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Brain functional connectivity mirrors genetic 
pleiotropy in psychiatric conditions

Clara A. Moreau,1,2,3 Kuldeep Kumar,2 Annabelle Harvey,2,3 Guillaume Huguet,2 

Sebastian G. W. Urchs,3,4 Laura M. Schultz,5 Hanad Sharmarke,3 Khadije Jizi,2 

Charles-Olivier Martin,2 Nadine Younis,2 Petra Tamer,2 Jean-Louis Martineau,2 

Pierre Orban,6,7 Ana Isabel Silva,8,9,10 Jeremy Hall,8,9 Marianne B. M. van den Bree,8,9 

Michael J. Owen,8,9 David E. J. Linden,9,10 Sarah Lippé,2 Carrie E. Bearden,11,12,13 

Laura Almasy,5,14,15 David C. Glahn,16,17 Paul M. Thompson,18 Thomas Bourgeron,1 

Pierre Bellec3,† and Sebastien Jacquemont2,†

†These authors contributed equally to this work.

Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic archi-
tecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hy-
pothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead 
to similar overlaps at the macroscale brain level such as large-scale brain functional networks.
We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of plei-
otropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state func-
tional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric 
copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric 
conditions.
Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional 

connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic 
(rTranscriptomic) correlations with moderate to high concordance: rGenetic—rFunctional connectivity = 0.71 [0.40–0.87] and 
rTranscriptomic—rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles asso-
ciated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated 
above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were main-
ly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial 
genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate gen-
eral mechanisms—amenable to intervention—across psychiatric conditions and genetic risks.
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Introduction
Genetic pleiotropy, a key feature of psychiatric conditions, refers to 
the situation in which a genetic variant or gene has effects on more 
than one phenotype.1 Genetic correlation (rG), a measure of the aver-
age effect of pleiotropy across genomic loci, has been computed 
using common variants (i.e. single nucleotide polymorphisms, 
SNPs) based on genome-wide association study (GWAS) summary 
statistics.2 SNP-based rG are moderate to high between schizophre-
nia (SZ), bipolar disorder (BIP) and major depressive disorder, and 
lower between these three conditions and autism spectrum disorder 
(ASD).3–5 Moderate to mild genetic correlations are also observed be-
tween these psychiatric conditions and cognitive abilities or person-
ality traits such as neuroticism and fluid intelligence.6,7 Similar 
levels of correlations between pairs of these same psychiatric condi-
tions have been shown at the brain transcriptomic level (rT).8

Although rG has only been computed for common variants, plei-
otropy has also been reported for rare variants such as copy- 
number variants (CNVs),9,10 which are often associated with a 
broad range of psychiatric diagnoses and cognitive traits.

It is reasonable to assume that overlap at the microscopic scale 
(i.e. genetic and transcriptomic) between conditions and traits may 

lead to similar overlaps at the macroscopic scale, such as 

large-scale functional networks. The latter can be inferred using 

resting-state functional MRI (rs-fMRI). This imaging technique 

measures spontaneous, low-frequency temporal synchronization 

of the activity in different brain regions during rest.11,12 An overlap 

between functional connectivity (FC) profiles of eight psychiatric 

disorders has been previously reported as driven by the default 

mode, salience and frontoparietal networks.13 A complementary 

dimensional reduction approach has identified a latent dimension 

mainly involving the somatosensory-subcortical networks span-

ning four psychiatric diagnoses.14

FC similarity has also been investigated between two rare CNVs 
(i.e. 16p11.2 and 22q11.2 deletion) that both confer large risks for 
ASD, SZ and cognitive deficits. Connectivity profiles of the thal-
amus, somatomotor, posterior insula and cingulate showed 

similarities between these two CNVs, as well as groups of indivi-
duals with either idiopathic ASD or SZ. Beyond these two genomic 
loci, nothing is known about the effects of rare high-risk variants on 
brain FC. Furthermore, little is known about the FC effects of com-
mon variants increasing risks for psychiatric conditions (i.e. poly-
genic scores, PGS).15

Knowledge gaps

The relationship between the level of pleiotropy at the genetic 
(SNP-based) and large-scale functional brain connectivity network 
is unknown.

Pleiotropy observed for rare genomic variants associated with 
psychiatric disorder has not been investigated at the level of func-
tional brain connectivity.

Our overarching aim was to investigate the 
relationship between pleiotropy at the genetic and 
functional connectivity levels

Specifically, we aimed to: (i) investigate the concordance between 
previously established genetic correlations and FC correlations be-
tween conditions and traits; and (ii) identify brain networks driving 
FC correlations observed between rare and common genetic risks, 
psychiatric conditions and traits.

To this end, we used the same pipeline to analyse rs-fMRI data 
in n = 32 726 individuals from four genetics-first clinical cohorts 
(e.g. recruited because they carry a high-risk genetic variant), four 
case-control idiopathic psychiatric datasets [ASD, SZ, attention- 
deficit/hyperactivity disorders (ADHD), BIP] and one unselected 
population. We performed 19 connectome-wide association stud-
ies (CWAS) for seven CNVs, five PGS, four idiopathic psychiatric 
conditions and one non-brain related disease (inflammatory bowel 
disease, IBD), fluid intelligence and neuroticism. We included 279 
CNV carriers, 1022 individuals with either autism, SZ, BIP or 
ADHD and 31 425 controls.

mailto:clara.moreau@pasteur.fr
mailto:sebastien.jacquemont@umontreal.ca
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Materials and methods
Selecting CNVs, conditions and traits

We analysed all of the available rs-fMRI data for neuropsychiatric 
CNVs with at least n = 20 carriers to allow for the detection of large 
effect sizes (Cohen’s d > 0.8) previously reported for CNVs. As a re-
sult, selected CNVs are those most frequently identified in the clin-
ic: 22q11.2, 1q21.1, 15q11.2, 16p11.2. Fluid intelligence and 
neuroticism were selected because (i) CNVs that increase risk for 
ASD and/or SZ decrease cognitive ability10,16; and (ii) both traits 
show the highest genetic correlation, among commonly measured 
traits, with ASD4 as well as with SZ.6,7 IBD was selected as a non- 
psychiatric control condition with a sample size similar to those 
available for the psychiatric conditions included in the study.

Cohorts

Our analysis included 32 726 individuals from nine datasets (Table 1). 
Each study of the corresponding dataset was approved by the re-
search ethics review boards of the respective institutions. This project 
was approved by the research ethics review board at the Centre 
Hospitalier Universitaire Sainte Justine.

Clinical genetic datasets

We used four ‘genetics-first’ CNV datasets, which were recruited on 
the basis of the presence of a CNV associated with risk of neurode-
velopmental and psychiatric disorders, regardless of symptomatol-
ogy (detailed in the Supplementary material). These included the 
Simons Variation in Individuals Project (SVIP for 16p11.2 and 
1q21.1 CNVs),17 the University of California, Los Angeles 22q11.2 
CNV project, the University of Cardiff and the Montreal Rare 
Genomic Disorder (MRG) datasets.

Unselected population

CNVs associated with neurodevelopmental and psychiatric disor-
ders were also identified in the UK Biobank dataset18

(Supplementary material).

Idiopathic psychiatric conditions cohorts

We used the ABIDE1,19 ABIDE2,20 ADHD-200,21 the Consortium for 
Neuropsychiatric Phenomics (CNP)22 and an aggregate dataset of 
10 SZ studies23,24; collectively, these datasets include individuals 

Table 1 Data demographics

Genetic variants conditions 
traits

Status n total/n clin Age Sex (F/M) Cohorts IQ loss OR ASD OR SZ
Previously published

1q21.1 
1: 146.53–147.39 
7 genes (CHD1L)

DEL 25/15 44.4 (19) 12/13 UKBB-MRG- 
Cardiff- 
SFARI

15 3.2 6.4
DUP 19/6 50.9 (19) 13/6 25 5.3 2.9

22q11.2 
22: 19.04–21.47 
49 genes (TBX1)

DEL 43/43 16.9 (7) 19/24 UCLA 28.8 32.3 23
DUP 22/12 39.4 (23) 12/10 UCLA-UKBB 

Cardiff-MRG
8.3 2 0.2

16p11.2 
16: 29.65–30.20 
27 genes (KCTD13)

DEL 32/28 21.7 (20) 13/19 SFARI - 
MRG -UKBB

26 14.3 1.1
DUP 35/29 34.1 (19) 14/21 11 10.5 11.7

15q11.2 
15: 22.81–23.09 
4 genes (CYFIP1)

DEL 103/0 64.3 (7) 55/48 UKBB 3 1.3 1.9

Idiopathic psychiatric conditions SZ 283 33.9 (9.2) 73/210 Montreal-SZ, CNP - - -
BIP 44 35 (9) 20/24 CNP - - -
ASD 472 14.9 (6) 0/472 ABIDE1, ABIDE2 - - -
ADHD 223 14.8 (9.5) 66/157 ADHD-200 CNP - - -

Non-psychiatric condition IBD 287 64.7(7.5) 144/143 UKBB
Polygenic scores ASD 29 460 64.2 (7.5) 15 840/13 620 UKBB - 2.7 -

SZ - - 3.5
BIP - - -
MDD
Cross-D - - -

Traits FI 27 522 64 (7.5) 14 777/12 745 - - -
NT 24 025 64 (7.5) 12 723/11 302 - - -

Controls UKBB 30 185 64.1 (7.5) 16 260/13 925 UKBB - - -
SFARI 84 26.7 (15) 35/49 SFARI - - -
MRG 39 34 (16) 25/14 MRG - - -
Cardiff 8 39.8 (4) 4/4 Cardiff
UCLA 43 13 (4.6) 22/21 UCLA - - -
Psychiatric 

cohorts
1066 20 (11) 244/822 - - - -

CNV carriers, individuals with idiopathic psychiatric conditions and controls after MRI quality control. Chr =  chromosome number, and coordinates are presented in Megabases 

(Mb, Hg19). The number of genes encompassed in each CNV is detailed below the genomic coordinates, followed by a well-known gene to help identify the CNV. n = total/clin: 

total number of participants/number of participants clinically ascertained. Age (in years, mean ± standard deviation). All sites scanned controls and sensitivity analyses were 
performed to investigate the potential bias introduced by differences in scanning site, age and sex. IQ loss = mean decrease in IQ points associated with each CNV.27,62

Odd-ratios (OR) for the enrichment of CNVs in ASD and SZ were previously published.62–71 ORs for the enrichment of CNVs in ADHD were not available. Detailed information 

relative to diagnosis, IQ, and motion, are available in Supplementary Tables 2–4. DEL = deletion; DUP = duplication; F = female; M = male; MDD = major depression disorder; 

CrossD = cross-disorder; CNP = Consortium for Neuropsychiatric Phenomics; IQ = intelligence quotient.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
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with idiopathic ASD, ADHD, SZ and BIP, as well as their respective 
controls (Supplementary material).

CNV calling and polygenic scores computation

CNVs were identified in the UK Biobank using PennCNV25 and 
QuantiSNP26 following previously published methods27

(Supplementary material).
We computed five PGS for individuals of European ancestry in 

the UK Biobank using PRS-CS, a polygenic prediction via Bayesian 
regression and continuous shrinkage priors28 (Table 1, 
Supplementary material and Supplementary Table 1).

Resting-state functional MRI preprocessing

All datasets were preprocessed using the same parameters of 
Neuroimaging Analysis Kit.29 Preprocessed data were visually con-
trolled for quality of the coregistration, head motion and related ar-
tefacts (Supplementary material).

Computing connectomes

We segmented the brain into 64 functional regions defined by the 
multi-resolution MIST brain parcellation30 to compute connectomes 
—defined by 2080 connections between 64 regions, which are grouped 
into 12 functional networks30: https://simexp.github.io/multiscale_ 
dashboard/index.html. The MIST atlas was chosen as it has the ad-
vantage of including the cerebellum, which seems to play a critical 
role in neurodevelopmental disorders and psychiatric conditions.31– 

34 MIST parcellation also performs on a par with or superior to other 
templates (such as AAL or Power) on several prediction benchmarks 
—in particular, those regarding ASD and SZ prediction.35–37

Statistical analyses were performed using scikit-learn38 and 
stats39 libraries.

Connectome-wide association studies

We performed 19 CWAS by either: 
(i) contrasting cases and respective controls for seven CNVs associated with 

neurodevelopmental and psychiatric disorders (Table 1), and four idio-

pathic psychiatric disorder cohorts (ASD, SZ, BIP and ADHD). Controls re-

fer to (a) individuals without a CNV for analyses to investigate the effect of 

CNVs; or (b) individuals without a psychiatric diagnosis in analyses to in-

vestigate the effects of psychiatric conditions.

(ii) or by investigating the linear effects of five continuous PGS: ASD, BIP, SZ, 

cross-disorder and major depressive disorder, as well as two continuous 

traits provided by UK Biobank: neuroticism and fluid intelligence.

FC was z-scored on the basis of the variance of the pooled con-
trols used for each CWAS. They were conducted by linear regres-
sion, in which z-scored FC values were the dependent variables 
and genetic or diagnostic status or traits were the explanatory vari-
ables. PGS and traits were normalized within the UKBB sample.

Models were adjusted for sex, scanning site, head motion, age 
and global signal (defined as the mean of all 2080 Fisher’s Z-values). 
FC profiles were defined as the 2080 β values of 2080 connections.

Z − scoreConnection [i,...2080] ≏ b0 + bgenetic status/conditions + bage + bmotion

+ bsex + bsite + bglobal signal + 1 (1) 

This linear regression was applied for each of the 2080 functional 
connections. Since all raw connectomes were normalized on the 
variance of the controls, regression estimates (beta) can be inter-
preted as z-scores. We corrected for multiple testing using false dis-
covery rate (FDR) (q < 0.05) as well as a permutation procedure. We 
corrected for the number of tests (2080) using the Benjamini– 
Hochberg correction for FDR at a threshold of q < 0.05.40,41 We also 
computed an empirical P-value (‘pval effect’) by conducting a per-
mutation test, shuffling the genetic or clinical status labels of the 
individuals included in each CWAS (5000 permutations). We esti-
mated the empirical P-value by calculating the frequency of 

Table 2 CWAS summary

Genetic variants/conditions/traits Status Connections Beta values Top-decile β values P-value effect

pos neg min max

1q21.1 DEL 1 11 −1.07 0.62 0.44 0.002
DUP 4 0 −0.62 0.84 0.48 0.002

22q11.2 DEL 4 13 −1.48 1 0.65 <2 × 10−4

DUP 0 2 −0.78 0.69 0.43 0.04
16p11.2 DEL 124 149 −0.98 1.67 0.57 <2 × 10−4

DUP 4 3 −1.04 0.55 0.38 0.002
15q11.2 DEL 1 0 −0.29 0.36 0.2 0.01
Idiopathic psychiatric conditions SZ 221 258 −0.41 0.51 0.30 <2 × 10−4

BIP 33 24 −0.66 0.65 0.43 <2 × 10−4

ASD 51 55 −0.26 0.36 0.16 <2 × 10−4

ADHD 0 0 −0.22 0.22 0.15 <2 × 10−4

Non-psychiatric condition IBD 0 0 −0.16 0.16 0.11 ns
Polygenic scores Autism 3 1 −0.02 0.02 0.01 0.04

SZ 93 115 −0.02 0.04 0.02 <2 × 10−4

BIP 16 2 −0.02 0.03 0.01 0.002
MDD 6 21 −0.02 0.03 0.01 0.003
Cross-Disorder 23 22 −0.02 0.03 0.01 <2 × 10−4

Traits Fluid intelligence 311 281 −0.04 0.04 0.02 <2 × 10−4

Neuroticism 208 208 −0.03 0.04 0.02 <2 × 10−4

The number of significantly altered connections (FDR corrected) for each CWAS (n = 19). min-max = minimum-maximum of z-scored beta values; top decile = top decile of beta 
values; Connection pos = number of positive connections surviving FDR; Connection neg = number of negative connections surviving. DEL = deletion; DUP = duplication; MDD = 
major depression disorder; Cross Dis = cross-disorder.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
https://simexp.github.io/multiscale_dashboard/index.html
https://simexp.github.io/multiscale_dashboard/index.html
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obtaining an effect size equal to or greater than the original obser-
vation.42 Effect size of genetic risk, conditions and traits on con-
nectivity was defined as the top decile of the 2080 absolute β values.

Concordance between functional, genetic and transcriptomic 
correlations

We computed correlations of whole-brain connectome profiles 
across pairs of conditions and traits (Pearson correlation) using 
the 2080 beta values of each CWAS.

We obtained genetic correlation (rG) values across pairs of con-
ditions and traits [neuroticism,7 intelligence,6 cross-disorders 
(eight psychiatric conditions)3,43] from previously published 
GWAS. We also used previously published8 correlation values of 
transcriptomic profiles between six pairs of conditions.

We performed concordance analyses between correlation at the 
genetic (rG) and FC (rFC) levels, as well as the transcriptomic (rT) and 
FC (rFC), levels using DescTools R package to extract Lin’s concord-
ance correlation coefficient (CCC).39,44 The bias correction factor 
quantifies how far the best fit line deviates from 45°.

Atlas of functional connectivity correlations across genetic risk, 
traits and conditions

We computed Pearson correlations between the 17 out of 19 whole- 
brain FC profiles with significantly altered connections (FDR cor-
rected). For the significance of correlations between FC profiles, we 
generated a null distribution of 10 000 correlation values for each 
pair of conditions and traits. These 10 000 null correlations were com-
puted using null FC profiles. The latter were obtained by conducting 

Figure 1 Concordance across genetic, transcriptomic and connectomic correlations. (A) Previously published genetic correlations between 
pairs of conditions and traits.3,6,7,43 (B) FC correlations between pairs of conditions and traits. Correlation values are available in 
Supplementary Table 5. Stars represent significant correlations (*P < 0.05, **P < 0.005, ***q FDR). (C) Concordance between FC correlation across 
pairs of conditions and previously published transcriptomic correlation.8 (D) Concordance between FC correlations across pairs of conditions 
and traits (cognitive ability and neuroticism) and previously published genetic correlation. x- and y-axes: r-values of correlations. The brain FC 
correlations (rFC) represent the correlation between the FC profiles of a pair of conditions traits. The diagonal represents a perfect concordance. 
Colours indicate papers that computed rG: green,3 brown,43 purple,7 pink6 and black.8 CCC = Lin’s concordance correlation coefficient; CI = con-
fidence interval; MDD = major depressive disorder; NT = neuroticism; Del = deletion; Dup = duplication; fluid intel = fluid intelligence; IQ = intel-
ligence quotient.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
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5000 CWAS after shuffling the clinical status or trait values. To obtain 
a P-value, the correlation value was compared to the null distribution. 
We corrected for the number of correlations (n = 136) using the 
Benjamini–Hochberg correction for FDR at a threshold of q < 0.05.41

Principal component analysis

To identify the FC networks driving the correlations, we conducted a 
principal component analysis (PCA) on the 17 scaled FC profiles using 
the prcomp function from stats R package. Functional connections 
with 5% top loadings for principal components 1 and 2 (PC1, PC2) 
were represented on chord diagrams using the circlize R package 
(code available on GitHub). We also reported—per network—the aver-
age of absolute loadings of each connection, divided by the number of 
regions encompassed in each network (Supplementary Fig. 1).

Data and materials availability

Data from UK Biobank was downloaded under the application 
40980, and can be accessed via their standard data access 

procedure (see http://www.ukbiobank.ac.uk/register-apply). UK 
Biobank CNVs were called using the pipeline developed in 
Jacquemont Laboratory, and described in https://github.com/ 
labjacquemont/MIND-GENESPARALLELCNV. The final CNV 
calls are available from UK Biobank returned datasets 
(return ID: 3104, https://biobank.ndph.ox.ac.uk/ukb/dset.cgi? 
id=3104).

ABIDE1, COBRE, ADHD200, CNP, 16p11.2 SVIP data are publicly 
available: http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html, 
http://schizconnect.org/queries/new, http://fcon_1000.projects.nitrc. 
org/indi/adhd200/, https://www.openfmri.org/dataset/ds000030/ and 
https://www.sfari.org/funded-project/simons-variation-in-individuals- 
project-simons-vip/. The 22q11.2 UCLA raw data are currently avail-
able by request from the PI (C.E.B.). Raw imaging data for the MRG 
disorder family dataset are going to be available on the LORIS platform 
in 2023. The Cardiff raw data are not publicly available yet: contact the 
PI for further information (D.E.J.L.).

All processed connectomes are available through a request to 
the corresponding authors.

Figure 2 Atlas of FC relationships across psychiatric conditions, genetic risks and traits. (A) Pearson correlation between 17 FC profiles (2080 beta va-
lues from CWAS). Stars represent significant correlations (*P < 0.05, **P < 0.005, ***q FDR). (B–D) PCA conducted on the 17 FC profiles: (B and C) Loadings of 
functional connections on PC1 (B) and PC2 (C) (overconnectivity in red, underconnectivity in blue). Each chord diagram shows the top 5% of connec-
tions’ loadings. All 64 seed regions are represented in the black inner circle. Seed regions are grouped into functional networks. The width of the 
seed region in the black inner circle corresponds to the contribution of regions to the PC. Dimension 1 was dominated by overconnectivity of the thal-
amus, basal ganglia and the somatomotor network. Dimension 2 was dominated by altered connectivity between the visual network and the posterior- 
medial default mode network. (D) Loadings of conditions and traits on PC1 (blue) and PC2 (orange) explaining, respectively, 24 and 10% of the 
connectome-wide variance across FC profiles. (E) Density plots show examples of null distributions of correlations used to determine significance. 
FC profiles of ASD and PGS ASD have the lowest correlation that survives FDR. (F) Brain maps represent thalamic FC profiles (64 beta values for 
each connection between the thalamus and all other functional regions). Red shows overconnectivity and blue underconnectivity. The colour scale 
represents the beta value (z-score). MDD = major depressive disorder; CD = Cross-disorder; NT = Neuroticism; fluid intel = fluid intelligence; Del = dele-
tion; Dup = duplication; DMN pm = posteromedial default mode network.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
http://www.ukbiobank.ac.uk/register-apply
https://github.com/labjacquemont/MIND-GENESPARALLELCNV
https://github.com/labjacquemont/MIND-GENESPARALLELCNV
https://biobank.ndph.ox.ac.uk/ukb/dset.cgi?%20id=3104
https://biobank.ndph.ox.ac.uk/ukb/dset.cgi?%20id=3104
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://schizconnect.org/queries/new
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
https://www.openfmri.org/dataset/ds000030/
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Code for all analyses and visualizations, beta values and 
P-values for the 19 FC profiles are available online through the 
GitHub platform with Jupyter notebook at https://github.com/ 
claramoreau9/NeuropsychiatricCNVs_Connectivity.

Results
Pleiotropy: similarities between genetic and 
functional connectivity correlations across 
psychiatric conditions and traits

To investigate overlap and pleiotropy at the connectivity level, 
we first computed seven brain-wide FC profiles across four psy-
chiatric conditions, fluid intelligence, neuroticism and one con-
trol non-brain related condition (IBD). Patients diagnosed with 
idiopathic SZ, BIP and ASD, but not ADHD nor IBD, showed al-
tered FC compared to controls (significance required both FDR 
and permutation test; Table 2).

To quantify FC overlap between conditions and traits, we per-
formed correlations between FC profiles (rFC) across 19 pairs of con-
ditions and traits. Nine out of the 19 pairs showed correlation above 
chance (permutations and FDR) (Fig. 1B). The control trait (IBD) did 
not correlate with any of the psychiatric conditions or traits.

We then asked whether the level of FC correlation (rFC) could be 
explained by previously published levels of genetic or transcrip-
tomic correlations (rG and rT) between the same pairs of conditions 
and traits (Fig. 1A and B).

We first observed a high concordance between rT and rFC across 
six pairs of conditions and traits [Lin’s CCC,45 CCC = 0.83, 95%CI: 
(0.52; 0.94), without any bias correction factor = 0.85; Fig. 1C].

We also showed a significant concordance between rG and rFC 

across 19 pairs of conditions and traits [CCC = 0.71, 95%CI: (0.40; 
0.87) without any bias (bias correction factor = 0.99; Fig. 1D]. In 
other words, FC similarity between conditions and traits was nei-
ther systematically higher nor lower than rG. All concordance re-
mained significant even after removing the SZ-BIP pair, which 
showed the strongest correlations at the genetic and functional 
levels.

A landscape of functional connectivity correlation 
across genetic risk, psychiatric conditions and traits

We asked whether pleiotropy previously published for rare CNVs 
and PGS (i.e. a CNV confers risk for several psychiatric condi-
tions)3,34 was also observed at the level of brain FC. We therefore 
calculated the correlation for FC profiles associated with genomic 
risk, psychiatric conditions and traits. We first computed brain- 
wide FC profiles associated with seven CNVs and five PGS 
(Table 2). All seven CNVs and PGS altered from five to 208 connec-
tions that survived FDR q < 0.05 and permutation 
analyses; Table 2). Of note, an alternative PGS-SZ computed using 
an older and smaller GWAS was associated with a much lower 
number of connections. Nevertheless, FC profiles of the old46 and 
new GWAS47 were correlated (r = 0.89).

We computed correlations between the FC profiles of CNVs, PGS, 
conditions and traits. This analysis was limited to the 17 whole- 
brain FC profiles with significantly altered connections (Table 2) 
and showed that 30 out of 136 pairs of FC profiles have correlations 
above what is expected by chance (10 000 permutations and FDR; 
Fig. 2). FC correlations (rFC) between genetic risks, conditions and 

Figure 3 Schematic diagram summarizing some of the main results and their interpretations. They are integrated into a broader bottom-up perspec-
tive representing mechanistic convergence from genes to diagnoses. Rare genetic variants (bottom level) converge on a limited set of transcriptomic 
modules. The latter may converge on brain alterations (e.g. thalamo-somatomotor overconnectivity, middle-level). Brain alterations may underly dif-
ferences in cognitive and clinical dimensions altered across several diagnoses (e.g. ASD and SZ, top-level). We showed convergence on sensory-motor 
FC networks and a pleiotropic effect of sensory-motor dimensions across psychiatric diagnoses.

https://github.com/claramoreau9/NeuropsychiatricCNVs_Connectivity
https://github.com/claramoreau9/NeuropsychiatricCNVs_Connectivity
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traits ranged from weak to moderate, similar to those observed for 
rG (Fig. 1).

Thalamo-sensorimotor alterations are shared across 
CNVs, PGS and idiopathic conditions

We sought to investigate whether specific functional networks un-
derlied the FC correlations observed previously. We performed a 
PCA across the 17 FC profiles. The two first dimensions explained 
24 and 10% of the variance, respectively, of the FC profiles. 
Dimension 1 was dominated by increased connectivity between 
the thalamus and the ventrolateral-, dorsolateral- and medial- 
somatomotor, as well as the lateral default mode and auditory net-
works. Dimension 2 was characterized by decreased connectivity 
between the posterior cingulate, the precuneus and the visual net-
works (Fig. 2C). Beyond these dominant networks, both latent di-
mensions were distributed broadly across all 12 networks 
(Supplementary Fig. 1).

Neuroticism and psychiatric conditions showed higher loadings 
on dimension 1 than CNVs (Fig. 2D). As a sensitivity analysis, we 
performed a second PCA on CNVs separately, demonstrating that 
similar networks and connections were contributing to the main di-
mension (r = 0.70 between PC1 of CNV + PGS + conditions + traits, 
and PC1 of CNVs only). The regional FC profiles of the thalamus 
(Fig. 2F and Supplementary Fig. 2) and dorsolateral motor network 
(Supplementary Fig. 3) showed, as expected, much higher similar-
ities among genetic risk, conditions and traits (16 and 45 out of 
136 correlations survived FDR respectively) compared to whole- 
brain correlations.

Discussion
Main findings

Our study provided the first systematic analysis of FC across genetic 
risk, psychiatric conditions and traits. Results demonstrated a 
stable level of similarities between conditions and traits from gen-
etics, to transcriptomics to brain connectomics. We posit that FC 
overlap measured by rFC reflects pleiotropy at the level of functional 
networks. FC profiles associated with rare psychiatric CNVs, psy-
chiatric PGS, psychiatric conditions and traits shared mild to mod-
erate signatures. Although multivariate analyses showed that this 
shared FC dimension was dominated by overconnectivity of the 
thalamus and somatomotor networks as well as the underconnec-
tivity of the visual network, similarities were distributed across all 
networks.

Shared functional connectivity profiles across 
conditions and traits parallel genetic and 
transcriptomic overlap

Stable concordance of pleiotropy from genes to connectivity sug-
gests that a major component of FC-profile correlations (rFC) reflects 
genetically based biological processes, consistent with the previ-
ously reported SNP-based heritability of the interindividual differ-
ences in brain functional networks.48,49 Previous studies have 
shown that similarity in cortical thickness or surface between psy-
chiatric conditions were associated with SNP-based genetic simi-
larity (rG) between the same conditions albeit with lower levels of 
concordance.50,51

This suggests that genetic pleiotropy is reflected across multiple 
MRI modalities with seemingly similar levels of concordance. All of 
the well-studied rare variants (i.e. CNVs) have been associated with 

more than one condition (i.e. ASD, SZ and ADHD) but genetic corre-
lations used in this study were only based on SNPs. It is unknown if 
rG may be higher or lower once rare variants are included.2

Genetic risks converge on the thalamus and 
somatomotor network

Overlap between genetic risk, psychiatric conditions and neuroti-
cism was driven by shared overconnectivity of the thalamus/basal 
ganglia and the somatomotor networks. The implication of the so-
matomotor and basal ganglia/thalamus network across genetic risk 
and psychiatric conditions is in line with previous transdiagnostic 
and single-condition neuroimaging studies.14,52 These functional 
hubs may be highly sensitive to a broad range of genetic risks for 
neuropsychiatric conditions. This is consistent with the fact that 
(i) most if not all rare CNVs, and rare deleterious variants in general, 
that increase the risk for psychiatric conditions are also associated 
with delayed gross motor milestones10,53 and development coord-
ination disorders54; and (ii) delay in motor milestones has been de-
monstrated in individuals with SZ55 and ASD.56 Of note, functional 
and structural measures of the thalamus, basal ganglia57 and uni-
modal regions (i.e. somatomotor) show less interindividual vari-
ability and higher heritability compared to heteromodal regions.49

Fluid intelligence showed the opposite thalamic pattern. This is 
in line with (i) negative genetic correlation between cognitive ability 
and most psychiatric conditions; and (ii) prior fMRI studies demon-
strating that thalamocortical pathways are engaged in memory, at-
tention and mental representations.58,59

Clinical translation

Sensory-motor alterations are important dimensions that may 
underlie some of the pleiotropic effects of genomic risk for psychiatric 
conditions (Fig. 3). This is in line with the fact that gross and fine motor 
skills are widely impaired in patients who are referred to autism and 
neurodevelopmental disorder clinics.56 Furthermore, motor impair-
ments are greater in ASD patients with rare genetic mutations.53

Also, studies demonstrate that soft motor neurological signs in SZ 
are present in neuroleptic naive patients, and are associated with 
the severity and persistence of psychopathological symptoms and 
with poor social functioning.60,61 However, motor abnormalities of se-
vere mental disorders have been neglected both in clinical practice 
and research. These results represent additional evidence in favour 
of including motor symptoms in the dimensional assessments of psy-
chiatric conditions.

While psychiatric disorders continue to be defined by their 
symptoms, course and age of onset, it is reasonable to expect that 
future efforts to build nosological classifications will be influenced 
by the increasingly refined characterization of overlaps between 
conditions at the genetic, transcriptomic and large-scale brain net-
work levels.1

Limitations
FC correlations performed at the whole-brain level are dependent 
on the sample size used to determine the FC profiles for each gen-
etic risk, condition and trait. Larger samples will probably improve 
our correlation estimates. This is especially true for conditions such 
as ADHD, which have been associated with very small effect sizes 
and will probably require larger samples to identify robust 
rs-fMRI differences. The same issue applies to genetic correlations 
that are dependent on the sample size used in the GWAS. As an 

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac315#supplementary-data
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example, two FC profiles associated with two PGS-SZ computed on 
the basis of two GWAS of different sample sizes were correlated (r = 
0.89) but the number of significant connections was lower for the 
profile associated with the older SZ-GWAS (computed with 23 585 
participants with SZ) compare to the new one (computed with 69 
369 subjects with SZ). However, our sensitivity analysis showed 
that the levels of rFC were not confounded by sample size.

This multisite study including clinically and non-clinically as-
certained cohorts may have introduced biases. Confounding fac-
tors include sex bias, age differences and medication status, 
which may have influenced some of the results. However, carefully 
conducted sensitivity analyses, matching case and control groups 
for sex, site, age, motion and excluding individuals with medica-
tions (in idiopathic psychiatric cohorts) provided similar results 
(see Supplementary material).

Finally, and because our dataset spans a broad age range, and 
some CNVs affect total brain volume, we showed in sensitivity ana-
lyses that covarying for brain volume did not influence some of the 
results (Supplementary material and Supplementary Fig. 4).

Conclusion
The level of brain architecture similarities across genetic risks, con-
ditions and traits is consistent with the level of genetic pleiotropy 
measured across the same conditions and traits. We therefore posit 
that research on psychiatric conditions will benefit from a neuroi-
maging genomic multiscale approach. Results highlight the critical 
contribution of the thalamus and the somatomotor networks 
across genetic risks and psychiatric conditions suggesting that 
more attention should be directed towards motor symptoms and 
mechanisms in psychiatric conditions. Such strategies open prom-
ising avenues to help reshape psychiatric nosology as well delin-
eate general mechanisms—amenable to intervention—across 
conditions and genetic risks.
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