
UC San Diego
UC San Diego Previously Published Works

Title
Deep active object recognition by joint label and action prediction

Permalink
https://escholarship.org/uc/item/5xj471nq

Authors
Malmir, Mohsen
Sikka, Karan
Forster, Deborah
et al.

Publication Date
2017-03-01

DOI
10.1016/j.cviu.2016.10.011
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5xj471nq
https://escholarship.org/uc/item/5xj471nq#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE IN PRESS 

JID: YCVIU [m5G; October 24, 2016;11:24 ] 

Computer Vision and Image Understanding 0 0 0 (2016) 1–10 

Contents lists available at ScienceDirect 

Computer Vision and Image Understanding 

journal homepage: www.elsevier.com/locate/cviu 

Deep active object recognition by joint label and action prediction 

Mohsen Malmir a , ∗, Karan Sikka 

b , Deborah Forster c , Ian Fasel d , Javier R. Movellan 

d , 
Garrison W. Cottrell a 

a Computer Science and Engineering Department, University of California San Diego, 9500 Gilman dr., San Diego CA 92093, USA 
b Electrical and Computer Engineering Department, University of California San Diego, 9500 Gilman dr., San Diego CA 92093, USA 
c Qualcomm Inst., University of California San Diego, 9500 Gilman dr., San Diego CA 92093, USA 
d Emotient.com, 4435 Eastgate Mall, Suite 320, San Diego, CA 92121, USA 

a r t i c l e i n f o 

Article history: 

Received 16 December 2015 

Revised 1 October 2016 

Accepted 19 October 2016 

Available online xxx 

Keywords: 

Active object recognition 

Deep learning 

Q-learning 

a b s t r a c t 

An active object recognition system has the advantage of acting in the environment to capture images 

that are more suited for training and lead to better performance at test time. In this paper, we utilize 

deep convolutional neural networks for active object recognition by simultaneously predicting the object 

label and the next action to be performed on the object with the aim of improving recognition per- 

formance. We treat active object recognition as a reinforcement learning problem and derive the cost 

function to train the network for joint prediction of the object label and the action. A generative model 

of object similarities based on the Dirichlet distribution is proposed and embedded in the network for 

encoding the state of the system. The training is carried out by simultaneously minimizing the label and 

action prediction errors using gradient descent. We empirically show that the proposed network is able 

to predict both the object label and the actions on GERMS, a dataset for active object recognition. We 

compare the test label prediction accuracy of the proposed model with Dirichlet and Naive Bayes state 

encoding. The results of experiments suggest that the proposed model equipped with Dirichlet state en- 

coding is superior in performance, and selects images that lead to better training and higher accuracy of 

label prediction at test time. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

A robot interacting with its environment can collect large

olumes of dynamic sensory input to overcome many challenges

resented by static data. A robot manipulating an object with the

apability to control its camera orientation, for example, is an ex-

mple of an active object recognition (AOR) system. In such dy-

amic interactions, the robot can select the training data for its

odels of the environment, with the goal of maximizing the ac-

uracy with which it perceives its surroundings. In this paper, we

ocus on AOR with the goal of developing a model that can be used

y a robot to recognize an object held in its hand. 

There are a variety of approaches to AOR, the goal of which

s to re-position sensors or change the environment so that the

ew inputs to the system become less ambiguous for label predic-

ion ( Aloimonos et al., 1988; Bajcsy, 1988; Denzler et al., 2001 ). An

ssue with previous approaches to AOR is that they mostly used
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mall simplistic datasets, which were not reflective of challenges

n real-world applications ( Malmir et al., 2016 ). To avoid this prob-

em, we have collected a large dataset for AOR, called GERMS, 1 

hich contains more than 120K high resolution (1920x1080) RGB

mages of 136 different plush toys. This paper extends our previous

ork, Deep Q-learning ( Malmir et al., 2016 ), where an action se-

ection network was trained on top of a pre-trained convolutional

eural network. In this paper we extend the model to train the

etwork end-to-end using GERMS images to jointly predict object

abels and action values. 

This paper makes two contributions: First, we develop a deep

ctive object recognition (DAOR) model to jointly predict the label

nd the best next action on an input image. A deep convolutional

eural network is trained to predict the object label and action-

alues from an image of the object. We use reinforcement learning

o teach the network to predict the action values, and minimize

he action value prediction error along with the label prediction

ross entropy. The visual features in early stages of this network

re learned to minimize both errors. The second contribution of
1 Available at http://rubi.ucsd.edu/GERMS/ 

ition by joint label and action prediction, Computer Vision and 
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this work is to embed a generative Dirichlet model of objects sim-

ilarities for encoding the state of the system. This model integrates

information from different images into a vector, based on which

actions are calculated to improve object recognition. We embed

this model as a layer in the network and derive the learning rule

for updating the Dirichlet parameters using gradient descent. We

conduct a series of experiments on the GERMS dataset to test (1)

if the model can be trained jointly for label and action prediction,

and (2) how effective is the proposed Dirichlet state encoding com-

pared to more traditional Naive Bayes approach, and (3) discuss

some of the properties of the learned policies. 

In the next section, we review some of the previous approaches

to AOR and the datasets they used. Next we introduce the GERMS

dataset and describe the training and testing data used for the ex-

periments in this paper. After that, we describe the details of the

proposed network and Dirichlet state encoding, going into the de-

tails of cost function and update rules for different layers of the

network. In the results section, we report the properties of the

proposed network and compare its performance in different state

encoding scenarios. The final section is the concluding remarks. 

2. Literature review 

Active object recognition methods can be divided into two

groups based on how they select actions to improve object recog-

nition. The first group uses heuristic methods to select actions, for

example to bring the object to a predefined standard view where

the recognition performance is expected to be maximized. The sec-

ond group of methods are motivated by information theory, using

information gain to determine the effect of actions on object label

prediction uncertainty. The next action is chosen to maximize the

reduction in this uncertainty. 

An early heuristic AOR system was developed by Wilkes and

Tsotsos (1992) . They used a heuristic procedure to change the cam-

era’s position and orientation to bring the object into a ‘stan-

dard’ view using a robotic-arm-mounted camera. The standard

view of objects was defined to be unique among all objects with

respect to their low level visual features. In a series of experiments

on 8 Origami objects, they qualitatively report promising results for

achieving the standard view and retrieving the correct object la-

bels. Heuristic method clearly suffer from generalization problem,

as the number of objects increases it is not possible to define stan-

dard views for each object manually. A more systematic approach

is needed to define the effectiveness of different object views for

label prediction. 

Among the information theoretic approaches to AOR, Schiele

and Crowley’s work was pioneering in making an analogy be-

tween object recognition and information transmission ( Schiele

and Crowley, 1998 ). They try to minimize the conditional entropy

H ( O | M ) between the original object O and image M , which is the

object’s transformation through measurement. Starting from a ran-

dom view of an object, their system determines the most-likely

object label and moves to the view that has the lowest conditional

entropy for that label among the training data. The movement is

then verified by measuring the prediction discrepancy between the

first and the second views. They used the COIL-100 dataset for

their experiments, which consists of 7200 images of 100 toy ob-

jects rotated in depth ( Nayar et al., 1996 ). This dataset has been

appealing for active object recognition because it provides system-

atically defined views of objects. Schiele and Crowley achieved al-

most perfect recognition accuracy on this dataset using their one-

step view selection procedure. 

Borotschnig et al. formulate the observation planning in terms

of maximization of the expected entropy loss over actions

( Borotschnig et al., 20 0 0 ). Larger entropy loss is equivalent to less

ambiguity in interpreting the image. A set of distributions are
Please cite this article as: M. Malmir et al., Deep active object recogn

Image Understanding (2016), http://dx.doi.org/10.1016/j.cviu.2016.10.011
earned for different views of each object, and used to predict the

ntropy loss for the next view. The novelty of this work is the use

f parametric distributions for object views. With an active vision

ystem consisting of a turntable and a moving camera, they report

mprovements in object recognition over random selection of next

iews on a small set of objects. 

Paletta & Pinz search for the most discriminative views of ob-

ects by maximizing the entropy loss between two consecutive

iews of objects ( Paletta and Pinz, 20 0 0 ). The novelty of their

ethod is the use of reinforcement learning to discover the op-

imal strategies to explore the objects. Action-values in this work

orrespond to the decrease in entropy of view sequences of ob-

ects. A variant of Q-learning is used to train a neural network to

redict the action values given the current view of the image. This

ork is different from our work in that in our model the visual

eatures are learned simultaneously with the optimal policy, which

llows the features to be tuned for object inspection. Paletta & Pinz

howed that their model is superior in recognizing COIL100 objects

ompared to a random exploration strategy. 

Calculating the exact value for entropy loss is computationally

xpensive since it requires marginalization over the observation

pace, and one might resort to approximations or simpler criterion

o measure the uncertainty in prediction. This argument motivated

rowatzki et al. to maximize a measure of variance of observations

cross different objects ( Browatzki et al., 2014 ). They used a parti-

le filter approach to determine the viewing pose of an object held

n-hand by an iCub humanoid robot. They show that their method

s superior to random action selection on small sets of custom ob-

ects. 

A common trend in these approaches is the use of small, some-

imes custom- designed sets of objects. There are medium sized

atasets such as COIL-100, which consists of 7200 images of 100

oy objects rotated in depth ( Nayar et al., 1996 ). We have summa-

ized the properties of datasets used in these studies in Table 1 .

n this table, meridian denotes the great circles on the surface of

iew sphere of objects, moving along which camera captures im-

ges of objects. We also mention the angular distance that camera

raverses on the great circle while capturing images, with 2 π de-

oting a full circle. From this table it is clear that these datasets are

ot challenging for recognition because of small number of objects,

imple background and no occlusion of the objects in images. We

ollected GERMS, which includes a large number of objects with

omplex background, occlusion and large number of viewing pose

er objects to cover the shortcoming of existing AOR datasets. 

Another common trend in the existing literature is the notion

f a pre-defined encoding scheme for objects appearance. In these

tudies, visual features extracted from objects are hand-crafted and

xed during policy learning. However, a more compelling scheme

ould be to learn the features for object appearance encoding

long with the object exploration policy. This way we allow the

isual features to be fine-tuned for better object inspection. In this

aper, we train a deep convolutional neural network to jointly pre-

ict label and action-values given objects images. Deep neural net-

orks have proven to be superior in learning visual features to

and-crafted methods. We utilize a deep network to learn the ap-

earance and object inspection policy at the same time. This re-

uces the training to a single stage, as opposed to the two stage

rocess of feature encoding and policy learning in the current AOR

iterature. 

. The GERMS dataset 

The GERMS dataset was collected in the context of the RUBI

roject, whose goal is to develop robots that interact with toddlers

n early childhood education environments ( Malmir et al., 2013;

016; Movellan et al., 2014 ). This dataset consists of 1365 video
ition by joint label and action prediction, Computer Vision and 
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Table 1 

Details of different object datasets used in the literature. 

Dataset Number of objects Meridians on view sphere Occlusion Publicly available Complex background 

Origami objects ( Wilkes and Tsotsos, 1992 ) 8 1(single view) No No No 

COIL100 ( Nayar et al., 1996 ) 100 1 × 2 π No Yes No 

model objects ( Borotschnig et al., 20 0 0 ) 15 3 × 2 π No No No 

office objects ( Browatzki et al., 2014 ) 18 Not specified Yes No No 

GERMS ( Malmir et al., 2016 ) 136 10 × π Yes Yes Yes 

Fig. 1. The GERMS dataset. The objects represent human cell types, microbes and disease-related organisms. 

Table 2 

GERMS dataset statistics (mean ± std). 

Number of tracks Images per track Total number of images 

Day 1 816 157 ± 12 76 ,722 

Day 2 549 145 ± 19 51 ,561 

r  

o  

a  

t  

o  

i  

3

 

d  

p  

t  

t  

a  

i  

i  

j  

c  

a  

w  

 

a  

r  

r  

f  

s  

m

4

 

u  

s  

I  

d  

r  

t  

t

 

fi  

a  

t  

e  

M  

b  

n

 

l  

a  

c  

j  

f

4

 

a  

s  

n  

T  

a  

o  

T  

i  

r  

a

 

I  

{  

b  

I  

w  

c  
ecordings of give-and-take trials using 136 different objects. The

bjects are soft toys depicting various human cell types, microbes

nd disease-related organisms. Fig. 1 shows the entire set of these

oys. Each video consists of the robot (RUBI) bringing the grasped

bject to its center of view, rotating it by 180 ° and then returning

t. The dataset was recorded from RUBI’s head-mounted camera at

0 frames per second. 

The data for GERMS were collected in two days. On the first

ay, each object was handed to RUBI in one of 6 pre-determined

oses, 3 to each arm, after which RUBI grabbed the object and cap-

ured images while rotating it. The robot also captured the posi-

ions of its joints for every capture image. On the second day, we

sked a set of human subjects to hand the GERM objects to RUBI

n poses they considered natural. A total of 12 subjects participated

n test data collection, each subject handing between 10 and 17 ob-

ects to RUBI. For each object, at least 4 different test poses were

aptured. The background of the GERMS dataset was provided by

 large screen TV displaying video scenes from the classroom in

hich RUBI operates, including toddlers and adults moving around.

We use half of the data collected in day 1 and 2 for training

nd the other half of each day for testing. More specifically, three

andom tracks out of six tracks for each object in Day 1 and two

andomly selected tracks for each object from Day 2 were used

or training the network and the rest was used for testing. Table 2

hows the statistics of training and testing data for the experi-

ents in this paper. 

. Network architecture 

The traditional view of an active object recognition pipeline

sually treats the visual recognition and action learning problems

eparately, with visual features being fixed when learning actions.

n this work, we try to solve both problems simultaneously to re-
Please cite this article as: M. Malmir et al., Deep active object recogn

Image Understanding (2016), http://dx.doi.org/10.1016/j.cviu.2016.10.011
uce the training time of an AOR model. By incorporating the er-

ors from action prediction into visual feature extraction, we hope

o acquire features that are suited for both label and action predic-

ion. 

The network architecture is shown in Fig. 2 . The input image is

rst transformed to a set of beliefs over different object labels by

 classification network. The belief vector is then combined with

he accumulated belief vectors over previous views to produce an

ncoding of the state of the system. This is accomplished by the

ixture belief update layer in the network. The new accumulated

elief is then transformed into action-values, based on which the

ext object view is selected. 

We next detail each part of the network, describing the chal-

enges in training the layer and corresponding solutions. We first

ddress the transformation of images into beliefs over object

lasses. Then we outline the belief accumulation problem over ob-

ect views, followed by the action learning and, finally, present the

ull description of the algorithm to train this model. 

.1. Single image classification 

The goal of this part of the network is to transform a single im-

ge into beliefs over different object labels. The feature extraction

tage is comprised of 3 convolution layers followed by 3 fully con-

ected layers. The dimensions of each layer are shown in Fig. 2 .

he convolution layers use filters of size 3 × 7 × 7, 64 × 5 × 5

nd 128 × 3 × 3 respectively for layers 1, 2 and 3. The number

f parameters in each layer of the network is shown in Table 3 .

he operations of each layer are inspired by the model proposed

n Krizhevsky et al. (2012) . Each convolution layer is followed by

ectification, normalization across channels and max pooling over

 neighborhood of size 2 × 2 with stride of 1. 

We shall denote the GERMS dataset by D = { I i , y i , P i } N i =1 
, where

 i ∈ R 

64 ×64 ×3 is the image captured by the robot camera, y i ∈
 o 1 , o 2 , . . . , o c } is the object label and P i is a positive integer num-

er denoting the pose of the robot’s gripper ( Malmir et al., 2016 ).

n order to learn the weights of the single image classification part,

e perform gradient decent on action prediction and cross-entropy

osts, denoted by C and C respectively. The cross-entropy
RL CL 

ition by joint label and action prediction, Computer Vision and 
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Fig. 2. The network architecture for active object recognition. Red arrows represent target values that are used to train the network. The numbers represent the number of 

units in each layer of the network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Number of units and parameters for the proposed network. 

Layer Number of units Input to unit Num. parameters 

Conv1 64 × 30 × 30 3 × 7 × 7 9K 

Conv2 4128 × 13 × 13 64 × 5 × 5 204K 

Conv3 256 × 11 × 11 128 × 3 × 3 294K 

ReLU1 256 30 ,976 7M 

ReLU2 256 256 65K 

Softmax 136 256 34K 

State Update. 1360 136 184K 

ReLU3 256 1360+256 413K 

ReLU4 256 256 65K 

LU 10 256 2K 
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classification cost C CL is: 

C CL = −
N ∑ 

i =1 

C ∑ 

j=1 

I (y i = c) log B i j . (1)

Here I is the indicator function for the class of the object and

B i j = P (o j | I i ) is the predicted label belief for the i th image belong-

ing to the j th object class. The next subsection describes the action

prediction cost C RL . 

4.2. Action value prediction 

Active object recognition can be treated as a reinforcement

learning problem, whose goal is to learn an optimal policy π ∗: S

→ A from states S to actions A . The optimal policy is expected to

maximize the total reward for every interaction sequence s π
0: T 

with

the environment, 

s 0 
π(s 0 ) −−−→ s 1 

π(s 1 ) −−−→ s 2 
π(s 2 ) −−−→ . . . 

π(s T−−1 ) −−−−−→ s T 

where s i 
π(s i ) −−−→ s i +1 is the transition from s i to s i +1 by performing

the action a i = π(s i ) . The total reward for an interaction sequence

s π
0: T 

is T R (s π
0: T 

) = 

∑ T 
t=0 γ

t R (s t ) where R : S → R is a reward func-

tion and γ , 0 < γ < 1 is a discount factor used to emphasize

immediate rewards. For an AOR system, an interaction sequence

starts by observing image of the object with the initial orienta-

tion in the robot’s gripper. The state of the system is then updated

by the observed image, and an action is selected to perform on

the object to maximize the total reward. The reward in each step

is determined by the accuracy of predicted label for the observed

images up to that step. 
Please cite this article as: M. Malmir et al., Deep active object recogn

Image Understanding (2016), http://dx.doi.org/10.1016/j.cviu.2016.10.011
In order to learn the optimal policy, we use the Q ( λ) algorithm

o train the network to predict actions for improved classification

 Watkins, 1989 ). This is a model-free method that learns to predict

he expected reward of actions in each state. More specifically, let

 

π ( s, a ) be the action value for state s and action a , 

 

π (s, a ) = E π { T R (s π0: T ) | s 0 = s, a 0 = a } , 
hich is the expected reward for performing action a in state s

nd then following policy π . Let the agent interact with the en-

ironment to produce a set of interaction sequences { s π
0: T 

} . Then

 ( λ) learns a policy by applying the following update rule to every

bserved transition T R π (s t , s t+1 ) = s t 
π(s t ) −−−→ s t+1 , 

 

π (s t , a t ) ← (1 − α) Q 

π (s t , a t ) + α
[ 

R (s t+1 ) + γ max 
a 

Q 

π (s t+1 , a ) 
]

(2)

here 0 < α < 1 is the learning rate, and action a t is selected us-

ng an epsilon-greedy version of the learned policy. We interpret

his iterative update in the following way to be useful for training

 neural network. Let the output layer of the network predict Q ( s,

 ) for the learned policy π for every possible action a in s . Then a

ractical approximation of the optimal policy is obtained by mini-

izing the reinforcement learning cost, 

 RL = 

∑ 

T R π (s t ,s t+1 ) ∈{ s π
0: T 

} 

[ 
R (s t+1 ) + γ max 

a 
Q 

π (s t+1 , a ) − Q 

π (s t , a t ) 
] 2 
(3)

n this network, action value prediction is performed by trans-

orming the state of the system s t at t th step through layers

eLU3,ReLU4 and LU. We train the weights of the network in these

ayers by minimize C RL . In the next subsection, we go into the de-

ails of state encoding, and after that we describe the details of the

et of actions. 

.3. State encoding 

State encoding has a prominent effect on the performance of

n AOR system. Based on the current state of the system, an ac-

ion is selected that is expected to decrease the ambiguity about

he object label. An appealing choice is to transform images into

eliefs over different target classes and use them as the state of

he system. Based on the target label beliefs, the system decides to

erform an action to improve its target label prediction. What we
ition by joint label and action prediction, Computer Vision and 
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Fig. 3. Dirichlet belief update layer. Each unit in this layer represents a Dirichlet 

distribution for a pair of object-action. The parameters of this layer are the vectors 

of Dirichlet parameters αo 
k 

for each unit. 
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xpect from the AOR system is to guide the robot to pick object

iews that are more discriminative among target classes. 

We first transform the input image I i into a belief vector B i =
 B i j ] 

C 
j=1 

using the first 7 layers of the network, where 

 i j ≥ 0 , 

C ∑ 

j=1 

B i j = 1 , 

he produced label belief vector is then combined with the pre-

iously observed belief vectors from this interaction sequence to

orm the state of the system. The motivation for this encoding

s that the combined belief encodes the ambiguity of the system

bout target classes and thus can be used to navigate to more

iscriminative views of objects. Active object recognition methods

sually adapt a Naive Bayes approach to combining beliefs from

ifferent observations. Assume that in an interaction sequence, a

equence of images I 0: t = { I 0 , I 1 , . . . , I t } have been observed and

heir corresponding beliefs B 0: t = { B 0 , B 1 , . . . , B t } have been calcu-

ated. The state of the system at time t is calculated using Naive

ayes belief combination, which is to take the element-wise prod-

ct of the individual belief vectors and then normalize, 

 t = P (O | I 0: t ) = 

P (O, I 0: t ) 

P (I 0: t ) 

∝ P (O ) 
t ∏ 

i =0 

P (I i | O ) 

∝ 

t ∏ 

i =0 

P (O | I i ) (4) 

here O is the target label, and P ( O | I i ) is the vector of beliefs pro-

uced using single image classification. Here we assumed a uni-

orm prior over images and target labels. The problem with Naive

ayes is that if an image is observed repeatedly in I 0: t , the result

ill change based on the number of repetitions. This is undesirable

ince the state of the system changes with repeated observations

f an image where no new information is added to the system. If

 specific image is suitable for classification, the system can visit

hat image more often to artificially increase the performance of

he system. To avoid this problem, we adapt a generative model

ased on Dirichlet distribution to combine different belief vectors. 

We use a generative model similar to Rebguns et al. (2011) to

alculate the state of the system given a set of images. The intu-

tion behind this model is that performing an action on an ob-

ect will produce a distribution of belief vectors. We model the

bserved belief vectors given the object and action as a Dirich-

et distribution, parameters of which are learned from the data.

he model is shown in Fig. 3 . Here a ∈ { a 1 , a 2 , . . . , a H } is a dis-

rete variable representing the action from the repertoire of ac-

ions, o ∈ { o 1 , o 2 , . . . , o C } represents the object label and α ∈ R 

C is

he vector of parameters of the Dirichlet distribution from which

he belief vector B ∈ R 

C over target labels is drawn, 

 (B | α) = Dir (B ;α) 

= 

�( 
∑ C 

j=1 [ α] j ) ∏ C 
j=1 �([ α] j ) 

C ∏ 

j=1 

[ B ] 
[ α] j −1 

j 
(5) 

The state of the system is calculated by computing the poste-

ior probability of object-action beliefs using the model in Fig. 3 .

et P o a (a i , B i ) = P (o, a | a i , B i ) denote the posterior probability of an

bject-action pair given the performed action and the observed be-

ief vector. Assuming uniform prior over object and α and a deter-

inistic policy for choosing actions, 

 (o, a | B ) 

= 

∫ 
α P (o, a, B, α) dα

P (B ) 
Please cite this article as: M. Malmir et al., Deep active object recogn
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∝ 

α
P (o) P (a | o) P (α| o, a ) P (B | α) dα

∝ 

∫ 
αo 

a 

Dir(B ;αo 
a )) dαo 

a (6) 

he notation αo 
a is to make clear that there is an α for each pair of

bject-action. Instead of full posterior probability, we use ˆ αo 
a , the

aximum likelihood estimate of α, and replace the integral above

y , 

 (o, a | B ) ≈ Dir(B | ̂  αo 
a ) (7) 

or an interaction sequence B 0: t and A 0: t = { a 0 , a 1 , . . . , a t } , the

osterior probability of object-action pair is, 

 (o, a | A 0: t , B 0: t ) = 

t ∏ 

i =0 

P (o, a | B i ) 
I (a,a i ) (8) 

he state of the system is comprised of the vector of object poste-

ior beliefs for every object and action, plus the features and belief

xtracted from the latest image I t , 

 t = { [ P (o, a | A 0: t , B 0: t )] , B t } , (9) 

o ∈ { o 1 , o 2 , . . . , o C } 
a ∈ { a 1 , a 2 , . . . , a H } 

ote that s t ∈ R 

CH is a vector of length C × H . 

.4. Training for joint label and action prediction 

Our goal is to train the network for joint action and label pre-

iction. We achieve this by minimizing the total cost which is the

um of label (1) and action prediction (3) costs. The errors for ac-

ion value prediction are back-propagated through the entire net-

ork, reaching visual feature extraction units. The total cost func-

ion for action-value and label prediction is, 

ost = C RL + C CL (10) 

The weights of the network in the visual feature extraction lay-

rs (Conv1, Conv2, Conv3, ReLU1, ReLU2, softmax) are trained using

ackpropagation on (10) , while the action prediction layers (ReLU3,

eLU4 and LU) are trained by gradient descent on the action pre-

iction error (3) . 

We use gradient descent with respect to the network weights

o minimize the cost function in (10) . If the training converges,

t will land on a local optimum point since the neural network’s

rror surface is spiky with many local optimums. A concern may

e raised that the minimization of the cost function may diverge,
ition by joint label and action prediction, Computer Vision and 
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for example if changing the network weights to reduce the rein-

forcement learning cost causes the classification cost to increase.

We didn’t observe such behavior in practice while training the net-

work. A counter argument against the divergence of the cost func-

tion is that learning a better classifier is in the direction of learning

an optimal policy, as less confusion in label prediction simplifies

the object exploration policy and can help the policy to more effi-

ciently search for discriminative views of objects. 

To learn the parameters of the belief update layer αo 
a , we use

gradient descent on log-likelihood of the data. The maximum like-

lihood of Dirichlet distribution is a convex function of its param-

eters and can be minimized using gradient descent. For a set of

beliefs B 1: N observed by performing action a on the object o , the

gradient of the log-likelihood with respect to the parameters are, 

∂ log P (B 1: N | αo 
a ) 

∂[ αo 
a ] k 

= N 

d 

d[ αo 
a ] k 

log �

( 

C ∑ 

j=1 

[ αo 
a ] j 

) 

− d 

d[ αo 
a ] k 

log �([ αo 
a ] k ) + log B k 

= N �

( 

C ∑ 

j=1 

[ αo 
a ] j 

) 

− N �([ αo 
a ] k ) + log B k (11)

where �(x ) = d /d (x ) log �(x ) is the digamma function. There is

one unit per Dirichlet distribution Dir(| αO 
a ) in the belief update

layer of the network. These units receive the current belief and

the previous state of the system, and produce an updated belief.

An schematic of the belief update layer of the network is shown

in Fig. 3 . Learning αo 
k 

is carried out simultaneously with the rest of

the network weights in the same training session. 

4.5. Reward function 

Another component that has an important effect on the perfor-

mance of our AOR system is the reward function which maps state

of the system (4) into rewards. A simple choice for reward function

is 

R (s t ) = 

{
+1 if arg max i [ B t ] i = Target-Label (I t )) 
−1 otherwise 

(12)

A reward of +1(−1) is given to the system if at time step t the

action a t brings the object to a pose for which the predicted label

is correct (wrong). The intention behind this reward function is to

drive the AOR system to pick actions that lead to best next view of

the object in terms of label prediction. 

4.6. Action coding 

In order to be able to reach every position in the robot’s joint

gripper range, we use a set of relative rotations as the actions of

the system. More specifically, we use 10 actions to rotate the grip-

per from its current position by any of the following offset val-

ues: {±π
4 , ±π

8 , ± π
16 , ± π

32 , ± π
64 } . The total range of rotation for each

of the robot’s grippers is π . The actions are selected to be fine

grained enough so that the robot can reach any position with min-

imum number of movements possible. This encoding is simple and

flexible in the range of positions that the robot can reach, however

we found that the policies can become stuck with a few actions

without trying the rest. Encoding the states with the Dirichlet be-

lief update helps alleviate this issue to some degree, however, it

doesn’t completely remove the problem. We deal with this prob-

lem by forcing the algorithm to pick the next best action whenever

the best action leads to an image which has already been seen. 
Please cite this article as: M. Malmir et al., Deep active object recogn
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. Experimental results 

.1. Training details 

We trained the network by minimizing the costs of classifica-

ion, action value prediction (3) and negative of log-likelihood of

irichlet distributions (11) . We used backpropagation with mini-

atches of size 128 to train the network. For Q ( λ) , we used ini-

ial learning rate of 0.1 which was multiplied by 0.5 after iter-

tions 40 0,80 0,120 0,150 0 and then remained constant. The total

umber of training iterations is 40 0 0. For each iteration, an inter-

ction sequence of length 5 is followed. The full training proce-

ure is shown in Algorithm 1 . For Q ( λ), we used ε-greedy policy

n the training stage, with ε decreasing step-wise from 0.9 to 0.1.

e found that using an ε > 0 at the test stage hurts the perfor-

ance, therefore we used ε = 0 during testing. The number of ac-

ions is 10 as described above, and there are a total of 136 object

lasses, resulting in a total of 1360 Dirichlet distributions for state

ncoding (9) . 

lgorithm 1 Training the network for joint label and action pre-

iction. 

1: procedure Train 

2: R ← 1 

3: for iteration=1 To N do 

4: I 1 , y ← NextImage ( iteration ) 

5: s 0 ← [0] 

6: Actions ← RandomActions(NumActions) 

7: for t=1 To NumMoves do 

8: s t , predictedActions ← FeedForward (I t , s t−1 , Actions ) 

9: I t+1 , y ← NextImage (I t , predictedActions ) 

10: targetActionVals , ̂  y ← LookAhead (I t+1 , s t , Actions ) 

11: if t = NumMoves then 

12: targetActionVals ← targetActionVals + R (s t ) 

13: for W ∈ { ReLU3 , ReLU 4 , LU } do 

14: W ← W − λW 

∂ 
∂W 

{ C RL } 
15: for W ∈ { C on v 1 , C on v 2 , C on v 3 , ReLU1 , ReLU2 , Sof tmax }

do 

16: W ← W − λW 

∂ 
∂W 

{ C RL + C CL } 
17: for o ∈ { o 1 , o 2 , . . . , o C } , a ∈ { a 1 , a 2 , . . . , a H } do 

18: αo 
a ← αo 

a + λ ∂ 
∂αo 

a 
log P (B t | αo 

a ) 

.2. Learning the parameters of Dirichlet distributions 

Fig. 4 shows the average negative log-likelihood of the data un-

er Dirichlet distributions for training a network. This figure shows

hat the neg-log-likelihood of data decreases for the first 10 0 0 iter-

tions, after which the rate of change is decreased but not stopped.

n this figure, there are impulses that occur in the negative-log-

ikelihood of the data. It is observed that the magnitude of these

mpulses increase as the model fits the training data. We attribute

hese impulses to the glitches in the gradients of the action-value

ost function with respect to the network weights. As training con-

inues, the glitches are fixed by the image batches for which the

etwork can predict the action-values correctly. 

.3. Label prediction accuracy 

.3.1. Static label prediction 

First we report the accuracy of static label prediction on GERMS

sing a deep convolutional network that is trained to predict ob-

ect labels without the active component. We train a deep convo-

utional network with 3 convolutional and 2 fully connected layers
ition by joint label and action prediction, Computer Vision and 
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Table 4 

Comparison of DQN, random and sequential. 

Observed frames 

Policy/bserved frame 1 2 3 4 5 6 

Static OR 35 .2 46 .3 51 .0 53 .9 56 .0 57 .1 Right arm 

NB-Rnd 31 .3 38 .1 41 .3 43 .4 45 .0 46 .1 

NB-DAOR 31 .3 42 .1 45 .8 48 .0 48 .3 49 .0 

DR-RND 40 .3 48 .7 51 .9 53 .6 54 .6 55 .2 

DR-DAOR 40 .3 49 .7 51 .6 53 .0 52 .5 52 .6 

DN-RND 39 .4 47 .8 50 .8 52 .5 53 .6 54 .3 

DN-DAOR 39 .3 48 .4 53 .1 55 .4 57 .0 57 .1 

Static OR 35 .6 46 .2 50 .8 53 .4 55 .3 56 .6 Left arm 

NB-Rnd 32 .7 39 .5 42 .9 44 .9 46 .3 47 .4 

NB-DAOR 32 .7 43 .7 47 .5 49 .6 50 .0 50 .6 

DR-RND 43 .7 52 .5 55 .8 57 .5 58 .6 59 .3 

DR-DAOR 43 .7 53 .0 54 .9 55 .9 55 .5 55 .4 

DN-RND 45 .4 54 .5 58 .0 60 .0 61 .1 61 .9 

DN-DAOR 45 .4 56 .3 60 .7 62 .8 64 .1 64 .6 

Fig. 4. Average Negative log-likelihood of data under Dirichlet distributions. The 

decrease in negative log-likelihood indicates learning in the belief update layer. 
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ith the number of units shown in Fig. 2 . This network is trained

y minimizing the cross entropy cost in (1) for predicting the la-

els of single frames of the GERMS dataset. Unlike active meth-

ds which select different images with different probabilities for

raining, we select GERMS training images for static label predic-

ion with uniform probability. For testing with one or more images,

e randomly select images from each track, and classify them

ith the trained network. The probabilities for multiple images are

ombined using the naive Bayes rule in (4) . The average accuracy

f static label prediction for the test set is shown in Table 4 . 

We observe that the accuracy of static label prediction is higher

han Naive Bayes active methods, but lower than Dirichlet based

ctive models. The difference originates from the ability of active

ethods in selecting images that are used for training and then

o choose such images at test time. Dirichlet based active methods

chieve higher accuracy by focusing the training on images that

re more discriminative for label prediction. The static model ran-

omly chooses among the ambiguous and non-ambiguous views of

ifferent objects at training, which leads to lower accuracy com-

ared to Dirichlet based methods. On the other hand Naive Bayes

ethods fail to visit enough training images due to overfitting in

he action selection layer, and thus are unable to compete in accu-

acy even with static models. 

Since the primary focus of this paper is active object recogni-

ion, we do not investigate further the properties of static object

ecognition models. Instead, we focus on Dicihlet-based and Naive
Please cite this article as: M. Malmir et al., Deep active object recogn
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ayes active object recognition models, and compare their perfor-

ance in the following sections. 

.3.2. Comparing Naive Bayes and Dirichlet state encoding 

In this section we compare the effectiveness of the Dirichlet

nd Naive Bayes state encodings for label prediction accuracy. For

aive Bayes models (NB), the state of the system is updated us-

ng (4) , while the size and configuration of the rest of the network

emain the same. Dirichlet (DR) state encoding is implemented us-

ng (9) . For each encoding and for each arm, we train 10 different

odels and report the average test label prediction accuracy as a

unction of number of observed images, comparing the Deep Ac-

ive Object Recognition (DAOR) and Random (Rnd) action selection

olicies. Fig. 5 plots the performance for these models. It is ob-

ious that the Dirichlet model is superior to Naive Bayes in label

rediction accuracy. 

The first point to notice in Fig. 5 is the performance difference

etween Naive Bayes and Dirichlet belief updates on single images

action 0). NB models achieve a performance less than 35%, while

irichlet achieves higher than 40%. One interpretation of this result

s that the Naive Bayes model pick actions that bounce between

 subset of train images, leading to under-fitting of the model. In

he visualizing policies subsection, we provide some evidence for

his justification. On the other hand, the performance of DR-DAOR

odel tends to saturate after 3 actions, while DR-Rnd keeps im-

roving for subsequent actions. This might be due to the fact that

R-DAOR also bounces between subsets of images at the test time.

e can avoid such behavior by forcing the policies to pick actions

hat lead to joint poses that haven’t already been visited in the

ame interaction sequence. 

.3.3. Removing duplicate visits 

We train a set of models using Dirichlet state encoding, while

orcing the policy to pick non-duplicate joint poses in every action

f an interaction sequence. This approach is easy to implement by

eeping a history of visited joint poses during an interaction se-

uence and picking actions with highest action value that lead to

ovel joint positions. We refer to this model as Dirichlet with non-

epeated visits (DN). Comparison between DN and DR for Rnd and

AOR policies (both forced to visit novel poses) is shown in Fig. 6 .

Comparison between the models mentioned above is shown

n Table 4 . We see that the best performing model is DN-DAOR

ith the exception of action 1 for the right arm, which DR-DAOR

chieves the best performance. For both arms, Dirichlet mod-

ls perform significantly better than Naive Bayes, improving the

odel’s performance on average by 10% for the right arm and 14%

or the left arm. 
ition by joint label and action prediction, Computer Vision and 
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Fig. 5. Test label prediction accuracy as a function of number of observed images for left and right arms for Dirichlet state encoding with repeated visits (DR) and non- 

repeated visits (DN). 

Fig. 6. Test label prediction accuracy as a function of number of observed images for left and right arms for Naive Bayes (NB) and Dirichlet (DR) state encoding. 
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5.3.4. Visualizing policies 

It may help us understand the weakness and strength of dif-

ferent models if we take a closer look into the learned policies.

For this purpose, we visualize the consecutive actions in the inter-

action sequences of length 5, as shown for training data in Fig. 7

and for test data in Fig. 8 . Each plot represents actions in different

rows, with the magnitude and orientation of the action begin de-

picted by the length and direction of the corresponding arrow on

the left side. Each time step of the interaction sequence is shown

as a numbered column. The colored lines in each plot connect one

action in column i to another action in column i + 1 only if those

actions appeared consecutively in interaction sequences at these

time steps. The thickness of lines depicts the relative frequency by

which two actions were observed on the data. 

Fig. 7 visualizes the policies DN-DAOR and NB-DAOR on the

training data. This figure helps clarify the lower performance of

NB models as described before. For NB-DAOR shown on the left

side of Fig. 7 , we see thick lines connecting actions that rotate the

object with the largest magnitude in opposite directions. The rel-

ative thickness of these lines indicates that the model tends to go

to one end of the joint’s rotation range, go back with one large

rotation and then repeat. Despite presence of other actions, this

back and forth action dominates the training process, leading to
Please cite this article as: M. Malmir et al., Deep active object recogn

Image Understanding (2016), http://dx.doi.org/10.1016/j.cviu.2016.10.011
ower accuracy on test label prediction for single images. On the

ight side of Fig. 7 we see that DN-DAOR picks a wide range of

ctions, which leads to better examination of training images and

hus higher performance on single images. 

Fig. 8 visualizes the learned policies at test time for NB-DAOR

nd DN-DAOR. We see on the left side that NB-DAOR only swings

etween the two large rotations in the opposite direction, while

N-DAOR prefers to do a few larger actions (thick purple and blues

ines connecting columns 2, 3 and 4) followed by few smaller ac-

ions in different directions. There is no back and forth for DN-

AOR between visited joint positions, which leads to better per-

ormance on the test set. 

. Conclusions 

In this paper, we proposed a model for active object recognition

ased on deep convolutional neural networks. The model is trained

y minimizing the action and label prediction costs. The visual fea-

ures in early stages of this network were trained by minimizing

oth the action and label prediction costs. The difference between

he work presented here and deeply supervised networks ( Chen-

u et al., 2014 ) is that in the latter, the training is carried out by
ition by joint label and action prediction, Computer Vision and 
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Fig. 7. Visualization of (left) NB and (right) DN policies on training data. Each row 

represents an action and each column represents a time-step in object exploration 

performed by the policy in an interaction sequence. The color of lines connecting 

two columns are different for clarity for every consecutive time steps, while the 

thickness of these line indicate the frequency of that transition between views in 

interaction sequences. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 8. Visualization of (left) NB and (right) DN policies for test data. NB model 

prefers to repeats the same two actions, swinging between two joint poses at one 

end of the joint range. The DN model usually performs a few larger rotations on 

the object, followed by a few smaller rotations in different directions to inspect the 

objects in a fine-grained manner. 
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inimizing the classification error, while in our approach we min-

mized the action learning cost along with classification error. The

oint cost minimization allows the model to learn visual features

hat are suitable for predicting object label and the action to be

erformed on the object to improve the recognition performance. 

We adapted an alternative approach to the common Naive

ayes belief update rule for state encoding of the system. Naive

ayes has the potential of overfitting to subsets of training images,

hich could lead to lower accuracy at the test time. We used a
Please cite this article as: M. Malmir et al., Deep active object recogn
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enerative model based on Dirichlet distribution to model the be-

ief over object-action pairs. This model was embedded into the

etwork, which allowed training the network in one pass jointly

ith label and action-value learning. The results of experiments

onfirmed that the proposed Dirichlet model is superior in test

abel prediction accuracy to the Naive Bayes approach for state

ncoding. 

A common trend we observed in the models trained in this

aper was the strong preference for a few actions, which led to

imited examination of the objects, and thus lower performance

n label prediction. This preference was strongest in the Naive

ayes state encoding models. Employing Dirichlet for state encod-

ng helped alleviate this problem, mainly for the training data and

ess for the test data. We observed that the strong preference for

 limited set of actions weakens for the training stage for the DR-

AOR model, and as a result the model explored the training data

ore efficiently and achieved higher label prediction accuracy on

he test data. 

A difficulty that arises in using beliefs for state encoding is the

ifference in distribution of beliefs over train and test data. This re-

ults in overfitting of the policies to high confidence beliefs, which

ay not be the case for test data. In training our models, the train-

ng accuracy reaches above 90% after 10 0 0 iterations. This may

ause the algorithm to reward every action, which finally may lead

o one action taking over and always producing the highest action

alue. A remedy for this problem requires the training data to be

epresentative of the test data in prediction accuracy. However we

ound that the test set in GERMS is very challenging for label pre-

iction. Another possibility is the use of outside data in training

he label prediction module, which may help produce more simi-

ar distribution of beliefs over training and test data. 
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