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Notation

radius of smaller circle of curvilinear trapezoid

radius of circle or radius of larger circle of curvilinear trapezoid
Bond number (dimensionless capillary constant)

straight side of curvilinear trapezoid bounding Q*

Lagrange multiplier or mean curvature

outward unit normal to ¥

radius of critical arc

solution to capilla;ry surface problem

vector field

angle -

contact angle with which fluid surface meets cylinder walls

curve separating 0 into 0° and its complement

cross-section of cylinder
subset of {1, bounded by I' and X°

angle of curvilinear trapezoid between axis of symmetry and a

- perpendicular from straight side

functional depending on I" and «

. boundary of 2

boundary of {1* N T

‘length or area of -

iii



1. Introduction

Consider a fluid in a right cylinder of general}cross—sectibn. In the presence
of the earth’s gravitational field, a fixed volu_.r.pe of most liquids will form a
stationary surface with the surrounding atmosphere [16,18]. In the absence
of gravity, a stationary surface may or may not' exist, depending on the cross-
section of the cylinder and the contact angle betW_een the surface and the cylinder_
walls [7]. |

Concus, Finn, and others (see [6,7,8,1 1,12,13,124,15] and the references therein)
have considered this problem of existence. T1.1ébyb have introduced a functional
on curves embedded in the cross-section ;nd shéyvﬁ that a solution exists if and
only if this functional is sfrictly positive. Furt"_l:'xérmore, Finn has put r'estric-‘
tions on the locally minimizing curves of this functional {13] and sﬁown th:;.t a
solution exits ‘if and only if the local minima are ;;;il- strict:.ly positive [14]. These
locally minimizing curves dépend on the angle:_::of 'cpntact betv;een the sufface
and the cylinder walls. Concus and Finn [8,13']tha.ve studied the locally mini-
mizing curves for cylinders of various cross-secti(jns. In particular, _Finn‘ [13] has
identified a unique critical curve, and accompanying critical contact a_ngle, for
the trapezoid. We conjecture that the curviline_a:‘r"'trapezoi’d has a similar unique
critical curve. |

The purpose of this‘paper is to study numeri;é.lly the solution to the capillary
surface equation in the absence of gravity for cylinders with curvilinear trapezoid

cross-section, and also to determine computationally the critical contact angle
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at which a solution ceases to exist. We use the the PLTMG (Piecewise Linear
Triangle Multigrid [4]) program to accomplish this. As test cases, we also étudy
numerical solutions by PLTMG to this problem on circular and trapezoidal
domains. We compare the numerical solution for the circle to the known exact
solution, and that for the trapezoid to numerical solutions obtained by a program
developed by Brown [5] and Roytburd (17]. -

Numerical results are given in section 4. Sections 2 and 3 contain general
background material. In section 2, we present the general gravity-free capillary
surface preblem. In section 3, we discuss the subsidiary variational problem for

the functional mentioned above.
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2. The Capillary Surface Problem

2.1 Introduction
_In this section, we derive the equations describing the height of a capillary
surface in the absence of gravity. We then consider solutions for cylinders with
circular, trapezoidal, and curvilinear cross-sections.
The Laplace-Young equation [16,18] for a stationary capillary surface be-
tween two fluids (generally a gas and a liquid) in a right cylinder of general

cross-section 2 is

Vu

V.————=Bu+2H in 0 (1)
v1+|Vuz :
Vu -fi=cosy on X - (2)

1+ |Vuf?

where our notation is as follows [7]:

B Bond number (dimensionless capillary constant),
depends on acceleration due to gravity, difference between
gas #nd liquid densities, and gas-liquid surface tension;
- H Lagrange multiplier,
mean curvature when B = 0, depends on shape, volume, and 7;
u(z,y) height of surfacev;
7 contact angle with which fluid meets cylinder walls,.
depends _onlliquid, gas, and wall material;

3 .cross-section of cylinder;



Figure 1: Cylinder of general cross-section 1.

- X boundary of Q, continuous everywhere, differentiable except
at finitely many corners;
i outward unit normal to ¥;

| -'| area or length of - .

Figure 1 illustrates 7, 4, {2, and X.

In the absence of gravity, B is 0, and the problem becomes

V.Y _9H i
V1+|Vul?
——L-ﬁ’:cos*y on L,
1+ |Vul?

in which case H is the (constant) mean curvature of the surface. The divergence

theorem then gives us

¢
/V-—sz—L-ﬁ=|E|cosq ,
: Vu
AV.W=A2H=2H|0|,
which implies
_ [Blcos

H
€]



Loi

4

v

Hence, the capillary surface problem in the absence of gravity is

Vu _|B|cosy i

v1+|Vyj? 9]
Vu

v1+|Vu|?

It can be shown that any stationary solution will be unique up to addition by a

v. n (3)

-fl =cosy on X. ' (4)

constant [7] and that the solution will be symmetric about any axis of symmetry
in O [9)]. Without loss of generality, we consider only 0 < v < 7/2. The cése
of 7/2 < 4y < m can be s:o{nsidered by looking at —u and —H. The solution is
identically constant for v equal to x/2 [7,14].
2.2 Circle

A cylinder with circular cross-section is one of the few shapes for which.
a closed-form solution is known. If ¥ is a circle .of radius b, the solution to

equations (3) and (4) is the portion of the lower hemisphere of radius 4/ cos~y

_given by (7]

2

—(z2+y?), z+y’<P (5)

u(z,y) = constant —
(z,y) \/ o

where, for example, the constant may be determined by the height of the solu-

. tion at a particular point or'by the prescribed volume of fluid.

2.3 Trapezoid

Equation (5) also gives the solution if X is a polygon circumscribing the circle
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Figure 2: Square circumscribing circle of radius &.

s

Figure 3: Parallelogram with smaller interior angle .

of radius b such that no vertex lies outside the concentric circle of radius b/ cos vy
[7]. This conﬁgﬁration is shown for the square in figure 2.

A solution is known to exist for cylinders of parallelogramic cross-section
Qhen g + v 2> 3, where 8 is the smaller interior angle, as shown in figure 3.
Finn [11] proved this By showing that a solution exists for a cylinder of general

cross-section 1 if and only if a vector field W(i’) exists in the closure of {1 such

that
= |E| .
VW=_— inQ
10
#-W=1onZ /

o 1
IW|< — in Q.
cos
Then Finn [11,13] constructed such a vector field for the parallelogram with

é—’ +9> 7- Hence, a solution exists for a rectangle whenever 7 is greater than or

equal to m/4. However, Finn [13] has shown that the same result does not hold
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Figure 4: Curvilinear trapezoid.

for the general trapezoid. He constructed trapezoids which are arbitrarily close
to a given rectangle, but for which no solution exists for an arbitrary contact
angle. Roytburd [17] studied a specific example of this phepomenon numerically.
2.4 Curvilinear Trapezoid

" A curvilinear trapezoid is a trapezoid with the parallel sides replaced by
circular arcs joined differentiably onto the non-parallel sides, as shown in figure 4.
This shape is of particular interest because a solution is known to exist for
éylinders of curvilinear rectangular cross-section, but, given an arbitrary contact
angle, a curvilinear trapezoid can be found for which no solution exists [10] We
consider existence criteria and numerical solutions for cylinders of curvilinear

trapezoidal cross-section in sections 3 and 4, respectively.



3. The Subsidiary Variational Problem

3.1 Introduction

[ o1

In this ‘section, we introduce a functional on curves embedded in the cross-
section of a cylinder. This fur;ctiona.l is useful because a solution to the capillary
surface problem in the absence of gravity exists if and only if all the local min-
ima o‘f-vthis functional are strictly positive. We then consider existence criteria
based Sﬁ tbhis functional for cylinders of circular, trapezoidal, -and curvilinear
trapéztoﬂida.l cross-section.

Consider the functional [6]

1Z]0°

#(r) = |T| = (=] - =g cos

whergp#r notation is va.s follows:
v :‘_'_;_on_t'act angle with which ﬁuid meets cylinder walls;
r ;curve separating 2 into 2° and iﬁs complement,
.'-,:Vshould be continuous everywhere, diﬁefentiable except at ﬁnitély
'hany points (caxi a.ctu_ally be a system of rectifiable curves which,
.-along with £*, form the boundary of a finite number of connected,
“not necessarily disjoint 02° [14]); ]
02 j-cros';:-x-section of cylinder;
ﬂ"'v' subset of {1, bounded by I’ and %

L boundary of 2
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Figure 5: (1 divided by T'.

£* boundary of 2*, should be continuous everywhere,
differentiable except at finitely many points;

| - | area or length of - .

Figure 5 illustrates I', (1, 2*, ¥, and I°.

Concus and Finn [6] have proved that if a stationary capillary surface exits
in the absence of gravity in {2, then ® is strictly positive for all T. Giusti [15]
has in effect proved that if ®(T') is strictly positive foria.ll T, then a solution
é’xists. Hence, showing the existex:;ce of a solution is equivalent to showing that
® is strictly _positive for all T. |

Finn [13,14] has shown that any curve T which locally minimizes ® must

Q
|T] cos v?

consist of countably many arcs of circles of radius R = each of which
should satisfy the following conditions:

be strictly smaller than a semi-circle,

curve ipto_ -,

not intersect other curves, except perhaps at a corner,

meet L with angle 7 at both ends, as measured from inside 01*,

as shown in figure 6. Finn [14] has also proved that a solution exists if & does

not achieve an absolute minimum. If a solution exists, then the infimum of ® is
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EE‘
Figure 6: T dividing {2 and meeting £* with angle 7.

\

Figure 7: Critical T for the tra.peioid.

zero [9,14]. (The existence of a solution implies that & is strictly positive. For
any 2, & will tend to zero on any sequence of {I';} which tend to a point on
the boundary.) Hence, shoWing the existence of a solution is reduced to showing

only that & is strictly positive for all of these locally minimizing I'.

3.2 Circle

If £ is a circle of radius b, a solution exists (see section 2.1). Hence, ®(T') is
greater than zero for all T'.
3.3 Trapezoid

Finn [13] has considered all possible locally minimizing curves I' for the
cylinder of trapezoidal cross-secfion. He has shown that the arc which meets
the nonparallel sides (with angle 4) and curves toward the top, as shown in
figure 7, uniquely gives the lowest possibl¢ local minimum of &.

Roytburd [17] studied a trapezoid for which this lowest possible‘ local mini-

mum of ® changes sign with 5. For the trapezoid with height 25, base length 2,
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5nd top length 1.3, he found that
sign(®(T')) = sign(y— ~ 57.6°).

Hence, ﬁo solution exists for 7 less than or equal to approximately 57.6°.
3.4 Curvilinear Trapezoid

We conjecture that a result similar to that for the trapezoid holds for the
curvilinear trapezoid. In other words, we conjecture that the arc which.meets
the straight sides (with angle ) and curves toward thé end of smaller radius,
as shown in figure 8, gives the lowest possible local miﬁimum of &.

The boundary length and area of a curvilinear trapezoid with smaller radius
a, larger radius b, and angle ¢ between the axis of symmetry and a perpendicular

from a straight side, as shown in figure 9, are
|Z| = 2[b(x + tan¢ — ¢) — a(tan ¢ — ¢)]

] = b*(x + tan ¢ — ¢) — a*(tan ¢ — ¢).

To verify our conjecture about the location of the critical curve, we need to

compare all possible local minima of ® to that obtained from our conjectured

@

Figure 8: Conjectured critical arc for the curvilinear trapezoid. (Case 0)

curve.
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Case 0. For our conjectured critical curve we obtain the following values:

_ _ o
Tl =2R($ =), R= g~

|Z*| = 2[R(tan ¢ cosy — sinv) — a(tan ¢ — @)]

Q| = R*(tan ¢ cos’ y — sinycosq) — a®(tan ¢ — ¢) — R*(¢ — )

2¢|Z] _ a*|Zf®

_ 0 _ s1n(2'7)
o o e =) - el + S

& = R{$ — 7+ cos® 1](

It is geometrically clear that v must be between 0 and ¢. The value of ® at

v equal to 0 is

_ 1o, ZalZ| )

which is always negative or zero. The value of ® at the limiting point 4 equal

to ¢ is -

a|Z]
|9

a|Z|

ﬂ%r—mu%¢“w¢ "5 - Ta)

=) (2-

which is always positive or zero. (We have

alX| < 2[b%(m + tan ¢ — ¢) — ab(tancﬁ - ¢)] <2
Q] = b(r+tan¢g —¢)—a2(tangd —¢)

gince a is less than b.) Thus ® will always have at least one zero for 4 between

0 and ¢. Let h be the length of that part of the straight side lying between the

A
N

Figure 9: Curvilinear trapezoid with smaller radius a, larger radius b, and

angle ¢.
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beginning of the smaller circle and I' given by

_ tan o1 1
h_tan¢(|2| a) |E|tan'7

Since h is a length, we must restrict ourselves to v giving non-negative values
of h. h is a monotonically decreasing function of 7 since its first derivative with

respect to v is
dh _ —|Q]
dy ~ |Z|cos?q’

which is negative for all 4 between 0 ahd ¢. Hence h will be zero at

az|
)

Ymaez = arctan(tan ¢(1 —
provided a is less than or equal to |Q]/|E|. We conjecture, on the Ba.sis of
numerical experiments, that the zero of ® between v = 0 and 7 = Y4, if one
exists, is unique.

We study a specific curvilinear trapezoid for which this conjectured lowest
local minimum of ® ch;nges sign with 7. For the curvilinear trapezoid with ;xis
of symmetry length 6.159, smallér radius .5, and larger radius 1 we find that the
critical 4 is approximately 30°, as shown in figure 10. For this case, figure 10
indicates that the zero of ® between =0 é.nd Y = Tmez 18 UDique.

Thrée locally minimizing arcs which can be ruled out are the following:

Case 1. If T' consists of two arcs, each of 28 radians lying in {1 and with

endpoints on the axis of symmetry, as shown in figure 11, then we obtain the

following values:

IT| = 48R
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|Z* =%
1Q°| = ] — 28R? + R?sin(2p)
(T) = R(20 + sin(26)).

Hence, @ is positive for all § between zero and 7. Consequently, this curve need
not be considered. |

Case 2. If T meets I only on one straight side, as shown in figure 12, 4
would have to .be greater than /2. We need not consider such 7 (see section
2.1), and hence need not consider such T'.

Case 8. If T consists of two arcs, each on separate sides of the axis of
symmetry, and each meetiﬁg ¥ at a straight side and at the smaller circle,
curving toward the narrower end, as shown in figure 13, then the two angles of
incidence can not be.equal [9]. Consequently, we can discard this I as n§t being

locally minimizing.
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Figure 10: h (dashed) and ® (solid) vs. v (degrees) for curvilinear trapezoid with

axis of symmetry length 6.159, smaller radius .5, and larger radius 1 (¢ = 83.8°).

Figure 11: T meeting L at axis of symmetry. (Case 1) 4

s

Figure 12: T meeting I at one straight side. (Case 2)

0

Figure 13: T meeting ¥ at straight side and narrower end, curving toward

narrower end. (Case 3)
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4. Numerical Results from PLTMG

4.1 Introduction |
In this section, we study numerically the solution to the capillary surface
equation in the absence of gravity for cylinders with curvilinear trapezoidal
cross-section, and also determine computationally the critical contact angle at
which a solution ceases to exist. We use the PLTMG (Piecewise Linear Triangle
Multi Grid) program to accomplish this.v As test cases, we also study numerical
solutions by PLTMG to this problem for circular and tfapezoidal cross-sections.
- The PLTMG program uses a continuous piecewise linear triangular finite
element discretization and 3 multi-level iterative procedure [1,2,3,4] to solve

nonlinear boundary value problems of the form

V-d(z,y,4,V,)) = f(z,9,4,Vy,)) in 0

u=g(z,y,A))on L, CX

-

‘i = go(z,y,4,A) on L, =L - L,

Q

where the notation is the followiﬁg (4] :
{1 i3 a connected region in the z-y plane,

. is the outward unit normal to ¥,

a)

az

a,az, f, g1, g2 are scalar functions,

A 18 a scalar continuation parameter,
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¥ is the boundary of Q).

The program was designed for ﬂexibilify rather than speed. Starting with an
initial triangulation supplied by the user or generated by the program, PLTMG
can solve the problem w}ith an optional continuation procedure on the coarsest
-grid, and adaptive and/or user-specified grid refinement. At each level, it can
calculate error estimates of the accuracy in the H*, L?, and L* norms. The
adaptive procedure is based on H! error estimates [4]. Also, it can evaluate
the solution and its gradient at user-specified points, study convergence if the
exact solution is known, evaluate integrals involving the solution, and draw
triangulations and solution surface and contour plots.

We used PLTMG with adaptive refinement and no continuation, after having
reviséd it to allow the ‘tacking down’ of the first vertex. This was necessary be-
cause the solution to the capillafy surface problem is unique only up to addition
by a constant (see section 2.1). Specifying the value of the solution at a point,
sprcifies the valué of this additive constant. (Changes made to the program
and subroutines and functions pa.rticulaf to our problem can be found in the
appendix.) The_ H! error analyses in thé. following tablés were all calculated
by PLTMG. The times listed in the tables are the total execution times for the
major functions in PLTMG and were returned by PLTMG in its output. These
times are only approximate; they varied depending on which PLTMG options
were used and the number of other time-sharers on the machine. These varia-

tions were sometimes by as much as a factor of two. The execution time entered
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Figure 14: Orientation of the axes for the circle.
for each case in the tables is the smallest of the times used by PLTMG in that
particular case for our runs.
4.2 Circle

To check the accuracy of the program, we considered the problem

\% z . -
V. et = [El cosy in first quadrant N unit disk
V1 +|Vul? Y
4(0,0) =0
cosy on first quadrant N unit circle
Vu n = ’
——fi={ g et
1+ [Vaf on y-axis
0 on X-axis

for v equal to 0°, 25° 50°, and 75° where the axes are oriented as shown in
figure 14. The exact solution is the lower hemispherical surface of equation (5).

The computed solutions compared well with the exact solutions after five
levels, as can be seen from their plots along the positive x-axis in figures 16
and 17. PLTMG was particularly slow to approach a limiting solution for the
limiting case of 4 equal to 0%, as can be seen from the error analysis in table 1.
The estimated digits of accuracy in the H' norm were close to the actual digits,

except for the case v equal to 0°. We tried the case v equal to 0° with different
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starting triangulations, from different initial guesses, and on differeﬁt machines.
The numerical solutions for the early levels depended signiﬁcéntly on the
initial discretization. The starting triangulations of figures 20 and 21 both have
four triangles and six vertices. When they were both started with -initi.a.l guess
identically equal to zero, the triangulation of figure 20 approached a limiting
solution more rapidly for the second and later levels, as can be ;éeﬁ from the
plot of the value of the solution at the boundary point (1,0) agaihst level in
figure 15. The error analyses and times for these are given in table:s; 2 énd 3.
As would be exbected, the initial guess had little effect on the approach
of the computed solution to the exact solution. (Any guesé for Wthh there is
convergence of the program’s Newton itératibn should give the sa;r.nev solution
for the same grid refinement.) When we started the triangulation bqu figure 20 |
with initial guess equal to the exact solution, the solutions were sim'i::l.;a.r to those
for initial guess identically equal to zero. All of the program rlix.:_l.sv described
above were done on a VAX 11/780. As would be expected, executi‘c)i:;‘;‘tiﬁ;es_ were

shortened and solutions were similar on a VAX 8600.
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H! digits least execution
v | vertices | triangles | estimated actual squares fit | time(sec)
0 2063 5460 .76 33 .38 3042
25 | 1899 5248 LT 1.7 019 2577
50 | 2043 5452 1.9 1.9 | .013 1510
75| 2053 5444 1.9 1.9 .012 1173

Table 1: PLTMG error analysis and time for v = 0°, 25°,50°, 75° after 5 levels.

H! digits “ least execution

level | vertices | triangles | estimated actual squares fit | time(sec)

1 6 4 .52 .09 - 1

2 29 56 .60 11 37 5

3 118 276 67 17 .40 47

4 510 1300 75 .24 .40 277

5 | 2063 | 5460 76 .33 38 3042

6 8244 22144 .80 A7 .38 37657

Table 2: PLTMG error analysis and time for 4 = 0°, levels 1 through 6, figure 20

triangulation.
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Figure 15: u(1,0) vs. level for triangulation of figure 20 (dashed), triangulation

of figure 21 (dotted), and exact solution (solid) for v = 0°

H! digits leé.st execution
level | vertices | triangles | estimated actual squares fit | time(sec)
1 6 4 37 .09 - 1
2 27 60 .53 12 .56 5
3 97 252 .64 17 .50 27
4 417 1108 .63 25 .50 303
5 | 1705 | 4588 .63 .36 47 2110

Table 3: PLTMG error analysis and time for 4 = 0°, figure 21 triangulation.



.00

0.50 . 0.75

Utx,0)

0.25

0.00

1.00

0.50 0.75

U(x,0)

0.25

0.00

Figure 17: Computed u(z,0) vs. z for v = 0°,25°,50°,75° after 5 levels.
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1.25

0.75

0.50

0.25

0.00
0.00

0.00 0.25 0.50 0.75 1.00
~ Figure 18: Computed u(z,0) vs. z for 4 = 0°, levels 1 through 6, figure 20

triangulation.

1.00

0.00

T T - |l

0.00 0.25 - 0.50 0.75 1.00

~ Figure 19: Computed u(z,0) vs. z for v = 0°, levels 1 through 5, figure 21

triangulation.
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Figure 22: Orientation of the axes for the trapezoid.
4.3 Trapezoid

To check the accuracy of the program further, we considered the problem

v z
v. ¢ = |Z] cos v in right half of trapezoid
V1+|Vul? Yy
u(0,0) =0
Vu _ | cosv on right half of trapezoid
n =

T _
V1+[Vyl 0 on y-axis

for 4 equal to 587, height 25, base length 2, and top lengths 1.3, 1.4, 1.5, a..nd 2..,
where the axes are oriented as shown in figure 22. The critical v for top length
equal to 1.3 is approximately 57.6° (see section 3.3), so we approach a critical
configuration as the top length decreases.

We compared thg solutions from PLTMG to those from a program developed
by Brown (5] and Roytburd [17] and modified by Jim Shearer and Jing Li. This
program uses a biquadratic quadrilateral finite elemeni: method on a single fixed
mesh. The solution along the y-axis computed by fhis program on a 5 x 50
mesh is éhown in figure 24. Shorter run times and/or greater accuracy might be
expected for this program because it uses a fixed mesh, was spe_ciﬁcally designed
fqr the capillary surface problem on trapezoidal domains, and uses biquadratic,

rather than linear, elements.
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for top length 1.3. |

The PLTMG solutions agreed with the fixed mesh solutions, although consid-
erably longer run times were required. The solution along the y-axis computed
by PLTMG is shown in figure 25. The error analysis and time are given in
table 4.

The nearly critical case with top length equal to 1.3 required particularly
long run times. The fixed mesh of Brown and Roytburd used appfoximately 48
seconds of cpu time to calculate the solution for the top length of 1.3. PLTMG
used approximately 600 seconds of execution time to approach a limiting solution
slightly less than that of the fixed Vmesh program on the third level. The value
of the solution at the boundary point (0,25) is plotted versus level for top length
equal to 1.3 in figure 23. There was little change in the computed value at this
boundary point after level 3. Thé solutions computed by PLTMG were found

to be sensitive to the starting triangulation. The solutions presented here for
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top length equal to 1.3 started from a triangulation clustered around the critical
T, as shown in figure 27. We do this because Vu is expected to be large along
the critical I'. The computed solution along the y-axis for levels 1 through 5 is

shown in figure 26 for this case. The error analysis and time are given in table 5.
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estimated execution

top length vertices triangles H* digits time(sec)

2 0469 25636 2.4 1407
1.5 8405 22626 2.6‘ 1403
1.4 8378 22522 2.7 1873
1.3 9377 26172 2.7 6853

Table 4: PLTMG error analysis and time for top lengths 2, 1.5, 1.4, and 1.3

after 5 levels.

estimated execution

level vertices triangles H* digits time(sec)

1 32 30 1.5 4
2 142 286 1.7 19

3 568 - 1396 2.1 184
4 2283 6130 23 1081
5 9377 26172 2.7 6853

Table 5: PLTMG error analysis and time for top length 1.3.
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Figure 28: Orientation of the axes for the curvilinear trapezoid.
4.4 Curvilinear Trapezoid
In this final section, we address ourselves to the purpose of this paper—to
numerically obtain the solution to the capillary surface equation in thé absence
of gravity for cylinders with curvilinea.r trapezoidal cross-sectipn, and also to
determine the critical contact a.ngie at which a solution ceases to exist. We

'consider‘ed the problem

Vu _ |Z]cosq

V1+|Vu)? o al

V.

in top half of curvilinear trapezoid

u(0,0) =0

Vu . cosvy on top half of curvilinear trapezoid
. n -

/ 2
1+[Vy| 0 on x-axis

for v equal to 30.6°, 40°,50°, and 80°, axis of symmetry length 6.159, larger radius
1, and smaller radius .5, where the axes are oriented as shown in figure 28. The
analytically derived critical 4 for this configuration is approximately 30° (see
section 3.4), below which no solution exists. PLTMG was fc;und to not converge
for 4 less than 30.6°.

Again, PLTMG required lengthy run times to approach a limiting solution.

The solution along the x-axis computed by PLTMG is shown in figure 30. The
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Figure 29: u(—5.159,0) vs. level for v = 30.6°.

error analysis and time are given in table 6. As was the case for the trapezoid,
the maximum height of the solution increases as 7 approaches the critical ~.

The nearly critical case wit‘h 7 equal to 30.6° required particularly long run
times. We used a starting triangulation clustered around the critical I, as shown
in figure 32. (Vu is expected to be large along the critical I'.) The value of the
solution at the leftmost boundary point is plotted versus level for 4 equal to
30.6° in figure 29. The solution value appears to settle at approximately 8.5,
but oscillates before the fourth level. The computed solutioﬁ along the x-axis
for levels 1 through 5 is shown in figure 31 for this case. The erroi' analysis and
time are given in table 7. Surface and contour plots drawn by PLTMG for the
fourth level are shown in figure 33.

The case of 7 equal to 40° consistently required unusuélly long run times as

compared to the other cases, even that of the critical 4.
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estimated execution

v  vertices triangles H! digits time(sec)

80 3263 8747 1.9 1237
50 3602 9583 1.9 1575
40 4101 11047 1.9 4167
30.6 4202 11979 1.7 2118

Table 6: PLTMG error analysis and time for v = 30.6°,40°,50°, and 80° after 5

levels.

estimated execution

level vertices triangles H? digits time(sec)

1 15 13 .54 2
2 6l 121 46 16
3 237 603 85 101
4 1017 2821 1.4 008
5 4202 11979 1.7 2118

Table 7. PLTMG error analysis and time for 4 = 30.6°.
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U(X,0)
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Figure 2: Computed u(z,0) vs. z for Figure 3: Computed u(z,0) vs. z for
v = 30.6° 40°,50°, and 80° after 5 lev- v = 30.6° levels 1 through 5. Dashed

els. line indicates critical I' N z—axis.
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c PIECEWISE LINEAR TRIANGLE MULTI GRID PACKAGE

c

c EDITICN 4.0 -~ - - MARCH, 1986

c

J adapted to allow ‘tacking down’ of solution at first vertex

c Spring, 1986

c

(oL L L et e L LD L Lt DL LR e e L L LDt b L
INTEGER FUNCTION IDBC(I,IVERT)

DIMENSION IVERI(2,1)

c

c THIS LOOKS FOR DIRICHLET BOUNDARY POINTS

c IBC=1 FOR DIRICHLET

c IBC=0 OTHERVWISE

c
IDBC=0

c .This is the old line.

cbank IF(IVERT(1,2)+IVERI(2,I).LT.0) IDBC=1

c This is the new line.
IF((I.eq.1).0r.(IVERT(1,2)+IVERT(2,1).LT.0)) IDBC=1
RETURN

END
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Capillary Surface Problenm

User-Supplied Functions and Subroutines for
Piecewise Linear Triangle Multi Grid Package

for all domains

function aixy(x,y,u,ux,uy,rl,i,itype)
Evalutes al where div(ai,a2) = £ in OMEGA

and (a1,a2) dot n = g2 on SIGMA2
- u o= alx,y)
ux = du / dx
uy = du / dy
rl = continuation paranmeter
i = user triangle# s.t. (x,y) lies in closure of triangle i
itype = 1 -- a1 :
= 2 -~ d(a1) / d(u)
=3 -~ d(a1) / da(ux)
= 4 -- d(a1) / d(uy)
= § -- d(a1) / d(rl)

go to (10,20,30,40,60),itype
vrite (6,1)
1 format(' ¥arning: invalid itype in alxy.')
10 continue
alxy = ux/sqrt(1.0e0 + ux*ux + uy+*uy)
return
20 continne
aixy = 0.0e0
return
30 continue
ailxy = (1.000 + uy*uy)/(sqrt(1.0e0 + ux*ux + uy*uy))**3
return
40 continue
aixy = -ux*uy/(sqrt(1.0e0 + ux*ux + uy+uy))*+3
return
60 continue
' ailxy = 0.0e0
return
end

function a2xy(x,y,u,ux,uy,rl,i,itype)
Evalutes a2 where div(ai,a2) = f in OMEGA
and (a1,a2) dot n = g2 on SIGMA2
ux = du / dx
uy = du / dy
rl = continuation paraneter
i = gser tridngln' s.t. (x,y) lies in closure of triangle i
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-- a2

d(a2) / d(u)
d(a2) / d(ux)
d(a2) / d(uy).
d(a2) / d(rl)

itype

uon
g &> W D) -

]

]

go to (10,20,30,40,50),itype
write (6,1) ' :
format(' Warning: invalid itype in alxy.')
continue _
a2xy = uy/eqrt(1.0e0 + ux*ux + uy*uy)
return :
continue
a2xy = 0.0e0
return
continue
adxy
return
continue :
a2xy = (1.0e0 + ux+*ux)/(sqrt(1.0e0 + ux*ux + uy*uy))*=3
retura
continue
a2xy = 0.0e0
retura
end

-ux*uy/(sqrt(1.0e0 + ux*ux + uysuy))=**3

function fxy(x,y,u,ux,uy,rl,i,itype)
Evalutes f where div(al,a2) = £ in OMEGA
u = u(x,y)
ux = du / dx
uy = du / dy
i = user triangle# s.t. (x,y) lies in closure of triangle i
itype - f
da(f) / da(u)
a(e) / da(ux)
da(t) / da(ay)
a(e) / a(r1)

OV & W N

conmon/user/bondno, bvcg,bvegsq,const, cosgan, hva,
& shift,shift2, twobma

go to (10,20,30,40,60),itype
vrite (6,1)
format(’ Warning: invalid itype in fxy.')
continue . .
fxy = bondno*u + const
return
continue
fxy = bondno
return
continue
fxy = 0.0e0
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return
40 continge
fxy = 0.0e0
return
60 continne
fxy = 0.0e0
return
end

function uxy(x,y,i,itype)
Evaluates the exact solution, if it is known. This is used
in convergence studies. The function here is the exact
solution for the circle of radius b with u(0,0) = 0.
"1 = user triangle# s.t. (x,y) lies in closure of triangle i
itype =1 ~- 1
=2 --4d() / 46
=3 --d(u) / d(y)

common/user/bondno,bveg,bvegsq,const, cosgan, hv2,
& . shift,shift2, twobna

go to (10,20,30).itype
wvrite (6,1)
1 format(' Warning: invalid itype in uxy.’)
10 continue
uxy = bveg-sqrt(bvegaq-x*:-y*y)
return
20 continue
uxy = x/sqrt(bvcgsq-x*x-y*y)
return
30 continue . :
uxy = y/sqrt(bvegsq-xsx-y*y)
return
end

function pxy(x,y,u,ux,uy,rl,i,j,itype)
Evaluates integrands for triqud.
u = a(x,y)
ux = du / dx
uy = du / dy
rl = continnation parameter
i = user triangle# s.t. (x,y) lies on boundary of triangle i
j = edge number of triangle i
itype = 1 -- interior integrand
= 2 -- boundary integrand
= 3 -- boundary integrand for nx
= { -- boundary integrand for ny

go to (10,20,30,40) ,itype
write (6,1)
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1 format(’' Warning: invalid itype in pxy.')

10 continue
pxy = 1.0e0
return

20 continue
pxy = 1.0e0
return

30 continue
Pxy = 0.0e0
return

40 continue
pxy = 0.0e0
return

end

« m e = M @ @ @ W@ Em e W W Em Em o owm W @ e W W w o w ow w W W w w = W = o=

function gxy(x,y,s,ux,uy,rl,i)

Evaluates function for triplt.
o = u(x,y)
ux = du / dx
uy = du / dy
rl = continuation parameter
i = user triangle# s.t. (x,y) lies in closure of triangle i
gxy = 0.0e0
return
end

subroutine usremd(list,llist)
dimension list(1)

restura
end
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Capillary Surface Problenm

User-Supplied Functions and Subroutines for
Piecewise Linear Triangle Multi Grid Package

for circular domains
with axes of symmetry on x and y-axes
b =1 = radius

- T T S = - S - S - . = - -

function gxy(x,y,u,rl,i,j,itype)
Evalutes gl where u = gl on SIGMA1 (Dirichlet b.c.)
and g2 vhere (al,a2) dot n = g2 on SIGMA2 (natural b.c.)

u = u(x,y)

rl = continuation parameter

i = user triangle# s.t. (x,y) lies on boundary of triangle i

j = edge number of triangle i

itype =1 -- g2
2 -- d(g2) / d(uw)
3 -- d(g2) / d(rl)
4 --g1
6
]

d(g1) / d(rl)

-- initial gness for nonlinear problem
(It i=0, initial value for rl. Othervise,
initial guess for the soluticn at the
starting point for the continuation process.)

common/user/bondno,bveg,bvegnq,const, cosgan, hv2,
& shift shift2,twobma

go to (10,20,30,40,50,60),itype
write (6,1)
1 format(’' Warning: 4invalid itype im gxy.')
10 continne
i (j.eq.1) then
On SIGMA.
gXy = cosgam
else
On axis of symmetry.
gxy = 0.0
end if
return
20 continue
gxy = 0.e0
return
30 continue
gxy = 0.0
return
40 continue

gxy = 0.0
return
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continue
&<y = 0.0
return
continue
if (i.2e.0) then
Zero initial guess. .
gy = 0.¢0
Exact initial guess.
gxy = bveg - sqrt(bvegesq - x*x - y*y)
else :
gxy = 0.¢0
end if
return
end

subroutine gdata

Requests dimensions, bond number, and triangulation type.
Calculates variables in common area labeled user.

Fills vectors of starting coordinates anrd matrices of
starting triangle specifications.

parameter (MIC= 50O ,MXV= 2000 ,MIT= 4000,LENW= 60000)

conmon/verts/av, vx(MIV) ,vy(MIV), 1xy (MIV)

common/tris/nt,itnode(3 ,MIT) ,itedge(3,MIT)

common/mdpts/ac,xm(MIC) , ym (MIC)

common/rgns/nr,ib(61),jb(600),1ayn(60)

common ip(100) ,w(LEN¥W)

common/user/bondno, bveg,bvegsq, const, cosgan, hva,
& shift,shift2,twobma

Data for triangulation type = 0 or 1.

data itnode(1,3),itnode(2,3),itnode(3,3)/1,5,3/
data itnode(1.4),itnode(2,4).itnode(3,4)/1,3,6/
data itedge(1,3),itedge(2,3),1tedge(3,3)/0,0,1/"
data itedge(1,4),itedge(2,4),1itedge(3,4)/0,1,0/
data vx(6),vy(5)/0.¢0,0.00/

b= 1.e0
pi = 3.14159026563680793

Set iprob = 6 for no continuation.
ip(4) = ¢

Request dimensions, bond number, and triangulation type.
write(6,160)

format(’ Enter 0. < gamma < 90. degrees’)

read (5,120) gamma

format (£16.10)

write(6,180)

format(’ Enter 0. <= bond number')

read (5,120) bondno
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write (6,190)

190 format(' Enter O for 2 slices cut right'/
! 1 for 2 slices cut right and top'/
' 2 <= nelen for nelem pie slices')

&
&

read (5,192) itri

192 format(i2)
it ((itri.eq.0).or.(itri.eq.1)) then

197

200

nelen = 2

else if (itri.ge.2) then

nelem = itr
itri = 2
else

write (6,107)

i

format(* Warning: invalid itri in gdata.’')

end if

Calculate SIGMA, etc.

SIGMA = 2.e0*pisb
OMEGA = pisbsbd
SIGVOM = 2.e0/b

cosgan = cos(gamma*pi/180.60)
const = (SIGMA*cosgam - bondno)/OMEGA

bveg = b/cosganm

bvegsq = bvegrbveg

nc = number of curved edges+i

nc = nelem + 1
nr = number of regions
ar = 1

at = number of triangles

nt = nelenm

nv = nunber of vertices

av = nelen + 2

Fill

piv2nl = .BeO+*pi/nelen

vx(1) = 0.e0
vy(1) = 0.0
do 200 1 = 2,nv

arg = (i-2.e0)*pivanl

vx(i) = b*cos(arg)
vy(i) = besin(arg)

continue

Fill itnode(1to3,i) = vertex numbers of triangle i, i=1,nt

do 400 1 = 1 nt
itnode(1,1)
itnode(3,1)
itnode(3,1)

" on
[YSR TN

+ +

[ S o

+k natural curved edge k
+1 natural straight edge

- Fi11 itedge(1to3,i) = 0 internal edge

-1 Dirichlet straight edge
-k Dirichlet curved edge k

(vx(1),vy(i)) = (xcoord,ycoord) of vertex #i, i=1,nv

,i=1,nt

All
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400
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itedge(1,4)
itedge(2,4) =
itedge(3,1)
continue
itedge(3,1) = 1
itedge(2,nt) = 1
itripl = itri + 1
go to (520,610,5630),itript
write(6,606)
format(' Warning invalid itripl in gdata’)
continue
itnode(1,2) = 6
vy(8) = vy(3)
continue
at = nt + ditripl
nv = av + itripl
itnode(1,1) = 6
vx(8) = vx(3)
continue

]
o O W

"F11l (Ga(i),ym(i)) = (xcoord,ycoord) of midpoint #i, i=2,nc

700

800

910
920
930
940

960
965

970
9786

990
&

xm(1) = 0.0
ymn(1) = 0.e0
do 700 1 = 2,n¢c
arg = (i-1.6e0)*pivanl

xm(i) = becos(arg)
yn(i) = b*sin(arg)
continue

Set for adaptive refinement only.
do 800 i = 1,nv
Ixy(1) = 1

contipno

write(6,910) (vx(k),k=1,nv)

format(' vx',10(1x,16.3))

write(6,920) (vy(k) ,k=1,nv)

forzat(’' vy',10(1x,16.3))

write(6,930) (am(k) ,k=1,ne¢)

format(' xm’',10(1x,£6.3))

wvrite(6,940) (ym(k),k=1,nc)

format(' ym',10(1x,£6.3))

do 966 1 = 1,3 .
wvrite(6,960) i,(itnode(i, k) k=1,nt)
fornat (' itnode(’,i1,',)',20(1x,12))
continue

do 976 1 = 1.3
write(6,970) i,(itedge(i k), k=1,nt)
format (' itedge(',i1,',)’',20(1x,12))

continue
write(6,990) b, gamma,bondno,SIGVOM
format (' b ganma bondno SIGMA/OMEGA'/

4(1x,£10.6)/)
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retturn
end
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Capillary Surface Problen

Usor-sﬁppliod Functions and Subroutines for

Pliecewise

Linear Triangle Multi Grid Package

for trapezoidal domains

with axis of symmetry on y-axis, base on x-axis

» oy
0

height
1 = half length of base

= half length of top < b

- - . T T = e A - - - - - -

10

20

30

40

&

function gxy(x.y,u,rl,i,j,itype)
Evalutes g1 where u = gi on SIGMAL (Dirichlet b.c.)
end g2 where (a21,a2) dot n = g2 on SIGMA2 (natural b.c.)

u = u(x,y)

rl = continuation parameter
i = user triangle# s.t. (x,y) lies on boundary of triangle i
J = edge number of triangle i

itype = --

non
(- I R 2 L]

]

]

g2

d(g2) / d(u)

d(g2) / d(rl)

gl

d(g1) / d(rl)

initial guess for nonlinear problaz

(If 1=0, initial value for rl. Othervise,
initial guess for the solution at the
starting point for the continuation process.)

common/user/bondno,bveg,bvegsq,const, cosgan, hva,
shift ,shift2, twvobna

go to (10,20,30,

write (6,1)

40,60,60) ,itype

format(’ ¥arning: invalid itype in gxy.')

continue

if (§.ne.2) then
On SIGMA.

gXy = cosganm

else

On axis of symmetry.
gxy = 0.0e0

end if

return
continue

gxy = 0.0e0

retarn
continue

gxy = 0.0e0

retura
continune
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60

60

100

120

140

gxy = 0.0e0
return
continue
gxy = 0.0e0
return
continue
i? (i.ne.0) then
Zero initial guess.
gxy = 0.0e0
Initial guess based on the solution for the circle.
gxy = (bveg - sqrt(bvcgsq-x*x-shift2+(y-hv2)*+2))
/shift + y*twobma
write(10,100) x,y,gxy
format (26x,2(3x,014.7),3x,e17.10)
else

gxy = 0.e0
end if

return
end

- e e o Em e Em e ® e e e = @ @ e omowm e W B e om om om e ® W ow = =

subroutine gdata

Requests dimensions, bond number, and triangulation type.
Calculates variables in common area labeled user.

Fills vectors of starting coordinates and matrices of
starting triangle specifications.

parameter (MXC= 500,MXV= 2000 ,MXT= 4000,LENW= 60000)

common/verts/nv, vx(MIV) , vy (MIV) , Ixy (MIV)

conpon/tris/at,itnode(3,MIT) ,itedge(3,MXT)

conmon/mdpts/nc,xm(MXC), ym (MXC)

common/rgns/nr,ibd(61),jb(600),isym(EO)

common ip(100) ,w(LENW)

common/user/bondno,bvcg,bvegsq, const, cosgan, hvl,
shift shift2, twobma

b=1.e0
pi = 3.141592663689793
pivi80 = pi/180.e0

Set iprob = 6 for no continuation.
ip(4) = 6

Request dimensions, bond number, and triangulation type.
write(6,100) b

format(' Enter 0.< a < ',£10.5)

read (56,120) a

format(£16.10)

write(6,140)

format(' Enter 0. < h')

read (5,120) h



write(6,160)
160 format(' Enter 0. < gamma < 50. degrees')
read (5,120) gamma
vrite(6,180)
180 format(’ Enter 0. <= bond number')
read (5,120) bondno
write(6,196)
196 format(®' Enter i<=nyel for nyel evenly-spaced elements’
& ' on y-axis,'/
& : -nyel for nyel unevenly-spaced elements’)
read(5,1988) nyel '
108 format(i3)
if (nyel.ge.1) then
itri = 1
else if (nyel.le.-1) then
itri = 0.
nyel = -nyel
else
vrite(6,109)
199 format (' Warning: invalid ayel in gdata.’)
end if :

Calculate SIGMA, etc.
bma = b - a :
apb = a + b
twobzma = 2.e0*bnma
SIGMA = 2.e0*(apb + sqrt(h*h ¢ bma*bma))
OMEGA = s (apb)
SIGvOM = SIGMA/OMEGA
cosgan = cos(gamma*pivi80)
R = 1.e0/(SIGvOM*cosgan)
const = (SIGMA*cosgam - bondno)/OMEGA
bvcgsq = (b/cosgan)**2
bveg = sqrt(bvcgsq - b*b)
hv2 = 0.b5e0*h
shift = 2.e0*b/h
shift2 = ghift«shift
~ hvayel = h/nyel
if (bma.ne.0.) then
alpha = atan(h/bma)
ang = alpha - gamma*pivi80
Rentr = h - R*cos(anmg)
& - (R*sin(amg)-a)*tan(alpha)
else
alpha = .5e0*pi
Rentr is not applicable if SIGMA = rectangle.

Rentr = 0.
end if
nc = number of curved edges+i
nc = nelem ¢+ 1
nr = number of regions
nr = 1
nt = number of triangles

A1l6
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nt = 2+nyel
nv = number of vertices
nv = 2*nyel + 2

Fill (vx(1i),vy(1)) = (xcoord,ycoord) of vertex #i, i=i,nv
if (itri.ne.1) then
vy( 1) = 0.00e0
do 276 k = 1,nyel-1
konst = 2+k + 1
write(6,270) konst
270 format (* vy(',i2,')=______ *h?')
read(5,120) blank
vy(konst) = blank*h
2786 continue
vy(av-1) =
end if
do 200 i = O,nyel
ieven = 2*i + 2
iodd = 2¢1 + 1
if (itri.eq.1) vy(iodd) = ishvayel
vy(ieven) = vy(iodd)

vx(iedd) = 0.e0
vx(ieven) = a + bna*(h vy(iodd))/h
200 continue

Fill itnodo(lto3 i) = vertex numbers of triangle i, i=i,nt -
+k natural curved edge k
+1 natural straight edge

Fill 1todgo(1t03 i) = 0 internal edge ,i=1,nt
-1 Dirichlet straight odgo

S -k Dirichlet curved ‘edge k
do 400 i = 1,nyel

ix2 = 1+2

ix2m1 = ix2 - 1

ix2p2 = 1x2 + 2

itnode(1,ix2m1) = ix2m1

itnode(2,ix2m1) = ix2p2

itnode(3,ix2m1) = ix2 + 1

itnode(1l,ix2) = ix2mi

itnode(2,ix2) = ix2

itnode(3,1x2) = 1x2p2

itedge(1,ix2m1) = 0
itedge(2,ix2m1) = 1
itedge(3,ix2m1) = 0
itedge(1,ix2) = 1
itedge(2,1x2) = 0
itedge(3,ix2) = 0:

400 continune
itedge(3,2) =1
itedge(1,nt-1) =1

Fi11 Ga(d),ym(i))
xu(1) = 0.e0
yn(1) = o.go

(xcoord,ycoord) of midpoint #i, 1=2,nc
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Set for adaptive refinement only.
do 800 i = {,nv
Ixy(i) = 1
800 continue

write(6,010) (ve(k),k=1,av)
910 format(’' wvx',10(1x,£6.3))

write(6,920) (vy(k),k=1,av)
920 format(' vy',10(1x,26.3))
" write(6,920) (xm(k),k=1,nc)
930 format(' xm’',10(1x,£6.3))

write(6,240) (ym(k),k=1,nc)
940 format(' ym',10(1x,£6.3))

do 966 { = 1,3

write(6,960) i,(itnode(i,k),k=1,nt)

960 format (' itnede(’,11,',)’,20(1x,12))
965 continue

do 976 1 = 1,3

wvrite(6,970) i,(itedge(i, k) ,k=1,nt)

970 format (' itedge(',i1,',)’',20(1x,12))
976 continue

write(6,980) b,a,h,gamna,bondno,SIGVOM,R,Rentr
990 format(' b a | S ganma

& ' bondno SICMA/OMECA R Reatr’

&/3(1x,19.6)/)

return
end

A18
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Capillary Surface Problen

User-Supplied Functions and Subroutines for

Piecewise

Linear Iriangle Multi Grid Package

for curvilinear trapezoidal domains
with axis of symmetry on x-axis
capl = length of axis of symmetry
b = 1 = radius of larger circls
a = radius of smaller circle < b

- - - = - - . - - -

function gxy(x,y.s,rl,i,j,itype)
Evalutes gi where u = gi on SIGMAL (Dirichlet b.c.)
and g2 where (al,a2) dot n = g2 on SIGMA2 (natural b.c.)

1 = u(x,y)

rl = continuation parameter _
i = user triangle# s.t. (x,y) lies on boundary of triangle i
j = edge number of triangle i

itype =

ne aan

[- - - 7 IS I
t
]

g2

d(g2) / d(w)

d(g2) / d(rl1)

g1

d(g1) / d(rl)

initial guess for nonlinear problem

(I i=0, initial value for rl. Otherwise,
initial guess for the solution at the
starting point for the continuation process.)

cozzmon/user/bdondno,bveg,bvegsq,const, cosgan, hvl,
& shift, shift2,tvobna

go to (10,20,30,

write (6,1)

40,50,60) ,itype

1 format(’ Warning: invalid itype in gxy.')

10 continue

if (j.ne.2) then
On SIGMA.

gEXy = cosgam

else

On axis of symmetry.
gxy = 0.0e0

end if

return

20 continue
gxy = 0.0e0
return

30 continue
gxy = 0.0e0
return

40 contince
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gxy = 0.0e0
return
60 continue
gxy = 0.0e0
return
60 continue
if (i.ne.0) then

c Zero initial guess.
c gxy = 0.0e0
< Initial guess based on the solution fer the circlae.

if (x.1t.0.) then
gxy = (bveg - sqrt(bvegsq-shift2*xex-y*y))

& -~ Xscosgan
ulse
gxy = (bveg - sqrt(bvegsq-x*x-y*y))
end if
c write(10,100) x,y,gxy
€100 format (26x,2(3x,014.7),3x,¢17.10)
else
gy = 0.¢0
end if
c
retura
end
€ = = = = = = = = @ @ 2~ = =2 =% =2 === "w® 2“2 °"“2° =2« = =
subroutine gdata
c Requests dimensions, bond number, and triangulation typs.
c Calculates variables in common ‘area labeled user.
4 Fills vectors of starting coordinates and matrices of
c starting triangle ipocificationn.
paraneter(MXC= BOO,MIV= 2000,MXT= 4000,LEN¥= 50000)
common /verts/av,vx(MXV),vy(MIV),lxy(MXV)
comnmon /tris/nt,itnode(3,MXT),itedge(3,MIT)
common /mdpts/nc,xm(MiC),ym(MIC)
common /rgns/nr,ib(61),jb(600),isym(E0)
conmon ip(100) ,w(LENYW)
coxmon/user/bondno,bveg,bvegsq,const,cosgan, hvl,
& shift,shift2,twobnma
b=1.e0
pi = 3.141692663689793
pivi80 = pi/180.e0
c Set iprod = 6 for no continuation.
ip(4) = ¢
c Request dimensions, bond number, and triangulation type.

write(6,110) 2.e0+b
110 format(' Enter ',f10.5,' < L .")
read (5,120) capl



120

140
160
180

196

108

197

A2l

format (£16.10)
vrite(6,140) b
format(’ Enter 0. < a < *,£10.5)
read (6,120) a
write(6,160)
format(’' Enter 0. < gamma < 90. degrees.’)
read (5,120) gemna
write(6,180)
format(' Enter 0. <= bond number’)
read (5,120) bondno
vrite(6,195)
format(’ Enter 1<=nxel for nxel evenly-spaced elements’
& ‘ on x-axis between 0. and acatr,'/
& * -nxel for nxel unevenly-spaced elements.’)
read(5,198) nxel
format(i3)
if (nxel.ge.1) then
itri = 1
else if (nxel.le.-1) then
itri =0
nxel = -axel
else
write(8,197)
format (' Warning: invalid nxel in gdata.')
end if

Calculate SIGMA, etc.

bma = b - a

phi = acos(bma/(capl-a-b))

alpha = 90.60 - phi/piv1i80

cosphi = cos(phi)

sinphi = sin(phi)

const = tan(phi) - phi

SIGMA = 2.60*((constepi)sd - const*a )
OMEGA = ((const+pi)*bsb - const*as*a)
SIGvOM = SIGMA/OMEGCA -
cosgen = cos(gamma*pivi80)

const = (SIGMA*cosgam - bondno)/OMEGA
bvegsq = (b/cosgam)**2

bveg = sqrt(bvcgsq - bsb)

acntr = -(capl - a - b)

R = 1./(SIGvOM*cosgan)

Rentr = (R+cosgam -b)/cosphi

naxelx2 = 2+nxel

shift = -b/(b-capl)

shift2 = shiftsshift

nc = nuaber of curved edges+l

nc = 4
ar = number of regions
nr = 1
at = number of triangles
at = 3 + nxelxd

. nv = number of vertices
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av = b + axelx2

Fill (vx(i),vy(i)) = (xcoord,ycoord) of vertex #i, i=1,nv
vx(1) = b
vy( 1) = 0.00
pimphi = pi - phi
arg = 0.5e0*pinmphi
vx( 2) = bscos(arg)
vy( 2) = besin(arg)
xelem = acatr/nxel
if(itri.ne.1) then
vx( 3) = 0.e0
do 276 k = 1,nxel-1
konst = 2*k + 3
write(6,270) konst
270 format(’' vx(',12,')=______ *acatr?.')
read(5,120) blank
vx(konst) = blank*acatr
276 continue
vx(av-2) = acatr
end if
do 300 i = 0,axel
ieven = 2+i + 4
iodd = jeven - 1
if (itri.eq.1) vx(iodd) = isxelen
vy(iodd) = 0.e0
temp = a + (vx(iodd)-acntr)*cosphi
vx(ieven) = vx(iodd) - temp»cosphi
vy(ieven) = temp*sinphi
300 continue
vx(av) = b - capl
vy(av) = 0.

Fill itnode(1t03,i) = vertex numbers of triangle i, i=1,nt
+k natural curved edge k
+1 natural straight edge
Fill itedge(1to3,i) = O internal edge ,i=1,n¢
-1 Dirichlet straight edge
-k Dirichlet curved edge k
do 400 i = 1 ,nxel+2

ix2 = 2+i

Tix2z1 = ix2 - 1
1x2p1 = 1x2 + 1
itnode(1,1ix2) = ix2p1
itnode(2,ix2) = ix2
itnode(3,ix2) = ix2 + 2

itnode(1,ix2zx1) = ix2mi1
itnode(2,1ix2m1) = 12

itnode(3,1x2z1) = ix2p1
itedge(1,ix2) = 1
itedge(2,ix2) = 0
itedge(3,1x2) = 0
itedge(l,ix2r1) = O

itedge(2,ix2m1) = 1
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itedge(3,ix2m1) = 0

continue
itedge(3,1) = 2
itedge(1,2) = 3
itedge(1,nt) = 4

Fill (a(i),ym(1)) = (xcoord,ycoord) of midpeint #i, i=2,nc

xa( 1) = 0.e0

ya( 1) = 0.e0

arg = 0.25e0*pimphi
xm{ 2) = br*cos(arg)
yn( 2) = b*sin(arg)
arg = 0.765e0*pinmphi
xm( 3) = bscos(arg)
yom( 3) = bssin(arg)
arg = .b5e0sphi

xn( 4) = acntr - ascos(arg)
ym( 4) = assin(arg)

Set for adaptive refinement oﬁly.
do 800 4 = 1, nv
1xy(i) = 1

continune

write(6,910) (vx(k),k=1,nv)
format(’ wvx',10(1x,£6.3))
write(6,920) (vy(k),k=1,nv)
format(’ vy’',10(1x,£6.3))
write(68,930) (xm(k),k=1,nc)
format(’' >a',10(1x,26.3))
write(6,940) (ym(k) ,k=1.n¢c)
format(' ym',10(1x,£6.3))
‘do 966 1 = 1.3
write(6,960) i, (itnode(i, k), k=1,nt)
format(* itnode(’,i1,',)’,20(1x,12))
continue
do 976 1 = 1,3
write(6,970) i,(itedge(i, k), k=1,nt)
format (' itedge(',i1,',)’,20(1x,12))
continue
write(6,990) b,capl,a,alpha,ganna,bondno,SIGvOM,R,Rentr
format(’ - b L a alpha ganma ',
&' bondno SICMA/OMEGA R Rentr'/9(1x,£8.6)/)

returna
end
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