UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Netzsprech - Another Case for Distributed 'Rule' Systems

Permalink
https://escholarship.org/uc/item/5xh71460
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 10(0)

Author
Dorffner, Georg

Publication Date
1988

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5xh7146p
https://escholarship.org
http://www.cdlib.org/

NETZSPRECH - Another Case for Distributed 'Rule' Systems

Georg Dorffner
Dept.of Medical Cybernetics and Artificial Intelligence
University of Vienna, Austria
and: Austrian Research Institute for Artificial Intelligence

Abstract: This paper compares conventional symbolic rule systems
with distributed network models, considerably arguing for the
latter. NETZSPRECH - a network that transcribes German texts
similar to NetTalk is first introduced for this purpose and
serves as an example for the arguments.

1. Introduction

Models in artificial intelligence (ai) and cognitive science
rely mostly on the assumption that cognitive systems (such as
the human brain) cannot only be described but also efficiently
modeled using symbolic descriptions and rules to combine them.
However, many aspects of human perception and cognition are left
out by those systems, which can be attributed to a great extend
to the 1limitations of symbol-and-rule systems due to their
brittleness. Recently, research on parallel distributed
processing (PDP) models has shown that those models can have the
power to overcome some of the said limitations. Nevertheless,
there still exits many critics and sceptics toward the PDP
paradigm (such as in Pinker&Prince 1987) who neglect the points
where PDP models can be superior.

The purpose of this paper is to describe Netzsprech, a new
implementation of +the Nettalk model by Sejnowski&Rosenberg
(1986) adapting it to the German language, and to use this model
to argue for PDP models and against models merely based on

symbols and rules. Netzsprech is a network that (similarly to
Nettalk) learns to translate text into a phonetic transcription
from examples, i.e. it learns to pronounce German words.

Reading and pronouncing a script is a process that appears
suitable to show the advantages of a distributed model over a
symbolic one.

2. The Netzsprech model

Netzsprech is a basic so-called associative network (AN)
(Rumelhart, McClelland 1986) consisting of three 1layers of
units. Many of the processes that can be modeled by an AN
appear to be rule-governed in that symbolic rules can describe
the association to a large extent. Thus, ANs can be viewed as
distributed 'rule' application systems. I put 'rule' under
quotes here, because it has to be wunderstood in a much more
relaxed sense than rules in conventional Al systems.
Distributed 'rule' application can overcome many of the
restrictions symbolic rule application is bound to. The
architecture of Netzsprech is depicted in Fig.l.

A perfect example of seemingly rule-governed behaviour with

573

Ja/
0000000000

KX NS

OO0O000O0O0O0O0OOOOOOOOOOO0OO0O

ALKIZADKALKL AKX/

000 000 000 000 000
S t e i 4

Fig.1

nevertheless a 1lot of exceptions is the human ability to read
text aloud, that is, to transform the written representation of
a text to the phonemic pattern that is to be spoken.
T.Sejnowski and R.Rosenberg (1986) have shown in an impressive
manner that their NetTalk model could 1learn to transcribe
English text into phonemes, which were then fed into a phonemic
speech synthesizer. Without doubt, English is the Indoeuropean
language with the most discrepancies between graphemic and
phonemic patterns. Nevertheless, NetTalk could 1learn to
pronounce simple English text with an error rate well below 10%.

This paper describes a network that learns the pronounciation of
German words in a very similar fashion to NetTalk. Hence, 1
called it 'Netzsprech'. With this implementation I want to
demonstrate the advantages of distributed learning and
representation schemes which 1led me to believe that those
schemes will be a necessary complement for AI programs in the
future.

3. What Netzsprech does

The input 1layer (fig.1l) is divided into five clusters which
encode five letters of German text. The letter in the middle is
the one to be transcribed, the two on the left and on the right,
respectively, serve as context information to aid the
transcription. Sejnowski and Rosenberg (1986) wused seven
letters (i.e. a context of three letters on each side), but as
it turns out, in German generally a two-letter context is
sufficient, if one excludes difficult foreign words.

The representation of letters in the five input clusters is a
local one, that 1is, one unit in each cluster, when activated,
corresponds to exactly one letter in the text. As a result of
this, only one unit can be active per cluster at any given time.
As there are 31 letters (including umlauts, the 'scharfe s', and
a space), the input layer consists of 5 times 31 units.

For representing (encoding) the phonemes in the output layer a

574

different strategy was used. Here one expects to find similar
codes for similar phonemes. One example in German is the letter
'd' that can be pronounced as a [d] (in a Wort 1like 'der') or as
a [t] (at the end of a word like 'und', this is known as final
devoicing in German). Although there are two different phonemes
for the letter 'd', these phonemes are nonetheless very similar
to each other (in fact, they only differ in their voicedness).
For the model to be adequate, these two similar phonemes should
be encoded in two similar output activation patterns. This was
done using a binary code distributed over the activations of 10
output units.

The hidden 1layer which serves to provide the possibility to
learn arbitrary pattern mappings between input and output,
consists of 30 units.

4. The training phase

The training set consisted of a list of the 1000 most common
words in German (according to Meier (1978)) plus their
transcription. The transcription that was available in
machine-readable form (produced by a rule-based model designed
by Pounder and Kommenda (1986)) had to be hand-edited to take
account of the fact that the Netzsprech network requires a
one-to-one mapping between letter and phoneme. Thus, when there
were cases where a whole sequence of letters has to be
pronounced as a single phoneme, the phoneme was taken as the
transcription of the first letter. The other 1letters were
transcribed as 'silent' (using a pseudo-phoneme [+]). For
example, the sequence /sch/ has to be pronounced as [] in most
cases, so that the transcription of the word 'asche' became
[a ++S] (where [S] is the schwa-phoneme). The reverse case -
one letter has to be pronounced as a sequence of phonemes - does
not occur in standard German, if one writes affricates (1like
[ts] for the letter /z/) as one phoneme.

Training consisted of taking each word from the list (in the
order they appear) and its transcription and presenting it to
the network, 1letter by letter, encoding both 1letters and
phonemes. After each presentation (5 letters plus a phoneme)
the delta rule was applied and the weights were adjusted.

5. The results

Fig.2 shows the learning curve of the network. The x-axis shows
the number of words used for training and the y-axis the number
of correctly transcribed letters and words. Presentation of
3000 to 4000 words (that means, the 1list of 1000 words was
scanned 3 to 4 times) is sufficient to bring the network very
close to convergence, with the error rate for letters going down
to less than 10 %. Most of the errors that remain at this point
are minor, i.e. only 1 to 2 of the 10 featurse are produced
incorrectly. The understandability (the phonemes were
subsequently synthesized) is already extremely high.

575

100 letters

- .___,_.-—--—-"_‘_F— =
%® conect

wordy

/

1000 2000 JO00 4000 5000 trawnng words

Fig.2

6. Discussion of the network behaviour
At no point in this paper do I want to claim that the model I am
describing is a valid model for the complex process of learning

how to talk (neither did Sejnowski&Rosenbergqg). Nevertheless,
the model shows some very important behaviour that - if
conceived as part of a much more complex model - seems to

reproduce many aspects of human processes of understanding and
learning in a very plausible manner.

The problem Netzsprech was faced with is one that, to a 1large
extent, is describable with a symbolic rule system, containing
rules like

(1) #s{p,t} -> [] (2) s -> [s]

meaning that 's' is to be pronounced as an [s] by default and as
an [] at the beginning of a word (marked by '#') in front of a
'p' or 't'. However, as 1 am going to show, the distributed
system in Netzsprech is superior to the rule model in that it
corresponds more closely to human processes and has the
advantage of being easily learnable and adaptable.

6.1 Rules are applied simultaneously

One of the weak points of symbolic rule systems 1is that they
almost always involve search or other serial processes. For
example, if there exist pronounciation rules for every letter in
German, then in a first step all rules for the letter currently
considered have to be found. In a second step, all rules among
them have to be chosen that match the current context ('matching
cycle'). Of course, rule matching could be done in parallel,
which reduces this search process to one step. But after that,
the system most of the time 1is faced with the problem of
conflict resolution, the selection of the rule to apply among
several that all match the context. This can be the case with
the two rules given above, in a context like ' # s p i'. The
time it takes to solve problems of rule conflict increases when
we add more rules, which is counter the experience that humans

576

use less time with additional knowledge rather than more.

To get around the problem of rule conflict, the rules could be
written in such a way that only one rule applies per context.
In other words, a rule would have to be written for wvirtually
every possible context. For example, there would have to be a
rule for 's' in front of 'p', where it is pronounced as an [],
but also one for 's' in front of every other consonant, where it
is pronounced as an [s]. For the domain being discussed this
might not be impossible to do, but problems are conceivable,
where the possible space of contexts is so large that it becomes
very inefficient if not impossible to provide a rule for every
context.

But even if it were possible 1in every case, one important
property of the original rule scheme is lost: One can no longer
say, what is the 'default' rule for a given letter, for example,
that 's' in the majority of the cases is pronounced as [s] and
therefore this output is the most likely one. In the case where
we had two (sometimes competing) rules, by virtue of the lowest
priority one of the rules was the default. If little or no
context was specified, this 1rule applied and gave the most
likely output.

Thus, in rule based systems, there is a trade-off: Either the
system can easily generalize and provide default outputs for
unknown inputs, but then it shows rather implausible processing
time relations. Or the system can produce the output more
plausibly, but then the power for generalization and default
outputs is lost.

A distributed system like Netzsprech, however, exhibits both
advantages at the same time. All the distributed 'rules' are
applied in parallel, so there is never anything 1like conflict
resolution, let alone serial matching processes. Also, as the
size of the network is fixed, acquiring new knowledge cannot
make the process slower. At the same time, the model shows full
power of generalisation for inputs it has never seen before with
an inherent default mechanism. Consider the following example
from Netzsprech: If an 's' is presented to the trained network
without any context (i.e. all context units are set to 0, note
that this case never occured during learning) the default (or
most likely) output, [s], is activated. Where no such default
exists, for example for an 'x' (a very rare letter in German
proper), the output is unspecified (i.e. some arbitrary output
which nevertheless is closest to the most frequent phoneme
corresponding to 'x'). If now, 1in the case of the 's', a
context is added that in German should alter the pronounciation
(like a '#' in front and a 'p' afterwards), the output in fact
changes to (the now default case) []. One can see from these
examples, that the model incorporates both default and more
specififc rules at the same time. The context changes something
in the output only when it, together with the central 1letter,

577

constitutes a case for a more specific rule to the default.

6.2 The output has continuous values

A major property of a distributed network is that it allows for
activation values along a continuous scale, indicating how
strong a specified hypothesis is. Returning to the above
example, when 's' is presented alone to Netzsprech, the output
is the default, an [s]. However, the strength of the output is
lower than it is when 's' is presented in the more specific
context 'ase'. The reason is that in the former case, without
any further specification, the 's' is pronounced as an [s] only
with a certain probability, if the (unknown) context were '#sp',
then it could also be a [].

This property of the system can be useful when incorporating the
network into a bigger one. For example, one could conceive of
another component that controls the movements of the
articulatory organs. This component would receive input from
several components; mainly, of course, from Netzsprech, but
other inputs that influence the movement of the articulators
would be possible, too. If now the input from Netzsprech has a
rather low level, other sub-systems could more easily 'push' the
control component into another direction. For example, even
when Netzsprech says [s] the actual pronounciation might turn
out to be [], when the output was a default case. 1In the more
specific case, with higher output activations, this scenario is
less likely. Thus, continuous output values are important for
modeling contextual and con-situational effects.

In a symbolic rule system, it is much more difficult to obtain
such behaviour. Symbolic rules are much more isolated from each
other and from the rest of the system. Making them influence
each other is much harder and might not even be efficiently
possible. The advantage of the network model 1is that it

provides easy entry points - the units and connections
themselves - for other system components to modify the
behaviour.

6.3 Rules are learned according to environment

Although the behaviour of the network after learning appears to
be rule-governed (such as: a feature F in pattern A produces a
feature G in pattern B), none of the 'rules' has to be stated
explicitely or beforehand. The network can 'find out' the rules
(or whatever we want to call them) by itself from the examples,
which then cover exactly the cases in the training set and those
derived through extrapolation of the rules. 1In other words: No
one has to stipulate the r presented. Furthermore, as Rumelhart
(1986) points out, each 'rule' currently incorporated in a PDP
model is applied with exactly the strength that corresponds to
its fitness.

578

6.4 Networks are robust

In a symbolic rule system it is crucial that at any point in
time all the needed rules exist and are accesible. When one of
them is missing, the system might fail completely. In a network
this can never happen. As the ‘'rules' are represented in a
highly distributed manner and - in addition - are all learned
from the environment, they cannot easily get lost, not even by
partial destruction of the system.

7. Conclusion

Much more could be said about distributed 'rule' systems
(Dorffner 1987, 1988). However, this short discussion should
already have made clear the advantages of such models. The
results suggest that to model cognitive processes such as
understanding and producing natural languages - which are much
more complex than the task of Netzsprech but largely based on
similar mechanisms of association - one will have to include PDP
or related models in the future.

References

Dorffner G.: NETZSPRECH: A Network Learns German - Description
of the Model and Discussion, Tech.Report 87-01, Dept.for
Med.Cybernetics and AI, University of Vienna; 1987.

Dorffner G.: Modeling Gestalt Phenomena in a Distributed 'Rule'’
System, in: Trappl (ed), Cybernetics&Systems '88, Kluwer
Academic Publishers; 1988.

Hinton G.E., McClelland J.L., Rumelhart D.E.: Distributed
Representations, in Rumelhart & McClelland (1986).

Pinker S., Prince A.: On Language and Connectionism: Analysis
of a Parallel Distributed Processing Model of Language
Acquistion, Dept.of Brain and Cognitive Science, MIT,
occ.paper #33; 1987.

Pounder A., Kommenda M.: Morphological Analysis for a German
Text-to-Speech System, in Proceedings of the 11th
International Conference on Computational Linguistics

(COLING-86), Bonn, FRG; 1986.

Meier H: Deutsche Sprachstatistik, Georg Olms Verlag,
Hildesheim, 1978.

Rumelhart D.E., McClelland JowLiw Parallel Distributed
Processing, Explorations in the Microstructure of Cognition,
Vol 1&2. MIT Press, Cambridge, MA; 1986.

Sejnowski T.J., Rosenberg C.R.: NETtalk: A Parallel Network

that Learns to Read Aloud, Johns Hopkins University,
Tech.Rep. JHU/EECS-86/01; 1986.

579

	cogsci_1988_573-579

