 (4)
H1B-B1-H1D	115 (4)
H1C-B1-H1D	118 (4)
C7-Si1-C8	109.1 (2)
C7-Si1-C6	111.5 (2)
C8-Si1-C6	108.4 (2)
C7-Si1-C1	110.74 (19)
C8-Si1-C1	106.02 (19)

85.59 (12)
109.24 (11)
29.34 (13)
22.4 (14)
110.3 (14)
88.4 (14)
139.8 (14)
70.3 (13)
115.5 (14)
116.7 (14)
99.3 (13)
116.2 (13)
70.8 (14)
113.0 (14)
100.0 (14)
85.6 (13)
154.6 (14)
141.1 (13)
113.1 (13)
109.6 (13)
39.9 (19)
25.8 (13)
90.4 (14)
66.9 (14)
112.4 (13)
114.2 (14)
94.8 (13)
140.7 (13)
154.7 (13)
42.1 (18)
46.4 (18)

66 (3)
66 (3)
97 (4)
67 (3)
107 (4)
110 (4)
174 (3)
108 (4)
115 (4)
118 (4)
109.1 (2)
111.5 (2)
108.4 (2)
110.74 (19)
106.02 (19)

C11-C10-H10A	124.4
C9-C10-H10A	124.4
U1-C10-H10A	124.4
C10-C11-C12	107.6 (3)
C10-C11-U1	74.3 (2)
C12-C11-U1	74.9 (2)
C10-C11-H11A	125.7
C12-C11-H11A	125.7
U1-C11-H11A	125.7
C11-C12-C13	107.6 (3)
C11-C12-U1	75.4 (2)
C13-C12-U1	76.6 (2)
C11-C12-H12A	125.4
C13-C12-H12A	125.4
U1-C12-H12A	125.4
C12-C13-C9	109.4 (3)
C12-C13-H13	125.3
C9-C13-H13	125.3
Si2-C14-H14A	109.5
Si2-C14-H14B	109.5
H14A-C14-H14B	109.5
Si2-C14-H14C	109.5
H14A-C14-H14C	109.5
H14B-C14-H14C	109.5
Si2-C15-H15A	109.5
Si2-C15-H15B	109.5
H15A-C15-H15B	109.5
Si2-C15-H15C	109.5
H15A-C15-H15C	109.5
H15B-C15-H15C	109.5
Si2-C16-H16A	109.5
Si2-C16-H16B	109.5
H16A-C16-H16B	109.5
Si2-C16-H16C	109.5
H16A-C16-H16C	109.5
H16B-C16-H16C	109.5
C18-C17-C21	106.5 (3)
C18-C17-Si3	126.3 (3)
C21-C17-Si3	125.2 (3)
C17-C18-C19	108.8 (3)
C17-C18-H18	125.6
C19-C18-H18	125.6
C20-C19-C18	108.2 (3)
C20-C19-H19	125.9
C18-C19-H19	125.9
C19-C20-C21	107.5 (3)
C19-C20-U1	77.0 (2)
C21-C20-U1	74.8 (2)

C6-Si1-C1	110.83 (18)
C16-Si2-C9	109.96 (19)
C16-Si2-C15	107.7 (2)
C9-Si2-C15	105.7 (2)
C16-Si2-C14	113.1 (2)
C9-Si2-C14	111.05 (19)
C15-Si2-C14	109.0 (2)
C22-Si3-C23	108.2 (2)
C22-Si3-C17	111.93 (19)
C23-Si3-C17	107.1 (2)
C22-Si3-C24	111.8 (2)
C23-Si3-C24	108.4 (3)
C17-Si3-C24	109.23 (18)
C2-C1-C5	105.6 (3)
C2-C1-Si1	126.1 (3)
C5-C1-Si1	126.4 (3)
C1-C2-C3	109.7 (4)
C1-C2-H2	125.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	125.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	107.5 (3)
C4-C3-U1	75.3 (2)
C2-C3-U1	75.9 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	125.5
C2-C3-H3A	125.5
$\mathrm{U} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	125.5
C3-C4-C5	108.4 (4)
C3-C4-U1	75.3 (2)
C5-C4-U1	74.4 (2)
C7-Si1-C1-C2	-164.8 (3)
C8-Si1- $\mathrm{C} 1-\mathrm{C} 2$	76.9 (4)
C6-Si1-C1-C2	-40.5 (4)
C7-Si1-C1-C5	33.1 (4)
C8-Si1-C1-C5	-85.2 (4)
C6-Si1-C1-C5	157.4 (3)
C5- $21-\mathrm{C} 2-\mathrm{C} 3$	1.5 (4)
$\mathrm{Si} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-163.6 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.3 (4)
C1-C2-C3-U1	-69.1 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-2.0 (4)
U1-C3-C4-C5	67.7 (3)
C2-C3-C4-U1	-69.7 (3)
C3-C4-C5-C1	3.0 (4)
U1-C4-C5-C1	71.3 (3)
C3-C4-C5-U1	-68.3 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	-2.8(4)
Si1-C1-C5-C4	162.3 (3)
C2-C1-C5-U1	67.2 (2)

$\mathrm{C} 19-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	125.5
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	125.5
$\mathrm{U} 1-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	125.5
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 17$	$109.0(3)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{U} 1$	$75.0(2)$
$\mathrm{C} 17-\mathrm{C} 21-\mathrm{U} 1$	$78.9(2)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	124.6
$\mathrm{C} 17-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	124.6
$\mathrm{U} 1-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	124.6
$\mathrm{Si} 3-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	109.5
$\mathrm{Si} 3-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	109.5
$\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	109.5
$\mathrm{Si3-C22-H22C}$	109.5
$\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{C}$	109.5
$\mathrm{H} 22 \mathrm{~B}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{C}$	109.5
$\mathrm{Si3-C23-H23A}$	109.5
$\mathrm{Si} 3-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	109.5
$\mathrm{H} 23 \mathrm{~A}-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	109.5
$\mathrm{Si} 3-\mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	109.5
$\mathrm{H} 23 \mathrm{~A}-\mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	109.5
$\mathrm{H} 23 \mathrm{~B}-\mathrm{C} 23-\mathrm{H} 23 \mathrm{C}$	109.5
$\mathrm{Si3}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{~A}$	109.5
$\mathrm{Si} 3-\mathrm{C} 24-\mathrm{H} 24 \mathrm{~B}$	109.5
$\mathrm{H} 24 \mathrm{~A}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{~B}$	109.5
$\mathrm{Si3-C24-H24C}$	109.5
$\mathrm{H} 24 \mathrm{~A}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{C}$	109.5
$\mathrm{H} 24 \mathrm{~B}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{C}$	109.5

$\mathrm{Si} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{U} 1$	$-128.1(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$3.1(4)$
$\mathrm{U} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-68.1(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{U} 1$	$71.2(3)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-2.8(4)$
$\mathrm{U} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-70.5(3)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{U} 1$	$67.7(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 9$	$1.6(4)$
$\mathrm{U} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 9$	$-68.1(3)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 13-\mathrm{C} 12$	$0.3(4)$
$\mathrm{Si} 2-\mathrm{C} 9-\mathrm{C} 13-\mathrm{C} 12$	$-163.7(3)$
$\mathrm{C} 22-\mathrm{Si3}-\mathrm{C} 17-\mathrm{C} 18$	$-45.2(4)$
$\mathrm{C} 23-\mathrm{Si3-C17-C18}$	$73.3(4)$
$\mathrm{C} 24-\mathrm{Si3}-\mathrm{C} 17-\mathrm{C} 18$	$-169.5(4)$
$\mathrm{C} 22-\mathrm{Si} 3-\mathrm{C} 17-\mathrm{C} 21$	$153.2(3)$
$\mathrm{C} 23-\mathrm{Si3-C17-C21}$	$-88.3(4)$
$\mathrm{C} 24-\mathrm{Si} 3-\mathrm{C} 17-\mathrm{C} 21$	$28.9(4)$
$\mathrm{C} 21-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$2.5(4)$
$\mathrm{Si} 3-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$-161.9(3)$

supporting information

$\mathrm{Si} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{U} 1$	$-127.7(3)$
$\mathrm{C} 16-\mathrm{Si} 2-\mathrm{C} 9-\mathrm{C} 13$	$-172.4(3)$
$\mathrm{C} 15-\mathrm{Si} 2-\mathrm{C} 9-\mathrm{C} 13$	$71.6(4)$
$\mathrm{C} 14-\mathrm{Si} 2-\mathrm{C} 9-\mathrm{C} 13$	$-46.5(4)$
$\mathrm{C} 16-\mathrm{Si} 2-\mathrm{C} 9-\mathrm{C} 10$	$26.8(4)$
$\mathrm{C} 15-\mathrm{Si} 2-\mathrm{C} 9-\mathrm{C} 10$	$-89.2(4)$
$\mathrm{C} 14-\mathrm{Si} 2-\mathrm{C} 9-\mathrm{C} 10$	$152.7(3)$
$\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-2.1(4)$
$\mathrm{Si} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$161.8(3)$
$\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 10-\mathrm{U} 1$	$68.0(3)$

$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$-1.5(4)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$0.0(4)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20-\mathrm{U} 1$	$-69.3(3)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 17$	$1.6(4)$
$\mathrm{U} 1-\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 17$	$72.3(3)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21-\mathrm{U} 1$	$-70.8(3)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 21-\mathrm{C} 20$	$-2.5(4)$
$\mathrm{Si} 3-\mathrm{C} 17-\mathrm{C} 21-\mathrm{C} 20$	$162.1(3)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 21-\mathrm{U} 1$	$67.2(3)$
$\mathrm{Si} 3-\mathrm{C} 17-\mathrm{C} 21-\mathrm{U} 1$	$-128.1(3)$

