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Neurons learn by predicting future activity

Artur Luczak1,*, Bruce L. McNaughton1,2, Yoshimasa Kubo1

1Canadian Center for Behavioural Neuroscience; University of Lethbridge, AB, Canada.

2Center for Neurobiology of Learning and Memory, University of California Irvine, USA.

Abstract

Understanding how the brain learns may lead to machines with human-like intellectual capacities.

It was previously proposed that the brain may operate on the principle of predictive coding.

However, it is still not well understood how a predictive system could be implemented in the brain.

Here we demonstrate that the ability of a single neuron to predict its future activity may provide

an effective learning mechanism. Interestingly, this predictive learning rule can be derived from

a metabolic principle, where neurons need to minimize their own synaptic activity (cost), while

maximizing their impact on local blood supply by recruiting other neurons. We show how this

mathematically derived learning rule can provide a theoretical connection between diverse types of

brain-inspired algorithms, thus, offering a step toward development of a general theory of neuronal

learning. We tested this predictive learning rule in neural network simulations and in data recorded

from awake animals. Our results also suggest that spontaneous brain activity provides “training

data” for neurons to learn to predict cortical dynamics. Thus, the ability of a single neuron to

minimize surprise: i.e. the difference between actual and expected activity, could be an important

missing element to understand computation in the brain.

Introduction

Neuroscience is at the stage biology was at before Darwin. It has a myriad of detailed

observations but no single theory explaining the connections between all of those

observations. We do not even know if such a brain theory should be at the molecular level,

or at the level of brain regions, or at any scale between. However, looking at Deep Neural

Networks, which have achieved remarkable results in tasks ranging from cancer detection to

self-driving cars, may provide useful insights. Although such networks may have different
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inputs and architectures, most of their impressive behavior can be understood in terms of the

underlying common learning algorithm, called backpropagation 1.

Therefore, a better understanding of the learning algorithm(s) used by the brain could be

central to develop a unifying theory of the brain function. There are two main approaches to

investigate learning mechanisms in the brain: 1) experimental, where persistent changes

in neuronal activity are induced by a specific intervention 2; and 2) computational,

where algorithms are developed to achieve specific computational objectives while still

satisfying selected biological constraints 3,4. Here, we explore an additional option: 3)

theoretical derivation, where a learning rule is derived from basic cellular principles,

i.e. from maximizing metabolic energy of a cell. Using this approach, we found that

maximizing energy balance by a neuron leads to a predictive learning rule, where a neuron

adjusts its synaptic weights to minimize surprise: i.e. the difference between actual and

predicted activity. Interestingly, this derived learning rule has a direct relation to some of

the most promising biologically inspired learning algorithms, like predictive coding and

temporal difference learning (see below), and Hebbian based rules can be seen as a special

case of our predictive learning rule (see Discussion). Thus, our approach may provide a

theoretical connection between multiple brain-inspired algorithms, and may offer a step

toward development of a unified theory of neuronal learning.

There are multiple lines of evidence suggesting that the brain operates as a predictive

system 5–10. However, it remains controversial as to how exactly predictive coding could

be implemented in the brain 4. Most of proposed mechanisms involve specially designed

neuronal circuits with “error units” to allow for comparing expected and actual activity
11–14. Whereas those models assume a predictive circuit, we propose an alternative, where

there is an internal predictive model within a neuron. As many basic properties of neurons

are highly conserved throughout evolution 15–17, therefore, we suggest that a single neuron

using predictive learning rule could provide an elementary unit from which a variety of

predictive brains may be built.

Interestingly, our predictive learning rule can also be obtained by modifying a temporal

difference learning algorithm to be more biologically plausible. Temporal difference

learning is one of the most promising ideas of how backpropagation-like algorithms

could be implemented in the brain. It is based on using differences in neuronal activity

to approximate top-down error signals 4,18–24. A typical example of such algorithms is

Contrastive Hebbian Learning 25–27, which was proven to be equivalent to backpropagation

under certain assumptions 28. Contrastive Hebbian Learning requires networks to have

reciprocal connections between hidden and output layers, which allows activity to propagate

in both directions (Fig. 1a). The learning consists of two separate phases. First, in the

‘free phase’, a sample stimulus is continuously presented to the input layer and the activity

propagates through the network until the dynamics converge to an equilibrium (activity

of each neuron achieves steady-state level). In the second ‘clamped phase’, in addition

to presenting stimulus to the input, the output neurons are also held clamped at values

representing stimulus category (e.g.: 0 or 1), and the network is again allowed to converge to

an equilibrium. For each neuron, the difference between activity in the clamped x  and free

x  phases is used to modify synaptic weights (w) according to the equation:
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Δ wij = α(xixj −   xixj), (Eq. 1)

where i and j are indices of pre- and post- synaptic neurons respectively, and α is a small

number representing learning rate. Intuitively, this can be seen as adjusting weights to

push each neuron’s activity in the free phase, closer to the desired activity represented by

the clamped phase. The obvious biological plausibility issue with this algorithm is that it

requires the neuron to experience exactly the same stimulus twice in two separate phases,

and that the neuron needs to ‘remember’ its activity from the previous phase. Our predictive

learning rule provides a solution to this problem by predicting free phase steady-state

activity, thus eliminating requirement for two separate stimulus presentations.

For manuscript clarity, first we will describe how our predictive learning rule can be

obtained by modifying Contrastive Hebbian Learning algorithm. Next, we will validate the

predictive learning rule in simulation and in data recorded from awake animals, and we will

show how our results shed new light on the function of spontaneous activity. The details of

derivation of the learning rule by maximizing neuron energy balance will be presented at the

end.

Results

Predictive learning rule and Contrastive Hebbian Learning.

As mentioned earlier, Contrastive Hebbian Learning algorithm requires network to converge

to steady-state equilibrium in two separate learning phases, thus exactly the same stimulus

has to be presented twice. However, this is unlikely to be the case in the actual brain. Here,

we propose to solve this problem by combining both activity phases into one, which is

inspired by sensory processing in the cortex. For example, in visual areas, when presented

with a new picture, there is initially bottom-up driven activity containing mostly visual

attributes of the stimulus (e.g. contours). This is then followed by top-down modulation

containing more abstract information, e.g., “this object is a member of category x”, or “this

object is novel” (Supplementary Fig. 1). Accordingly, our algorithm first runs only the initial

part of the free phase, which represents bottom-up stimulus driven activity, and then, after a

few steps the network output is clamped, corresponding to top-down modulation.

The novel insight here is that the initial bottom-up activity is enough to allow neurons to

predict the steady-state part of the free phase activity, and the mismatch between predicted

free phase and clamped phase can then be used as a teaching signal. To implement this idea

in our model, for each neuron, activity during twelve initial time steps of the free phase

(x 1 ,..,x 12 ) was used to predict its steady-state activity at time step 120: x 120  (Fig. 1b).

Specifically, first, we presented sample stimuli in free phase to train linear model, such that:

x 120 ≈ x = λ 1 ∗ x 1 , + … + λ 12 ∗ x 12 + b, where x denote predicted activity, λ and b

correspond to coefficients and offset terms of the least-squares model, and terms in brackets

correspond to time steps. Next, a new set of stimuli was used for which free phase was

ran only for the first 12 steps, and from step 13 the network output was clamped (Fig. 1c).

The above least-squares model was then applied to predict free phase steady-state activity

for each neuron, and the weights were updated based on the difference between predicted
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and clamped activity (Methods). Thus, to modify synaptic weights, in Eq. (1) we replaced

activity in free phase with predicted activity x :

Δ wij = α(xixj −   xixj) . (Eq. 2)

However, the problem is that this equation implies that a neuron needs also to know the

predicted activity of all its presynaptic neurons xi , which could be not realistic. To solve

this problem, we replaced xi  by the actual presynaptic activity in the clamped phase xi ,

which we validated in network simulations (see the next section). This change leads to the

following simplified synaptic plasticity rule:

Δ wij = α(xixj −   xixj) = αxi xj − xj . (Eq. 3)

Thus, to modify synaptic weights, a neuron only compares its actual activity xj  with its

predicted activity xj , and applies this difference in proportion to each input contribution

xi .

Learning rule validation in neural network simulations

To test if predictive learning rule can be used to solve standard machine learning tasks, we

created the following simulation. The neural network had 784 input units, 1000 hidden units,

and 10 output units, and it was trained on a hand-written digit recognition task (MNIST 29;

Supplementary Fig. 2; Methods). This network achieved 1.9% error rate, which is similar

to neural networks with comparable architecture trained with the backpropagation algorithm
29. This demonstrates that the network with predictive learning rule can solve challenging

non-linear classification tasks.

To verify that neurons could correctly predict future free phase activity, we took a closer

look at sample neurons. Figure 2a illustrates the activity of all 10 output neurons in response

to an image of a sample digit after the first epoch of training. During time steps 1–12, only

the input signal was presented and the network was running in free phase. At time step 13,

the output neurons were clamped, with activity of 9 neurons set to 0 and the activity of

one neuron representing correct image class set to 1. For comparison, this figure also shows

the activity of the same neurons without clamped outputs (free phase). It illustrates that,

after about 50 steps in free phase, the network achieves steady-state, with predicted activity

closely matching. When the network is fully trained, it still takes about 50 steps for the

network dynamics in free phase to converge to steady-state (Fig. 2b). Note that, although all

units initially increase activity at the beginning of the free phase, they later converge close

to 0, except the one unit representing the correct category. Again, predictions made from the

first 12 steps during free phase closely matched the actual steady-state activity. The hidden

units also converged to steady-state after about 50 steps. Figure 2c illustrates the response

of one representative hidden neuron to 5 sample stimuli. Because hidden units experience

the clamped signal only indirectly, through synapses from output neurons, their steady-state

activity is not bound to converge only to 0 or 1, as in the case of output neurons. Actual

and predicted steady-state activity for hidden neurons is presented in Figure 2d. The average
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correlation coefficient between predicted and actual free phase activity was R=1±0.0001SD

(averaged across 1000 hidden neurons in response to 200 randomly selected test images).

Note that for we always used a cross-validation approach, where we trained a predictive

model for each neuron on a subset of the data and applied that model to new examples,

which were then used for updating weights (Methods). Thus, neurons were able successfully

to generalize their predictions to new unseen stimuli. The network error rate for the training

and test dataset is shown in Fig. 2e. This demonstrates that the predictive learning rule

worked well, and each neuron accurately predicted its future activity.

Biologically motivated network architectures

We also tested the predictive learning rule in multiple other network architectures, which

were designed to reflect additional aspects of biological neuronal networks. First, we

introduced a constraint that 80% of the hidden neurons were excitatory, and the remaining

20% had only inhibitory outputs. This follows observations that biological neurons release

either excitatory or inhibitory neurotransmitters, not both (Dale’s law 30), and that about

80% of cortical neurons are excitatory. The network with this architecture achieved an

error rate of 2.66% (Supplementary Fig. 3a). We also tested our algorithm in a network

without symmetric weights, which resulted in similar performance as the original network

(1.96%, Supplementary Fig. 3b). Moreover, we implemented the predictive learning rule

in a network with spiking neurons, which again achieved a similar error rate of 2.46%

(Supplementary Fig. 4). Our predictive learning rule was also tested in a deep convolutional

network (Fig. 3a), which architecture was shown to resemble neuronal processing in the

visual system 31,32. Using this convolutional network, we tested our algorithm on a more

challenging dataset for biologically inspired algorithms: CIFAR-10 33. This dataset consists

of color images representing 10 different classes like: airplanes, cars, birds, cats, etc.

We achieved 20.03% error rate, which was comparable with training the same network

using backpropagation through time algorithm (Fig. 3b; see Methods for details; code

to reproduce those results is available at: https://github.com/ykubo82/bioCHL/tree/master/

conv). Altogether, this shows that our predictive learning rule performs well in a variety of

biologically motivated network architectures.

Predictive learning rule validation in awake animals

To test whether real neurons could also predict their future activity, we analyzed neuronal

recordings from the auditory cortex in awake rats (Methods). As stimuli we presented 6

tones, each 1s long and interspersed by 1s of silence, repeated continuously for over 20

minutes (Supplementary Information). For each of the 6 tones we calculated separately

average onset and offset response, giving us 12 different activity profiles for each neuron

(Fig. 4a). For each stimulus, the activity in the time window 15–25ms was used to predict

average future activity within the 30–40ms window. We used 12-fold cross-validation, where

responses from 11 stimuli were used to train the least-square model, which was then applied

to predict neuron activity for the 1 remaining stimulus. This procedure was repeated 12

times for each neuron. The average correlation coefficient between actual and predicted

activity was R = 0.36±0.05 SEM (averaged across 55 cells from 4 animals, Fig. 4b).

Distribution of correlations coefficients for individual neurons were significantly different

from 0 (t-test p<0.0001; all tests were two-sided; insert in Fig. 4b). This shows that neurons
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have predictable dynamics, and from an initial neuronal response its future activity could be

estimated.

However, much stronger evidence supporting our learning rule is provided by predicting

long-term changes in cortical activity. Specifically, repeated presentation of stimuli over tens

of minutes induces long-term changes in neuronal firing rates 34, similar as in perceptual

learning. Importantly, based on our model, it was possible to infer which individual neurons

will increase, and which neurons will decrease their firing rate. To explain it, first let’s look

at neural network simulations in Fig. 5a. It shows that, for a neuron, the average change in

activity from one learning epoch to the next, depends on the difference between clamped

(actual) activity and predicted (expected) activity, in the previous learning epoch (Fig.

5a; correlation coefficient R = 0.35, p<0.0001; Supplementary Information). Similarly, for

cortical neurons, we found that the change in firing rate from the 1st to the 2nd half of the

experiment was positively correlated with differences between evoked and predicted activity

during the 1st half of experiment (R = 0.58, p<0.0001; Fig. 5b, Supplementary Information).

Those changes in activity patterns were blocked by an NMDA receptor antagonist, as we

showed using this data in 34, which provides strong support that this phenomenon depends

on synaptic plasticity. Results presented in Fig. 5 could be understood in terms of Eq. 3,

where if actual activity is higher than predicted, then synaptic weights are increased, thus

leading to higher activity of that neuron in the next epoch. Therefore, similar behavior of

artificial and cortical neurons, where firing rate changes to minimize ‘surprise’: difference

between actual and predicted activity, provides a strong evidence in support of the predictive

learning rule presented here.

Deriving predictive model from spontaneous activity

Next, we tested whether spontaneous brain activity could also be used to predict neuronal

dynamics during stimulus presentation. Spontaneous activity, such as during sleep, is

defined as an activity not directly caused by any external stimuli. However, there are

many similarities between spontaneous and stimulus evoked activity 35–38. For example,

spontaneous activity is composed of ~50–300 ms long population bursts called packets,

which resemble stimulus evoked patterns 39. This is illustrated in Figure 6a, where

spontaneous activity packets in the auditory cortex are visible before sound presentation
40,41. In our experiments, each 1s long tone presentation was interspersed with 1s of silence,

and the activity during 200–1000 ms after each tone was considered as spontaneous (animals

were in soundproof chamber; Supplementary Information). The individual spontaneous

packets were extracted to estimate neuronal dynamics (Methods). Then the spontaneous

packets were divided into 10 groups based on similarity in PCA space (Supplementary

Information), and for each neuron we calculated its average activity in each group (Fig. 6b).

As in previous analyses in Fig. 4a, the initial activity in time window 5–25ms was used

to derive the least-square model to predict future spontaneous activity in the 30–40ms time

window (Supplementary Information). This least-square model was then applied to predict

future evoked responses from initial evoked activity for all 12 stimuli. Figure 6c shows

actual vs predicted evoked activity for all neurons and stimuli (correlation coefficient R =

0.2±0.05 SEM, averaged over 40 cells from 4 animals; the insert shows the distribution of

correlation coefficients of individual neurons; p=0.0008, t-test). Spontaneous brain activity
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is estimated to account for over 90% of brain energy consumption 42, however the function

of this activity still is a mystery. The foregoing results offer a new insight: because neuronal

dynamics during spontaneous activity is similar to evoked activity 35–38, thus spontaneous

activity can provide “training data” for neurons to build a predictive model.

Learning rule derivation by maximizing neuron energy.

Interestingly, predictive learning rule in Eq. 3: Δ wij = αxi xj − xj  is not an ad hoc algorithm

devised to solve a computational problem, but this form of learning rule arises naturally as a

consequence of minimizing a metabolic cost by a neuron. Most of the energy consumed by

a neuron is for electrical activity, with synaptic potentials accounting for ~50% and action

potential for ~20% of ATP used 43. Using a simplified linear model of neuronal activity, this

energy consumption for a neuron j can be expressed as −b1( iwijxi)
β1, where xi represents

the activity of pre-synaptic neuron i, w represents synaptic weights, b1 is a constant to match

energy units, and β1 describes a non-linear relation between neuron activity and energy

usage, which is estimated to be between 1.7 – 4.8 44. The remaining ~30% of neuron

energy is consumed on housekeeping functions, which could be represented by a constant

˗ɛ. On the other hand, the increase in neuronal population activity also increases local blood

flow leading to more glucose and oxygen entering a neuron (see review on neurovascular

coupling: 45). This activity dependent energy supply can be expressed as: +b2( kxk)β2,

where xk represents spiking activity of neuron k from a local population of K neurons

k ∈ 1, …, j, ...K ; b2 is a constant and β2 reflects the exponential relation between activity

and blood volume increase, which is estimated to be in range β2: 1.7–2.7 44. Note that sum

of local population activity kxk, also includes activity of neuron j:xj = iwijxi, as all local

neurons contribute to local neurovascular coupling. Putting all the above terms together, the

energy balance of a neuron j could be expressed as:

Ej = − ε −   b1( iwijxi)
β1  +   b2( kxk)

β2   . (Eq. 4)

This formulation shows that to maximize energy balance, a neuron has to minimize its

electrical activity (be active as little as possible), but at the same time, it should maximize its

impact on other neurons’ activities to increase blood supply (be active as much as possible).

Thus, weights have to be adjusted to strike a balance between two opposing demands:

maximizing the neuron’s downstream impact and minimizing its own activity (cost). This

energy objective of a cell could be paraphrased as “lazy neuron principle”: maximum impact
with minimum activity.

We can calculate such required changes in synaptic weights ∆w that will maximize neuron’s

energy E j by using gradient ascent method. For that, we need to calculate derivative of E j
with respect to wij

Δ wij = ∂Ej
∂wij

= 0 −   xiβ1b1( iwijxi)
β1 − 1

  +   xiβ2b2( kxk)
β2 − 1

  . (Eq. 5)
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The appearance of xi in the last term in (Eq. 5) comes from the fact that kxk, includes xj
which is function of wijxi, as explained above. Thus, if we denote population activity as:

x = kxk, and considering that iwijxi =   xj, then after moving xi in front of brackets and

after switching order of terms we obtain:

Δ wij = xi   β2b2x β2 − 1 −   β1b1xj  β1 − 1 . (Eq. 6)

In case that β1 = 2 and β2 = 2, this formula simplifies from exponential to linear. However,

even if β1 and β2 are anywhere in the range: 1.7 < β1 < 4.8 and 1.7 < β2 < 2.7 44, the

expression x β2 − 1 − xj  β1 − 1  still is well approximated by its linearized version: x − xj

for typical values of x in range 0–1 (Supplementary Fig. 5). After also denoting that

α1 = β1b1 and α2 =  
β2b2
α1

 and after taking α1 in front of brackets, we obtain:

Δ wij = α1xi   α2x − xj . (Eq. 7)

Although in this derivation we used linear model of a neuron, including a non-linear neural

model like ReLU: f(x) = x+ = max( 0, x ) leads to similar expression (Supplementary

Information). Moreover, if we use the same derivation steps but to maximize neuron energy

balance in the future, then Eq. 7, changes to (Eq. S7): Δ wij = α3   xi, t   α4 x
 

− xj  (see

Supplementary Information for details of derivation)

Note that Eq. S7 has the same form as the predictive learning rule in Eq. 3:

Δ wij = αxi xj − xj . Here, x
 

 represents population recurrent activity, which can be thought

of as top-down modulation, similar to x. Also note that activity of neuron j:xj from Eq. 7,

became here future predicted activity: xj. Thus, this derivation shows that the best strategy

for a neuron to maximize future energy resources requires predicting its future activity.

Altogether, this reveals an unexpected connection, that learning in neural networks could

result from simply maximizing energy balance by each neuron.

Discussion

Here we present theoretical, computational and biological evidence that the basic principle

underlying single neuron learning may rely on minimizing future surprise: a difference

between actual and predicted activity. Thus, a single neuron is not only performing

summation of its inputs, but it also predicts the expected future, which we propose is

a crucial component of the brain’s learning mechanism. Note that a single neuron has

complexity similar to single cell organisms, which were shown to have ‘intelligent’ adaptive

behaviors, including predicting consequences of its action in order to navigate toward food

and away from danger 46–48. This suggests that typical neuronal models used in machine

learning may be too simplistic to account for the essential computational properties of

biological neurons. Our work suggests that a predictive mechanism may be an important
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computational element within neurons, which could be crucial to understand learning

mechanisms in the brain.

This is supported by a theoretical derivation showing that the predictive learning rule

provides an optimal strategy for maximizing metabolic energy of a neuron. To our

knowledge, this is the first time where a synaptic learning rule has been derived from

basic cellular principles, i.e. from maximizing energy of a cell. This provides a more

solid theoretical basis over previous biologically-inspired algorithms, which were developed

ad hoc to solve specific computational tasks while still satisfying selected biological

constraints. However, it should be emphasized that many of those previous algorithms

provided novel and insightful ideas which enabled the development of our model.

Importantly, our derived learning rule provides a theoretical connection between those

diverse types of brain-inspired algorithms, as discussed below.

One of the most influential ideas about brain’s learning algorithm was proposed by Donald

Hebb, which is based on correlated firing: a.k.a. ‘cells that fire together wire together’ 49.

This could be written as: Δ wij ∝ xixj, where Δ wij is change in synaptic weight between

neurons i and j, ∝ denotes proportionality, and xi and xj represents pre- and post- synaptic

activity, respectively. Note that this is a special case of our predictive learning rule:

Δ wij ∝ xi xj − xj  when xj = 0, i.e. when a neuron does not make any prediction (note that

here xi and xj represent actual activity as it is the case in clamped phase (i.e. xi and xj in

Eq. 3), thus for comparison clarity, hat symbol ^ can be omitted here). Despite its influential

role, the original Hebb’s rule was shown to be unstable, as the synaptic weights will tend

to increase or decrease exponentially. To solve this problem, a BMC theory was proposed
50, which can be expressed in a simplified form as: Δ wij ∝ xi xj − θj xj, where θj can be

considered as the average activity of neuron j across all input patterns. Note that if in our

equation: Δ wij ∝ xi xj − xj , we would use the simplest predictive model: always predicting

the average activity, then xj = θj and our predictive rule becomes equivalent to the core part

of BCM rule and could be seen as a linearized version of the full BCM rule. However, it was

noted that networks trained using the BCM rule do not achieve the same level of accuracy as

other learning rules 51. It is consistent with our experience that performance of our algorithm

deteriorated when we used average activity of each neuron for predictions. We interpret from

this, that dynamically adjusting predictions based on most recent activity allows for more

precise weight adjustments.

Moreover, we described in the results section, how our predictive learning rule directly

relates to Contrastive Hebbian Learning, which belongs to class of temporal difference

learning algorithms. Our algorithm is also similar to other predictive algorithms (see

Introduction). The main difference is that we propose that neurons can internally calculate

their predictions, rather than relying on specialized neuronal circuits, as pointed out by

the Reviewer. We already mentioned earlier that organisms with simpler neuronal systems

may not have predictive circuits as proposed to exist in the cortex 12,14. Thus, a predictive

learning rule at the level of a single neuron may provide more basic description of the

learning process across different brains. However, our model should not be taken as

precluding possibility that in more complex brains, in addition to intracellular predictions,
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neurons may form predictive circuits to enhance predictive abilities of an organism. Our

model is also closely related to the work of 52–54 where depolarization of basal dendrites

serves as a prediction of top down signals from apical dendrites in pyramidal neurons.

Again, our derived model could be seen as generalization of those ideas as it is not

constrained to any specific cell type. The other interesting aspect of our model is that it

belongs to the category of energy-based models, for which it was shown that synaptic update

rules are consistent with spike-timing-dependent plasticity 55. Considering all the above,

we suggest that our plasticity rule derived from basic metabolic principles could serve as a

common denominator for diverse types of biologically inspired learning algorithms, and as

such, it may offer a step toward development of a unified neuronal learning theory.

Biological neurons have a variety of cellular mechanisms which operate on time scales of

1~100ms suitable for implementing predictions 56–60. The most likely mechanism appears

to be calcium signaling. For example, when a neuron is activated, it leads to corresponding

elevation of somatic calcium for tens of ms 61. This time period with elevated calcium

could indicate that a certain level of new input is expected to arrive in that time window.

For instance, if bottom-up visual stimulus triggers multiple spikes in a neuron, then the

resulting proportional increase in calcium concentration may signal that a higher level of

follow up activity is expected, which could correspond to predicting a higher level of

e.g. top-down modulation. This would be consistent with our experimental data, where

higher activity at stimulus onset is correlated with higher activity ~20 ms later (Fig. 4;

see Suppl. Information for more details on the plausibility of the predictive mechanism

implementation and on proposed experiments to test it more directly). Interestingly, the core

prediction of BCM and our model that synaptic weights should increase/decrease if neuron

is stimulated above/below expected activity, is supported by experimental evidence where

applying strong/weak electrical stimulation to cells in CAl induced LTP/LTD, respectively
62, which also involves calcium-depended mechanisms 63. There are also other possible

cellular properties which could support predictive mechanisms. For instance, it was shown

that neurons can preferentially respond to inputs arriving at specific resonance frequencies

(range: ~1–50 Hz) 64,65. This provides another example that neurons do have cellular

mechanisms to ‘remember’ and to ‘act’ accordingly based on their past activity tens of ms

earlier 58. Therefore, considering the cellular mechanisms listed above and the consistency

of our model with experimental data presented in Figs 4–6, altogether it shows that neurons

are at least capable of implementing the predictive learning rule.

Our work also suggests that packets could be basic units of information processing in

the brain. It is well established that sensory stimuli evoke coordinated bursts (packets)

of neuronal activity lasting from tens to hundreds of ms. We call such population bursts

packets, because they have stereotypical structure, with neurons active at the beginning

conveying bottom-up sensory information (e.g. this is a face), and later in the packet

neurons represent additional higher order information (e.g. this is a happy face of that

particular friend)66. Also the later part of the packet can encode if there is discrepancy with

expectation (e.g. this is a novel stimulus 67,68; Supplementary Fig. 1). This is likely because

only the latter part of the packet can receive top-down modulation after information about

that stimulus is exchanged between other brain areas, which is the case even during passive

stimulus presentation 69,70. Thus, our work suggests that the initial part of the packet can be
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used to infer what the rest of the brain may ‘think’ about this stimulus, and the difference

from this expectation can be used as a learning mechanism to modify synaptic connections.

This could be the reason why, for example, we cannot process visual information faster than

~20 frames/s, as only after evaluating if a given image is consistent with expectation, can the

next image be processed by the next packet, which takes ~50ms. Our predictive learning rule

thus implies, that sensory information is processed in discrete units and each packet may

represent an elementary unit of perception.

When recording neuronal activity in the cortex, the slowest oscillations (<10Hz) are by

far the most dominant 41,71, and it is one of the biggest questions in neuroscience: what

is the function of those oscillations 72. Therefore it is worth noticing how learning rule

derived from the basic cellular principles may relate to packets which are the main part of

slow oscillations 39,73,74. As described above, dividing information into discrete packets,

could provide an effective mechanism to improve neuronal predictions. It could allow for

easier differentiation of feed-forward signals arriving during the initial wave of a packet

from predicted top-down information arriving later. Another big question in neuroscience

is about the function of spontaneous brain activity 42. For example, why would the brain

spend so much energy to generate packets even during e.g. sleep? Interestingly, similarly

as in the brain where most energy is consumed by spontaneous activity 42, in our model

most energy (i.e. computational time) is used for free phase network activity, which allows

intracellular predictive model to learn network dynamics in an unsupervised way. Thus, free

phase activity in our model suggests that the function of spontaneous packets could be to

provide neurons with diverse training data to improve the robustness of the predictive model,

as supported by results presented in Fig. 6. Moreover, note that free phase activity may

also be used for unsupervised learning. For example, if new input is present in the free

phase, neurons can still calculate if such evoked activity is consistent with internal model

predictions. If not, then weights can be modified to get free phase activity evoked by new

stimuli to be closer to the prediction (it is the same mechanism as we use in clamped phase

during supervised learning). This is a similar idea to unsupervised pre-training 75, however

more future work is needed to investigate it.

Limitations

While the present study proposes a novel theoretical perspective on neuronal learning,

this also comes with caveats that should be taken into account. Due to limits in current

technology, parts of our model could not yet be properly validated experimentally. The

major caveat in our model is the assumption of a cellular mechanism for predicting future

activity. Although, neurons do have activity dependent calcium signaling 61, there is no

direct evidence that neurons use it to predict expected activity. The data that we present in

Figs 4 & 6, shows that neurons have predictable dynamics, and this should be interpreted

as only demonstrating that the main prerequisites for the predictive learning rule have been

met, but it does not prove that neurons use it to make predictions. Also, for computational

simplicity, in our model we present only one stimulus at a time to the network. In contrast,

brains receive a constant stream of sensory stimuli, and new sensory inputs can arrive

at the same time as top-down signals, which is not the case in our model. However,

new sensory stimuli arriving during already in progress neuronal packets were shown to
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be suppressed 76, which could serve to largely reduce interference between stimuli, as

assumed in our model. The biological validity of this model assumption should be more

directly tested. It is also important for our model that all data presented in the free phase

to train predictive model have the same statistical distribution as data presented in the

clamped phase. If only noise inputs were presented to the network in the free phase, then

performance of our model would likely deteriorate. As mentioned earlier, numerous studies

showed that spontaneous brain activity is not like a random noise, but rather it has similar

statistical properties to stimulus evoked patterns 35–38. That, together with experimental

results presented in Fig. 6, provide rationale for our network to use data with similar

distributions during free and clamped phase. Moreover, there are other open questions about

this model. For instance, consistently with our model, individual neurons can respond to

novel stimuli with higher or lower firing rate as compared to familiar stimuli 67,77. However,

on average, neurons recorded in cortex show typically higher firing rate to novel stimuli
67,77, which is not explained by our model. This discrepancy could be due to inherent

sampling bias in electrophysiological recordings toward most active cells 78. It also may

suggest additional network level predictive mechanisms which could explain the elevated

response to novel stimuli, as proposed in 13,14. More future work is needed to answer those

questions. It should also be noted that although our analytical derivation of the synaptic

learning rule provides an important first step to link predictive learning models to metabolic

activity, it required to largely simplify description of metabolic processes to only the few

most important variables. Biological accuracy of this simplified description still needs to

be investigated. Future work should also explore if implementing a non-linear predictive

model within neurons could further improve performance of our network. Nevertheless,

considering that presented model provides theoretical connection between diverse types

of brain-inspired algorithms, this work could lead to a better understanding of neuronal

principles 79.

Methods

Neural Network (MNIST dataset)

The code for our network with predictive learning rule, which we used to produce results

presented in Fig. 2 is available at https://github.com/ykubo82/bioCHL, which contains

all implementation details. Briefly, the base network has the architecture: 784–1000-10

with sigmoidal units, and with symmetric connections (see Supplementary Fig. 3-4 for

more biologically plausible network architectures which we also tested). Neuron activity

dynamics in hidden layer is described as in standard network with Contrastive Hebbian

Learning 80:

xj, t = S pwp, jxp, t − 1 + γ owo, jxo, t − 1 + b j ℎ + xj, t − 1 1 − ℎ

where wp, j denotes weight from neuron p in input layer to neuron j in hidden layer, wo, j
denotes weight from output layer neuron to hidden layer neuron j, b is a bias, t is a time

step and S is a sigmoid activation function. Parameter h=0.1 is the Euler method’s time-step

commonly used to improve computational stability. However, changing h to 0.2 or 1 resulted

in similar network performance here. In the standard implementation of Contrastive Hebbian
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Learning, all top-down connections wo, j are also multiplied by a small number γ (~0.1)
80. This different treatment of feed-forward and feedback connections could be biologically

questionable as many brain circuits are highly recurrent and e.g. granule cells do not seem to

have specific dendrites for receiving feedback signals. Therefore, to make our network more

biologically plausible we set this feedback gain factor γ to 1, thus allowing our network

to learn by itself what should be the contribution of each input. For output layer, term

owo, jxo, t − 1 is set to 0 as there are no top-down connections to that layer. Neurons in the

input layer do not have any dynamics as their activity is set to a value corresponding to pixel

intensity in the presented image. To accelerate training, we used AdaGrad 81, and we applied

a learning rate of 0.03 to the hidden layer and 0.02 for the output layer. Synaptic weights for

neurons in hidden and output layers were modified as described in Eq. 3.

Future activity prediction

For all the predictions we used a cross-validation approach. Specifically, in each training

cycle we ran free phase on 490 examples, which were used to derive least-squares model for

each neuron to predict its future activity at time step 120 x 120 , from its initial activity at

steps 1–12 (x 1 ,..,x  12 ). This can be expressed as:

x 120 = λ 1 ∗ x 1 , + … + λ 12 ∗ x 12 + b, (Eq. 8)

where terms in brackets correspond to time steps, and λ and b correspond to coefficients

and offset terms found by least-squares method. Next, 10 new examples were taken, for

which free phase was ran only for 12 steps, then the above derived least-squares model was

applied to predict free phase steady-state activity for each of 10 examples. From step 13 the

network output was clamped. The weights were updated based on the difference between

predicted and clamped activity calculated only from those 10 new examples. This process

was repeated 120 times in each training epoch. Moreover, the MNIST dataset has 60,000

examples which we used for the above described training, and 10,000 additional examples

which were only used for testing. For all plots in Figure 2 & 3 we only used test examples

which network never saw during training. This demonstrates that each neuron can accurately

predict its future activity even for novel stimuli which were never presented before.

Convolutional Neural Network (CIFAR-10 dataset)

The convolutional network has an input layer of size: 32×32×3, corresponding to size of

a single image with 3 color channels in CIFAR-10 dataset (this dataset consists of 5000

training and 1000 test images for each of 10 classes 33). The network has two convolutional

and pooling layers followed by one fully connected output layer (Fig. 3a). The filter size

for all the convolutional layers is 3×3 with stride 1, and the number of filters is 256 and

512 for first and second convolutional layers, respectively. We did not use zero-padding. For

pooling, we used the max pooling with 2×2 filters and stride 2. The activation function for

the convolutional and the fully connected layers was the hard-sigmoid activation function,

S(x) = (1+hardtanh(x-1))*0.5, as implemented in 24. The learning rates were: 0.4, 0.028,

and 0.025 for the first, second convolutional layer, and for the fully connected output

layer, respectively. The Euler method’s time-step h was set to 1. Considering that clamping
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output neurons at only two extreme values: 0 or 1, may not be the most accurate model of

top-down signals in the brain, thus here we implemented weak clamping as proposed in 23.

Shortly, instead of setting the value of the output neuron to 0 or 1 during clamped phase,

output neurons were only slightly nudged toward required values. For example, if an output

neuron should have value of 1, then it was clamped at value: x +   ε, where x is free phase

steady-state activity of that output neuron, and ε is a small nudging factor toward 1. To

calculate nudging for each neuron we used a clamping factor of 0.01 as described in 23. This

network with our predictive learning rule achieved 20.03% accuracy on CIFAR-10 dataset.

Using the original ‘hard’ clamping, changing h to 0.1 or increasing number of neurons to

326 in the first layer gave similar results. We also directly compared predictive learning rule

with backpropagation through time (BPTT) on the same convolutional network (Fig. 3). We

selected BPTT as it uses a roll-out through time which is more comparable to our model.

To ensure generality of presented results, we repeated the training with BPTT three times

using different learning rates for each simulation. Using BPTT with the same learning rates

as in our predictive model (0.4, 0.028, 0.025), the error rate was 20.88%. For BPTT with

learning rate of 0.1 for all layers, the error rate was 21.23%, and 22.77% for a learning rate

of 0.2 (Fig. 3b). Code for convolutional network was adopted from 82, which we modified to

include our predictive learning rule. To reproduce our results, our code for the convolutional

network with all implementation details is available at: https://github.com/ykubo82/bioCHL/

tree/master/conv. Altogether, those results show that our predictive learning rule can also be

successfully implemented in deeper networks and on more challenging tasks.

Surgery, recording and neuronal data

The experimental procedures for the awake, head-fixed experiment have been previously

described 40,41 and were approved by the Rutgers University Animal Care and Use

Committee, and conformed to NIH Guidelines on the Care and Use of Laboratory Animals.

Briefly, a headpost was implanted on the skull of four Sprague-Dawley male rats (300–

500g) under ketamine-xylazine anesthesia, and a craniotomy was performed above the

auditory cortex and covered with wax and dental acrylic. After recovery the animal was

trained for 6–8 days to remain motionless in the restraining apparatus. On the day of the

surgery, the animal was briefly anesthetized with isoflurane, the dura was resected, and

after a recovery period, recording began. For recording we used silicon microelectrodes

(Neuronexus technologies, Ann Arbor MI) consisting of 8 or 4 shanks spaced by 200µm,

with a tetrode recording configuration on each shank. Electrodes were inserted in layer

V in the primary auditory cortex. Units were isolated by a semiautomatic algorithm

(klustakwik.sourceforge.net) followed by manual clustering (klusters.sourceforge.net)83.

Only neurons with average stimulus evoked firing rates higher than 3 SD above pre-stimulus

baseline were used in analysis, resulting in 9, 12, 12, and 22 neurons from each rat. For

predicting evoked activity from spontaneous, we also required that neurons must have mean

firing rate during spontaneous packets above said threshold which reduced the number of

neurons to 40. The spontaneous packet onsets were identified from the spiking activity of

all recorded cells as the time of the first spike marking a transition from a period of global

silence (30 ms with at most one spike from any cell) to a period of activity (60 ms with at

least 15 spikes from any cells), as described before in 40,73.
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Fig. 1. Basics of the algorithm.
a. Schematic of the network. Note that activity propagates back-and-forth between hidden

and output layers. b. Sample neuron activity in the free phase in response to different stimuli

(marked with shades of blue). The free phase responses were used to train a linear model

to predict a steady-state activity from the activity at earlier time steps (marked by shaded

area; see main text for details). Bottom traces show duration of inputs, and dots represent

predicted activity. c. Activity of a neuron in response to a new stimulus with the network

output clamped. Initially the network receives only input signal (free phase), but after a

few steps the output signal is also presented (clamped phase; bottom black trace). The red

dot represents steady-state free phase activity predicted from initial activity (shaded region).

For comparison, the dashed line shows a neuron’s activity in the free phase if the output

is not clamped. Synaptic weights (w) are adjusted in proportion to the difference between

steady-state activity in clamped phase x  and predicted free phase activity x .
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Fig. 2. Neuron prediction of expected activity.
a. Activity of 10 output neurons in response to a sample stimulus at the beginning of

the network training. Gray area indicates the extent of the free phase (time steps 1–12).

Solid red lines show activity of the neurons clamped at step 13. For comparison, dashed

lines represent free phase activity if output neurons had not been clamped. Dots show

predicted steady-state activity in free phase based on initial activity (from steps 1–12). b.
Activity of the same neurons after network training. Note that free phase and predicted

activity converged to desired clamped activity. c. Activity of a representative neuron in the

hidden layer in response to 5 different stimuli after network training. Solid and dashed lines

represent clamped and free phase respectively, and dots show predicted activity. d. Predicted

vs. actual free phase activity. For visualization clarity only every tenth hidden neuron out

of 1000 is shown, in response to 20 sample images. Different colors represent different

neurons, but some neurons may share the same color due to the limited number of colors.

Distribution of points along the diagonal shows that predictions are accurate. e. Decrease in

error rate across training epochs. Yellow and green lines denote learning curves for training

and test data set respectively. Note that in each epoch we only used 2% out of 60,000

training examples.
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Fig. 3. Implementation of predictive learning rule in a multilayer convolutional neuronal
network.
a. Depiction of our convolutional network architecture (see Methods). b. Learning curves for

convolutional network trained using a predictive learning rule (green) and for comparison

the same network trained using backpropagation through time (BPTT). The red line shows

a learning curve for BPTT using the same learning rates as in our predictive model (LR:

0.4, 0.028, 0.025); yellow line: BPTT with learning rate of 0.1 for all layers, and violet line:

BPTT with learning rate of 0.2 for all layers. It illustrates that on CIFAR-10, performance of

the deep network using our predictive learning rule was comparable with BPTT.

Luczak et al. Page 21

Nat Mach Intell. Author manuscript; available in PMC 2022 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Predicting future activity of cortical neurons.
a. Response of a representative neuron to different stimuli. For visualization only 5 out of

12 responses are shown. Gray area indicates the time window which was used to predict

future activity. Dots show predicted average activity in the 30–40ms time window. Colors

correspond to different stimuli. b. Actual vs. predicted activity for 55 cells from 4 animals

in response to 12 stimuli. Different colors represent different neurons, but some neurons may

share the same color due to the limited number of colors. Insert: histogram of correlation

coefficients for individual neurons. Skewness of the distribution to the right shows that for

most neurons the correlation between actual and predicted response was positive.
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Fig. 5. Long-term changes in neuronal activity in our model and in cortical neurons.
a, Average change in clamped steady-state activity between 2 consecutive learning epochs

in our network model. This change relates to ‘surprise’: the difference between actual

(clamped) and predicted activity, in the earlier epoch (n=7; Supplementary Information).

Each dot represents one neuron. Regression line is shown in yellow. b, Average change in

firing rate between 1st and 2nd half of our experiment with repetitive auditory stimulation.

This firing rate change correlates with the difference between stimulus evoked and predicted

activity during the 1st half of the experiment (Supplementary Information). Each dot

represents the activity of one neuron averaged across stimuli. The similar behavior of

cortical and artificial neurons suggests that both may be using essentially the same learning

rule. Thus, this evidence that a neuronal change in firing rate relates to ‘surprise’, provides a

novel insight about neuronal plasticity.
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Fig. 6. Predicting stimulus evoked responses from spontaneous activity dynamics.
a, Sample spiking activity in the auditory cortex before and during tone presentation.

Note that spontaneous activity is not continuous, but rather composed of bursts called

packets which are similar to tone evoked packets. The red trace shows smoothed multiunit

activity: summed activity of all neurons (adopted with permission from 41). b, Spontaneous

packets were divided into 10 groups based on population activity patterns. Activity of a

single neuron in 5 different spontaneous packet groups is shown. Gray area indicates the

time window used for predicting future average activity within the 30–40ms time window

(marked by arrow). This predictive model derived from spontaneous activity was then

applied to predict future evoked activity based on initial evoked response. c, Actual vs.

predicted tone evoked activity. Plot convention is the same as in Fig. 4. Skewness of the

histogram to the right shows that for most neurons the evoked dynamics can be estimated

based on spontaneous neuron’s activity.
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