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Abstract

The aims of this study are to demonstrate the increased lysis of stem cells but not their differentiated counterparts by the
NK cells and to determine whether disturbance in cell differentiation is a cause for increased sensitivity to NK cell mediated
cytotoxicity. Increased cytotoxicity and augmented secretion of IFN-c were both observed when PBMCs or NK cells were co-
incubated with primary UCLA oral squamous carcinoma stem cells (UCLA-OSCSCs) when compared to differentiated UCLA
oral squamous carcinoma cells (UCLA-OSCCs). In addition, human embryonic stem cells (hESCs) were also lysed greatly by
the NK cells. Moreover, NK cells were found to lyse human Mesenchymal Stem Cells (hMSCs), human dental pulp stem cells
(hDPSCs) and human induced pluripotent stem cells (hiPSCs) significantly more than their differentiated counterparts or
parental lines from which they were derived. It was also found that inhibition of differentiation or reversion of cells to a less-
differentiated phenotype by blocking NFkB or targeted knock down of COX2 in monocytes significantly augmented NK cell
cytotoxicity and secretion of IFN-c. Taken together, these results suggest that stem cells are significant targets of the NK cell
cytotoxicity. However, to support differentiation of a subset of tumor or healthy untransformed primary stem cells, NK cells
may be required to lyse a number of stem cells and/or those which are either defective or incapable of full differentiation in
order to lose their cytotoxic function and gain the ability to secrete cytokines (split anergy). Therefore, patients with cancer
may benefit from repeated allogeneic NK cell transplantation for specific elimination of cancer stem cells.
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Introduction

Immunosuppression and tumor escape from immune recogni-

tion are thought to be the two major factors responsible for the

establishment and progression of cancer. A number of factors

responsible for the suppression of NK cell cytotoxicity in humans

have been identified previously [1,2,3,4,5,6]. However, the

significance and the precise mechanism of NK suppression

induced during their interaction with either tumor cells or healthy

primary cells are not well understood. It is shown that freshly

isolated tumor infiltrating NK cells are not cytotoxic to autologous

tumors. Moreover, NK cells obtained from the peripheral blood of

patients with cancer have significantly reduced cytotoxic activity

[7,8,9,10]. In addition, NK cell cytotoxicity is suppressed after

their interaction with stem cells [11,12,13]. In contrast the

interaction of NK cells with the resistant tumors does not lead

to suppression of NK cell cytotoxicity [14]. Many mechanisms

have been proposed for the functional inactivation of tumor

associated NK cells including the over-expression of Fas ligand,

the loss of mRNA for granzyme B [2] and decreased CD16 and its

associated zeta chain [15].

Many metastatic tumor cells exhibit constitutively elevated

NFkB activity [16]. Increased NFkB activity is shown to have a

causal relationship to neoplastic transformation, and uncontrolled

cell growth in many cell types [16]. Human solid tumors exhibit

constitutively activated NFkB [16].

We have previously shown that NK resistant primary oral

keratinocyte tumors demonstrate higher nuclear NFkB activity

and secrete significant levels of Granulocyte Monocyte-Colony

Stimulating Factor (GM-CSF), Interleukin(IL)-1b, IL-6 and IL-8

PLoS ONE | www.plosone.org 1 July 2010 | Volume 5 | Issue 7 | e11590



[17]. Moreover, treatment with Non-steroidal anti-inflammatory

drugs (NSAIDs) which inhibit NFkB has the ability to reverse

immunosuppression induced by a tobacco-specific carcinogen, in

addition to their well established ability to decrease oral dysplasia

as well as induction of overt cancer in transgenic animals [18]. In

agreement, we have previously demonstrated that inhibition of

NFkB by Sulindac treatment of tumor cells increases functional

activity of NK cells [19,20]. Moreover, targeted inhibition of

NFkB in skin epithelial cells resulted in the induction of auto-

immunity and inflammation [21].

The exact mechanisms by which NFkB nuclear function in oral

keratinocytes modulate and shape the function of key interacting

immune effectors is yet to be determined. We have previously shown

that inhibition of NFkB by the IkB super-repressor in HEp2 tumors

leads to significant increase in cytotoxicity and secretion of IFN-c by

the human NK cells [19,20]. However, neither the underlying

significance nor the physiological relevance of NFkB modulation in

tumors or in healthy cells responsible for the alteration of NK cell

cytotoxic function have been studied previously. It is clear that the

objective in cancer is to enhance the function of cytotoxic immune

effectors to eliminate tumors and in auto-immunity and inflammation

the aim is to inhibit immune effector function to prevent tissue damage.

Therefore, dissection of the underlying mechanisms of immune

activation when NFkB is modulated in the cells might help design

strategies to target each disease accordingly. Indeed, targeted inhibition

of NFkB function in both the intestinal epithelial cells and the myeloid

cells was previously shown to result in a significant decrease in the size

and the numbers of the tumor cells [22].

Here we have extended our previous results obtained by an

established HEp2 oral tumor line [19] to patient derived oral

tumors demonstrating that blocking NFkB in these cells increases

the activation of NK cell cytotoxicity. We have also used an

immortalized but non tumorigenic oral keratinocytes HOK-16B

since they were previously used as a model of dysplasia in a cancer

progression model [23,24].

In this report we demonstrate that the stage of differentiation of

the cells is predictive of their sensitivity to NK cell lysis. Thus,

UCLA-OSCSCs, which are less differentiated oral tumors, are

significantly more susceptible to NK cell mediated cytotoxicity;

however, their differentiated counterparts UCLA-OSCCs are

significantly more resistant. In addition, both hESCs and iPSCs as

well as a number of other stem cells such as hMSCs and hDPSCs

were found to be significantly more susceptible to NK cell mediated

cytotoxicity. Based on these results, we propose that NK cells may

play a significant role in differentiation of the cells by providing

critical cytokines. However, to drive differentiation, NK cells will

have to first receive signals from undifferentiated stem cells or those

which have disturbed or defective capabilities to differentiate in

order to lose cytotoxicity and gain in cytokine producing phenotype.

These alterations in NK cell effector function will ultimately aid in

driving differentiation of a sub-population of surviving healthy as

well as transformed cells. In cancer patients since the majority of

NK cells have lost their cytotoxic activity, they may eventually

contribute rather than halt the progression of cancer by not only

driving the differentiation of tumor cells but more importantly, by

allowing the growth and expansion of the pool of cancer stem cells.

Materials and Methods

Cell Lines, Reagents, and Antibodies
RPMI 1640 supplemented with 10% FBS was used for the

cultures of human and mouse NK cells and human PBMCs.

UCLA-OSCCs and UCLA-OSCSCs were isolated from freshly

resected tongue tumors, and were cultured in RPMI 1640

supplemented with 10% FBS. The immortalized human oral

keratinocytes with type 16 human papillomavirus DNA (HOK-16B)

were cultured as described previously [25] in keratinocytes growth

medium (KGM) supplemented with reagents supplied in the bullet

kit (Clonetics Corp., San Diego, CA). The mouse and human NK

and monocyte purification kits were obtained from Stem Cell

Technologies (Vancouver, Canada). Recombinant IL-2 was

obtained from NIH- BRB. The anti- CD133 antibody was obtained

from Miltenyi biotec (Auburn, CA). Antibodies to CD90 and CD44

were purchased from Pharmingen/BD (San Diego, CA). Antibodies

to CD16 and B7H1 were purchased from ebiosciences (San Diego,

CA). EGFR antibody (Erbitux) was purchased from UCLA

pharmacy. The antibodies against p65 subunit of NFkB and

pSTAT3 were purchased from Santa Cruz (Santa Cruz, CA).

Human Mesenchymal stem cells (hMSCs), human
Embryonic Stem cells (hESCs), human Dental Pulp Stem
cells (hDPSCs), human induced pluripotent stem cells
(hiPSCs)

hMSCs were obtained from Poietics, Cambrex Bio Science

(Walkerville, MD) and they were cultured in Mesenchymal Stem

Cell Basal Medium (MSCBM) supplemented with Mesenchymal

Cell Growth Supplement (MCGS) (Cambrex Bio Science Walk-

erville, MD). The hMSCs were differentiated into osteoblasts using

Osteogenic differentiation media which comprises of Osteogenic

Differentiation BulletKitH that contains Basal Medium and one

Osteogenic SingleQuot KitH also purchased from Cambrex Bio

Science (Walkerville, MD). Human Mesenchymal stem cells were

cultured in Mesenchymal Stem Cell Basal Medium (MSCBM)

with the growth supplements according to the manufacturer’s

recommendations. For the induction of osteogenesis, hMSCs were

seeded at a density of (16104 cells/well) in Osteogenic media with

the recommended supplements. Media was replaced every three

days and the cells were used in the experiments when they were

80% confluent.

hDPSCs were isolated as described previously [26] and they

were cultured in complete DMEM supplemented with 10% FBS.

DPSCs were differentiated using b-glycerophosphate, ascorbic

acid and dexamethasone as described previously [26].

hESC line H9 and hiPSC line hiPSC18 [27] were used at

passages 45–50. hESCs and hiPSCs were grown on irradiated

mouse embryonic fibroblasts (MEFs) in DMEM/F12 supplemented

with 20% Knockout serum replacement (Invitrogen), 1mM

glutamine, 16 nonessential amino acids (NEAA), and 4 ng/ml of

bFGF as previously described [28]. 2-mercaptoethanol (1 mM

Sigma) and penicillin/streptomycin (Hyclone) were added to

growing cultures. For coculture assays, cells were seeded at a

density of 105 cells/well on Matrigel (BD Sciences) in conditioned

media plus HA-1077, as previously described [28]. Neonatal human

dermal fibroblasts (NHDF-iPSC parental fibroblast line from

ATCC) [27] were cultured in DMEM supplemented with 10%

FBS, 1mM glutamine, 16NEAA and penicillin/streptomycin.

Purification of human and mouse NK cells and
monocytes

Written informed consents approved by UCLA Institutional

Review Board (IRB) were obtained from the blood donors and all

the procedures were approved by the UCLA-IRB. PBMCs and

NK cells from healthy donors were isolated as described before

[14]. Briefly, peripheral blood lymphocytes were obtained after

Ficoll-hypaque centrifugation and purified NK cells were

negatively selected by using an NK cell isolation kit (Stem Cell

Technologies, Vancouver, Canada). The purity of NK cell

NK Cells Kill Cancer Stem Cell
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population was found to be greater than 90% based on flow

cytometric analysis of anti-CD16 antibody stained cells. The levels

of contaminating CD3+ T cells remained low, at 2.4%61%,

similar to that obtained by the non-specific staining using isotype

control antibody throughout the experimental procedures. The

adherent subpopulation of PBMCs was detached from the tissue

culture plates and monocytes were purified using isolation kit

obtained from Stem Cell Technologies (Vancouver, Canada).

Greater than 95% purity was achieved based on flow cytometric

analysis of CD14 antibody stained monocytes. Dendritic Cells

(DCs) were generated from Monocytes cultured in GM-CSF and

IL-4 for 7 days before use in the experiments.

All animal work performed was based on the guidelines

established and approved by UCLA-IACUC (2006-074-12). Single

cell preparations of mouse splenocytes were used to negatively select

for mouse NK cells using mouse NK isolation kit purchased from

Stem Cell Technologies (Vancouver, Canada). The purity of mouse

NK cells were greater than 90% based on staining with NK1.1 and

DX5 antibodies. Murine monocytes were purified from bone

marrow using monocyte isolation kit obtained from Stem Cell

Technologies (Vancouver, Canada). The purity of monocytes was

greater than 90% based on staining with anti-CD14 antibody.

ELISA and Multiplex Cytokine Array kit
Single ELISAs were performed as described previously [14].

Fluorokine MAP cytokine multiplex kits were purchased from

R&D Systems (Minneapolis, MN) and the procedures were

conducted as suggested by the manufacturer. To analyze and

obtain the cytokine concentration, a standard curve was generated

by either two or three fold dilution of recombinant cytokines

provided by the manufacturer. Analysis was performed using the

Star Station software.

Surface Staining
Staining was performed by labeling the cells with antibodies as

described previously [29] [14,30].

Western Blot
Treated and untreated cells were lysed in a lysis buffer

containing 50mM Tris-HCL (pH 7.4), 150mM NaCl, 1% Nonidet

P-40 (v/v), 1mM sodium orthovanadate, 0.5mM EDTA, 10mM

NaF, 2mM PMSF, 10mg/mL leupeptin, and 2U/mL aprotinin for

15 minutes on ice. The samples were then sonicated for 3 seconds.

The cell lysates were centrifuged at 14,000 rpm for 10 minutes

and the supernatants were removed and the levels of protein were

quantified by the Bradford method. The cell lysates were

denatured by boiling in 56 SDS sample buffer. Equal amounts

of cell lysates were loaded onto 10% SDS-PAGE and transferred

onto Immobilon-P membranes (Millipore, Billerica MA). The

membranes were blocked with 5% non-fat milk in PBS plus 0.1%

Tween-20 for 1 hour. Primary antibodies at the predetermined

dilutions were added for 1 hour at room temperature. Membranes

were then incubated with 1:1000 dilution of horseradish

peroxidase-conjugated secondary antibody. Blots were developed

by enhanced chemiluminescence (ECL- purchased from Pierce

Biotechnology, Rockford, IL).

51Cr release cytotoxicity assay
The 51Cr release assay was performed as described previously

[20]. Briefly, different numbers of purified NK cells were

incubated with 51Cr-labeled target cells. After a 4 hour incubation

period the supernatants were harvested from each sample and

counted for released radioactivity using the gamma counter. The

percentage specific cytotoxicity was calculated as follows:

%Cytotoxicity~
experimental cpm{spontaneous cpm

total cpm{spontaneous cpm

LU 30/106 is calculated by using the inverse of the number of

effector cells needed to lyse 30% of target cells 6100.

Retroviral and lentiviral transduction
UCLA-OSCCs were infected with culture supernatants of NIH

3T3 packaging cells transfected with either IkB(S32AS36A) super-

repressor or mutant IkBa (IkBaM) or their EGFP control vectors.

The retroviral vectors were generated in Dr. Nicholas Cacalano’s

laboratory. Forty eight hours after infection the UCLA-OSCCs or

HOK-16B cells were sorted for high expressing GFP cells and

were grown and used in the experiments.

NFkB-Luciferase lentiviral reporter vector was produced by co-

transfection of the packaging cell line 293T [26] using Calcium

Phosphate precipitation. UCLA-OSCCs and UCLA-OSCSCs

were seeded at a density of 26105 cells per well in a 6-well culture

plate 24hrs before transduction. The following day, cells were

transduced with the NFkB-Luciferase lentiviral reporter vector.

To enhance transduction efficiency, the cationic polymer Poly-

brene was used at a final concentration of 8mg/ml. After six hours

of incubation, medium was re-freshed and transduced cells were

incubated for an additional 42 hours. Cells were then harvested,

lysed and luciferase activity was measured [RLU/s] using a

luminometer. An internal lentiviral vector control constitutively

expressing Luciferase was used to normalize values.

Luciferase reporter assay
Transfections were also performed using NFkB Luciferase

reporter vector [31] and Lipofectamine 2000 reagent (Invitrogen,

CA) in Opti-MEM media (Invitrogen, CA) for 18 hours after

which they were adhered to the plate overnight before different

immune effectors at 1:1 Effector to target ratios were added. The

cells were then lysed with lysis buffer and the relative Luciferase

activity was measured using the Luciferase assay reagent kit

obtained from Promega (Madison, WI).

Alkaline Phosphatase (ALP) staining
Human MSCs were co-cultured with and without untreated

and IL-2 treated PBMCs as indicated in the result section. Cells

were then washed twice with PBS and incubated with 120mM of

Tris buffer (pH = 8.4) containing 0.9mM Napthol AS-M Phos-

phate and 1.8mM Fast Red TR (both purchased from Sigma,

MO) for 30 minutes at 37uC. After 30 minute incubation, cells

were washed three times with PBS and then fixed with 1ml cold

ethanol (100%) for 30 minutes. The stained cultures were scanned

using an Epson scanner 1250.

Statistical analysis
An unpaired, two-tailed student t- test was performed for the

statistical analysis. One way ANOVA with a Bonferroni post test

was used to compare the different groups.

Results

Identification and characterization of patient-derived
primary oral squamous cancer stem cells (UCLA-OSCSCs)

We screened a number of different primary oral squamous cell

carcinomas (OSCC) derived from patients at UCLA, and selected

NK Cells Kill Cancer Stem Cell
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to concentrate on two specific primary tumors based on their

phenotypic characteristics and sensitivity to NK cell mediated

cytotoxicity. UCLA-OSCCs were found to have higher surface

expression of B7H1 and EGF-R and moderate expression of

CD44 and no surface expression of CD133 whereas UCLA-

OSCSCs expressed no or very low expression of B7H1, EGF-R

and increased expression of CD133 and CD44bright (please see

Figure S1). No surface expression of MHC-Class II (data not

shown) or CD90 could be seen on either tumor type. In addition,

UCLA-OSCSCs secreted no or very low levels of IL-6, IL-8 and

GM-CSF whereas they secreted higher levels of VEGF when

compared to UCLA-OSCCs (Tables 1 and 2). Moreover, they did

not express phospho-Stat3 when cultured in the presence and

absence of EGF (please see Figure S1). More importantly, no or

very low activity of NFkB could be detected in UCLA-OSCSCs

when compared to UCLA-OSCCs (please see Figure S1).

Therefore, the profiles of cytokines secreted by UCLA-OSCCs

and UCLA-OSCSCs resembled those of vector alone and

IkB(S32AS36A) super-repressor transfected HEp2 cells respectively

(Table 2) [19,20]. Thus, UCLA-OSCSCs expressed phenotypic

characteristics of oral cancer stem cells [32,33]. Furthermore, they

were smaller in size and proliferated at a much higher rate when

compared to UCLA-OSCC cells (data not shown). We used these

two primary oral tumors to study NK cell function.

Increased NK cell cytotoxicity against UCLA-OSCSCs but
not those of UCLA-OSCCs

We have previously shown that blocking NFkB in HEp2 tumor

cells decreased IL-6 and IL-8 secretion substantially and resulted

in an increased sensitivity of HEp2 tumor cells to NK cell

mediated cytotoxicity [19,20]. Therefore, using the levels of

cytotoxicity, IFN-c and IL-6 secretion, we could demonstrate a

direct correlation between decreased IL-6 and increased IFN-c
secretion in the co-cultures of NK cells with NFkB knock down

HEp2 cells and increased susceptibility to IL-2 activated NK cell

killing. Induction of NK cell anergy by anti-CD16 antibody, even

though abrogated the ability of IL-2 treated NK cells to lyse HEp2

cells, the same treatment resulted in a significant induction of

IFN-c secretion in the co-cultures of NK cells with HEp2 cell

transfectants [34,35]. To extend our findings to patient derived

oral tumors, UCLA-OSCC and UCLA-OSCSCs were tested for

their sensitivity or resistance to NK cell mediated cytotoxicity. The

cytotoxic activities of IL-2 treated PBMCs (Fig. 1A) and NK cells

(Fig. 1B) were significantly higher against UCLA-OSCSCs when

compared to UCLA-OSCCs. Untreated PBMCs or NK cells lysed

UCLA-OSCSCs significantly more than UCLA-OSCCs (Fig. 1).

However, the levels of lysis by untreated NK cells were

considerably lower than that obtained by IL-2 treated PBMCs

or NK cells (Fig. 1A and 1B). Treatment of PBMCs or NK cells

with anti-CD16 mAb decreased cytotoxicity significantly against

both tumor types, however, the levels of lysis by the NK cells

remained higher against UCLA-OSCSCs in all the NK samples

tested (Fig. 1). IL-2 treated NK cells co-cultured with UCLA-

OSCSCs exhibited higher expression of CD69 activation antigen

when compared to those co-cultured with UCLA-OSCCs (data

not shown).

Increased induction of IFN- c was paralleled with a
decreased secretion of IL-6 in co-cultures of NK cells with
UCLA-OSCSCs

Untreated and IL-2 treated NK cells were co-cultured with

UCLA-OSCCs and UCLA-OSCSCs and the induction of a

number of key cytokines, including those which were correlated

Table 1. UCLA-OSCSCs similar to HEp2-IkB(S32AS36A) tumor
cells secreted no or lower levels of GM-CSF, IL-6 and IL-8.

GM-CSF IL-6 IL-8

pg/ml (MFI*) pg/ml (MFI) pg/ml (MFI)

HEp2-vec 060 (30) 20.661 (565) 685620 (1390)

HEp2-IkB(S32AS36A) 060 (29) 1.560 (67) 1760 (453)

UCLA-OSCCs 19.862 (79) 58.463 (1554) 906.3650 (7583)

UCLA-OSCSCs 060 (32) 060 (11) 245.2612 (3247)

HEp2-vec, HEp2-IkB(S32AS36A), UCLA-OSCCs, and UCLA-OSCSCs were cultured at
16105 cells/ml and the constitutive levels of secreted GM-CSF, IL-6, and IL-8
were determined using multiplex ELISA array kit. The concentrations of secreted
cytokines were determined using the standard curve for each cytokine.
*Mean fluorescence intensity (MFI). One of three representative experiments is
shown.
doi:10.1371/journal.pone.0011590.t001

Table 2. Increased ratios of IL-6 to IFN-c secretion in NK resistant UCLA-OSCCs when compared to NK sensitive UCLA-OSCSCs.

Tumor cells +/2 Immune cells GM-CSF IL-8 VEGF IL-6 IFN-c

pg/ml pg/ml pg/ml pg/ml pg/ml Ratio IL-6/IFN-c

UCLA-OSCCs 2 NK 20 438.4 620.4 126 0.8 -

UCLA-OSCCs + NK (2IL-2) 148.8 723.2 784 215 1 215

UCLA-OSCCs + NK (+IL-2) 565.8 282.2 145.5 179 820 0.22

UCLA-OSCSCs 2 NK 0.1 23.3 1745 13 1 -

UCLA-OSCSCs + NK (2IL-2) 25 66.7 1256 65 1 12.5

UCLA-OSCSCs + NK (+IL-2) 1068.9 12.5 158 12 1730.6 0.007

No tumors + NK (2IL-2) 0.8 0 0.4 11 0.6 18

No tumors + NK (+IL-2) 403.2 3.14 8.6 13 290 0.44

NK cells (16106/ml) were left untreated or treated with IL-2 (1000 units/ml) for 12–24 hours before NK cells (16105/ml) were added to primary oral tumors at an effector
to target ratio of 1:1. Tumor cells were each cultured alone or in combination with NK cells as indicated in the table and the supernatants were removed from the
cultures after an overnight incubation. The levels of cytokine secretion were determined using antibody coated multiplex microbead immunoassay. For simplification of
the table standard deviations are not included and they ranged from 0% to a maximum of 5% of the amount obtained for each cytokine. One of three representative
experiments is shown.
doi:10.1371/journal.pone.0011590.t002

NK Cells Kill Cancer Stem Cell
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with NK resistant tumor phenotype, were determined in the

supernatants recovered from the co-cultures of the NK cells with

oral tumors after an overnight incubation. In the supernatants of

untreated NK cells co-cultured with UCLA-OSCCs, synergistic

induction of GM-CSF, IL-6 and IL-8 could be observed since

much lower levels of these cytokines were induced either in the

presence of NK cells alone or tumor cells alone (Table 2). The

levels of above-mentioned cytokines were considerably lower in

the co-cultures of untreated NK cells with UCLA-OSCSCs

(Table 2). Even though VEGF secretion was significantly higher

in UCLA-OSCSCs, the levels exceeded that of the baseline levels

produced by the tumor cells alone when untreated NK cells were

co-cultured with UCLA-OSCCs and not that of UCLA-OSCSCs

(Table 2). Increased GM-CSF secretion in the presence of UCLA-

OSCCs as compared to UCLA-OSCSCs was more evident in

untreated NK cells (Table 2).

NK cell sensitivity of tumors correlated with an increased IFN-c
secretion in the presence of lower IL-6 and IL-8 secretion in IL-2

activated NK cells co-cultured with UCLA-OSCSCs (Table 2).

Indeed, when ratios of IL-6 to IFN-c was considered a direct

correlation between increased sensitivity to NK cell mediated

killing and decreased ratios of IL-6 to IFN-c could be seen

(Table 2). Finally, both cell lines exhibited lower amounts of

VEGF secretion in the presence of IL-2 treated NK cells,

indicating the ability of IL-2 treated NK cells to exert significant

inhibitory effect on VEGF secretion. However, the residual levels

of VEGF remained higher in the co-cultures of IL-2 treated NK

cells with UCLA-OSCCs than UCLA-OSCSCs when compared

to the baseline secretion by the tumors alone (Table 2). Thus,

several important cytokine profiles were identified for NK sensitive

and resistant oral tumors after their co-culture with NK cells.

Blocking NFkB in UCLA-OSCCs and HOK-16B oral
epithelial cells lowered IL-6 to IFN-c ratios and increased
their sensitivity to NK cell mediated cytotoxicity

As indicated previously UCLA-OSCCs and HOK-16B oral

keratinocytes represent an oral cancer progression model since

HOK-16B are immortalized but non tumorigenic thus could

represent a model of dysplastic keratinocytes [17,23,24,35]. HOK-

16B and UCLA-OSCCs were transduced with EGFP alone or

IkBaM or IkB(S32AS36A) super-repressor retroviral constructs and

sorted for high GFP expressing cells using flow cytometry (data not

Figure 1. Increased NK cell cytotoxicity against UCLA-OSCSCs. PBMCs and NK cells were left untreated or treated with IL-2 (1000 units/ml) or
anti-CD16 mAb (3mg/ml) or a combination of IL-2 (1000 units/ml) and anti-CD16 mAb (3mg/ml) for 12–24 hours before they were added to 51Cr
labeled primary oral tumors. PBMC (A) and NK cell (B) cytotoxicities were determined using a standard 51Cr release assay and the lytic units 30/106

cells were calculated using inverse number of effectors required to lyse 30% of the tumor cells6100. Differences between untreated, anti-CD16 mAb
treated or IL-2 and/or anti-CD16 mAb treated NK cell cytotoxicity between UCLA-OSCCs and UCLA-OSCSCs were significant at a p value of ,0.05. One
of four representative experiments is shown in this figure.
doi:10.1371/journal.pone.0011590.g001
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shown). The inhibition of NFkB by the IkBaM or IkB(S32AS36A)

super-repressor retroviral vector in UCLA-OSCCs and HOK-16B

cells was confirmed by measuring NFkB activity using luciferase

reporter assay (Figs. 2A and 2B). IkBaM or IkB(S32AS36A) super-

repressor transduced UCLA-OSCCs (Fig. 2C) and HOK-16B

(Fig. 2D) cells secreted substantially lower levels of IL-6 when

compared to EGFP transduced UCLA-OSCCs and HOK-16B

cells. Thus, transduction of UCLA-OSCCs and HOK-16B cells

with IkBaM or IkB(S32AS36A) super-repressor constructs exhibited

the same functional profiles as those seen in transfected HEp2 oral

tumor cells with IkB(S32AS36A) super-repressor construct [19,20].

Similar to HEp 2 cell transfectants, UCLA-OSCCs and HOK-

16B cells transduced with IkBaM or IkB(S32AS36A) super-repressor

constructs did not exhibit elevated levels of cell death when

assessed by flow cytometric analysis of Annexin V and PI stained

cells (data not shown). In addition, there was a significant decrease

in the surface expression of ICAM-1 in TNF-a and IFN-c treated

IkB(S32AS36A) super-repressor transduced UCLA-OSCCs (83%

decrease) and HOK-16B cells (78% decrease) when compared to

EGFP alone transduced cells. These results also indicated that IL-

6 secretion in oral tumor cells is regulated by the function of

NFkB.

Figure 2. Increased cytotoxicity, decreased secretion of IL-6 and increased secretion of IFN-c in co-cultures of NK cells with NFkB
knock down UCLA-OSCCs and HOK-16B cells. IkB (S32AS36A) transduced UCLA-OSCCs (A) and IkBaM transduced HOK-16B cells (B) and their
EGFP transduced controls were transfected with 8 mg of NFkB Luciferase reporter vector and treated with and without TNF-a (20ng/ml) for 18 hours.
The relative Luciferase activity was then determined in the lysates according to the manufacturer’s recommendation and fold induction in luciferase
activity was determined relative to untreated cells. IkB (S32AS36A) transduced UCLA-OSCCs (C) and IkBaM transduced HOK-16B cells (D) and their EGFP
transduced controls were cultured at 26105 cells/ml, and after an overnight incubation the supernatants were collected and the levels of secreted IL-
6 were determined using ELISA specific for IL-6. IkB (S32AS36A) transduced UCLA-OSCCs and IkBaM transduced HOK-16B cells and their EGFP
transduced controls were co-cultured with untreated or IL-2 (1000 u/ml) treated NK cells at 1:1 effector to target ratio. After an overnight incubation
the supernatants from the co-cultures of UCLA-OSCCs and HOK-16B cells with NK cells were collected and the levels of secreted IL-6 (E and F), and
IFN-c (G and H) were determined by specific ELISAs for each cytokine. NK cells were left untreated or treated with IL-2 for 12–24 hours before they
were added to IkB (S32AS36A) transduced UCLA-OSCCs and IkBaM transduced HOK-16B cells and their EGFP transduced controls. Differences between
EGFP transduced and those with either IkB (S32AS36A) transduced UCLA-OSCCs or IkBaM transduced HOK-16B cells were significant for IL-2 treated NK
cells at a p value of ,0.05. IkB (S32AS36A) transduced UCLA-OSCCs and IkBaM transduced HOK-16B cells and their EGFP transduced controls were 51Cr
labeled before they were co-cultured with untreated or IL-2 (1000 u/ml) treated NK cells. After 4 hours of incubation at 37C cytotoxicity of NK cells
were assessed using a standard 51Cr release assay (I and J). lytic unit 30/106 cells were determined using inverse number of effectors required to lyse
30% of the tumor cells 6100. Differences between IkB (S32AS36A) transduced UCLA-OSCCs or IkBaM transduced HOK-16B cells and those with EGFP
transduced were significant in IL-2 treated PBMCs at a p value of ,0.05. One of three representative experiments is shown in this figure.
doi:10.1371/journal.pone.0011590.g002
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Untreated or IL-2 treated NK cells were added to EGFP or

IkB(S32AS36A) super-repressor transduced UCLA-OSCCs and

IkBaM transduced HOK-16B oral keratinocytes and the levels of

IL-6 and IFN-c secretion were determined in the co-cultures with

the NK cells after an overnight incubation. IL-2 activated NK cells

secreted lower levels of IL-6 when co-cultured with IkB(S32AS36A)

super-repressor transduced UCLA-OSCCs (Fig. 2E) and IkBaM

HOK-16B (Fig. 2F) cells as compared to EGFP transduced oral

keratinocytes. In contrast, higher induction of IFN-c secretion could

be observed in supernatants recovered from the co-cultures of NK

cells with IkB(S32AS36A) super-repressor transduced UCLA-OSCCs

(Fig. 2G) and IkBaM transduced HOK-16B (Fig. 2H) oral

keratinocytes as compared to EGFP transduced cells. Similar NK

cell response patterns were obtained when NFkB was inhibited in

HEp2 cells [19,20]. Finally, IL-2 treated NK cells lysed NFkB knock

down OSCCs (Fig. 2I) and HOK-16B (Fig. 2J) cells significantly

more than EGFP transfected cells.

Significant lysis of human Embryonic Stem Cells (hESCs),
human Induced Plueripotent Stem Cells (hiPSCs), human
Dental Pulp Stem Cells (hDPSCs), and human
Mesenchymal Stem Cells (hMSCs) by untreated or IL-2
treated NK cells

Highly purified human NK cells were cultured with and without

IL-2 for 12-24 hours before they were added to 51Cr labeled

hESCs (Fig. 3A), hiPSCs (Fig. 3D), hDPSCs (Fig. 3G) and hMSCs

(Fig. 3J). Addition of untreated NK cells had lower cytotoxicity

against different populations of stem cells whereas activation with

IL-2 increased cytotoxicity against all stem cell populations

significantly (p,0.05) (Fig. 3). Therefore, human stem cells are

greatly lysed by the NK cells.

Lysis of hESCs, hiPSCs, hDPSCs, and hMSCs by untreated
and IL-2 treated NK cells is inhibited by anti-CD16
antibody treatment, however, the same treatment
induced significant secretion of IFN-c by the NK cells in
the presence and absence of stem cells

As shown in a number of previous studies and in this report

anti-CD16 mAb treatment induced anergy in a great majority of

NK cells as well as death in a subset of NK cells, thereby inhibiting

NK cell cytotoxicity against different populations of stem cells

(p,0.05) (Figs. 3). Addition of the combination of IL-2 and anti-

CD16 treatment also induced anergy and NK cell death (data not

shown) and inhibited significantly the NK cell cytotoxicity against

stem cells when compared to IL-2 activated NK cells (p,0.05)

(Fig. 3). Untreated or anti-CD16 mAb treated NK cells did not

secrete IFN-c when co-cultured with any of the stem cell

populations; however, both IL-2 treated and IL-2 in combination

with anti-CD16 mAb treated NK cells in the presence and absence

of stem cells secreted significant levels of IFN-c (p,0.05) (Figs. 3B,

3E, 3H, and 3K). Indeed, stem cells triggered significant secretion

of IFN-c from IL-2 treated NK cells when compared to IL-2

treated NK cells in the absence of stem cells. In addition, there was

a synergistic induction of IFN-c secretion in IL-2 and anti-CD16

mAb treated NK cells in the absence of stem cells, and the levels

either plateaued or exceeded those in the absence of stem cells

when IL-2 and anti-CD16mAb treated NK cells were cultured

with stem cells (Fig. 3). There was a direct correlation between

Figure 3. Lysis of hESCs, hiPSCs, hDPSCs and hMSCs by untreated and IL-2 treated NK cells is inhibited by anti-CD16 antibody
treatment, however, the same treatment induced significant secretion of IFN-c by the NK cells. NK cells (16106/ml) were left untreated
or treated with IL-2 (1000 units/ml), or anti-CD16 mAb (3mg/ml) or a combination of IL-2 (1000 units/ml) and anti-CD16 mAb (3mg/ml) for 12-24 hours
before they were added to 51Cr labeled hESCs, hiPSCs, hDPSCs and hMSCs. NK cell cytotoxicities were determined using a standard 4 hour 51Cr
release assay, and the lytic units 30/106 cells were determined using inverse number of NK cells required to lyse 30% of hESCs (A), hiPSCs (D), hDPSCs
(G) and hMSCs (J)6100. NK cells were treated as described above and each NK sample at (16105/ml) were either cultured in the absence or presence
of hESCs, hiPSCs, hDPSCs and hMSCs at an NK to stem cell ratio of 1:1. After an overnight culture, supernatants were removed from the co-cultures
and the levels of IFN-c (B,E,H,K), and bFGF (C,F,I,L) secretion were determined using specific ELISAs. One of a minimum three representative
experiments for each stem cell population is shown in this figure.
doi:10.1371/journal.pone.0011590.g003
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secretion of bFGF by stem cells and cytotoxicity by IL-2 and IL-

2+anti-CD16 mAb treated NK cells (Figs. 3C, 3F, 3I, and 3L).

Lysis of hMSCs by untreated and IL-2 treated NK cells is
inhibited by monocytes, however, the addition of
monocytes induced significant secretion of IFN-c by the
NK cells in the presence and absence of stem cells

Monocytes were purified from PBMCs and irradiated (10 Gy)

immediately before they were co-cultured with hMSCs for 24–

48 hours before they were labeled with 51Cr and used in the

cytotoxicity assays against NK cells. NK cells were left untreated

or pre-treated with anti-CD16 antibody and/or IL-2 for 24–

48 hours before they were used in the cytotoxicity assays against

hMSCs. The addition of monocytes to hMSCs significantly

protected the hMSCs (Fig. 4A) from NK cell mediated

cytotoxicity (p,0.05). Significant inhibition of NK cell cytotox-

icity by monocytes could be observed against untreated or IL-2

treated NK cells (p,0.05) (Fig 4A). Monocytes also increased the

levels of alkaline phosphatase (ALP) staining in MSCs and

prevented the decrease in ALP expression induced by IL-2

activated NK cells (data not shown). Untreated or anti-CD16

antibody treated irradiated monocytes did not mediate cytotox-

icity against hMSCs, (data not shown). Overall, these experiments

indicated that monocytes protect hMSCs against NK cell

mediated lysis.

Figure 4. Monocytes decrease the lysis of hMSCs by the NK cells, but significantly augment the secretion of IFN-c in the co-cultures
of NK, monocyte and hMSCs. HMSCs (16106 cells/plate) were cultured with the irradiated monocytes (10 Gy) (monocyte: MSC ratio of 1:1) for 24–
48 hours before they were removed from the plates, washed and labeled with 51Cr and used as targets in the cytotoxicity assays against NK cells. The
NK samples were either left untreated or treated with anti-CD16 mAb (3mg/ml), IL-2 (1000 u/ml), or a combination of IL-2 (1000 u/ml) and anti-CD16
mAb (3mg/ml) for 24–48 hours before they were added to 51Cr labeled hMSCs at different effector to target (E:T) ratios. Supernatants were removed
after 4 hours of incubation and the released radioactivity counted by a b counter. % cytotoxicities were determined at different E:T ratio, and LU30/
106 cells were calculated using the inverse of the number of effectors needed to lyse 30% of the hMSCs 6100.. One of three representative
experiments is shown in this figure (A). hMSCs (16105 cells/well) were co-cultured with and without irradiated Monocytes at 1:1 hMSCs to monocytes
for 24–48 hours before untreated or IL-2 (1000 u/ml) pre-treated or anti-CD16 mAb (3mg/ml) pre-treated, or a combination of IL-2 (1000 u/ml) and
anti-CD16 mAb (3mg/ml) pre-treated NK cells at 1:1:1 NK:monocyte:hMSC ratios were added. NK cells were pre-treated as indicated for 24–48 hours
before they were added to the co-cultures of monocytes and hMSCs. NK samples were also cultured in the absence of monocytes and hMSCs. After
24–48 hours of the addition of NK cells the supernatants were removed from the cultures and the levels of IFN-c secretion were determined using a
specific ELISA. One of five representative experiments is shown in this figure (B).
doi:10.1371/journal.pone.0011590.g004

NK Cells Kill Cancer Stem Cell

PLoS ONE | www.plosone.org 8 July 2010 | Volume 5 | Issue 7 | e11590



As expected IL-2 treated NK cells secreted moderate amounts

of IFN-c which was synergistically increased when co-cultured in

the presence of hMSCs (p,0.05) (Fig. 4B). The addition of anti-

CD16 mAb in combination with IL-2 to NK cells in the absence of

hMSCs increased secretion of IFN-c when compared to IL-2

alone treated NK cells in the absence of hMSCs. IFN-c secreted

levels remained similar between IL-2 alone and IL-2 and anti-

CD16 mAb treated NK cells cultured with hMSCs (Fig. 4B).

Monocytes added to IL-2 or IL-2 and anti-CD16 antibody treated

NK cells in the absence of hMSCs or those in the presence of

hMSCs, synergistically increased the levels of secreted IFN-c
(p,0.05) (Fig. 4B). However, the highest increase in IFN-c release

was seen when monocytes were added to IL-2 or IL-2 and anti-

CD16 mAb treated NK cells with hMSCs (Fig. 4B). These results

indicated that monocytes increased IFN-c in co-cultures with

hMSCs, and further synergized with IL-2 or IL-2 and anti-CD16

mAb treated NK samples to increase the release of IFN-c in the

co-cultures of NK cells with hMSCs. Similar results were obtained

when NK cells were co-cultured with monocytes and hDPSCs

[36].

HMSCs are significantly more sensitive to lysis by IL-2
treated NK cells than their differentiated counterparts
and they trigger significant release of IFN-c by IL-2
activated NK cells

To determine whether differentiation decreases sensitivity of

stem cells to NK cell mediated cytotoxicity we first chose to

concentrate on hMSCs. To assess whether differentiation of

hMSCs similar to oral tumors decreases sensitivity of these cells to

NK cell mediated cytotoxicity we determined NK cell cytotoxicity

against hMSCs and their differentiated osteoblasts using un-

fractionated PBMCs as well as NK cells. hMSCs were cultured in

the absence and presence of untreated and IL-2 treated PBMCs at

10:1 PBMC to hMSC ratio and the levels of ALP staining were

determined after 2 days of incubation. The addition of untreated

PBMCs to hMSCs triggered some differentiation of hMSCs as

assessed by ALP staining (Figs. 5A and 5B). No significant staining

with ALP can be seen by either the PBMCs or MSCs alone

(Figs. 5A and 5B). Treatment of PBMCs with IL-2 and their

subsequent co-culture with hMSCs lysed the cells and prevented

induction of ALP, therefore, no or very low detection of ALP

could be observed (Figs. 5A and 5B). The co-culture of

differentiated osteoblasts with PBMCs was performed as described

above with hMSCs. As shown in Figs. 5C and 5D both the

untreated and IL-2 treated PBMCs triggered significant increase

in ALP staining in osteoblasts. IL-2 treated PBMCs triggered

much higher levels of ALP staining when compared to untreated

PBMCs (Figs. 5C and 5D). The levels of ALP staining in

osteoblasts were substantially lower in the absence of PBMCs and

no significant ALP staining could be seen in untreated or IL-2

treated PBMCs in the absence of osteoblasts (Figs. 5C and 5D).

These results suggested that stem cells were sensitive to lysis by IL-

2 treated PBMCs whereas their differentiated counterparts were

more resistant, and unlike stem cells they were able to resist death

and further upregulate ALP expression when cultured with IL-2

treated PBMCs. In addition, when the levels of VEGF secretion

were determined higher induction of VEGF secretion by hMSCs

could be observed when compared to osteoblasts (Fig. 5E).

Undifferentiated hMSCs were significantly more sensitive to

lysis by IL-2 treated NK cells when compared to their

differentiated counterparts (Fig. 5F), and triggered significant

secretion of IFN-c in co-cultures with IL-2 treated NK cells

(Fig. 5G). Moreover, when hMSCs were cultured with IL-2 treated

NK cells alone or IL-2 treated NK cells with monocytes significant

induction of B7H1 surface expression could be observed in

surviving hMSCs (Fig. 5H). Since monocytes increase survival of

hMSCs, accordingly, more surviving hMSCs was observed in co-

cultures with NK cells and monocytes than with NK cells alone

[36]. Monocytes alone or untreated NK cells in the presence or

absence of monocytes were not able to elevate B7H1 expression on

the surface of hMSCs (data not shown). The intensity of NK cell

induced B7H1 expression on hMSCs were similar to that induced

by the treatment of hMSCs with IFN-c (Fig. 5I). Thus, these

results suggested that sensitivity of hMSCs to NK cell mediated

cytotoxicity correlated with the degree of differentiation of these

cells. Moreover, it indicated that NK cells may contribute to

differentiation and resistance of hMSCs by increased induction of

key resistance factors such as B7H1.

Differentiated hDPSCs are more resistant to NK cell
mediated cytotoxicity

HDPSCs were differentiated to odontoblasts by the addition of

b-glycerophosphate, ascorbic acid and dexamethasone as reported

previously [26], and NK cell cytotoxicities were determined

against both the differentiated and undifferentiated hDPSCs. As

shown in Fig. 6 significantly less NK cell cytotoxicity as well as

IFN-c secretion could be obtained against differentiated hDPSCs

by untreated, IL-2 treated and IL-2 plus anti-CD16 mAb treated

NK cells when compared to undifferentiated hDPSCs. Therefore,

depending on the stage of the differentiation of hDPSCs different

levels of NK cell cytotoxicity can be observed against hDPSCs.

Decreased sensitivity of dendritic cells to NK cell
mediated lysis

To demonstrate that resistance of NK cell mediated cytotoxicity

by increased differentiation of stem cells is not restricted to only

certain types of cells, we used monocytes and their differentiated

counterpart dendritic cells to determine sensitivity to NK cell

mediated lysis. As shown in Fig. 7 monocytes were significantly

more sensitive to NK cell mediated cytotoxicity than DCs.

HiPSCs are more susceptible to NK cell mediated
cytotoxicity than their parental line

Since more differentiated cells were less sensitive to NK cell

mediated lysis, we aimed at characterizing the sensitivity of iPSCs

as well as their parental line to NK cell mediated lysis. As shown in

Fig. 8 untreated or IL-2 treated NK cells lysed iPSCs significantly

more than their parental line. Treatment of NK cells with anti-

CD16 mAb or a combination of IL-2 and anti-CD16 mAb

decreased cytotoxicity mediated by the NK cells (Fig. 8). Therefore

taken together the results shown thus far suggest that any attempt

in re-programming or de-differentiating the cells may result in

increased sensitivity of the cells to NK cell mediated lysis. We,

therefore, performed additional experiments using mice which had

targeted knock down of COX2 gene in myeloid subsets to

determine whether blocking COX2 which is shown to be elevated

in many tumors and is important in differentiation of the cells can

elevate sensitivity to NK cell mediated lysis.

Targeted inhibition of COX2 in bone marrow derived
monocytes from LysMCre+/2 mice increased cytotoxicity
and secretion of IFN-c by IL-2 treated NK cells

Purified NK cells obtained from spleens of control mice and

those with targeted knock down of COX2 gene in myeloid cells

[37] were cultured with and without bone marrow derived purified

monocytes for 6 days before they were added to 51Cr YAC cells
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and cytotoxicity were determined in 4 hours 51Cr release assay. As

shown in Fig. 9A NK cells purified from Cox-2flox/flox LysMCre/+
mice and cultured with autologous COX22/2 monocytes lysed

YAC cells significantly more, whereas NK cells from control mice

(Cox-2flox/flox LysM+/+) cultured with autologous COX2+/+

monocytes had very little cytotoxicity. Similarly, NK cells purified

from Cox-2flox/flox LysMCre/+ mice and cultured with autologous

COX22/2 monocytes secreted higher levels of IFN-c when

compared to NK cells from control mice (Cox-2flox/flox LysM+/+)

cultured with autologous COX2+/+ monocytes (Fig. 9B).

Figure 5. hMSCs are significantly more sensitive to lysis by IL-2 treated NK cells than their differentiated counterparts and they
trigger significant release of IFN-c by IL-2 activated NK cells. hMSCs were seeded at 3 to 46105 cells per well in Stem cell medium in the
presence and absence of untreated PBMCs or IL-2 (1000u/ml) treated PBMCs (PBMC to Stem cell ratio 10:1). After 2 days of co-cultures, Alkaline
Phosphatase staining was performed. A1 to C1 (triplicates of hMSCs in the absence of PBMCs), A2 to C2 (hMSC in the presence of untreated PBMCs),
A3 to C3 (MSC in the presence of IL-2 treated PBMCs), A4 (untreated PBMCs alone), B4 (IL-2 treated PBMCs alone) (A). The ALP stain densities for each
well were determined using photoshop software (B). hMSCs were cultured in differentiation medium for 1 week and differentiated Osteoblasts were
then seeded at 3 to 46105 cells per well in the presence and absence of untreated PBMCs and IL-2 (1000u/ml) treated PBMCs (PBMC to Stem cell ratio
10:1). After 2 days of co-cultures Alkaline Phosphatase staining was performed. A1 to C1 (triplicates of Ostoblastic cells in the absence of PBMCs), A2
to C2 (Ostoblastic cells in the presence of untreated PBMCs), A3 to C3 (Ostoblastic cells in the presence of IL-2 treated PBMCs), A4 (untreated PBMCs
alone), B4 (IL-2 treated PBMCs alone) (C). The ALP stain densities for each well were determined using photoshop software (D). hMSCs and
Osteoblasts were cultured with and without untreated PBMCs as described above and after two days of incubation the supernatants were removed
and subjected to specific ELISA for VEGF (E). NK cells (16106/ml) were left untreated or treated with IL-2 (1000 units/ml), or anti-CD16 mAb (3mg/ml)
or a combination of IL-2 (1000 units/ml) and anti-CD16 mAb (3mg/ml) for 12–24 hours before they were added to 51Cr labeled hMSCs or osteoblasts,
and NK cell cytotoxicities were determined using a standard 4 hour 51Cr release assay, and the lytic units 30/106 cells were determined using inverse
number of NK cells required to lyse 30% of the hMSCs or osteoblasts 6100 (F). Undifferentiated hMSCs and those differentiated to osteoblasts at
(16105/ml) were cultured in the absence and presence of untreated NK cells or IL-2 treated NK cells at 1:1 ratio, and after two days of incubation the
supernatants were removed and subjected to specific ELISA for IFN-c (G). HMSCs at (16105/ml) were either cultured with untreated NK cells or IL-2
treated NK cells alone (1:1; hMSC:NK) or with untreated NK and IL-2 treated NK cells with monocytes at (1:1:1; hMSC:NK:monocytes). After an
overnight incubation, the cells were washed and B7H1 surface expression was determined on hMSC gated populations. Isotype control antibodies
were used as controls (H). HMSCs were left untreated or treated with IFN-c (500u/ml). After an overnight incubation, hMSCs were washed and the
B7H1 surface expression was determined on hMSC (I).
doi:10.1371/journal.pone.0011590.g005
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Discussion

We have characterized the interaction of two primary oral

tumors and a transformed but non-tumorigenic oral keratinocyte

line with NK cells and identified several important profiles which

could distinguish between differentiated NK resistant oral tumors

from undifferentiated NK sensitive tumor stem cells. The results

also indicated that the levels of NK cell cytotoxicity may vary

depending on the expression and function of NFkB in tumors.

Thus, increased NFkB appears to be an important factor of

differentiation, survival and function of primary oral tumors

during their interaction with NK cells.

Increased NK cell cytotoxicity and augmented secretion of

IFN-c were observed when NK cells were co-incubated with

UCLA-OSCSCs which released significantly lower levels of GM-

CSF, IL-6 and IL-8 (Tables 1 and 2) and demonstrated decreased

expression of phospho-Stat3, B7H1 and EGFR, and much lower

constitutive NFkB activity when compared to differentiated

UCLA-OSCCs (please see Figure S1). More importantly,

UCLA-OSCSCs expressed CD133 and CD44bright oral stem cell

markers (please see Figure S1). Addition of untreated fresh NK

cells to UCLA-OSCCs, which were unable to lyse the tumor cells,

synergistically contributed to the elevation of the above mentioned

cytokines in the co-cultures of NK cells with UCLA-OSCCs. In

contrast, untreated NK cells, which lysed UCLA-OSCSCs, were

either unable to increase or moderately increased the secretion of

resistant factors in the co-cultures of NK cells with UCLA-

OSCSCs. Untreated NK cells increased the secretion of VEGF in

NK-UCLA-OSCC co-cultures whereas a decrease in VEGF

secretion was observed in NK- UCLA-OSCSCs co-cultures when

compared to those secreted by the tumors alone. Although the

majority of secreted cytokines were elevated in UCLA-OSCCs

when compared to UCLA-OSCSCs, the levels of VEGF secretion

were higher in UCLA-OSCSCs when compared to UCLA-

OSCCs. This observation is in agreement with the previously

published results demonstrating decreased secretion of VEGF

during the progression of head and neck tumors [38].

Increase in IFN-c secretion was correlated with a decrease in

secretion of IL-6 in co-cultures of NK cells with UCLA-OSCSCs

when compared to UCLA-OSCCs. Furthermore, IL-2 activated

NK cells suppressed significantly the secretion of VEGF from

tumor cells. Therefore, from these results a specific profile for NK

resistant oral tumors emerged which demonstrated increased GM-

CSF, IL-6 and IL-8 secretion in the context of decreased IFN-c
secretion during their interaction with the NK cells. In contrast,

co-cultures of cancer stem cells with NK cells demonstrated

increased IFN-c in the context of lower GM-CSF, IL-6 and IL-8

secretion.

\Many aggressive and metastatic tumor cells exhibit constitu-

tively elevated NFkB activity [16]. Similar to HEp2 cells [19]

blocking NFkB in UCLA-OSCCs and HOK-16B cells increased

IFN-c secretion and augmented the cytotoxic function of IL-2

Figure 6. Undifferentiated DPSCs are significantly more sensitive to lysis by IL-2 treated NK cells and trigger increased secretion of
IFN-c from the NK cells than their differentiated counterparts. NK cells (16106/ml) were left untreated or treated with IL-2 (1000 units/ml), or
anti-CD16 mAb (3mg/ml) or a combination of IL-2 (1000 units/ml) and anti-CD16 mAb (3mg/ml) for 12–24 hours before they were added to 51Cr
labeled undifferentiated and differentiated DPSCs, and NK cell cytotoxicities were determined using a standard 4 hour 51Cr release assay. Lytic units
30/106 cells were determined using inverse number of NK cells required to lyse 30% of the hDPSCs 6100. Passage 8 differentiated and
undifferentiated hDPSCs were used (A). Undifferentiated hDPSCs and those differentiated to odontoblasts at (16105/ml) were cultured with and
without untreated NK cells or IL-2 (1000 units/ml), or anti-CD16 mAb (3mg/ml) or a combination of IL-2 (1000 units/ml) and anti-CD16 mAb (3mg/ml)
treated NK cells at 1:1 ratio and after two days of incubation the supernatants were removed and subjected to specific ELISA for IFN-c (B). One of
three representative experiments is shown in this figure.
doi:10.1371/journal.pone.0011590.g006
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activated NK cells against these cells (Fig. 2). Inhibition of NFkB

in UCLA-OSCCs and HOK-16B was confirmed by several

observations. First, the synergistic induction of ICAM-1 by TNF-a
and IFN-c treatment, which was previously shown to be due to

increased function of NFkB [20], was greatly abrogated when

UCLA-OSCCs and HOK-16B cells were transduced with I|B

super-repressor. Second, significant decrease in IL-6 secretion

could be observed in both cells and in the co-cultures of immune

effectors with UCLA-OSCCs and HOK-16B cells transduced with

IkB super-repressor. Lastly, decreased binding of NFkB was

observed using luciferase reporter assay in NFkB knock down cells.

Therefore, some of the profiles of NFkB knock down cells

resembled those of undifferentiated UCLA-OSCSCs based on the

parameters tested.

It appears that NFkB in primary oral keratinocytes may serve as

the master molecular switch between IL-6 and IFN-c secretion in

the co-cultures of NK cells with tumors. IL-6 is secreted

constitutively by oral squamous cell carcinomas [39,40] and it is

found to be elevated in oral cancer patients [39,41]. IL-6 is known

to interfere with IFN-c signaling by the induction of Th2

differentiation via activation of NFAT which subsequently inhibits

Th1 polarization [41,42]. IL-6 is also known to induce Stat3

activation. Since blocking Stat3 function in tumor cells is also

known to activate adaptive immunity [42,43] it may be that IL-6

induced Stat3 is in part responsible for no/low activation of NK

cells in the co-cultures of NK cells and either HEp2 cells or

UCLA-1 or HOK-16B tumors. These possibilities are currently

under investigation in our laboratory.

Since UCLA-OSCSCs were significantly more susceptible to

NK cell mediated cytotoxicity we hypothesized that healthy,

untransformed primary stem cells may in general be more

susceptible to NK cell mediated cytotoxicity. We show in this

paper that NK cells lyse hMSCs, hDPSCs, hESCs and iPSCs

significantly. Taken together these results indicated that undiffer-

entiated cells are targets of NK cell cytotoxicity. However, once

NK cells lyse a proportion of sensitive targets they lose their

cytotoxic function and gain the ability to secrete cytokines (split

anergy) required to support differentiation of the cells not lysed by

the NK cells. Indeed, similar to NK cells cultured with

undifferentiated sensitive tumor stem cells or primary untrans-

formed stem cells, the treatment of NK cells with IL-2 and anti-

CD16 mAb resulted in the loss of cytotoxicity, gain in IFN-c
secretion and down modulation of CD16 surface receptors

[14,29]. Loss of cytotoxicity and gain in cytokine secretion was

also seen when NK cells were cultured with hMSCs and hDPSCs

in the presence of monocytes (Fig. 4) and [36].

Figure 7. Monocytes are significantly more sensitive to NK cell
mediated cytotoxicity than DCs. NK cells (16106/ml) were left
untreated or treated with IL-2 (1000 units/ml), or anti-CD16 mAb (3mg/
ml) or a combination of IL-2 (1000 units/ml) and anti-CD16 mAb (3mg/
ml) for 12-24 hours before they were added to 51Cr labeled autologous
monocytes or 51Cr labeled autologous DCs, and NK cell cytotoxicities
were determined using a standard 4 hour 51Cr release assay and the
lytic units 30/106 cells were determined using inverse number of NK
cells required to lyse 30% of the monocytes or DCs 6100. One of four
representative experiments is shown in this figure.
doi:10.1371/journal.pone.0011590.g007

Figure 8. hiPSCs are more susceptible to NK cell mediated
cytotoxicity than their parental line. NK cells (16106/ml) were left
untreated or treated with IL-2 (1000 units/ml), or anti-CD16 mAb (3mg/
ml) or a combination of IL-2 (1000 units/ml) and anti-CD16 mAb (3mg/
ml) for 12–24 hours before they were added to 51Cr labeled hiPSCs or
51Cr labeled parental cells from which the hiPSCs were derived, and NK
cell cytotoxicities were determined using a standard 4 hour 51Cr release
assay and the lytic units 30/106 cells were determined using inverse
number of NK cells required to lyse 30% of the hiPSCs or parental cells
6100. One of two representative experiments is shown in this figure.
doi:10.1371/journal.pone.0011590.g008
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In vivo physiological relevance of above-mentioned observa-

tions could be seen in a subpopulation of NK cells in peripheral

blood, uterine and liver NK cells which express low or no CD16

receptors, and have decreased capacity to mediate cytotoxicity and

is capable of secreting significant amounts of cytokines [44,45].

Indeed, 70% of NK cells become CD16 dim or negative

immediately after an allogeneic or autologous bone marrow

transplantation [44]. Since NK cells lose their cytotoxic function

and gain in cytokine secretion phenotype and down modulate

CD16 receptors after their interaction with tumor cells or healthy

primary stem cells [14,29], it is tempting to speculate that in vivo

identified CD16- NK cells and in vitro tumor induced CD16- NK

cells may have similar developmental pathways since they have

similar if not identical functional properties.

Since undifferentiated cells are targets of NK cells, it is logical

that NFkB knock down cells are found to be more susceptible to

NK cell mediated cytotoxicity since this process may revert the

cells to a relatively less differentiated state and be the cause of

activation of NK cells. Indeed, any disturbance in the process of

differentiation should in theory result in an increase in the

sensitivity of the targets to NK cell mediated cytotoxicity since this

process is important for modifying the phenotype of NK cells to

cytokine secreting cells in order to support differentiation of the

remaining viable competent cells. In this regard knocking down

COX2 in monocytes is likely the cause of reversion or de-

differentiation of the monocytes and the activation of NK cell

cytotoxicity. Thus, the stage of differentiation of the cells is

predictive of the susceptibility of the cells to NK cell mediated

cytotoxicity. In this regard we have also found higher sensitivity of

hiPSCs to NK cell mediated lysis when compared to the parental

line from which they were derived. In addition, hMSCs not only

become resistant to NK cell mediated cytotoxicity after differen-

tiation, but also their level of differentiation increases when they

are cultured with the NK cells. As shown here co-culture of NK,

monocytes and stem cells are found to result in decreased lysis of

stem cells, increased secretion of IFN-c by the NK cells and

elevation of B7H1 surface expression on the stem cells (Figs. 4 and

5). Thus, stem cells which survive should exhibit differentiation

Figure 9. Targeted inhibition of COX2 in bone marrow monocytes increased NK cell cytotoxicity and secretion of IFN-c by IL-2
treated NK cells. Purified NK cells and monocytes were obtained from spleens and bone marrows of 3 pooled control mice and those with targeted
knock down of COX2 gene in myeloid cells respectively (n = 3). Purified NK cells and monocytes from control mice and those with targeted knock
down of COX2 gene in myeloid cells were then cultured with IL-2 (1000u/ml) at 1:1 NK: monocyte ratios for 6 days before they were added to 51Cr
labeled YAC cells, and NK cell cytotoxicities were determined in 4 hour 51Cr release assay. The lytic units 30/106 cells were determined using inverse
number of NK cells required to lyse 30% of the YAC cells 6100 (A). NK cells were cultured as described in Fig. 9A and after 6 days of incubation the
supernatants were removed and IFN-c secretion were measured in the supernatants using a specific ELISA (B). One of five representative experiments
is shown in this figure.
doi:10.1371/journal.pone.0011590.g009
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markers such as increase in NFkB and STAT3 and augmented

secretion of GM-CSF, IL-6 and IL-8 after interaction with NK

cells and monocytes (Fig. 10).

Based on the results presented in this paper it is tempting to

speculate that NK cells may have two significant functions; one

that relates to the removal of unwanted stem cells that are either

defective or disturbed or in general more in numbers than

required for the regeneration of damaged tissue. Therefore, the

first task of NK cells is to select stem cells that are competent and

are able to fully differentiate to required tissues. The second

important task of NK cells is to support the differentiation of the

selected cells after altering the NK phenotype to cytokine secreting

cells. This process will not only remove cells that are either

infected or transformed, but also it will ensure the regeneration of

damaged or defective tissues. Therefore, in processes in which

suboptimal differentiation and regeneration of the tissues are

obtained, a chronic inflammatory process may be established

causing continual tissue damage and recruitment of stem cells and

NK cells. Indeed, a generalized inflammatory condition in patients

with Nemo mutations has been described previously, and mice

with the knockdown of NFkB develop skin pathologies similar to

that of inflammatory skin disease [21,46].

The inability of cancer patient NK cells to kill cancer stem cells due

to flooding of NK cells by proliferating cancer stem cells and

conversion of NK cells to cytokine secreting cells may likely be a

mechanism by which cancer stem cells remain viable and proliferate.

Therefore, there should be two distinct strategies by the NK cells to

eliminate tumors, one which targets stem cells and the other which

targets differentiated cancer cells. In theory this should be achieved in

oral cancer patients by the use of EGFR antibody since this antibody

should target the differentiated oral tumors whereas stem cells should

be eliminated by the activated NK cells. However, since the great

majority of patient NK cells have modified their phenotype to

support differentiation of the cells, they may not be effective in

eliminating cancer stem cells. Therefore, cancer stem cells may

accumulate and eventually result in the demise of the patient. These

patients may therefore, benefit from the repeated allogeneic NK cell

transplantation for elimination of cancer stem cells.

Supporting Information

Figure S1 Phenotypic characteristics of UCLA-OSCCs and

UCLA-OSCSCs. UCLA-OSCCs or UCLA-OSCSCs were de-

tached, washed and stained with the antibodies specific to surface

receptors indicated in the figure and analyzed by flow cytometry.

Isotype control antibodies were used as controls. The numbers on

the right-hand corner are the mean channel fluorescence intensity.

(A). UCLA-OSCCs or UCLA-OSCSCs were left untreated or

treated with EGF (10 ng/ml), and the cell extracts were prepared

after an overnight incubation, and run on polyacrylamide gel, after

which the bands were transferred and blotted with the antibody

specifc for phospho-Stat3 (B). UCLA-OSCCs or UCLA-OSCSCs

Figure 10. Schematic representation of hypothetical model of oral cancer stem cell or untransformed primary stem cell
differentiation by NK cells and monocytes. Interaction of cancer stem cells or primary untransformed stem cells with monocytes and NK cells
results in the loss of NK cell cytotoxicity due partly to the induction of resistance of cancer stem cells or primary stem cells by monocytes and
indirectly by monocytes serving as targets of NK cells [36], thereby, protecting the stem cells from lysis by the NK cells. Loss of NK cell cytotoxicity by
monocytes and gain in secretion of IFN-c results in a significant induction of transcription factors, cytokines and growth factors in stem cells and
differentiation of stem cells.
doi:10.1371/journal.pone.0011590.g010
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at a density of 26105 cells per well were transduced with the

NFkB-Luciferase lentiviral reporter vector for 48 hours before

they were lysed and luciferase activity measured [RLU/s] using

the luminometer. An internal lentiviral vector expressing consti-

tutive Luciferase was used for normalization (C). One of three

representative experiments is shown in this figure.

Found at: doi:10.1371/journal.pone.0011590.s001 (2.63 MB TIF)
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