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An active object recognition system has the advantage of acting in the environment to capture images
that are more suited for training and lead to better performance at test time. In this paper, we utilize
deep convolutional neural networks for active object recognition by simultaneously predicting the object
label and the next action to be performed on the object with the aim of improving recognition per-
formance. We treat active object recognition as a reinforcement learning problem and derive the cost
function to train the network for joint prediction of the object label and the action. A generative model
of object similarities based on the Dirichlet distribution is proposed and embedded in the network for
encoding the state of the system. The training is carried out by simultaneously minimizing the label and
action prediction errors using gradient descent. We empirically show that the proposed network is able
to predict both the object label and the actions on GERMS, a dataset for active object recognition. We
compare the test label prediction accuracy of the proposed model with Dirichlet and Naive Bayes state
encoding. The results of experiments suggest that the proposed model equipped with Dirichlet state en-
coding is superior in performance, and selects images that lead to better training and higher accuracy of
label prediction at test time.
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1. Introduction

A robot interacting with its environment can collect large
volumes of dynamic sensory input to overcome many challenges
presented by static data. A robot manipulating an object with the
capability to control its camera orientation, for example, is an ex-
ample of an active object recognition (AOR) system. In such dy-
namic interactions, the robot can select the training data for its
models of the environment, with the goal of maximizing the ac-
curacy with which it perceives its surroundings. In this paper, we
focus on AOR with the goal of developing a model that can be used
by a robot to recognize an object held in its hand.

There are a variety of approaches to AOR, the goal of which
is to re-position sensors or change the environment so that the
new inputs to the system become less ambiguous for label predic-
tion (Aloimonos et al., 1988; Bajcsy, 1988; Denzler et al., 2001). An
issue with previous approaches to AOR is that they mostly used
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small simplistic datasets, which were not reflective of challenges
in real-world applications (Malmir et al., 2016). To avoid this prob-
lem, we have collected a large dataset for AOR, called GERMS,!
which contains more than 120K high resolution (1920x1080) RGB
images of 136 different plush toys. This paper extends our previous
work, Deep Q-learning (Malmir et al., 2016), where an action se-
lection network was trained on top of a pre-trained convolutional
neural network. In this paper we extend the model to train the
network end-to-end using GERMS images to jointly predict object
labels and action values.

This paper makes two contributions: First, we develop a deep
active object recognition (DAOR) model to jointly predict the label
and the best next action on an input image. A deep convolutional
neural network is trained to predict the object label and action-
values from an image of the object. We use reinforcement learning
to teach the network to predict the action values, and minimize
the action value prediction error along with the label prediction
cross entropy. The visual features in early stages of this network
are learned to minimize both errors. The second contribution of
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this work is to embed a generative Dirichlet model of objects sim-
ilarities for encoding the state of the system. This model integrates
information from different images into a vector, based on which
actions are calculated to improve object recognition. We embed
this model as a layer in the network and derive the learning rule
for updating the Dirichlet parameters using gradient descent. We
conduct a series of experiments on the GERMS dataset to test (1)
if the model can be trained jointly for label and action prediction,
and (2) how effective is the proposed Dirichlet state encoding com-
pared to more traditional Naive Bayes approach, and (3) discuss
some of the properties of the learned policies.

In the next section, we review some of the previous approaches
to AOR and the datasets they used. Next we introduce the GERMS
dataset and describe the training and testing data used for the ex-
periments in this paper. After that, we describe the details of the
proposed network and Dirichlet state encoding, going into the de-
tails of cost function and update rules for different layers of the
network. In the results section, we report the properties of the
proposed network and compare its performance in different state
encoding scenarios. The final section is the concluding remarks.

2. Literature review

Active object recognition methods can be divided into two
groups based on how they select actions to improve object recog-
nition. The first group uses heuristic methods to select actions, for
example to bring the object to a predefined standard view where
the recognition performance is expected to be maximized. The sec-
ond group of methods are motivated by information theory, using
information gain to determine the effect of actions on object label
prediction uncertainty. The next action is chosen to maximize the
reduction in this uncertainty.

An early heuristic AOR system was developed by Wilkes and
Tsotsos (1992). They used a heuristic procedure to change the cam-
era’s position and orientation to bring the object into a ‘stan-
dard’ view using a robotic-arm-mounted camera. The standard
view of objects was defined to be unique among all objects with
respect to their low level visual features. In a series of experiments
on 8 Origami objects, they qualitatively report promising results for
achieving the standard view and retrieving the correct object la-
bels. Heuristic method clearly suffer from generalization problem,
as the number of objects increases it is not possible to define stan-
dard views for each object manually. A more systematic approach
is needed to define the effectiveness of different object views for
label prediction.

Among the information theoretic approaches to AOR, Schiele
and Crowley’s work was pioneering in making an analogy be-
tween object recognition and information transmission (Schiele
and Crowley, 1998). They try to minimize the conditional entropy
H(O|M) between the original object O and image M, which is the
object’s transformation through measurement. Starting from a ran-
dom view of an object, their system determines the most-likely
object label and moves to the view that has the lowest conditional
entropy for that label among the training data. The movement is
then verified by measuring the prediction discrepancy between the
first and the second views. They used the COIL-100 dataset for
their experiments, which consists of 7200 images of 100 toy ob-
jects rotated in depth (Nayar et al., 1996). This dataset has been
appealing for active object recognition because it provides system-
atically defined views of objects. Schiele and Crowley achieved al-
most perfect recognition accuracy on this dataset using their one-
step view selection procedure.

Borotschnig et al. formulate the observation planning in terms
of maximization of the expected entropy loss over actions
(Borotschnig et al., 2000). Larger entropy loss is equivalent to less
ambiguity in interpreting the image. A set of distributions are

learned for different views of each object, and used to predict the
entropy loss for the next view. The novelty of this work is the use
of parametric distributions for object views. With an active vision
system consisting of a turntable and a moving camera, they report
improvements in object recognition over random selection of next
views on a small set of objects.

Paletta & Pinz search for the most discriminative views of ob-
jects by maximizing the entropy loss between two consecutive
views of objects (Paletta and Pinz, 2000). The novelty of their
method is the use of reinforcement learning to discover the op-
timal strategies to explore the objects. Action-values in this work
correspond to the decrease in entropy of view sequences of ob-
jects. A variant of Q-learning is used to train a neural network to
predict the action values given the current view of the image. This
work is different from our work in that in our model the visual
features are learned simultaneously with the optimal policy, which
allows the features to be tuned for object inspection. Paletta & Pinz
showed that their model is superior in recognizing COIL100 objects
compared to a random exploration strategy.

Calculating the exact value for entropy loss is computationally
expensive since it requires marginalization over the observation
space, and one might resort to approximations or simpler criterion
to measure the uncertainty in prediction. This argument motivated
Browatzki et al. to maximize a measure of variance of observations
across different objects (Browatzki et al., 2014). They used a parti-
cle filter approach to determine the viewing pose of an object held
in-hand by an iCub humanoid robot. They show that their method
is superior to random action selection on small sets of custom ob-
jects.

A common trend in these approaches is the use of small, some-
times custom- designed sets of objects. There are medium sized
datasets such as COIL-100, which consists of 7200 images of 100
toy objects rotated in depth (Nayar et al., 1996). We have summa-
rized the properties of datasets used in these studies in Table 1.
In this table, meridian denotes the great circles on the surface of
view sphere of objects, moving along which camera captures im-
ages of objects. We also mention the angular distance that camera
traverses on the great circle while capturing images, with 27 de-
noting a full circle. From this table it is clear that these datasets are
not challenging for recognition because of small number of objects,
simple background and no occlusion of the objects in images. We
collected GERMS, which includes a large number of objects with
complex background, occlusion and large number of viewing pose
per objects to cover the shortcoming of existing AOR datasets.

Another common trend in the existing literature is the notion
of a pre-defined encoding scheme for objects appearance. In these
studies, visual features extracted from objects are hand-crafted and
fixed during policy learning. However, a more compelling scheme
would be to learn the features for object appearance encoding
along with the object exploration policy. This way we allow the
visual features to be fine-tuned for better object inspection. In this
paper, we train a deep convolutional neural network to jointly pre-
dict label and action-values given objects images. Deep neural net-
works have proven to be superior in learning visual features to
hand-crafted methods. We utilize a deep network to learn the ap-
pearance and object inspection policy at the same time. This re-
duces the training to a single stage, as opposed to the two stage
process of feature encoding and policy learning in the current AOR
literature.

3. The GERMS dataset

The GERMS dataset was collected in the context of the RUBI
project, whose goal is to develop robots that interact with toddlers
in early childhood education environments (Malmir et al., 2013;
2016; Movellan et al., 2014). This dataset consists of 1365 video
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Table 1
Details of different object datasets used in the literature.

Dataset Number of objects ~ Meridians on view sphere ~ Occlusion  Publicly available =~ Complex background
Origami objects (Wilkes and Tsotsos, 1992) 8 1(single view) No No No
COIL100 (Nayar et al., 1996) 100 1 x2m No Yes No
model objects (Borotschnig et al., 2000) 15 3 x 2w No No No
office objects (Browatzki et al., 2014) 18 Not specified Yes No No
GERMS (Malmir et al., 2016) 136 10x Yes Yes Yes
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Fig. 1. The GERMS dataset. The objects represent human cell types, microbes and disease-related organisms.

Table 2
GERMS dataset statistics (mean= std).

Number of tracks ~ Images per track  Total number of images

Day 1 816
Day 2 549

157 £ 12
145 + 19

76,722
51,561

recordings of give-and-take trials using 136 different objects. The
objects are soft toys depicting various human cell types, microbes
and disease-related organisms. Fig. 1 shows the entire set of these
toys. Each video consists of the robot (RUBI) bringing the grasped
object to its center of view, rotating it by 180° and then returning
it. The dataset was recorded from RUBI's head-mounted camera at
30 frames per second.

The data for GERMS were collected in two days. On the first
day, each object was handed to RUBI in one of 6 pre-determined
poses, 3 to each arm, after which RUBI grabbed the object and cap-
tured images while rotating it. The robot also captured the posi-
tions of its joints for every capture image. On the second day, we
asked a set of human subjects to hand the GERM objects to RUBI
in poses they considered natural. A total of 12 subjects participated
in test data collection, each subject handing between 10 and 17 ob-
jects to RUBI. For each object, at least 4 different test poses were
captured. The background of the GERMS dataset was provided by
a large screen TV displaying video scenes from the classroom in
which RUBI operates, including toddlers and adults moving around.

We use half of the data collected in day 1 and 2 for training
and the other half of each day for testing. More specifically, three
random tracks out of six tracks for each object in Day 1 and two
randomly selected tracks for each object from Day 2 were used
for training the network and the rest was used for testing. Table 2
shows the statistics of training and testing data for the experi-
ments in this paper.

4. Network architecture

The traditional view of an active object recognition pipeline
usually treats the visual recognition and action learning problems
separately, with visual features being fixed when learning actions.
In this work, we try to solve both problems simultaneously to re-

duce the training time of an AOR model. By incorporating the er-
rors from action prediction into visual feature extraction, we hope
to acquire features that are suited for both label and action predic-
tion.

The network architecture is shown in Fig. 2. The input image is
first transformed to a set of beliefs over different object labels by
a classification network. The belief vector is then combined with
the accumulated belief vectors over previous views to produce an
encoding of the state of the system. This is accomplished by the
Mixture belief update layer in the network. The new accumulated
belief is then transformed into action-values, based on which the
next object view is selected.

We next detail each part of the network, describing the chal-
lenges in training the layer and corresponding solutions. We first
address the transformation of images into beliefs over object
classes. Then we outline the belief accumulation problem over ob-
ject views, followed by the action learning and, finally, present the
full description of the algorithm to train this model.

4.1. Single image classification

The goal of this part of the network is to transform a single im-
age into beliefs over different object labels. The feature extraction
stage is comprised of 3 convolution layers followed by 3 fully con-
nected layers. The dimensions of each layer are shown in Fig. 2.
The convolution layers use filters of size 3 x 7 x 7,64 x 5 x 5
and 128 x 3 x 3 respectively for layers 1, 2 and 3. The number
of parameters in each layer of the network is shown in Table 3.
The operations of each layer are inspired by the model proposed
in Krizhevsky et al. (2012). Each convolution layer is followed by
rectification, normalization across channels and max pooling over
a neighborhood of size 2 x 2 with stride of 1.

We shall denote the GERMS dataset by D = {I,,yl,P}, 1» Where
I; e R64x643 s the image captured by the robot camera, y; e
{o1,05,...,0¢} is the object label and P; is a positive integer num-
ber denoting the pose of the robot’s gripper (Malmir et al., 2016).
In order to learn the weights of the single image classification part,
we perform gradient decent on action prediction and cross-entropy
costs, denoted by Cg and C¢ respectively. The cross-entropy
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Fig. 2. The network architecture for active object recognition. Red arrows represent target values that are used to train the network. The numbers represent the number of
units in each layer of the network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Number of units and parameters for the proposed network.

Layer Number of units  Input to unit ~ Num. parameters

Conv1 64 x 30 x 30 3x7x7 9K

Conv2 4128 x 13 x 13 64 x5x5 204K

Conv3 256 x 11 x 11 128 x 3 x 3 294K

ReLU1 256 30,976 ™

ReLU2 256 256 65K

Softmax 136 256 34K

State Update. 1360 136 184K

ReLU3 256 1360+256 413K

ReLU4 256 256 65K

LU 10 256 2K
classification cost Cgy is:

N C

Ca=-)_ Y I(y;=c)logB;. (1)

i=1 j=1
Here T is the indicator function for the class of the object and
Bjj = P(0j]I;) is the predicted label belief for the ith image belong-
ing to the jth object class. The next subsection describes the action
prediction cost Cg;.

4.2. Action value prediction

Active object recognition can be treated as a reinforcement
learning problem, whose goal is to learn an optimal policy 7*: S
— A from states S to actions A. The optimal policy is expected to
maximize the total reward for every interaction sequence sg... with
the environment,

T(s-1)

7 (So) s 7 (s1) s 7(s2)

T

7(s¢) . - .
where s; — s;,1 is the transition from s; to s;,.; by performing
the action g; = 7 (s;). The total reward for an interaction sequence
Sg.r 18 TR(s§.p) = ZLO y!R(s;) where R:S — R is a reward func-
tion and y,0 < y < 1 is a discount factor used to emphasize
immediate rewards. For an AOR system, an interaction sequence
starts by observing image of the object with the initial orienta-
tion in the robot’s gripper. The state of the system is then updated
by the observed image, and an action is selected to perform on
the object to maximize the total reward. The reward in each step
is determined by the accuracy of predicted label for the observed
images up to that step.

In order to learn the optimal policy, we use the Q(A) algorithm
to train the network to predict actions for improved classification
(Watkins, 1989). This is a model-free method that learns to predict
the expected reward of actions in each state. More specifically, let
Q" (s, a) be the action value for state s and action a,

Q7 (s.a) = Ex{TR(s§.7)|so = s, ap = a},

which is the expected reward for performing action a in state s
and then following policy 7. Let the agent interact with the en-
vironment to produce a set of interaction sequences {s7.;}. Then
Q(X) learns a policy by applying the following update rule to every

. 7T (S¢)
observed transition TR™ (¢, S¢y1) = St TG Sti1

Q7 (s1.a) « (1-@)Q7 (51.0) + [ R(5111) + ¥ max Q™ (se1.) |
(2)

where 0 < o < 1 is the learning rate, and action a; is selected us-
ing an epsilon-greedy version of the learned policy. We interpret
this iterative update in the following way to be useful for training
a neural network. Let the output layer of the network predict Q(s,
a) for the learned policy v for every possible action a in s. Then a
practical approximation of the optimal policy is obtained by mini-
mizing the reinforcement learning cost,

CrL = Z

TR (Se,5c1) €l

2
R(scr) + ¥ maxQ (se-1.) = Q7 sv.ar) |

(3)

In this network, action value prediction is performed by trans-
forming the state of the system s; at tth step through layers
ReLU3,ReLU4 and LU. We train the weights of the network in these
layers by minimize Cg;. In the next subsection, we go into the de-
tails of state encoding, and after that we describe the details of the
set of actions.

4.3. State encoding

State encoding has a prominent effect on the performance of
an AOR system. Based on the current state of the system, an ac-
tion is selected that is expected to decrease the ambiguity about
the object label. An appealing choice is to transform images into
beliefs over different target classes and use them as the state of
the system. Based on the target label beliefs, the system decides to
perform an action to improve its target label prediction. What we

Please cite this article as: M. Malmir et al., Deep active object recognition by joint label and action prediction, Computer Vision and
Image Understanding (2016), http://dx.doi.org/10.1016/j.cviu.2016.10.011



http://dx.doi.org/10.1016/j.cviu.2016.10.011

JID: YCVIU

[m5G;October 24, 2016;11:24]

M. Malmir et al./Computer Vision and Image Understanding 000 (2016) 1-10 5

expect from the AOR system is to guide the robot to pick object
views that are more discriminative among target classes.

We first transform the input image I; into a belief vector B; =
[Bjj]§=1 using the first 7 layers of the network, where

C
Bj>0,) Bj=
j=1

The produced label belief vector is then combined with the pre-
viously observed belief vectors from this interaction sequence to
form the state of the system. The motivation for this encoding
is that the combined belief encodes the ambiguity of the system
about target classes and thus can be used to navigate to more
discriminative views of objects. Active object recognition methods
usually adapt a Naive Bayes approach to combining beliefs from
different observations. Assume that in an interaction sequence, a
sequence of images Iy = {lp.I;.....I;} have been observed and
their corresponding beliefs By.; = {Bg, B1, ..., B;} have been calcu-
lated. The state of the system at time ¢ is calculated using Naive
Bayes belief combination, which is to take the element-wise prod-
uct of the individual belief vectors and then normalize,

s¢ =P(Ollpy) = 1)1(3?1’7014(::)[)
t

i=0

t
o« [TPcOIL) (4)
i=0

where O is the target label, and P(O|;) is the vector of beliefs pro-
duced using single image classification. Here we assumed a uni-
form prior over images and target labels. The problem with Naive
Bayes is that if an image is observed repeatedly in Iy. ;, the result
will change based on the number of repetitions. This is undesirable
since the state of the system changes with repeated observations
of an image where no new information is added to the system. If
a specific image is suitable for classification, the system can visit
that image more often to artificially increase the performance of
the system. To avoid this problem, we adapt a generative model
based on Dirichlet distribution to combine different belief vectors.
We use a generative model similar to Rebguns et al. (2011) to
calculate the state of the system given a set of images. The intu-
ition behind this model is that performing an action on an ob-
ject will produce a distribution of belief vectors. We model the
observed belief vectors given the object and action as a Dirich-
let distribution, parameters of which are learned from the data.
The model is shown in Fig. 3. Here a e {a',d?,...,a"} is a dis-
crete variable representing the action from the repertoire of ac-
tions, o € {o!, 0%, ..., o°} represents the object label and o« € RC is
the vector of parameters of the Dirichlet distribution from which

the belief vector B € R over target labels is drawn,

P(B|a) = Dir(B; «)

r (Z, 1leed)

1'[] 1 Flal))

The state of the system is calculated by computing the poste-

rior probability of object-action beliefs using the model in Fig. 3.
Let P¢(a;, B;) = P(0, ala;, B;) denote the posterior probability of an
object-action pair given the performed action and the observed be-
lief vector. Assuming uniform prior over object and « and a deter-
ministic policy for choosing actions,
P(o,alB)

_ JuP(0,a,B,a)d

B P(B)

H[W“‘ (5)

A A A

Current  Accumulated
belief belief
Fig. 3. Dirichlet belief update layer. Each unit in this layer represents a Dirichlet

distribution for a pair of object-action. The parameters of this layer are the vectors
of Dirichlet parameters &, for each unit.

Action(a)

~ f P(0)P(alo)P(c|0, a)P(B|a)dex

Dir (B; ag))derg (6)
ag

The notation & is to make clear that there is an « for each pair of

object-action. Instead of full posterior probability, we use &g, the

maximum likelihood estimate of «, and replace the integral above

by,

P(o, a|B) ~ Dir(B|&Q) (7)
For an interaction sequence By., and Ag; = {ag,ay....,a:}, the
posterior probability of object-action pair is,

t
P(0. alAo:r. Bo:x) = [ ] P(0. a|B)"@) 8)

i=0

The state of the system is comprised of the vector of object poste-
rior beliefs for every object and action, plus the features and belief
extracted from the latest image Iy,

S[‘ = {[P(O! a|A02tv BOZf)]s B[}! (9)
oe{o', 0% ..., 0%
aela',a? ..., da"}

Note that s; € R™M is a vector of length C x H.
4.4. Training for joint label and action prediction

Our goal is to train the network for joint action and label pre-
diction. We achieve this by minimizing the total cost which is the
sum of label (1) and action prediction (3) costs. The errors for ac-
tion value prediction are back-propagated through the entire net-
work, reaching visual feature extraction units. The total cost func-
tion for action-value and label prediction is,

Cost = Cg + C¢y (10)

The weights of the network in the visual feature extraction lay-
ers (Conv1, Conv2, Conv3, ReLU1, ReLU2, softmax) are trained using
backpropagation on (10), while the action prediction layers (ReLU3,
ReLU4 and LU) are trained by gradient descent on the action pre-
diction error (3).

We use gradient descent with respect to the network weights
to minimize the cost function in (10). If the training converges,
it will land on a local optimum point since the neural network’s
error surface is spiky with many local optimums. A concern may
be raised that the minimization of the cost function may diverge,
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for example if changing the network weights to reduce the rein-
forcement learning cost causes the classification cost to increase.
We didn’t observe such behavior in practice while training the net-
work. A counter argument against the divergence of the cost func-
tion is that learning a better classifier is in the direction of learning
an optimal policy, as less confusion in label prediction simplifies
the object exploration policy and can help the policy to more effi-
ciently search for discriminative views of objects.

To learn the parameters of the belief update layer «J, we use
gradient descent on log-likelihood of the data. The maximum like-
lihood of Dirichlet distribution is a convex function of its param-
eters and can be minimized using gradient descent. For a set of
beliefs B;. y observed by performing action a on the object o, the
gradient of the log-likelihood with respect to the parameters are,

3 log P(By.n|r?) d <
2 =N log’ all;
el oy, 8" | 2140
—Llo I'([el]y) +logB
ol g alk g Dy

C
=NV > [agl; | - NW([agl) +logB,  (11)
j=1

where W (x) =d/d(x)logI"(x) is the digamma function. There is
one unit per Dirichlet distribution Dir(|a?) in the belief update
layer of the network. These units receive the current belief and
the previous state of the system, and produce an updated belief.
An schematic of the belief update layer of the network is shown
in Fig. 3. Learning o is carried out simultaneously with the rest of
the network weights in the same training session.

4.5. Reward function

Another component that has an important effect on the perfor-
mance of our AOR system is the reward function which maps state
of the system (4) into rewards. A simple choice for reward function
is

R@oz{f}

A reward of +1(—1) is given to the system if at time step t the
action a; brings the object to a pose for which the predicted label
is correct (wrong). The intention behind this reward function is to
drive the AOR system to pick actions that lead to best next view of
the object in terms of label prediction.

if argmax;[B;]; = Target-Label(I;))

otherwise (12)

4.6. Action coding

In order to be able to reach every position in the robot’s joint
gripper range, we use a set of relative rotations as the actions of
the system. More specifically, we use 10 actions to rotate the grip-
per from its current position by any of the following offset val-
ues: {+7%.+%.+7%, £35. £Z}. The total range of rotation for each
of the robot’s grippers is m. The actions are selected to be fine
grained enough so that the robot can reach any position with min-
imum number of movements possible. This encoding is simple and
flexible in the range of positions that the robot can reach, however
we found that the policies can become stuck with a few actions
without trying the rest. Encoding the states with the Dirichlet be-
lief update helps alleviate this issue to some degree, however, it
doesn’t completely remove the problem. We deal with this prob-
lem by forcing the algorithm to pick the next best action whenever
the best action leads to an image which has already been seen.

5. Experimental results
5.1. Training details

We trained the network by minimizing the costs of classifica-
tion, action value prediction (3) and negative of log-likelihood of
Dirichlet distributions (11). We used backpropagation with mini-
batches of size 128 to train the network. For Q(A) , we used ini-
tial learning rate of 0.1 which was multiplied by 0.5 after iter-
ations 400,800,1200,1500 and then remained constant. The total
number of training iterations is 4000. For each iteration, an inter-
action sequence of length 5 is followed. The full training proce-
dure is shown in Algorithm 1. For Q()), we used e-greedy policy
in the training stage, with € decreasing step-wise from 0.9 to 0.1.
We found that using an € > 0 at the test stage hurts the perfor-
mance, therefore we used € = 0 during testing. The number of ac-
tions is 10 as described above, and there are a total of 136 object
classes, resulting in a total of 1360 Dirichlet distributions for state
encoding (9).

Algorithm 1 Training the network for joint label and action pre-
diction.

1: procedure TRAIN

2: R <1

3 for iteration=1 To N do

4 I,y < Nextlmage(iteration)

5 Nl [0]

6: Actions < RandomActions(NumActions)

7 for t=1 To NumMoves do

8 s¢, predictedActions < FeedForward (I, s;_1, Actions)
9: It41.y < Nextlmage(I;, predictedActions)

10: targetActionVals, § < LookAhead(l;, 1, s¢, Actions)

11: if t = NumMoves then
12: targetActionVals « targetActionVals + R(s¢)

13: for W e {RelU3, RelU4, LU} do
14: 1% ve)\W%{(CRL}
15: for W e {Conv1, Conv2, Conv3, ReLU1, ReLU2, Softmax}
do

16: 1% HW-AW%{CRL'FCCL}

17: for oc{o!, 0%, ...,0, aec{da',a?, ...,a"} do

18: ol «— af + A% log P(Be|c2)

5.2. Learning the parameters of Dirichlet distributions

Fig. 4 shows the average negative log-likelihood of the data un-
der Dirichlet distributions for training a network. This figure shows
that the neg-log-likelihood of data decreases for the first 1000 iter-
ations, after which the rate of change is decreased but not stopped.
In this figure, there are impulses that occur in the negative-log-
likelihood of the data. It is observed that the magnitude of these
impulses increase as the model fits the training data. We attribute
these impulses to the glitches in the gradients of the action-value
cost function with respect to the network weights. As training con-
tinues, the glitches are fixed by the image batches for which the
network can predict the action-values correctly.

5.3. Label prediction accuracy

5.3.1. Static label prediction

First we report the accuracy of static label prediction on GERMS
using a deep convolutional network that is trained to predict ob-
ject labels without the active component. We train a deep convo-
lutional network with 3 convolutional and 2 fully connected layers
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Table 4

Comparison of DQN, random and sequential.

Observed frames

[m5G;October 24, 2016;11:24]

7

Policy/bserved frame 1 2 3 4 5 6
Static OR 352 463 510 539 560 571  Right arm
NB-Rnd 313 381 413 434 450 461
NB-DAOR 313 421 458 480 483 490
DR-RND 403 487 519 536 546 552
DR-DAOR 403 497 516 530 525 526
DN-RND 394 478 508 525 536 543
DN-DAOR 393 484 531 554 570 571
Static OR 356 462 508 534 553 566  Left arm
NB-Rnd 327 395 429 449 463 474
NB-DAOR 327 437 475 496 500 506
DR-RND 437 525 558 575 586 593
DR-DAOR 437 530 549 559 555 554
DN-RND 454 545 580 600 611 619
DN-DAOR 454 563 607 628 641 64.6
-40 r Bayes active object recognition models, and compare their perfor-
- — Tain  — Test mance in the following sections.
:O:: —60} 5.3.2. Comparing Naive Bayes and Dirichlet state encoding
£ _70 In this section we compare the effectiveness of the Dirichlet
g and Naive Bayes state encodings for label prediction accuracy. For
< -80 Naive Bayes models (NB), the state of the system is updated us-
-4 ing (4), while the size and configuration of the rest of the network
: -90 remain the same. Dirichlet (DR) state encoding is implemented us-
.E _100| ing (9). For each encoding and for each arm, we train 10 different
: models and report the average test label prediction accuracy as a
g -110} function of number of observed images, comparing the Deep Ac-
tive Object Recognition (DAOR) and Random (Rnd) action selection
-120} policies. Fig. 5 plots the performance for these models. It is ob-
vious that the Dirichlet model is superior to Naive Bayes in label
=3% 1000 2000 3000 4000  prediction accuracy.
Iteration The first point to notice in Fig. 5 is the performance difference

Fig. 4. Average Negative log-likelihood of data under Dirichlet distributions. The
decrease in negative log-likelihood indicates learning in the belief update layer.

with the number of units shown in Fig. 2. This network is trained
by minimizing the cross entropy cost in (1) for predicting the la-
bels of single frames of the GERMS dataset. Unlike active meth-
ods which select different images with different probabilities for
training, we select GERMS training images for static label predic-
tion with uniform probability. For testing with one or more images,
we randomly select images from each track, and classify them
with the trained network. The probabilities for multiple images are
combined using the naive Bayes rule in (4). The average accuracy
of static label prediction for the test set is shown in Table 4.

We observe that the accuracy of static label prediction is higher
than Naive Bayes active methods, but lower than Dirichlet based
active models. The difference originates from the ability of active
methods in selecting images that are used for training and then
to choose such images at test time. Dirichlet based active methods
achieve higher accuracy by focusing the training on images that
are more discriminative for label prediction. The static model ran-
domly chooses among the ambiguous and non-ambiguous views of
different objects at training, which leads to lower accuracy com-
pared to Dirichlet based methods. On the other hand Naive Bayes
methods fail to visit enough training images due to overfitting in
the action selection layer, and thus are unable to compete in accu-
racy even with static models.

Since the primary focus of this paper is active object recogni-
tion, we do not investigate further the properties of static object
recognition models. Instead, we focus on Dicihlet-based and Naive

between Naive Bayes and Dirichlet belief updates on single images
(action 0). NB models achieve a performance less than 35%, while
Dirichlet achieves higher than 40%. One interpretation of this result
is that the Naive Bayes model pick actions that bounce between
a subset of train images, leading to under-fitting of the model. In
the visualizing policies subsection, we provide some evidence for
this justification. On the other hand, the performance of DR-DAOR
model tends to saturate after 3 actions, while DR-Rnd keeps im-
proving for subsequent actions. This might be due to the fact that
DR-DAOR also bounces between subsets of images at the test time.
We can avoid such behavior by forcing the policies to pick actions
that lead to joint poses that haven't already been visited in the
same interaction sequence.

5.3.3. Removing duplicate visits

We train a set of models using Dirichlet state encoding, while
forcing the policy to pick non-duplicate joint poses in every action
of an interaction sequence. This approach is easy to implement by
keeping a history of visited joint poses during an interaction se-
quence and picking actions with highest action value that lead to
novel joint positions. We refer to this model as Dirichlet with non-
repeated visits (DN). Comparison between DN and DR for Rnd and
DAOR policies (both forced to visit novel poses) is shown in Fig. 6.

Comparison between the models mentioned above is shown
in Table 4. We see that the best performing model is DN-DAOR
with the exception of action 1 for the right arm, which DR-DAOR
achieves the best performance. For both arms, Dirichlet mod-
els perform significantly better than Naive Bayes, improving the
model’s performance on average by 10% for the right arm and 14%
for the left arm.
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Fig. 5. Test label prediction accuracy as a function of number of observed images for left and right arms for Dirichlet state encoding with repeated visits (DR) and non-

repeated visits (DN).
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Fig. 6. Test label prediction accuracy as a function of number of observed images for left and right arms for Naive Bayes (NB) and Dirichlet (DR) state encoding.

5.3.4. Visualizing policies

It may help us understand the weakness and strength of dif-
ferent models if we take a closer look into the learned policies.
For this purpose, we visualize the consecutive actions in the inter-
action sequences of length 5, as shown for training data in Fig. 7
and for test data in Fig. 8. Each plot represents actions in different
rows, with the magnitude and orientation of the action begin de-
picted by the length and direction of the corresponding arrow on
the left side. Each time step of the interaction sequence is shown
as a numbered column. The colored lines in each plot connect one
action in column i to another action in column i+ 1 only if those
actions appeared consecutively in interaction sequences at these
time steps. The thickness of lines depicts the relative frequency by
which two actions were observed on the data.

Fig. 7 visualizes the policies DN-DAOR and NB-DAOR on the
training data. This figure helps clarify the lower performance of
NB models as described before. For NB-DAOR shown on the left
side of Fig. 7, we see thick lines connecting actions that rotate the
object with the largest magnitude in opposite directions. The rel-
ative thickness of these lines indicates that the model tends to go
to one end of the joint’s rotation range, go back with one large
rotation and then repeat. Despite presence of other actions, this
back and forth action dominates the training process, leading to

lower accuracy on test label prediction for single images. On the
right side of Fig. 7 we see that DN-DAOR picks a wide range of
actions, which leads to better examination of training images and
thus higher performance on single images.

Fig. 8 visualizes the learned policies at test time for NB-DAOR
and DN-DAOR. We see on the left side that NB-DAOR only swings
between the two large rotations in the opposite direction, while
DN-DAOR prefers to do a few larger actions (thick purple and blues
lines connecting columns 2, 3 and 4) followed by few smaller ac-
tions in different directions. There is no back and forth for DN-
DAOR between visited joint positions, which leads to better per-
formance on the test set.

6. Conclusions

In this paper, we proposed a model for active object recognition
based on deep convolutional neural networks. The model is trained
by minimizing the action and label prediction costs. The visual fea-
tures in early stages of this network were trained by minimizing
both the action and label prediction costs. The difference between
the work presented here and deeply supervised networks (Chen-
Yu et al., 2014) is that in the latter, the training is carried out by
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Fig. 7. Visualization of (left) NB and (right) DN policies on training data. Each row
represents an action and each column represents a time-step in object exploration
performed by the policy in an interaction sequence. The color of lines connecting
two columns are different for clarity for every consecutive time steps, while the
thickness of these line indicate the frequency of that transition between views in
interaction sequences. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

VIV VAN e
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Fig. 8. Visualization of (left) NB and (right) DN policies for test data. NB model
prefers to repeats the same two actions, swinging between two joint poses at one
end of the joint range. The DN model usually performs a few larger rotations on
the object, followed by a few smaller rotations in different directions to inspect the
objects in a fine-grained manner.

— ——  —
—
/

minimizing the classification error, while in our approach we min-
imized the action learning cost along with classification error. The
joint cost minimization allows the model to learn visual features
that are suitable for predicting object label and the action to be
performed on the object to improve the recognition performance.

We adapted an alternative approach to the common Naive
Bayes belief update rule for state encoding of the system. Naive
Bayes has the potential of overfitting to subsets of training images,
which could lead to lower accuracy at the test time. We used a

generative model based on Dirichlet distribution to model the be-
lief over object-action pairs. This model was embedded into the
network, which allowed training the network in one pass jointly
with label and action-value learning. The results of experiments
confirmed that the proposed Dirichlet model is superior in test
label prediction accuracy to the Naive Bayes approach for state
encoding.

A common trend we observed in the models trained in this
paper was the strong preference for a few actions, which led to
limited examination of the objects, and thus lower performance
on label prediction. This preference was strongest in the Naive
Bayes state encoding models. Employing Dirichlet for state encod-
ing helped alleviate this problem, mainly for the training data and
less for the test data. We observed that the strong preference for
a limited set of actions weakens for the training stage for the DR-
DAOR model, and as a result the model explored the training data
more efficiently and achieved higher label prediction accuracy on
the test data.

A difficulty that arises in using beliefs for state encoding is the
difference in distribution of beliefs over train and test data. This re-
sults in overfitting of the policies to high confidence beliefs, which
may not be the case for test data. In training our models, the train-
ing accuracy reaches above 90% after 1000 iterations. This may
cause the algorithm to reward every action, which finally may lead
to one action taking over and always producing the highest action
value. A remedy for this problem requires the training data to be
representative of the test data in prediction accuracy. However we
found that the test set in GERMS is very challenging for label pre-
diction. Another possibility is the use of outside data in training
the label prediction module, which may help produce more simi-
lar distribution of beliefs over training and test data.
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